ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.246 by root, Wed May 21 12:51:38 2008 UTC vs.
Revision 1.479 by root, Sun Dec 20 01:31:17 2015 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
130# endif 154# endif
131 155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
132#endif 163# endif
164
165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
150#else 184#else
151# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
152#endif 197#endif
153 198
154#ifndef _WIN32 199#ifndef _WIN32
155# include <sys/time.h> 200# include <sys/time.h>
156# include <sys/wait.h> 201# include <sys/wait.h>
157# include <unistd.h> 202# include <unistd.h>
158#else 203#else
204# include <io.h>
159# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
160# include <windows.h> 207# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
163# endif 210# endif
211# undef EV_AVOID_STDIO
164#endif 212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
165 221
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 222/* this block tries to deduce configuration from header-defined symbols and defaults */
167 223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# define EV_NSIG (8 * sizeof (sigset_t) + 1)
247#endif
248
249#ifndef EV_USE_FLOOR
250# define EV_USE_FLOOR 0
251#endif
252
253#ifndef EV_USE_CLOCK_SYSCALL
254# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
255# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
256# else
257# define EV_USE_CLOCK_SYSCALL 0
258# endif
259#endif
260
261#if !(_POSIX_TIMERS > 0)
262# ifndef EV_USE_MONOTONIC
263# define EV_USE_MONOTONIC 0
264# endif
265# ifndef EV_USE_REALTIME
266# define EV_USE_REALTIME 0
267# endif
268#endif
269
168#ifndef EV_USE_MONOTONIC 270#ifndef EV_USE_MONOTONIC
271# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
272# define EV_USE_MONOTONIC EV_FEATURE_OS
273# else
169# define EV_USE_MONOTONIC 0 274# define EV_USE_MONOTONIC 0
275# endif
170#endif 276#endif
171 277
172#ifndef EV_USE_REALTIME 278#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 279# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 280#endif
175 281
176#ifndef EV_USE_NANOSLEEP 282#ifndef EV_USE_NANOSLEEP
283# if _POSIX_C_SOURCE >= 199309L
284# define EV_USE_NANOSLEEP EV_FEATURE_OS
285# else
177# define EV_USE_NANOSLEEP 0 286# define EV_USE_NANOSLEEP 0
287# endif
178#endif 288#endif
179 289
180#ifndef EV_USE_SELECT 290#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 291# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 292#endif
183 293
184#ifndef EV_USE_POLL 294#ifndef EV_USE_POLL
185# ifdef _WIN32 295# ifdef _WIN32
186# define EV_USE_POLL 0 296# define EV_USE_POLL 0
187# else 297# else
188# define EV_USE_POLL 1 298# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 299# endif
190#endif 300#endif
191 301
192#ifndef EV_USE_EPOLL 302#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 304# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 305# else
196# define EV_USE_EPOLL 0 306# define EV_USE_EPOLL 0
197# endif 307# endif
198#endif 308#endif
199 309
205# define EV_USE_PORT 0 315# define EV_USE_PORT 0
206#endif 316#endif
207 317
208#ifndef EV_USE_INOTIFY 318#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 320# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 321# else
212# define EV_USE_INOTIFY 0 322# define EV_USE_INOTIFY 0
213# endif 323# endif
214#endif 324#endif
215 325
216#ifndef EV_PID_HASHSIZE 326#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 327# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 328#endif
223 329
224#ifndef EV_INOTIFY_HASHSIZE 330#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 331# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 332#endif
231 333
232#ifndef EV_USE_EVENTFD 334#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 335# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 336# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 337# else
236# define EV_USE_EVENTFD 0 338# define EV_USE_EVENTFD 0
237# endif 339# endif
238#endif 340#endif
239 341
342#ifndef EV_USE_SIGNALFD
343# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
344# define EV_USE_SIGNALFD EV_FEATURE_OS
345# else
346# define EV_USE_SIGNALFD 0
347# endif
348#endif
349
350#if 0 /* debugging */
351# define EV_VERIFY 3
352# define EV_USE_4HEAP 1
353# define EV_HEAP_CACHE_AT 1
354#endif
355
356#ifndef EV_VERIFY
357# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
358#endif
359
240#ifndef EV_USE_4HEAP 360#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL 361# define EV_USE_4HEAP EV_FEATURE_DATA
242#endif 362#endif
243 363
244#ifndef EV_HEAP_CACHE_AT 364#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL 365# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
366#endif
367
368#ifdef ANDROID
369/* supposedly, android doesn't typedef fd_mask */
370# undef EV_USE_SELECT
371# define EV_USE_SELECT 0
372/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
373# undef EV_USE_CLOCK_SYSCALL
374# define EV_USE_CLOCK_SYSCALL 0
375#endif
376
377/* aix's poll.h seems to cause lots of trouble */
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
380# undef EV_USE_POLL
381# define EV_USE_POLL 0
382#endif
383
384/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
385/* which makes programs even slower. might work on other unices, too. */
386#if EV_USE_CLOCK_SYSCALL
387# include <sys/syscall.h>
388# ifdef SYS_clock_gettime
389# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
390# undef EV_USE_MONOTONIC
391# define EV_USE_MONOTONIC 1
392# else
393# undef EV_USE_CLOCK_SYSCALL
394# define EV_USE_CLOCK_SYSCALL 0
395# endif
246#endif 396#endif
247 397
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 398/* this block fixes any misconfiguration where we know we run into trouble otherwise */
249 399
250#ifndef CLOCK_MONOTONIC 400#ifndef CLOCK_MONOTONIC
261# undef EV_USE_INOTIFY 411# undef EV_USE_INOTIFY
262# define EV_USE_INOTIFY 0 412# define EV_USE_INOTIFY 0
263#endif 413#endif
264 414
265#if !EV_USE_NANOSLEEP 415#if !EV_USE_NANOSLEEP
266# ifndef _WIN32 416/* hp-ux has it in sys/time.h, which we unconditionally include above */
417# if !defined _WIN32 && !defined __hpux
267# include <sys/select.h> 418# include <sys/select.h>
268# endif 419# endif
269#endif 420#endif
270 421
271#if EV_USE_INOTIFY 422#if EV_USE_INOTIFY
423# include <sys/statfs.h>
272# include <sys/inotify.h> 424# include <sys/inotify.h>
425/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
426# ifndef IN_DONT_FOLLOW
427# undef EV_USE_INOTIFY
428# define EV_USE_INOTIFY 0
273#endif 429# endif
274
275#if EV_SELECT_IS_WINSOCKET
276# include <winsock.h>
277#endif 430#endif
278 431
279#if EV_USE_EVENTFD 432#if EV_USE_EVENTFD
280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 433/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h> 434# include <stdint.h>
282# ifdef __cplusplus 435# ifndef EFD_NONBLOCK
283extern "C" { 436# define EFD_NONBLOCK O_NONBLOCK
284# endif 437# endif
285int eventfd (unsigned int initval, int flags); 438# ifndef EFD_CLOEXEC
286# ifdef __cplusplus 439# ifdef O_CLOEXEC
287} 440# define EFD_CLOEXEC O_CLOEXEC
441# else
442# define EFD_CLOEXEC 02000000
443# endif
288# endif 444# endif
445EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
446#endif
447
448#if EV_USE_SIGNALFD
449/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
450# include <stdint.h>
451# ifndef SFD_NONBLOCK
452# define SFD_NONBLOCK O_NONBLOCK
453# endif
454# ifndef SFD_CLOEXEC
455# ifdef O_CLOEXEC
456# define SFD_CLOEXEC O_CLOEXEC
457# else
458# define SFD_CLOEXEC 02000000
459# endif
460# endif
461EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
462
463struct signalfd_siginfo
464{
465 uint32_t ssi_signo;
466 char pad[128 - sizeof (uint32_t)];
467};
289#endif 468#endif
290 469
291/**/ 470/**/
292 471
472#if EV_VERIFY >= 3
473# define EV_FREQUENT_CHECK ev_verify (EV_A)
474#else
475# define EV_FREQUENT_CHECK do { } while (0)
476#endif
477
293/* 478/*
294 * This is used to avoid floating point rounding problems. 479 * This is used to work around floating point rounding problems.
295 * It is added to ev_rt_now when scheduling periodics
296 * to ensure progress, time-wise, even when rounding
297 * errors are against us.
298 * This value is good at least till the year 4000. 480 * This value is good at least till the year 4000.
299 * Better solutions welcome.
300 */ 481 */
301#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 482#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
483/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
302 484
303#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 485#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
304#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 486#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
305/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
306 487
488#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
489#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
490
491/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
492/* ECB.H BEGIN */
493/*
494 * libecb - http://software.schmorp.de/pkg/libecb
495 *
496 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
497 * Copyright (©) 2011 Emanuele Giaquinta
498 * All rights reserved.
499 *
500 * Redistribution and use in source and binary forms, with or without modifica-
501 * tion, are permitted provided that the following conditions are met:
502 *
503 * 1. Redistributions of source code must retain the above copyright notice,
504 * this list of conditions and the following disclaimer.
505 *
506 * 2. Redistributions in binary form must reproduce the above copyright
507 * notice, this list of conditions and the following disclaimer in the
508 * documentation and/or other materials provided with the distribution.
509 *
510 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
511 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
512 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
513 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
514 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
515 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
516 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
517 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
518 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
519 * OF THE POSSIBILITY OF SUCH DAMAGE.
520 *
521 * Alternatively, the contents of this file may be used under the terms of
522 * the GNU General Public License ("GPL") version 2 or any later version,
523 * in which case the provisions of the GPL are applicable instead of
524 * the above. If you wish to allow the use of your version of this file
525 * only under the terms of the GPL and not to allow others to use your
526 * version of this file under the BSD license, indicate your decision
527 * by deleting the provisions above and replace them with the notice
528 * and other provisions required by the GPL. If you do not delete the
529 * provisions above, a recipient may use your version of this file under
530 * either the BSD or the GPL.
531 */
532
533#ifndef ECB_H
534#define ECB_H
535
536/* 16 bits major, 16 bits minor */
537#define ECB_VERSION 0x00010005
538
539#ifdef _WIN32
540 typedef signed char int8_t;
541 typedef unsigned char uint8_t;
542 typedef signed short int16_t;
543 typedef unsigned short uint16_t;
544 typedef signed int int32_t;
545 typedef unsigned int uint32_t;
307#if __GNUC__ >= 4 546 #if __GNUC__
547 typedef signed long long int64_t;
548 typedef unsigned long long uint64_t;
549 #else /* _MSC_VER || __BORLANDC__ */
550 typedef signed __int64 int64_t;
551 typedef unsigned __int64 uint64_t;
552 #endif
553 #ifdef _WIN64
554 #define ECB_PTRSIZE 8
555 typedef uint64_t uintptr_t;
556 typedef int64_t intptr_t;
557 #else
558 #define ECB_PTRSIZE 4
559 typedef uint32_t uintptr_t;
560 typedef int32_t intptr_t;
561 #endif
562#else
563 #include <inttypes.h>
564 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
565 #define ECB_PTRSIZE 8
566 #else
567 #define ECB_PTRSIZE 4
568 #endif
569#endif
570
571#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
572#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
573
574/* work around x32 idiocy by defining proper macros */
575#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
576 #if _ILP32
577 #define ECB_AMD64_X32 1
578 #else
579 #define ECB_AMD64 1
580 #endif
581#endif
582
583/* many compilers define _GNUC_ to some versions but then only implement
584 * what their idiot authors think are the "more important" extensions,
585 * causing enormous grief in return for some better fake benchmark numbers.
586 * or so.
587 * we try to detect these and simply assume they are not gcc - if they have
588 * an issue with that they should have done it right in the first place.
589 */
590#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
591 #define ECB_GCC_VERSION(major,minor) 0
592#else
593 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
594#endif
595
596#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
597
598#if __clang__ && defined __has_builtin
599 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
600#else
601 #define ECB_CLANG_BUILTIN(x) 0
602#endif
603
604#if __clang__ && defined __has_extension
605 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
606#else
607 #define ECB_CLANG_EXTENSION(x) 0
608#endif
609
610#define ECB_CPP (__cplusplus+0)
611#define ECB_CPP11 (__cplusplus >= 201103L)
612
613#if ECB_CPP
614 #define ECB_C 0
615 #define ECB_STDC_VERSION 0
616#else
617 #define ECB_C 1
618 #define ECB_STDC_VERSION __STDC_VERSION__
619#endif
620
621#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
622#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
623
624#if ECB_CPP
625 #define ECB_EXTERN_C extern "C"
626 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
627 #define ECB_EXTERN_C_END }
628#else
629 #define ECB_EXTERN_C extern
630 #define ECB_EXTERN_C_BEG
631 #define ECB_EXTERN_C_END
632#endif
633
634/*****************************************************************************/
635
636/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
637/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
638
639#if ECB_NO_THREADS
640 #define ECB_NO_SMP 1
641#endif
642
643#if ECB_NO_SMP
644 #define ECB_MEMORY_FENCE do { } while (0)
645#endif
646
647/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
648#if __xlC__ && ECB_CPP
649 #include <builtins.h>
650#endif
651
652#if 1400 <= _MSC_VER
653 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
654#endif
655
656#ifndef ECB_MEMORY_FENCE
657 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
658 #if __i386 || __i386__
659 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
660 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
661 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
662 #elif ECB_GCC_AMD64
663 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
664 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
665 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
666 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
667 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
668 #elif defined __ARM_ARCH_2__ \
669 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
670 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
671 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
672 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
673 || defined __ARM_ARCH_5TEJ__
674 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
675 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
676 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
677 || defined __ARM_ARCH_6T2__
678 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
679 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
680 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
681 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
682 #elif __aarch64__
683 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
684 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
685 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
686 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
687 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
688 #elif defined __s390__ || defined __s390x__
689 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
690 #elif defined __mips__
691 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
692 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
693 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
694 #elif defined __alpha__
695 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
696 #elif defined __hppa__
697 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
698 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
699 #elif defined __ia64__
700 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
701 #elif defined __m68k__
702 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
703 #elif defined __m88k__
704 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
705 #elif defined __sh__
706 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
707 #endif
708 #endif
709#endif
710
711#ifndef ECB_MEMORY_FENCE
712 #if ECB_GCC_VERSION(4,7)
713 /* see comment below (stdatomic.h) about the C11 memory model. */
714 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
715 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
716 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
717
718 #elif ECB_CLANG_EXTENSION(c_atomic)
719 /* see comment below (stdatomic.h) about the C11 memory model. */
720 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
721 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
722 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
723
724 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
725 #define ECB_MEMORY_FENCE __sync_synchronize ()
726 #elif _MSC_VER >= 1500 /* VC++ 2008 */
727 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
728 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
729 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
730 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
731 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
732 #elif _MSC_VER >= 1400 /* VC++ 2005 */
733 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
734 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
735 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
736 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
737 #elif defined _WIN32
738 #include <WinNT.h>
739 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
740 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
741 #include <mbarrier.h>
742 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
743 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
744 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
745 #elif __xlC__
746 #define ECB_MEMORY_FENCE __sync ()
747 #endif
748#endif
749
750#ifndef ECB_MEMORY_FENCE
751 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
752 /* we assume that these memory fences work on all variables/all memory accesses, */
753 /* not just C11 atomics and atomic accesses */
754 #include <stdatomic.h>
755 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
756 /* any fence other than seq_cst, which isn't very efficient for us. */
757 /* Why that is, we don't know - either the C11 memory model is quite useless */
758 /* for most usages, or gcc and clang have a bug */
759 /* I *currently* lean towards the latter, and inefficiently implement */
760 /* all three of ecb's fences as a seq_cst fence */
761 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
762 /* for all __atomic_thread_fence's except seq_cst */
763 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
764 #endif
765#endif
766
767#ifndef ECB_MEMORY_FENCE
768 #if !ECB_AVOID_PTHREADS
769 /*
770 * if you get undefined symbol references to pthread_mutex_lock,
771 * or failure to find pthread.h, then you should implement
772 * the ECB_MEMORY_FENCE operations for your cpu/compiler
773 * OR provide pthread.h and link against the posix thread library
774 * of your system.
775 */
776 #include <pthread.h>
777 #define ECB_NEEDS_PTHREADS 1
778 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
779
780 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
781 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
782 #endif
783#endif
784
785#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
786 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
787#endif
788
789#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
790 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
791#endif
792
793/*****************************************************************************/
794
795#if ECB_CPP
796 #define ecb_inline static inline
797#elif ECB_GCC_VERSION(2,5)
798 #define ecb_inline static __inline__
799#elif ECB_C99
800 #define ecb_inline static inline
801#else
802 #define ecb_inline static
803#endif
804
805#if ECB_GCC_VERSION(3,3)
806 #define ecb_restrict __restrict__
807#elif ECB_C99
808 #define ecb_restrict restrict
809#else
810 #define ecb_restrict
811#endif
812
813typedef int ecb_bool;
814
815#define ECB_CONCAT_(a, b) a ## b
816#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
817#define ECB_STRINGIFY_(a) # a
818#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
819#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
820
821#define ecb_function_ ecb_inline
822
823#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
824 #define ecb_attribute(attrlist) __attribute__ (attrlist)
825#else
826 #define ecb_attribute(attrlist)
827#endif
828
829#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
830 #define ecb_is_constant(expr) __builtin_constant_p (expr)
831#else
832 /* possible C11 impl for integral types
833 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
834 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
835
836 #define ecb_is_constant(expr) 0
837#endif
838
839#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
308# define expect(expr,value) __builtin_expect ((expr),(value)) 840 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
309# define noinline __attribute__ ((noinline))
310#else 841#else
311# define expect(expr,value) (expr) 842 #define ecb_expect(expr,value) (expr)
312# define noinline
313# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
314# define inline
315# endif 843#endif
316#endif
317 844
845#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
846 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
847#else
848 #define ecb_prefetch(addr,rw,locality)
849#endif
850
851/* no emulation for ecb_decltype */
852#if ECB_CPP11
853 // older implementations might have problems with decltype(x)::type, work around it
854 template<class T> struct ecb_decltype_t { typedef T type; };
855 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
856#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
857 #define ecb_decltype(x) __typeof__ (x)
858#endif
859
860#if _MSC_VER >= 1300
861 #define ecb_deprecated __declspec (deprecated)
862#else
863 #define ecb_deprecated ecb_attribute ((__deprecated__))
864#endif
865
866#if _MSC_VER >= 1500
867 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
868#elif ECB_GCC_VERSION(4,5)
869 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
870#else
871 #define ecb_deprecated_message(msg) ecb_deprecated
872#endif
873
874#if _MSC_VER >= 1400
875 #define ecb_noinline __declspec (noinline)
876#else
877 #define ecb_noinline ecb_attribute ((__noinline__))
878#endif
879
880#define ecb_unused ecb_attribute ((__unused__))
881#define ecb_const ecb_attribute ((__const__))
882#define ecb_pure ecb_attribute ((__pure__))
883
884#if ECB_C11 || __IBMC_NORETURN
885 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
886 #define ecb_noreturn _Noreturn
887#elif ECB_CPP11
888 #define ecb_noreturn [[noreturn]]
889#elif _MSC_VER >= 1200
890 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
891 #define ecb_noreturn __declspec (noreturn)
892#else
893 #define ecb_noreturn ecb_attribute ((__noreturn__))
894#endif
895
896#if ECB_GCC_VERSION(4,3)
897 #define ecb_artificial ecb_attribute ((__artificial__))
898 #define ecb_hot ecb_attribute ((__hot__))
899 #define ecb_cold ecb_attribute ((__cold__))
900#else
901 #define ecb_artificial
902 #define ecb_hot
903 #define ecb_cold
904#endif
905
906/* put around conditional expressions if you are very sure that the */
907/* expression is mostly true or mostly false. note that these return */
908/* booleans, not the expression. */
318#define expect_false(expr) expect ((expr) != 0, 0) 909#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
319#define expect_true(expr) expect ((expr) != 0, 1) 910#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
911/* for compatibility to the rest of the world */
912#define ecb_likely(expr) ecb_expect_true (expr)
913#define ecb_unlikely(expr) ecb_expect_false (expr)
914
915/* count trailing zero bits and count # of one bits */
916#if ECB_GCC_VERSION(3,4) \
917 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
918 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
919 && ECB_CLANG_BUILTIN(__builtin_popcount))
920 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
921 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
922 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
923 #define ecb_ctz32(x) __builtin_ctz (x)
924 #define ecb_ctz64(x) __builtin_ctzll (x)
925 #define ecb_popcount32(x) __builtin_popcount (x)
926 /* no popcountll */
927#else
928 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
929 ecb_function_ ecb_const int
930 ecb_ctz32 (uint32_t x)
931 {
932#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
933 unsigned long r;
934 _BitScanForward (&r, x);
935 return (int)r;
936#else
937 int r = 0;
938
939 x &= ~x + 1; /* this isolates the lowest bit */
940
941#if ECB_branchless_on_i386
942 r += !!(x & 0xaaaaaaaa) << 0;
943 r += !!(x & 0xcccccccc) << 1;
944 r += !!(x & 0xf0f0f0f0) << 2;
945 r += !!(x & 0xff00ff00) << 3;
946 r += !!(x & 0xffff0000) << 4;
947#else
948 if (x & 0xaaaaaaaa) r += 1;
949 if (x & 0xcccccccc) r += 2;
950 if (x & 0xf0f0f0f0) r += 4;
951 if (x & 0xff00ff00) r += 8;
952 if (x & 0xffff0000) r += 16;
953#endif
954
955 return r;
956#endif
957 }
958
959 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
960 ecb_function_ ecb_const int
961 ecb_ctz64 (uint64_t x)
962 {
963#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
964 unsigned long r;
965 _BitScanForward64 (&r, x);
966 return (int)r;
967#else
968 int shift = x & 0xffffffff ? 0 : 32;
969 return ecb_ctz32 (x >> shift) + shift;
970#endif
971 }
972
973 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
974 ecb_function_ ecb_const int
975 ecb_popcount32 (uint32_t x)
976 {
977 x -= (x >> 1) & 0x55555555;
978 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
979 x = ((x >> 4) + x) & 0x0f0f0f0f;
980 x *= 0x01010101;
981
982 return x >> 24;
983 }
984
985 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
986 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
987 {
988#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
989 unsigned long r;
990 _BitScanReverse (&r, x);
991 return (int)r;
992#else
993 int r = 0;
994
995 if (x >> 16) { x >>= 16; r += 16; }
996 if (x >> 8) { x >>= 8; r += 8; }
997 if (x >> 4) { x >>= 4; r += 4; }
998 if (x >> 2) { x >>= 2; r += 2; }
999 if (x >> 1) { r += 1; }
1000
1001 return r;
1002#endif
1003 }
1004
1005 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1006 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1007 {
1008#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1009 unsigned long r;
1010 _BitScanReverse64 (&r, x);
1011 return (int)r;
1012#else
1013 int r = 0;
1014
1015 if (x >> 32) { x >>= 32; r += 32; }
1016
1017 return r + ecb_ld32 (x);
1018#endif
1019 }
1020#endif
1021
1022ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1023ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1024ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1025ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1026
1027ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1028ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1029{
1030 return ( (x * 0x0802U & 0x22110U)
1031 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1032}
1033
1034ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1035ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1036{
1037 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1038 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1039 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1040 x = ( x >> 8 ) | ( x << 8);
1041
1042 return x;
1043}
1044
1045ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1046ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1047{
1048 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1049 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1050 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1051 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1052 x = ( x >> 16 ) | ( x << 16);
1053
1054 return x;
1055}
1056
1057/* popcount64 is only available on 64 bit cpus as gcc builtin */
1058/* so for this version we are lazy */
1059ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1060ecb_function_ ecb_const int
1061ecb_popcount64 (uint64_t x)
1062{
1063 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1064}
1065
1066ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1067ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1068ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1069ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1070ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1071ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1072ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1073ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1074
1075ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1076ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1077ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1078ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1079ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1080ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1081ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1082ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1083
1084#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1085 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1086 #define ecb_bswap16(x) __builtin_bswap16 (x)
1087 #else
1088 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1089 #endif
1090 #define ecb_bswap32(x) __builtin_bswap32 (x)
1091 #define ecb_bswap64(x) __builtin_bswap64 (x)
1092#elif _MSC_VER
1093 #include <stdlib.h>
1094 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1095 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1096 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1097#else
1098 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1099 ecb_function_ ecb_const uint16_t
1100 ecb_bswap16 (uint16_t x)
1101 {
1102 return ecb_rotl16 (x, 8);
1103 }
1104
1105 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1106 ecb_function_ ecb_const uint32_t
1107 ecb_bswap32 (uint32_t x)
1108 {
1109 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1110 }
1111
1112 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1113 ecb_function_ ecb_const uint64_t
1114 ecb_bswap64 (uint64_t x)
1115 {
1116 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1117 }
1118#endif
1119
1120#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1121 #define ecb_unreachable() __builtin_unreachable ()
1122#else
1123 /* this seems to work fine, but gcc always emits a warning for it :/ */
1124 ecb_inline ecb_noreturn void ecb_unreachable (void);
1125 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1126#endif
1127
1128/* try to tell the compiler that some condition is definitely true */
1129#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1130
1131ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1132ecb_inline ecb_const uint32_t
1133ecb_byteorder_helper (void)
1134{
1135 /* the union code still generates code under pressure in gcc, */
1136 /* but less than using pointers, and always seems to */
1137 /* successfully return a constant. */
1138 /* the reason why we have this horrible preprocessor mess */
1139 /* is to avoid it in all cases, at least on common architectures */
1140 /* or when using a recent enough gcc version (>= 4.6) */
1141#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1142 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1143 #define ECB_LITTLE_ENDIAN 1
1144 return 0x44332211;
1145#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1146 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1147 #define ECB_BIG_ENDIAN 1
1148 return 0x11223344;
1149#else
1150 union
1151 {
1152 uint8_t c[4];
1153 uint32_t u;
1154 } u = { 0x11, 0x22, 0x33, 0x44 };
1155 return u.u;
1156#endif
1157}
1158
1159ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1160ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1161ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1162ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1163
1164#if ECB_GCC_VERSION(3,0) || ECB_C99
1165 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1166#else
1167 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1168#endif
1169
1170#if ECB_CPP
1171 template<typename T>
1172 static inline T ecb_div_rd (T val, T div)
1173 {
1174 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1175 }
1176 template<typename T>
1177 static inline T ecb_div_ru (T val, T div)
1178 {
1179 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1180 }
1181#else
1182 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1183 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1184#endif
1185
1186#if ecb_cplusplus_does_not_suck
1187 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1188 template<typename T, int N>
1189 static inline int ecb_array_length (const T (&arr)[N])
1190 {
1191 return N;
1192 }
1193#else
1194 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1195#endif
1196
1197ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1198ecb_function_ ecb_const uint32_t
1199ecb_binary16_to_binary32 (uint32_t x)
1200{
1201 unsigned int s = (x & 0x8000) << (31 - 15);
1202 int e = (x >> 10) & 0x001f;
1203 unsigned int m = x & 0x03ff;
1204
1205 if (ecb_expect_false (e == 31))
1206 /* infinity or NaN */
1207 e = 255 - (127 - 15);
1208 else if (ecb_expect_false (!e))
1209 {
1210 if (ecb_expect_true (!m))
1211 /* zero, handled by code below by forcing e to 0 */
1212 e = 0 - (127 - 15);
1213 else
1214 {
1215 /* subnormal, renormalise */
1216 unsigned int s = 10 - ecb_ld32 (m);
1217
1218 m = (m << s) & 0x3ff; /* mask implicit bit */
1219 e -= s - 1;
1220 }
1221 }
1222
1223 /* e and m now are normalised, or zero, (or inf or nan) */
1224 e += 127 - 15;
1225
1226 return s | (e << 23) | (m << (23 - 10));
1227}
1228
1229ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1230ecb_function_ ecb_const uint16_t
1231ecb_binary32_to_binary16 (uint32_t x)
1232{
1233 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1234 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1235 unsigned int m = x & 0x007fffff;
1236
1237 x &= 0x7fffffff;
1238
1239 /* if it's within range of binary16 normals, use fast path */
1240 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1241 {
1242 /* mantissa round-to-even */
1243 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1244
1245 /* handle overflow */
1246 if (ecb_expect_false (m >= 0x00800000))
1247 {
1248 m >>= 1;
1249 e += 1;
1250 }
1251
1252 return s | (e << 10) | (m >> (23 - 10));
1253 }
1254
1255 /* handle large numbers and infinity */
1256 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1257 return s | 0x7c00;
1258
1259 /* handle zero, subnormals and small numbers */
1260 if (ecb_expect_true (x < 0x38800000))
1261 {
1262 /* zero */
1263 if (ecb_expect_true (!x))
1264 return s;
1265
1266 /* handle subnormals */
1267
1268 /* too small, will be zero */
1269 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1270 return s;
1271
1272 m |= 0x00800000; /* make implicit bit explicit */
1273
1274 /* very tricky - we need to round to the nearest e (+10) bit value */
1275 {
1276 unsigned int bits = 14 - e;
1277 unsigned int half = (1 << (bits - 1)) - 1;
1278 unsigned int even = (m >> bits) & 1;
1279
1280 /* if this overflows, we will end up with a normalised number */
1281 m = (m + half + even) >> bits;
1282 }
1283
1284 return s | m;
1285 }
1286
1287 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1288 m >>= 13;
1289
1290 return s | 0x7c00 | m | !m;
1291}
1292
1293/*******************************************************************************/
1294/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1295
1296/* basically, everything uses "ieee pure-endian" floating point numbers */
1297/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1298#if 0 \
1299 || __i386 || __i386__ \
1300 || ECB_GCC_AMD64 \
1301 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1302 || defined __s390__ || defined __s390x__ \
1303 || defined __mips__ \
1304 || defined __alpha__ \
1305 || defined __hppa__ \
1306 || defined __ia64__ \
1307 || defined __m68k__ \
1308 || defined __m88k__ \
1309 || defined __sh__ \
1310 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1311 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1312 || defined __aarch64__
1313 #define ECB_STDFP 1
1314 #include <string.h> /* for memcpy */
1315#else
1316 #define ECB_STDFP 0
1317#endif
1318
1319#ifndef ECB_NO_LIBM
1320
1321 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1322
1323 /* only the oldest of old doesn't have this one. solaris. */
1324 #ifdef INFINITY
1325 #define ECB_INFINITY INFINITY
1326 #else
1327 #define ECB_INFINITY HUGE_VAL
1328 #endif
1329
1330 #ifdef NAN
1331 #define ECB_NAN NAN
1332 #else
1333 #define ECB_NAN ECB_INFINITY
1334 #endif
1335
1336 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1337 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1338 #define ecb_frexpf(x,e) frexpf ((x), (e))
1339 #else
1340 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1341 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1342 #endif
1343
1344 /* convert a float to ieee single/binary32 */
1345 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1346 ecb_function_ ecb_const uint32_t
1347 ecb_float_to_binary32 (float x)
1348 {
1349 uint32_t r;
1350
1351 #if ECB_STDFP
1352 memcpy (&r, &x, 4);
1353 #else
1354 /* slow emulation, works for anything but -0 */
1355 uint32_t m;
1356 int e;
1357
1358 if (x == 0e0f ) return 0x00000000U;
1359 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1360 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1361 if (x != x ) return 0x7fbfffffU;
1362
1363 m = ecb_frexpf (x, &e) * 0x1000000U;
1364
1365 r = m & 0x80000000U;
1366
1367 if (r)
1368 m = -m;
1369
1370 if (e <= -126)
1371 {
1372 m &= 0xffffffU;
1373 m >>= (-125 - e);
1374 e = -126;
1375 }
1376
1377 r |= (e + 126) << 23;
1378 r |= m & 0x7fffffU;
1379 #endif
1380
1381 return r;
1382 }
1383
1384 /* converts an ieee single/binary32 to a float */
1385 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1386 ecb_function_ ecb_const float
1387 ecb_binary32_to_float (uint32_t x)
1388 {
1389 float r;
1390
1391 #if ECB_STDFP
1392 memcpy (&r, &x, 4);
1393 #else
1394 /* emulation, only works for normals and subnormals and +0 */
1395 int neg = x >> 31;
1396 int e = (x >> 23) & 0xffU;
1397
1398 x &= 0x7fffffU;
1399
1400 if (e)
1401 x |= 0x800000U;
1402 else
1403 e = 1;
1404
1405 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1406 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1407
1408 r = neg ? -r : r;
1409 #endif
1410
1411 return r;
1412 }
1413
1414 /* convert a double to ieee double/binary64 */
1415 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1416 ecb_function_ ecb_const uint64_t
1417 ecb_double_to_binary64 (double x)
1418 {
1419 uint64_t r;
1420
1421 #if ECB_STDFP
1422 memcpy (&r, &x, 8);
1423 #else
1424 /* slow emulation, works for anything but -0 */
1425 uint64_t m;
1426 int e;
1427
1428 if (x == 0e0 ) return 0x0000000000000000U;
1429 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1430 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1431 if (x != x ) return 0X7ff7ffffffffffffU;
1432
1433 m = frexp (x, &e) * 0x20000000000000U;
1434
1435 r = m & 0x8000000000000000;;
1436
1437 if (r)
1438 m = -m;
1439
1440 if (e <= -1022)
1441 {
1442 m &= 0x1fffffffffffffU;
1443 m >>= (-1021 - e);
1444 e = -1022;
1445 }
1446
1447 r |= ((uint64_t)(e + 1022)) << 52;
1448 r |= m & 0xfffffffffffffU;
1449 #endif
1450
1451 return r;
1452 }
1453
1454 /* converts an ieee double/binary64 to a double */
1455 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1456 ecb_function_ ecb_const double
1457 ecb_binary64_to_double (uint64_t x)
1458 {
1459 double r;
1460
1461 #if ECB_STDFP
1462 memcpy (&r, &x, 8);
1463 #else
1464 /* emulation, only works for normals and subnormals and +0 */
1465 int neg = x >> 63;
1466 int e = (x >> 52) & 0x7ffU;
1467
1468 x &= 0xfffffffffffffU;
1469
1470 if (e)
1471 x |= 0x10000000000000U;
1472 else
1473 e = 1;
1474
1475 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1476 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1477
1478 r = neg ? -r : r;
1479 #endif
1480
1481 return r;
1482 }
1483
1484 /* convert a float to ieee half/binary16 */
1485 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1486 ecb_function_ ecb_const uint16_t
1487 ecb_float_to_binary16 (float x)
1488 {
1489 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1490 }
1491
1492 /* convert an ieee half/binary16 to float */
1493 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1494 ecb_function_ ecb_const float
1495 ecb_binary16_to_float (uint16_t x)
1496 {
1497 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1498 }
1499
1500#endif
1501
1502#endif
1503
1504/* ECB.H END */
1505
1506#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1507/* if your architecture doesn't need memory fences, e.g. because it is
1508 * single-cpu/core, or if you use libev in a project that doesn't use libev
1509 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1510 * libev, in which cases the memory fences become nops.
1511 * alternatively, you can remove this #error and link against libpthread,
1512 * which will then provide the memory fences.
1513 */
1514# error "memory fences not defined for your architecture, please report"
1515#endif
1516
1517#ifndef ECB_MEMORY_FENCE
1518# define ECB_MEMORY_FENCE do { } while (0)
1519# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1520# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1521#endif
1522
1523#define expect_false(cond) ecb_expect_false (cond)
1524#define expect_true(cond) ecb_expect_true (cond)
1525#define noinline ecb_noinline
1526
320#define inline_size static inline 1527#define inline_size ecb_inline
321 1528
322#if EV_MINIMAL 1529#if EV_FEATURE_CODE
1530# define inline_speed ecb_inline
1531#else
323# define inline_speed static noinline 1532# define inline_speed static noinline
324#else
325# define inline_speed static inline
326#endif 1533#endif
327 1534
328#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1535#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1536
1537#if EV_MINPRI == EV_MAXPRI
1538# define ABSPRI(w) (((W)w), 0)
1539#else
329#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1540# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1541#endif
330 1542
331#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1543#define EMPTY /* required for microsofts broken pseudo-c compiler */
332#define EMPTY2(a,b) /* used to suppress some warnings */ 1544#define EMPTY2(a,b) /* used to suppress some warnings */
333 1545
334typedef ev_watcher *W; 1546typedef ev_watcher *W;
336typedef ev_watcher_time *WT; 1548typedef ev_watcher_time *WT;
337 1549
338#define ev_active(w) ((W)(w))->active 1550#define ev_active(w) ((W)(w))->active
339#define ev_at(w) ((WT)(w))->at 1551#define ev_at(w) ((WT)(w))->at
340 1552
1553#if EV_USE_REALTIME
1554/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1555/* giving it a reasonably high chance of working on typical architectures */
1556static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1557#endif
1558
341#if EV_USE_MONOTONIC 1559#if EV_USE_MONOTONIC
342/* sig_atomic_t is used to avoid per-thread variables or locking but still */
343/* giving it a reasonably high chance of working on typical architetcures */
344static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1560static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1561#endif
1562
1563#ifndef EV_FD_TO_WIN32_HANDLE
1564# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1565#endif
1566#ifndef EV_WIN32_HANDLE_TO_FD
1567# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1568#endif
1569#ifndef EV_WIN32_CLOSE_FD
1570# define EV_WIN32_CLOSE_FD(fd) close (fd)
345#endif 1571#endif
346 1572
347#ifdef _WIN32 1573#ifdef _WIN32
348# include "ev_win32.c" 1574# include "ev_win32.c"
349#endif 1575#endif
350 1576
351/*****************************************************************************/ 1577/*****************************************************************************/
352 1578
1579/* define a suitable floor function (only used by periodics atm) */
1580
1581#if EV_USE_FLOOR
1582# include <math.h>
1583# define ev_floor(v) floor (v)
1584#else
1585
1586#include <float.h>
1587
1588/* a floor() replacement function, should be independent of ev_tstamp type */
1589static ev_tstamp noinline
1590ev_floor (ev_tstamp v)
1591{
1592 /* the choice of shift factor is not terribly important */
1593#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1594 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1595#else
1596 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1597#endif
1598
1599 /* argument too large for an unsigned long? */
1600 if (expect_false (v >= shift))
1601 {
1602 ev_tstamp f;
1603
1604 if (v == v - 1.)
1605 return v; /* very large number */
1606
1607 f = shift * ev_floor (v * (1. / shift));
1608 return f + ev_floor (v - f);
1609 }
1610
1611 /* special treatment for negative args? */
1612 if (expect_false (v < 0.))
1613 {
1614 ev_tstamp f = -ev_floor (-v);
1615
1616 return f - (f == v ? 0 : 1);
1617 }
1618
1619 /* fits into an unsigned long */
1620 return (unsigned long)v;
1621}
1622
1623#endif
1624
1625/*****************************************************************************/
1626
1627#ifdef __linux
1628# include <sys/utsname.h>
1629#endif
1630
1631static unsigned int noinline ecb_cold
1632ev_linux_version (void)
1633{
1634#ifdef __linux
1635 unsigned int v = 0;
1636 struct utsname buf;
1637 int i;
1638 char *p = buf.release;
1639
1640 if (uname (&buf))
1641 return 0;
1642
1643 for (i = 3+1; --i; )
1644 {
1645 unsigned int c = 0;
1646
1647 for (;;)
1648 {
1649 if (*p >= '0' && *p <= '9')
1650 c = c * 10 + *p++ - '0';
1651 else
1652 {
1653 p += *p == '.';
1654 break;
1655 }
1656 }
1657
1658 v = (v << 8) | c;
1659 }
1660
1661 return v;
1662#else
1663 return 0;
1664#endif
1665}
1666
1667/*****************************************************************************/
1668
1669#if EV_AVOID_STDIO
1670static void noinline ecb_cold
1671ev_printerr (const char *msg)
1672{
1673 write (STDERR_FILENO, msg, strlen (msg));
1674}
1675#endif
1676
353static void (*syserr_cb)(const char *msg); 1677static void (*syserr_cb)(const char *msg) EV_THROW;
354 1678
355void 1679void ecb_cold
356ev_set_syserr_cb (void (*cb)(const char *msg)) 1680ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
357{ 1681{
358 syserr_cb = cb; 1682 syserr_cb = cb;
359} 1683}
360 1684
361static void noinline 1685static void noinline ecb_cold
362syserr (const char *msg) 1686ev_syserr (const char *msg)
363{ 1687{
364 if (!msg) 1688 if (!msg)
365 msg = "(libev) system error"; 1689 msg = "(libev) system error";
366 1690
367 if (syserr_cb) 1691 if (syserr_cb)
368 syserr_cb (msg); 1692 syserr_cb (msg);
369 else 1693 else
370 { 1694 {
1695#if EV_AVOID_STDIO
1696 ev_printerr (msg);
1697 ev_printerr (": ");
1698 ev_printerr (strerror (errno));
1699 ev_printerr ("\n");
1700#else
371 perror (msg); 1701 perror (msg);
1702#endif
372 abort (); 1703 abort ();
373 } 1704 }
374} 1705}
375 1706
376static void * 1707static void *
377ev_realloc_emul (void *ptr, long size) 1708ev_realloc_emul (void *ptr, long size) EV_THROW
378{ 1709{
379 /* some systems, notably openbsd and darwin, fail to properly 1710 /* some systems, notably openbsd and darwin, fail to properly
380 * implement realloc (x, 0) (as required by both ansi c-98 and 1711 * implement realloc (x, 0) (as required by both ansi c-89 and
381 * the single unix specification, so work around them here. 1712 * the single unix specification, so work around them here.
1713 * recently, also (at least) fedora and debian started breaking it,
1714 * despite documenting it otherwise.
382 */ 1715 */
383 1716
384 if (size) 1717 if (size)
385 return realloc (ptr, size); 1718 return realloc (ptr, size);
386 1719
387 free (ptr); 1720 free (ptr);
388 return 0; 1721 return 0;
389} 1722}
390 1723
391static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1724static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
392 1725
393void 1726void ecb_cold
394ev_set_allocator (void *(*cb)(void *ptr, long size)) 1727ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
395{ 1728{
396 alloc = cb; 1729 alloc = cb;
397} 1730}
398 1731
399inline_speed void * 1732inline_speed void *
401{ 1734{
402 ptr = alloc (ptr, size); 1735 ptr = alloc (ptr, size);
403 1736
404 if (!ptr && size) 1737 if (!ptr && size)
405 { 1738 {
1739#if EV_AVOID_STDIO
1740 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1741#else
406 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1742 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1743#endif
407 abort (); 1744 abort ();
408 } 1745 }
409 1746
410 return ptr; 1747 return ptr;
411} 1748}
413#define ev_malloc(size) ev_realloc (0, (size)) 1750#define ev_malloc(size) ev_realloc (0, (size))
414#define ev_free(ptr) ev_realloc ((ptr), 0) 1751#define ev_free(ptr) ev_realloc ((ptr), 0)
415 1752
416/*****************************************************************************/ 1753/*****************************************************************************/
417 1754
1755/* set in reify when reification needed */
1756#define EV_ANFD_REIFY 1
1757
1758/* file descriptor info structure */
418typedef struct 1759typedef struct
419{ 1760{
420 WL head; 1761 WL head;
421 unsigned char events; 1762 unsigned char events; /* the events watched for */
1763 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1764 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
422 unsigned char reify; 1765 unsigned char unused;
1766#if EV_USE_EPOLL
1767 unsigned int egen; /* generation counter to counter epoll bugs */
1768#endif
423#if EV_SELECT_IS_WINSOCKET 1769#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
424 SOCKET handle; 1770 SOCKET handle;
425#endif 1771#endif
1772#if EV_USE_IOCP
1773 OVERLAPPED or, ow;
1774#endif
426} ANFD; 1775} ANFD;
427 1776
1777/* stores the pending event set for a given watcher */
428typedef struct 1778typedef struct
429{ 1779{
430 W w; 1780 W w;
431 int events; 1781 int events; /* the pending event set for the given watcher */
432} ANPENDING; 1782} ANPENDING;
433 1783
434#if EV_USE_INOTIFY 1784#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */ 1785/* hash table entry per inotify-id */
436typedef struct 1786typedef struct
439} ANFS; 1789} ANFS;
440#endif 1790#endif
441 1791
442/* Heap Entry */ 1792/* Heap Entry */
443#if EV_HEAP_CACHE_AT 1793#if EV_HEAP_CACHE_AT
1794 /* a heap element */
444 typedef struct { 1795 typedef struct {
445 ev_tstamp at; 1796 ev_tstamp at;
446 WT w; 1797 WT w;
447 } ANHE; 1798 } ANHE;
448 1799
449 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1800 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1801 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */ 1802 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
452#else 1803#else
1804 /* a heap element */
453 typedef WT ANHE; 1805 typedef WT ANHE;
454 1806
455 #define ANHE_w(he) (he) 1807 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at 1808 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he) 1809 #define ANHE_at_cache(he)
458#endif 1810#endif
459 1811
460#if EV_MULTIPLICITY 1812#if EV_MULTIPLICITY
461 1813
462 struct ev_loop 1814 struct ev_loop
468 #undef VAR 1820 #undef VAR
469 }; 1821 };
470 #include "ev_wrap.h" 1822 #include "ev_wrap.h"
471 1823
472 static struct ev_loop default_loop_struct; 1824 static struct ev_loop default_loop_struct;
473 struct ev_loop *ev_default_loop_ptr; 1825 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
474 1826
475#else 1827#else
476 1828
477 ev_tstamp ev_rt_now; 1829 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
478 #define VAR(name,decl) static decl; 1830 #define VAR(name,decl) static decl;
479 #include "ev_vars.h" 1831 #include "ev_vars.h"
480 #undef VAR 1832 #undef VAR
481 1833
482 static int ev_default_loop_ptr; 1834 static int ev_default_loop_ptr;
483 1835
484#endif 1836#endif
485 1837
1838#if EV_FEATURE_API
1839# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1840# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1841# define EV_INVOKE_PENDING invoke_cb (EV_A)
1842#else
1843# define EV_RELEASE_CB (void)0
1844# define EV_ACQUIRE_CB (void)0
1845# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1846#endif
1847
1848#define EVBREAK_RECURSE 0x80
1849
486/*****************************************************************************/ 1850/*****************************************************************************/
487 1851
1852#ifndef EV_HAVE_EV_TIME
488ev_tstamp 1853ev_tstamp
489ev_time (void) 1854ev_time (void) EV_THROW
490{ 1855{
491#if EV_USE_REALTIME 1856#if EV_USE_REALTIME
1857 if (expect_true (have_realtime))
1858 {
492 struct timespec ts; 1859 struct timespec ts;
493 clock_gettime (CLOCK_REALTIME, &ts); 1860 clock_gettime (CLOCK_REALTIME, &ts);
494 return ts.tv_sec + ts.tv_nsec * 1e-9; 1861 return ts.tv_sec + ts.tv_nsec * 1e-9;
495#else 1862 }
1863#endif
1864
496 struct timeval tv; 1865 struct timeval tv;
497 gettimeofday (&tv, 0); 1866 gettimeofday (&tv, 0);
498 return tv.tv_sec + tv.tv_usec * 1e-6; 1867 return tv.tv_sec + tv.tv_usec * 1e-6;
499#endif
500} 1868}
1869#endif
501 1870
502ev_tstamp inline_size 1871inline_size ev_tstamp
503get_clock (void) 1872get_clock (void)
504{ 1873{
505#if EV_USE_MONOTONIC 1874#if EV_USE_MONOTONIC
506 if (expect_true (have_monotonic)) 1875 if (expect_true (have_monotonic))
507 { 1876 {
514 return ev_time (); 1883 return ev_time ();
515} 1884}
516 1885
517#if EV_MULTIPLICITY 1886#if EV_MULTIPLICITY
518ev_tstamp 1887ev_tstamp
519ev_now (EV_P) 1888ev_now (EV_P) EV_THROW
520{ 1889{
521 return ev_rt_now; 1890 return ev_rt_now;
522} 1891}
523#endif 1892#endif
524 1893
525void 1894void
526ev_sleep (ev_tstamp delay) 1895ev_sleep (ev_tstamp delay) EV_THROW
527{ 1896{
528 if (delay > 0.) 1897 if (delay > 0.)
529 { 1898 {
530#if EV_USE_NANOSLEEP 1899#if EV_USE_NANOSLEEP
531 struct timespec ts; 1900 struct timespec ts;
532 1901
533 ts.tv_sec = (time_t)delay; 1902 EV_TS_SET (ts, delay);
534 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
535
536 nanosleep (&ts, 0); 1903 nanosleep (&ts, 0);
537#elif defined(_WIN32) 1904#elif defined _WIN32
538 Sleep ((unsigned long)(delay * 1e3)); 1905 Sleep ((unsigned long)(delay * 1e3));
539#else 1906#else
540 struct timeval tv; 1907 struct timeval tv;
541 1908
542 tv.tv_sec = (time_t)delay; 1909 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
543 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1910 /* something not guaranteed by newer posix versions, but guaranteed */
544 1911 /* by older ones */
1912 EV_TV_SET (tv, delay);
545 select (0, 0, 0, 0, &tv); 1913 select (0, 0, 0, 0, &tv);
546#endif 1914#endif
547 } 1915 }
548} 1916}
549 1917
550/*****************************************************************************/ 1918/*****************************************************************************/
551 1919
552#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1920#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
553 1921
554int inline_size 1922/* find a suitable new size for the given array, */
1923/* hopefully by rounding to a nice-to-malloc size */
1924inline_size int
555array_nextsize (int elem, int cur, int cnt) 1925array_nextsize (int elem, int cur, int cnt)
556{ 1926{
557 int ncur = cur + 1; 1927 int ncur = cur + 1;
558 1928
559 do 1929 do
560 ncur <<= 1; 1930 ncur <<= 1;
561 while (cnt > ncur); 1931 while (cnt > ncur);
562 1932
563 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 1933 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
564 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 1934 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
565 { 1935 {
566 ncur *= elem; 1936 ncur *= elem;
567 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 1937 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
568 ncur = ncur - sizeof (void *) * 4; 1938 ncur = ncur - sizeof (void *) * 4;
570 } 1940 }
571 1941
572 return ncur; 1942 return ncur;
573} 1943}
574 1944
575static noinline void * 1945static void * noinline ecb_cold
576array_realloc (int elem, void *base, int *cur, int cnt) 1946array_realloc (int elem, void *base, int *cur, int cnt)
577{ 1947{
578 *cur = array_nextsize (elem, *cur, cnt); 1948 *cur = array_nextsize (elem, *cur, cnt);
579 return ev_realloc (base, elem * *cur); 1949 return ev_realloc (base, elem * *cur);
580} 1950}
1951
1952#define array_init_zero(base,count) \
1953 memset ((void *)(base), 0, sizeof (*(base)) * (count))
581 1954
582#define array_needsize(type,base,cur,cnt,init) \ 1955#define array_needsize(type,base,cur,cnt,init) \
583 if (expect_false ((cnt) > (cur))) \ 1956 if (expect_false ((cnt) > (cur))) \
584 { \ 1957 { \
585 int ocur_ = (cur); \ 1958 int ecb_unused ocur_ = (cur); \
586 (base) = (type *)array_realloc \ 1959 (base) = (type *)array_realloc \
587 (sizeof (type), (base), &(cur), (cnt)); \ 1960 (sizeof (type), (base), &(cur), (cnt)); \
588 init ((base) + (ocur_), (cur) - ocur_); \ 1961 init ((base) + (ocur_), (cur) - ocur_); \
589 } 1962 }
590 1963
597 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1970 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
598 } 1971 }
599#endif 1972#endif
600 1973
601#define array_free(stem, idx) \ 1974#define array_free(stem, idx) \
602 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1975 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
603 1976
604/*****************************************************************************/ 1977/*****************************************************************************/
605 1978
1979/* dummy callback for pending events */
1980static void noinline
1981pendingcb (EV_P_ ev_prepare *w, int revents)
1982{
1983}
1984
606void noinline 1985void noinline
607ev_feed_event (EV_P_ void *w, int revents) 1986ev_feed_event (EV_P_ void *w, int revents) EV_THROW
608{ 1987{
609 W w_ = (W)w; 1988 W w_ = (W)w;
610 int pri = ABSPRI (w_); 1989 int pri = ABSPRI (w_);
611 1990
612 if (expect_false (w_->pending)) 1991 if (expect_false (w_->pending))
616 w_->pending = ++pendingcnt [pri]; 1995 w_->pending = ++pendingcnt [pri];
617 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1996 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
618 pendings [pri][w_->pending - 1].w = w_; 1997 pendings [pri][w_->pending - 1].w = w_;
619 pendings [pri][w_->pending - 1].events = revents; 1998 pendings [pri][w_->pending - 1].events = revents;
620 } 1999 }
621}
622 2000
623void inline_speed 2001 pendingpri = NUMPRI - 1;
2002}
2003
2004inline_speed void
2005feed_reverse (EV_P_ W w)
2006{
2007 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
2008 rfeeds [rfeedcnt++] = w;
2009}
2010
2011inline_size void
2012feed_reverse_done (EV_P_ int revents)
2013{
2014 do
2015 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2016 while (rfeedcnt);
2017}
2018
2019inline_speed void
624queue_events (EV_P_ W *events, int eventcnt, int type) 2020queue_events (EV_P_ W *events, int eventcnt, int type)
625{ 2021{
626 int i; 2022 int i;
627 2023
628 for (i = 0; i < eventcnt; ++i) 2024 for (i = 0; i < eventcnt; ++i)
629 ev_feed_event (EV_A_ events [i], type); 2025 ev_feed_event (EV_A_ events [i], type);
630} 2026}
631 2027
632/*****************************************************************************/ 2028/*****************************************************************************/
633 2029
634void inline_size 2030inline_speed void
635anfds_init (ANFD *base, int count)
636{
637 while (count--)
638 {
639 base->head = 0;
640 base->events = EV_NONE;
641 base->reify = 0;
642
643 ++base;
644 }
645}
646
647void inline_speed
648fd_event (EV_P_ int fd, int revents) 2031fd_event_nocheck (EV_P_ int fd, int revents)
649{ 2032{
650 ANFD *anfd = anfds + fd; 2033 ANFD *anfd = anfds + fd;
651 ev_io *w; 2034 ev_io *w;
652 2035
653 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2036 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
657 if (ev) 2040 if (ev)
658 ev_feed_event (EV_A_ (W)w, ev); 2041 ev_feed_event (EV_A_ (W)w, ev);
659 } 2042 }
660} 2043}
661 2044
2045/* do not submit kernel events for fds that have reify set */
2046/* because that means they changed while we were polling for new events */
2047inline_speed void
2048fd_event (EV_P_ int fd, int revents)
2049{
2050 ANFD *anfd = anfds + fd;
2051
2052 if (expect_true (!anfd->reify))
2053 fd_event_nocheck (EV_A_ fd, revents);
2054}
2055
662void 2056void
663ev_feed_fd_event (EV_P_ int fd, int revents) 2057ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
664{ 2058{
665 if (fd >= 0 && fd < anfdmax) 2059 if (fd >= 0 && fd < anfdmax)
666 fd_event (EV_A_ fd, revents); 2060 fd_event_nocheck (EV_A_ fd, revents);
667} 2061}
668 2062
669void inline_size 2063/* make sure the external fd watch events are in-sync */
2064/* with the kernel/libev internal state */
2065inline_size void
670fd_reify (EV_P) 2066fd_reify (EV_P)
671{ 2067{
672 int i; 2068 int i;
2069
2070#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2071 for (i = 0; i < fdchangecnt; ++i)
2072 {
2073 int fd = fdchanges [i];
2074 ANFD *anfd = anfds + fd;
2075
2076 if (anfd->reify & EV__IOFDSET && anfd->head)
2077 {
2078 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2079
2080 if (handle != anfd->handle)
2081 {
2082 unsigned long arg;
2083
2084 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2085
2086 /* handle changed, but fd didn't - we need to do it in two steps */
2087 backend_modify (EV_A_ fd, anfd->events, 0);
2088 anfd->events = 0;
2089 anfd->handle = handle;
2090 }
2091 }
2092 }
2093#endif
673 2094
674 for (i = 0; i < fdchangecnt; ++i) 2095 for (i = 0; i < fdchangecnt; ++i)
675 { 2096 {
676 int fd = fdchanges [i]; 2097 int fd = fdchanges [i];
677 ANFD *anfd = anfds + fd; 2098 ANFD *anfd = anfds + fd;
678 ev_io *w; 2099 ev_io *w;
679 2100
680 unsigned char events = 0; 2101 unsigned char o_events = anfd->events;
2102 unsigned char o_reify = anfd->reify;
681 2103
682 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2104 anfd->reify = 0;
683 events |= (unsigned char)w->events;
684 2105
685#if EV_SELECT_IS_WINSOCKET 2106 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
686 if (events)
687 { 2107 {
688 unsigned long argp; 2108 anfd->events = 0;
689 #ifdef EV_FD_TO_WIN32_HANDLE 2109
690 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 2110 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
691 #else 2111 anfd->events |= (unsigned char)w->events;
692 anfd->handle = _get_osfhandle (fd); 2112
693 #endif 2113 if (o_events != anfd->events)
694 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 2114 o_reify = EV__IOFDSET; /* actually |= */
695 } 2115 }
696#endif
697 2116
698 { 2117 if (o_reify & EV__IOFDSET)
699 unsigned char o_events = anfd->events;
700 unsigned char o_reify = anfd->reify;
701
702 anfd->reify = 0;
703 anfd->events = events;
704
705 if (o_events != events || o_reify & EV_IOFDSET)
706 backend_modify (EV_A_ fd, o_events, events); 2118 backend_modify (EV_A_ fd, o_events, anfd->events);
707 }
708 } 2119 }
709 2120
710 fdchangecnt = 0; 2121 fdchangecnt = 0;
711} 2122}
712 2123
713void inline_size 2124/* something about the given fd changed */
2125inline_size void
714fd_change (EV_P_ int fd, int flags) 2126fd_change (EV_P_ int fd, int flags)
715{ 2127{
716 unsigned char reify = anfds [fd].reify; 2128 unsigned char reify = anfds [fd].reify;
717 anfds [fd].reify |= flags; 2129 anfds [fd].reify |= flags;
718 2130
722 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 2134 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
723 fdchanges [fdchangecnt - 1] = fd; 2135 fdchanges [fdchangecnt - 1] = fd;
724 } 2136 }
725} 2137}
726 2138
727void inline_speed 2139/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2140inline_speed void ecb_cold
728fd_kill (EV_P_ int fd) 2141fd_kill (EV_P_ int fd)
729{ 2142{
730 ev_io *w; 2143 ev_io *w;
731 2144
732 while ((w = (ev_io *)anfds [fd].head)) 2145 while ((w = (ev_io *)anfds [fd].head))
734 ev_io_stop (EV_A_ w); 2147 ev_io_stop (EV_A_ w);
735 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2148 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
736 } 2149 }
737} 2150}
738 2151
739int inline_size 2152/* check whether the given fd is actually valid, for error recovery */
2153inline_size int ecb_cold
740fd_valid (int fd) 2154fd_valid (int fd)
741{ 2155{
742#ifdef _WIN32 2156#ifdef _WIN32
743 return _get_osfhandle (fd) != -1; 2157 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
744#else 2158#else
745 return fcntl (fd, F_GETFD) != -1; 2159 return fcntl (fd, F_GETFD) != -1;
746#endif 2160#endif
747} 2161}
748 2162
749/* called on EBADF to verify fds */ 2163/* called on EBADF to verify fds */
750static void noinline 2164static void noinline ecb_cold
751fd_ebadf (EV_P) 2165fd_ebadf (EV_P)
752{ 2166{
753 int fd; 2167 int fd;
754 2168
755 for (fd = 0; fd < anfdmax; ++fd) 2169 for (fd = 0; fd < anfdmax; ++fd)
756 if (anfds [fd].events) 2170 if (anfds [fd].events)
757 if (!fd_valid (fd) == -1 && errno == EBADF) 2171 if (!fd_valid (fd) && errno == EBADF)
758 fd_kill (EV_A_ fd); 2172 fd_kill (EV_A_ fd);
759} 2173}
760 2174
761/* called on ENOMEM in select/poll to kill some fds and retry */ 2175/* called on ENOMEM in select/poll to kill some fds and retry */
762static void noinline 2176static void noinline ecb_cold
763fd_enomem (EV_P) 2177fd_enomem (EV_P)
764{ 2178{
765 int fd; 2179 int fd;
766 2180
767 for (fd = anfdmax; fd--; ) 2181 for (fd = anfdmax; fd--; )
768 if (anfds [fd].events) 2182 if (anfds [fd].events)
769 { 2183 {
770 fd_kill (EV_A_ fd); 2184 fd_kill (EV_A_ fd);
771 return; 2185 break;
772 } 2186 }
773} 2187}
774 2188
775/* usually called after fork if backend needs to re-arm all fds from scratch */ 2189/* usually called after fork if backend needs to re-arm all fds from scratch */
776static void noinline 2190static void noinline
780 2194
781 for (fd = 0; fd < anfdmax; ++fd) 2195 for (fd = 0; fd < anfdmax; ++fd)
782 if (anfds [fd].events) 2196 if (anfds [fd].events)
783 { 2197 {
784 anfds [fd].events = 0; 2198 anfds [fd].events = 0;
2199 anfds [fd].emask = 0;
785 fd_change (EV_A_ fd, EV_IOFDSET | 1); 2200 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
786 } 2201 }
787} 2202}
788 2203
2204/* used to prepare libev internal fd's */
2205/* this is not fork-safe */
2206inline_speed void
2207fd_intern (int fd)
2208{
2209#ifdef _WIN32
2210 unsigned long arg = 1;
2211 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2212#else
2213 fcntl (fd, F_SETFD, FD_CLOEXEC);
2214 fcntl (fd, F_SETFL, O_NONBLOCK);
2215#endif
2216}
2217
789/*****************************************************************************/ 2218/*****************************************************************************/
790 2219
791/* 2220/*
792 * the heap functions want a real array index. array index 0 uis guaranteed to not 2221 * the heap functions want a real array index. array index 0 is guaranteed to not
793 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 2222 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
794 * the branching factor of the d-tree. 2223 * the branching factor of the d-tree.
795 */ 2224 */
796 2225
797/* 2226/*
802 */ 2231 */
803#if EV_USE_4HEAP 2232#if EV_USE_4HEAP
804 2233
805#define DHEAP 4 2234#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 2235#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807 2236#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
808/* towards the root */ 2237#define UPHEAP_DONE(p,k) ((p) == (k))
809void inline_speed
810upheap (ANHE *heap, int k)
811{
812 ANHE he = heap [k];
813
814 for (;;)
815 {
816 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
817
818 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
819 break;
820
821 heap [k] = heap [p];
822 ev_active (ANHE_w (heap [k])) = k;
823 k = p;
824 }
825
826 ev_active (ANHE_w (he)) = k;
827 heap [k] = he;
828}
829 2238
830/* away from the root */ 2239/* away from the root */
831void inline_speed 2240inline_speed void
832downheap (ANHE *heap, int N, int k) 2241downheap (ANHE *heap, int N, int k)
833{ 2242{
834 ANHE he = heap [k]; 2243 ANHE he = heap [k];
835 ANHE *E = heap + N + HEAP0; 2244 ANHE *E = heap + N + HEAP0;
836 2245
837 for (;;) 2246 for (;;)
838 { 2247 {
839 ev_tstamp minat; 2248 ev_tstamp minat;
840 ANHE *minpos; 2249 ANHE *minpos;
841 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 2250 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
842 2251
843 // find minimum child 2252 /* find minimum child */
844 if (expect_true (pos + DHEAP - 1 < E)) 2253 if (expect_true (pos + DHEAP - 1 < E))
845 { 2254 {
846 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 2255 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
847 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 2256 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
848 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 2257 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
859 break; 2268 break;
860 2269
861 if (ANHE_at (he) <= minat) 2270 if (ANHE_at (he) <= minat)
862 break; 2271 break;
863 2272
2273 heap [k] = *minpos;
864 ev_active (ANHE_w (*minpos)) = k; 2274 ev_active (ANHE_w (*minpos)) = k;
865 heap [k] = *minpos;
866 2275
867 k = minpos - heap; 2276 k = minpos - heap;
868 } 2277 }
869 2278
2279 heap [k] = he;
870 ev_active (ANHE_w (he)) = k; 2280 ev_active (ANHE_w (he)) = k;
871 heap [k] = he;
872} 2281}
873 2282
874#else // 4HEAP 2283#else /* 4HEAP */
875 2284
876#define HEAP0 1 2285#define HEAP0 1
2286#define HPARENT(k) ((k) >> 1)
2287#define UPHEAP_DONE(p,k) (!(p))
877 2288
878/* towards the root */ 2289/* away from the root */
879void inline_speed 2290inline_speed void
880upheap (ANHE *heap, int k) 2291downheap (ANHE *heap, int N, int k)
881{ 2292{
882 ANHE he = heap [k]; 2293 ANHE he = heap [k];
883 2294
884 for (;;) 2295 for (;;)
885 { 2296 {
886 int p = k >> 1; 2297 int c = k << 1;
887 2298
888 /* maybe we could use a dummy element at heap [0]? */ 2299 if (c >= N + HEAP0)
889 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
890 break; 2300 break;
891 2301
892 heap [k] = heap [p];
893 ev_active (ANHE_w (heap [k])) = k;
894 k = p;
895 }
896
897 heap [k] = he;
898 ev_active (ANHE_w (heap [k])) = k;
899}
900
901/* away from the root */
902void inline_speed
903downheap (ANHE *heap, int N, int k)
904{
905 ANHE he = heap [k];
906
907 for (;;)
908 {
909 int c = k << 1;
910
911 if (c > N)
912 break;
913
914 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 2302 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
915 ? 1 : 0; 2303 ? 1 : 0;
916 2304
917 if (ANHE_at (he) <= ANHE_at (heap [c])) 2305 if (ANHE_at (he) <= ANHE_at (heap [c]))
918 break; 2306 break;
919 2307
926 heap [k] = he; 2314 heap [k] = he;
927 ev_active (ANHE_w (he)) = k; 2315 ev_active (ANHE_w (he)) = k;
928} 2316}
929#endif 2317#endif
930 2318
931void inline_size 2319/* towards the root */
2320inline_speed void
2321upheap (ANHE *heap, int k)
2322{
2323 ANHE he = heap [k];
2324
2325 for (;;)
2326 {
2327 int p = HPARENT (k);
2328
2329 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2330 break;
2331
2332 heap [k] = heap [p];
2333 ev_active (ANHE_w (heap [k])) = k;
2334 k = p;
2335 }
2336
2337 heap [k] = he;
2338 ev_active (ANHE_w (he)) = k;
2339}
2340
2341/* move an element suitably so it is in a correct place */
2342inline_size void
932adjustheap (ANHE *heap, int N, int k) 2343adjustheap (ANHE *heap, int N, int k)
933{ 2344{
2345 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
934 upheap (heap, k); 2346 upheap (heap, k);
2347 else
935 downheap (heap, N, k); 2348 downheap (heap, N, k);
2349}
2350
2351/* rebuild the heap: this function is used only once and executed rarely */
2352inline_size void
2353reheap (ANHE *heap, int N)
2354{
2355 int i;
2356
2357 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2358 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2359 for (i = 0; i < N; ++i)
2360 upheap (heap, i + HEAP0);
936} 2361}
937 2362
938/*****************************************************************************/ 2363/*****************************************************************************/
939 2364
2365/* associate signal watchers to a signal signal */
940typedef struct 2366typedef struct
941{ 2367{
2368 EV_ATOMIC_T pending;
2369#if EV_MULTIPLICITY
2370 EV_P;
2371#endif
942 WL head; 2372 WL head;
943 EV_ATOMIC_T gotsig;
944} ANSIG; 2373} ANSIG;
945 2374
946static ANSIG *signals; 2375static ANSIG signals [EV_NSIG - 1];
947static int signalmax;
948
949static EV_ATOMIC_T gotsig;
950
951void inline_size
952signals_init (ANSIG *base, int count)
953{
954 while (count--)
955 {
956 base->head = 0;
957 base->gotsig = 0;
958
959 ++base;
960 }
961}
962 2376
963/*****************************************************************************/ 2377/*****************************************************************************/
964 2378
965void inline_speed 2379#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
966fd_intern (int fd)
967{
968#ifdef _WIN32
969 int arg = 1;
970 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
971#else
972 fcntl (fd, F_SETFD, FD_CLOEXEC);
973 fcntl (fd, F_SETFL, O_NONBLOCK);
974#endif
975}
976 2380
977static void noinline 2381static void noinline ecb_cold
978evpipe_init (EV_P) 2382evpipe_init (EV_P)
979{ 2383{
980 if (!ev_is_active (&pipeev)) 2384 if (!ev_is_active (&pipe_w))
2385 {
2386 int fds [2];
2387
2388# if EV_USE_EVENTFD
2389 fds [0] = -1;
2390 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2391 if (fds [1] < 0 && errno == EINVAL)
2392 fds [1] = eventfd (0, 0);
2393
2394 if (fds [1] < 0)
2395# endif
2396 {
2397 while (pipe (fds))
2398 ev_syserr ("(libev) error creating signal/async pipe");
2399
2400 fd_intern (fds [0]);
2401 }
2402
2403 evpipe [0] = fds [0];
2404
2405 if (evpipe [1] < 0)
2406 evpipe [1] = fds [1]; /* first call, set write fd */
2407 else
2408 {
2409 /* on subsequent calls, do not change evpipe [1] */
2410 /* so that evpipe_write can always rely on its value. */
2411 /* this branch does not do anything sensible on windows, */
2412 /* so must not be executed on windows */
2413
2414 dup2 (fds [1], evpipe [1]);
2415 close (fds [1]);
2416 }
2417
2418 fd_intern (evpipe [1]);
2419
2420 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2421 ev_io_start (EV_A_ &pipe_w);
2422 ev_unref (EV_A); /* watcher should not keep loop alive */
981 { 2423 }
2424}
2425
2426inline_speed void
2427evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2428{
2429 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2430
2431 if (expect_true (*flag))
2432 return;
2433
2434 *flag = 1;
2435 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2436
2437 pipe_write_skipped = 1;
2438
2439 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2440
2441 if (pipe_write_wanted)
2442 {
2443 int old_errno;
2444
2445 pipe_write_skipped = 0;
2446 ECB_MEMORY_FENCE_RELEASE;
2447
2448 old_errno = errno; /* save errno because write will clobber it */
2449
982#if EV_USE_EVENTFD 2450#if EV_USE_EVENTFD
983 if ((evfd = eventfd (0, 0)) >= 0) 2451 if (evpipe [0] < 0)
984 { 2452 {
985 evpipe [0] = -1; 2453 uint64_t counter = 1;
986 fd_intern (evfd); 2454 write (evpipe [1], &counter, sizeof (uint64_t));
987 ev_io_set (&pipeev, evfd, EV_READ);
988 } 2455 }
989 else 2456 else
990#endif 2457#endif
991 { 2458 {
992 while (pipe (evpipe)) 2459#ifdef _WIN32
993 syserr ("(libev) error creating signal/async pipe"); 2460 WSABUF buf;
994 2461 DWORD sent;
995 fd_intern (evpipe [0]); 2462 buf.buf = &buf;
996 fd_intern (evpipe [1]); 2463 buf.len = 1;
997 ev_io_set (&pipeev, evpipe [0], EV_READ); 2464 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2465#else
2466 write (evpipe [1], &(evpipe [1]), 1);
2467#endif
998 } 2468 }
999 2469
1000 ev_io_start (EV_A_ &pipeev); 2470 errno = old_errno;
1001 ev_unref (EV_A); /* watcher should not keep loop alive */
1002 }
1003}
1004
1005void inline_size
1006evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1007{
1008 if (!*flag)
1009 { 2471 }
1010 int old_errno = errno; /* save errno because write might clobber it */ 2472}
1011 2473
1012 *flag = 1; 2474/* called whenever the libev signal pipe */
2475/* got some events (signal, async) */
2476static void
2477pipecb (EV_P_ ev_io *iow, int revents)
2478{
2479 int i;
1013 2480
2481 if (revents & EV_READ)
2482 {
1014#if EV_USE_EVENTFD 2483#if EV_USE_EVENTFD
1015 if (evfd >= 0) 2484 if (evpipe [0] < 0)
1016 { 2485 {
1017 uint64_t counter = 1; 2486 uint64_t counter;
1018 write (evfd, &counter, sizeof (uint64_t)); 2487 read (evpipe [1], &counter, sizeof (uint64_t));
1019 } 2488 }
1020 else 2489 else
1021#endif 2490#endif
1022 write (evpipe [1], &old_errno, 1); 2491 {
1023
1024 errno = old_errno;
1025 }
1026}
1027
1028static void
1029pipecb (EV_P_ ev_io *iow, int revents)
1030{
1031#if EV_USE_EVENTFD
1032 if (evfd >= 0)
1033 {
1034 uint64_t counter;
1035 read (evfd, &counter, sizeof (uint64_t));
1036 }
1037 else
1038#endif
1039 {
1040 char dummy; 2492 char dummy[4];
2493#ifdef _WIN32
2494 WSABUF buf;
2495 DWORD recvd;
2496 DWORD flags = 0;
2497 buf.buf = dummy;
2498 buf.len = sizeof (dummy);
2499 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2500#else
1041 read (evpipe [0], &dummy, 1); 2501 read (evpipe [0], &dummy, sizeof (dummy));
2502#endif
2503 }
2504 }
2505
2506 pipe_write_skipped = 0;
2507
2508 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2509
2510#if EV_SIGNAL_ENABLE
2511 if (sig_pending)
1042 } 2512 {
2513 sig_pending = 0;
1043 2514
1044 if (gotsig && ev_is_default_loop (EV_A)) 2515 ECB_MEMORY_FENCE;
1045 {
1046 int signum;
1047 gotsig = 0;
1048 2516
1049 for (signum = signalmax; signum--; ) 2517 for (i = EV_NSIG - 1; i--; )
1050 if (signals [signum].gotsig) 2518 if (expect_false (signals [i].pending))
1051 ev_feed_signal_event (EV_A_ signum + 1); 2519 ev_feed_signal_event (EV_A_ i + 1);
1052 } 2520 }
2521#endif
1053 2522
1054#if EV_ASYNC_ENABLE 2523#if EV_ASYNC_ENABLE
1055 if (gotasync) 2524 if (async_pending)
1056 { 2525 {
1057 int i; 2526 async_pending = 0;
1058 gotasync = 0; 2527
2528 ECB_MEMORY_FENCE;
1059 2529
1060 for (i = asynccnt; i--; ) 2530 for (i = asynccnt; i--; )
1061 if (asyncs [i]->sent) 2531 if (asyncs [i]->sent)
1062 { 2532 {
1063 asyncs [i]->sent = 0; 2533 asyncs [i]->sent = 0;
2534 ECB_MEMORY_FENCE_RELEASE;
1064 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2535 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1065 } 2536 }
1066 } 2537 }
1067#endif 2538#endif
1068} 2539}
1069 2540
1070/*****************************************************************************/ 2541/*****************************************************************************/
1071 2542
2543void
2544ev_feed_signal (int signum) EV_THROW
2545{
2546#if EV_MULTIPLICITY
2547 EV_P;
2548 ECB_MEMORY_FENCE_ACQUIRE;
2549 EV_A = signals [signum - 1].loop;
2550
2551 if (!EV_A)
2552 return;
2553#endif
2554
2555 signals [signum - 1].pending = 1;
2556 evpipe_write (EV_A_ &sig_pending);
2557}
2558
1072static void 2559static void
1073ev_sighandler (int signum) 2560ev_sighandler (int signum)
1074{ 2561{
2562#ifdef _WIN32
2563 signal (signum, ev_sighandler);
2564#endif
2565
2566 ev_feed_signal (signum);
2567}
2568
2569void noinline
2570ev_feed_signal_event (EV_P_ int signum) EV_THROW
2571{
2572 WL w;
2573
2574 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2575 return;
2576
2577 --signum;
2578
1075#if EV_MULTIPLICITY 2579#if EV_MULTIPLICITY
1076 struct ev_loop *loop = &default_loop_struct; 2580 /* it is permissible to try to feed a signal to the wrong loop */
1077#endif 2581 /* or, likely more useful, feeding a signal nobody is waiting for */
1078 2582
1079#if _WIN32 2583 if (expect_false (signals [signum].loop != EV_A))
1080 signal (signum, ev_sighandler);
1081#endif
1082
1083 signals [signum - 1].gotsig = 1;
1084 evpipe_write (EV_A_ &gotsig);
1085}
1086
1087void noinline
1088ev_feed_signal_event (EV_P_ int signum)
1089{
1090 WL w;
1091
1092#if EV_MULTIPLICITY
1093 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1094#endif
1095
1096 --signum;
1097
1098 if (signum < 0 || signum >= signalmax)
1099 return; 2584 return;
2585#endif
1100 2586
1101 signals [signum].gotsig = 0; 2587 signals [signum].pending = 0;
2588 ECB_MEMORY_FENCE_RELEASE;
1102 2589
1103 for (w = signals [signum].head; w; w = w->next) 2590 for (w = signals [signum].head; w; w = w->next)
1104 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2591 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1105} 2592}
1106 2593
2594#if EV_USE_SIGNALFD
2595static void
2596sigfdcb (EV_P_ ev_io *iow, int revents)
2597{
2598 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2599
2600 for (;;)
2601 {
2602 ssize_t res = read (sigfd, si, sizeof (si));
2603
2604 /* not ISO-C, as res might be -1, but works with SuS */
2605 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2606 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2607
2608 if (res < (ssize_t)sizeof (si))
2609 break;
2610 }
2611}
2612#endif
2613
2614#endif
2615
1107/*****************************************************************************/ 2616/*****************************************************************************/
1108 2617
2618#if EV_CHILD_ENABLE
1109static WL childs [EV_PID_HASHSIZE]; 2619static WL childs [EV_PID_HASHSIZE];
1110
1111#ifndef _WIN32
1112 2620
1113static ev_signal childev; 2621static ev_signal childev;
1114 2622
1115#ifndef WIFCONTINUED 2623#ifndef WIFCONTINUED
1116# define WIFCONTINUED(status) 0 2624# define WIFCONTINUED(status) 0
1117#endif 2625#endif
1118 2626
1119void inline_speed 2627/* handle a single child status event */
2628inline_speed void
1120child_reap (EV_P_ int chain, int pid, int status) 2629child_reap (EV_P_ int chain, int pid, int status)
1121{ 2630{
1122 ev_child *w; 2631 ev_child *w;
1123 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2632 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1124 2633
1125 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2634 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1126 { 2635 {
1127 if ((w->pid == pid || !w->pid) 2636 if ((w->pid == pid || !w->pid)
1128 && (!traced || (w->flags & 1))) 2637 && (!traced || (w->flags & 1)))
1129 { 2638 {
1130 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2639 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1137 2646
1138#ifndef WCONTINUED 2647#ifndef WCONTINUED
1139# define WCONTINUED 0 2648# define WCONTINUED 0
1140#endif 2649#endif
1141 2650
2651/* called on sigchld etc., calls waitpid */
1142static void 2652static void
1143childcb (EV_P_ ev_signal *sw, int revents) 2653childcb (EV_P_ ev_signal *sw, int revents)
1144{ 2654{
1145 int pid, status; 2655 int pid, status;
1146 2656
1154 /* make sure we are called again until all children have been reaped */ 2664 /* make sure we are called again until all children have been reaped */
1155 /* we need to do it this way so that the callback gets called before we continue */ 2665 /* we need to do it this way so that the callback gets called before we continue */
1156 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2666 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1157 2667
1158 child_reap (EV_A_ pid, pid, status); 2668 child_reap (EV_A_ pid, pid, status);
1159 if (EV_PID_HASHSIZE > 1) 2669 if ((EV_PID_HASHSIZE) > 1)
1160 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2670 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1161} 2671}
1162 2672
1163#endif 2673#endif
1164 2674
1165/*****************************************************************************/ 2675/*****************************************************************************/
1166 2676
2677#if EV_USE_IOCP
2678# include "ev_iocp.c"
2679#endif
1167#if EV_USE_PORT 2680#if EV_USE_PORT
1168# include "ev_port.c" 2681# include "ev_port.c"
1169#endif 2682#endif
1170#if EV_USE_KQUEUE 2683#if EV_USE_KQUEUE
1171# include "ev_kqueue.c" 2684# include "ev_kqueue.c"
1178#endif 2691#endif
1179#if EV_USE_SELECT 2692#if EV_USE_SELECT
1180# include "ev_select.c" 2693# include "ev_select.c"
1181#endif 2694#endif
1182 2695
1183int 2696int ecb_cold
1184ev_version_major (void) 2697ev_version_major (void) EV_THROW
1185{ 2698{
1186 return EV_VERSION_MAJOR; 2699 return EV_VERSION_MAJOR;
1187} 2700}
1188 2701
1189int 2702int ecb_cold
1190ev_version_minor (void) 2703ev_version_minor (void) EV_THROW
1191{ 2704{
1192 return EV_VERSION_MINOR; 2705 return EV_VERSION_MINOR;
1193} 2706}
1194 2707
1195/* return true if we are running with elevated privileges and should ignore env variables */ 2708/* return true if we are running with elevated privileges and should ignore env variables */
1196int inline_size 2709int inline_size ecb_cold
1197enable_secure (void) 2710enable_secure (void)
1198{ 2711{
1199#ifdef _WIN32 2712#ifdef _WIN32
1200 return 0; 2713 return 0;
1201#else 2714#else
1202 return getuid () != geteuid () 2715 return getuid () != geteuid ()
1203 || getgid () != getegid (); 2716 || getgid () != getegid ();
1204#endif 2717#endif
1205} 2718}
1206 2719
1207unsigned int 2720unsigned int ecb_cold
1208ev_supported_backends (void) 2721ev_supported_backends (void) EV_THROW
1209{ 2722{
1210 unsigned int flags = 0; 2723 unsigned int flags = 0;
1211 2724
1212 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2725 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1213 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2726 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1216 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2729 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1217 2730
1218 return flags; 2731 return flags;
1219} 2732}
1220 2733
1221unsigned int 2734unsigned int ecb_cold
1222ev_recommended_backends (void) 2735ev_recommended_backends (void) EV_THROW
1223{ 2736{
1224 unsigned int flags = ev_supported_backends (); 2737 unsigned int flags = ev_supported_backends ();
1225 2738
1226#ifndef __NetBSD__ 2739#ifndef __NetBSD__
1227 /* kqueue is borked on everything but netbsd apparently */ 2740 /* kqueue is borked on everything but netbsd apparently */
1228 /* it usually doesn't work correctly on anything but sockets and pipes */ 2741 /* it usually doesn't work correctly on anything but sockets and pipes */
1229 flags &= ~EVBACKEND_KQUEUE; 2742 flags &= ~EVBACKEND_KQUEUE;
1230#endif 2743#endif
1231#ifdef __APPLE__ 2744#ifdef __APPLE__
1232 // flags &= ~EVBACKEND_KQUEUE; for documentation 2745 /* only select works correctly on that "unix-certified" platform */
1233 flags &= ~EVBACKEND_POLL; 2746 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2747 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2748#endif
2749#ifdef __FreeBSD__
2750 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1234#endif 2751#endif
1235 2752
1236 return flags; 2753 return flags;
1237} 2754}
1238 2755
2756unsigned int ecb_cold
2757ev_embeddable_backends (void) EV_THROW
2758{
2759 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2760
2761 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2762 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2763 flags &= ~EVBACKEND_EPOLL;
2764
2765 return flags;
2766}
2767
1239unsigned int 2768unsigned int
1240ev_embeddable_backends (void) 2769ev_backend (EV_P) EV_THROW
1241{ 2770{
1242 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2771 return backend;
1243
1244 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1245 /* please fix it and tell me how to detect the fix */
1246 flags &= ~EVBACKEND_EPOLL;
1247
1248 return flags;
1249} 2772}
1250 2773
2774#if EV_FEATURE_API
1251unsigned int 2775unsigned int
1252ev_backend (EV_P) 2776ev_iteration (EV_P) EV_THROW
1253{ 2777{
1254 return backend; 2778 return loop_count;
1255} 2779}
1256 2780
1257unsigned int 2781unsigned int
1258ev_loop_count (EV_P) 2782ev_depth (EV_P) EV_THROW
1259{ 2783{
1260 return loop_count; 2784 return loop_depth;
1261} 2785}
1262 2786
1263void 2787void
1264ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2788ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1265{ 2789{
1266 io_blocktime = interval; 2790 io_blocktime = interval;
1267} 2791}
1268 2792
1269void 2793void
1270ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2794ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1271{ 2795{
1272 timeout_blocktime = interval; 2796 timeout_blocktime = interval;
1273} 2797}
1274 2798
2799void
2800ev_set_userdata (EV_P_ void *data) EV_THROW
2801{
2802 userdata = data;
2803}
2804
2805void *
2806ev_userdata (EV_P) EV_THROW
2807{
2808 return userdata;
2809}
2810
2811void
2812ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2813{
2814 invoke_cb = invoke_pending_cb;
2815}
2816
2817void
2818ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2819{
2820 release_cb = release;
2821 acquire_cb = acquire;
2822}
2823#endif
2824
2825/* initialise a loop structure, must be zero-initialised */
1275static void noinline 2826static void noinline ecb_cold
1276loop_init (EV_P_ unsigned int flags) 2827loop_init (EV_P_ unsigned int flags) EV_THROW
1277{ 2828{
1278 if (!backend) 2829 if (!backend)
1279 { 2830 {
2831 origflags = flags;
2832
2833#if EV_USE_REALTIME
2834 if (!have_realtime)
2835 {
2836 struct timespec ts;
2837
2838 if (!clock_gettime (CLOCK_REALTIME, &ts))
2839 have_realtime = 1;
2840 }
2841#endif
2842
1280#if EV_USE_MONOTONIC 2843#if EV_USE_MONOTONIC
2844 if (!have_monotonic)
1281 { 2845 {
1282 struct timespec ts; 2846 struct timespec ts;
2847
1283 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2848 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1284 have_monotonic = 1; 2849 have_monotonic = 1;
1285 } 2850 }
1286#endif
1287
1288 ev_rt_now = ev_time ();
1289 mn_now = get_clock ();
1290 now_floor = mn_now;
1291 rtmn_diff = ev_rt_now - mn_now;
1292
1293 io_blocktime = 0.;
1294 timeout_blocktime = 0.;
1295 backend = 0;
1296 backend_fd = -1;
1297 gotasync = 0;
1298#if EV_USE_INOTIFY
1299 fs_fd = -2;
1300#endif 2851#endif
1301 2852
1302 /* pid check not overridable via env */ 2853 /* pid check not overridable via env */
1303#ifndef _WIN32 2854#ifndef _WIN32
1304 if (flags & EVFLAG_FORKCHECK) 2855 if (flags & EVFLAG_FORKCHECK)
1308 if (!(flags & EVFLAG_NOENV) 2859 if (!(flags & EVFLAG_NOENV)
1309 && !enable_secure () 2860 && !enable_secure ()
1310 && getenv ("LIBEV_FLAGS")) 2861 && getenv ("LIBEV_FLAGS"))
1311 flags = atoi (getenv ("LIBEV_FLAGS")); 2862 flags = atoi (getenv ("LIBEV_FLAGS"));
1312 2863
1313 if (!(flags & 0x0000ffffU)) 2864 ev_rt_now = ev_time ();
2865 mn_now = get_clock ();
2866 now_floor = mn_now;
2867 rtmn_diff = ev_rt_now - mn_now;
2868#if EV_FEATURE_API
2869 invoke_cb = ev_invoke_pending;
2870#endif
2871
2872 io_blocktime = 0.;
2873 timeout_blocktime = 0.;
2874 backend = 0;
2875 backend_fd = -1;
2876 sig_pending = 0;
2877#if EV_ASYNC_ENABLE
2878 async_pending = 0;
2879#endif
2880 pipe_write_skipped = 0;
2881 pipe_write_wanted = 0;
2882 evpipe [0] = -1;
2883 evpipe [1] = -1;
2884#if EV_USE_INOTIFY
2885 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2886#endif
2887#if EV_USE_SIGNALFD
2888 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2889#endif
2890
2891 if (!(flags & EVBACKEND_MASK))
1314 flags |= ev_recommended_backends (); 2892 flags |= ev_recommended_backends ();
1315 2893
2894#if EV_USE_IOCP
2895 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2896#endif
1316#if EV_USE_PORT 2897#if EV_USE_PORT
1317 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2898 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1318#endif 2899#endif
1319#if EV_USE_KQUEUE 2900#if EV_USE_KQUEUE
1320 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2901 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1327#endif 2908#endif
1328#if EV_USE_SELECT 2909#if EV_USE_SELECT
1329 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2910 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1330#endif 2911#endif
1331 2912
2913 ev_prepare_init (&pending_w, pendingcb);
2914
2915#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1332 ev_init (&pipeev, pipecb); 2916 ev_init (&pipe_w, pipecb);
1333 ev_set_priority (&pipeev, EV_MAXPRI); 2917 ev_set_priority (&pipe_w, EV_MAXPRI);
2918#endif
1334 } 2919 }
1335} 2920}
1336 2921
1337static void noinline 2922/* free up a loop structure */
2923void ecb_cold
1338loop_destroy (EV_P) 2924ev_loop_destroy (EV_P)
1339{ 2925{
1340 int i; 2926 int i;
1341 2927
2928#if EV_MULTIPLICITY
2929 /* mimic free (0) */
2930 if (!EV_A)
2931 return;
2932#endif
2933
2934#if EV_CLEANUP_ENABLE
2935 /* queue cleanup watchers (and execute them) */
2936 if (expect_false (cleanupcnt))
2937 {
2938 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2939 EV_INVOKE_PENDING;
2940 }
2941#endif
2942
2943#if EV_CHILD_ENABLE
2944 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2945 {
2946 ev_ref (EV_A); /* child watcher */
2947 ev_signal_stop (EV_A_ &childev);
2948 }
2949#endif
2950
1342 if (ev_is_active (&pipeev)) 2951 if (ev_is_active (&pipe_w))
1343 { 2952 {
1344 ev_ref (EV_A); /* signal watcher */ 2953 /*ev_ref (EV_A);*/
1345 ev_io_stop (EV_A_ &pipeev); 2954 /*ev_io_stop (EV_A_ &pipe_w);*/
1346 2955
2956 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2957 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2958 }
2959
1347#if EV_USE_EVENTFD 2960#if EV_USE_SIGNALFD
1348 if (evfd >= 0) 2961 if (ev_is_active (&sigfd_w))
1349 close (evfd); 2962 close (sigfd);
1350#endif 2963#endif
1351
1352 if (evpipe [0] >= 0)
1353 {
1354 close (evpipe [0]);
1355 close (evpipe [1]);
1356 }
1357 }
1358 2964
1359#if EV_USE_INOTIFY 2965#if EV_USE_INOTIFY
1360 if (fs_fd >= 0) 2966 if (fs_fd >= 0)
1361 close (fs_fd); 2967 close (fs_fd);
1362#endif 2968#endif
1363 2969
1364 if (backend_fd >= 0) 2970 if (backend_fd >= 0)
1365 close (backend_fd); 2971 close (backend_fd);
1366 2972
2973#if EV_USE_IOCP
2974 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2975#endif
1367#if EV_USE_PORT 2976#if EV_USE_PORT
1368 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2977 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1369#endif 2978#endif
1370#if EV_USE_KQUEUE 2979#if EV_USE_KQUEUE
1371 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2980 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1386#if EV_IDLE_ENABLE 2995#if EV_IDLE_ENABLE
1387 array_free (idle, [i]); 2996 array_free (idle, [i]);
1388#endif 2997#endif
1389 } 2998 }
1390 2999
1391 ev_free (anfds); anfdmax = 0; 3000 ev_free (anfds); anfds = 0; anfdmax = 0;
1392 3001
1393 /* have to use the microsoft-never-gets-it-right macro */ 3002 /* have to use the microsoft-never-gets-it-right macro */
3003 array_free (rfeed, EMPTY);
1394 array_free (fdchange, EMPTY); 3004 array_free (fdchange, EMPTY);
1395 array_free (timer, EMPTY); 3005 array_free (timer, EMPTY);
1396#if EV_PERIODIC_ENABLE 3006#if EV_PERIODIC_ENABLE
1397 array_free (periodic, EMPTY); 3007 array_free (periodic, EMPTY);
1398#endif 3008#endif
1399#if EV_FORK_ENABLE 3009#if EV_FORK_ENABLE
1400 array_free (fork, EMPTY); 3010 array_free (fork, EMPTY);
1401#endif 3011#endif
3012#if EV_CLEANUP_ENABLE
3013 array_free (cleanup, EMPTY);
3014#endif
1402 array_free (prepare, EMPTY); 3015 array_free (prepare, EMPTY);
1403 array_free (check, EMPTY); 3016 array_free (check, EMPTY);
1404#if EV_ASYNC_ENABLE 3017#if EV_ASYNC_ENABLE
1405 array_free (async, EMPTY); 3018 array_free (async, EMPTY);
1406#endif 3019#endif
1407 3020
1408 backend = 0; 3021 backend = 0;
3022
3023#if EV_MULTIPLICITY
3024 if (ev_is_default_loop (EV_A))
3025#endif
3026 ev_default_loop_ptr = 0;
3027#if EV_MULTIPLICITY
3028 else
3029 ev_free (EV_A);
3030#endif
1409} 3031}
1410 3032
1411#if EV_USE_INOTIFY 3033#if EV_USE_INOTIFY
1412void inline_size infy_fork (EV_P); 3034inline_size void infy_fork (EV_P);
1413#endif 3035#endif
1414 3036
1415void inline_size 3037inline_size void
1416loop_fork (EV_P) 3038loop_fork (EV_P)
1417{ 3039{
1418#if EV_USE_PORT 3040#if EV_USE_PORT
1419 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 3041 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1420#endif 3042#endif
1426#endif 3048#endif
1427#if EV_USE_INOTIFY 3049#if EV_USE_INOTIFY
1428 infy_fork (EV_A); 3050 infy_fork (EV_A);
1429#endif 3051#endif
1430 3052
1431 if (ev_is_active (&pipeev)) 3053#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3054 if (ev_is_active (&pipe_w) && postfork != 2)
3055 {
3056 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3057
3058 ev_ref (EV_A);
3059 ev_io_stop (EV_A_ &pipe_w);
3060
3061 if (evpipe [0] >= 0)
3062 EV_WIN32_CLOSE_FD (evpipe [0]);
3063
3064 evpipe_init (EV_A);
3065 /* iterate over everything, in case we missed something before */
3066 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1432 { 3067 }
1433 /* this "locks" the handlers against writing to the pipe */ 3068#endif
1434 /* while we modify the fd vars */ 3069
1435 gotsig = 1; 3070 postfork = 0;
3071}
3072
3073#if EV_MULTIPLICITY
3074
3075struct ev_loop * ecb_cold
3076ev_loop_new (unsigned int flags) EV_THROW
3077{
3078 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3079
3080 memset (EV_A, 0, sizeof (struct ev_loop));
3081 loop_init (EV_A_ flags);
3082
3083 if (ev_backend (EV_A))
3084 return EV_A;
3085
3086 ev_free (EV_A);
3087 return 0;
3088}
3089
3090#endif /* multiplicity */
3091
3092#if EV_VERIFY
3093static void noinline ecb_cold
3094verify_watcher (EV_P_ W w)
3095{
3096 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
3097
3098 if (w->pending)
3099 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3100}
3101
3102static void noinline ecb_cold
3103verify_heap (EV_P_ ANHE *heap, int N)
3104{
3105 int i;
3106
3107 for (i = HEAP0; i < N + HEAP0; ++i)
3108 {
3109 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3110 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3111 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3112
3113 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3114 }
3115}
3116
3117static void noinline ecb_cold
3118array_verify (EV_P_ W *ws, int cnt)
3119{
3120 while (cnt--)
3121 {
3122 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3123 verify_watcher (EV_A_ ws [cnt]);
3124 }
3125}
3126#endif
3127
3128#if EV_FEATURE_API
3129void ecb_cold
3130ev_verify (EV_P) EV_THROW
3131{
3132#if EV_VERIFY
3133 int i;
3134 WL w, w2;
3135
3136 assert (activecnt >= -1);
3137
3138 assert (fdchangemax >= fdchangecnt);
3139 for (i = 0; i < fdchangecnt; ++i)
3140 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3141
3142 assert (anfdmax >= 0);
3143 for (i = 0; i < anfdmax; ++i)
3144 {
3145 int j = 0;
3146
3147 for (w = w2 = anfds [i].head; w; w = w->next)
3148 {
3149 verify_watcher (EV_A_ (W)w);
3150
3151 if (j++ & 1)
3152 {
3153 assert (("libev: io watcher list contains a loop", w != w2));
3154 w2 = w2->next;
3155 }
3156
3157 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3158 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3159 }
3160 }
3161
3162 assert (timermax >= timercnt);
3163 verify_heap (EV_A_ timers, timercnt);
3164
3165#if EV_PERIODIC_ENABLE
3166 assert (periodicmax >= periodiccnt);
3167 verify_heap (EV_A_ periodics, periodiccnt);
3168#endif
3169
3170 for (i = NUMPRI; i--; )
3171 {
3172 assert (pendingmax [i] >= pendingcnt [i]);
3173#if EV_IDLE_ENABLE
3174 assert (idleall >= 0);
3175 assert (idlemax [i] >= idlecnt [i]);
3176 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3177#endif
3178 }
3179
3180#if EV_FORK_ENABLE
3181 assert (forkmax >= forkcnt);
3182 array_verify (EV_A_ (W *)forks, forkcnt);
3183#endif
3184
3185#if EV_CLEANUP_ENABLE
3186 assert (cleanupmax >= cleanupcnt);
3187 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3188#endif
3189
1436#if EV_ASYNC_ENABLE 3190#if EV_ASYNC_ENABLE
1437 gotasync = 1; 3191 assert (asyncmax >= asynccnt);
3192 array_verify (EV_A_ (W *)asyncs, asynccnt);
3193#endif
3194
3195#if EV_PREPARE_ENABLE
3196 assert (preparemax >= preparecnt);
3197 array_verify (EV_A_ (W *)prepares, preparecnt);
3198#endif
3199
3200#if EV_CHECK_ENABLE
3201 assert (checkmax >= checkcnt);
3202 array_verify (EV_A_ (W *)checks, checkcnt);
3203#endif
3204
3205# if 0
3206#if EV_CHILD_ENABLE
3207 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3208 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3209#endif
1438#endif 3210# endif
1439
1440 ev_ref (EV_A);
1441 ev_io_stop (EV_A_ &pipeev);
1442
1443#if EV_USE_EVENTFD
1444 if (evfd >= 0)
1445 close (evfd);
1446#endif 3211#endif
1447
1448 if (evpipe [0] >= 0)
1449 {
1450 close (evpipe [0]);
1451 close (evpipe [1]);
1452 }
1453
1454 evpipe_init (EV_A);
1455 /* now iterate over everything, in case we missed something */
1456 pipecb (EV_A_ &pipeev, EV_READ);
1457 }
1458
1459 postfork = 0;
1460} 3212}
3213#endif
1461 3214
1462#if EV_MULTIPLICITY 3215#if EV_MULTIPLICITY
1463struct ev_loop * 3216struct ev_loop * ecb_cold
1464ev_loop_new (unsigned int flags) 3217#else
1465{ 3218int
1466 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1467
1468 memset (loop, 0, sizeof (struct ev_loop));
1469
1470 loop_init (EV_A_ flags);
1471
1472 if (ev_backend (EV_A))
1473 return loop;
1474
1475 return 0;
1476}
1477
1478void
1479ev_loop_destroy (EV_P)
1480{
1481 loop_destroy (EV_A);
1482 ev_free (loop);
1483}
1484
1485void
1486ev_loop_fork (EV_P)
1487{
1488 postfork = 1; /* must be in line with ev_default_fork */
1489}
1490#endif 3219#endif
1491 3220ev_default_loop (unsigned int flags) EV_THROW
3221{
3222 if (!ev_default_loop_ptr)
3223 {
1492#if EV_MULTIPLICITY 3224#if EV_MULTIPLICITY
1493struct ev_loop *
1494ev_default_loop_init (unsigned int flags)
1495#else
1496int
1497ev_default_loop (unsigned int flags)
1498#endif
1499{
1500 if (!ev_default_loop_ptr)
1501 {
1502#if EV_MULTIPLICITY
1503 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3225 EV_P = ev_default_loop_ptr = &default_loop_struct;
1504#else 3226#else
1505 ev_default_loop_ptr = 1; 3227 ev_default_loop_ptr = 1;
1506#endif 3228#endif
1507 3229
1508 loop_init (EV_A_ flags); 3230 loop_init (EV_A_ flags);
1509 3231
1510 if (ev_backend (EV_A)) 3232 if (ev_backend (EV_A))
1511 { 3233 {
1512#ifndef _WIN32 3234#if EV_CHILD_ENABLE
1513 ev_signal_init (&childev, childcb, SIGCHLD); 3235 ev_signal_init (&childev, childcb, SIGCHLD);
1514 ev_set_priority (&childev, EV_MAXPRI); 3236 ev_set_priority (&childev, EV_MAXPRI);
1515 ev_signal_start (EV_A_ &childev); 3237 ev_signal_start (EV_A_ &childev);
1516 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3238 ev_unref (EV_A); /* child watcher should not keep loop alive */
1517#endif 3239#endif
1522 3244
1523 return ev_default_loop_ptr; 3245 return ev_default_loop_ptr;
1524} 3246}
1525 3247
1526void 3248void
1527ev_default_destroy (void) 3249ev_loop_fork (EV_P) EV_THROW
1528{ 3250{
1529#if EV_MULTIPLICITY 3251 postfork = 1;
1530 struct ev_loop *loop = ev_default_loop_ptr;
1531#endif
1532
1533#ifndef _WIN32
1534 ev_ref (EV_A); /* child watcher */
1535 ev_signal_stop (EV_A_ &childev);
1536#endif
1537
1538 loop_destroy (EV_A);
1539}
1540
1541void
1542ev_default_fork (void)
1543{
1544#if EV_MULTIPLICITY
1545 struct ev_loop *loop = ev_default_loop_ptr;
1546#endif
1547
1548 if (backend)
1549 postfork = 1; /* must be in line with ev_loop_fork */
1550} 3252}
1551 3253
1552/*****************************************************************************/ 3254/*****************************************************************************/
1553 3255
1554void 3256void
1555ev_invoke (EV_P_ void *w, int revents) 3257ev_invoke (EV_P_ void *w, int revents)
1556{ 3258{
1557 EV_CB_INVOKE ((W)w, revents); 3259 EV_CB_INVOKE ((W)w, revents);
1558} 3260}
1559 3261
1560void inline_speed 3262unsigned int
1561call_pending (EV_P) 3263ev_pending_count (EV_P) EV_THROW
1562{ 3264{
1563 int pri; 3265 int pri;
3266 unsigned int count = 0;
1564 3267
1565 for (pri = NUMPRI; pri--; ) 3268 for (pri = NUMPRI; pri--; )
3269 count += pendingcnt [pri];
3270
3271 return count;
3272}
3273
3274void noinline
3275ev_invoke_pending (EV_P)
3276{
3277 pendingpri = NUMPRI;
3278
3279 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3280 {
3281 --pendingpri;
3282
1566 while (pendingcnt [pri]) 3283 while (pendingcnt [pendingpri])
1567 {
1568 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1569
1570 if (expect_true (p->w))
1571 { 3284 {
1572 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 3285 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1573 3286
1574 p->w->pending = 0; 3287 p->w->pending = 0;
1575 EV_CB_INVOKE (p->w, p->events); 3288 EV_CB_INVOKE (p->w, p->events);
3289 EV_FREQUENT_CHECK;
1576 } 3290 }
1577 } 3291 }
1578} 3292}
1579 3293
1580#if EV_IDLE_ENABLE 3294#if EV_IDLE_ENABLE
1581void inline_size 3295/* make idle watchers pending. this handles the "call-idle */
3296/* only when higher priorities are idle" logic */
3297inline_size void
1582idle_reify (EV_P) 3298idle_reify (EV_P)
1583{ 3299{
1584 if (expect_false (idleall)) 3300 if (expect_false (idleall))
1585 { 3301 {
1586 int pri; 3302 int pri;
1598 } 3314 }
1599 } 3315 }
1600} 3316}
1601#endif 3317#endif
1602 3318
1603void inline_size 3319/* make timers pending */
3320inline_size void
1604timers_reify (EV_P) 3321timers_reify (EV_P)
1605{ 3322{
3323 EV_FREQUENT_CHECK;
3324
1606 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 3325 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1607 { 3326 {
1608 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 3327 do
1609
1610 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1611
1612 /* first reschedule or stop timer */
1613 if (w->repeat)
1614 { 3328 {
3329 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3330
3331 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3332
3333 /* first reschedule or stop timer */
3334 if (w->repeat)
3335 {
1615 ev_at (w) += w->repeat; 3336 ev_at (w) += w->repeat;
1616 if (ev_at (w) < mn_now) 3337 if (ev_at (w) < mn_now)
1617 ev_at (w) = mn_now; 3338 ev_at (w) = mn_now;
1618 3339
1619 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3340 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1620 3341
1621 ANHE_at_set (timers [HEAP0]); 3342 ANHE_at_cache (timers [HEAP0]);
1622 downheap (timers, timercnt, HEAP0); 3343 downheap (timers, timercnt, HEAP0);
3344 }
3345 else
3346 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3347
3348 EV_FREQUENT_CHECK;
3349 feed_reverse (EV_A_ (W)w);
1623 } 3350 }
1624 else 3351 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1625 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1626 3352
1627 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 3353 feed_reverse_done (EV_A_ EV_TIMER);
1628 } 3354 }
1629} 3355}
1630 3356
1631#if EV_PERIODIC_ENABLE 3357#if EV_PERIODIC_ENABLE
1632void inline_size 3358
3359static void noinline
3360periodic_recalc (EV_P_ ev_periodic *w)
3361{
3362 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3363 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3364
3365 /* the above almost always errs on the low side */
3366 while (at <= ev_rt_now)
3367 {
3368 ev_tstamp nat = at + w->interval;
3369
3370 /* when resolution fails us, we use ev_rt_now */
3371 if (expect_false (nat == at))
3372 {
3373 at = ev_rt_now;
3374 break;
3375 }
3376
3377 at = nat;
3378 }
3379
3380 ev_at (w) = at;
3381}
3382
3383/* make periodics pending */
3384inline_size void
1633periodics_reify (EV_P) 3385periodics_reify (EV_P)
1634{ 3386{
3387 EV_FREQUENT_CHECK;
3388
1635 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 3389 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1636 { 3390 {
1637 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 3391 do
1638
1639 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1640
1641 /* first reschedule or stop timer */
1642 if (w->reschedule_cb)
1643 { 3392 {
3393 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3394
3395 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3396
3397 /* first reschedule or stop timer */
3398 if (w->reschedule_cb)
3399 {
1644 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3400 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1645 3401
1646 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 3402 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1647 3403
1648 ANHE_at_set (periodics [HEAP0]); 3404 ANHE_at_cache (periodics [HEAP0]);
1649 downheap (periodics, periodiccnt, HEAP0); 3405 downheap (periodics, periodiccnt, HEAP0);
3406 }
3407 else if (w->interval)
3408 {
3409 periodic_recalc (EV_A_ w);
3410 ANHE_at_cache (periodics [HEAP0]);
3411 downheap (periodics, periodiccnt, HEAP0);
3412 }
3413 else
3414 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3415
3416 EV_FREQUENT_CHECK;
3417 feed_reverse (EV_A_ (W)w);
1650 } 3418 }
1651 else if (w->interval) 3419 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1652 {
1653 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1654 /* if next trigger time is not sufficiently in the future, put it there */
1655 /* this might happen because of floating point inexactness */
1656 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1657 {
1658 ev_at (w) += w->interval;
1659 3420
1660 /* if interval is unreasonably low we might still have a time in the past */
1661 /* so correct this. this will make the periodic very inexact, but the user */
1662 /* has effectively asked to get triggered more often than possible */
1663 if (ev_at (w) < ev_rt_now)
1664 ev_at (w) = ev_rt_now;
1665 }
1666
1667 ANHE_at_set (periodics [HEAP0]);
1668 downheap (periodics, periodiccnt, HEAP0);
1669 }
1670 else
1671 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1672
1673 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 3421 feed_reverse_done (EV_A_ EV_PERIODIC);
1674 } 3422 }
1675} 3423}
1676 3424
3425/* simply recalculate all periodics */
3426/* TODO: maybe ensure that at least one event happens when jumping forward? */
1677static void noinline 3427static void noinline ecb_cold
1678periodics_reschedule (EV_P) 3428periodics_reschedule (EV_P)
1679{ 3429{
1680 int i; 3430 int i;
1681 3431
1682 /* adjust periodics after time jump */ 3432 /* adjust periodics after time jump */
1685 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 3435 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1686 3436
1687 if (w->reschedule_cb) 3437 if (w->reschedule_cb)
1688 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3438 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1689 else if (w->interval) 3439 else if (w->interval)
1690 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 3440 periodic_recalc (EV_A_ w);
1691 3441
1692 ANHE_at_set (periodics [i]); 3442 ANHE_at_cache (periodics [i]);
1693 } 3443 }
1694 3444
1695 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */ 3445 reheap (periodics, periodiccnt);
1696 /* also, this is easy and corretc for both 2-heaps and 4-heaps */ 3446}
3447#endif
3448
3449/* adjust all timers by a given offset */
3450static void noinline ecb_cold
3451timers_reschedule (EV_P_ ev_tstamp adjust)
3452{
3453 int i;
3454
1697 for (i = 0; i < periodiccnt; ++i) 3455 for (i = 0; i < timercnt; ++i)
1698 upheap (periodics, i + HEAP0); 3456 {
3457 ANHE *he = timers + i + HEAP0;
3458 ANHE_w (*he)->at += adjust;
3459 ANHE_at_cache (*he);
3460 }
1699} 3461}
1700#endif
1701 3462
1702void inline_speed 3463/* fetch new monotonic and realtime times from the kernel */
3464/* also detect if there was a timejump, and act accordingly */
3465inline_speed void
1703time_update (EV_P_ ev_tstamp max_block) 3466time_update (EV_P_ ev_tstamp max_block)
1704{ 3467{
1705 int i;
1706
1707#if EV_USE_MONOTONIC 3468#if EV_USE_MONOTONIC
1708 if (expect_true (have_monotonic)) 3469 if (expect_true (have_monotonic))
1709 { 3470 {
3471 int i;
1710 ev_tstamp odiff = rtmn_diff; 3472 ev_tstamp odiff = rtmn_diff;
1711 3473
1712 mn_now = get_clock (); 3474 mn_now = get_clock ();
1713 3475
1714 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3476 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1730 * doesn't hurt either as we only do this on time-jumps or 3492 * doesn't hurt either as we only do this on time-jumps or
1731 * in the unlikely event of having been preempted here. 3493 * in the unlikely event of having been preempted here.
1732 */ 3494 */
1733 for (i = 4; --i; ) 3495 for (i = 4; --i; )
1734 { 3496 {
3497 ev_tstamp diff;
1735 rtmn_diff = ev_rt_now - mn_now; 3498 rtmn_diff = ev_rt_now - mn_now;
1736 3499
3500 diff = odiff - rtmn_diff;
3501
1737 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 3502 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1738 return; /* all is well */ 3503 return; /* all is well */
1739 3504
1740 ev_rt_now = ev_time (); 3505 ev_rt_now = ev_time ();
1741 mn_now = get_clock (); 3506 mn_now = get_clock ();
1742 now_floor = mn_now; 3507 now_floor = mn_now;
1743 } 3508 }
1744 3509
3510 /* no timer adjustment, as the monotonic clock doesn't jump */
3511 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1745# if EV_PERIODIC_ENABLE 3512# if EV_PERIODIC_ENABLE
1746 periodics_reschedule (EV_A); 3513 periodics_reschedule (EV_A);
1747# endif 3514# endif
1748 /* no timer adjustment, as the monotonic clock doesn't jump */
1749 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1750 } 3515 }
1751 else 3516 else
1752#endif 3517#endif
1753 { 3518 {
1754 ev_rt_now = ev_time (); 3519 ev_rt_now = ev_time ();
1755 3520
1756 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3521 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1757 { 3522 {
3523 /* adjust timers. this is easy, as the offset is the same for all of them */
3524 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1758#if EV_PERIODIC_ENABLE 3525#if EV_PERIODIC_ENABLE
1759 periodics_reschedule (EV_A); 3526 periodics_reschedule (EV_A);
1760#endif 3527#endif
1761 /* adjust timers. this is easy, as the offset is the same for all of them */
1762 for (i = 0; i < timercnt; ++i)
1763 {
1764 ANHE *he = timers + i + HEAP0;
1765 ANHE_w (*he)->at += ev_rt_now - mn_now;
1766 ANHE_at_set (*he);
1767 }
1768 } 3528 }
1769 3529
1770 mn_now = ev_rt_now; 3530 mn_now = ev_rt_now;
1771 } 3531 }
1772} 3532}
1773 3533
1774void 3534int
1775ev_ref (EV_P)
1776{
1777 ++activecnt;
1778}
1779
1780void
1781ev_unref (EV_P)
1782{
1783 --activecnt;
1784}
1785
1786static int loop_done;
1787
1788void
1789ev_loop (EV_P_ int flags) 3535ev_run (EV_P_ int flags)
1790{ 3536{
3537#if EV_FEATURE_API
3538 ++loop_depth;
3539#endif
3540
3541 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3542
1791 loop_done = EVUNLOOP_CANCEL; 3543 loop_done = EVBREAK_CANCEL;
1792 3544
1793 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3545 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1794 3546
1795 do 3547 do
1796 { 3548 {
3549#if EV_VERIFY >= 2
3550 ev_verify (EV_A);
3551#endif
3552
1797#ifndef _WIN32 3553#ifndef _WIN32
1798 if (expect_false (curpid)) /* penalise the forking check even more */ 3554 if (expect_false (curpid)) /* penalise the forking check even more */
1799 if (expect_false (getpid () != curpid)) 3555 if (expect_false (getpid () != curpid))
1800 { 3556 {
1801 curpid = getpid (); 3557 curpid = getpid ();
1807 /* we might have forked, so queue fork handlers */ 3563 /* we might have forked, so queue fork handlers */
1808 if (expect_false (postfork)) 3564 if (expect_false (postfork))
1809 if (forkcnt) 3565 if (forkcnt)
1810 { 3566 {
1811 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3567 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1812 call_pending (EV_A); 3568 EV_INVOKE_PENDING;
1813 } 3569 }
1814#endif 3570#endif
1815 3571
3572#if EV_PREPARE_ENABLE
1816 /* queue prepare watchers (and execute them) */ 3573 /* queue prepare watchers (and execute them) */
1817 if (expect_false (preparecnt)) 3574 if (expect_false (preparecnt))
1818 { 3575 {
1819 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3576 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1820 call_pending (EV_A); 3577 EV_INVOKE_PENDING;
1821 } 3578 }
3579#endif
1822 3580
1823 if (expect_false (!activecnt)) 3581 if (expect_false (loop_done))
1824 break; 3582 break;
1825 3583
1826 /* we might have forked, so reify kernel state if necessary */ 3584 /* we might have forked, so reify kernel state if necessary */
1827 if (expect_false (postfork)) 3585 if (expect_false (postfork))
1828 loop_fork (EV_A); 3586 loop_fork (EV_A);
1833 /* calculate blocking time */ 3591 /* calculate blocking time */
1834 { 3592 {
1835 ev_tstamp waittime = 0.; 3593 ev_tstamp waittime = 0.;
1836 ev_tstamp sleeptime = 0.; 3594 ev_tstamp sleeptime = 0.;
1837 3595
3596 /* remember old timestamp for io_blocktime calculation */
3597 ev_tstamp prev_mn_now = mn_now;
3598
3599 /* update time to cancel out callback processing overhead */
3600 time_update (EV_A_ 1e100);
3601
3602 /* from now on, we want a pipe-wake-up */
3603 pipe_write_wanted = 1;
3604
3605 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3606
1838 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3607 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1839 { 3608 {
1840 /* update time to cancel out callback processing overhead */
1841 time_update (EV_A_ 1e100);
1842
1843 waittime = MAX_BLOCKTIME; 3609 waittime = MAX_BLOCKTIME;
1844 3610
1845 if (timercnt) 3611 if (timercnt)
1846 { 3612 {
1847 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 3613 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1848 if (waittime > to) waittime = to; 3614 if (waittime > to) waittime = to;
1849 } 3615 }
1850 3616
1851#if EV_PERIODIC_ENABLE 3617#if EV_PERIODIC_ENABLE
1852 if (periodiccnt) 3618 if (periodiccnt)
1853 { 3619 {
1854 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3620 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1855 if (waittime > to) waittime = to; 3621 if (waittime > to) waittime = to;
1856 } 3622 }
1857#endif 3623#endif
1858 3624
3625 /* don't let timeouts decrease the waittime below timeout_blocktime */
1859 if (expect_false (waittime < timeout_blocktime)) 3626 if (expect_false (waittime < timeout_blocktime))
1860 waittime = timeout_blocktime; 3627 waittime = timeout_blocktime;
1861 3628
1862 sleeptime = waittime - backend_fudge; 3629 /* at this point, we NEED to wait, so we have to ensure */
3630 /* to pass a minimum nonzero value to the backend */
3631 if (expect_false (waittime < backend_mintime))
3632 waittime = backend_mintime;
1863 3633
3634 /* extra check because io_blocktime is commonly 0 */
1864 if (expect_true (sleeptime > io_blocktime)) 3635 if (expect_false (io_blocktime))
1865 sleeptime = io_blocktime;
1866
1867 if (sleeptime)
1868 { 3636 {
3637 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3638
3639 if (sleeptime > waittime - backend_mintime)
3640 sleeptime = waittime - backend_mintime;
3641
3642 if (expect_true (sleeptime > 0.))
3643 {
1869 ev_sleep (sleeptime); 3644 ev_sleep (sleeptime);
1870 waittime -= sleeptime; 3645 waittime -= sleeptime;
3646 }
1871 } 3647 }
1872 } 3648 }
1873 3649
3650#if EV_FEATURE_API
1874 ++loop_count; 3651 ++loop_count;
3652#endif
3653 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1875 backend_poll (EV_A_ waittime); 3654 backend_poll (EV_A_ waittime);
3655 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3656
3657 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3658
3659 ECB_MEMORY_FENCE_ACQUIRE;
3660 if (pipe_write_skipped)
3661 {
3662 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3663 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3664 }
3665
1876 3666
1877 /* update ev_rt_now, do magic */ 3667 /* update ev_rt_now, do magic */
1878 time_update (EV_A_ waittime + sleeptime); 3668 time_update (EV_A_ waittime + sleeptime);
1879 } 3669 }
1880 3670
1887#if EV_IDLE_ENABLE 3677#if EV_IDLE_ENABLE
1888 /* queue idle watchers unless other events are pending */ 3678 /* queue idle watchers unless other events are pending */
1889 idle_reify (EV_A); 3679 idle_reify (EV_A);
1890#endif 3680#endif
1891 3681
3682#if EV_CHECK_ENABLE
1892 /* queue check watchers, to be executed first */ 3683 /* queue check watchers, to be executed first */
1893 if (expect_false (checkcnt)) 3684 if (expect_false (checkcnt))
1894 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3685 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3686#endif
1895 3687
1896 call_pending (EV_A); 3688 EV_INVOKE_PENDING;
1897 } 3689 }
1898 while (expect_true ( 3690 while (expect_true (
1899 activecnt 3691 activecnt
1900 && !loop_done 3692 && !loop_done
1901 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3693 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1902 )); 3694 ));
1903 3695
1904 if (loop_done == EVUNLOOP_ONE) 3696 if (loop_done == EVBREAK_ONE)
1905 loop_done = EVUNLOOP_CANCEL; 3697 loop_done = EVBREAK_CANCEL;
3698
3699#if EV_FEATURE_API
3700 --loop_depth;
3701#endif
3702
3703 return activecnt;
1906} 3704}
1907 3705
1908void 3706void
1909ev_unloop (EV_P_ int how) 3707ev_break (EV_P_ int how) EV_THROW
1910{ 3708{
1911 loop_done = how; 3709 loop_done = how;
1912} 3710}
1913 3711
3712void
3713ev_ref (EV_P) EV_THROW
3714{
3715 ++activecnt;
3716}
3717
3718void
3719ev_unref (EV_P) EV_THROW
3720{
3721 --activecnt;
3722}
3723
3724void
3725ev_now_update (EV_P) EV_THROW
3726{
3727 time_update (EV_A_ 1e100);
3728}
3729
3730void
3731ev_suspend (EV_P) EV_THROW
3732{
3733 ev_now_update (EV_A);
3734}
3735
3736void
3737ev_resume (EV_P) EV_THROW
3738{
3739 ev_tstamp mn_prev = mn_now;
3740
3741 ev_now_update (EV_A);
3742 timers_reschedule (EV_A_ mn_now - mn_prev);
3743#if EV_PERIODIC_ENABLE
3744 /* TODO: really do this? */
3745 periodics_reschedule (EV_A);
3746#endif
3747}
3748
1914/*****************************************************************************/ 3749/*****************************************************************************/
3750/* singly-linked list management, used when the expected list length is short */
1915 3751
1916void inline_size 3752inline_size void
1917wlist_add (WL *head, WL elem) 3753wlist_add (WL *head, WL elem)
1918{ 3754{
1919 elem->next = *head; 3755 elem->next = *head;
1920 *head = elem; 3756 *head = elem;
1921} 3757}
1922 3758
1923void inline_size 3759inline_size void
1924wlist_del (WL *head, WL elem) 3760wlist_del (WL *head, WL elem)
1925{ 3761{
1926 while (*head) 3762 while (*head)
1927 { 3763 {
1928 if (*head == elem) 3764 if (expect_true (*head == elem))
1929 { 3765 {
1930 *head = elem->next; 3766 *head = elem->next;
1931 return; 3767 break;
1932 } 3768 }
1933 3769
1934 head = &(*head)->next; 3770 head = &(*head)->next;
1935 } 3771 }
1936} 3772}
1937 3773
1938void inline_speed 3774/* internal, faster, version of ev_clear_pending */
3775inline_speed void
1939clear_pending (EV_P_ W w) 3776clear_pending (EV_P_ W w)
1940{ 3777{
1941 if (w->pending) 3778 if (w->pending)
1942 { 3779 {
1943 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3780 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1944 w->pending = 0; 3781 w->pending = 0;
1945 } 3782 }
1946} 3783}
1947 3784
1948int 3785int
1949ev_clear_pending (EV_P_ void *w) 3786ev_clear_pending (EV_P_ void *w) EV_THROW
1950{ 3787{
1951 W w_ = (W)w; 3788 W w_ = (W)w;
1952 int pending = w_->pending; 3789 int pending = w_->pending;
1953 3790
1954 if (expect_true (pending)) 3791 if (expect_true (pending))
1955 { 3792 {
1956 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3793 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3794 p->w = (W)&pending_w;
1957 w_->pending = 0; 3795 w_->pending = 0;
1958 p->w = 0;
1959 return p->events; 3796 return p->events;
1960 } 3797 }
1961 else 3798 else
1962 return 0; 3799 return 0;
1963} 3800}
1964 3801
1965void inline_size 3802inline_size void
1966pri_adjust (EV_P_ W w) 3803pri_adjust (EV_P_ W w)
1967{ 3804{
1968 int pri = w->priority; 3805 int pri = ev_priority (w);
1969 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3806 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1970 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3807 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1971 w->priority = pri; 3808 ev_set_priority (w, pri);
1972} 3809}
1973 3810
1974void inline_speed 3811inline_speed void
1975ev_start (EV_P_ W w, int active) 3812ev_start (EV_P_ W w, int active)
1976{ 3813{
1977 pri_adjust (EV_A_ w); 3814 pri_adjust (EV_A_ w);
1978 w->active = active; 3815 w->active = active;
1979 ev_ref (EV_A); 3816 ev_ref (EV_A);
1980} 3817}
1981 3818
1982void inline_size 3819inline_size void
1983ev_stop (EV_P_ W w) 3820ev_stop (EV_P_ W w)
1984{ 3821{
1985 ev_unref (EV_A); 3822 ev_unref (EV_A);
1986 w->active = 0; 3823 w->active = 0;
1987} 3824}
1988 3825
1989/*****************************************************************************/ 3826/*****************************************************************************/
1990 3827
1991void noinline 3828void noinline
1992ev_io_start (EV_P_ ev_io *w) 3829ev_io_start (EV_P_ ev_io *w) EV_THROW
1993{ 3830{
1994 int fd = w->fd; 3831 int fd = w->fd;
1995 3832
1996 if (expect_false (ev_is_active (w))) 3833 if (expect_false (ev_is_active (w)))
1997 return; 3834 return;
1998 3835
1999 assert (("ev_io_start called with negative fd", fd >= 0)); 3836 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3837 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3838
3839 EV_FREQUENT_CHECK;
2000 3840
2001 ev_start (EV_A_ (W)w, 1); 3841 ev_start (EV_A_ (W)w, 1);
2002 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3842 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2003 wlist_add (&anfds[fd].head, (WL)w); 3843 wlist_add (&anfds[fd].head, (WL)w);
2004 3844
3845 /* common bug, apparently */
3846 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3847
2005 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3848 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2006 w->events &= ~EV_IOFDSET; 3849 w->events &= ~EV__IOFDSET;
3850
3851 EV_FREQUENT_CHECK;
2007} 3852}
2008 3853
2009void noinline 3854void noinline
2010ev_io_stop (EV_P_ ev_io *w) 3855ev_io_stop (EV_P_ ev_io *w) EV_THROW
2011{ 3856{
2012 clear_pending (EV_A_ (W)w); 3857 clear_pending (EV_A_ (W)w);
2013 if (expect_false (!ev_is_active (w))) 3858 if (expect_false (!ev_is_active (w)))
2014 return; 3859 return;
2015 3860
2016 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3861 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3862
3863 EV_FREQUENT_CHECK;
2017 3864
2018 wlist_del (&anfds[w->fd].head, (WL)w); 3865 wlist_del (&anfds[w->fd].head, (WL)w);
2019 ev_stop (EV_A_ (W)w); 3866 ev_stop (EV_A_ (W)w);
2020 3867
2021 fd_change (EV_A_ w->fd, 1); 3868 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3869
3870 EV_FREQUENT_CHECK;
2022} 3871}
2023 3872
2024void noinline 3873void noinline
2025ev_timer_start (EV_P_ ev_timer *w) 3874ev_timer_start (EV_P_ ev_timer *w) EV_THROW
2026{ 3875{
2027 if (expect_false (ev_is_active (w))) 3876 if (expect_false (ev_is_active (w)))
2028 return; 3877 return;
2029 3878
2030 ev_at (w) += mn_now; 3879 ev_at (w) += mn_now;
2031 3880
2032 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3881 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2033 3882
3883 EV_FREQUENT_CHECK;
3884
3885 ++timercnt;
2034 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 3886 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2035 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 3887 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2036 ANHE_w (timers [ev_active (w)]) = (WT)w; 3888 ANHE_w (timers [ev_active (w)]) = (WT)w;
2037 ANHE_at_set (timers [ev_active (w)]); 3889 ANHE_at_cache (timers [ev_active (w)]);
2038 upheap (timers, ev_active (w)); 3890 upheap (timers, ev_active (w));
2039 3891
3892 EV_FREQUENT_CHECK;
3893
2040 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 3894 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2041} 3895}
2042 3896
2043void noinline 3897void noinline
2044ev_timer_stop (EV_P_ ev_timer *w) 3898ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
2045{ 3899{
2046 clear_pending (EV_A_ (W)w); 3900 clear_pending (EV_A_ (W)w);
2047 if (expect_false (!ev_is_active (w))) 3901 if (expect_false (!ev_is_active (w)))
2048 return; 3902 return;
2049 3903
3904 EV_FREQUENT_CHECK;
3905
2050 { 3906 {
2051 int active = ev_active (w); 3907 int active = ev_active (w);
2052 3908
2053 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 3909 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2054 3910
3911 --timercnt;
3912
2055 if (expect_true (active < timercnt + HEAP0 - 1)) 3913 if (expect_true (active < timercnt + HEAP0))
2056 { 3914 {
2057 timers [active] = timers [timercnt + HEAP0 - 1]; 3915 timers [active] = timers [timercnt + HEAP0];
2058 adjustheap (timers, timercnt, active); 3916 adjustheap (timers, timercnt, active);
2059 } 3917 }
2060
2061 --timercnt;
2062 } 3918 }
2063 3919
2064 ev_at (w) -= mn_now; 3920 ev_at (w) -= mn_now;
2065 3921
2066 ev_stop (EV_A_ (W)w); 3922 ev_stop (EV_A_ (W)w);
3923
3924 EV_FREQUENT_CHECK;
2067} 3925}
2068 3926
2069void noinline 3927void noinline
2070ev_timer_again (EV_P_ ev_timer *w) 3928ev_timer_again (EV_P_ ev_timer *w) EV_THROW
2071{ 3929{
3930 EV_FREQUENT_CHECK;
3931
3932 clear_pending (EV_A_ (W)w);
3933
2072 if (ev_is_active (w)) 3934 if (ev_is_active (w))
2073 { 3935 {
2074 if (w->repeat) 3936 if (w->repeat)
2075 { 3937 {
2076 ev_at (w) = mn_now + w->repeat; 3938 ev_at (w) = mn_now + w->repeat;
2077 ANHE_at_set (timers [ev_active (w)]); 3939 ANHE_at_cache (timers [ev_active (w)]);
2078 adjustheap (timers, timercnt, ev_active (w)); 3940 adjustheap (timers, timercnt, ev_active (w));
2079 } 3941 }
2080 else 3942 else
2081 ev_timer_stop (EV_A_ w); 3943 ev_timer_stop (EV_A_ w);
2082 } 3944 }
2083 else if (w->repeat) 3945 else if (w->repeat)
2084 { 3946 {
2085 ev_at (w) = w->repeat; 3947 ev_at (w) = w->repeat;
2086 ev_timer_start (EV_A_ w); 3948 ev_timer_start (EV_A_ w);
2087 } 3949 }
3950
3951 EV_FREQUENT_CHECK;
3952}
3953
3954ev_tstamp
3955ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3956{
3957 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2088} 3958}
2089 3959
2090#if EV_PERIODIC_ENABLE 3960#if EV_PERIODIC_ENABLE
2091void noinline 3961void noinline
2092ev_periodic_start (EV_P_ ev_periodic *w) 3962ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
2093{ 3963{
2094 if (expect_false (ev_is_active (w))) 3964 if (expect_false (ev_is_active (w)))
2095 return; 3965 return;
2096 3966
2097 if (w->reschedule_cb) 3967 if (w->reschedule_cb)
2098 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3968 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2099 else if (w->interval) 3969 else if (w->interval)
2100 { 3970 {
2101 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3971 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2102 /* this formula differs from the one in periodic_reify because we do not always round up */ 3972 periodic_recalc (EV_A_ w);
2103 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2104 } 3973 }
2105 else 3974 else
2106 ev_at (w) = w->offset; 3975 ev_at (w) = w->offset;
2107 3976
3977 EV_FREQUENT_CHECK;
3978
3979 ++periodiccnt;
2108 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 3980 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2109 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 3981 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2110 ANHE_w (periodics [ev_active (w)]) = (WT)w; 3982 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2111 ANHE_at_set (periodics [ev_active (w)]); 3983 ANHE_at_cache (periodics [ev_active (w)]);
2112 upheap (periodics, ev_active (w)); 3984 upheap (periodics, ev_active (w));
2113 3985
3986 EV_FREQUENT_CHECK;
3987
2114 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 3988 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2115} 3989}
2116 3990
2117void noinline 3991void noinline
2118ev_periodic_stop (EV_P_ ev_periodic *w) 3992ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
2119{ 3993{
2120 clear_pending (EV_A_ (W)w); 3994 clear_pending (EV_A_ (W)w);
2121 if (expect_false (!ev_is_active (w))) 3995 if (expect_false (!ev_is_active (w)))
2122 return; 3996 return;
2123 3997
3998 EV_FREQUENT_CHECK;
3999
2124 { 4000 {
2125 int active = ev_active (w); 4001 int active = ev_active (w);
2126 4002
2127 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 4003 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2128 4004
4005 --periodiccnt;
4006
2129 if (expect_true (active < periodiccnt + HEAP0 - 1)) 4007 if (expect_true (active < periodiccnt + HEAP0))
2130 { 4008 {
2131 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 4009 periodics [active] = periodics [periodiccnt + HEAP0];
2132 adjustheap (periodics, periodiccnt, active); 4010 adjustheap (periodics, periodiccnt, active);
2133 } 4011 }
2134
2135 --periodiccnt;
2136 } 4012 }
2137 4013
2138 ev_stop (EV_A_ (W)w); 4014 ev_stop (EV_A_ (W)w);
4015
4016 EV_FREQUENT_CHECK;
2139} 4017}
2140 4018
2141void noinline 4019void noinline
2142ev_periodic_again (EV_P_ ev_periodic *w) 4020ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
2143{ 4021{
2144 /* TODO: use adjustheap and recalculation */ 4022 /* TODO: use adjustheap and recalculation */
2145 ev_periodic_stop (EV_A_ w); 4023 ev_periodic_stop (EV_A_ w);
2146 ev_periodic_start (EV_A_ w); 4024 ev_periodic_start (EV_A_ w);
2147} 4025}
2149 4027
2150#ifndef SA_RESTART 4028#ifndef SA_RESTART
2151# define SA_RESTART 0 4029# define SA_RESTART 0
2152#endif 4030#endif
2153 4031
4032#if EV_SIGNAL_ENABLE
4033
2154void noinline 4034void noinline
2155ev_signal_start (EV_P_ ev_signal *w) 4035ev_signal_start (EV_P_ ev_signal *w) EV_THROW
2156{ 4036{
2157#if EV_MULTIPLICITY
2158 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2159#endif
2160 if (expect_false (ev_is_active (w))) 4037 if (expect_false (ev_is_active (w)))
2161 return; 4038 return;
2162 4039
2163 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 4040 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2164 4041
2165 evpipe_init (EV_A); 4042#if EV_MULTIPLICITY
4043 assert (("libev: a signal must not be attached to two different loops",
4044 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2166 4045
4046 signals [w->signum - 1].loop = EV_A;
4047 ECB_MEMORY_FENCE_RELEASE;
4048#endif
4049
4050 EV_FREQUENT_CHECK;
4051
4052#if EV_USE_SIGNALFD
4053 if (sigfd == -2)
2167 { 4054 {
2168#ifndef _WIN32 4055 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2169 sigset_t full, prev; 4056 if (sigfd < 0 && errno == EINVAL)
2170 sigfillset (&full); 4057 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2171 sigprocmask (SIG_SETMASK, &full, &prev);
2172#endif
2173 4058
2174 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 4059 if (sigfd >= 0)
4060 {
4061 fd_intern (sigfd); /* doing it twice will not hurt */
2175 4062
2176#ifndef _WIN32 4063 sigemptyset (&sigfd_set);
2177 sigprocmask (SIG_SETMASK, &prev, 0); 4064
2178#endif 4065 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4066 ev_set_priority (&sigfd_w, EV_MAXPRI);
4067 ev_io_start (EV_A_ &sigfd_w);
4068 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4069 }
2179 } 4070 }
4071
4072 if (sigfd >= 0)
4073 {
4074 /* TODO: check .head */
4075 sigaddset (&sigfd_set, w->signum);
4076 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4077
4078 signalfd (sigfd, &sigfd_set, 0);
4079 }
4080#endif
2180 4081
2181 ev_start (EV_A_ (W)w, 1); 4082 ev_start (EV_A_ (W)w, 1);
2182 wlist_add (&signals [w->signum - 1].head, (WL)w); 4083 wlist_add (&signals [w->signum - 1].head, (WL)w);
2183 4084
2184 if (!((WL)w)->next) 4085 if (!((WL)w)->next)
4086# if EV_USE_SIGNALFD
4087 if (sigfd < 0) /*TODO*/
4088# endif
2185 { 4089 {
2186#if _WIN32 4090# ifdef _WIN32
4091 evpipe_init (EV_A);
4092
2187 signal (w->signum, ev_sighandler); 4093 signal (w->signum, ev_sighandler);
2188#else 4094# else
2189 struct sigaction sa; 4095 struct sigaction sa;
4096
4097 evpipe_init (EV_A);
4098
2190 sa.sa_handler = ev_sighandler; 4099 sa.sa_handler = ev_sighandler;
2191 sigfillset (&sa.sa_mask); 4100 sigfillset (&sa.sa_mask);
2192 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 4101 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2193 sigaction (w->signum, &sa, 0); 4102 sigaction (w->signum, &sa, 0);
4103
4104 if (origflags & EVFLAG_NOSIGMASK)
4105 {
4106 sigemptyset (&sa.sa_mask);
4107 sigaddset (&sa.sa_mask, w->signum);
4108 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4109 }
2194#endif 4110#endif
2195 } 4111 }
4112
4113 EV_FREQUENT_CHECK;
2196} 4114}
2197 4115
2198void noinline 4116void noinline
2199ev_signal_stop (EV_P_ ev_signal *w) 4117ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
2200{ 4118{
2201 clear_pending (EV_A_ (W)w); 4119 clear_pending (EV_A_ (W)w);
2202 if (expect_false (!ev_is_active (w))) 4120 if (expect_false (!ev_is_active (w)))
2203 return; 4121 return;
2204 4122
4123 EV_FREQUENT_CHECK;
4124
2205 wlist_del (&signals [w->signum - 1].head, (WL)w); 4125 wlist_del (&signals [w->signum - 1].head, (WL)w);
2206 ev_stop (EV_A_ (W)w); 4126 ev_stop (EV_A_ (W)w);
2207 4127
2208 if (!signals [w->signum - 1].head) 4128 if (!signals [w->signum - 1].head)
4129 {
4130#if EV_MULTIPLICITY
4131 signals [w->signum - 1].loop = 0; /* unattach from signal */
4132#endif
4133#if EV_USE_SIGNALFD
4134 if (sigfd >= 0)
4135 {
4136 sigset_t ss;
4137
4138 sigemptyset (&ss);
4139 sigaddset (&ss, w->signum);
4140 sigdelset (&sigfd_set, w->signum);
4141
4142 signalfd (sigfd, &sigfd_set, 0);
4143 sigprocmask (SIG_UNBLOCK, &ss, 0);
4144 }
4145 else
4146#endif
2209 signal (w->signum, SIG_DFL); 4147 signal (w->signum, SIG_DFL);
4148 }
4149
4150 EV_FREQUENT_CHECK;
2210} 4151}
4152
4153#endif
4154
4155#if EV_CHILD_ENABLE
2211 4156
2212void 4157void
2213ev_child_start (EV_P_ ev_child *w) 4158ev_child_start (EV_P_ ev_child *w) EV_THROW
2214{ 4159{
2215#if EV_MULTIPLICITY 4160#if EV_MULTIPLICITY
2216 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4161 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2217#endif 4162#endif
2218 if (expect_false (ev_is_active (w))) 4163 if (expect_false (ev_is_active (w)))
2219 return; 4164 return;
2220 4165
4166 EV_FREQUENT_CHECK;
4167
2221 ev_start (EV_A_ (W)w, 1); 4168 ev_start (EV_A_ (W)w, 1);
2222 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4169 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4170
4171 EV_FREQUENT_CHECK;
2223} 4172}
2224 4173
2225void 4174void
2226ev_child_stop (EV_P_ ev_child *w) 4175ev_child_stop (EV_P_ ev_child *w) EV_THROW
2227{ 4176{
2228 clear_pending (EV_A_ (W)w); 4177 clear_pending (EV_A_ (W)w);
2229 if (expect_false (!ev_is_active (w))) 4178 if (expect_false (!ev_is_active (w)))
2230 return; 4179 return;
2231 4180
4181 EV_FREQUENT_CHECK;
4182
2232 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4183 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2233 ev_stop (EV_A_ (W)w); 4184 ev_stop (EV_A_ (W)w);
4185
4186 EV_FREQUENT_CHECK;
2234} 4187}
4188
4189#endif
2235 4190
2236#if EV_STAT_ENABLE 4191#if EV_STAT_ENABLE
2237 4192
2238# ifdef _WIN32 4193# ifdef _WIN32
2239# undef lstat 4194# undef lstat
2240# define lstat(a,b) _stati64 (a,b) 4195# define lstat(a,b) _stati64 (a,b)
2241# endif 4196# endif
2242 4197
2243#define DEF_STAT_INTERVAL 5.0074891 4198#define DEF_STAT_INTERVAL 5.0074891
4199#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2244#define MIN_STAT_INTERVAL 0.1074891 4200#define MIN_STAT_INTERVAL 0.1074891
2245 4201
2246static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 4202static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2247 4203
2248#if EV_USE_INOTIFY 4204#if EV_USE_INOTIFY
2249# define EV_INOTIFY_BUFSIZE 8192 4205
4206/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4207# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2250 4208
2251static void noinline 4209static void noinline
2252infy_add (EV_P_ ev_stat *w) 4210infy_add (EV_P_ ev_stat *w)
2253{ 4211{
2254 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 4212 w->wd = inotify_add_watch (fs_fd, w->path,
4213 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4214 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4215 | IN_DONT_FOLLOW | IN_MASK_ADD);
2255 4216
2256 if (w->wd < 0) 4217 if (w->wd >= 0)
4218 {
4219 struct statfs sfs;
4220
4221 /* now local changes will be tracked by inotify, but remote changes won't */
4222 /* unless the filesystem is known to be local, we therefore still poll */
4223 /* also do poll on <2.6.25, but with normal frequency */
4224
4225 if (!fs_2625)
4226 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4227 else if (!statfs (w->path, &sfs)
4228 && (sfs.f_type == 0x1373 /* devfs */
4229 || sfs.f_type == 0x4006 /* fat */
4230 || sfs.f_type == 0x4d44 /* msdos */
4231 || sfs.f_type == 0xEF53 /* ext2/3 */
4232 || sfs.f_type == 0x72b6 /* jffs2 */
4233 || sfs.f_type == 0x858458f6 /* ramfs */
4234 || sfs.f_type == 0x5346544e /* ntfs */
4235 || sfs.f_type == 0x3153464a /* jfs */
4236 || sfs.f_type == 0x9123683e /* btrfs */
4237 || sfs.f_type == 0x52654973 /* reiser3 */
4238 || sfs.f_type == 0x01021994 /* tmpfs */
4239 || sfs.f_type == 0x58465342 /* xfs */))
4240 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4241 else
4242 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2257 { 4243 }
2258 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 4244 else
4245 {
4246 /* can't use inotify, continue to stat */
4247 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2259 4248
2260 /* monitor some parent directory for speedup hints */ 4249 /* if path is not there, monitor some parent directory for speedup hints */
2261 /* note that exceeding the hardcoded limit is not a correctness issue, */ 4250 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2262 /* but an efficiency issue only */ 4251 /* but an efficiency issue only */
2263 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4252 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2264 { 4253 {
2265 char path [4096]; 4254 char path [4096];
2266 strcpy (path, w->path); 4255 strcpy (path, w->path);
2270 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 4259 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2271 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 4260 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2272 4261
2273 char *pend = strrchr (path, '/'); 4262 char *pend = strrchr (path, '/');
2274 4263
2275 if (!pend) 4264 if (!pend || pend == path)
2276 break; /* whoops, no '/', complain to your admin */ 4265 break;
2277 4266
2278 *pend = 0; 4267 *pend = 0;
2279 w->wd = inotify_add_watch (fs_fd, path, mask); 4268 w->wd = inotify_add_watch (fs_fd, path, mask);
2280 } 4269 }
2281 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4270 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2282 } 4271 }
2283 } 4272 }
2284 else
2285 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2286 4273
2287 if (w->wd >= 0) 4274 if (w->wd >= 0)
2288 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4275 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4276
4277 /* now re-arm timer, if required */
4278 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4279 ev_timer_again (EV_A_ &w->timer);
4280 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2289} 4281}
2290 4282
2291static void noinline 4283static void noinline
2292infy_del (EV_P_ ev_stat *w) 4284infy_del (EV_P_ ev_stat *w)
2293{ 4285{
2296 4288
2297 if (wd < 0) 4289 if (wd < 0)
2298 return; 4290 return;
2299 4291
2300 w->wd = -2; 4292 w->wd = -2;
2301 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4293 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2302 wlist_del (&fs_hash [slot].head, (WL)w); 4294 wlist_del (&fs_hash [slot].head, (WL)w);
2303 4295
2304 /* remove this watcher, if others are watching it, they will rearm */ 4296 /* remove this watcher, if others are watching it, they will rearm */
2305 inotify_rm_watch (fs_fd, wd); 4297 inotify_rm_watch (fs_fd, wd);
2306} 4298}
2307 4299
2308static void noinline 4300static void noinline
2309infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4301infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2310{ 4302{
2311 if (slot < 0) 4303 if (slot < 0)
2312 /* overflow, need to check for all hahs slots */ 4304 /* overflow, need to check for all hash slots */
2313 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4305 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2314 infy_wd (EV_A_ slot, wd, ev); 4306 infy_wd (EV_A_ slot, wd, ev);
2315 else 4307 else
2316 { 4308 {
2317 WL w_; 4309 WL w_;
2318 4310
2319 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4311 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2320 { 4312 {
2321 ev_stat *w = (ev_stat *)w_; 4313 ev_stat *w = (ev_stat *)w_;
2322 w_ = w_->next; /* lets us remove this watcher and all before it */ 4314 w_ = w_->next; /* lets us remove this watcher and all before it */
2323 4315
2324 if (w->wd == wd || wd == -1) 4316 if (w->wd == wd || wd == -1)
2325 { 4317 {
2326 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4318 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2327 { 4319 {
4320 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2328 w->wd = -1; 4321 w->wd = -1;
2329 infy_add (EV_A_ w); /* re-add, no matter what */ 4322 infy_add (EV_A_ w); /* re-add, no matter what */
2330 } 4323 }
2331 4324
2332 stat_timer_cb (EV_A_ &w->timer, 0); 4325 stat_timer_cb (EV_A_ &w->timer, 0);
2337 4330
2338static void 4331static void
2339infy_cb (EV_P_ ev_io *w, int revents) 4332infy_cb (EV_P_ ev_io *w, int revents)
2340{ 4333{
2341 char buf [EV_INOTIFY_BUFSIZE]; 4334 char buf [EV_INOTIFY_BUFSIZE];
2342 struct inotify_event *ev = (struct inotify_event *)buf;
2343 int ofs; 4335 int ofs;
2344 int len = read (fs_fd, buf, sizeof (buf)); 4336 int len = read (fs_fd, buf, sizeof (buf));
2345 4337
2346 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4338 for (ofs = 0; ofs < len; )
4339 {
4340 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2347 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4341 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4342 ofs += sizeof (struct inotify_event) + ev->len;
4343 }
2348} 4344}
2349 4345
2350void inline_size 4346inline_size void ecb_cold
4347ev_check_2625 (EV_P)
4348{
4349 /* kernels < 2.6.25 are borked
4350 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4351 */
4352 if (ev_linux_version () < 0x020619)
4353 return;
4354
4355 fs_2625 = 1;
4356}
4357
4358inline_size int
4359infy_newfd (void)
4360{
4361#if defined IN_CLOEXEC && defined IN_NONBLOCK
4362 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4363 if (fd >= 0)
4364 return fd;
4365#endif
4366 return inotify_init ();
4367}
4368
4369inline_size void
2351infy_init (EV_P) 4370infy_init (EV_P)
2352{ 4371{
2353 if (fs_fd != -2) 4372 if (fs_fd != -2)
2354 return; 4373 return;
2355 4374
4375 fs_fd = -1;
4376
4377 ev_check_2625 (EV_A);
4378
2356 fs_fd = inotify_init (); 4379 fs_fd = infy_newfd ();
2357 4380
2358 if (fs_fd >= 0) 4381 if (fs_fd >= 0)
2359 { 4382 {
4383 fd_intern (fs_fd);
2360 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4384 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2361 ev_set_priority (&fs_w, EV_MAXPRI); 4385 ev_set_priority (&fs_w, EV_MAXPRI);
2362 ev_io_start (EV_A_ &fs_w); 4386 ev_io_start (EV_A_ &fs_w);
4387 ev_unref (EV_A);
2363 } 4388 }
2364} 4389}
2365 4390
2366void inline_size 4391inline_size void
2367infy_fork (EV_P) 4392infy_fork (EV_P)
2368{ 4393{
2369 int slot; 4394 int slot;
2370 4395
2371 if (fs_fd < 0) 4396 if (fs_fd < 0)
2372 return; 4397 return;
2373 4398
4399 ev_ref (EV_A);
4400 ev_io_stop (EV_A_ &fs_w);
2374 close (fs_fd); 4401 close (fs_fd);
2375 fs_fd = inotify_init (); 4402 fs_fd = infy_newfd ();
2376 4403
4404 if (fs_fd >= 0)
4405 {
4406 fd_intern (fs_fd);
4407 ev_io_set (&fs_w, fs_fd, EV_READ);
4408 ev_io_start (EV_A_ &fs_w);
4409 ev_unref (EV_A);
4410 }
4411
2377 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4412 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2378 { 4413 {
2379 WL w_ = fs_hash [slot].head; 4414 WL w_ = fs_hash [slot].head;
2380 fs_hash [slot].head = 0; 4415 fs_hash [slot].head = 0;
2381 4416
2382 while (w_) 4417 while (w_)
2387 w->wd = -1; 4422 w->wd = -1;
2388 4423
2389 if (fs_fd >= 0) 4424 if (fs_fd >= 0)
2390 infy_add (EV_A_ w); /* re-add, no matter what */ 4425 infy_add (EV_A_ w); /* re-add, no matter what */
2391 else 4426 else
4427 {
4428 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4429 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2392 ev_timer_start (EV_A_ &w->timer); 4430 ev_timer_again (EV_A_ &w->timer);
4431 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4432 }
2393 } 4433 }
2394
2395 } 4434 }
2396} 4435}
2397 4436
4437#endif
4438
4439#ifdef _WIN32
4440# define EV_LSTAT(p,b) _stati64 (p, b)
4441#else
4442# define EV_LSTAT(p,b) lstat (p, b)
2398#endif 4443#endif
2399 4444
2400void 4445void
2401ev_stat_stat (EV_P_ ev_stat *w) 4446ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2402{ 4447{
2403 if (lstat (w->path, &w->attr) < 0) 4448 if (lstat (w->path, &w->attr) < 0)
2404 w->attr.st_nlink = 0; 4449 w->attr.st_nlink = 0;
2405 else if (!w->attr.st_nlink) 4450 else if (!w->attr.st_nlink)
2406 w->attr.st_nlink = 1; 4451 w->attr.st_nlink = 1;
2409static void noinline 4454static void noinline
2410stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4455stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2411{ 4456{
2412 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4457 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2413 4458
2414 /* we copy this here each the time so that */ 4459 ev_statdata prev = w->attr;
2415 /* prev has the old value when the callback gets invoked */
2416 w->prev = w->attr;
2417 ev_stat_stat (EV_A_ w); 4460 ev_stat_stat (EV_A_ w);
2418 4461
2419 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4462 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2420 if ( 4463 if (
2421 w->prev.st_dev != w->attr.st_dev 4464 prev.st_dev != w->attr.st_dev
2422 || w->prev.st_ino != w->attr.st_ino 4465 || prev.st_ino != w->attr.st_ino
2423 || w->prev.st_mode != w->attr.st_mode 4466 || prev.st_mode != w->attr.st_mode
2424 || w->prev.st_nlink != w->attr.st_nlink 4467 || prev.st_nlink != w->attr.st_nlink
2425 || w->prev.st_uid != w->attr.st_uid 4468 || prev.st_uid != w->attr.st_uid
2426 || w->prev.st_gid != w->attr.st_gid 4469 || prev.st_gid != w->attr.st_gid
2427 || w->prev.st_rdev != w->attr.st_rdev 4470 || prev.st_rdev != w->attr.st_rdev
2428 || w->prev.st_size != w->attr.st_size 4471 || prev.st_size != w->attr.st_size
2429 || w->prev.st_atime != w->attr.st_atime 4472 || prev.st_atime != w->attr.st_atime
2430 || w->prev.st_mtime != w->attr.st_mtime 4473 || prev.st_mtime != w->attr.st_mtime
2431 || w->prev.st_ctime != w->attr.st_ctime 4474 || prev.st_ctime != w->attr.st_ctime
2432 ) { 4475 ) {
4476 /* we only update w->prev on actual differences */
4477 /* in case we test more often than invoke the callback, */
4478 /* to ensure that prev is always different to attr */
4479 w->prev = prev;
4480
2433 #if EV_USE_INOTIFY 4481 #if EV_USE_INOTIFY
4482 if (fs_fd >= 0)
4483 {
2434 infy_del (EV_A_ w); 4484 infy_del (EV_A_ w);
2435 infy_add (EV_A_ w); 4485 infy_add (EV_A_ w);
2436 ev_stat_stat (EV_A_ w); /* avoid race... */ 4486 ev_stat_stat (EV_A_ w); /* avoid race... */
4487 }
2437 #endif 4488 #endif
2438 4489
2439 ev_feed_event (EV_A_ w, EV_STAT); 4490 ev_feed_event (EV_A_ w, EV_STAT);
2440 } 4491 }
2441} 4492}
2442 4493
2443void 4494void
2444ev_stat_start (EV_P_ ev_stat *w) 4495ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2445{ 4496{
2446 if (expect_false (ev_is_active (w))) 4497 if (expect_false (ev_is_active (w)))
2447 return; 4498 return;
2448 4499
2449 /* since we use memcmp, we need to clear any padding data etc. */
2450 memset (&w->prev, 0, sizeof (ev_statdata));
2451 memset (&w->attr, 0, sizeof (ev_statdata));
2452
2453 ev_stat_stat (EV_A_ w); 4500 ev_stat_stat (EV_A_ w);
2454 4501
4502 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2455 if (w->interval < MIN_STAT_INTERVAL) 4503 w->interval = MIN_STAT_INTERVAL;
2456 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2457 4504
2458 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4505 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2459 ev_set_priority (&w->timer, ev_priority (w)); 4506 ev_set_priority (&w->timer, ev_priority (w));
2460 4507
2461#if EV_USE_INOTIFY 4508#if EV_USE_INOTIFY
2462 infy_init (EV_A); 4509 infy_init (EV_A);
2463 4510
2464 if (fs_fd >= 0) 4511 if (fs_fd >= 0)
2465 infy_add (EV_A_ w); 4512 infy_add (EV_A_ w);
2466 else 4513 else
2467#endif 4514#endif
4515 {
2468 ev_timer_start (EV_A_ &w->timer); 4516 ev_timer_again (EV_A_ &w->timer);
4517 ev_unref (EV_A);
4518 }
2469 4519
2470 ev_start (EV_A_ (W)w, 1); 4520 ev_start (EV_A_ (W)w, 1);
4521
4522 EV_FREQUENT_CHECK;
2471} 4523}
2472 4524
2473void 4525void
2474ev_stat_stop (EV_P_ ev_stat *w) 4526ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2475{ 4527{
2476 clear_pending (EV_A_ (W)w); 4528 clear_pending (EV_A_ (W)w);
2477 if (expect_false (!ev_is_active (w))) 4529 if (expect_false (!ev_is_active (w)))
2478 return; 4530 return;
2479 4531
4532 EV_FREQUENT_CHECK;
4533
2480#if EV_USE_INOTIFY 4534#if EV_USE_INOTIFY
2481 infy_del (EV_A_ w); 4535 infy_del (EV_A_ w);
2482#endif 4536#endif
4537
4538 if (ev_is_active (&w->timer))
4539 {
4540 ev_ref (EV_A);
2483 ev_timer_stop (EV_A_ &w->timer); 4541 ev_timer_stop (EV_A_ &w->timer);
4542 }
2484 4543
2485 ev_stop (EV_A_ (W)w); 4544 ev_stop (EV_A_ (W)w);
4545
4546 EV_FREQUENT_CHECK;
2486} 4547}
2487#endif 4548#endif
2488 4549
2489#if EV_IDLE_ENABLE 4550#if EV_IDLE_ENABLE
2490void 4551void
2491ev_idle_start (EV_P_ ev_idle *w) 4552ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2492{ 4553{
2493 if (expect_false (ev_is_active (w))) 4554 if (expect_false (ev_is_active (w)))
2494 return; 4555 return;
2495 4556
2496 pri_adjust (EV_A_ (W)w); 4557 pri_adjust (EV_A_ (W)w);
4558
4559 EV_FREQUENT_CHECK;
2497 4560
2498 { 4561 {
2499 int active = ++idlecnt [ABSPRI (w)]; 4562 int active = ++idlecnt [ABSPRI (w)];
2500 4563
2501 ++idleall; 4564 ++idleall;
2502 ev_start (EV_A_ (W)w, active); 4565 ev_start (EV_A_ (W)w, active);
2503 4566
2504 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 4567 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2505 idles [ABSPRI (w)][active - 1] = w; 4568 idles [ABSPRI (w)][active - 1] = w;
2506 } 4569 }
4570
4571 EV_FREQUENT_CHECK;
2507} 4572}
2508 4573
2509void 4574void
2510ev_idle_stop (EV_P_ ev_idle *w) 4575ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2511{ 4576{
2512 clear_pending (EV_A_ (W)w); 4577 clear_pending (EV_A_ (W)w);
2513 if (expect_false (!ev_is_active (w))) 4578 if (expect_false (!ev_is_active (w)))
2514 return; 4579 return;
2515 4580
4581 EV_FREQUENT_CHECK;
4582
2516 { 4583 {
2517 int active = ev_active (w); 4584 int active = ev_active (w);
2518 4585
2519 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 4586 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2520 ev_active (idles [ABSPRI (w)][active - 1]) = active; 4587 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2521 4588
2522 ev_stop (EV_A_ (W)w); 4589 ev_stop (EV_A_ (W)w);
2523 --idleall; 4590 --idleall;
2524 } 4591 }
2525}
2526#endif
2527 4592
4593 EV_FREQUENT_CHECK;
4594}
4595#endif
4596
4597#if EV_PREPARE_ENABLE
2528void 4598void
2529ev_prepare_start (EV_P_ ev_prepare *w) 4599ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2530{ 4600{
2531 if (expect_false (ev_is_active (w))) 4601 if (expect_false (ev_is_active (w)))
2532 return; 4602 return;
4603
4604 EV_FREQUENT_CHECK;
2533 4605
2534 ev_start (EV_A_ (W)w, ++preparecnt); 4606 ev_start (EV_A_ (W)w, ++preparecnt);
2535 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4607 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2536 prepares [preparecnt - 1] = w; 4608 prepares [preparecnt - 1] = w;
4609
4610 EV_FREQUENT_CHECK;
2537} 4611}
2538 4612
2539void 4613void
2540ev_prepare_stop (EV_P_ ev_prepare *w) 4614ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2541{ 4615{
2542 clear_pending (EV_A_ (W)w); 4616 clear_pending (EV_A_ (W)w);
2543 if (expect_false (!ev_is_active (w))) 4617 if (expect_false (!ev_is_active (w)))
2544 return; 4618 return;
2545 4619
4620 EV_FREQUENT_CHECK;
4621
2546 { 4622 {
2547 int active = ev_active (w); 4623 int active = ev_active (w);
2548 4624
2549 prepares [active - 1] = prepares [--preparecnt]; 4625 prepares [active - 1] = prepares [--preparecnt];
2550 ev_active (prepares [active - 1]) = active; 4626 ev_active (prepares [active - 1]) = active;
2551 } 4627 }
2552 4628
2553 ev_stop (EV_A_ (W)w); 4629 ev_stop (EV_A_ (W)w);
2554}
2555 4630
4631 EV_FREQUENT_CHECK;
4632}
4633#endif
4634
4635#if EV_CHECK_ENABLE
2556void 4636void
2557ev_check_start (EV_P_ ev_check *w) 4637ev_check_start (EV_P_ ev_check *w) EV_THROW
2558{ 4638{
2559 if (expect_false (ev_is_active (w))) 4639 if (expect_false (ev_is_active (w)))
2560 return; 4640 return;
4641
4642 EV_FREQUENT_CHECK;
2561 4643
2562 ev_start (EV_A_ (W)w, ++checkcnt); 4644 ev_start (EV_A_ (W)w, ++checkcnt);
2563 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4645 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2564 checks [checkcnt - 1] = w; 4646 checks [checkcnt - 1] = w;
4647
4648 EV_FREQUENT_CHECK;
2565} 4649}
2566 4650
2567void 4651void
2568ev_check_stop (EV_P_ ev_check *w) 4652ev_check_stop (EV_P_ ev_check *w) EV_THROW
2569{ 4653{
2570 clear_pending (EV_A_ (W)w); 4654 clear_pending (EV_A_ (W)w);
2571 if (expect_false (!ev_is_active (w))) 4655 if (expect_false (!ev_is_active (w)))
2572 return; 4656 return;
2573 4657
4658 EV_FREQUENT_CHECK;
4659
2574 { 4660 {
2575 int active = ev_active (w); 4661 int active = ev_active (w);
2576 4662
2577 checks [active - 1] = checks [--checkcnt]; 4663 checks [active - 1] = checks [--checkcnt];
2578 ev_active (checks [active - 1]) = active; 4664 ev_active (checks [active - 1]) = active;
2579 } 4665 }
2580 4666
2581 ev_stop (EV_A_ (W)w); 4667 ev_stop (EV_A_ (W)w);
4668
4669 EV_FREQUENT_CHECK;
2582} 4670}
4671#endif
2583 4672
2584#if EV_EMBED_ENABLE 4673#if EV_EMBED_ENABLE
2585void noinline 4674void noinline
2586ev_embed_sweep (EV_P_ ev_embed *w) 4675ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2587{ 4676{
2588 ev_loop (w->other, EVLOOP_NONBLOCK); 4677 ev_run (w->other, EVRUN_NOWAIT);
2589} 4678}
2590 4679
2591static void 4680static void
2592embed_io_cb (EV_P_ ev_io *io, int revents) 4681embed_io_cb (EV_P_ ev_io *io, int revents)
2593{ 4682{
2594 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4683 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2595 4684
2596 if (ev_cb (w)) 4685 if (ev_cb (w))
2597 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4686 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2598 else 4687 else
2599 ev_loop (w->other, EVLOOP_NONBLOCK); 4688 ev_run (w->other, EVRUN_NOWAIT);
2600} 4689}
2601 4690
2602static void 4691static void
2603embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4692embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2604{ 4693{
2605 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4694 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2606 4695
2607 { 4696 {
2608 struct ev_loop *loop = w->other; 4697 EV_P = w->other;
2609 4698
2610 while (fdchangecnt) 4699 while (fdchangecnt)
2611 { 4700 {
2612 fd_reify (EV_A); 4701 fd_reify (EV_A);
2613 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4702 ev_run (EV_A_ EVRUN_NOWAIT);
2614 } 4703 }
2615 } 4704 }
4705}
4706
4707static void
4708embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4709{
4710 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4711
4712 ev_embed_stop (EV_A_ w);
4713
4714 {
4715 EV_P = w->other;
4716
4717 ev_loop_fork (EV_A);
4718 ev_run (EV_A_ EVRUN_NOWAIT);
4719 }
4720
4721 ev_embed_start (EV_A_ w);
2616} 4722}
2617 4723
2618#if 0 4724#if 0
2619static void 4725static void
2620embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4726embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2622 ev_idle_stop (EV_A_ idle); 4728 ev_idle_stop (EV_A_ idle);
2623} 4729}
2624#endif 4730#endif
2625 4731
2626void 4732void
2627ev_embed_start (EV_P_ ev_embed *w) 4733ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2628{ 4734{
2629 if (expect_false (ev_is_active (w))) 4735 if (expect_false (ev_is_active (w)))
2630 return; 4736 return;
2631 4737
2632 { 4738 {
2633 struct ev_loop *loop = w->other; 4739 EV_P = w->other;
2634 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4740 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2635 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4741 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2636 } 4742 }
4743
4744 EV_FREQUENT_CHECK;
2637 4745
2638 ev_set_priority (&w->io, ev_priority (w)); 4746 ev_set_priority (&w->io, ev_priority (w));
2639 ev_io_start (EV_A_ &w->io); 4747 ev_io_start (EV_A_ &w->io);
2640 4748
2641 ev_prepare_init (&w->prepare, embed_prepare_cb); 4749 ev_prepare_init (&w->prepare, embed_prepare_cb);
2642 ev_set_priority (&w->prepare, EV_MINPRI); 4750 ev_set_priority (&w->prepare, EV_MINPRI);
2643 ev_prepare_start (EV_A_ &w->prepare); 4751 ev_prepare_start (EV_A_ &w->prepare);
2644 4752
4753 ev_fork_init (&w->fork, embed_fork_cb);
4754 ev_fork_start (EV_A_ &w->fork);
4755
2645 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4756 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2646 4757
2647 ev_start (EV_A_ (W)w, 1); 4758 ev_start (EV_A_ (W)w, 1);
4759
4760 EV_FREQUENT_CHECK;
2648} 4761}
2649 4762
2650void 4763void
2651ev_embed_stop (EV_P_ ev_embed *w) 4764ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2652{ 4765{
2653 clear_pending (EV_A_ (W)w); 4766 clear_pending (EV_A_ (W)w);
2654 if (expect_false (!ev_is_active (w))) 4767 if (expect_false (!ev_is_active (w)))
2655 return; 4768 return;
2656 4769
4770 EV_FREQUENT_CHECK;
4771
2657 ev_io_stop (EV_A_ &w->io); 4772 ev_io_stop (EV_A_ &w->io);
2658 ev_prepare_stop (EV_A_ &w->prepare); 4773 ev_prepare_stop (EV_A_ &w->prepare);
4774 ev_fork_stop (EV_A_ &w->fork);
2659 4775
2660 ev_stop (EV_A_ (W)w); 4776 ev_stop (EV_A_ (W)w);
4777
4778 EV_FREQUENT_CHECK;
2661} 4779}
2662#endif 4780#endif
2663 4781
2664#if EV_FORK_ENABLE 4782#if EV_FORK_ENABLE
2665void 4783void
2666ev_fork_start (EV_P_ ev_fork *w) 4784ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2667{ 4785{
2668 if (expect_false (ev_is_active (w))) 4786 if (expect_false (ev_is_active (w)))
2669 return; 4787 return;
4788
4789 EV_FREQUENT_CHECK;
2670 4790
2671 ev_start (EV_A_ (W)w, ++forkcnt); 4791 ev_start (EV_A_ (W)w, ++forkcnt);
2672 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4792 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2673 forks [forkcnt - 1] = w; 4793 forks [forkcnt - 1] = w;
4794
4795 EV_FREQUENT_CHECK;
2674} 4796}
2675 4797
2676void 4798void
2677ev_fork_stop (EV_P_ ev_fork *w) 4799ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2678{ 4800{
2679 clear_pending (EV_A_ (W)w); 4801 clear_pending (EV_A_ (W)w);
2680 if (expect_false (!ev_is_active (w))) 4802 if (expect_false (!ev_is_active (w)))
2681 return; 4803 return;
2682 4804
4805 EV_FREQUENT_CHECK;
4806
2683 { 4807 {
2684 int active = ev_active (w); 4808 int active = ev_active (w);
2685 4809
2686 forks [active - 1] = forks [--forkcnt]; 4810 forks [active - 1] = forks [--forkcnt];
2687 ev_active (forks [active - 1]) = active; 4811 ev_active (forks [active - 1]) = active;
2688 } 4812 }
2689 4813
2690 ev_stop (EV_A_ (W)w); 4814 ev_stop (EV_A_ (W)w);
4815
4816 EV_FREQUENT_CHECK;
4817}
4818#endif
4819
4820#if EV_CLEANUP_ENABLE
4821void
4822ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4823{
4824 if (expect_false (ev_is_active (w)))
4825 return;
4826
4827 EV_FREQUENT_CHECK;
4828
4829 ev_start (EV_A_ (W)w, ++cleanupcnt);
4830 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4831 cleanups [cleanupcnt - 1] = w;
4832
4833 /* cleanup watchers should never keep a refcount on the loop */
4834 ev_unref (EV_A);
4835 EV_FREQUENT_CHECK;
4836}
4837
4838void
4839ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4840{
4841 clear_pending (EV_A_ (W)w);
4842 if (expect_false (!ev_is_active (w)))
4843 return;
4844
4845 EV_FREQUENT_CHECK;
4846 ev_ref (EV_A);
4847
4848 {
4849 int active = ev_active (w);
4850
4851 cleanups [active - 1] = cleanups [--cleanupcnt];
4852 ev_active (cleanups [active - 1]) = active;
4853 }
4854
4855 ev_stop (EV_A_ (W)w);
4856
4857 EV_FREQUENT_CHECK;
2691} 4858}
2692#endif 4859#endif
2693 4860
2694#if EV_ASYNC_ENABLE 4861#if EV_ASYNC_ENABLE
2695void 4862void
2696ev_async_start (EV_P_ ev_async *w) 4863ev_async_start (EV_P_ ev_async *w) EV_THROW
2697{ 4864{
2698 if (expect_false (ev_is_active (w))) 4865 if (expect_false (ev_is_active (w)))
2699 return; 4866 return;
2700 4867
4868 w->sent = 0;
4869
2701 evpipe_init (EV_A); 4870 evpipe_init (EV_A);
4871
4872 EV_FREQUENT_CHECK;
2702 4873
2703 ev_start (EV_A_ (W)w, ++asynccnt); 4874 ev_start (EV_A_ (W)w, ++asynccnt);
2704 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 4875 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2705 asyncs [asynccnt - 1] = w; 4876 asyncs [asynccnt - 1] = w;
4877
4878 EV_FREQUENT_CHECK;
2706} 4879}
2707 4880
2708void 4881void
2709ev_async_stop (EV_P_ ev_async *w) 4882ev_async_stop (EV_P_ ev_async *w) EV_THROW
2710{ 4883{
2711 clear_pending (EV_A_ (W)w); 4884 clear_pending (EV_A_ (W)w);
2712 if (expect_false (!ev_is_active (w))) 4885 if (expect_false (!ev_is_active (w)))
2713 return; 4886 return;
2714 4887
4888 EV_FREQUENT_CHECK;
4889
2715 { 4890 {
2716 int active = ev_active (w); 4891 int active = ev_active (w);
2717 4892
2718 asyncs [active - 1] = asyncs [--asynccnt]; 4893 asyncs [active - 1] = asyncs [--asynccnt];
2719 ev_active (asyncs [active - 1]) = active; 4894 ev_active (asyncs [active - 1]) = active;
2720 } 4895 }
2721 4896
2722 ev_stop (EV_A_ (W)w); 4897 ev_stop (EV_A_ (W)w);
4898
4899 EV_FREQUENT_CHECK;
2723} 4900}
2724 4901
2725void 4902void
2726ev_async_send (EV_P_ ev_async *w) 4903ev_async_send (EV_P_ ev_async *w) EV_THROW
2727{ 4904{
2728 w->sent = 1; 4905 w->sent = 1;
2729 evpipe_write (EV_A_ &gotasync); 4906 evpipe_write (EV_A_ &async_pending);
2730} 4907}
2731#endif 4908#endif
2732 4909
2733/*****************************************************************************/ 4910/*****************************************************************************/
2734 4911
2744once_cb (EV_P_ struct ev_once *once, int revents) 4921once_cb (EV_P_ struct ev_once *once, int revents)
2745{ 4922{
2746 void (*cb)(int revents, void *arg) = once->cb; 4923 void (*cb)(int revents, void *arg) = once->cb;
2747 void *arg = once->arg; 4924 void *arg = once->arg;
2748 4925
2749 ev_io_stop (EV_A_ &once->io); 4926 ev_io_stop (EV_A_ &once->io);
2750 ev_timer_stop (EV_A_ &once->to); 4927 ev_timer_stop (EV_A_ &once->to);
2751 ev_free (once); 4928 ev_free (once);
2752 4929
2753 cb (revents, arg); 4930 cb (revents, arg);
2754} 4931}
2755 4932
2756static void 4933static void
2757once_cb_io (EV_P_ ev_io *w, int revents) 4934once_cb_io (EV_P_ ev_io *w, int revents)
2758{ 4935{
2759 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4936 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4937
4938 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2760} 4939}
2761 4940
2762static void 4941static void
2763once_cb_to (EV_P_ ev_timer *w, int revents) 4942once_cb_to (EV_P_ ev_timer *w, int revents)
2764{ 4943{
2765 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4944 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4945
4946 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2766} 4947}
2767 4948
2768void 4949void
2769ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4950ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
2770{ 4951{
2771 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4952 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2772 4953
2773 if (expect_false (!once)) 4954 if (expect_false (!once))
2774 { 4955 {
2775 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4956 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2776 return; 4957 return;
2777 } 4958 }
2778 4959
2779 once->cb = cb; 4960 once->cb = cb;
2780 once->arg = arg; 4961 once->arg = arg;
2792 ev_timer_set (&once->to, timeout, 0.); 4973 ev_timer_set (&once->to, timeout, 0.);
2793 ev_timer_start (EV_A_ &once->to); 4974 ev_timer_start (EV_A_ &once->to);
2794 } 4975 }
2795} 4976}
2796 4977
4978/*****************************************************************************/
4979
4980#if EV_WALK_ENABLE
4981void ecb_cold
4982ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4983{
4984 int i, j;
4985 ev_watcher_list *wl, *wn;
4986
4987 if (types & (EV_IO | EV_EMBED))
4988 for (i = 0; i < anfdmax; ++i)
4989 for (wl = anfds [i].head; wl; )
4990 {
4991 wn = wl->next;
4992
4993#if EV_EMBED_ENABLE
4994 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4995 {
4996 if (types & EV_EMBED)
4997 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4998 }
4999 else
5000#endif
5001#if EV_USE_INOTIFY
5002 if (ev_cb ((ev_io *)wl) == infy_cb)
5003 ;
5004 else
5005#endif
5006 if ((ev_io *)wl != &pipe_w)
5007 if (types & EV_IO)
5008 cb (EV_A_ EV_IO, wl);
5009
5010 wl = wn;
5011 }
5012
5013 if (types & (EV_TIMER | EV_STAT))
5014 for (i = timercnt + HEAP0; i-- > HEAP0; )
5015#if EV_STAT_ENABLE
5016 /*TODO: timer is not always active*/
5017 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5018 {
5019 if (types & EV_STAT)
5020 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5021 }
5022 else
5023#endif
5024 if (types & EV_TIMER)
5025 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5026
5027#if EV_PERIODIC_ENABLE
5028 if (types & EV_PERIODIC)
5029 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5030 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5031#endif
5032
5033#if EV_IDLE_ENABLE
5034 if (types & EV_IDLE)
5035 for (j = NUMPRI; j--; )
5036 for (i = idlecnt [j]; i--; )
5037 cb (EV_A_ EV_IDLE, idles [j][i]);
5038#endif
5039
5040#if EV_FORK_ENABLE
5041 if (types & EV_FORK)
5042 for (i = forkcnt; i--; )
5043 if (ev_cb (forks [i]) != embed_fork_cb)
5044 cb (EV_A_ EV_FORK, forks [i]);
5045#endif
5046
5047#if EV_ASYNC_ENABLE
5048 if (types & EV_ASYNC)
5049 for (i = asynccnt; i--; )
5050 cb (EV_A_ EV_ASYNC, asyncs [i]);
5051#endif
5052
5053#if EV_PREPARE_ENABLE
5054 if (types & EV_PREPARE)
5055 for (i = preparecnt; i--; )
5056# if EV_EMBED_ENABLE
5057 if (ev_cb (prepares [i]) != embed_prepare_cb)
5058# endif
5059 cb (EV_A_ EV_PREPARE, prepares [i]);
5060#endif
5061
5062#if EV_CHECK_ENABLE
5063 if (types & EV_CHECK)
5064 for (i = checkcnt; i--; )
5065 cb (EV_A_ EV_CHECK, checks [i]);
5066#endif
5067
5068#if EV_SIGNAL_ENABLE
5069 if (types & EV_SIGNAL)
5070 for (i = 0; i < EV_NSIG - 1; ++i)
5071 for (wl = signals [i].head; wl; )
5072 {
5073 wn = wl->next;
5074 cb (EV_A_ EV_SIGNAL, wl);
5075 wl = wn;
5076 }
5077#endif
5078
5079#if EV_CHILD_ENABLE
5080 if (types & EV_CHILD)
5081 for (i = (EV_PID_HASHSIZE); i--; )
5082 for (wl = childs [i]; wl; )
5083 {
5084 wn = wl->next;
5085 cb (EV_A_ EV_CHILD, wl);
5086 wl = wn;
5087 }
5088#endif
5089/* EV_STAT 0x00001000 /* stat data changed */
5090/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5091}
5092#endif
5093
2797#if EV_MULTIPLICITY 5094#if EV_MULTIPLICITY
2798 #include "ev_wrap.h" 5095 #include "ev_wrap.h"
2799#endif 5096#endif
2800 5097
2801#ifdef __cplusplus
2802}
2803#endif
2804

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines