ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.215 by ayin, Thu Feb 21 10:34:15 2008 UTC vs.
Revision 1.477 by root, Sun Aug 9 00:13:28 2015 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
41extern "C" {
42#endif
43
44#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 43# include EV_CONFIG_H
47# else 44# else
48# include "config.h" 45# include "config.h"
49# endif 46# endif
50 47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
51# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
52# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
53# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
54# endif 71# endif
55# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
57# endif 74# endif
58# else 75# else
59# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
61# endif 78# endif
62# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
63# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
64# endif 81# endif
65# endif 82# endif
66 83
84# if HAVE_NANOSLEEP
67# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
69# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
70# else 88# else
89# undef EV_USE_NANOSLEEP
71# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
72# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
73# endif 100# endif
74 101
102# if HAVE_POLL && HAVE_POLL_H
75# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
76# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
77# define EV_USE_SELECT 1
78# else
79# define EV_USE_SELECT 0
80# endif 105# endif
81# endif
82
83# ifndef EV_USE_POLL
84# if HAVE_POLL && HAVE_POLL_H
85# define EV_USE_POLL 1
86# else 106# else
107# undef EV_USE_POLL
87# define EV_USE_POLL 0 108# define EV_USE_POLL 0
88# endif
89# endif 109# endif
90 110
91# ifndef EV_USE_EPOLL
92# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
93# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
94# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
95# define EV_USE_EPOLL 0
96# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
97# endif 118# endif
98 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
99# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
100# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
101# define EV_USE_KQUEUE 1
102# else
103# define EV_USE_KQUEUE 0
104# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
105# endif 127# endif
106 128
107# ifndef EV_USE_PORT
108# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
109# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
110# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
111# define EV_USE_PORT 0
112# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
113# endif 136# endif
114 137
115# ifndef EV_USE_INOTIFY
116# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
117# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
118# else
119# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
120# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
121# endif 145# endif
122 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
123#endif 154# endif
124 155
125#include <math.h> 156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
126#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
127#include <fcntl.h> 169#include <fcntl.h>
128#include <stddef.h> 170#include <stddef.h>
129 171
130#include <stdio.h> 172#include <stdio.h>
131 173
132#include <assert.h> 174#include <assert.h>
133#include <errno.h> 175#include <errno.h>
134#include <sys/types.h> 176#include <sys/types.h>
135#include <time.h> 177#include <time.h>
178#include <limits.h>
136 179
137#include <signal.h> 180#include <signal.h>
138 181
139#ifdef EV_H 182#ifdef EV_H
140# include EV_H 183# include EV_H
141#else 184#else
142# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
143#endif 197#endif
144 198
145#ifndef _WIN32 199#ifndef _WIN32
146# include <sys/time.h> 200# include <sys/time.h>
147# include <sys/wait.h> 201# include <sys/wait.h>
148# include <unistd.h> 202# include <unistd.h>
149#else 203#else
204# include <io.h>
150# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
151# include <windows.h> 207# include <windows.h>
152# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
154# endif 210# endif
211# undef EV_AVOID_STDIO
212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
221
222/* this block tries to deduce configuration from header-defined symbols and defaults */
223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# define EV_NSIG (8 * sizeof (sigset_t) + 1)
247#endif
248
249#ifndef EV_USE_FLOOR
250# define EV_USE_FLOOR 0
251#endif
252
253#ifndef EV_USE_CLOCK_SYSCALL
254# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
255# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
256# else
257# define EV_USE_CLOCK_SYSCALL 0
155#endif 258# endif
259#endif
156 260
157/**/ 261#if !(_POSIX_TIMERS > 0)
262# ifndef EV_USE_MONOTONIC
263# define EV_USE_MONOTONIC 0
264# endif
265# ifndef EV_USE_REALTIME
266# define EV_USE_REALTIME 0
267# endif
268#endif
158 269
159#ifndef EV_USE_MONOTONIC 270#ifndef EV_USE_MONOTONIC
271# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
272# define EV_USE_MONOTONIC EV_FEATURE_OS
273# else
160# define EV_USE_MONOTONIC 0 274# define EV_USE_MONOTONIC 0
275# endif
161#endif 276#endif
162 277
163#ifndef EV_USE_REALTIME 278#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0 279# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
165#endif 280#endif
166 281
167#ifndef EV_USE_NANOSLEEP 282#ifndef EV_USE_NANOSLEEP
283# if _POSIX_C_SOURCE >= 199309L
284# define EV_USE_NANOSLEEP EV_FEATURE_OS
285# else
168# define EV_USE_NANOSLEEP 0 286# define EV_USE_NANOSLEEP 0
287# endif
169#endif 288#endif
170 289
171#ifndef EV_USE_SELECT 290#ifndef EV_USE_SELECT
172# define EV_USE_SELECT 1 291# define EV_USE_SELECT EV_FEATURE_BACKENDS
173#endif 292#endif
174 293
175#ifndef EV_USE_POLL 294#ifndef EV_USE_POLL
176# ifdef _WIN32 295# ifdef _WIN32
177# define EV_USE_POLL 0 296# define EV_USE_POLL 0
178# else 297# else
179# define EV_USE_POLL 1 298# define EV_USE_POLL EV_FEATURE_BACKENDS
180# endif 299# endif
181#endif 300#endif
182 301
183#ifndef EV_USE_EPOLL 302#ifndef EV_USE_EPOLL
303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
304# define EV_USE_EPOLL EV_FEATURE_BACKENDS
305# else
184# define EV_USE_EPOLL 0 306# define EV_USE_EPOLL 0
307# endif
185#endif 308#endif
186 309
187#ifndef EV_USE_KQUEUE 310#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 311# define EV_USE_KQUEUE 0
189#endif 312#endif
191#ifndef EV_USE_PORT 314#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 315# define EV_USE_PORT 0
193#endif 316#endif
194 317
195#ifndef EV_USE_INOTIFY 318#ifndef EV_USE_INOTIFY
319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
320# define EV_USE_INOTIFY EV_FEATURE_OS
321# else
196# define EV_USE_INOTIFY 0 322# define EV_USE_INOTIFY 0
323# endif
197#endif 324#endif
198 325
199#ifndef EV_PID_HASHSIZE 326#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 327# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
201# define EV_PID_HASHSIZE 1 328#endif
329
330#ifndef EV_INOTIFY_HASHSIZE
331# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
332#endif
333
334#ifndef EV_USE_EVENTFD
335# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
336# define EV_USE_EVENTFD EV_FEATURE_OS
202# else 337# else
203# define EV_PID_HASHSIZE 16 338# define EV_USE_EVENTFD 0
204# endif 339# endif
205#endif 340#endif
206 341
207#ifndef EV_INOTIFY_HASHSIZE 342#ifndef EV_USE_SIGNALFD
208# if EV_MINIMAL 343# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
209# define EV_INOTIFY_HASHSIZE 1 344# define EV_USE_SIGNALFD EV_FEATURE_OS
210# else 345# else
211# define EV_INOTIFY_HASHSIZE 16 346# define EV_USE_SIGNALFD 0
212# endif 347# endif
213#endif 348#endif
214 349
215/**/ 350#if 0 /* debugging */
351# define EV_VERIFY 3
352# define EV_USE_4HEAP 1
353# define EV_HEAP_CACHE_AT 1
354#endif
355
356#ifndef EV_VERIFY
357# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
358#endif
359
360#ifndef EV_USE_4HEAP
361# define EV_USE_4HEAP EV_FEATURE_DATA
362#endif
363
364#ifndef EV_HEAP_CACHE_AT
365# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
366#endif
367
368#ifdef ANDROID
369/* supposedly, android doesn't typedef fd_mask */
370# undef EV_USE_SELECT
371# define EV_USE_SELECT 0
372/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
373# undef EV_USE_CLOCK_SYSCALL
374# define EV_USE_CLOCK_SYSCALL 0
375#endif
376
377/* aix's poll.h seems to cause lots of trouble */
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
380# undef EV_USE_POLL
381# define EV_USE_POLL 0
382#endif
383
384/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
385/* which makes programs even slower. might work on other unices, too. */
386#if EV_USE_CLOCK_SYSCALL
387# include <sys/syscall.h>
388# ifdef SYS_clock_gettime
389# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
390# undef EV_USE_MONOTONIC
391# define EV_USE_MONOTONIC 1
392# else
393# undef EV_USE_CLOCK_SYSCALL
394# define EV_USE_CLOCK_SYSCALL 0
395# endif
396#endif
397
398/* this block fixes any misconfiguration where we know we run into trouble otherwise */
216 399
217#ifndef CLOCK_MONOTONIC 400#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 401# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 402# define EV_USE_MONOTONIC 0
220#endif 403#endif
228# undef EV_USE_INOTIFY 411# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0 412# define EV_USE_INOTIFY 0
230#endif 413#endif
231 414
232#if !EV_USE_NANOSLEEP 415#if !EV_USE_NANOSLEEP
233# ifndef _WIN32 416/* hp-ux has it in sys/time.h, which we unconditionally include above */
417# if !defined _WIN32 && !defined __hpux
234# include <sys/select.h> 418# include <sys/select.h>
235# endif 419# endif
236#endif 420#endif
237 421
238#if EV_USE_INOTIFY 422#if EV_USE_INOTIFY
423# include <sys/statfs.h>
239# include <sys/inotify.h> 424# include <sys/inotify.h>
425/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
426# ifndef IN_DONT_FOLLOW
427# undef EV_USE_INOTIFY
428# define EV_USE_INOTIFY 0
240#endif 429# endif
430#endif
241 431
242#if EV_SELECT_IS_WINSOCKET 432#if EV_USE_EVENTFD
433/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
243# include <winsock.h> 434# include <stdint.h>
435# ifndef EFD_NONBLOCK
436# define EFD_NONBLOCK O_NONBLOCK
437# endif
438# ifndef EFD_CLOEXEC
439# ifdef O_CLOEXEC
440# define EFD_CLOEXEC O_CLOEXEC
441# else
442# define EFD_CLOEXEC 02000000
443# endif
444# endif
445EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
446#endif
447
448#if EV_USE_SIGNALFD
449/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
450# include <stdint.h>
451# ifndef SFD_NONBLOCK
452# define SFD_NONBLOCK O_NONBLOCK
453# endif
454# ifndef SFD_CLOEXEC
455# ifdef O_CLOEXEC
456# define SFD_CLOEXEC O_CLOEXEC
457# else
458# define SFD_CLOEXEC 02000000
459# endif
460# endif
461EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
462
463struct signalfd_siginfo
464{
465 uint32_t ssi_signo;
466 char pad[128 - sizeof (uint32_t)];
467};
244#endif 468#endif
245 469
246/**/ 470/**/
247 471
472#if EV_VERIFY >= 3
473# define EV_FREQUENT_CHECK ev_verify (EV_A)
474#else
475# define EV_FREQUENT_CHECK do { } while (0)
476#endif
477
248/* 478/*
249 * This is used to avoid floating point rounding problems. 479 * This is used to work around floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding
252 * errors are against us.
253 * This value is good at least till the year 4000. 480 * This value is good at least till the year 4000.
254 * Better solutions welcome.
255 */ 481 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 482#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
483/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
257 484
258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 485#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 486#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
261 487
488#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
489#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
490
491/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
492/* ECB.H BEGIN */
493/*
494 * libecb - http://software.schmorp.de/pkg/libecb
495 *
496 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
497 * Copyright (©) 2011 Emanuele Giaquinta
498 * All rights reserved.
499 *
500 * Redistribution and use in source and binary forms, with or without modifica-
501 * tion, are permitted provided that the following conditions are met:
502 *
503 * 1. Redistributions of source code must retain the above copyright notice,
504 * this list of conditions and the following disclaimer.
505 *
506 * 2. Redistributions in binary form must reproduce the above copyright
507 * notice, this list of conditions and the following disclaimer in the
508 * documentation and/or other materials provided with the distribution.
509 *
510 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
511 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
512 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
513 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
514 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
515 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
516 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
517 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
518 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
519 * OF THE POSSIBILITY OF SUCH DAMAGE.
520 *
521 * Alternatively, the contents of this file may be used under the terms of
522 * the GNU General Public License ("GPL") version 2 or any later version,
523 * in which case the provisions of the GPL are applicable instead of
524 * the above. If you wish to allow the use of your version of this file
525 * only under the terms of the GPL and not to allow others to use your
526 * version of this file under the BSD license, indicate your decision
527 * by deleting the provisions above and replace them with the notice
528 * and other provisions required by the GPL. If you do not delete the
529 * provisions above, a recipient may use your version of this file under
530 * either the BSD or the GPL.
531 */
532
533#ifndef ECB_H
534#define ECB_H
535
536/* 16 bits major, 16 bits minor */
537#define ECB_VERSION 0x00010004
538
539#ifdef _WIN32
540 typedef signed char int8_t;
541 typedef unsigned char uint8_t;
542 typedef signed short int16_t;
543 typedef unsigned short uint16_t;
544 typedef signed int int32_t;
545 typedef unsigned int uint32_t;
262#if __GNUC__ >= 4 546 #if __GNUC__
263# define expect(expr,value) __builtin_expect ((expr),(value)) 547 typedef signed long long int64_t;
264# define noinline __attribute__ ((noinline)) 548 typedef unsigned long long uint64_t;
549 #else /* _MSC_VER || __BORLANDC__ */
550 typedef signed __int64 int64_t;
551 typedef unsigned __int64 uint64_t;
552 #endif
553 #ifdef _WIN64
554 #define ECB_PTRSIZE 8
555 typedef uint64_t uintptr_t;
556 typedef int64_t intptr_t;
557 #else
558 #define ECB_PTRSIZE 4
559 typedef uint32_t uintptr_t;
560 typedef int32_t intptr_t;
561 #endif
265#else 562#else
266# define expect(expr,value) (expr) 563 #include <inttypes.h>
267# define noinline 564 #if UINTMAX_MAX > 0xffffffffU
268# if __STDC_VERSION__ < 199901L 565 #define ECB_PTRSIZE 8
269# define inline 566 #else
567 #define ECB_PTRSIZE 4
568 #endif
270# endif 569#endif
570
571#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
572#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
573
574/* work around x32 idiocy by defining proper macros */
575#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
576 #if _ILP32
577 #define ECB_AMD64_X32 1
578 #else
579 #define ECB_AMD64 1
271#endif 580 #endif
581#endif
272 582
583/* many compilers define _GNUC_ to some versions but then only implement
584 * what their idiot authors think are the "more important" extensions,
585 * causing enormous grief in return for some better fake benchmark numbers.
586 * or so.
587 * we try to detect these and simply assume they are not gcc - if they have
588 * an issue with that they should have done it right in the first place.
589 */
590#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
591 #define ECB_GCC_VERSION(major,minor) 0
592#else
593 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
594#endif
595
596#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
597
598#if __clang__ && defined __has_builtin
599 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
600#else
601 #define ECB_CLANG_BUILTIN(x) 0
602#endif
603
604#if __clang__ && defined __has_extension
605 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
606#else
607 #define ECB_CLANG_EXTENSION(x) 0
608#endif
609
610#define ECB_CPP (__cplusplus+0)
611#define ECB_CPP11 (__cplusplus >= 201103L)
612
613#if ECB_CPP
614 #define ECB_C 0
615 #define ECB_STDC_VERSION 0
616#else
617 #define ECB_C 1
618 #define ECB_STDC_VERSION __STDC_VERSION__
619#endif
620
621#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
622#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
623
624#if ECB_CPP
625 #define ECB_EXTERN_C extern "C"
626 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
627 #define ECB_EXTERN_C_END }
628#else
629 #define ECB_EXTERN_C extern
630 #define ECB_EXTERN_C_BEG
631 #define ECB_EXTERN_C_END
632#endif
633
634/*****************************************************************************/
635
636/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
637/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
638
639#if ECB_NO_THREADS
640 #define ECB_NO_SMP 1
641#endif
642
643#if ECB_NO_SMP
644 #define ECB_MEMORY_FENCE do { } while (0)
645#endif
646
647/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
648#if __xlC__ && ECB_CPP
649 #include <builtins.h>
650#endif
651
652#ifndef ECB_MEMORY_FENCE
653 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
654 #if __i386 || __i386__
655 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
656 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
657 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
658 #elif ECB_GCC_AMD64
659 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
660 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
661 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
662 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
663 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
664 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
665 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
666 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
667 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
668 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
669 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
670 #elif __aarch64__
671 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
672 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
673 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
674 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
675 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
676 #elif defined __s390__ || defined __s390x__
677 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
678 #elif defined __mips__
679 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
680 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
681 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
682 #elif defined __alpha__
683 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
684 #elif defined __hppa__
685 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
686 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
687 #elif defined __ia64__
688 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
689 #elif defined __m68k__
690 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
691 #elif defined __m88k__
692 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
693 #elif defined __sh__
694 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
695 #endif
696 #endif
697#endif
698
699#ifndef ECB_MEMORY_FENCE
700 #if ECB_GCC_VERSION(4,7)
701 /* see comment below (stdatomic.h) about the C11 memory model. */
702 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
703 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
704 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
705
706 #elif ECB_CLANG_EXTENSION(c_atomic)
707 /* see comment below (stdatomic.h) about the C11 memory model. */
708 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
709 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
710 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
711
712 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
713 #define ECB_MEMORY_FENCE __sync_synchronize ()
714 #elif _MSC_VER >= 1500 /* VC++ 2008 */
715 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
716 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
717 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
718 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
719 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
720 #elif _MSC_VER >= 1400 /* VC++ 2005 */
721 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
722 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
723 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
724 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
725 #elif defined _WIN32
726 #include <WinNT.h>
727 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
728 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
729 #include <mbarrier.h>
730 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
731 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
732 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
733 #elif __xlC__
734 #define ECB_MEMORY_FENCE __sync ()
735 #endif
736#endif
737
738#ifndef ECB_MEMORY_FENCE
739 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
740 /* we assume that these memory fences work on all variables/all memory accesses, */
741 /* not just C11 atomics and atomic accesses */
742 #include <stdatomic.h>
743 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
744 /* any fence other than seq_cst, which isn't very efficient for us. */
745 /* Why that is, we don't know - either the C11 memory model is quite useless */
746 /* for most usages, or gcc and clang have a bug */
747 /* I *currently* lean towards the latter, and inefficiently implement */
748 /* all three of ecb's fences as a seq_cst fence */
749 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
750 /* for all __atomic_thread_fence's except seq_cst */
751 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
752 #endif
753#endif
754
755#ifndef ECB_MEMORY_FENCE
756 #if !ECB_AVOID_PTHREADS
757 /*
758 * if you get undefined symbol references to pthread_mutex_lock,
759 * or failure to find pthread.h, then you should implement
760 * the ECB_MEMORY_FENCE operations for your cpu/compiler
761 * OR provide pthread.h and link against the posix thread library
762 * of your system.
763 */
764 #include <pthread.h>
765 #define ECB_NEEDS_PTHREADS 1
766 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
767
768 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
769 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
770 #endif
771#endif
772
773#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
774 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
775#endif
776
777#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
778 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
779#endif
780
781/*****************************************************************************/
782
783#if ECB_CPP
784 #define ecb_inline static inline
785#elif ECB_GCC_VERSION(2,5)
786 #define ecb_inline static __inline__
787#elif ECB_C99
788 #define ecb_inline static inline
789#else
790 #define ecb_inline static
791#endif
792
793#if ECB_GCC_VERSION(3,3)
794 #define ecb_restrict __restrict__
795#elif ECB_C99
796 #define ecb_restrict restrict
797#else
798 #define ecb_restrict
799#endif
800
801typedef int ecb_bool;
802
803#define ECB_CONCAT_(a, b) a ## b
804#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
805#define ECB_STRINGIFY_(a) # a
806#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
807#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
808
809#define ecb_function_ ecb_inline
810
811#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
812 #define ecb_attribute(attrlist) __attribute__ (attrlist)
813#else
814 #define ecb_attribute(attrlist)
815#endif
816
817#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
818 #define ecb_is_constant(expr) __builtin_constant_p (expr)
819#else
820 /* possible C11 impl for integral types
821 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
822 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
823
824 #define ecb_is_constant(expr) 0
825#endif
826
827#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
828 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
829#else
830 #define ecb_expect(expr,value) (expr)
831#endif
832
833#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
834 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
835#else
836 #define ecb_prefetch(addr,rw,locality)
837#endif
838
839/* no emulation for ecb_decltype */
840#if ECB_CPP11
841 // older implementations might have problems with decltype(x)::type, work around it
842 template<class T> struct ecb_decltype_t { typedef T type; };
843 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
844#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
845 #define ecb_decltype(x) __typeof__ (x)
846#endif
847
848#if _MSC_VER >= 1300
849 #define ecb_deprecated __declspec (deprecated)
850#else
851 #define ecb_deprecated ecb_attribute ((__deprecated__))
852#endif
853
854#if _MSC_VER >= 1500
855 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
856#elif ECB_GCC_VERSION(4,5)
857 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
858#else
859 #define ecb_deprecated_message(msg) ecb_deprecated
860#endif
861
862#if _MSC_VER >= 1400
863 #define ecb_noinline __declspec (noinline)
864#else
865 #define ecb_noinline ecb_attribute ((__noinline__))
866#endif
867
868#define ecb_unused ecb_attribute ((__unused__))
869#define ecb_const ecb_attribute ((__const__))
870#define ecb_pure ecb_attribute ((__pure__))
871
872#if ECB_C11 || __IBMC_NORETURN
873 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
874 #define ecb_noreturn _Noreturn
875#elif ECB_CPP11
876 #define ecb_noreturn [[noreturn]]
877#elif _MSC_VER >= 1200
878 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
879 #define ecb_noreturn __declspec (noreturn)
880#else
881 #define ecb_noreturn ecb_attribute ((__noreturn__))
882#endif
883
884#if ECB_GCC_VERSION(4,3)
885 #define ecb_artificial ecb_attribute ((__artificial__))
886 #define ecb_hot ecb_attribute ((__hot__))
887 #define ecb_cold ecb_attribute ((__cold__))
888#else
889 #define ecb_artificial
890 #define ecb_hot
891 #define ecb_cold
892#endif
893
894/* put around conditional expressions if you are very sure that the */
895/* expression is mostly true or mostly false. note that these return */
896/* booleans, not the expression. */
273#define expect_false(expr) expect ((expr) != 0, 0) 897#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
274#define expect_true(expr) expect ((expr) != 0, 1) 898#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
899/* for compatibility to the rest of the world */
900#define ecb_likely(expr) ecb_expect_true (expr)
901#define ecb_unlikely(expr) ecb_expect_false (expr)
902
903/* count trailing zero bits and count # of one bits */
904#if ECB_GCC_VERSION(3,4) \
905 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
906 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
907 && ECB_CLANG_BUILTIN(__builtin_popcount))
908 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
909 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
910 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
911 #define ecb_ctz32(x) __builtin_ctz (x)
912 #define ecb_ctz64(x) __builtin_ctzll (x)
913 #define ecb_popcount32(x) __builtin_popcount (x)
914 /* no popcountll */
915#else
916 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
917 ecb_function_ ecb_const int
918 ecb_ctz32 (uint32_t x)
919 {
920 int r = 0;
921
922 x &= ~x + 1; /* this isolates the lowest bit */
923
924#if ECB_branchless_on_i386
925 r += !!(x & 0xaaaaaaaa) << 0;
926 r += !!(x & 0xcccccccc) << 1;
927 r += !!(x & 0xf0f0f0f0) << 2;
928 r += !!(x & 0xff00ff00) << 3;
929 r += !!(x & 0xffff0000) << 4;
930#else
931 if (x & 0xaaaaaaaa) r += 1;
932 if (x & 0xcccccccc) r += 2;
933 if (x & 0xf0f0f0f0) r += 4;
934 if (x & 0xff00ff00) r += 8;
935 if (x & 0xffff0000) r += 16;
936#endif
937
938 return r;
939 }
940
941 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
942 ecb_function_ ecb_const int
943 ecb_ctz64 (uint64_t x)
944 {
945 int shift = x & 0xffffffffU ? 0 : 32;
946 return ecb_ctz32 (x >> shift) + shift;
947 }
948
949 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
950 ecb_function_ ecb_const int
951 ecb_popcount32 (uint32_t x)
952 {
953 x -= (x >> 1) & 0x55555555;
954 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
955 x = ((x >> 4) + x) & 0x0f0f0f0f;
956 x *= 0x01010101;
957
958 return x >> 24;
959 }
960
961 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
962 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
963 {
964 int r = 0;
965
966 if (x >> 16) { x >>= 16; r += 16; }
967 if (x >> 8) { x >>= 8; r += 8; }
968 if (x >> 4) { x >>= 4; r += 4; }
969 if (x >> 2) { x >>= 2; r += 2; }
970 if (x >> 1) { r += 1; }
971
972 return r;
973 }
974
975 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
976 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
977 {
978 int r = 0;
979
980 if (x >> 32) { x >>= 32; r += 32; }
981
982 return r + ecb_ld32 (x);
983 }
984#endif
985
986ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
987ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
988ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
989ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
990
991ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
992ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
993{
994 return ( (x * 0x0802U & 0x22110U)
995 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
996}
997
998ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
999ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1000{
1001 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1002 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1003 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1004 x = ( x >> 8 ) | ( x << 8);
1005
1006 return x;
1007}
1008
1009ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1010ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1011{
1012 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1013 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1014 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1015 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1016 x = ( x >> 16 ) | ( x << 16);
1017
1018 return x;
1019}
1020
1021/* popcount64 is only available on 64 bit cpus as gcc builtin */
1022/* so for this version we are lazy */
1023ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1024ecb_function_ ecb_const int
1025ecb_popcount64 (uint64_t x)
1026{
1027 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1028}
1029
1030ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1031ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1032ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1033ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1034ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1035ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1036ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1037ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1038
1039ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1040ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1041ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1042ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1043ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1044ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1045ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1046ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1047
1048#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1049 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1050 #define ecb_bswap16(x) __builtin_bswap16 (x)
1051 #else
1052 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1053 #endif
1054 #define ecb_bswap32(x) __builtin_bswap32 (x)
1055 #define ecb_bswap64(x) __builtin_bswap64 (x)
1056#elif _MSC_VER
1057 #include <stdlib.h>
1058 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1059 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1060 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1061#else
1062 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1063 ecb_function_ ecb_const uint16_t
1064 ecb_bswap16 (uint16_t x)
1065 {
1066 return ecb_rotl16 (x, 8);
1067 }
1068
1069 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1070 ecb_function_ ecb_const uint32_t
1071 ecb_bswap32 (uint32_t x)
1072 {
1073 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1074 }
1075
1076 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1077 ecb_function_ ecb_const uint64_t
1078 ecb_bswap64 (uint64_t x)
1079 {
1080 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1081 }
1082#endif
1083
1084#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1085 #define ecb_unreachable() __builtin_unreachable ()
1086#else
1087 /* this seems to work fine, but gcc always emits a warning for it :/ */
1088 ecb_inline ecb_noreturn void ecb_unreachable (void);
1089 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1090#endif
1091
1092/* try to tell the compiler that some condition is definitely true */
1093#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1094
1095ecb_inline ecb_const unsigned char ecb_byteorder_helper (void);
1096ecb_inline ecb_const unsigned char
1097ecb_byteorder_helper (void)
1098{
1099 /* the union code still generates code under pressure in gcc, */
1100 /* but less than using pointers, and always seems to */
1101 /* successfully return a constant. */
1102 /* the reason why we have this horrible preprocessor mess */
1103 /* is to avoid it in all cases, at least on common architectures */
1104 /* or when using a recent enough gcc version (>= 4.6) */
1105#if ((__i386 || __i386__) && !__VOS__) || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64
1106 return 0x44;
1107#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1108 return 0x44;
1109#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1110 return 0x11;
1111#else
1112 union
1113 {
1114 uint32_t i;
1115 uint8_t c;
1116 } u = { 0x11223344 };
1117 return u.c;
1118#endif
1119}
1120
1121ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1122ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1123ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1124ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1125
1126#if ECB_GCC_VERSION(3,0) || ECB_C99
1127 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1128#else
1129 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1130#endif
1131
1132#if ECB_CPP
1133 template<typename T>
1134 static inline T ecb_div_rd (T val, T div)
1135 {
1136 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1137 }
1138 template<typename T>
1139 static inline T ecb_div_ru (T val, T div)
1140 {
1141 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1142 }
1143#else
1144 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1145 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1146#endif
1147
1148#if ecb_cplusplus_does_not_suck
1149 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1150 template<typename T, int N>
1151 static inline int ecb_array_length (const T (&arr)[N])
1152 {
1153 return N;
1154 }
1155#else
1156 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1157#endif
1158
1159/*******************************************************************************/
1160/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1161
1162/* basically, everything uses "ieee pure-endian" floating point numbers */
1163/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1164#if 0 \
1165 || __i386 || __i386__ \
1166 || ECB_GCC_AMD64 \
1167 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1168 || defined __s390__ || defined __s390x__ \
1169 || defined __mips__ \
1170 || defined __alpha__ \
1171 || defined __hppa__ \
1172 || defined __ia64__ \
1173 || defined __m68k__ \
1174 || defined __m88k__ \
1175 || defined __sh__ \
1176 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1177 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1178 || defined __aarch64__
1179 #define ECB_STDFP 1
1180 #include <string.h> /* for memcpy */
1181#else
1182 #define ECB_STDFP 0
1183#endif
1184
1185#ifndef ECB_NO_LIBM
1186
1187 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1188
1189 /* only the oldest of old doesn't have this one. solaris. */
1190 #ifdef INFINITY
1191 #define ECB_INFINITY INFINITY
1192 #else
1193 #define ECB_INFINITY HUGE_VAL
1194 #endif
1195
1196 #ifdef NAN
1197 #define ECB_NAN NAN
1198 #else
1199 #define ECB_NAN ECB_INFINITY
1200 #endif
1201
1202 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1203 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1204 #define ecb_frexpf(x,e) frexpf ((x), (e))
1205 #else
1206 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1207 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1208 #endif
1209
1210 /* converts an ieee half/binary16 to a float */
1211 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1212 ecb_function_ ecb_const float
1213 ecb_binary16_to_float (uint16_t x)
1214 {
1215 int e = (x >> 10) & 0x1f;
1216 int m = x & 0x3ff;
1217 float r;
1218
1219 if (!e ) r = ecb_ldexpf (m , -24);
1220 else if (e != 31) r = ecb_ldexpf (m + 0x400, e - 25);
1221 else if (m ) r = ECB_NAN;
1222 else r = ECB_INFINITY;
1223
1224 return x & 0x8000 ? -r : r;
1225 }
1226
1227 /* convert a float to ieee single/binary32 */
1228 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1229 ecb_function_ ecb_const uint32_t
1230 ecb_float_to_binary32 (float x)
1231 {
1232 uint32_t r;
1233
1234 #if ECB_STDFP
1235 memcpy (&r, &x, 4);
1236 #else
1237 /* slow emulation, works for anything but -0 */
1238 uint32_t m;
1239 int e;
1240
1241 if (x == 0e0f ) return 0x00000000U;
1242 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1243 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1244 if (x != x ) return 0x7fbfffffU;
1245
1246 m = ecb_frexpf (x, &e) * 0x1000000U;
1247
1248 r = m & 0x80000000U;
1249
1250 if (r)
1251 m = -m;
1252
1253 if (e <= -126)
1254 {
1255 m &= 0xffffffU;
1256 m >>= (-125 - e);
1257 e = -126;
1258 }
1259
1260 r |= (e + 126) << 23;
1261 r |= m & 0x7fffffU;
1262 #endif
1263
1264 return r;
1265 }
1266
1267 /* converts an ieee single/binary32 to a float */
1268 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1269 ecb_function_ ecb_const float
1270 ecb_binary32_to_float (uint32_t x)
1271 {
1272 float r;
1273
1274 #if ECB_STDFP
1275 memcpy (&r, &x, 4);
1276 #else
1277 /* emulation, only works for normals and subnormals and +0 */
1278 int neg = x >> 31;
1279 int e = (x >> 23) & 0xffU;
1280
1281 x &= 0x7fffffU;
1282
1283 if (e)
1284 x |= 0x800000U;
1285 else
1286 e = 1;
1287
1288 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1289 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1290
1291 r = neg ? -r : r;
1292 #endif
1293
1294 return r;
1295 }
1296
1297 /* convert a double to ieee double/binary64 */
1298 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1299 ecb_function_ ecb_const uint64_t
1300 ecb_double_to_binary64 (double x)
1301 {
1302 uint64_t r;
1303
1304 #if ECB_STDFP
1305 memcpy (&r, &x, 8);
1306 #else
1307 /* slow emulation, works for anything but -0 */
1308 uint64_t m;
1309 int e;
1310
1311 if (x == 0e0 ) return 0x0000000000000000U;
1312 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1313 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1314 if (x != x ) return 0X7ff7ffffffffffffU;
1315
1316 m = frexp (x, &e) * 0x20000000000000U;
1317
1318 r = m & 0x8000000000000000;;
1319
1320 if (r)
1321 m = -m;
1322
1323 if (e <= -1022)
1324 {
1325 m &= 0x1fffffffffffffU;
1326 m >>= (-1021 - e);
1327 e = -1022;
1328 }
1329
1330 r |= ((uint64_t)(e + 1022)) << 52;
1331 r |= m & 0xfffffffffffffU;
1332 #endif
1333
1334 return r;
1335 }
1336
1337 /* converts an ieee double/binary64 to a double */
1338 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1339 ecb_function_ ecb_const double
1340 ecb_binary64_to_double (uint64_t x)
1341 {
1342 double r;
1343
1344 #if ECB_STDFP
1345 memcpy (&r, &x, 8);
1346 #else
1347 /* emulation, only works for normals and subnormals and +0 */
1348 int neg = x >> 63;
1349 int e = (x >> 52) & 0x7ffU;
1350
1351 x &= 0xfffffffffffffU;
1352
1353 if (e)
1354 x |= 0x10000000000000U;
1355 else
1356 e = 1;
1357
1358 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1359 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1360
1361 r = neg ? -r : r;
1362 #endif
1363
1364 return r;
1365 }
1366
1367#endif
1368
1369#endif
1370
1371/* ECB.H END */
1372
1373#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1374/* if your architecture doesn't need memory fences, e.g. because it is
1375 * single-cpu/core, or if you use libev in a project that doesn't use libev
1376 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1377 * libev, in which cases the memory fences become nops.
1378 * alternatively, you can remove this #error and link against libpthread,
1379 * which will then provide the memory fences.
1380 */
1381# error "memory fences not defined for your architecture, please report"
1382#endif
1383
1384#ifndef ECB_MEMORY_FENCE
1385# define ECB_MEMORY_FENCE do { } while (0)
1386# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1387# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1388#endif
1389
1390#define expect_false(cond) ecb_expect_false (cond)
1391#define expect_true(cond) ecb_expect_true (cond)
1392#define noinline ecb_noinline
1393
275#define inline_size static inline 1394#define inline_size ecb_inline
276 1395
277#if EV_MINIMAL 1396#if EV_FEATURE_CODE
1397# define inline_speed ecb_inline
1398#else
278# define inline_speed static noinline 1399# define inline_speed static noinline
1400#endif
1401
1402#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1403
1404#if EV_MINPRI == EV_MAXPRI
1405# define ABSPRI(w) (((W)w), 0)
279#else 1406#else
280# define inline_speed static inline
281#endif
282
283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1407# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1408#endif
285 1409
286#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1410#define EMPTY /* required for microsofts broken pseudo-c compiler */
287#define EMPTY2(a,b) /* used to suppress some warnings */ 1411#define EMPTY2(a,b) /* used to suppress some warnings */
288 1412
289typedef ev_watcher *W; 1413typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 1414typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 1415typedef ev_watcher_time *WT;
292 1416
1417#define ev_active(w) ((W)(w))->active
1418#define ev_at(w) ((WT)(w))->at
1419
1420#if EV_USE_REALTIME
1421/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1422/* giving it a reasonably high chance of working on typical architectures */
1423static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1424#endif
1425
293#if EV_USE_MONOTONIC 1426#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1427static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1428#endif
1429
1430#ifndef EV_FD_TO_WIN32_HANDLE
1431# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1432#endif
1433#ifndef EV_WIN32_HANDLE_TO_FD
1434# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1435#endif
1436#ifndef EV_WIN32_CLOSE_FD
1437# define EV_WIN32_CLOSE_FD(fd) close (fd)
297#endif 1438#endif
298 1439
299#ifdef _WIN32 1440#ifdef _WIN32
300# include "ev_win32.c" 1441# include "ev_win32.c"
301#endif 1442#endif
302 1443
303/*****************************************************************************/ 1444/*****************************************************************************/
304 1445
1446/* define a suitable floor function (only used by periodics atm) */
1447
1448#if EV_USE_FLOOR
1449# include <math.h>
1450# define ev_floor(v) floor (v)
1451#else
1452
1453#include <float.h>
1454
1455/* a floor() replacement function, should be independent of ev_tstamp type */
1456static ev_tstamp noinline
1457ev_floor (ev_tstamp v)
1458{
1459 /* the choice of shift factor is not terribly important */
1460#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1461 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1462#else
1463 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1464#endif
1465
1466 /* argument too large for an unsigned long? */
1467 if (expect_false (v >= shift))
1468 {
1469 ev_tstamp f;
1470
1471 if (v == v - 1.)
1472 return v; /* very large number */
1473
1474 f = shift * ev_floor (v * (1. / shift));
1475 return f + ev_floor (v - f);
1476 }
1477
1478 /* special treatment for negative args? */
1479 if (expect_false (v < 0.))
1480 {
1481 ev_tstamp f = -ev_floor (-v);
1482
1483 return f - (f == v ? 0 : 1);
1484 }
1485
1486 /* fits into an unsigned long */
1487 return (unsigned long)v;
1488}
1489
1490#endif
1491
1492/*****************************************************************************/
1493
1494#ifdef __linux
1495# include <sys/utsname.h>
1496#endif
1497
1498static unsigned int noinline ecb_cold
1499ev_linux_version (void)
1500{
1501#ifdef __linux
1502 unsigned int v = 0;
1503 struct utsname buf;
1504 int i;
1505 char *p = buf.release;
1506
1507 if (uname (&buf))
1508 return 0;
1509
1510 for (i = 3+1; --i; )
1511 {
1512 unsigned int c = 0;
1513
1514 for (;;)
1515 {
1516 if (*p >= '0' && *p <= '9')
1517 c = c * 10 + *p++ - '0';
1518 else
1519 {
1520 p += *p == '.';
1521 break;
1522 }
1523 }
1524
1525 v = (v << 8) | c;
1526 }
1527
1528 return v;
1529#else
1530 return 0;
1531#endif
1532}
1533
1534/*****************************************************************************/
1535
1536#if EV_AVOID_STDIO
1537static void noinline ecb_cold
1538ev_printerr (const char *msg)
1539{
1540 write (STDERR_FILENO, msg, strlen (msg));
1541}
1542#endif
1543
305static void (*syserr_cb)(const char *msg); 1544static void (*syserr_cb)(const char *msg) EV_THROW;
306 1545
307void 1546void ecb_cold
308ev_set_syserr_cb (void (*cb)(const char *msg)) 1547ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
309{ 1548{
310 syserr_cb = cb; 1549 syserr_cb = cb;
311} 1550}
312 1551
313static void noinline 1552static void noinline ecb_cold
314syserr (const char *msg) 1553ev_syserr (const char *msg)
315{ 1554{
316 if (!msg) 1555 if (!msg)
317 msg = "(libev) system error"; 1556 msg = "(libev) system error";
318 1557
319 if (syserr_cb) 1558 if (syserr_cb)
320 syserr_cb (msg); 1559 syserr_cb (msg);
321 else 1560 else
322 { 1561 {
1562#if EV_AVOID_STDIO
1563 ev_printerr (msg);
1564 ev_printerr (": ");
1565 ev_printerr (strerror (errno));
1566 ev_printerr ("\n");
1567#else
323 perror (msg); 1568 perror (msg);
1569#endif
324 abort (); 1570 abort ();
325 } 1571 }
326} 1572}
327 1573
1574static void *
1575ev_realloc_emul (void *ptr, long size) EV_THROW
1576{
1577 /* some systems, notably openbsd and darwin, fail to properly
1578 * implement realloc (x, 0) (as required by both ansi c-89 and
1579 * the single unix specification, so work around them here.
1580 * recently, also (at least) fedora and debian started breaking it,
1581 * despite documenting it otherwise.
1582 */
1583
1584 if (size)
1585 return realloc (ptr, size);
1586
1587 free (ptr);
1588 return 0;
1589}
1590
328static void *(*alloc)(void *ptr, long size); 1591static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
329 1592
330void 1593void ecb_cold
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 1594ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
332{ 1595{
333 alloc = cb; 1596 alloc = cb;
334} 1597}
335 1598
336inline_speed void * 1599inline_speed void *
337ev_realloc (void *ptr, long size) 1600ev_realloc (void *ptr, long size)
338{ 1601{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1602 ptr = alloc (ptr, size);
340 1603
341 if (!ptr && size) 1604 if (!ptr && size)
342 { 1605 {
1606#if EV_AVOID_STDIO
1607 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1608#else
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1609 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1610#endif
344 abort (); 1611 abort ();
345 } 1612 }
346 1613
347 return ptr; 1614 return ptr;
348} 1615}
350#define ev_malloc(size) ev_realloc (0, (size)) 1617#define ev_malloc(size) ev_realloc (0, (size))
351#define ev_free(ptr) ev_realloc ((ptr), 0) 1618#define ev_free(ptr) ev_realloc ((ptr), 0)
352 1619
353/*****************************************************************************/ 1620/*****************************************************************************/
354 1621
1622/* set in reify when reification needed */
1623#define EV_ANFD_REIFY 1
1624
1625/* file descriptor info structure */
355typedef struct 1626typedef struct
356{ 1627{
357 WL head; 1628 WL head;
358 unsigned char events; 1629 unsigned char events; /* the events watched for */
1630 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1631 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
359 unsigned char reify; 1632 unsigned char unused;
1633#if EV_USE_EPOLL
1634 unsigned int egen; /* generation counter to counter epoll bugs */
1635#endif
360#if EV_SELECT_IS_WINSOCKET 1636#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
361 SOCKET handle; 1637 SOCKET handle;
362#endif 1638#endif
1639#if EV_USE_IOCP
1640 OVERLAPPED or, ow;
1641#endif
363} ANFD; 1642} ANFD;
364 1643
1644/* stores the pending event set for a given watcher */
365typedef struct 1645typedef struct
366{ 1646{
367 W w; 1647 W w;
368 int events; 1648 int events; /* the pending event set for the given watcher */
369} ANPENDING; 1649} ANPENDING;
370 1650
371#if EV_USE_INOTIFY 1651#if EV_USE_INOTIFY
1652/* hash table entry per inotify-id */
372typedef struct 1653typedef struct
373{ 1654{
374 WL head; 1655 WL head;
375} ANFS; 1656} ANFS;
1657#endif
1658
1659/* Heap Entry */
1660#if EV_HEAP_CACHE_AT
1661 /* a heap element */
1662 typedef struct {
1663 ev_tstamp at;
1664 WT w;
1665 } ANHE;
1666
1667 #define ANHE_w(he) (he).w /* access watcher, read-write */
1668 #define ANHE_at(he) (he).at /* access cached at, read-only */
1669 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1670#else
1671 /* a heap element */
1672 typedef WT ANHE;
1673
1674 #define ANHE_w(he) (he)
1675 #define ANHE_at(he) (he)->at
1676 #define ANHE_at_cache(he)
376#endif 1677#endif
377 1678
378#if EV_MULTIPLICITY 1679#if EV_MULTIPLICITY
379 1680
380 struct ev_loop 1681 struct ev_loop
386 #undef VAR 1687 #undef VAR
387 }; 1688 };
388 #include "ev_wrap.h" 1689 #include "ev_wrap.h"
389 1690
390 static struct ev_loop default_loop_struct; 1691 static struct ev_loop default_loop_struct;
391 struct ev_loop *ev_default_loop_ptr; 1692 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
392 1693
393#else 1694#else
394 1695
395 ev_tstamp ev_rt_now; 1696 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
396 #define VAR(name,decl) static decl; 1697 #define VAR(name,decl) static decl;
397 #include "ev_vars.h" 1698 #include "ev_vars.h"
398 #undef VAR 1699 #undef VAR
399 1700
400 static int ev_default_loop_ptr; 1701 static int ev_default_loop_ptr;
401 1702
402#endif 1703#endif
403 1704
1705#if EV_FEATURE_API
1706# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1707# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1708# define EV_INVOKE_PENDING invoke_cb (EV_A)
1709#else
1710# define EV_RELEASE_CB (void)0
1711# define EV_ACQUIRE_CB (void)0
1712# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1713#endif
1714
1715#define EVBREAK_RECURSE 0x80
1716
404/*****************************************************************************/ 1717/*****************************************************************************/
405 1718
1719#ifndef EV_HAVE_EV_TIME
406ev_tstamp 1720ev_tstamp
407ev_time (void) 1721ev_time (void) EV_THROW
408{ 1722{
409#if EV_USE_REALTIME 1723#if EV_USE_REALTIME
1724 if (expect_true (have_realtime))
1725 {
410 struct timespec ts; 1726 struct timespec ts;
411 clock_gettime (CLOCK_REALTIME, &ts); 1727 clock_gettime (CLOCK_REALTIME, &ts);
412 return ts.tv_sec + ts.tv_nsec * 1e-9; 1728 return ts.tv_sec + ts.tv_nsec * 1e-9;
413#else 1729 }
1730#endif
1731
414 struct timeval tv; 1732 struct timeval tv;
415 gettimeofday (&tv, 0); 1733 gettimeofday (&tv, 0);
416 return tv.tv_sec + tv.tv_usec * 1e-6; 1734 return tv.tv_sec + tv.tv_usec * 1e-6;
417#endif
418} 1735}
1736#endif
419 1737
420ev_tstamp inline_size 1738inline_size ev_tstamp
421get_clock (void) 1739get_clock (void)
422{ 1740{
423#if EV_USE_MONOTONIC 1741#if EV_USE_MONOTONIC
424 if (expect_true (have_monotonic)) 1742 if (expect_true (have_monotonic))
425 { 1743 {
432 return ev_time (); 1750 return ev_time ();
433} 1751}
434 1752
435#if EV_MULTIPLICITY 1753#if EV_MULTIPLICITY
436ev_tstamp 1754ev_tstamp
437ev_now (EV_P) 1755ev_now (EV_P) EV_THROW
438{ 1756{
439 return ev_rt_now; 1757 return ev_rt_now;
440} 1758}
441#endif 1759#endif
442 1760
443void 1761void
444ev_sleep (ev_tstamp delay) 1762ev_sleep (ev_tstamp delay) EV_THROW
445{ 1763{
446 if (delay > 0.) 1764 if (delay > 0.)
447 { 1765 {
448#if EV_USE_NANOSLEEP 1766#if EV_USE_NANOSLEEP
449 struct timespec ts; 1767 struct timespec ts;
450 1768
451 ts.tv_sec = (time_t)delay; 1769 EV_TS_SET (ts, delay);
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0); 1770 nanosleep (&ts, 0);
455#elif defined(_WIN32) 1771#elif defined _WIN32
456 Sleep (delay * 1e3); 1772 Sleep ((unsigned long)(delay * 1e3));
457#else 1773#else
458 struct timeval tv; 1774 struct timeval tv;
459 1775
460 tv.tv_sec = (time_t)delay; 1776 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1777 /* something not guaranteed by newer posix versions, but guaranteed */
462 1778 /* by older ones */
1779 EV_TV_SET (tv, delay);
463 select (0, 0, 0, 0, &tv); 1780 select (0, 0, 0, 0, &tv);
464#endif 1781#endif
465 } 1782 }
466} 1783}
467 1784
468/*****************************************************************************/ 1785/*****************************************************************************/
469 1786
470int inline_size 1787#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1788
1789/* find a suitable new size for the given array, */
1790/* hopefully by rounding to a nice-to-malloc size */
1791inline_size int
471array_nextsize (int elem, int cur, int cnt) 1792array_nextsize (int elem, int cur, int cnt)
472{ 1793{
473 int ncur = cur + 1; 1794 int ncur = cur + 1;
474 1795
475 do 1796 do
476 ncur <<= 1; 1797 ncur <<= 1;
477 while (cnt > ncur); 1798 while (cnt > ncur);
478 1799
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 1800 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
480 if (elem * ncur > 4096) 1801 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 1802 {
482 ncur *= elem; 1803 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 1804 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 1805 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 1806 ncur /= elem;
486 } 1807 }
487 1808
488 return ncur; 1809 return ncur;
489} 1810}
490 1811
491static noinline void * 1812static void * noinline ecb_cold
492array_realloc (int elem, void *base, int *cur, int cnt) 1813array_realloc (int elem, void *base, int *cur, int cnt)
493{ 1814{
494 *cur = array_nextsize (elem, *cur, cnt); 1815 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur); 1816 return ev_realloc (base, elem * *cur);
496} 1817}
1818
1819#define array_init_zero(base,count) \
1820 memset ((void *)(base), 0, sizeof (*(base)) * (count))
497 1821
498#define array_needsize(type,base,cur,cnt,init) \ 1822#define array_needsize(type,base,cur,cnt,init) \
499 if (expect_false ((cnt) > (cur))) \ 1823 if (expect_false ((cnt) > (cur))) \
500 { \ 1824 { \
501 int ocur_ = (cur); \ 1825 int ecb_unused ocur_ = (cur); \
502 (base) = (type *)array_realloc \ 1826 (base) = (type *)array_realloc \
503 (sizeof (type), (base), &(cur), (cnt)); \ 1827 (sizeof (type), (base), &(cur), (cnt)); \
504 init ((base) + (ocur_), (cur) - ocur_); \ 1828 init ((base) + (ocur_), (cur) - ocur_); \
505 } 1829 }
506 1830
513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1837 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
514 } 1838 }
515#endif 1839#endif
516 1840
517#define array_free(stem, idx) \ 1841#define array_free(stem, idx) \
518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1842 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
519 1843
520/*****************************************************************************/ 1844/*****************************************************************************/
521 1845
1846/* dummy callback for pending events */
1847static void noinline
1848pendingcb (EV_P_ ev_prepare *w, int revents)
1849{
1850}
1851
522void noinline 1852void noinline
523ev_feed_event (EV_P_ void *w, int revents) 1853ev_feed_event (EV_P_ void *w, int revents) EV_THROW
524{ 1854{
525 W w_ = (W)w; 1855 W w_ = (W)w;
526 int pri = ABSPRI (w_); 1856 int pri = ABSPRI (w_);
527 1857
528 if (expect_false (w_->pending)) 1858 if (expect_false (w_->pending))
532 w_->pending = ++pendingcnt [pri]; 1862 w_->pending = ++pendingcnt [pri];
533 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1863 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
534 pendings [pri][w_->pending - 1].w = w_; 1864 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents; 1865 pendings [pri][w_->pending - 1].events = revents;
536 } 1866 }
537}
538 1867
539void inline_speed 1868 pendingpri = NUMPRI - 1;
1869}
1870
1871inline_speed void
1872feed_reverse (EV_P_ W w)
1873{
1874 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1875 rfeeds [rfeedcnt++] = w;
1876}
1877
1878inline_size void
1879feed_reverse_done (EV_P_ int revents)
1880{
1881 do
1882 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1883 while (rfeedcnt);
1884}
1885
1886inline_speed void
540queue_events (EV_P_ W *events, int eventcnt, int type) 1887queue_events (EV_P_ W *events, int eventcnt, int type)
541{ 1888{
542 int i; 1889 int i;
543 1890
544 for (i = 0; i < eventcnt; ++i) 1891 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type); 1892 ev_feed_event (EV_A_ events [i], type);
546} 1893}
547 1894
548/*****************************************************************************/ 1895/*****************************************************************************/
549 1896
550void inline_size 1897inline_speed void
551anfds_init (ANFD *base, int count)
552{
553 while (count--)
554 {
555 base->head = 0;
556 base->events = EV_NONE;
557 base->reify = 0;
558
559 ++base;
560 }
561}
562
563void inline_speed
564fd_event (EV_P_ int fd, int revents) 1898fd_event_nocheck (EV_P_ int fd, int revents)
565{ 1899{
566 ANFD *anfd = anfds + fd; 1900 ANFD *anfd = anfds + fd;
567 ev_io *w; 1901 ev_io *w;
568 1902
569 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1903 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
573 if (ev) 1907 if (ev)
574 ev_feed_event (EV_A_ (W)w, ev); 1908 ev_feed_event (EV_A_ (W)w, ev);
575 } 1909 }
576} 1910}
577 1911
1912/* do not submit kernel events for fds that have reify set */
1913/* because that means they changed while we were polling for new events */
1914inline_speed void
1915fd_event (EV_P_ int fd, int revents)
1916{
1917 ANFD *anfd = anfds + fd;
1918
1919 if (expect_true (!anfd->reify))
1920 fd_event_nocheck (EV_A_ fd, revents);
1921}
1922
578void 1923void
579ev_feed_fd_event (EV_P_ int fd, int revents) 1924ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
580{ 1925{
581 if (fd >= 0 && fd < anfdmax) 1926 if (fd >= 0 && fd < anfdmax)
582 fd_event (EV_A_ fd, revents); 1927 fd_event_nocheck (EV_A_ fd, revents);
583} 1928}
584 1929
585void inline_size 1930/* make sure the external fd watch events are in-sync */
1931/* with the kernel/libev internal state */
1932inline_size void
586fd_reify (EV_P) 1933fd_reify (EV_P)
587{ 1934{
588 int i; 1935 int i;
1936
1937#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1938 for (i = 0; i < fdchangecnt; ++i)
1939 {
1940 int fd = fdchanges [i];
1941 ANFD *anfd = anfds + fd;
1942
1943 if (anfd->reify & EV__IOFDSET && anfd->head)
1944 {
1945 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1946
1947 if (handle != anfd->handle)
1948 {
1949 unsigned long arg;
1950
1951 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1952
1953 /* handle changed, but fd didn't - we need to do it in two steps */
1954 backend_modify (EV_A_ fd, anfd->events, 0);
1955 anfd->events = 0;
1956 anfd->handle = handle;
1957 }
1958 }
1959 }
1960#endif
589 1961
590 for (i = 0; i < fdchangecnt; ++i) 1962 for (i = 0; i < fdchangecnt; ++i)
591 { 1963 {
592 int fd = fdchanges [i]; 1964 int fd = fdchanges [i];
593 ANFD *anfd = anfds + fd; 1965 ANFD *anfd = anfds + fd;
594 ev_io *w; 1966 ev_io *w;
595 1967
596 unsigned char events = 0; 1968 unsigned char o_events = anfd->events;
1969 unsigned char o_reify = anfd->reify;
597 1970
598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1971 anfd->reify = 0;
599 events |= (unsigned char)w->events;
600 1972
601#if EV_SELECT_IS_WINSOCKET 1973 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
602 if (events)
603 { 1974 {
604 unsigned long argp; 1975 anfd->events = 0;
605 #ifdef EV_FD_TO_WIN32_HANDLE 1976
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1977 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
607 #else 1978 anfd->events |= (unsigned char)w->events;
608 anfd->handle = _get_osfhandle (fd); 1979
609 #endif 1980 if (o_events != anfd->events)
610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1981 o_reify = EV__IOFDSET; /* actually |= */
611 } 1982 }
612#endif
613 1983
614 { 1984 if (o_reify & EV__IOFDSET)
615 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify;
617
618 anfd->reify = 0;
619 anfd->events = events;
620
621 if (o_events != events || o_reify & EV_IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events); 1985 backend_modify (EV_A_ fd, o_events, anfd->events);
623 }
624 } 1986 }
625 1987
626 fdchangecnt = 0; 1988 fdchangecnt = 0;
627} 1989}
628 1990
629void inline_size 1991/* something about the given fd changed */
1992inline_size void
630fd_change (EV_P_ int fd, int flags) 1993fd_change (EV_P_ int fd, int flags)
631{ 1994{
632 unsigned char reify = anfds [fd].reify; 1995 unsigned char reify = anfds [fd].reify;
633 anfds [fd].reify |= flags; 1996 anfds [fd].reify |= flags;
634 1997
638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 2001 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
639 fdchanges [fdchangecnt - 1] = fd; 2002 fdchanges [fdchangecnt - 1] = fd;
640 } 2003 }
641} 2004}
642 2005
643void inline_speed 2006/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2007inline_speed void ecb_cold
644fd_kill (EV_P_ int fd) 2008fd_kill (EV_P_ int fd)
645{ 2009{
646 ev_io *w; 2010 ev_io *w;
647 2011
648 while ((w = (ev_io *)anfds [fd].head)) 2012 while ((w = (ev_io *)anfds [fd].head))
650 ev_io_stop (EV_A_ w); 2014 ev_io_stop (EV_A_ w);
651 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2015 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
652 } 2016 }
653} 2017}
654 2018
655int inline_size 2019/* check whether the given fd is actually valid, for error recovery */
2020inline_size int ecb_cold
656fd_valid (int fd) 2021fd_valid (int fd)
657{ 2022{
658#ifdef _WIN32 2023#ifdef _WIN32
659 return _get_osfhandle (fd) != -1; 2024 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
660#else 2025#else
661 return fcntl (fd, F_GETFD) != -1; 2026 return fcntl (fd, F_GETFD) != -1;
662#endif 2027#endif
663} 2028}
664 2029
665/* called on EBADF to verify fds */ 2030/* called on EBADF to verify fds */
666static void noinline 2031static void noinline ecb_cold
667fd_ebadf (EV_P) 2032fd_ebadf (EV_P)
668{ 2033{
669 int fd; 2034 int fd;
670 2035
671 for (fd = 0; fd < anfdmax; ++fd) 2036 for (fd = 0; fd < anfdmax; ++fd)
672 if (anfds [fd].events) 2037 if (anfds [fd].events)
673 if (!fd_valid (fd) == -1 && errno == EBADF) 2038 if (!fd_valid (fd) && errno == EBADF)
674 fd_kill (EV_A_ fd); 2039 fd_kill (EV_A_ fd);
675} 2040}
676 2041
677/* called on ENOMEM in select/poll to kill some fds and retry */ 2042/* called on ENOMEM in select/poll to kill some fds and retry */
678static void noinline 2043static void noinline ecb_cold
679fd_enomem (EV_P) 2044fd_enomem (EV_P)
680{ 2045{
681 int fd; 2046 int fd;
682 2047
683 for (fd = anfdmax; fd--; ) 2048 for (fd = anfdmax; fd--; )
684 if (anfds [fd].events) 2049 if (anfds [fd].events)
685 { 2050 {
686 fd_kill (EV_A_ fd); 2051 fd_kill (EV_A_ fd);
687 return; 2052 break;
688 } 2053 }
689} 2054}
690 2055
691/* usually called after fork if backend needs to re-arm all fds from scratch */ 2056/* usually called after fork if backend needs to re-arm all fds from scratch */
692static void noinline 2057static void noinline
696 2061
697 for (fd = 0; fd < anfdmax; ++fd) 2062 for (fd = 0; fd < anfdmax; ++fd)
698 if (anfds [fd].events) 2063 if (anfds [fd].events)
699 { 2064 {
700 anfds [fd].events = 0; 2065 anfds [fd].events = 0;
2066 anfds [fd].emask = 0;
701 fd_change (EV_A_ fd, EV_IOFDSET | 1); 2067 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
702 } 2068 }
703} 2069}
704 2070
705/*****************************************************************************/ 2071/* used to prepare libev internal fd's */
706 2072/* this is not fork-safe */
707void inline_speed 2073inline_speed void
708upheap (WT *heap, int k)
709{
710 WT w = heap [k];
711
712 while (k)
713 {
714 int p = (k - 1) >> 1;
715
716 if (heap [p]->at <= w->at)
717 break;
718
719 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1;
721 k = p;
722 }
723
724 heap [k] = w;
725 ((W)heap [k])->active = k + 1;
726}
727
728void inline_speed
729downheap (WT *heap, int N, int k)
730{
731 WT w = heap [k];
732
733 for (;;)
734 {
735 int c = (k << 1) + 1;
736
737 if (c >= N)
738 break;
739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
746 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1;
748
749 k = c;
750 }
751
752 heap [k] = w;
753 ((W)heap [k])->active = k + 1;
754}
755
756void inline_size
757adjustheap (WT *heap, int N, int k)
758{
759 upheap (heap, k);
760 downheap (heap, N, k);
761}
762
763/*****************************************************************************/
764
765typedef struct
766{
767 WL head;
768 EV_ATOMIC_T gotsig;
769} ANSIG;
770
771static ANSIG *signals;
772static int signalmax;
773
774static EV_ATOMIC_T gotsig;
775
776void inline_size
777signals_init (ANSIG *base, int count)
778{
779 while (count--)
780 {
781 base->head = 0;
782 base->gotsig = 0;
783
784 ++base;
785 }
786}
787
788/*****************************************************************************/
789
790void inline_speed
791fd_intern (int fd) 2074fd_intern (int fd)
792{ 2075{
793#ifdef _WIN32 2076#ifdef _WIN32
794 int arg = 1; 2077 unsigned long arg = 1;
795 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 2078 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
796#else 2079#else
797 fcntl (fd, F_SETFD, FD_CLOEXEC); 2080 fcntl (fd, F_SETFD, FD_CLOEXEC);
798 fcntl (fd, F_SETFL, O_NONBLOCK); 2081 fcntl (fd, F_SETFL, O_NONBLOCK);
799#endif 2082#endif
800} 2083}
801 2084
2085/*****************************************************************************/
2086
2087/*
2088 * the heap functions want a real array index. array index 0 is guaranteed to not
2089 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2090 * the branching factor of the d-tree.
2091 */
2092
2093/*
2094 * at the moment we allow libev the luxury of two heaps,
2095 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2096 * which is more cache-efficient.
2097 * the difference is about 5% with 50000+ watchers.
2098 */
2099#if EV_USE_4HEAP
2100
2101#define DHEAP 4
2102#define HEAP0 (DHEAP - 1) /* index of first element in heap */
2103#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2104#define UPHEAP_DONE(p,k) ((p) == (k))
2105
2106/* away from the root */
2107inline_speed void
2108downheap (ANHE *heap, int N, int k)
2109{
2110 ANHE he = heap [k];
2111 ANHE *E = heap + N + HEAP0;
2112
2113 for (;;)
2114 {
2115 ev_tstamp minat;
2116 ANHE *minpos;
2117 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2118
2119 /* find minimum child */
2120 if (expect_true (pos + DHEAP - 1 < E))
2121 {
2122 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2123 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2124 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2125 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2126 }
2127 else if (pos < E)
2128 {
2129 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2130 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2131 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2132 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2133 }
2134 else
2135 break;
2136
2137 if (ANHE_at (he) <= minat)
2138 break;
2139
2140 heap [k] = *minpos;
2141 ev_active (ANHE_w (*minpos)) = k;
2142
2143 k = minpos - heap;
2144 }
2145
2146 heap [k] = he;
2147 ev_active (ANHE_w (he)) = k;
2148}
2149
2150#else /* 4HEAP */
2151
2152#define HEAP0 1
2153#define HPARENT(k) ((k) >> 1)
2154#define UPHEAP_DONE(p,k) (!(p))
2155
2156/* away from the root */
2157inline_speed void
2158downheap (ANHE *heap, int N, int k)
2159{
2160 ANHE he = heap [k];
2161
2162 for (;;)
2163 {
2164 int c = k << 1;
2165
2166 if (c >= N + HEAP0)
2167 break;
2168
2169 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2170 ? 1 : 0;
2171
2172 if (ANHE_at (he) <= ANHE_at (heap [c]))
2173 break;
2174
2175 heap [k] = heap [c];
2176 ev_active (ANHE_w (heap [k])) = k;
2177
2178 k = c;
2179 }
2180
2181 heap [k] = he;
2182 ev_active (ANHE_w (he)) = k;
2183}
2184#endif
2185
2186/* towards the root */
2187inline_speed void
2188upheap (ANHE *heap, int k)
2189{
2190 ANHE he = heap [k];
2191
2192 for (;;)
2193 {
2194 int p = HPARENT (k);
2195
2196 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2197 break;
2198
2199 heap [k] = heap [p];
2200 ev_active (ANHE_w (heap [k])) = k;
2201 k = p;
2202 }
2203
2204 heap [k] = he;
2205 ev_active (ANHE_w (he)) = k;
2206}
2207
2208/* move an element suitably so it is in a correct place */
2209inline_size void
2210adjustheap (ANHE *heap, int N, int k)
2211{
2212 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2213 upheap (heap, k);
2214 else
2215 downheap (heap, N, k);
2216}
2217
2218/* rebuild the heap: this function is used only once and executed rarely */
2219inline_size void
2220reheap (ANHE *heap, int N)
2221{
2222 int i;
2223
2224 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2225 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2226 for (i = 0; i < N; ++i)
2227 upheap (heap, i + HEAP0);
2228}
2229
2230/*****************************************************************************/
2231
2232/* associate signal watchers to a signal signal */
2233typedef struct
2234{
2235 EV_ATOMIC_T pending;
2236#if EV_MULTIPLICITY
2237 EV_P;
2238#endif
2239 WL head;
2240} ANSIG;
2241
2242static ANSIG signals [EV_NSIG - 1];
2243
2244/*****************************************************************************/
2245
2246#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2247
802static void noinline 2248static void noinline ecb_cold
803evpipe_init (EV_P) 2249evpipe_init (EV_P)
804{ 2250{
805 if (!ev_is_active (&pipeev)) 2251 if (!ev_is_active (&pipe_w))
806 { 2252 {
2253 int fds [2];
2254
2255# if EV_USE_EVENTFD
2256 fds [0] = -1;
2257 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2258 if (fds [1] < 0 && errno == EINVAL)
2259 fds [1] = eventfd (0, 0);
2260
2261 if (fds [1] < 0)
2262# endif
2263 {
807 while (pipe (evpipe)) 2264 while (pipe (fds))
808 syserr ("(libev) error creating signal/async pipe"); 2265 ev_syserr ("(libev) error creating signal/async pipe");
809 2266
810 fd_intern (evpipe [0]); 2267 fd_intern (fds [0]);
2268 }
2269
2270 evpipe [0] = fds [0];
2271
2272 if (evpipe [1] < 0)
2273 evpipe [1] = fds [1]; /* first call, set write fd */
2274 else
2275 {
2276 /* on subsequent calls, do not change evpipe [1] */
2277 /* so that evpipe_write can always rely on its value. */
2278 /* this branch does not do anything sensible on windows, */
2279 /* so must not be executed on windows */
2280
2281 dup2 (fds [1], evpipe [1]);
2282 close (fds [1]);
2283 }
2284
811 fd_intern (evpipe [1]); 2285 fd_intern (evpipe [1]);
812 2286
813 ev_io_set (&pipeev, evpipe [0], EV_READ); 2287 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
814 ev_io_start (EV_A_ &pipeev); 2288 ev_io_start (EV_A_ &pipe_w);
815 ev_unref (EV_A); /* watcher should not keep loop alive */ 2289 ev_unref (EV_A); /* watcher should not keep loop alive */
816 } 2290 }
817} 2291}
818 2292
819void inline_size 2293inline_speed void
820evpipe_write (EV_P_ EV_ATOMIC_T *flag) 2294evpipe_write (EV_P_ EV_ATOMIC_T *flag)
821{ 2295{
822 if (!*flag) 2296 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2297
2298 if (expect_true (*flag))
2299 return;
2300
2301 *flag = 1;
2302 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2303
2304 pipe_write_skipped = 1;
2305
2306 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2307
2308 if (pipe_write_wanted)
823 { 2309 {
2310 int old_errno;
2311
2312 pipe_write_skipped = 0;
2313 ECB_MEMORY_FENCE_RELEASE;
2314
824 int old_errno = errno; /* save errno because write might clobber it */ 2315 old_errno = errno; /* save errno because write will clobber it */
825 2316
826 *flag = 1; 2317#if EV_USE_EVENTFD
827 write (evpipe [1], &old_errno, 1); 2318 if (evpipe [0] < 0)
2319 {
2320 uint64_t counter = 1;
2321 write (evpipe [1], &counter, sizeof (uint64_t));
2322 }
2323 else
2324#endif
2325 {
2326#ifdef _WIN32
2327 WSABUF buf;
2328 DWORD sent;
2329 buf.buf = &buf;
2330 buf.len = 1;
2331 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2332#else
2333 write (evpipe [1], &(evpipe [1]), 1);
2334#endif
2335 }
828 2336
829 errno = old_errno; 2337 errno = old_errno;
830 } 2338 }
831} 2339}
832 2340
2341/* called whenever the libev signal pipe */
2342/* got some events (signal, async) */
833static void 2343static void
834pipecb (EV_P_ ev_io *iow, int revents) 2344pipecb (EV_P_ ev_io *iow, int revents)
835{ 2345{
2346 int i;
2347
2348 if (revents & EV_READ)
836 { 2349 {
837 int dummy; 2350#if EV_USE_EVENTFD
2351 if (evpipe [0] < 0)
2352 {
2353 uint64_t counter;
2354 read (evpipe [1], &counter, sizeof (uint64_t));
2355 }
2356 else
2357#endif
2358 {
2359 char dummy[4];
2360#ifdef _WIN32
2361 WSABUF buf;
2362 DWORD recvd;
2363 DWORD flags = 0;
2364 buf.buf = dummy;
2365 buf.len = sizeof (dummy);
2366 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2367#else
838 read (evpipe [0], &dummy, 1); 2368 read (evpipe [0], &dummy, sizeof (dummy));
2369#endif
2370 }
839 } 2371 }
840 2372
841 if (gotsig && ev_is_default_loop (EV_A)) 2373 pipe_write_skipped = 0;
842 {
843 int signum;
844 gotsig = 0;
845 2374
846 for (signum = signalmax; signum--; ) 2375 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
847 if (signals [signum].gotsig) 2376
2377#if EV_SIGNAL_ENABLE
2378 if (sig_pending)
2379 {
2380 sig_pending = 0;
2381
2382 ECB_MEMORY_FENCE;
2383
2384 for (i = EV_NSIG - 1; i--; )
2385 if (expect_false (signals [i].pending))
848 ev_feed_signal_event (EV_A_ signum + 1); 2386 ev_feed_signal_event (EV_A_ i + 1);
849 } 2387 }
2388#endif
850 2389
851#if EV_ASYNC_ENABLE 2390#if EV_ASYNC_ENABLE
852 if (gotasync) 2391 if (async_pending)
853 { 2392 {
854 int i; 2393 async_pending = 0;
855 gotasync = 0; 2394
2395 ECB_MEMORY_FENCE;
856 2396
857 for (i = asynccnt; i--; ) 2397 for (i = asynccnt; i--; )
858 if (asyncs [i]->sent) 2398 if (asyncs [i]->sent)
859 { 2399 {
860 asyncs [i]->sent = 0; 2400 asyncs [i]->sent = 0;
2401 ECB_MEMORY_FENCE_RELEASE;
861 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2402 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
862 } 2403 }
863 } 2404 }
864#endif 2405#endif
865} 2406}
866 2407
867/*****************************************************************************/ 2408/*****************************************************************************/
868 2409
2410void
2411ev_feed_signal (int signum) EV_THROW
2412{
2413#if EV_MULTIPLICITY
2414 EV_P;
2415 ECB_MEMORY_FENCE_ACQUIRE;
2416 EV_A = signals [signum - 1].loop;
2417
2418 if (!EV_A)
2419 return;
2420#endif
2421
2422 signals [signum - 1].pending = 1;
2423 evpipe_write (EV_A_ &sig_pending);
2424}
2425
869static void 2426static void
870sighandler (int signum) 2427ev_sighandler (int signum)
871{ 2428{
2429#ifdef _WIN32
2430 signal (signum, ev_sighandler);
2431#endif
2432
2433 ev_feed_signal (signum);
2434}
2435
2436void noinline
2437ev_feed_signal_event (EV_P_ int signum) EV_THROW
2438{
2439 WL w;
2440
2441 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2442 return;
2443
2444 --signum;
2445
872#if EV_MULTIPLICITY 2446#if EV_MULTIPLICITY
873 struct ev_loop *loop = &default_loop_struct; 2447 /* it is permissible to try to feed a signal to the wrong loop */
874#endif 2448 /* or, likely more useful, feeding a signal nobody is waiting for */
875 2449
876#if _WIN32 2450 if (expect_false (signals [signum].loop != EV_A))
877 signal (signum, sighandler);
878#endif
879
880 signals [signum - 1].gotsig = 1;
881 evpipe_write (EV_A_ &gotsig);
882}
883
884void noinline
885ev_feed_signal_event (EV_P_ int signum)
886{
887 WL w;
888
889#if EV_MULTIPLICITY
890 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
891#endif
892
893 --signum;
894
895 if (signum < 0 || signum >= signalmax)
896 return; 2451 return;
2452#endif
897 2453
898 signals [signum].gotsig = 0; 2454 signals [signum].pending = 0;
2455 ECB_MEMORY_FENCE_RELEASE;
899 2456
900 for (w = signals [signum].head; w; w = w->next) 2457 for (w = signals [signum].head; w; w = w->next)
901 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2458 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
902} 2459}
903 2460
2461#if EV_USE_SIGNALFD
2462static void
2463sigfdcb (EV_P_ ev_io *iow, int revents)
2464{
2465 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2466
2467 for (;;)
2468 {
2469 ssize_t res = read (sigfd, si, sizeof (si));
2470
2471 /* not ISO-C, as res might be -1, but works with SuS */
2472 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2473 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2474
2475 if (res < (ssize_t)sizeof (si))
2476 break;
2477 }
2478}
2479#endif
2480
2481#endif
2482
904/*****************************************************************************/ 2483/*****************************************************************************/
905 2484
2485#if EV_CHILD_ENABLE
906static WL childs [EV_PID_HASHSIZE]; 2486static WL childs [EV_PID_HASHSIZE];
907
908#ifndef _WIN32
909 2487
910static ev_signal childev; 2488static ev_signal childev;
911 2489
912#ifndef WIFCONTINUED 2490#ifndef WIFCONTINUED
913# define WIFCONTINUED(status) 0 2491# define WIFCONTINUED(status) 0
914#endif 2492#endif
915 2493
916void inline_speed 2494/* handle a single child status event */
2495inline_speed void
917child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 2496child_reap (EV_P_ int chain, int pid, int status)
918{ 2497{
919 ev_child *w; 2498 ev_child *w;
920 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2499 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
921 2500
922 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2501 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
923 { 2502 {
924 if ((w->pid == pid || !w->pid) 2503 if ((w->pid == pid || !w->pid)
925 && (!traced || (w->flags & 1))) 2504 && (!traced || (w->flags & 1)))
926 { 2505 {
927 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 2506 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
928 w->rpid = pid; 2507 w->rpid = pid;
929 w->rstatus = status; 2508 w->rstatus = status;
930 ev_feed_event (EV_A_ (W)w, EV_CHILD); 2509 ev_feed_event (EV_A_ (W)w, EV_CHILD);
931 } 2510 }
932 } 2511 }
934 2513
935#ifndef WCONTINUED 2514#ifndef WCONTINUED
936# define WCONTINUED 0 2515# define WCONTINUED 0
937#endif 2516#endif
938 2517
2518/* called on sigchld etc., calls waitpid */
939static void 2519static void
940childcb (EV_P_ ev_signal *sw, int revents) 2520childcb (EV_P_ ev_signal *sw, int revents)
941{ 2521{
942 int pid, status; 2522 int pid, status;
943 2523
946 if (!WCONTINUED 2526 if (!WCONTINUED
947 || errno != EINVAL 2527 || errno != EINVAL
948 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 2528 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
949 return; 2529 return;
950 2530
951 /* make sure we are called again until all childs have been reaped */ 2531 /* make sure we are called again until all children have been reaped */
952 /* we need to do it this way so that the callback gets called before we continue */ 2532 /* we need to do it this way so that the callback gets called before we continue */
953 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2533 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
954 2534
955 child_reap (EV_A_ sw, pid, pid, status); 2535 child_reap (EV_A_ pid, pid, status);
956 if (EV_PID_HASHSIZE > 1) 2536 if ((EV_PID_HASHSIZE) > 1)
957 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2537 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
958} 2538}
959 2539
960#endif 2540#endif
961 2541
962/*****************************************************************************/ 2542/*****************************************************************************/
963 2543
2544#if EV_USE_IOCP
2545# include "ev_iocp.c"
2546#endif
964#if EV_USE_PORT 2547#if EV_USE_PORT
965# include "ev_port.c" 2548# include "ev_port.c"
966#endif 2549#endif
967#if EV_USE_KQUEUE 2550#if EV_USE_KQUEUE
968# include "ev_kqueue.c" 2551# include "ev_kqueue.c"
975#endif 2558#endif
976#if EV_USE_SELECT 2559#if EV_USE_SELECT
977# include "ev_select.c" 2560# include "ev_select.c"
978#endif 2561#endif
979 2562
980int 2563int ecb_cold
981ev_version_major (void) 2564ev_version_major (void) EV_THROW
982{ 2565{
983 return EV_VERSION_MAJOR; 2566 return EV_VERSION_MAJOR;
984} 2567}
985 2568
986int 2569int ecb_cold
987ev_version_minor (void) 2570ev_version_minor (void) EV_THROW
988{ 2571{
989 return EV_VERSION_MINOR; 2572 return EV_VERSION_MINOR;
990} 2573}
991 2574
992/* return true if we are running with elevated privileges and should ignore env variables */ 2575/* return true if we are running with elevated privileges and should ignore env variables */
993int inline_size 2576int inline_size ecb_cold
994enable_secure (void) 2577enable_secure (void)
995{ 2578{
996#ifdef _WIN32 2579#ifdef _WIN32
997 return 0; 2580 return 0;
998#else 2581#else
999 return getuid () != geteuid () 2582 return getuid () != geteuid ()
1000 || getgid () != getegid (); 2583 || getgid () != getegid ();
1001#endif 2584#endif
1002} 2585}
1003 2586
1004unsigned int 2587unsigned int ecb_cold
1005ev_supported_backends (void) 2588ev_supported_backends (void) EV_THROW
1006{ 2589{
1007 unsigned int flags = 0; 2590 unsigned int flags = 0;
1008 2591
1009 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2592 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1010 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2593 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1013 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2596 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1014 2597
1015 return flags; 2598 return flags;
1016} 2599}
1017 2600
1018unsigned int 2601unsigned int ecb_cold
1019ev_recommended_backends (void) 2602ev_recommended_backends (void) EV_THROW
1020{ 2603{
1021 unsigned int flags = ev_supported_backends (); 2604 unsigned int flags = ev_supported_backends ();
1022 2605
1023#ifndef __NetBSD__ 2606#ifndef __NetBSD__
1024 /* kqueue is borked on everything but netbsd apparently */ 2607 /* kqueue is borked on everything but netbsd apparently */
1025 /* it usually doesn't work correctly on anything but sockets and pipes */ 2608 /* it usually doesn't work correctly on anything but sockets and pipes */
1026 flags &= ~EVBACKEND_KQUEUE; 2609 flags &= ~EVBACKEND_KQUEUE;
1027#endif 2610#endif
1028#ifdef __APPLE__ 2611#ifdef __APPLE__
1029 // flags &= ~EVBACKEND_KQUEUE; for documentation 2612 /* only select works correctly on that "unix-certified" platform */
1030 flags &= ~EVBACKEND_POLL; 2613 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2614 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2615#endif
2616#ifdef __FreeBSD__
2617 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1031#endif 2618#endif
1032 2619
1033 return flags; 2620 return flags;
1034} 2621}
1035 2622
2623unsigned int ecb_cold
2624ev_embeddable_backends (void) EV_THROW
2625{
2626 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2627
2628 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2629 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2630 flags &= ~EVBACKEND_EPOLL;
2631
2632 return flags;
2633}
2634
1036unsigned int 2635unsigned int
1037ev_embeddable_backends (void) 2636ev_backend (EV_P) EV_THROW
1038{ 2637{
1039 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2638 return backend;
1040
1041 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1042 /* please fix it and tell me how to detect the fix */
1043 flags &= ~EVBACKEND_EPOLL;
1044
1045 return flags;
1046} 2639}
1047 2640
2641#if EV_FEATURE_API
1048unsigned int 2642unsigned int
1049ev_backend (EV_P) 2643ev_iteration (EV_P) EV_THROW
1050{ 2644{
1051 return backend; 2645 return loop_count;
1052} 2646}
1053 2647
1054unsigned int 2648unsigned int
1055ev_loop_count (EV_P) 2649ev_depth (EV_P) EV_THROW
1056{ 2650{
1057 return loop_count; 2651 return loop_depth;
1058} 2652}
1059 2653
1060void 2654void
1061ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2655ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1062{ 2656{
1063 io_blocktime = interval; 2657 io_blocktime = interval;
1064} 2658}
1065 2659
1066void 2660void
1067ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2661ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1068{ 2662{
1069 timeout_blocktime = interval; 2663 timeout_blocktime = interval;
1070} 2664}
1071 2665
2666void
2667ev_set_userdata (EV_P_ void *data) EV_THROW
2668{
2669 userdata = data;
2670}
2671
2672void *
2673ev_userdata (EV_P) EV_THROW
2674{
2675 return userdata;
2676}
2677
2678void
2679ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2680{
2681 invoke_cb = invoke_pending_cb;
2682}
2683
2684void
2685ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2686{
2687 release_cb = release;
2688 acquire_cb = acquire;
2689}
2690#endif
2691
2692/* initialise a loop structure, must be zero-initialised */
1072static void noinline 2693static void noinline ecb_cold
1073loop_init (EV_P_ unsigned int flags) 2694loop_init (EV_P_ unsigned int flags) EV_THROW
1074{ 2695{
1075 if (!backend) 2696 if (!backend)
1076 { 2697 {
2698 origflags = flags;
2699
2700#if EV_USE_REALTIME
2701 if (!have_realtime)
2702 {
2703 struct timespec ts;
2704
2705 if (!clock_gettime (CLOCK_REALTIME, &ts))
2706 have_realtime = 1;
2707 }
2708#endif
2709
1077#if EV_USE_MONOTONIC 2710#if EV_USE_MONOTONIC
2711 if (!have_monotonic)
1078 { 2712 {
1079 struct timespec ts; 2713 struct timespec ts;
2714
1080 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2715 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1081 have_monotonic = 1; 2716 have_monotonic = 1;
1082 } 2717 }
1083#endif
1084
1085 ev_rt_now = ev_time ();
1086 mn_now = get_clock ();
1087 now_floor = mn_now;
1088 rtmn_diff = ev_rt_now - mn_now;
1089
1090 io_blocktime = 0.;
1091 timeout_blocktime = 0.;
1092 backend = 0;
1093 backend_fd = -1;
1094 gotasync = 0;
1095#if EV_USE_INOTIFY
1096 fs_fd = -2;
1097#endif 2718#endif
1098 2719
1099 /* pid check not overridable via env */ 2720 /* pid check not overridable via env */
1100#ifndef _WIN32 2721#ifndef _WIN32
1101 if (flags & EVFLAG_FORKCHECK) 2722 if (flags & EVFLAG_FORKCHECK)
1105 if (!(flags & EVFLAG_NOENV) 2726 if (!(flags & EVFLAG_NOENV)
1106 && !enable_secure () 2727 && !enable_secure ()
1107 && getenv ("LIBEV_FLAGS")) 2728 && getenv ("LIBEV_FLAGS"))
1108 flags = atoi (getenv ("LIBEV_FLAGS")); 2729 flags = atoi (getenv ("LIBEV_FLAGS"));
1109 2730
1110 if (!(flags & 0x0000ffffUL)) 2731 ev_rt_now = ev_time ();
2732 mn_now = get_clock ();
2733 now_floor = mn_now;
2734 rtmn_diff = ev_rt_now - mn_now;
2735#if EV_FEATURE_API
2736 invoke_cb = ev_invoke_pending;
2737#endif
2738
2739 io_blocktime = 0.;
2740 timeout_blocktime = 0.;
2741 backend = 0;
2742 backend_fd = -1;
2743 sig_pending = 0;
2744#if EV_ASYNC_ENABLE
2745 async_pending = 0;
2746#endif
2747 pipe_write_skipped = 0;
2748 pipe_write_wanted = 0;
2749 evpipe [0] = -1;
2750 evpipe [1] = -1;
2751#if EV_USE_INOTIFY
2752 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2753#endif
2754#if EV_USE_SIGNALFD
2755 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2756#endif
2757
2758 if (!(flags & EVBACKEND_MASK))
1111 flags |= ev_recommended_backends (); 2759 flags |= ev_recommended_backends ();
1112 2760
2761#if EV_USE_IOCP
2762 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2763#endif
1113#if EV_USE_PORT 2764#if EV_USE_PORT
1114 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2765 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1115#endif 2766#endif
1116#if EV_USE_KQUEUE 2767#if EV_USE_KQUEUE
1117 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2768 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1124#endif 2775#endif
1125#if EV_USE_SELECT 2776#if EV_USE_SELECT
1126 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2777 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1127#endif 2778#endif
1128 2779
2780 ev_prepare_init (&pending_w, pendingcb);
2781
2782#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1129 ev_init (&pipeev, pipecb); 2783 ev_init (&pipe_w, pipecb);
1130 ev_set_priority (&pipeev, EV_MAXPRI); 2784 ev_set_priority (&pipe_w, EV_MAXPRI);
2785#endif
1131 } 2786 }
1132} 2787}
1133 2788
1134static void noinline 2789/* free up a loop structure */
2790void ecb_cold
1135loop_destroy (EV_P) 2791ev_loop_destroy (EV_P)
1136{ 2792{
1137 int i; 2793 int i;
1138 2794
2795#if EV_MULTIPLICITY
2796 /* mimic free (0) */
2797 if (!EV_A)
2798 return;
2799#endif
2800
2801#if EV_CLEANUP_ENABLE
2802 /* queue cleanup watchers (and execute them) */
2803 if (expect_false (cleanupcnt))
2804 {
2805 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2806 EV_INVOKE_PENDING;
2807 }
2808#endif
2809
2810#if EV_CHILD_ENABLE
2811 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2812 {
2813 ev_ref (EV_A); /* child watcher */
2814 ev_signal_stop (EV_A_ &childev);
2815 }
2816#endif
2817
1139 if (ev_is_active (&pipeev)) 2818 if (ev_is_active (&pipe_w))
1140 { 2819 {
1141 ev_ref (EV_A); /* signal watcher */ 2820 /*ev_ref (EV_A);*/
1142 ev_io_stop (EV_A_ &pipeev); 2821 /*ev_io_stop (EV_A_ &pipe_w);*/
1143 2822
1144 close (evpipe [0]); evpipe [0] = 0; 2823 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
1145 close (evpipe [1]); evpipe [1] = 0; 2824 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
1146 } 2825 }
2826
2827#if EV_USE_SIGNALFD
2828 if (ev_is_active (&sigfd_w))
2829 close (sigfd);
2830#endif
1147 2831
1148#if EV_USE_INOTIFY 2832#if EV_USE_INOTIFY
1149 if (fs_fd >= 0) 2833 if (fs_fd >= 0)
1150 close (fs_fd); 2834 close (fs_fd);
1151#endif 2835#endif
1152 2836
1153 if (backend_fd >= 0) 2837 if (backend_fd >= 0)
1154 close (backend_fd); 2838 close (backend_fd);
1155 2839
2840#if EV_USE_IOCP
2841 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2842#endif
1156#if EV_USE_PORT 2843#if EV_USE_PORT
1157 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2844 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1158#endif 2845#endif
1159#if EV_USE_KQUEUE 2846#if EV_USE_KQUEUE
1160 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2847 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1175#if EV_IDLE_ENABLE 2862#if EV_IDLE_ENABLE
1176 array_free (idle, [i]); 2863 array_free (idle, [i]);
1177#endif 2864#endif
1178 } 2865 }
1179 2866
1180 ev_free (anfds); anfdmax = 0; 2867 ev_free (anfds); anfds = 0; anfdmax = 0;
1181 2868
1182 /* have to use the microsoft-never-gets-it-right macro */ 2869 /* have to use the microsoft-never-gets-it-right macro */
2870 array_free (rfeed, EMPTY);
1183 array_free (fdchange, EMPTY); 2871 array_free (fdchange, EMPTY);
1184 array_free (timer, EMPTY); 2872 array_free (timer, EMPTY);
1185#if EV_PERIODIC_ENABLE 2873#if EV_PERIODIC_ENABLE
1186 array_free (periodic, EMPTY); 2874 array_free (periodic, EMPTY);
1187#endif 2875#endif
1188#if EV_FORK_ENABLE 2876#if EV_FORK_ENABLE
1189 array_free (fork, EMPTY); 2877 array_free (fork, EMPTY);
1190#endif 2878#endif
2879#if EV_CLEANUP_ENABLE
2880 array_free (cleanup, EMPTY);
2881#endif
1191 array_free (prepare, EMPTY); 2882 array_free (prepare, EMPTY);
1192 array_free (check, EMPTY); 2883 array_free (check, EMPTY);
1193#if EV_ASYNC_ENABLE 2884#if EV_ASYNC_ENABLE
1194 array_free (async, EMPTY); 2885 array_free (async, EMPTY);
1195#endif 2886#endif
1196 2887
1197 backend = 0; 2888 backend = 0;
1198}
1199 2889
2890#if EV_MULTIPLICITY
2891 if (ev_is_default_loop (EV_A))
2892#endif
2893 ev_default_loop_ptr = 0;
2894#if EV_MULTIPLICITY
2895 else
2896 ev_free (EV_A);
2897#endif
2898}
2899
2900#if EV_USE_INOTIFY
1200void inline_size infy_fork (EV_P); 2901inline_size void infy_fork (EV_P);
2902#endif
1201 2903
1202void inline_size 2904inline_size void
1203loop_fork (EV_P) 2905loop_fork (EV_P)
1204{ 2906{
1205#if EV_USE_PORT 2907#if EV_USE_PORT
1206 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2908 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1207#endif 2909#endif
1213#endif 2915#endif
1214#if EV_USE_INOTIFY 2916#if EV_USE_INOTIFY
1215 infy_fork (EV_A); 2917 infy_fork (EV_A);
1216#endif 2918#endif
1217 2919
2920#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1218 if (ev_is_active (&pipeev)) 2921 if (ev_is_active (&pipe_w))
2922 {
2923 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2924
2925 ev_ref (EV_A);
2926 ev_io_stop (EV_A_ &pipe_w);
2927
2928 if (evpipe [0] >= 0)
2929 EV_WIN32_CLOSE_FD (evpipe [0]);
2930
2931 evpipe_init (EV_A);
2932 /* iterate over everything, in case we missed something before */
2933 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1219 { 2934 }
1220 /* this "locks" the handlers against writing to the pipe */ 2935#endif
1221 /* while we modify the fd vars */ 2936
1222 gotsig = 1; 2937 postfork = 0;
2938}
2939
2940#if EV_MULTIPLICITY
2941
2942struct ev_loop * ecb_cold
2943ev_loop_new (unsigned int flags) EV_THROW
2944{
2945 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2946
2947 memset (EV_A, 0, sizeof (struct ev_loop));
2948 loop_init (EV_A_ flags);
2949
2950 if (ev_backend (EV_A))
2951 return EV_A;
2952
2953 ev_free (EV_A);
2954 return 0;
2955}
2956
2957#endif /* multiplicity */
2958
2959#if EV_VERIFY
2960static void noinline ecb_cold
2961verify_watcher (EV_P_ W w)
2962{
2963 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2964
2965 if (w->pending)
2966 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2967}
2968
2969static void noinline ecb_cold
2970verify_heap (EV_P_ ANHE *heap, int N)
2971{
2972 int i;
2973
2974 for (i = HEAP0; i < N + HEAP0; ++i)
2975 {
2976 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2977 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2978 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2979
2980 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2981 }
2982}
2983
2984static void noinline ecb_cold
2985array_verify (EV_P_ W *ws, int cnt)
2986{
2987 while (cnt--)
2988 {
2989 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2990 verify_watcher (EV_A_ ws [cnt]);
2991 }
2992}
2993#endif
2994
2995#if EV_FEATURE_API
2996void ecb_cold
2997ev_verify (EV_P) EV_THROW
2998{
2999#if EV_VERIFY
3000 int i;
3001 WL w, w2;
3002
3003 assert (activecnt >= -1);
3004
3005 assert (fdchangemax >= fdchangecnt);
3006 for (i = 0; i < fdchangecnt; ++i)
3007 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3008
3009 assert (anfdmax >= 0);
3010 for (i = 0; i < anfdmax; ++i)
3011 {
3012 int j = 0;
3013
3014 for (w = w2 = anfds [i].head; w; w = w->next)
3015 {
3016 verify_watcher (EV_A_ (W)w);
3017
3018 if (j++ & 1)
3019 {
3020 assert (("libev: io watcher list contains a loop", w != w2));
3021 w2 = w2->next;
3022 }
3023
3024 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3025 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3026 }
3027 }
3028
3029 assert (timermax >= timercnt);
3030 verify_heap (EV_A_ timers, timercnt);
3031
3032#if EV_PERIODIC_ENABLE
3033 assert (periodicmax >= periodiccnt);
3034 verify_heap (EV_A_ periodics, periodiccnt);
3035#endif
3036
3037 for (i = NUMPRI; i--; )
3038 {
3039 assert (pendingmax [i] >= pendingcnt [i]);
3040#if EV_IDLE_ENABLE
3041 assert (idleall >= 0);
3042 assert (idlemax [i] >= idlecnt [i]);
3043 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3044#endif
3045 }
3046
3047#if EV_FORK_ENABLE
3048 assert (forkmax >= forkcnt);
3049 array_verify (EV_A_ (W *)forks, forkcnt);
3050#endif
3051
3052#if EV_CLEANUP_ENABLE
3053 assert (cleanupmax >= cleanupcnt);
3054 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3055#endif
3056
1223#if EV_ASYNC_ENABLE 3057#if EV_ASYNC_ENABLE
1224 gotasync = 1; 3058 assert (asyncmax >= asynccnt);
3059 array_verify (EV_A_ (W *)asyncs, asynccnt);
3060#endif
3061
3062#if EV_PREPARE_ENABLE
3063 assert (preparemax >= preparecnt);
3064 array_verify (EV_A_ (W *)prepares, preparecnt);
3065#endif
3066
3067#if EV_CHECK_ENABLE
3068 assert (checkmax >= checkcnt);
3069 array_verify (EV_A_ (W *)checks, checkcnt);
3070#endif
3071
3072# if 0
3073#if EV_CHILD_ENABLE
3074 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3075 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3076#endif
1225#endif 3077# endif
1226 3078#endif
1227 ev_ref (EV_A);
1228 ev_io_stop (EV_A_ &pipeev);
1229 close (evpipe [0]);
1230 close (evpipe [1]);
1231
1232 evpipe_init (EV_A);
1233 /* now iterate over everything, in case we missed something */
1234 pipecb (EV_A_ &pipeev, EV_READ);
1235 }
1236
1237 postfork = 0;
1238} 3079}
3080#endif
1239 3081
1240#if EV_MULTIPLICITY 3082#if EV_MULTIPLICITY
1241struct ev_loop * 3083struct ev_loop * ecb_cold
1242ev_loop_new (unsigned int flags)
1243{
1244 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1245
1246 memset (loop, 0, sizeof (struct ev_loop));
1247
1248 loop_init (EV_A_ flags);
1249
1250 if (ev_backend (EV_A))
1251 return loop;
1252
1253 return 0;
1254}
1255
1256void
1257ev_loop_destroy (EV_P)
1258{
1259 loop_destroy (EV_A);
1260 ev_free (loop);
1261}
1262
1263void
1264ev_loop_fork (EV_P)
1265{
1266 postfork = 1; /* must be in line with ev_default_fork */
1267}
1268
1269#endif
1270
1271#if EV_MULTIPLICITY
1272struct ev_loop *
1273ev_default_loop_init (unsigned int flags)
1274#else 3084#else
1275int 3085int
3086#endif
1276ev_default_loop (unsigned int flags) 3087ev_default_loop (unsigned int flags) EV_THROW
1277#endif
1278{ 3088{
1279 if (!ev_default_loop_ptr) 3089 if (!ev_default_loop_ptr)
1280 { 3090 {
1281#if EV_MULTIPLICITY 3091#if EV_MULTIPLICITY
1282 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3092 EV_P = ev_default_loop_ptr = &default_loop_struct;
1283#else 3093#else
1284 ev_default_loop_ptr = 1; 3094 ev_default_loop_ptr = 1;
1285#endif 3095#endif
1286 3096
1287 loop_init (EV_A_ flags); 3097 loop_init (EV_A_ flags);
1288 3098
1289 if (ev_backend (EV_A)) 3099 if (ev_backend (EV_A))
1290 { 3100 {
1291#ifndef _WIN32 3101#if EV_CHILD_ENABLE
1292 ev_signal_init (&childev, childcb, SIGCHLD); 3102 ev_signal_init (&childev, childcb, SIGCHLD);
1293 ev_set_priority (&childev, EV_MAXPRI); 3103 ev_set_priority (&childev, EV_MAXPRI);
1294 ev_signal_start (EV_A_ &childev); 3104 ev_signal_start (EV_A_ &childev);
1295 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3105 ev_unref (EV_A); /* child watcher should not keep loop alive */
1296#endif 3106#endif
1301 3111
1302 return ev_default_loop_ptr; 3112 return ev_default_loop_ptr;
1303} 3113}
1304 3114
1305void 3115void
1306ev_default_destroy (void) 3116ev_loop_fork (EV_P) EV_THROW
1307{ 3117{
1308#if EV_MULTIPLICITY 3118 postfork = 1;
1309 struct ev_loop *loop = ev_default_loop_ptr;
1310#endif
1311
1312#ifndef _WIN32
1313 ev_ref (EV_A); /* child watcher */
1314 ev_signal_stop (EV_A_ &childev);
1315#endif
1316
1317 loop_destroy (EV_A);
1318}
1319
1320void
1321ev_default_fork (void)
1322{
1323#if EV_MULTIPLICITY
1324 struct ev_loop *loop = ev_default_loop_ptr;
1325#endif
1326
1327 if (backend)
1328 postfork = 1; /* must be in line with ev_loop_fork */
1329} 3119}
1330 3120
1331/*****************************************************************************/ 3121/*****************************************************************************/
1332 3122
1333void 3123void
1334ev_invoke (EV_P_ void *w, int revents) 3124ev_invoke (EV_P_ void *w, int revents)
1335{ 3125{
1336 EV_CB_INVOKE ((W)w, revents); 3126 EV_CB_INVOKE ((W)w, revents);
1337} 3127}
1338 3128
1339void inline_speed 3129unsigned int
1340call_pending (EV_P) 3130ev_pending_count (EV_P) EV_THROW
1341{ 3131{
1342 int pri; 3132 int pri;
3133 unsigned int count = 0;
1343 3134
1344 for (pri = NUMPRI; pri--; ) 3135 for (pri = NUMPRI; pri--; )
3136 count += pendingcnt [pri];
3137
3138 return count;
3139}
3140
3141void noinline
3142ev_invoke_pending (EV_P)
3143{
3144 pendingpri = NUMPRI;
3145
3146 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3147 {
3148 --pendingpri;
3149
1345 while (pendingcnt [pri]) 3150 while (pendingcnt [pendingpri])
1346 {
1347 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1348
1349 if (expect_true (p->w))
1350 {
1351 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1352
1353 p->w->pending = 0;
1354 EV_CB_INVOKE (p->w, p->events);
1355 }
1356 }
1357}
1358
1359void inline_size
1360timers_reify (EV_P)
1361{
1362 while (timercnt && ((WT)timers [0])->at <= mn_now)
1363 {
1364 ev_timer *w = (ev_timer *)timers [0];
1365
1366 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1367
1368 /* first reschedule or stop timer */
1369 if (w->repeat)
1370 { 3151 {
1371 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3152 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1372 3153
1373 ((WT)w)->at += w->repeat; 3154 p->w->pending = 0;
1374 if (((WT)w)->at < mn_now) 3155 EV_CB_INVOKE (p->w, p->events);
1375 ((WT)w)->at = mn_now; 3156 EV_FREQUENT_CHECK;
1376
1377 downheap (timers, timercnt, 0);
1378 } 3157 }
1379 else
1380 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1381
1382 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1383 }
1384}
1385
1386#if EV_PERIODIC_ENABLE
1387void inline_size
1388periodics_reify (EV_P)
1389{
1390 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1391 { 3158 }
1392 ev_periodic *w = (ev_periodic *)periodics [0];
1393
1394 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1395
1396 /* first reschedule or stop timer */
1397 if (w->reschedule_cb)
1398 {
1399 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1400 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1401 downheap (periodics, periodiccnt, 0);
1402 }
1403 else if (w->interval)
1404 {
1405 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1406 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1407 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1408 downheap (periodics, periodiccnt, 0);
1409 }
1410 else
1411 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1412
1413 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1414 }
1415} 3159}
1416
1417static void noinline
1418periodics_reschedule (EV_P)
1419{
1420 int i;
1421
1422 /* adjust periodics after time jump */
1423 for (i = 0; i < periodiccnt; ++i)
1424 {
1425 ev_periodic *w = (ev_periodic *)periodics [i];
1426
1427 if (w->reschedule_cb)
1428 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1429 else if (w->interval)
1430 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1431 }
1432
1433 /* now rebuild the heap */
1434 for (i = periodiccnt >> 1; i--; )
1435 downheap (periodics, periodiccnt, i);
1436}
1437#endif
1438 3160
1439#if EV_IDLE_ENABLE 3161#if EV_IDLE_ENABLE
1440void inline_size 3162/* make idle watchers pending. this handles the "call-idle */
3163/* only when higher priorities are idle" logic */
3164inline_size void
1441idle_reify (EV_P) 3165idle_reify (EV_P)
1442{ 3166{
1443 if (expect_false (idleall)) 3167 if (expect_false (idleall))
1444 { 3168 {
1445 int pri; 3169 int pri;
1457 } 3181 }
1458 } 3182 }
1459} 3183}
1460#endif 3184#endif
1461 3185
1462void inline_speed 3186/* make timers pending */
3187inline_size void
3188timers_reify (EV_P)
3189{
3190 EV_FREQUENT_CHECK;
3191
3192 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3193 {
3194 do
3195 {
3196 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3197
3198 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3199
3200 /* first reschedule or stop timer */
3201 if (w->repeat)
3202 {
3203 ev_at (w) += w->repeat;
3204 if (ev_at (w) < mn_now)
3205 ev_at (w) = mn_now;
3206
3207 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3208
3209 ANHE_at_cache (timers [HEAP0]);
3210 downheap (timers, timercnt, HEAP0);
3211 }
3212 else
3213 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3214
3215 EV_FREQUENT_CHECK;
3216 feed_reverse (EV_A_ (W)w);
3217 }
3218 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3219
3220 feed_reverse_done (EV_A_ EV_TIMER);
3221 }
3222}
3223
3224#if EV_PERIODIC_ENABLE
3225
3226static void noinline
3227periodic_recalc (EV_P_ ev_periodic *w)
3228{
3229 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3230 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3231
3232 /* the above almost always errs on the low side */
3233 while (at <= ev_rt_now)
3234 {
3235 ev_tstamp nat = at + w->interval;
3236
3237 /* when resolution fails us, we use ev_rt_now */
3238 if (expect_false (nat == at))
3239 {
3240 at = ev_rt_now;
3241 break;
3242 }
3243
3244 at = nat;
3245 }
3246
3247 ev_at (w) = at;
3248}
3249
3250/* make periodics pending */
3251inline_size void
3252periodics_reify (EV_P)
3253{
3254 EV_FREQUENT_CHECK;
3255
3256 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3257 {
3258 do
3259 {
3260 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3261
3262 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3263
3264 /* first reschedule or stop timer */
3265 if (w->reschedule_cb)
3266 {
3267 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3268
3269 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3270
3271 ANHE_at_cache (periodics [HEAP0]);
3272 downheap (periodics, periodiccnt, HEAP0);
3273 }
3274 else if (w->interval)
3275 {
3276 periodic_recalc (EV_A_ w);
3277 ANHE_at_cache (periodics [HEAP0]);
3278 downheap (periodics, periodiccnt, HEAP0);
3279 }
3280 else
3281 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3282
3283 EV_FREQUENT_CHECK;
3284 feed_reverse (EV_A_ (W)w);
3285 }
3286 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3287
3288 feed_reverse_done (EV_A_ EV_PERIODIC);
3289 }
3290}
3291
3292/* simply recalculate all periodics */
3293/* TODO: maybe ensure that at least one event happens when jumping forward? */
3294static void noinline ecb_cold
3295periodics_reschedule (EV_P)
3296{
3297 int i;
3298
3299 /* adjust periodics after time jump */
3300 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3301 {
3302 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3303
3304 if (w->reschedule_cb)
3305 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3306 else if (w->interval)
3307 periodic_recalc (EV_A_ w);
3308
3309 ANHE_at_cache (periodics [i]);
3310 }
3311
3312 reheap (periodics, periodiccnt);
3313}
3314#endif
3315
3316/* adjust all timers by a given offset */
3317static void noinline ecb_cold
3318timers_reschedule (EV_P_ ev_tstamp adjust)
3319{
3320 int i;
3321
3322 for (i = 0; i < timercnt; ++i)
3323 {
3324 ANHE *he = timers + i + HEAP0;
3325 ANHE_w (*he)->at += adjust;
3326 ANHE_at_cache (*he);
3327 }
3328}
3329
3330/* fetch new monotonic and realtime times from the kernel */
3331/* also detect if there was a timejump, and act accordingly */
3332inline_speed void
1463time_update (EV_P_ ev_tstamp max_block) 3333time_update (EV_P_ ev_tstamp max_block)
1464{ 3334{
1465 int i;
1466
1467#if EV_USE_MONOTONIC 3335#if EV_USE_MONOTONIC
1468 if (expect_true (have_monotonic)) 3336 if (expect_true (have_monotonic))
1469 { 3337 {
3338 int i;
1470 ev_tstamp odiff = rtmn_diff; 3339 ev_tstamp odiff = rtmn_diff;
1471 3340
1472 mn_now = get_clock (); 3341 mn_now = get_clock ();
1473 3342
1474 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3343 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1490 * doesn't hurt either as we only do this on time-jumps or 3359 * doesn't hurt either as we only do this on time-jumps or
1491 * in the unlikely event of having been preempted here. 3360 * in the unlikely event of having been preempted here.
1492 */ 3361 */
1493 for (i = 4; --i; ) 3362 for (i = 4; --i; )
1494 { 3363 {
3364 ev_tstamp diff;
1495 rtmn_diff = ev_rt_now - mn_now; 3365 rtmn_diff = ev_rt_now - mn_now;
1496 3366
1497 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 3367 diff = odiff - rtmn_diff;
3368
3369 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1498 return; /* all is well */ 3370 return; /* all is well */
1499 3371
1500 ev_rt_now = ev_time (); 3372 ev_rt_now = ev_time ();
1501 mn_now = get_clock (); 3373 mn_now = get_clock ();
1502 now_floor = mn_now; 3374 now_floor = mn_now;
1503 } 3375 }
1504 3376
3377 /* no timer adjustment, as the monotonic clock doesn't jump */
3378 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1505# if EV_PERIODIC_ENABLE 3379# if EV_PERIODIC_ENABLE
1506 periodics_reschedule (EV_A); 3380 periodics_reschedule (EV_A);
1507# endif 3381# endif
1508 /* no timer adjustment, as the monotonic clock doesn't jump */
1509 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1510 } 3382 }
1511 else 3383 else
1512#endif 3384#endif
1513 { 3385 {
1514 ev_rt_now = ev_time (); 3386 ev_rt_now = ev_time ();
1515 3387
1516 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3388 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1517 { 3389 {
3390 /* adjust timers. this is easy, as the offset is the same for all of them */
3391 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1518#if EV_PERIODIC_ENABLE 3392#if EV_PERIODIC_ENABLE
1519 periodics_reschedule (EV_A); 3393 periodics_reschedule (EV_A);
1520#endif 3394#endif
1521 /* adjust timers. this is easy, as the offset is the same for all of them */
1522 for (i = 0; i < timercnt; ++i)
1523 ((WT)timers [i])->at += ev_rt_now - mn_now;
1524 } 3395 }
1525 3396
1526 mn_now = ev_rt_now; 3397 mn_now = ev_rt_now;
1527 } 3398 }
1528} 3399}
1529 3400
1530void 3401int
1531ev_ref (EV_P)
1532{
1533 ++activecnt;
1534}
1535
1536void
1537ev_unref (EV_P)
1538{
1539 --activecnt;
1540}
1541
1542static int loop_done;
1543
1544void
1545ev_loop (EV_P_ int flags) 3402ev_run (EV_P_ int flags)
1546{ 3403{
1547 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 3404#if EV_FEATURE_API
1548 ? EVUNLOOP_ONE 3405 ++loop_depth;
1549 : EVUNLOOP_CANCEL; 3406#endif
1550 3407
3408 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3409
3410 loop_done = EVBREAK_CANCEL;
3411
1551 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3412 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1552 3413
1553 do 3414 do
1554 { 3415 {
3416#if EV_VERIFY >= 2
3417 ev_verify (EV_A);
3418#endif
3419
1555#ifndef _WIN32 3420#ifndef _WIN32
1556 if (expect_false (curpid)) /* penalise the forking check even more */ 3421 if (expect_false (curpid)) /* penalise the forking check even more */
1557 if (expect_false (getpid () != curpid)) 3422 if (expect_false (getpid () != curpid))
1558 { 3423 {
1559 curpid = getpid (); 3424 curpid = getpid ();
1565 /* we might have forked, so queue fork handlers */ 3430 /* we might have forked, so queue fork handlers */
1566 if (expect_false (postfork)) 3431 if (expect_false (postfork))
1567 if (forkcnt) 3432 if (forkcnt)
1568 { 3433 {
1569 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3434 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1570 call_pending (EV_A); 3435 EV_INVOKE_PENDING;
1571 } 3436 }
1572#endif 3437#endif
1573 3438
3439#if EV_PREPARE_ENABLE
1574 /* queue prepare watchers (and execute them) */ 3440 /* queue prepare watchers (and execute them) */
1575 if (expect_false (preparecnt)) 3441 if (expect_false (preparecnt))
1576 { 3442 {
1577 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3443 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1578 call_pending (EV_A); 3444 EV_INVOKE_PENDING;
1579 } 3445 }
3446#endif
1580 3447
1581 if (expect_false (!activecnt)) 3448 if (expect_false (loop_done))
1582 break; 3449 break;
1583 3450
1584 /* we might have forked, so reify kernel state if necessary */ 3451 /* we might have forked, so reify kernel state if necessary */
1585 if (expect_false (postfork)) 3452 if (expect_false (postfork))
1586 loop_fork (EV_A); 3453 loop_fork (EV_A);
1591 /* calculate blocking time */ 3458 /* calculate blocking time */
1592 { 3459 {
1593 ev_tstamp waittime = 0.; 3460 ev_tstamp waittime = 0.;
1594 ev_tstamp sleeptime = 0.; 3461 ev_tstamp sleeptime = 0.;
1595 3462
3463 /* remember old timestamp for io_blocktime calculation */
3464 ev_tstamp prev_mn_now = mn_now;
3465
3466 /* update time to cancel out callback processing overhead */
3467 time_update (EV_A_ 1e100);
3468
3469 /* from now on, we want a pipe-wake-up */
3470 pipe_write_wanted = 1;
3471
3472 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3473
1596 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3474 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1597 { 3475 {
1598 /* update time to cancel out callback processing overhead */
1599 time_update (EV_A_ 1e100);
1600
1601 waittime = MAX_BLOCKTIME; 3476 waittime = MAX_BLOCKTIME;
1602 3477
1603 if (timercnt) 3478 if (timercnt)
1604 { 3479 {
1605 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 3480 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1606 if (waittime > to) waittime = to; 3481 if (waittime > to) waittime = to;
1607 } 3482 }
1608 3483
1609#if EV_PERIODIC_ENABLE 3484#if EV_PERIODIC_ENABLE
1610 if (periodiccnt) 3485 if (periodiccnt)
1611 { 3486 {
1612 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 3487 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1613 if (waittime > to) waittime = to; 3488 if (waittime > to) waittime = to;
1614 } 3489 }
1615#endif 3490#endif
1616 3491
3492 /* don't let timeouts decrease the waittime below timeout_blocktime */
1617 if (expect_false (waittime < timeout_blocktime)) 3493 if (expect_false (waittime < timeout_blocktime))
1618 waittime = timeout_blocktime; 3494 waittime = timeout_blocktime;
1619 3495
1620 sleeptime = waittime - backend_fudge; 3496 /* at this point, we NEED to wait, so we have to ensure */
3497 /* to pass a minimum nonzero value to the backend */
3498 if (expect_false (waittime < backend_mintime))
3499 waittime = backend_mintime;
1621 3500
3501 /* extra check because io_blocktime is commonly 0 */
1622 if (expect_true (sleeptime > io_blocktime)) 3502 if (expect_false (io_blocktime))
1623 sleeptime = io_blocktime;
1624
1625 if (sleeptime)
1626 { 3503 {
3504 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3505
3506 if (sleeptime > waittime - backend_mintime)
3507 sleeptime = waittime - backend_mintime;
3508
3509 if (expect_true (sleeptime > 0.))
3510 {
1627 ev_sleep (sleeptime); 3511 ev_sleep (sleeptime);
1628 waittime -= sleeptime; 3512 waittime -= sleeptime;
3513 }
1629 } 3514 }
1630 } 3515 }
1631 3516
3517#if EV_FEATURE_API
1632 ++loop_count; 3518 ++loop_count;
3519#endif
3520 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1633 backend_poll (EV_A_ waittime); 3521 backend_poll (EV_A_ waittime);
3522 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3523
3524 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3525
3526 ECB_MEMORY_FENCE_ACQUIRE;
3527 if (pipe_write_skipped)
3528 {
3529 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3530 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3531 }
3532
1634 3533
1635 /* update ev_rt_now, do magic */ 3534 /* update ev_rt_now, do magic */
1636 time_update (EV_A_ waittime + sleeptime); 3535 time_update (EV_A_ waittime + sleeptime);
1637 } 3536 }
1638 3537
1645#if EV_IDLE_ENABLE 3544#if EV_IDLE_ENABLE
1646 /* queue idle watchers unless other events are pending */ 3545 /* queue idle watchers unless other events are pending */
1647 idle_reify (EV_A); 3546 idle_reify (EV_A);
1648#endif 3547#endif
1649 3548
3549#if EV_CHECK_ENABLE
1650 /* queue check watchers, to be executed first */ 3550 /* queue check watchers, to be executed first */
1651 if (expect_false (checkcnt)) 3551 if (expect_false (checkcnt))
1652 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3552 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3553#endif
1653 3554
1654 call_pending (EV_A); 3555 EV_INVOKE_PENDING;
1655
1656 } 3556 }
1657 while (expect_true (activecnt && !loop_done)); 3557 while (expect_true (
3558 activecnt
3559 && !loop_done
3560 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3561 ));
1658 3562
1659 if (loop_done == EVUNLOOP_ONE) 3563 if (loop_done == EVBREAK_ONE)
1660 loop_done = EVUNLOOP_CANCEL; 3564 loop_done = EVBREAK_CANCEL;
3565
3566#if EV_FEATURE_API
3567 --loop_depth;
3568#endif
3569
3570 return activecnt;
1661} 3571}
1662 3572
1663void 3573void
1664ev_unloop (EV_P_ int how) 3574ev_break (EV_P_ int how) EV_THROW
1665{ 3575{
1666 loop_done = how; 3576 loop_done = how;
1667} 3577}
1668 3578
3579void
3580ev_ref (EV_P) EV_THROW
3581{
3582 ++activecnt;
3583}
3584
3585void
3586ev_unref (EV_P) EV_THROW
3587{
3588 --activecnt;
3589}
3590
3591void
3592ev_now_update (EV_P) EV_THROW
3593{
3594 time_update (EV_A_ 1e100);
3595}
3596
3597void
3598ev_suspend (EV_P) EV_THROW
3599{
3600 ev_now_update (EV_A);
3601}
3602
3603void
3604ev_resume (EV_P) EV_THROW
3605{
3606 ev_tstamp mn_prev = mn_now;
3607
3608 ev_now_update (EV_A);
3609 timers_reschedule (EV_A_ mn_now - mn_prev);
3610#if EV_PERIODIC_ENABLE
3611 /* TODO: really do this? */
3612 periodics_reschedule (EV_A);
3613#endif
3614}
3615
1669/*****************************************************************************/ 3616/*****************************************************************************/
3617/* singly-linked list management, used when the expected list length is short */
1670 3618
1671void inline_size 3619inline_size void
1672wlist_add (WL *head, WL elem) 3620wlist_add (WL *head, WL elem)
1673{ 3621{
1674 elem->next = *head; 3622 elem->next = *head;
1675 *head = elem; 3623 *head = elem;
1676} 3624}
1677 3625
1678void inline_size 3626inline_size void
1679wlist_del (WL *head, WL elem) 3627wlist_del (WL *head, WL elem)
1680{ 3628{
1681 while (*head) 3629 while (*head)
1682 { 3630 {
1683 if (*head == elem) 3631 if (expect_true (*head == elem))
1684 { 3632 {
1685 *head = elem->next; 3633 *head = elem->next;
1686 return; 3634 break;
1687 } 3635 }
1688 3636
1689 head = &(*head)->next; 3637 head = &(*head)->next;
1690 } 3638 }
1691} 3639}
1692 3640
1693void inline_speed 3641/* internal, faster, version of ev_clear_pending */
3642inline_speed void
1694clear_pending (EV_P_ W w) 3643clear_pending (EV_P_ W w)
1695{ 3644{
1696 if (w->pending) 3645 if (w->pending)
1697 { 3646 {
1698 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3647 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1699 w->pending = 0; 3648 w->pending = 0;
1700 } 3649 }
1701} 3650}
1702 3651
1703int 3652int
1704ev_clear_pending (EV_P_ void *w) 3653ev_clear_pending (EV_P_ void *w) EV_THROW
1705{ 3654{
1706 W w_ = (W)w; 3655 W w_ = (W)w;
1707 int pending = w_->pending; 3656 int pending = w_->pending;
1708 3657
1709 if (expect_true (pending)) 3658 if (expect_true (pending))
1710 { 3659 {
1711 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3660 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3661 p->w = (W)&pending_w;
1712 w_->pending = 0; 3662 w_->pending = 0;
1713 p->w = 0;
1714 return p->events; 3663 return p->events;
1715 } 3664 }
1716 else 3665 else
1717 return 0; 3666 return 0;
1718} 3667}
1719 3668
1720void inline_size 3669inline_size void
1721pri_adjust (EV_P_ W w) 3670pri_adjust (EV_P_ W w)
1722{ 3671{
1723 int pri = w->priority; 3672 int pri = ev_priority (w);
1724 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3673 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1725 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3674 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1726 w->priority = pri; 3675 ev_set_priority (w, pri);
1727} 3676}
1728 3677
1729void inline_speed 3678inline_speed void
1730ev_start (EV_P_ W w, int active) 3679ev_start (EV_P_ W w, int active)
1731{ 3680{
1732 pri_adjust (EV_A_ w); 3681 pri_adjust (EV_A_ w);
1733 w->active = active; 3682 w->active = active;
1734 ev_ref (EV_A); 3683 ev_ref (EV_A);
1735} 3684}
1736 3685
1737void inline_size 3686inline_size void
1738ev_stop (EV_P_ W w) 3687ev_stop (EV_P_ W w)
1739{ 3688{
1740 ev_unref (EV_A); 3689 ev_unref (EV_A);
1741 w->active = 0; 3690 w->active = 0;
1742} 3691}
1743 3692
1744/*****************************************************************************/ 3693/*****************************************************************************/
1745 3694
1746void noinline 3695void noinline
1747ev_io_start (EV_P_ ev_io *w) 3696ev_io_start (EV_P_ ev_io *w) EV_THROW
1748{ 3697{
1749 int fd = w->fd; 3698 int fd = w->fd;
1750 3699
1751 if (expect_false (ev_is_active (w))) 3700 if (expect_false (ev_is_active (w)))
1752 return; 3701 return;
1753 3702
1754 assert (("ev_io_start called with negative fd", fd >= 0)); 3703 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3704 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3705
3706 EV_FREQUENT_CHECK;
1755 3707
1756 ev_start (EV_A_ (W)w, 1); 3708 ev_start (EV_A_ (W)w, 1);
1757 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3709 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1758 wlist_add (&anfds[fd].head, (WL)w); 3710 wlist_add (&anfds[fd].head, (WL)w);
1759 3711
3712 /* common bug, apparently */
3713 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3714
1760 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3715 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1761 w->events &= ~EV_IOFDSET; 3716 w->events &= ~EV__IOFDSET;
3717
3718 EV_FREQUENT_CHECK;
1762} 3719}
1763 3720
1764void noinline 3721void noinline
1765ev_io_stop (EV_P_ ev_io *w) 3722ev_io_stop (EV_P_ ev_io *w) EV_THROW
1766{ 3723{
1767 clear_pending (EV_A_ (W)w); 3724 clear_pending (EV_A_ (W)w);
1768 if (expect_false (!ev_is_active (w))) 3725 if (expect_false (!ev_is_active (w)))
1769 return; 3726 return;
1770 3727
1771 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3728 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3729
3730 EV_FREQUENT_CHECK;
1772 3731
1773 wlist_del (&anfds[w->fd].head, (WL)w); 3732 wlist_del (&anfds[w->fd].head, (WL)w);
1774 ev_stop (EV_A_ (W)w); 3733 ev_stop (EV_A_ (W)w);
1775 3734
1776 fd_change (EV_A_ w->fd, 1); 3735 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3736
3737 EV_FREQUENT_CHECK;
1777} 3738}
1778 3739
1779void noinline 3740void noinline
1780ev_timer_start (EV_P_ ev_timer *w) 3741ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1781{ 3742{
1782 if (expect_false (ev_is_active (w))) 3743 if (expect_false (ev_is_active (w)))
1783 return; 3744 return;
1784 3745
1785 ((WT)w)->at += mn_now; 3746 ev_at (w) += mn_now;
1786 3747
1787 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3748 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1788 3749
3750 EV_FREQUENT_CHECK;
3751
3752 ++timercnt;
1789 ev_start (EV_A_ (W)w, ++timercnt); 3753 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1790 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 3754 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1791 timers [timercnt - 1] = (WT)w; 3755 ANHE_w (timers [ev_active (w)]) = (WT)w;
1792 upheap (timers, timercnt - 1); 3756 ANHE_at_cache (timers [ev_active (w)]);
3757 upheap (timers, ev_active (w));
1793 3758
3759 EV_FREQUENT_CHECK;
3760
1794 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 3761 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1795} 3762}
1796 3763
1797void noinline 3764void noinline
1798ev_timer_stop (EV_P_ ev_timer *w) 3765ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1799{ 3766{
1800 clear_pending (EV_A_ (W)w); 3767 clear_pending (EV_A_ (W)w);
1801 if (expect_false (!ev_is_active (w))) 3768 if (expect_false (!ev_is_active (w)))
1802 return; 3769 return;
1803 3770
1804 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 3771 EV_FREQUENT_CHECK;
1805 3772
1806 { 3773 {
1807 int active = ((W)w)->active; 3774 int active = ev_active (w);
1808 3775
3776 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3777
3778 --timercnt;
3779
1809 if (expect_true (--active < --timercnt)) 3780 if (expect_true (active < timercnt + HEAP0))
1810 { 3781 {
1811 timers [active] = timers [timercnt]; 3782 timers [active] = timers [timercnt + HEAP0];
1812 adjustheap (timers, timercnt, active); 3783 adjustheap (timers, timercnt, active);
1813 } 3784 }
1814 } 3785 }
1815 3786
1816 ((WT)w)->at -= mn_now; 3787 ev_at (w) -= mn_now;
1817 3788
1818 ev_stop (EV_A_ (W)w); 3789 ev_stop (EV_A_ (W)w);
3790
3791 EV_FREQUENT_CHECK;
1819} 3792}
1820 3793
1821void noinline 3794void noinline
1822ev_timer_again (EV_P_ ev_timer *w) 3795ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1823{ 3796{
3797 EV_FREQUENT_CHECK;
3798
3799 clear_pending (EV_A_ (W)w);
3800
1824 if (ev_is_active (w)) 3801 if (ev_is_active (w))
1825 { 3802 {
1826 if (w->repeat) 3803 if (w->repeat)
1827 { 3804 {
1828 ((WT)w)->at = mn_now + w->repeat; 3805 ev_at (w) = mn_now + w->repeat;
3806 ANHE_at_cache (timers [ev_active (w)]);
1829 adjustheap (timers, timercnt, ((W)w)->active - 1); 3807 adjustheap (timers, timercnt, ev_active (w));
1830 } 3808 }
1831 else 3809 else
1832 ev_timer_stop (EV_A_ w); 3810 ev_timer_stop (EV_A_ w);
1833 } 3811 }
1834 else if (w->repeat) 3812 else if (w->repeat)
1835 { 3813 {
1836 w->at = w->repeat; 3814 ev_at (w) = w->repeat;
1837 ev_timer_start (EV_A_ w); 3815 ev_timer_start (EV_A_ w);
1838 } 3816 }
3817
3818 EV_FREQUENT_CHECK;
3819}
3820
3821ev_tstamp
3822ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3823{
3824 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1839} 3825}
1840 3826
1841#if EV_PERIODIC_ENABLE 3827#if EV_PERIODIC_ENABLE
1842void noinline 3828void noinline
1843ev_periodic_start (EV_P_ ev_periodic *w) 3829ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1844{ 3830{
1845 if (expect_false (ev_is_active (w))) 3831 if (expect_false (ev_is_active (w)))
1846 return; 3832 return;
1847 3833
1848 if (w->reschedule_cb) 3834 if (w->reschedule_cb)
1849 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3835 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1850 else if (w->interval) 3836 else if (w->interval)
1851 { 3837 {
1852 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3838 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1853 /* this formula differs from the one in periodic_reify because we do not always round up */ 3839 periodic_recalc (EV_A_ w);
1854 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1855 } 3840 }
1856 else 3841 else
1857 ((WT)w)->at = w->offset; 3842 ev_at (w) = w->offset;
1858 3843
3844 EV_FREQUENT_CHECK;
3845
3846 ++periodiccnt;
1859 ev_start (EV_A_ (W)w, ++periodiccnt); 3847 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1860 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 3848 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1861 periodics [periodiccnt - 1] = (WT)w; 3849 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1862 upheap (periodics, periodiccnt - 1); 3850 ANHE_at_cache (periodics [ev_active (w)]);
3851 upheap (periodics, ev_active (w));
1863 3852
3853 EV_FREQUENT_CHECK;
3854
1864 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 3855 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1865} 3856}
1866 3857
1867void noinline 3858void noinline
1868ev_periodic_stop (EV_P_ ev_periodic *w) 3859ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1869{ 3860{
1870 clear_pending (EV_A_ (W)w); 3861 clear_pending (EV_A_ (W)w);
1871 if (expect_false (!ev_is_active (w))) 3862 if (expect_false (!ev_is_active (w)))
1872 return; 3863 return;
1873 3864
1874 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 3865 EV_FREQUENT_CHECK;
1875 3866
1876 { 3867 {
1877 int active = ((W)w)->active; 3868 int active = ev_active (w);
1878 3869
3870 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3871
3872 --periodiccnt;
3873
1879 if (expect_true (--active < --periodiccnt)) 3874 if (expect_true (active < periodiccnt + HEAP0))
1880 { 3875 {
1881 periodics [active] = periodics [periodiccnt]; 3876 periodics [active] = periodics [periodiccnt + HEAP0];
1882 adjustheap (periodics, periodiccnt, active); 3877 adjustheap (periodics, periodiccnt, active);
1883 } 3878 }
1884 } 3879 }
1885 3880
1886 ev_stop (EV_A_ (W)w); 3881 ev_stop (EV_A_ (W)w);
3882
3883 EV_FREQUENT_CHECK;
1887} 3884}
1888 3885
1889void noinline 3886void noinline
1890ev_periodic_again (EV_P_ ev_periodic *w) 3887ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1891{ 3888{
1892 /* TODO: use adjustheap and recalculation */ 3889 /* TODO: use adjustheap and recalculation */
1893 ev_periodic_stop (EV_A_ w); 3890 ev_periodic_stop (EV_A_ w);
1894 ev_periodic_start (EV_A_ w); 3891 ev_periodic_start (EV_A_ w);
1895} 3892}
1897 3894
1898#ifndef SA_RESTART 3895#ifndef SA_RESTART
1899# define SA_RESTART 0 3896# define SA_RESTART 0
1900#endif 3897#endif
1901 3898
3899#if EV_SIGNAL_ENABLE
3900
1902void noinline 3901void noinline
1903ev_signal_start (EV_P_ ev_signal *w) 3902ev_signal_start (EV_P_ ev_signal *w) EV_THROW
1904{ 3903{
1905#if EV_MULTIPLICITY
1906 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1907#endif
1908 if (expect_false (ev_is_active (w))) 3904 if (expect_false (ev_is_active (w)))
1909 return; 3905 return;
1910 3906
1911 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3907 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1912 3908
1913 evpipe_init (EV_A); 3909#if EV_MULTIPLICITY
3910 assert (("libev: a signal must not be attached to two different loops",
3911 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
1914 3912
3913 signals [w->signum - 1].loop = EV_A;
3914 ECB_MEMORY_FENCE_RELEASE;
3915#endif
3916
3917 EV_FREQUENT_CHECK;
3918
3919#if EV_USE_SIGNALFD
3920 if (sigfd == -2)
1915 { 3921 {
1916#ifndef _WIN32 3922 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1917 sigset_t full, prev; 3923 if (sigfd < 0 && errno == EINVAL)
1918 sigfillset (&full); 3924 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1919 sigprocmask (SIG_SETMASK, &full, &prev);
1920#endif
1921 3925
1922 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3926 if (sigfd >= 0)
3927 {
3928 fd_intern (sigfd); /* doing it twice will not hurt */
1923 3929
1924#ifndef _WIN32 3930 sigemptyset (&sigfd_set);
1925 sigprocmask (SIG_SETMASK, &prev, 0); 3931
1926#endif 3932 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3933 ev_set_priority (&sigfd_w, EV_MAXPRI);
3934 ev_io_start (EV_A_ &sigfd_w);
3935 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3936 }
1927 } 3937 }
3938
3939 if (sigfd >= 0)
3940 {
3941 /* TODO: check .head */
3942 sigaddset (&sigfd_set, w->signum);
3943 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3944
3945 signalfd (sigfd, &sigfd_set, 0);
3946 }
3947#endif
1928 3948
1929 ev_start (EV_A_ (W)w, 1); 3949 ev_start (EV_A_ (W)w, 1);
1930 wlist_add (&signals [w->signum - 1].head, (WL)w); 3950 wlist_add (&signals [w->signum - 1].head, (WL)w);
1931 3951
1932 if (!((WL)w)->next) 3952 if (!((WL)w)->next)
3953# if EV_USE_SIGNALFD
3954 if (sigfd < 0) /*TODO*/
3955# endif
1933 { 3956 {
1934#if _WIN32 3957# ifdef _WIN32
3958 evpipe_init (EV_A);
3959
1935 signal (w->signum, sighandler); 3960 signal (w->signum, ev_sighandler);
1936#else 3961# else
1937 struct sigaction sa; 3962 struct sigaction sa;
3963
3964 evpipe_init (EV_A);
3965
1938 sa.sa_handler = sighandler; 3966 sa.sa_handler = ev_sighandler;
1939 sigfillset (&sa.sa_mask); 3967 sigfillset (&sa.sa_mask);
1940 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3968 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1941 sigaction (w->signum, &sa, 0); 3969 sigaction (w->signum, &sa, 0);
3970
3971 if (origflags & EVFLAG_NOSIGMASK)
3972 {
3973 sigemptyset (&sa.sa_mask);
3974 sigaddset (&sa.sa_mask, w->signum);
3975 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3976 }
1942#endif 3977#endif
1943 } 3978 }
3979
3980 EV_FREQUENT_CHECK;
1944} 3981}
1945 3982
1946void noinline 3983void noinline
1947ev_signal_stop (EV_P_ ev_signal *w) 3984ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
1948{ 3985{
1949 clear_pending (EV_A_ (W)w); 3986 clear_pending (EV_A_ (W)w);
1950 if (expect_false (!ev_is_active (w))) 3987 if (expect_false (!ev_is_active (w)))
1951 return; 3988 return;
1952 3989
3990 EV_FREQUENT_CHECK;
3991
1953 wlist_del (&signals [w->signum - 1].head, (WL)w); 3992 wlist_del (&signals [w->signum - 1].head, (WL)w);
1954 ev_stop (EV_A_ (W)w); 3993 ev_stop (EV_A_ (W)w);
1955 3994
1956 if (!signals [w->signum - 1].head) 3995 if (!signals [w->signum - 1].head)
3996 {
3997#if EV_MULTIPLICITY
3998 signals [w->signum - 1].loop = 0; /* unattach from signal */
3999#endif
4000#if EV_USE_SIGNALFD
4001 if (sigfd >= 0)
4002 {
4003 sigset_t ss;
4004
4005 sigemptyset (&ss);
4006 sigaddset (&ss, w->signum);
4007 sigdelset (&sigfd_set, w->signum);
4008
4009 signalfd (sigfd, &sigfd_set, 0);
4010 sigprocmask (SIG_UNBLOCK, &ss, 0);
4011 }
4012 else
4013#endif
1957 signal (w->signum, SIG_DFL); 4014 signal (w->signum, SIG_DFL);
4015 }
4016
4017 EV_FREQUENT_CHECK;
1958} 4018}
4019
4020#endif
4021
4022#if EV_CHILD_ENABLE
1959 4023
1960void 4024void
1961ev_child_start (EV_P_ ev_child *w) 4025ev_child_start (EV_P_ ev_child *w) EV_THROW
1962{ 4026{
1963#if EV_MULTIPLICITY 4027#if EV_MULTIPLICITY
1964 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4028 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1965#endif 4029#endif
1966 if (expect_false (ev_is_active (w))) 4030 if (expect_false (ev_is_active (w)))
1967 return; 4031 return;
1968 4032
4033 EV_FREQUENT_CHECK;
4034
1969 ev_start (EV_A_ (W)w, 1); 4035 ev_start (EV_A_ (W)w, 1);
1970 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4036 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4037
4038 EV_FREQUENT_CHECK;
1971} 4039}
1972 4040
1973void 4041void
1974ev_child_stop (EV_P_ ev_child *w) 4042ev_child_stop (EV_P_ ev_child *w) EV_THROW
1975{ 4043{
1976 clear_pending (EV_A_ (W)w); 4044 clear_pending (EV_A_ (W)w);
1977 if (expect_false (!ev_is_active (w))) 4045 if (expect_false (!ev_is_active (w)))
1978 return; 4046 return;
1979 4047
4048 EV_FREQUENT_CHECK;
4049
1980 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4050 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1981 ev_stop (EV_A_ (W)w); 4051 ev_stop (EV_A_ (W)w);
4052
4053 EV_FREQUENT_CHECK;
1982} 4054}
4055
4056#endif
1983 4057
1984#if EV_STAT_ENABLE 4058#if EV_STAT_ENABLE
1985 4059
1986# ifdef _WIN32 4060# ifdef _WIN32
1987# undef lstat 4061# undef lstat
1988# define lstat(a,b) _stati64 (a,b) 4062# define lstat(a,b) _stati64 (a,b)
1989# endif 4063# endif
1990 4064
1991#define DEF_STAT_INTERVAL 5.0074891 4065#define DEF_STAT_INTERVAL 5.0074891
4066#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1992#define MIN_STAT_INTERVAL 0.1074891 4067#define MIN_STAT_INTERVAL 0.1074891
1993 4068
1994static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 4069static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1995 4070
1996#if EV_USE_INOTIFY 4071#if EV_USE_INOTIFY
1997# define EV_INOTIFY_BUFSIZE 8192 4072
4073/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4074# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1998 4075
1999static void noinline 4076static void noinline
2000infy_add (EV_P_ ev_stat *w) 4077infy_add (EV_P_ ev_stat *w)
2001{ 4078{
2002 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 4079 w->wd = inotify_add_watch (fs_fd, w->path,
4080 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4081 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4082 | IN_DONT_FOLLOW | IN_MASK_ADD);
2003 4083
2004 if (w->wd < 0) 4084 if (w->wd >= 0)
4085 {
4086 struct statfs sfs;
4087
4088 /* now local changes will be tracked by inotify, but remote changes won't */
4089 /* unless the filesystem is known to be local, we therefore still poll */
4090 /* also do poll on <2.6.25, but with normal frequency */
4091
4092 if (!fs_2625)
4093 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4094 else if (!statfs (w->path, &sfs)
4095 && (sfs.f_type == 0x1373 /* devfs */
4096 || sfs.f_type == 0x4006 /* fat */
4097 || sfs.f_type == 0x4d44 /* msdos */
4098 || sfs.f_type == 0xEF53 /* ext2/3 */
4099 || sfs.f_type == 0x72b6 /* jffs2 */
4100 || sfs.f_type == 0x858458f6 /* ramfs */
4101 || sfs.f_type == 0x5346544e /* ntfs */
4102 || sfs.f_type == 0x3153464a /* jfs */
4103 || sfs.f_type == 0x9123683e /* btrfs */
4104 || sfs.f_type == 0x52654973 /* reiser3 */
4105 || sfs.f_type == 0x01021994 /* tmpfs */
4106 || sfs.f_type == 0x58465342 /* xfs */))
4107 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4108 else
4109 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2005 { 4110 }
2006 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 4111 else
4112 {
4113 /* can't use inotify, continue to stat */
4114 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2007 4115
2008 /* monitor some parent directory for speedup hints */ 4116 /* if path is not there, monitor some parent directory for speedup hints */
4117 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4118 /* but an efficiency issue only */
2009 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4119 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2010 { 4120 {
2011 char path [4096]; 4121 char path [4096];
2012 strcpy (path, w->path); 4122 strcpy (path, w->path);
2013 4123
2016 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 4126 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2017 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 4127 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2018 4128
2019 char *pend = strrchr (path, '/'); 4129 char *pend = strrchr (path, '/');
2020 4130
2021 if (!pend) 4131 if (!pend || pend == path)
2022 break; /* whoops, no '/', complain to your admin */ 4132 break;
2023 4133
2024 *pend = 0; 4134 *pend = 0;
2025 w->wd = inotify_add_watch (fs_fd, path, mask); 4135 w->wd = inotify_add_watch (fs_fd, path, mask);
2026 } 4136 }
2027 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4137 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2028 } 4138 }
2029 } 4139 }
2030 else
2031 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2032 4140
2033 if (w->wd >= 0) 4141 if (w->wd >= 0)
2034 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4142 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4143
4144 /* now re-arm timer, if required */
4145 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4146 ev_timer_again (EV_A_ &w->timer);
4147 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2035} 4148}
2036 4149
2037static void noinline 4150static void noinline
2038infy_del (EV_P_ ev_stat *w) 4151infy_del (EV_P_ ev_stat *w)
2039{ 4152{
2042 4155
2043 if (wd < 0) 4156 if (wd < 0)
2044 return; 4157 return;
2045 4158
2046 w->wd = -2; 4159 w->wd = -2;
2047 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4160 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2048 wlist_del (&fs_hash [slot].head, (WL)w); 4161 wlist_del (&fs_hash [slot].head, (WL)w);
2049 4162
2050 /* remove this watcher, if others are watching it, they will rearm */ 4163 /* remove this watcher, if others are watching it, they will rearm */
2051 inotify_rm_watch (fs_fd, wd); 4164 inotify_rm_watch (fs_fd, wd);
2052} 4165}
2053 4166
2054static void noinline 4167static void noinline
2055infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4168infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2056{ 4169{
2057 if (slot < 0) 4170 if (slot < 0)
2058 /* overflow, need to check for all hahs slots */ 4171 /* overflow, need to check for all hash slots */
2059 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4172 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2060 infy_wd (EV_A_ slot, wd, ev); 4173 infy_wd (EV_A_ slot, wd, ev);
2061 else 4174 else
2062 { 4175 {
2063 WL w_; 4176 WL w_;
2064 4177
2065 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4178 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2066 { 4179 {
2067 ev_stat *w = (ev_stat *)w_; 4180 ev_stat *w = (ev_stat *)w_;
2068 w_ = w_->next; /* lets us remove this watcher and all before it */ 4181 w_ = w_->next; /* lets us remove this watcher and all before it */
2069 4182
2070 if (w->wd == wd || wd == -1) 4183 if (w->wd == wd || wd == -1)
2071 { 4184 {
2072 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4185 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2073 { 4186 {
4187 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2074 w->wd = -1; 4188 w->wd = -1;
2075 infy_add (EV_A_ w); /* re-add, no matter what */ 4189 infy_add (EV_A_ w); /* re-add, no matter what */
2076 } 4190 }
2077 4191
2078 stat_timer_cb (EV_A_ &w->timer, 0); 4192 stat_timer_cb (EV_A_ &w->timer, 0);
2083 4197
2084static void 4198static void
2085infy_cb (EV_P_ ev_io *w, int revents) 4199infy_cb (EV_P_ ev_io *w, int revents)
2086{ 4200{
2087 char buf [EV_INOTIFY_BUFSIZE]; 4201 char buf [EV_INOTIFY_BUFSIZE];
2088 struct inotify_event *ev = (struct inotify_event *)buf;
2089 int ofs; 4202 int ofs;
2090 int len = read (fs_fd, buf, sizeof (buf)); 4203 int len = read (fs_fd, buf, sizeof (buf));
2091 4204
2092 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4205 for (ofs = 0; ofs < len; )
4206 {
4207 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2093 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4208 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4209 ofs += sizeof (struct inotify_event) + ev->len;
4210 }
2094} 4211}
2095 4212
2096void inline_size 4213inline_size void ecb_cold
4214ev_check_2625 (EV_P)
4215{
4216 /* kernels < 2.6.25 are borked
4217 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4218 */
4219 if (ev_linux_version () < 0x020619)
4220 return;
4221
4222 fs_2625 = 1;
4223}
4224
4225inline_size int
4226infy_newfd (void)
4227{
4228#if defined IN_CLOEXEC && defined IN_NONBLOCK
4229 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4230 if (fd >= 0)
4231 return fd;
4232#endif
4233 return inotify_init ();
4234}
4235
4236inline_size void
2097infy_init (EV_P) 4237infy_init (EV_P)
2098{ 4238{
2099 if (fs_fd != -2) 4239 if (fs_fd != -2)
2100 return; 4240 return;
2101 4241
4242 fs_fd = -1;
4243
4244 ev_check_2625 (EV_A);
4245
2102 fs_fd = inotify_init (); 4246 fs_fd = infy_newfd ();
2103 4247
2104 if (fs_fd >= 0) 4248 if (fs_fd >= 0)
2105 { 4249 {
4250 fd_intern (fs_fd);
2106 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4251 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2107 ev_set_priority (&fs_w, EV_MAXPRI); 4252 ev_set_priority (&fs_w, EV_MAXPRI);
2108 ev_io_start (EV_A_ &fs_w); 4253 ev_io_start (EV_A_ &fs_w);
4254 ev_unref (EV_A);
2109 } 4255 }
2110} 4256}
2111 4257
2112void inline_size 4258inline_size void
2113infy_fork (EV_P) 4259infy_fork (EV_P)
2114{ 4260{
2115 int slot; 4261 int slot;
2116 4262
2117 if (fs_fd < 0) 4263 if (fs_fd < 0)
2118 return; 4264 return;
2119 4265
4266 ev_ref (EV_A);
4267 ev_io_stop (EV_A_ &fs_w);
2120 close (fs_fd); 4268 close (fs_fd);
2121 fs_fd = inotify_init (); 4269 fs_fd = infy_newfd ();
2122 4270
4271 if (fs_fd >= 0)
4272 {
4273 fd_intern (fs_fd);
4274 ev_io_set (&fs_w, fs_fd, EV_READ);
4275 ev_io_start (EV_A_ &fs_w);
4276 ev_unref (EV_A);
4277 }
4278
2123 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4279 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2124 { 4280 {
2125 WL w_ = fs_hash [slot].head; 4281 WL w_ = fs_hash [slot].head;
2126 fs_hash [slot].head = 0; 4282 fs_hash [slot].head = 0;
2127 4283
2128 while (w_) 4284 while (w_)
2133 w->wd = -1; 4289 w->wd = -1;
2134 4290
2135 if (fs_fd >= 0) 4291 if (fs_fd >= 0)
2136 infy_add (EV_A_ w); /* re-add, no matter what */ 4292 infy_add (EV_A_ w); /* re-add, no matter what */
2137 else 4293 else
4294 {
4295 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4296 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2138 ev_timer_start (EV_A_ &w->timer); 4297 ev_timer_again (EV_A_ &w->timer);
4298 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4299 }
2139 } 4300 }
2140
2141 } 4301 }
2142} 4302}
2143 4303
4304#endif
4305
4306#ifdef _WIN32
4307# define EV_LSTAT(p,b) _stati64 (p, b)
4308#else
4309# define EV_LSTAT(p,b) lstat (p, b)
2144#endif 4310#endif
2145 4311
2146void 4312void
2147ev_stat_stat (EV_P_ ev_stat *w) 4313ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2148{ 4314{
2149 if (lstat (w->path, &w->attr) < 0) 4315 if (lstat (w->path, &w->attr) < 0)
2150 w->attr.st_nlink = 0; 4316 w->attr.st_nlink = 0;
2151 else if (!w->attr.st_nlink) 4317 else if (!w->attr.st_nlink)
2152 w->attr.st_nlink = 1; 4318 w->attr.st_nlink = 1;
2155static void noinline 4321static void noinline
2156stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4322stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2157{ 4323{
2158 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4324 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2159 4325
2160 /* we copy this here each the time so that */ 4326 ev_statdata prev = w->attr;
2161 /* prev has the old value when the callback gets invoked */
2162 w->prev = w->attr;
2163 ev_stat_stat (EV_A_ w); 4327 ev_stat_stat (EV_A_ w);
2164 4328
2165 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4329 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2166 if ( 4330 if (
2167 w->prev.st_dev != w->attr.st_dev 4331 prev.st_dev != w->attr.st_dev
2168 || w->prev.st_ino != w->attr.st_ino 4332 || prev.st_ino != w->attr.st_ino
2169 || w->prev.st_mode != w->attr.st_mode 4333 || prev.st_mode != w->attr.st_mode
2170 || w->prev.st_nlink != w->attr.st_nlink 4334 || prev.st_nlink != w->attr.st_nlink
2171 || w->prev.st_uid != w->attr.st_uid 4335 || prev.st_uid != w->attr.st_uid
2172 || w->prev.st_gid != w->attr.st_gid 4336 || prev.st_gid != w->attr.st_gid
2173 || w->prev.st_rdev != w->attr.st_rdev 4337 || prev.st_rdev != w->attr.st_rdev
2174 || w->prev.st_size != w->attr.st_size 4338 || prev.st_size != w->attr.st_size
2175 || w->prev.st_atime != w->attr.st_atime 4339 || prev.st_atime != w->attr.st_atime
2176 || w->prev.st_mtime != w->attr.st_mtime 4340 || prev.st_mtime != w->attr.st_mtime
2177 || w->prev.st_ctime != w->attr.st_ctime 4341 || prev.st_ctime != w->attr.st_ctime
2178 ) { 4342 ) {
4343 /* we only update w->prev on actual differences */
4344 /* in case we test more often than invoke the callback, */
4345 /* to ensure that prev is always different to attr */
4346 w->prev = prev;
4347
2179 #if EV_USE_INOTIFY 4348 #if EV_USE_INOTIFY
4349 if (fs_fd >= 0)
4350 {
2180 infy_del (EV_A_ w); 4351 infy_del (EV_A_ w);
2181 infy_add (EV_A_ w); 4352 infy_add (EV_A_ w);
2182 ev_stat_stat (EV_A_ w); /* avoid race... */ 4353 ev_stat_stat (EV_A_ w); /* avoid race... */
4354 }
2183 #endif 4355 #endif
2184 4356
2185 ev_feed_event (EV_A_ w, EV_STAT); 4357 ev_feed_event (EV_A_ w, EV_STAT);
2186 } 4358 }
2187} 4359}
2188 4360
2189void 4361void
2190ev_stat_start (EV_P_ ev_stat *w) 4362ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2191{ 4363{
2192 if (expect_false (ev_is_active (w))) 4364 if (expect_false (ev_is_active (w)))
2193 return; 4365 return;
2194 4366
2195 /* since we use memcmp, we need to clear any padding data etc. */
2196 memset (&w->prev, 0, sizeof (ev_statdata));
2197 memset (&w->attr, 0, sizeof (ev_statdata));
2198
2199 ev_stat_stat (EV_A_ w); 4367 ev_stat_stat (EV_A_ w);
2200 4368
4369 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2201 if (w->interval < MIN_STAT_INTERVAL) 4370 w->interval = MIN_STAT_INTERVAL;
2202 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2203 4371
2204 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4372 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2205 ev_set_priority (&w->timer, ev_priority (w)); 4373 ev_set_priority (&w->timer, ev_priority (w));
2206 4374
2207#if EV_USE_INOTIFY 4375#if EV_USE_INOTIFY
2208 infy_init (EV_A); 4376 infy_init (EV_A);
2209 4377
2210 if (fs_fd >= 0) 4378 if (fs_fd >= 0)
2211 infy_add (EV_A_ w); 4379 infy_add (EV_A_ w);
2212 else 4380 else
2213#endif 4381#endif
4382 {
2214 ev_timer_start (EV_A_ &w->timer); 4383 ev_timer_again (EV_A_ &w->timer);
4384 ev_unref (EV_A);
4385 }
2215 4386
2216 ev_start (EV_A_ (W)w, 1); 4387 ev_start (EV_A_ (W)w, 1);
4388
4389 EV_FREQUENT_CHECK;
2217} 4390}
2218 4391
2219void 4392void
2220ev_stat_stop (EV_P_ ev_stat *w) 4393ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2221{ 4394{
2222 clear_pending (EV_A_ (W)w); 4395 clear_pending (EV_A_ (W)w);
2223 if (expect_false (!ev_is_active (w))) 4396 if (expect_false (!ev_is_active (w)))
2224 return; 4397 return;
2225 4398
4399 EV_FREQUENT_CHECK;
4400
2226#if EV_USE_INOTIFY 4401#if EV_USE_INOTIFY
2227 infy_del (EV_A_ w); 4402 infy_del (EV_A_ w);
2228#endif 4403#endif
4404
4405 if (ev_is_active (&w->timer))
4406 {
4407 ev_ref (EV_A);
2229 ev_timer_stop (EV_A_ &w->timer); 4408 ev_timer_stop (EV_A_ &w->timer);
4409 }
2230 4410
2231 ev_stop (EV_A_ (W)w); 4411 ev_stop (EV_A_ (W)w);
4412
4413 EV_FREQUENT_CHECK;
2232} 4414}
2233#endif 4415#endif
2234 4416
2235#if EV_IDLE_ENABLE 4417#if EV_IDLE_ENABLE
2236void 4418void
2237ev_idle_start (EV_P_ ev_idle *w) 4419ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2238{ 4420{
2239 if (expect_false (ev_is_active (w))) 4421 if (expect_false (ev_is_active (w)))
2240 return; 4422 return;
2241 4423
2242 pri_adjust (EV_A_ (W)w); 4424 pri_adjust (EV_A_ (W)w);
4425
4426 EV_FREQUENT_CHECK;
2243 4427
2244 { 4428 {
2245 int active = ++idlecnt [ABSPRI (w)]; 4429 int active = ++idlecnt [ABSPRI (w)];
2246 4430
2247 ++idleall; 4431 ++idleall;
2248 ev_start (EV_A_ (W)w, active); 4432 ev_start (EV_A_ (W)w, active);
2249 4433
2250 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 4434 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2251 idles [ABSPRI (w)][active - 1] = w; 4435 idles [ABSPRI (w)][active - 1] = w;
2252 } 4436 }
4437
4438 EV_FREQUENT_CHECK;
2253} 4439}
2254 4440
2255void 4441void
2256ev_idle_stop (EV_P_ ev_idle *w) 4442ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2257{ 4443{
2258 clear_pending (EV_A_ (W)w); 4444 clear_pending (EV_A_ (W)w);
2259 if (expect_false (!ev_is_active (w))) 4445 if (expect_false (!ev_is_active (w)))
2260 return; 4446 return;
2261 4447
4448 EV_FREQUENT_CHECK;
4449
2262 { 4450 {
2263 int active = ((W)w)->active; 4451 int active = ev_active (w);
2264 4452
2265 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 4453 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2266 ((W)idles [ABSPRI (w)][active - 1])->active = active; 4454 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2267 4455
2268 ev_stop (EV_A_ (W)w); 4456 ev_stop (EV_A_ (W)w);
2269 --idleall; 4457 --idleall;
2270 } 4458 }
2271}
2272#endif
2273 4459
4460 EV_FREQUENT_CHECK;
4461}
4462#endif
4463
4464#if EV_PREPARE_ENABLE
2274void 4465void
2275ev_prepare_start (EV_P_ ev_prepare *w) 4466ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2276{ 4467{
2277 if (expect_false (ev_is_active (w))) 4468 if (expect_false (ev_is_active (w)))
2278 return; 4469 return;
4470
4471 EV_FREQUENT_CHECK;
2279 4472
2280 ev_start (EV_A_ (W)w, ++preparecnt); 4473 ev_start (EV_A_ (W)w, ++preparecnt);
2281 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4474 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2282 prepares [preparecnt - 1] = w; 4475 prepares [preparecnt - 1] = w;
4476
4477 EV_FREQUENT_CHECK;
2283} 4478}
2284 4479
2285void 4480void
2286ev_prepare_stop (EV_P_ ev_prepare *w) 4481ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2287{ 4482{
2288 clear_pending (EV_A_ (W)w); 4483 clear_pending (EV_A_ (W)w);
2289 if (expect_false (!ev_is_active (w))) 4484 if (expect_false (!ev_is_active (w)))
2290 return; 4485 return;
2291 4486
4487 EV_FREQUENT_CHECK;
4488
2292 { 4489 {
2293 int active = ((W)w)->active; 4490 int active = ev_active (w);
4491
2294 prepares [active - 1] = prepares [--preparecnt]; 4492 prepares [active - 1] = prepares [--preparecnt];
2295 ((W)prepares [active - 1])->active = active; 4493 ev_active (prepares [active - 1]) = active;
2296 } 4494 }
2297 4495
2298 ev_stop (EV_A_ (W)w); 4496 ev_stop (EV_A_ (W)w);
2299}
2300 4497
4498 EV_FREQUENT_CHECK;
4499}
4500#endif
4501
4502#if EV_CHECK_ENABLE
2301void 4503void
2302ev_check_start (EV_P_ ev_check *w) 4504ev_check_start (EV_P_ ev_check *w) EV_THROW
2303{ 4505{
2304 if (expect_false (ev_is_active (w))) 4506 if (expect_false (ev_is_active (w)))
2305 return; 4507 return;
4508
4509 EV_FREQUENT_CHECK;
2306 4510
2307 ev_start (EV_A_ (W)w, ++checkcnt); 4511 ev_start (EV_A_ (W)w, ++checkcnt);
2308 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4512 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2309 checks [checkcnt - 1] = w; 4513 checks [checkcnt - 1] = w;
4514
4515 EV_FREQUENT_CHECK;
2310} 4516}
2311 4517
2312void 4518void
2313ev_check_stop (EV_P_ ev_check *w) 4519ev_check_stop (EV_P_ ev_check *w) EV_THROW
2314{ 4520{
2315 clear_pending (EV_A_ (W)w); 4521 clear_pending (EV_A_ (W)w);
2316 if (expect_false (!ev_is_active (w))) 4522 if (expect_false (!ev_is_active (w)))
2317 return; 4523 return;
2318 4524
4525 EV_FREQUENT_CHECK;
4526
2319 { 4527 {
2320 int active = ((W)w)->active; 4528 int active = ev_active (w);
4529
2321 checks [active - 1] = checks [--checkcnt]; 4530 checks [active - 1] = checks [--checkcnt];
2322 ((W)checks [active - 1])->active = active; 4531 ev_active (checks [active - 1]) = active;
2323 } 4532 }
2324 4533
2325 ev_stop (EV_A_ (W)w); 4534 ev_stop (EV_A_ (W)w);
4535
4536 EV_FREQUENT_CHECK;
2326} 4537}
4538#endif
2327 4539
2328#if EV_EMBED_ENABLE 4540#if EV_EMBED_ENABLE
2329void noinline 4541void noinline
2330ev_embed_sweep (EV_P_ ev_embed *w) 4542ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2331{ 4543{
2332 ev_loop (w->other, EVLOOP_NONBLOCK); 4544 ev_run (w->other, EVRUN_NOWAIT);
2333} 4545}
2334 4546
2335static void 4547static void
2336embed_io_cb (EV_P_ ev_io *io, int revents) 4548embed_io_cb (EV_P_ ev_io *io, int revents)
2337{ 4549{
2338 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4550 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2339 4551
2340 if (ev_cb (w)) 4552 if (ev_cb (w))
2341 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4553 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2342 else 4554 else
2343 ev_loop (w->other, EVLOOP_NONBLOCK); 4555 ev_run (w->other, EVRUN_NOWAIT);
2344} 4556}
2345 4557
2346static void 4558static void
2347embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4559embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2348{ 4560{
2349 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4561 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2350 4562
2351 { 4563 {
2352 struct ev_loop *loop = w->other; 4564 EV_P = w->other;
2353 4565
2354 while (fdchangecnt) 4566 while (fdchangecnt)
2355 { 4567 {
2356 fd_reify (EV_A); 4568 fd_reify (EV_A);
2357 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4569 ev_run (EV_A_ EVRUN_NOWAIT);
2358 } 4570 }
2359 } 4571 }
4572}
4573
4574static void
4575embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4576{
4577 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4578
4579 ev_embed_stop (EV_A_ w);
4580
4581 {
4582 EV_P = w->other;
4583
4584 ev_loop_fork (EV_A);
4585 ev_run (EV_A_ EVRUN_NOWAIT);
4586 }
4587
4588 ev_embed_start (EV_A_ w);
2360} 4589}
2361 4590
2362#if 0 4591#if 0
2363static void 4592static void
2364embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4593embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2366 ev_idle_stop (EV_A_ idle); 4595 ev_idle_stop (EV_A_ idle);
2367} 4596}
2368#endif 4597#endif
2369 4598
2370void 4599void
2371ev_embed_start (EV_P_ ev_embed *w) 4600ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2372{ 4601{
2373 if (expect_false (ev_is_active (w))) 4602 if (expect_false (ev_is_active (w)))
2374 return; 4603 return;
2375 4604
2376 { 4605 {
2377 struct ev_loop *loop = w->other; 4606 EV_P = w->other;
2378 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4607 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2379 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4608 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2380 } 4609 }
4610
4611 EV_FREQUENT_CHECK;
2381 4612
2382 ev_set_priority (&w->io, ev_priority (w)); 4613 ev_set_priority (&w->io, ev_priority (w));
2383 ev_io_start (EV_A_ &w->io); 4614 ev_io_start (EV_A_ &w->io);
2384 4615
2385 ev_prepare_init (&w->prepare, embed_prepare_cb); 4616 ev_prepare_init (&w->prepare, embed_prepare_cb);
2386 ev_set_priority (&w->prepare, EV_MINPRI); 4617 ev_set_priority (&w->prepare, EV_MINPRI);
2387 ev_prepare_start (EV_A_ &w->prepare); 4618 ev_prepare_start (EV_A_ &w->prepare);
2388 4619
4620 ev_fork_init (&w->fork, embed_fork_cb);
4621 ev_fork_start (EV_A_ &w->fork);
4622
2389 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4623 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2390 4624
2391 ev_start (EV_A_ (W)w, 1); 4625 ev_start (EV_A_ (W)w, 1);
4626
4627 EV_FREQUENT_CHECK;
2392} 4628}
2393 4629
2394void 4630void
2395ev_embed_stop (EV_P_ ev_embed *w) 4631ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2396{ 4632{
2397 clear_pending (EV_A_ (W)w); 4633 clear_pending (EV_A_ (W)w);
2398 if (expect_false (!ev_is_active (w))) 4634 if (expect_false (!ev_is_active (w)))
2399 return; 4635 return;
2400 4636
4637 EV_FREQUENT_CHECK;
4638
2401 ev_io_stop (EV_A_ &w->io); 4639 ev_io_stop (EV_A_ &w->io);
2402 ev_prepare_stop (EV_A_ &w->prepare); 4640 ev_prepare_stop (EV_A_ &w->prepare);
4641 ev_fork_stop (EV_A_ &w->fork);
2403 4642
2404 ev_stop (EV_A_ (W)w); 4643 ev_stop (EV_A_ (W)w);
4644
4645 EV_FREQUENT_CHECK;
2405} 4646}
2406#endif 4647#endif
2407 4648
2408#if EV_FORK_ENABLE 4649#if EV_FORK_ENABLE
2409void 4650void
2410ev_fork_start (EV_P_ ev_fork *w) 4651ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2411{ 4652{
2412 if (expect_false (ev_is_active (w))) 4653 if (expect_false (ev_is_active (w)))
2413 return; 4654 return;
4655
4656 EV_FREQUENT_CHECK;
2414 4657
2415 ev_start (EV_A_ (W)w, ++forkcnt); 4658 ev_start (EV_A_ (W)w, ++forkcnt);
2416 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4659 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2417 forks [forkcnt - 1] = w; 4660 forks [forkcnt - 1] = w;
4661
4662 EV_FREQUENT_CHECK;
2418} 4663}
2419 4664
2420void 4665void
2421ev_fork_stop (EV_P_ ev_fork *w) 4666ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2422{ 4667{
2423 clear_pending (EV_A_ (W)w); 4668 clear_pending (EV_A_ (W)w);
2424 if (expect_false (!ev_is_active (w))) 4669 if (expect_false (!ev_is_active (w)))
2425 return; 4670 return;
2426 4671
4672 EV_FREQUENT_CHECK;
4673
2427 { 4674 {
2428 int active = ((W)w)->active; 4675 int active = ev_active (w);
4676
2429 forks [active - 1] = forks [--forkcnt]; 4677 forks [active - 1] = forks [--forkcnt];
2430 ((W)forks [active - 1])->active = active; 4678 ev_active (forks [active - 1]) = active;
2431 } 4679 }
2432 4680
2433 ev_stop (EV_A_ (W)w); 4681 ev_stop (EV_A_ (W)w);
4682
4683 EV_FREQUENT_CHECK;
4684}
4685#endif
4686
4687#if EV_CLEANUP_ENABLE
4688void
4689ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4690{
4691 if (expect_false (ev_is_active (w)))
4692 return;
4693
4694 EV_FREQUENT_CHECK;
4695
4696 ev_start (EV_A_ (W)w, ++cleanupcnt);
4697 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4698 cleanups [cleanupcnt - 1] = w;
4699
4700 /* cleanup watchers should never keep a refcount on the loop */
4701 ev_unref (EV_A);
4702 EV_FREQUENT_CHECK;
4703}
4704
4705void
4706ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4707{
4708 clear_pending (EV_A_ (W)w);
4709 if (expect_false (!ev_is_active (w)))
4710 return;
4711
4712 EV_FREQUENT_CHECK;
4713 ev_ref (EV_A);
4714
4715 {
4716 int active = ev_active (w);
4717
4718 cleanups [active - 1] = cleanups [--cleanupcnt];
4719 ev_active (cleanups [active - 1]) = active;
4720 }
4721
4722 ev_stop (EV_A_ (W)w);
4723
4724 EV_FREQUENT_CHECK;
2434} 4725}
2435#endif 4726#endif
2436 4727
2437#if EV_ASYNC_ENABLE 4728#if EV_ASYNC_ENABLE
2438void 4729void
2439ev_async_start (EV_P_ ev_async *w) 4730ev_async_start (EV_P_ ev_async *w) EV_THROW
2440{ 4731{
2441 if (expect_false (ev_is_active (w))) 4732 if (expect_false (ev_is_active (w)))
2442 return; 4733 return;
2443 4734
4735 w->sent = 0;
4736
2444 evpipe_init (EV_A); 4737 evpipe_init (EV_A);
4738
4739 EV_FREQUENT_CHECK;
2445 4740
2446 ev_start (EV_A_ (W)w, ++asynccnt); 4741 ev_start (EV_A_ (W)w, ++asynccnt);
2447 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 4742 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2448 asyncs [asynccnt - 1] = w; 4743 asyncs [asynccnt - 1] = w;
4744
4745 EV_FREQUENT_CHECK;
2449} 4746}
2450 4747
2451void 4748void
2452ev_async_stop (EV_P_ ev_async *w) 4749ev_async_stop (EV_P_ ev_async *w) EV_THROW
2453{ 4750{
2454 clear_pending (EV_A_ (W)w); 4751 clear_pending (EV_A_ (W)w);
2455 if (expect_false (!ev_is_active (w))) 4752 if (expect_false (!ev_is_active (w)))
2456 return; 4753 return;
2457 4754
4755 EV_FREQUENT_CHECK;
4756
2458 { 4757 {
2459 int active = ((W)w)->active; 4758 int active = ev_active (w);
4759
2460 asyncs [active - 1] = asyncs [--asynccnt]; 4760 asyncs [active - 1] = asyncs [--asynccnt];
2461 ((W)asyncs [active - 1])->active = active; 4761 ev_active (asyncs [active - 1]) = active;
2462 } 4762 }
2463 4763
2464 ev_stop (EV_A_ (W)w); 4764 ev_stop (EV_A_ (W)w);
4765
4766 EV_FREQUENT_CHECK;
2465} 4767}
2466 4768
2467void 4769void
2468ev_async_send (EV_P_ ev_async *w) 4770ev_async_send (EV_P_ ev_async *w) EV_THROW
2469{ 4771{
2470 w->sent = 1; 4772 w->sent = 1;
2471 evpipe_write (EV_A_ &gotasync); 4773 evpipe_write (EV_A_ &async_pending);
2472} 4774}
2473#endif 4775#endif
2474 4776
2475/*****************************************************************************/ 4777/*****************************************************************************/
2476 4778
2486once_cb (EV_P_ struct ev_once *once, int revents) 4788once_cb (EV_P_ struct ev_once *once, int revents)
2487{ 4789{
2488 void (*cb)(int revents, void *arg) = once->cb; 4790 void (*cb)(int revents, void *arg) = once->cb;
2489 void *arg = once->arg; 4791 void *arg = once->arg;
2490 4792
2491 ev_io_stop (EV_A_ &once->io); 4793 ev_io_stop (EV_A_ &once->io);
2492 ev_timer_stop (EV_A_ &once->to); 4794 ev_timer_stop (EV_A_ &once->to);
2493 ev_free (once); 4795 ev_free (once);
2494 4796
2495 cb (revents, arg); 4797 cb (revents, arg);
2496} 4798}
2497 4799
2498static void 4800static void
2499once_cb_io (EV_P_ ev_io *w, int revents) 4801once_cb_io (EV_P_ ev_io *w, int revents)
2500{ 4802{
2501 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4803 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4804
4805 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2502} 4806}
2503 4807
2504static void 4808static void
2505once_cb_to (EV_P_ ev_timer *w, int revents) 4809once_cb_to (EV_P_ ev_timer *w, int revents)
2506{ 4810{
2507 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4811 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4812
4813 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2508} 4814}
2509 4815
2510void 4816void
2511ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4817ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
2512{ 4818{
2513 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4819 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2514 4820
2515 if (expect_false (!once)) 4821 if (expect_false (!once))
2516 { 4822 {
2517 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4823 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2518 return; 4824 return;
2519 } 4825 }
2520 4826
2521 once->cb = cb; 4827 once->cb = cb;
2522 once->arg = arg; 4828 once->arg = arg;
2534 ev_timer_set (&once->to, timeout, 0.); 4840 ev_timer_set (&once->to, timeout, 0.);
2535 ev_timer_start (EV_A_ &once->to); 4841 ev_timer_start (EV_A_ &once->to);
2536 } 4842 }
2537} 4843}
2538 4844
4845/*****************************************************************************/
4846
4847#if EV_WALK_ENABLE
4848void ecb_cold
4849ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4850{
4851 int i, j;
4852 ev_watcher_list *wl, *wn;
4853
4854 if (types & (EV_IO | EV_EMBED))
4855 for (i = 0; i < anfdmax; ++i)
4856 for (wl = anfds [i].head; wl; )
4857 {
4858 wn = wl->next;
4859
4860#if EV_EMBED_ENABLE
4861 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4862 {
4863 if (types & EV_EMBED)
4864 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4865 }
4866 else
4867#endif
4868#if EV_USE_INOTIFY
4869 if (ev_cb ((ev_io *)wl) == infy_cb)
4870 ;
4871 else
4872#endif
4873 if ((ev_io *)wl != &pipe_w)
4874 if (types & EV_IO)
4875 cb (EV_A_ EV_IO, wl);
4876
4877 wl = wn;
4878 }
4879
4880 if (types & (EV_TIMER | EV_STAT))
4881 for (i = timercnt + HEAP0; i-- > HEAP0; )
4882#if EV_STAT_ENABLE
4883 /*TODO: timer is not always active*/
4884 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4885 {
4886 if (types & EV_STAT)
4887 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4888 }
4889 else
4890#endif
4891 if (types & EV_TIMER)
4892 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4893
4894#if EV_PERIODIC_ENABLE
4895 if (types & EV_PERIODIC)
4896 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4897 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4898#endif
4899
4900#if EV_IDLE_ENABLE
4901 if (types & EV_IDLE)
4902 for (j = NUMPRI; j--; )
4903 for (i = idlecnt [j]; i--; )
4904 cb (EV_A_ EV_IDLE, idles [j][i]);
4905#endif
4906
4907#if EV_FORK_ENABLE
4908 if (types & EV_FORK)
4909 for (i = forkcnt; i--; )
4910 if (ev_cb (forks [i]) != embed_fork_cb)
4911 cb (EV_A_ EV_FORK, forks [i]);
4912#endif
4913
4914#if EV_ASYNC_ENABLE
4915 if (types & EV_ASYNC)
4916 for (i = asynccnt; i--; )
4917 cb (EV_A_ EV_ASYNC, asyncs [i]);
4918#endif
4919
4920#if EV_PREPARE_ENABLE
4921 if (types & EV_PREPARE)
4922 for (i = preparecnt; i--; )
4923# if EV_EMBED_ENABLE
4924 if (ev_cb (prepares [i]) != embed_prepare_cb)
4925# endif
4926 cb (EV_A_ EV_PREPARE, prepares [i]);
4927#endif
4928
4929#if EV_CHECK_ENABLE
4930 if (types & EV_CHECK)
4931 for (i = checkcnt; i--; )
4932 cb (EV_A_ EV_CHECK, checks [i]);
4933#endif
4934
4935#if EV_SIGNAL_ENABLE
4936 if (types & EV_SIGNAL)
4937 for (i = 0; i < EV_NSIG - 1; ++i)
4938 for (wl = signals [i].head; wl; )
4939 {
4940 wn = wl->next;
4941 cb (EV_A_ EV_SIGNAL, wl);
4942 wl = wn;
4943 }
4944#endif
4945
4946#if EV_CHILD_ENABLE
4947 if (types & EV_CHILD)
4948 for (i = (EV_PID_HASHSIZE); i--; )
4949 for (wl = childs [i]; wl; )
4950 {
4951 wn = wl->next;
4952 cb (EV_A_ EV_CHILD, wl);
4953 wl = wn;
4954 }
4955#endif
4956/* EV_STAT 0x00001000 /* stat data changed */
4957/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4958}
4959#endif
4960
2539#if EV_MULTIPLICITY 4961#if EV_MULTIPLICITY
2540 #include "ev_wrap.h" 4962 #include "ev_wrap.h"
2541#endif 4963#endif
2542 4964
2543#ifdef __cplusplus
2544}
2545#endif
2546

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines