ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.64 by root, Sun Nov 4 23:14:11 2007 UTC vs.
Revision 1.479 by root, Sun Dec 20 01:31:17 2015 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
39
40/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
32# include "config.h" 45# include "config.h"
46# endif
47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
33 67
34# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
69# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
71# endif
72# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
74# endif
75# else
76# ifndef EV_USE_MONOTONIC
77# define EV_USE_MONOTONIC 0
78# endif
79# ifndef EV_USE_REALTIME
80# define EV_USE_REALTIME 0
81# endif
37# endif 82# endif
38 83
84# if HAVE_NANOSLEEP
85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
91# endif
92
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
40# define EV_USE_SELECT 1 99# define EV_USE_SELECT 0
41# endif 100# endif
42 101
43# if HAVE_POLL && HAVE_POLL_H 102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
44# define EV_USE_POLL 1 108# define EV_USE_POLL 0
45# endif 109# endif
46 110
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
115# else
116# undef EV_USE_EPOLL
48# define EV_USE_EPOLL 1 117# define EV_USE_EPOLL 0
49# endif 118# endif
50 119
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121# ifndef EV_USE_KQUEUE
122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123# endif
124# else
125# undef EV_USE_KQUEUE
52# define EV_USE_KQUEUE 1 126# define EV_USE_KQUEUE 0
53# endif 127# endif
54 128
129# if HAVE_PORT_H && HAVE_PORT_CREATE
130# ifndef EV_USE_PORT
131# define EV_USE_PORT EV_FEATURE_BACKENDS
132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
55#endif 136# endif
56 137
57#include <math.h> 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
145# endif
146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
58#include <stdlib.h> 167#include <stdlib.h>
59#include <unistd.h> 168#include <string.h>
60#include <fcntl.h> 169#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 170#include <stddef.h>
63 171
64#include <stdio.h> 172#include <stdio.h>
65 173
66#include <assert.h> 174#include <assert.h>
67#include <errno.h> 175#include <errno.h>
68#include <sys/types.h> 176#include <sys/types.h>
177#include <time.h>
178#include <limits.h>
179
180#include <signal.h>
181
182#ifdef EV_H
183# include EV_H
184#else
185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
197#endif
198
69#ifndef WIN32 199#ifndef _WIN32
200# include <sys/time.h>
70# include <sys/wait.h> 201# include <sys/wait.h>
202# include <unistd.h>
203#else
204# include <io.h>
205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
207# include <windows.h>
208# ifndef EV_SELECT_IS_WINSOCKET
209# define EV_SELECT_IS_WINSOCKET 1
71#endif 210# endif
72#include <sys/time.h> 211# undef EV_AVOID_STDIO
73#include <time.h> 212#endif
74 213
75/**/ 214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
221
222/* this block tries to deduce configuration from header-defined symbols and defaults */
223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# define EV_NSIG (8 * sizeof (sigset_t) + 1)
247#endif
248
249#ifndef EV_USE_FLOOR
250# define EV_USE_FLOOR 0
251#endif
252
253#ifndef EV_USE_CLOCK_SYSCALL
254# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
255# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
256# else
257# define EV_USE_CLOCK_SYSCALL 0
258# endif
259#endif
260
261#if !(_POSIX_TIMERS > 0)
262# ifndef EV_USE_MONOTONIC
263# define EV_USE_MONOTONIC 0
264# endif
265# ifndef EV_USE_REALTIME
266# define EV_USE_REALTIME 0
267# endif
268#endif
76 269
77#ifndef EV_USE_MONOTONIC 270#ifndef EV_USE_MONOTONIC
271# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
272# define EV_USE_MONOTONIC EV_FEATURE_OS
273# else
78# define EV_USE_MONOTONIC 1 274# define EV_USE_MONOTONIC 0
275# endif
276#endif
277
278#ifndef EV_USE_REALTIME
279# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
280#endif
281
282#ifndef EV_USE_NANOSLEEP
283# if _POSIX_C_SOURCE >= 199309L
284# define EV_USE_NANOSLEEP EV_FEATURE_OS
285# else
286# define EV_USE_NANOSLEEP 0
287# endif
79#endif 288#endif
80 289
81#ifndef EV_USE_SELECT 290#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 291# define EV_USE_SELECT EV_FEATURE_BACKENDS
83#endif 292#endif
84 293
85#ifndef EV_USE_POLL 294#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 295# ifdef _WIN32
296# define EV_USE_POLL 0
297# else
298# define EV_USE_POLL EV_FEATURE_BACKENDS
299# endif
87#endif 300#endif
88 301
89#ifndef EV_USE_EPOLL 302#ifndef EV_USE_EPOLL
303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
304# define EV_USE_EPOLL EV_FEATURE_BACKENDS
305# else
90# define EV_USE_EPOLL 0 306# define EV_USE_EPOLL 0
307# endif
91#endif 308#endif
92 309
93#ifndef EV_USE_KQUEUE 310#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 311# define EV_USE_KQUEUE 0
95#endif 312#endif
96 313
314#ifndef EV_USE_PORT
315# define EV_USE_PORT 0
316#endif
317
97#ifndef EV_USE_WIN32 318#ifndef EV_USE_INOTIFY
98# ifdef WIN32 319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
99# define EV_USE_WIN32 1 320# define EV_USE_INOTIFY EV_FEATURE_OS
100# else 321# else
101# define EV_USE_WIN32 0 322# define EV_USE_INOTIFY 0
102# endif 323# endif
103#endif 324#endif
104 325
326#ifndef EV_PID_HASHSIZE
327# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
328#endif
329
330#ifndef EV_INOTIFY_HASHSIZE
331# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
332#endif
333
105#ifndef EV_USE_REALTIME 334#ifndef EV_USE_EVENTFD
106# define EV_USE_REALTIME 1 335# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
336# define EV_USE_EVENTFD EV_FEATURE_OS
337# else
338# define EV_USE_EVENTFD 0
107#endif 339# endif
340#endif
108 341
109/**/ 342#ifndef EV_USE_SIGNALFD
343# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
344# define EV_USE_SIGNALFD EV_FEATURE_OS
345# else
346# define EV_USE_SIGNALFD 0
347# endif
348#endif
349
350#if 0 /* debugging */
351# define EV_VERIFY 3
352# define EV_USE_4HEAP 1
353# define EV_HEAP_CACHE_AT 1
354#endif
355
356#ifndef EV_VERIFY
357# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
358#endif
359
360#ifndef EV_USE_4HEAP
361# define EV_USE_4HEAP EV_FEATURE_DATA
362#endif
363
364#ifndef EV_HEAP_CACHE_AT
365# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
366#endif
367
368#ifdef ANDROID
369/* supposedly, android doesn't typedef fd_mask */
370# undef EV_USE_SELECT
371# define EV_USE_SELECT 0
372/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
373# undef EV_USE_CLOCK_SYSCALL
374# define EV_USE_CLOCK_SYSCALL 0
375#endif
376
377/* aix's poll.h seems to cause lots of trouble */
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
380# undef EV_USE_POLL
381# define EV_USE_POLL 0
382#endif
383
384/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
385/* which makes programs even slower. might work on other unices, too. */
386#if EV_USE_CLOCK_SYSCALL
387# include <sys/syscall.h>
388# ifdef SYS_clock_gettime
389# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
390# undef EV_USE_MONOTONIC
391# define EV_USE_MONOTONIC 1
392# else
393# undef EV_USE_CLOCK_SYSCALL
394# define EV_USE_CLOCK_SYSCALL 0
395# endif
396#endif
397
398/* this block fixes any misconfiguration where we know we run into trouble otherwise */
110 399
111#ifndef CLOCK_MONOTONIC 400#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC 401# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0 402# define EV_USE_MONOTONIC 0
114#endif 403#endif
116#ifndef CLOCK_REALTIME 405#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME 406# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0 407# define EV_USE_REALTIME 0
119#endif 408#endif
120 409
410#if !EV_STAT_ENABLE
411# undef EV_USE_INOTIFY
412# define EV_USE_INOTIFY 0
413#endif
414
415#if !EV_USE_NANOSLEEP
416/* hp-ux has it in sys/time.h, which we unconditionally include above */
417# if !defined _WIN32 && !defined __hpux
418# include <sys/select.h>
419# endif
420#endif
421
422#if EV_USE_INOTIFY
423# include <sys/statfs.h>
424# include <sys/inotify.h>
425/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
426# ifndef IN_DONT_FOLLOW
427# undef EV_USE_INOTIFY
428# define EV_USE_INOTIFY 0
429# endif
430#endif
431
432#if EV_USE_EVENTFD
433/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434# include <stdint.h>
435# ifndef EFD_NONBLOCK
436# define EFD_NONBLOCK O_NONBLOCK
437# endif
438# ifndef EFD_CLOEXEC
439# ifdef O_CLOEXEC
440# define EFD_CLOEXEC O_CLOEXEC
441# else
442# define EFD_CLOEXEC 02000000
443# endif
444# endif
445EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
446#endif
447
448#if EV_USE_SIGNALFD
449/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
450# include <stdint.h>
451# ifndef SFD_NONBLOCK
452# define SFD_NONBLOCK O_NONBLOCK
453# endif
454# ifndef SFD_CLOEXEC
455# ifdef O_CLOEXEC
456# define SFD_CLOEXEC O_CLOEXEC
457# else
458# define SFD_CLOEXEC 02000000
459# endif
460# endif
461EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
462
463struct signalfd_siginfo
464{
465 uint32_t ssi_signo;
466 char pad[128 - sizeof (uint32_t)];
467};
468#endif
469
121/**/ 470/**/
122 471
472#if EV_VERIFY >= 3
473# define EV_FREQUENT_CHECK ev_verify (EV_A)
474#else
475# define EV_FREQUENT_CHECK do { } while (0)
476#endif
477
478/*
479 * This is used to work around floating point rounding problems.
480 * This value is good at least till the year 4000.
481 */
482#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
483/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
484
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 485#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 486#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
127 487
128#include "ev.h" 488#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
489#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
129 490
491/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
492/* ECB.H BEGIN */
493/*
494 * libecb - http://software.schmorp.de/pkg/libecb
495 *
496 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
497 * Copyright (©) 2011 Emanuele Giaquinta
498 * All rights reserved.
499 *
500 * Redistribution and use in source and binary forms, with or without modifica-
501 * tion, are permitted provided that the following conditions are met:
502 *
503 * 1. Redistributions of source code must retain the above copyright notice,
504 * this list of conditions and the following disclaimer.
505 *
506 * 2. Redistributions in binary form must reproduce the above copyright
507 * notice, this list of conditions and the following disclaimer in the
508 * documentation and/or other materials provided with the distribution.
509 *
510 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
511 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
512 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
513 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
514 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
515 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
516 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
517 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
518 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
519 * OF THE POSSIBILITY OF SUCH DAMAGE.
520 *
521 * Alternatively, the contents of this file may be used under the terms of
522 * the GNU General Public License ("GPL") version 2 or any later version,
523 * in which case the provisions of the GPL are applicable instead of
524 * the above. If you wish to allow the use of your version of this file
525 * only under the terms of the GPL and not to allow others to use your
526 * version of this file under the BSD license, indicate your decision
527 * by deleting the provisions above and replace them with the notice
528 * and other provisions required by the GPL. If you do not delete the
529 * provisions above, a recipient may use your version of this file under
530 * either the BSD or the GPL.
531 */
532
533#ifndef ECB_H
534#define ECB_H
535
536/* 16 bits major, 16 bits minor */
537#define ECB_VERSION 0x00010005
538
539#ifdef _WIN32
540 typedef signed char int8_t;
541 typedef unsigned char uint8_t;
542 typedef signed short int16_t;
543 typedef unsigned short uint16_t;
544 typedef signed int int32_t;
545 typedef unsigned int uint32_t;
130#if __GNUC__ >= 3 546 #if __GNUC__
131# define expect(expr,value) __builtin_expect ((expr),(value)) 547 typedef signed long long int64_t;
132# define inline inline 548 typedef unsigned long long uint64_t;
133#else 549 #else /* _MSC_VER || __BORLANDC__ */
134# define expect(expr,value) (expr) 550 typedef signed __int64 int64_t;
135# define inline static 551 typedef unsigned __int64 uint64_t;
136#endif 552 #endif
553 #ifdef _WIN64
554 #define ECB_PTRSIZE 8
555 typedef uint64_t uintptr_t;
556 typedef int64_t intptr_t;
557 #else
558 #define ECB_PTRSIZE 4
559 typedef uint32_t uintptr_t;
560 typedef int32_t intptr_t;
561 #endif
562#else
563 #include <inttypes.h>
564 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
565 #define ECB_PTRSIZE 8
566 #else
567 #define ECB_PTRSIZE 4
568 #endif
569#endif
137 570
138#define expect_false(expr) expect ((expr) != 0, 0) 571#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
139#define expect_true(expr) expect ((expr) != 0, 1) 572#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
140 573
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 574/* work around x32 idiocy by defining proper macros */
142#define ABSPRI(w) ((w)->priority - EV_MINPRI) 575#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
576 #if _ILP32
577 #define ECB_AMD64_X32 1
578 #else
579 #define ECB_AMD64 1
580 #endif
581#endif
143 582
144typedef struct ev_watcher *W; 583/* many compilers define _GNUC_ to some versions but then only implement
145typedef struct ev_watcher_list *WL; 584 * what their idiot authors think are the "more important" extensions,
146typedef struct ev_watcher_time *WT; 585 * causing enormous grief in return for some better fake benchmark numbers.
586 * or so.
587 * we try to detect these and simply assume they are not gcc - if they have
588 * an issue with that they should have done it right in the first place.
589 */
590#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
591 #define ECB_GCC_VERSION(major,minor) 0
592#else
593 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
594#endif
147 595
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 596#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
597
598#if __clang__ && defined __has_builtin
599 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
600#else
601 #define ECB_CLANG_BUILTIN(x) 0
602#endif
603
604#if __clang__ && defined __has_extension
605 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
606#else
607 #define ECB_CLANG_EXTENSION(x) 0
608#endif
609
610#define ECB_CPP (__cplusplus+0)
611#define ECB_CPP11 (__cplusplus >= 201103L)
612
613#if ECB_CPP
614 #define ECB_C 0
615 #define ECB_STDC_VERSION 0
616#else
617 #define ECB_C 1
618 #define ECB_STDC_VERSION __STDC_VERSION__
619#endif
620
621#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
622#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
623
624#if ECB_CPP
625 #define ECB_EXTERN_C extern "C"
626 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
627 #define ECB_EXTERN_C_END }
628#else
629 #define ECB_EXTERN_C extern
630 #define ECB_EXTERN_C_BEG
631 #define ECB_EXTERN_C_END
632#endif
149 633
150/*****************************************************************************/ 634/*****************************************************************************/
151 635
636/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
637/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
638
639#if ECB_NO_THREADS
640 #define ECB_NO_SMP 1
641#endif
642
643#if ECB_NO_SMP
644 #define ECB_MEMORY_FENCE do { } while (0)
645#endif
646
647/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
648#if __xlC__ && ECB_CPP
649 #include <builtins.h>
650#endif
651
652#if 1400 <= _MSC_VER
653 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
654#endif
655
656#ifndef ECB_MEMORY_FENCE
657 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
658 #if __i386 || __i386__
659 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
660 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
661 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
662 #elif ECB_GCC_AMD64
663 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
664 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
665 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
666 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
667 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
668 #elif defined __ARM_ARCH_2__ \
669 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
670 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
671 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
672 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
673 || defined __ARM_ARCH_5TEJ__
674 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
675 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
676 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
677 || defined __ARM_ARCH_6T2__
678 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
679 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
680 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
681 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
682 #elif __aarch64__
683 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
684 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
685 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
686 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
687 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
688 #elif defined __s390__ || defined __s390x__
689 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
690 #elif defined __mips__
691 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
692 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
693 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
694 #elif defined __alpha__
695 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
696 #elif defined __hppa__
697 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
698 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
699 #elif defined __ia64__
700 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
701 #elif defined __m68k__
702 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
703 #elif defined __m88k__
704 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
705 #elif defined __sh__
706 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
707 #endif
708 #endif
709#endif
710
711#ifndef ECB_MEMORY_FENCE
712 #if ECB_GCC_VERSION(4,7)
713 /* see comment below (stdatomic.h) about the C11 memory model. */
714 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
715 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
716 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
717
718 #elif ECB_CLANG_EXTENSION(c_atomic)
719 /* see comment below (stdatomic.h) about the C11 memory model. */
720 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
721 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
722 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
723
724 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
725 #define ECB_MEMORY_FENCE __sync_synchronize ()
726 #elif _MSC_VER >= 1500 /* VC++ 2008 */
727 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
728 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
729 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
730 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
731 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
732 #elif _MSC_VER >= 1400 /* VC++ 2005 */
733 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
734 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
735 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
736 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
737 #elif defined _WIN32
738 #include <WinNT.h>
739 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
740 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
741 #include <mbarrier.h>
742 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
743 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
744 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
745 #elif __xlC__
746 #define ECB_MEMORY_FENCE __sync ()
747 #endif
748#endif
749
750#ifndef ECB_MEMORY_FENCE
751 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
752 /* we assume that these memory fences work on all variables/all memory accesses, */
753 /* not just C11 atomics and atomic accesses */
754 #include <stdatomic.h>
755 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
756 /* any fence other than seq_cst, which isn't very efficient for us. */
757 /* Why that is, we don't know - either the C11 memory model is quite useless */
758 /* for most usages, or gcc and clang have a bug */
759 /* I *currently* lean towards the latter, and inefficiently implement */
760 /* all three of ecb's fences as a seq_cst fence */
761 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
762 /* for all __atomic_thread_fence's except seq_cst */
763 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
764 #endif
765#endif
766
767#ifndef ECB_MEMORY_FENCE
768 #if !ECB_AVOID_PTHREADS
769 /*
770 * if you get undefined symbol references to pthread_mutex_lock,
771 * or failure to find pthread.h, then you should implement
772 * the ECB_MEMORY_FENCE operations for your cpu/compiler
773 * OR provide pthread.h and link against the posix thread library
774 * of your system.
775 */
776 #include <pthread.h>
777 #define ECB_NEEDS_PTHREADS 1
778 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
779
780 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
781 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
782 #endif
783#endif
784
785#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
786 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
787#endif
788
789#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
790 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
791#endif
792
793/*****************************************************************************/
794
795#if ECB_CPP
796 #define ecb_inline static inline
797#elif ECB_GCC_VERSION(2,5)
798 #define ecb_inline static __inline__
799#elif ECB_C99
800 #define ecb_inline static inline
801#else
802 #define ecb_inline static
803#endif
804
805#if ECB_GCC_VERSION(3,3)
806 #define ecb_restrict __restrict__
807#elif ECB_C99
808 #define ecb_restrict restrict
809#else
810 #define ecb_restrict
811#endif
812
813typedef int ecb_bool;
814
815#define ECB_CONCAT_(a, b) a ## b
816#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
817#define ECB_STRINGIFY_(a) # a
818#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
819#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
820
821#define ecb_function_ ecb_inline
822
823#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
824 #define ecb_attribute(attrlist) __attribute__ (attrlist)
825#else
826 #define ecb_attribute(attrlist)
827#endif
828
829#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
830 #define ecb_is_constant(expr) __builtin_constant_p (expr)
831#else
832 /* possible C11 impl for integral types
833 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
834 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
835
836 #define ecb_is_constant(expr) 0
837#endif
838
839#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
840 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
841#else
842 #define ecb_expect(expr,value) (expr)
843#endif
844
845#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
846 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
847#else
848 #define ecb_prefetch(addr,rw,locality)
849#endif
850
851/* no emulation for ecb_decltype */
852#if ECB_CPP11
853 // older implementations might have problems with decltype(x)::type, work around it
854 template<class T> struct ecb_decltype_t { typedef T type; };
855 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
856#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
857 #define ecb_decltype(x) __typeof__ (x)
858#endif
859
860#if _MSC_VER >= 1300
861 #define ecb_deprecated __declspec (deprecated)
862#else
863 #define ecb_deprecated ecb_attribute ((__deprecated__))
864#endif
865
866#if _MSC_VER >= 1500
867 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
868#elif ECB_GCC_VERSION(4,5)
869 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
870#else
871 #define ecb_deprecated_message(msg) ecb_deprecated
872#endif
873
874#if _MSC_VER >= 1400
875 #define ecb_noinline __declspec (noinline)
876#else
877 #define ecb_noinline ecb_attribute ((__noinline__))
878#endif
879
880#define ecb_unused ecb_attribute ((__unused__))
881#define ecb_const ecb_attribute ((__const__))
882#define ecb_pure ecb_attribute ((__pure__))
883
884#if ECB_C11 || __IBMC_NORETURN
885 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
886 #define ecb_noreturn _Noreturn
887#elif ECB_CPP11
888 #define ecb_noreturn [[noreturn]]
889#elif _MSC_VER >= 1200
890 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
891 #define ecb_noreturn __declspec (noreturn)
892#else
893 #define ecb_noreturn ecb_attribute ((__noreturn__))
894#endif
895
896#if ECB_GCC_VERSION(4,3)
897 #define ecb_artificial ecb_attribute ((__artificial__))
898 #define ecb_hot ecb_attribute ((__hot__))
899 #define ecb_cold ecb_attribute ((__cold__))
900#else
901 #define ecb_artificial
902 #define ecb_hot
903 #define ecb_cold
904#endif
905
906/* put around conditional expressions if you are very sure that the */
907/* expression is mostly true or mostly false. note that these return */
908/* booleans, not the expression. */
909#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
910#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
911/* for compatibility to the rest of the world */
912#define ecb_likely(expr) ecb_expect_true (expr)
913#define ecb_unlikely(expr) ecb_expect_false (expr)
914
915/* count trailing zero bits and count # of one bits */
916#if ECB_GCC_VERSION(3,4) \
917 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
918 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
919 && ECB_CLANG_BUILTIN(__builtin_popcount))
920 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
921 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
922 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
923 #define ecb_ctz32(x) __builtin_ctz (x)
924 #define ecb_ctz64(x) __builtin_ctzll (x)
925 #define ecb_popcount32(x) __builtin_popcount (x)
926 /* no popcountll */
927#else
928 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
929 ecb_function_ ecb_const int
930 ecb_ctz32 (uint32_t x)
931 {
932#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
933 unsigned long r;
934 _BitScanForward (&r, x);
935 return (int)r;
936#else
937 int r = 0;
938
939 x &= ~x + 1; /* this isolates the lowest bit */
940
941#if ECB_branchless_on_i386
942 r += !!(x & 0xaaaaaaaa) << 0;
943 r += !!(x & 0xcccccccc) << 1;
944 r += !!(x & 0xf0f0f0f0) << 2;
945 r += !!(x & 0xff00ff00) << 3;
946 r += !!(x & 0xffff0000) << 4;
947#else
948 if (x & 0xaaaaaaaa) r += 1;
949 if (x & 0xcccccccc) r += 2;
950 if (x & 0xf0f0f0f0) r += 4;
951 if (x & 0xff00ff00) r += 8;
952 if (x & 0xffff0000) r += 16;
953#endif
954
955 return r;
956#endif
957 }
958
959 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
960 ecb_function_ ecb_const int
961 ecb_ctz64 (uint64_t x)
962 {
963#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
964 unsigned long r;
965 _BitScanForward64 (&r, x);
966 return (int)r;
967#else
968 int shift = x & 0xffffffff ? 0 : 32;
969 return ecb_ctz32 (x >> shift) + shift;
970#endif
971 }
972
973 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
974 ecb_function_ ecb_const int
975 ecb_popcount32 (uint32_t x)
976 {
977 x -= (x >> 1) & 0x55555555;
978 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
979 x = ((x >> 4) + x) & 0x0f0f0f0f;
980 x *= 0x01010101;
981
982 return x >> 24;
983 }
984
985 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
986 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
987 {
988#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
989 unsigned long r;
990 _BitScanReverse (&r, x);
991 return (int)r;
992#else
993 int r = 0;
994
995 if (x >> 16) { x >>= 16; r += 16; }
996 if (x >> 8) { x >>= 8; r += 8; }
997 if (x >> 4) { x >>= 4; r += 4; }
998 if (x >> 2) { x >>= 2; r += 2; }
999 if (x >> 1) { r += 1; }
1000
1001 return r;
1002#endif
1003 }
1004
1005 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1006 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1007 {
1008#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1009 unsigned long r;
1010 _BitScanReverse64 (&r, x);
1011 return (int)r;
1012#else
1013 int r = 0;
1014
1015 if (x >> 32) { x >>= 32; r += 32; }
1016
1017 return r + ecb_ld32 (x);
1018#endif
1019 }
1020#endif
1021
1022ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1023ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1024ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1025ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1026
1027ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1028ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1029{
1030 return ( (x * 0x0802U & 0x22110U)
1031 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1032}
1033
1034ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1035ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1036{
1037 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1038 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1039 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1040 x = ( x >> 8 ) | ( x << 8);
1041
1042 return x;
1043}
1044
1045ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1046ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1047{
1048 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1049 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1050 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1051 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1052 x = ( x >> 16 ) | ( x << 16);
1053
1054 return x;
1055}
1056
1057/* popcount64 is only available on 64 bit cpus as gcc builtin */
1058/* so for this version we are lazy */
1059ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1060ecb_function_ ecb_const int
1061ecb_popcount64 (uint64_t x)
1062{
1063 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1064}
1065
1066ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1067ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1068ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1069ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1070ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1071ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1072ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1073ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1074
1075ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1076ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1077ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1078ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1079ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1080ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1081ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1082ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1083
1084#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1085 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1086 #define ecb_bswap16(x) __builtin_bswap16 (x)
1087 #else
1088 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1089 #endif
1090 #define ecb_bswap32(x) __builtin_bswap32 (x)
1091 #define ecb_bswap64(x) __builtin_bswap64 (x)
1092#elif _MSC_VER
1093 #include <stdlib.h>
1094 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1095 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1096 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1097#else
1098 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1099 ecb_function_ ecb_const uint16_t
1100 ecb_bswap16 (uint16_t x)
1101 {
1102 return ecb_rotl16 (x, 8);
1103 }
1104
1105 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1106 ecb_function_ ecb_const uint32_t
1107 ecb_bswap32 (uint32_t x)
1108 {
1109 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1110 }
1111
1112 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1113 ecb_function_ ecb_const uint64_t
1114 ecb_bswap64 (uint64_t x)
1115 {
1116 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1117 }
1118#endif
1119
1120#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1121 #define ecb_unreachable() __builtin_unreachable ()
1122#else
1123 /* this seems to work fine, but gcc always emits a warning for it :/ */
1124 ecb_inline ecb_noreturn void ecb_unreachable (void);
1125 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1126#endif
1127
1128/* try to tell the compiler that some condition is definitely true */
1129#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1130
1131ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1132ecb_inline ecb_const uint32_t
1133ecb_byteorder_helper (void)
1134{
1135 /* the union code still generates code under pressure in gcc, */
1136 /* but less than using pointers, and always seems to */
1137 /* successfully return a constant. */
1138 /* the reason why we have this horrible preprocessor mess */
1139 /* is to avoid it in all cases, at least on common architectures */
1140 /* or when using a recent enough gcc version (>= 4.6) */
1141#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1142 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1143 #define ECB_LITTLE_ENDIAN 1
1144 return 0x44332211;
1145#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1146 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1147 #define ECB_BIG_ENDIAN 1
1148 return 0x11223344;
1149#else
1150 union
1151 {
1152 uint8_t c[4];
1153 uint32_t u;
1154 } u = { 0x11, 0x22, 0x33, 0x44 };
1155 return u.u;
1156#endif
1157}
1158
1159ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1160ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1161ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1162ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1163
1164#if ECB_GCC_VERSION(3,0) || ECB_C99
1165 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1166#else
1167 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1168#endif
1169
1170#if ECB_CPP
1171 template<typename T>
1172 static inline T ecb_div_rd (T val, T div)
1173 {
1174 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1175 }
1176 template<typename T>
1177 static inline T ecb_div_ru (T val, T div)
1178 {
1179 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1180 }
1181#else
1182 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1183 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1184#endif
1185
1186#if ecb_cplusplus_does_not_suck
1187 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1188 template<typename T, int N>
1189 static inline int ecb_array_length (const T (&arr)[N])
1190 {
1191 return N;
1192 }
1193#else
1194 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1195#endif
1196
1197ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1198ecb_function_ ecb_const uint32_t
1199ecb_binary16_to_binary32 (uint32_t x)
1200{
1201 unsigned int s = (x & 0x8000) << (31 - 15);
1202 int e = (x >> 10) & 0x001f;
1203 unsigned int m = x & 0x03ff;
1204
1205 if (ecb_expect_false (e == 31))
1206 /* infinity or NaN */
1207 e = 255 - (127 - 15);
1208 else if (ecb_expect_false (!e))
1209 {
1210 if (ecb_expect_true (!m))
1211 /* zero, handled by code below by forcing e to 0 */
1212 e = 0 - (127 - 15);
1213 else
1214 {
1215 /* subnormal, renormalise */
1216 unsigned int s = 10 - ecb_ld32 (m);
1217
1218 m = (m << s) & 0x3ff; /* mask implicit bit */
1219 e -= s - 1;
1220 }
1221 }
1222
1223 /* e and m now are normalised, or zero, (or inf or nan) */
1224 e += 127 - 15;
1225
1226 return s | (e << 23) | (m << (23 - 10));
1227}
1228
1229ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1230ecb_function_ ecb_const uint16_t
1231ecb_binary32_to_binary16 (uint32_t x)
1232{
1233 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1234 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1235 unsigned int m = x & 0x007fffff;
1236
1237 x &= 0x7fffffff;
1238
1239 /* if it's within range of binary16 normals, use fast path */
1240 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1241 {
1242 /* mantissa round-to-even */
1243 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1244
1245 /* handle overflow */
1246 if (ecb_expect_false (m >= 0x00800000))
1247 {
1248 m >>= 1;
1249 e += 1;
1250 }
1251
1252 return s | (e << 10) | (m >> (23 - 10));
1253 }
1254
1255 /* handle large numbers and infinity */
1256 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1257 return s | 0x7c00;
1258
1259 /* handle zero, subnormals and small numbers */
1260 if (ecb_expect_true (x < 0x38800000))
1261 {
1262 /* zero */
1263 if (ecb_expect_true (!x))
1264 return s;
1265
1266 /* handle subnormals */
1267
1268 /* too small, will be zero */
1269 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1270 return s;
1271
1272 m |= 0x00800000; /* make implicit bit explicit */
1273
1274 /* very tricky - we need to round to the nearest e (+10) bit value */
1275 {
1276 unsigned int bits = 14 - e;
1277 unsigned int half = (1 << (bits - 1)) - 1;
1278 unsigned int even = (m >> bits) & 1;
1279
1280 /* if this overflows, we will end up with a normalised number */
1281 m = (m + half + even) >> bits;
1282 }
1283
1284 return s | m;
1285 }
1286
1287 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1288 m >>= 13;
1289
1290 return s | 0x7c00 | m | !m;
1291}
1292
1293/*******************************************************************************/
1294/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1295
1296/* basically, everything uses "ieee pure-endian" floating point numbers */
1297/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1298#if 0 \
1299 || __i386 || __i386__ \
1300 || ECB_GCC_AMD64 \
1301 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1302 || defined __s390__ || defined __s390x__ \
1303 || defined __mips__ \
1304 || defined __alpha__ \
1305 || defined __hppa__ \
1306 || defined __ia64__ \
1307 || defined __m68k__ \
1308 || defined __m88k__ \
1309 || defined __sh__ \
1310 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1311 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1312 || defined __aarch64__
1313 #define ECB_STDFP 1
1314 #include <string.h> /* for memcpy */
1315#else
1316 #define ECB_STDFP 0
1317#endif
1318
1319#ifndef ECB_NO_LIBM
1320
1321 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1322
1323 /* only the oldest of old doesn't have this one. solaris. */
1324 #ifdef INFINITY
1325 #define ECB_INFINITY INFINITY
1326 #else
1327 #define ECB_INFINITY HUGE_VAL
1328 #endif
1329
1330 #ifdef NAN
1331 #define ECB_NAN NAN
1332 #else
1333 #define ECB_NAN ECB_INFINITY
1334 #endif
1335
1336 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1337 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1338 #define ecb_frexpf(x,e) frexpf ((x), (e))
1339 #else
1340 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1341 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1342 #endif
1343
1344 /* convert a float to ieee single/binary32 */
1345 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1346 ecb_function_ ecb_const uint32_t
1347 ecb_float_to_binary32 (float x)
1348 {
1349 uint32_t r;
1350
1351 #if ECB_STDFP
1352 memcpy (&r, &x, 4);
1353 #else
1354 /* slow emulation, works for anything but -0 */
1355 uint32_t m;
1356 int e;
1357
1358 if (x == 0e0f ) return 0x00000000U;
1359 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1360 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1361 if (x != x ) return 0x7fbfffffU;
1362
1363 m = ecb_frexpf (x, &e) * 0x1000000U;
1364
1365 r = m & 0x80000000U;
1366
1367 if (r)
1368 m = -m;
1369
1370 if (e <= -126)
1371 {
1372 m &= 0xffffffU;
1373 m >>= (-125 - e);
1374 e = -126;
1375 }
1376
1377 r |= (e + 126) << 23;
1378 r |= m & 0x7fffffU;
1379 #endif
1380
1381 return r;
1382 }
1383
1384 /* converts an ieee single/binary32 to a float */
1385 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1386 ecb_function_ ecb_const float
1387 ecb_binary32_to_float (uint32_t x)
1388 {
1389 float r;
1390
1391 #if ECB_STDFP
1392 memcpy (&r, &x, 4);
1393 #else
1394 /* emulation, only works for normals and subnormals and +0 */
1395 int neg = x >> 31;
1396 int e = (x >> 23) & 0xffU;
1397
1398 x &= 0x7fffffU;
1399
1400 if (e)
1401 x |= 0x800000U;
1402 else
1403 e = 1;
1404
1405 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1406 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1407
1408 r = neg ? -r : r;
1409 #endif
1410
1411 return r;
1412 }
1413
1414 /* convert a double to ieee double/binary64 */
1415 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1416 ecb_function_ ecb_const uint64_t
1417 ecb_double_to_binary64 (double x)
1418 {
1419 uint64_t r;
1420
1421 #if ECB_STDFP
1422 memcpy (&r, &x, 8);
1423 #else
1424 /* slow emulation, works for anything but -0 */
1425 uint64_t m;
1426 int e;
1427
1428 if (x == 0e0 ) return 0x0000000000000000U;
1429 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1430 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1431 if (x != x ) return 0X7ff7ffffffffffffU;
1432
1433 m = frexp (x, &e) * 0x20000000000000U;
1434
1435 r = m & 0x8000000000000000;;
1436
1437 if (r)
1438 m = -m;
1439
1440 if (e <= -1022)
1441 {
1442 m &= 0x1fffffffffffffU;
1443 m >>= (-1021 - e);
1444 e = -1022;
1445 }
1446
1447 r |= ((uint64_t)(e + 1022)) << 52;
1448 r |= m & 0xfffffffffffffU;
1449 #endif
1450
1451 return r;
1452 }
1453
1454 /* converts an ieee double/binary64 to a double */
1455 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1456 ecb_function_ ecb_const double
1457 ecb_binary64_to_double (uint64_t x)
1458 {
1459 double r;
1460
1461 #if ECB_STDFP
1462 memcpy (&r, &x, 8);
1463 #else
1464 /* emulation, only works for normals and subnormals and +0 */
1465 int neg = x >> 63;
1466 int e = (x >> 52) & 0x7ffU;
1467
1468 x &= 0xfffffffffffffU;
1469
1470 if (e)
1471 x |= 0x10000000000000U;
1472 else
1473 e = 1;
1474
1475 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1476 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1477
1478 r = neg ? -r : r;
1479 #endif
1480
1481 return r;
1482 }
1483
1484 /* convert a float to ieee half/binary16 */
1485 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1486 ecb_function_ ecb_const uint16_t
1487 ecb_float_to_binary16 (float x)
1488 {
1489 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1490 }
1491
1492 /* convert an ieee half/binary16 to float */
1493 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1494 ecb_function_ ecb_const float
1495 ecb_binary16_to_float (uint16_t x)
1496 {
1497 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1498 }
1499
1500#endif
1501
1502#endif
1503
1504/* ECB.H END */
1505
1506#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1507/* if your architecture doesn't need memory fences, e.g. because it is
1508 * single-cpu/core, or if you use libev in a project that doesn't use libev
1509 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1510 * libev, in which cases the memory fences become nops.
1511 * alternatively, you can remove this #error and link against libpthread,
1512 * which will then provide the memory fences.
1513 */
1514# error "memory fences not defined for your architecture, please report"
1515#endif
1516
1517#ifndef ECB_MEMORY_FENCE
1518# define ECB_MEMORY_FENCE do { } while (0)
1519# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1520# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1521#endif
1522
1523#define expect_false(cond) ecb_expect_false (cond)
1524#define expect_true(cond) ecb_expect_true (cond)
1525#define noinline ecb_noinline
1526
1527#define inline_size ecb_inline
1528
1529#if EV_FEATURE_CODE
1530# define inline_speed ecb_inline
1531#else
1532# define inline_speed static noinline
1533#endif
1534
1535#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1536
1537#if EV_MINPRI == EV_MAXPRI
1538# define ABSPRI(w) (((W)w), 0)
1539#else
1540# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1541#endif
1542
1543#define EMPTY /* required for microsofts broken pseudo-c compiler */
1544#define EMPTY2(a,b) /* used to suppress some warnings */
1545
1546typedef ev_watcher *W;
1547typedef ev_watcher_list *WL;
1548typedef ev_watcher_time *WT;
1549
1550#define ev_active(w) ((W)(w))->active
1551#define ev_at(w) ((WT)(w))->at
1552
1553#if EV_USE_REALTIME
1554/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1555/* giving it a reasonably high chance of working on typical architectures */
1556static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1557#endif
1558
1559#if EV_USE_MONOTONIC
1560static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1561#endif
1562
1563#ifndef EV_FD_TO_WIN32_HANDLE
1564# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1565#endif
1566#ifndef EV_WIN32_HANDLE_TO_FD
1567# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1568#endif
1569#ifndef EV_WIN32_CLOSE_FD
1570# define EV_WIN32_CLOSE_FD(fd) close (fd)
1571#endif
1572
1573#ifdef _WIN32
1574# include "ev_win32.c"
1575#endif
1576
1577/*****************************************************************************/
1578
1579/* define a suitable floor function (only used by periodics atm) */
1580
1581#if EV_USE_FLOOR
1582# include <math.h>
1583# define ev_floor(v) floor (v)
1584#else
1585
1586#include <float.h>
1587
1588/* a floor() replacement function, should be independent of ev_tstamp type */
1589static ev_tstamp noinline
1590ev_floor (ev_tstamp v)
1591{
1592 /* the choice of shift factor is not terribly important */
1593#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1594 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1595#else
1596 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1597#endif
1598
1599 /* argument too large for an unsigned long? */
1600 if (expect_false (v >= shift))
1601 {
1602 ev_tstamp f;
1603
1604 if (v == v - 1.)
1605 return v; /* very large number */
1606
1607 f = shift * ev_floor (v * (1. / shift));
1608 return f + ev_floor (v - f);
1609 }
1610
1611 /* special treatment for negative args? */
1612 if (expect_false (v < 0.))
1613 {
1614 ev_tstamp f = -ev_floor (-v);
1615
1616 return f - (f == v ? 0 : 1);
1617 }
1618
1619 /* fits into an unsigned long */
1620 return (unsigned long)v;
1621}
1622
1623#endif
1624
1625/*****************************************************************************/
1626
1627#ifdef __linux
1628# include <sys/utsname.h>
1629#endif
1630
1631static unsigned int noinline ecb_cold
1632ev_linux_version (void)
1633{
1634#ifdef __linux
1635 unsigned int v = 0;
1636 struct utsname buf;
1637 int i;
1638 char *p = buf.release;
1639
1640 if (uname (&buf))
1641 return 0;
1642
1643 for (i = 3+1; --i; )
1644 {
1645 unsigned int c = 0;
1646
1647 for (;;)
1648 {
1649 if (*p >= '0' && *p <= '9')
1650 c = c * 10 + *p++ - '0';
1651 else
1652 {
1653 p += *p == '.';
1654 break;
1655 }
1656 }
1657
1658 v = (v << 8) | c;
1659 }
1660
1661 return v;
1662#else
1663 return 0;
1664#endif
1665}
1666
1667/*****************************************************************************/
1668
1669#if EV_AVOID_STDIO
1670static void noinline ecb_cold
1671ev_printerr (const char *msg)
1672{
1673 write (STDERR_FILENO, msg, strlen (msg));
1674}
1675#endif
1676
1677static void (*syserr_cb)(const char *msg) EV_THROW;
1678
1679void ecb_cold
1680ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
1681{
1682 syserr_cb = cb;
1683}
1684
1685static void noinline ecb_cold
1686ev_syserr (const char *msg)
1687{
1688 if (!msg)
1689 msg = "(libev) system error";
1690
1691 if (syserr_cb)
1692 syserr_cb (msg);
1693 else
1694 {
1695#if EV_AVOID_STDIO
1696 ev_printerr (msg);
1697 ev_printerr (": ");
1698 ev_printerr (strerror (errno));
1699 ev_printerr ("\n");
1700#else
1701 perror (msg);
1702#endif
1703 abort ();
1704 }
1705}
1706
1707static void *
1708ev_realloc_emul (void *ptr, long size) EV_THROW
1709{
1710 /* some systems, notably openbsd and darwin, fail to properly
1711 * implement realloc (x, 0) (as required by both ansi c-89 and
1712 * the single unix specification, so work around them here.
1713 * recently, also (at least) fedora and debian started breaking it,
1714 * despite documenting it otherwise.
1715 */
1716
1717 if (size)
1718 return realloc (ptr, size);
1719
1720 free (ptr);
1721 return 0;
1722}
1723
1724static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
1725
1726void ecb_cold
1727ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
1728{
1729 alloc = cb;
1730}
1731
1732inline_speed void *
1733ev_realloc (void *ptr, long size)
1734{
1735 ptr = alloc (ptr, size);
1736
1737 if (!ptr && size)
1738 {
1739#if EV_AVOID_STDIO
1740 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1741#else
1742 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1743#endif
1744 abort ();
1745 }
1746
1747 return ptr;
1748}
1749
1750#define ev_malloc(size) ev_realloc (0, (size))
1751#define ev_free(ptr) ev_realloc ((ptr), 0)
1752
1753/*****************************************************************************/
1754
1755/* set in reify when reification needed */
1756#define EV_ANFD_REIFY 1
1757
1758/* file descriptor info structure */
152typedef struct 1759typedef struct
153{ 1760{
154 struct ev_watcher_list *head; 1761 WL head;
155 unsigned char events; 1762 unsigned char events; /* the events watched for */
1763 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1764 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
156 unsigned char reify; 1765 unsigned char unused;
1766#if EV_USE_EPOLL
1767 unsigned int egen; /* generation counter to counter epoll bugs */
1768#endif
1769#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1770 SOCKET handle;
1771#endif
1772#if EV_USE_IOCP
1773 OVERLAPPED or, ow;
1774#endif
157} ANFD; 1775} ANFD;
158 1776
1777/* stores the pending event set for a given watcher */
159typedef struct 1778typedef struct
160{ 1779{
161 W w; 1780 W w;
162 int events; 1781 int events; /* the pending event set for the given watcher */
163} ANPENDING; 1782} ANPENDING;
164 1783
1784#if EV_USE_INOTIFY
1785/* hash table entry per inotify-id */
1786typedef struct
1787{
1788 WL head;
1789} ANFS;
1790#endif
1791
1792/* Heap Entry */
1793#if EV_HEAP_CACHE_AT
1794 /* a heap element */
1795 typedef struct {
1796 ev_tstamp at;
1797 WT w;
1798 } ANHE;
1799
1800 #define ANHE_w(he) (he).w /* access watcher, read-write */
1801 #define ANHE_at(he) (he).at /* access cached at, read-only */
1802 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1803#else
1804 /* a heap element */
1805 typedef WT ANHE;
1806
1807 #define ANHE_w(he) (he)
1808 #define ANHE_at(he) (he)->at
1809 #define ANHE_at_cache(he)
1810#endif
1811
165#if EV_MULTIPLICITY 1812#if EV_MULTIPLICITY
166 1813
167struct ev_loop 1814 struct ev_loop
168{ 1815 {
1816 ev_tstamp ev_rt_now;
1817 #define ev_rt_now ((loop)->ev_rt_now)
169# define VAR(name,decl) decl; 1818 #define VAR(name,decl) decl;
170# include "ev_vars.h" 1819 #include "ev_vars.h"
171};
172# undef VAR 1820 #undef VAR
1821 };
173# include "ev_wrap.h" 1822 #include "ev_wrap.h"
174 1823
175#else 1824 static struct ev_loop default_loop_struct;
1825 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
176 1826
1827#else
1828
1829 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
177# define VAR(name,decl) static decl; 1830 #define VAR(name,decl) static decl;
178# include "ev_vars.h" 1831 #include "ev_vars.h"
179# undef VAR 1832 #undef VAR
180 1833
1834 static int ev_default_loop_ptr;
1835
181#endif 1836#endif
1837
1838#if EV_FEATURE_API
1839# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1840# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1841# define EV_INVOKE_PENDING invoke_cb (EV_A)
1842#else
1843# define EV_RELEASE_CB (void)0
1844# define EV_ACQUIRE_CB (void)0
1845# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1846#endif
1847
1848#define EVBREAK_RECURSE 0x80
182 1849
183/*****************************************************************************/ 1850/*****************************************************************************/
184 1851
185inline ev_tstamp 1852#ifndef EV_HAVE_EV_TIME
1853ev_tstamp
186ev_time (void) 1854ev_time (void) EV_THROW
187{ 1855{
188#if EV_USE_REALTIME 1856#if EV_USE_REALTIME
1857 if (expect_true (have_realtime))
1858 {
189 struct timespec ts; 1859 struct timespec ts;
190 clock_gettime (CLOCK_REALTIME, &ts); 1860 clock_gettime (CLOCK_REALTIME, &ts);
191 return ts.tv_sec + ts.tv_nsec * 1e-9; 1861 return ts.tv_sec + ts.tv_nsec * 1e-9;
192#else 1862 }
1863#endif
1864
193 struct timeval tv; 1865 struct timeval tv;
194 gettimeofday (&tv, 0); 1866 gettimeofday (&tv, 0);
195 return tv.tv_sec + tv.tv_usec * 1e-6; 1867 return tv.tv_sec + tv.tv_usec * 1e-6;
196#endif
197} 1868}
1869#endif
198 1870
199inline ev_tstamp 1871inline_size ev_tstamp
200get_clock (void) 1872get_clock (void)
201{ 1873{
202#if EV_USE_MONOTONIC 1874#if EV_USE_MONOTONIC
203 if (expect_true (have_monotonic)) 1875 if (expect_true (have_monotonic))
204 { 1876 {
209#endif 1881#endif
210 1882
211 return ev_time (); 1883 return ev_time ();
212} 1884}
213 1885
1886#if EV_MULTIPLICITY
214ev_tstamp 1887ev_tstamp
215ev_now (EV_P) 1888ev_now (EV_P) EV_THROW
216{ 1889{
217 return rt_now; 1890 return ev_rt_now;
218} 1891}
1892#endif
219 1893
220#define array_roundsize(base,n) ((n) | 4 & ~3) 1894void
221 1895ev_sleep (ev_tstamp delay) EV_THROW
222#define array_needsize(base,cur,cnt,init) \ 1896{
223 if (expect_false ((cnt) > cur)) \ 1897 if (delay > 0.)
224 { \
225 int newcnt = cur; \
226 do \
227 { \
228 newcnt = array_roundsize (base, newcnt << 1); \
229 } \
230 while ((cnt) > newcnt); \
231 \
232 base = realloc (base, sizeof (*base) * (newcnt)); \
233 init (base + cur, newcnt - cur); \
234 cur = newcnt; \
235 } 1898 {
1899#if EV_USE_NANOSLEEP
1900 struct timespec ts;
1901
1902 EV_TS_SET (ts, delay);
1903 nanosleep (&ts, 0);
1904#elif defined _WIN32
1905 Sleep ((unsigned long)(delay * 1e3));
1906#else
1907 struct timeval tv;
1908
1909 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1910 /* something not guaranteed by newer posix versions, but guaranteed */
1911 /* by older ones */
1912 EV_TV_SET (tv, delay);
1913 select (0, 0, 0, 0, &tv);
1914#endif
1915 }
1916}
236 1917
237/*****************************************************************************/ 1918/*****************************************************************************/
238 1919
239static void 1920#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
240anfds_init (ANFD *base, int count)
241{
242 while (count--)
243 {
244 base->head = 0;
245 base->events = EV_NONE;
246 base->reify = 0;
247 1921
248 ++base; 1922/* find a suitable new size for the given array, */
1923/* hopefully by rounding to a nice-to-malloc size */
1924inline_size int
1925array_nextsize (int elem, int cur, int cnt)
1926{
1927 int ncur = cur + 1;
1928
1929 do
1930 ncur <<= 1;
1931 while (cnt > ncur);
1932
1933 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1934 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
249 } 1935 {
250} 1936 ncur *= elem;
251 1937 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
252static void 1938 ncur = ncur - sizeof (void *) * 4;
253event (EV_P_ W w, int events) 1939 ncur /= elem;
254{
255 if (w->pending)
256 { 1940 }
1941
1942 return ncur;
1943}
1944
1945static void * noinline ecb_cold
1946array_realloc (int elem, void *base, int *cur, int cnt)
1947{
1948 *cur = array_nextsize (elem, *cur, cnt);
1949 return ev_realloc (base, elem * *cur);
1950}
1951
1952#define array_init_zero(base,count) \
1953 memset ((void *)(base), 0, sizeof (*(base)) * (count))
1954
1955#define array_needsize(type,base,cur,cnt,init) \
1956 if (expect_false ((cnt) > (cur))) \
1957 { \
1958 int ecb_unused ocur_ = (cur); \
1959 (base) = (type *)array_realloc \
1960 (sizeof (type), (base), &(cur), (cnt)); \
1961 init ((base) + (ocur_), (cur) - ocur_); \
1962 }
1963
1964#if 0
1965#define array_slim(type,stem) \
1966 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1967 { \
1968 stem ## max = array_roundsize (stem ## cnt >> 1); \
1969 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1970 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1971 }
1972#endif
1973
1974#define array_free(stem, idx) \
1975 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1976
1977/*****************************************************************************/
1978
1979/* dummy callback for pending events */
1980static void noinline
1981pendingcb (EV_P_ ev_prepare *w, int revents)
1982{
1983}
1984
1985void noinline
1986ev_feed_event (EV_P_ void *w, int revents) EV_THROW
1987{
1988 W w_ = (W)w;
1989 int pri = ABSPRI (w_);
1990
1991 if (expect_false (w_->pending))
1992 pendings [pri][w_->pending - 1].events |= revents;
1993 else
1994 {
1995 w_->pending = ++pendingcnt [pri];
1996 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1997 pendings [pri][w_->pending - 1].w = w_;
257 pendings [ABSPRI (w)][w->pending - 1].events |= events; 1998 pendings [pri][w_->pending - 1].events = revents;
258 return;
259 } 1999 }
260 2000
261 w->pending = ++pendingcnt [ABSPRI (w)]; 2001 pendingpri = NUMPRI - 1;
262 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
263 pendings [ABSPRI (w)][w->pending - 1].w = w;
264 pendings [ABSPRI (w)][w->pending - 1].events = events;
265} 2002}
266 2003
267static void 2004inline_speed void
2005feed_reverse (EV_P_ W w)
2006{
2007 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
2008 rfeeds [rfeedcnt++] = w;
2009}
2010
2011inline_size void
2012feed_reverse_done (EV_P_ int revents)
2013{
2014 do
2015 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2016 while (rfeedcnt);
2017}
2018
2019inline_speed void
268queue_events (EV_P_ W *events, int eventcnt, int type) 2020queue_events (EV_P_ W *events, int eventcnt, int type)
269{ 2021{
270 int i; 2022 int i;
271 2023
272 for (i = 0; i < eventcnt; ++i) 2024 for (i = 0; i < eventcnt; ++i)
273 event (EV_A_ events [i], type); 2025 ev_feed_event (EV_A_ events [i], type);
274} 2026}
275 2027
276static void 2028/*****************************************************************************/
2029
2030inline_speed void
277fd_event (EV_P_ int fd, int events) 2031fd_event_nocheck (EV_P_ int fd, int revents)
278{ 2032{
279 ANFD *anfd = anfds + fd; 2033 ANFD *anfd = anfds + fd;
280 struct ev_io *w; 2034 ev_io *w;
281 2035
282 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 2036 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
283 { 2037 {
284 int ev = w->events & events; 2038 int ev = w->events & revents;
285 2039
286 if (ev) 2040 if (ev)
287 event (EV_A_ (W)w, ev); 2041 ev_feed_event (EV_A_ (W)w, ev);
288 } 2042 }
289} 2043}
290 2044
291/*****************************************************************************/ 2045/* do not submit kernel events for fds that have reify set */
2046/* because that means they changed while we were polling for new events */
2047inline_speed void
2048fd_event (EV_P_ int fd, int revents)
2049{
2050 ANFD *anfd = anfds + fd;
292 2051
293static void 2052 if (expect_true (!anfd->reify))
2053 fd_event_nocheck (EV_A_ fd, revents);
2054}
2055
2056void
2057ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
2058{
2059 if (fd >= 0 && fd < anfdmax)
2060 fd_event_nocheck (EV_A_ fd, revents);
2061}
2062
2063/* make sure the external fd watch events are in-sync */
2064/* with the kernel/libev internal state */
2065inline_size void
294fd_reify (EV_P) 2066fd_reify (EV_P)
295{ 2067{
296 int i; 2068 int i;
297 2069
2070#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
298 for (i = 0; i < fdchangecnt; ++i) 2071 for (i = 0; i < fdchangecnt; ++i)
299 { 2072 {
300 int fd = fdchanges [i]; 2073 int fd = fdchanges [i];
301 ANFD *anfd = anfds + fd; 2074 ANFD *anfd = anfds + fd;
2075
2076 if (anfd->reify & EV__IOFDSET && anfd->head)
2077 {
2078 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2079
2080 if (handle != anfd->handle)
2081 {
2082 unsigned long arg;
2083
2084 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2085
2086 /* handle changed, but fd didn't - we need to do it in two steps */
2087 backend_modify (EV_A_ fd, anfd->events, 0);
2088 anfd->events = 0;
2089 anfd->handle = handle;
2090 }
2091 }
2092 }
2093#endif
2094
2095 for (i = 0; i < fdchangecnt; ++i)
2096 {
2097 int fd = fdchanges [i];
2098 ANFD *anfd = anfds + fd;
302 struct ev_io *w; 2099 ev_io *w;
303 2100
304 int events = 0; 2101 unsigned char o_events = anfd->events;
2102 unsigned char o_reify = anfd->reify;
305 2103
306 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
307 events |= w->events;
308
309 anfd->reify = 0; 2104 anfd->reify = 0;
310 2105
311 method_modify (EV_A_ fd, anfd->events, events); 2106 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
2107 {
312 anfd->events = events; 2108 anfd->events = 0;
2109
2110 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2111 anfd->events |= (unsigned char)w->events;
2112
2113 if (o_events != anfd->events)
2114 o_reify = EV__IOFDSET; /* actually |= */
2115 }
2116
2117 if (o_reify & EV__IOFDSET)
2118 backend_modify (EV_A_ fd, o_events, anfd->events);
313 } 2119 }
314 2120
315 fdchangecnt = 0; 2121 fdchangecnt = 0;
316} 2122}
317 2123
318static void 2124/* something about the given fd changed */
2125inline_size void
319fd_change (EV_P_ int fd) 2126fd_change (EV_P_ int fd, int flags)
320{ 2127{
321 if (anfds [fd].reify || fdchangecnt < 0) 2128 unsigned char reify = anfds [fd].reify;
322 return;
323
324 anfds [fd].reify = 1; 2129 anfds [fd].reify |= flags;
325 2130
2131 if (expect_true (!reify))
2132 {
326 ++fdchangecnt; 2133 ++fdchangecnt;
327 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 2134 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
328 fdchanges [fdchangecnt - 1] = fd; 2135 fdchanges [fdchangecnt - 1] = fd;
2136 }
329} 2137}
330 2138
331static void 2139/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2140inline_speed void ecb_cold
332fd_kill (EV_P_ int fd) 2141fd_kill (EV_P_ int fd)
333{ 2142{
334 struct ev_io *w; 2143 ev_io *w;
335 2144
336 while ((w = (struct ev_io *)anfds [fd].head)) 2145 while ((w = (ev_io *)anfds [fd].head))
337 { 2146 {
338 ev_io_stop (EV_A_ w); 2147 ev_io_stop (EV_A_ w);
339 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2148 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
340 } 2149 }
2150}
2151
2152/* check whether the given fd is actually valid, for error recovery */
2153inline_size int ecb_cold
2154fd_valid (int fd)
2155{
2156#ifdef _WIN32
2157 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
2158#else
2159 return fcntl (fd, F_GETFD) != -1;
2160#endif
341} 2161}
342 2162
343/* called on EBADF to verify fds */ 2163/* called on EBADF to verify fds */
344static void 2164static void noinline ecb_cold
345fd_ebadf (EV_P) 2165fd_ebadf (EV_P)
346{ 2166{
347 int fd; 2167 int fd;
348 2168
349 for (fd = 0; fd < anfdmax; ++fd) 2169 for (fd = 0; fd < anfdmax; ++fd)
350 if (anfds [fd].events) 2170 if (anfds [fd].events)
351 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 2171 if (!fd_valid (fd) && errno == EBADF)
352 fd_kill (EV_A_ fd); 2172 fd_kill (EV_A_ fd);
353} 2173}
354 2174
355/* called on ENOMEM in select/poll to kill some fds and retry */ 2175/* called on ENOMEM in select/poll to kill some fds and retry */
356static void 2176static void noinline ecb_cold
357fd_enomem (EV_P) 2177fd_enomem (EV_P)
358{ 2178{
359 int fd; 2179 int fd;
360 2180
361 for (fd = anfdmax; fd--; ) 2181 for (fd = anfdmax; fd--; )
362 if (anfds [fd].events) 2182 if (anfds [fd].events)
363 { 2183 {
364 close (fd);
365 fd_kill (EV_A_ fd); 2184 fd_kill (EV_A_ fd);
366 return; 2185 break;
367 } 2186 }
368} 2187}
369 2188
370/* susually called after fork if method needs to re-arm all fds from scratch */ 2189/* usually called after fork if backend needs to re-arm all fds from scratch */
371static void 2190static void noinline
372fd_rearm_all (EV_P) 2191fd_rearm_all (EV_P)
373{ 2192{
374 int fd; 2193 int fd;
375 2194
376 /* this should be highly optimised to not do anything but set a flag */
377 for (fd = 0; fd < anfdmax; ++fd) 2195 for (fd = 0; fd < anfdmax; ++fd)
378 if (anfds [fd].events) 2196 if (anfds [fd].events)
379 { 2197 {
380 anfds [fd].events = 0; 2198 anfds [fd].events = 0;
381 fd_change (EV_A_ fd); 2199 anfds [fd].emask = 0;
2200 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
382 } 2201 }
383} 2202}
384 2203
2204/* used to prepare libev internal fd's */
2205/* this is not fork-safe */
2206inline_speed void
2207fd_intern (int fd)
2208{
2209#ifdef _WIN32
2210 unsigned long arg = 1;
2211 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2212#else
2213 fcntl (fd, F_SETFD, FD_CLOEXEC);
2214 fcntl (fd, F_SETFL, O_NONBLOCK);
2215#endif
2216}
2217
385/*****************************************************************************/ 2218/*****************************************************************************/
386 2219
2220/*
2221 * the heap functions want a real array index. array index 0 is guaranteed to not
2222 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2223 * the branching factor of the d-tree.
2224 */
2225
2226/*
2227 * at the moment we allow libev the luxury of two heaps,
2228 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2229 * which is more cache-efficient.
2230 * the difference is about 5% with 50000+ watchers.
2231 */
2232#if EV_USE_4HEAP
2233
2234#define DHEAP 4
2235#define HEAP0 (DHEAP - 1) /* index of first element in heap */
2236#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2237#define UPHEAP_DONE(p,k) ((p) == (k))
2238
2239/* away from the root */
2240inline_speed void
2241downheap (ANHE *heap, int N, int k)
2242{
2243 ANHE he = heap [k];
2244 ANHE *E = heap + N + HEAP0;
2245
2246 for (;;)
2247 {
2248 ev_tstamp minat;
2249 ANHE *minpos;
2250 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2251
2252 /* find minimum child */
2253 if (expect_true (pos + DHEAP - 1 < E))
2254 {
2255 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2256 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2257 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2258 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2259 }
2260 else if (pos < E)
2261 {
2262 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2263 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2264 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2265 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2266 }
2267 else
2268 break;
2269
2270 if (ANHE_at (he) <= minat)
2271 break;
2272
2273 heap [k] = *minpos;
2274 ev_active (ANHE_w (*minpos)) = k;
2275
2276 k = minpos - heap;
2277 }
2278
2279 heap [k] = he;
2280 ev_active (ANHE_w (he)) = k;
2281}
2282
2283#else /* 4HEAP */
2284
2285#define HEAP0 1
2286#define HPARENT(k) ((k) >> 1)
2287#define UPHEAP_DONE(p,k) (!(p))
2288
2289/* away from the root */
2290inline_speed void
2291downheap (ANHE *heap, int N, int k)
2292{
2293 ANHE he = heap [k];
2294
2295 for (;;)
2296 {
2297 int c = k << 1;
2298
2299 if (c >= N + HEAP0)
2300 break;
2301
2302 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2303 ? 1 : 0;
2304
2305 if (ANHE_at (he) <= ANHE_at (heap [c]))
2306 break;
2307
2308 heap [k] = heap [c];
2309 ev_active (ANHE_w (heap [k])) = k;
2310
2311 k = c;
2312 }
2313
2314 heap [k] = he;
2315 ev_active (ANHE_w (he)) = k;
2316}
2317#endif
2318
2319/* towards the root */
2320inline_speed void
2321upheap (ANHE *heap, int k)
2322{
2323 ANHE he = heap [k];
2324
2325 for (;;)
2326 {
2327 int p = HPARENT (k);
2328
2329 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2330 break;
2331
2332 heap [k] = heap [p];
2333 ev_active (ANHE_w (heap [k])) = k;
2334 k = p;
2335 }
2336
2337 heap [k] = he;
2338 ev_active (ANHE_w (he)) = k;
2339}
2340
2341/* move an element suitably so it is in a correct place */
2342inline_size void
2343adjustheap (ANHE *heap, int N, int k)
2344{
2345 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2346 upheap (heap, k);
2347 else
2348 downheap (heap, N, k);
2349}
2350
2351/* rebuild the heap: this function is used only once and executed rarely */
2352inline_size void
2353reheap (ANHE *heap, int N)
2354{
2355 int i;
2356
2357 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2358 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2359 for (i = 0; i < N; ++i)
2360 upheap (heap, i + HEAP0);
2361}
2362
2363/*****************************************************************************/
2364
2365/* associate signal watchers to a signal signal */
2366typedef struct
2367{
2368 EV_ATOMIC_T pending;
2369#if EV_MULTIPLICITY
2370 EV_P;
2371#endif
2372 WL head;
2373} ANSIG;
2374
2375static ANSIG signals [EV_NSIG - 1];
2376
2377/*****************************************************************************/
2378
2379#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2380
2381static void noinline ecb_cold
2382evpipe_init (EV_P)
2383{
2384 if (!ev_is_active (&pipe_w))
2385 {
2386 int fds [2];
2387
2388# if EV_USE_EVENTFD
2389 fds [0] = -1;
2390 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2391 if (fds [1] < 0 && errno == EINVAL)
2392 fds [1] = eventfd (0, 0);
2393
2394 if (fds [1] < 0)
2395# endif
2396 {
2397 while (pipe (fds))
2398 ev_syserr ("(libev) error creating signal/async pipe");
2399
2400 fd_intern (fds [0]);
2401 }
2402
2403 evpipe [0] = fds [0];
2404
2405 if (evpipe [1] < 0)
2406 evpipe [1] = fds [1]; /* first call, set write fd */
2407 else
2408 {
2409 /* on subsequent calls, do not change evpipe [1] */
2410 /* so that evpipe_write can always rely on its value. */
2411 /* this branch does not do anything sensible on windows, */
2412 /* so must not be executed on windows */
2413
2414 dup2 (fds [1], evpipe [1]);
2415 close (fds [1]);
2416 }
2417
2418 fd_intern (evpipe [1]);
2419
2420 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2421 ev_io_start (EV_A_ &pipe_w);
2422 ev_unref (EV_A); /* watcher should not keep loop alive */
2423 }
2424}
2425
2426inline_speed void
2427evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2428{
2429 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2430
2431 if (expect_true (*flag))
2432 return;
2433
2434 *flag = 1;
2435 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2436
2437 pipe_write_skipped = 1;
2438
2439 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2440
2441 if (pipe_write_wanted)
2442 {
2443 int old_errno;
2444
2445 pipe_write_skipped = 0;
2446 ECB_MEMORY_FENCE_RELEASE;
2447
2448 old_errno = errno; /* save errno because write will clobber it */
2449
2450#if EV_USE_EVENTFD
2451 if (evpipe [0] < 0)
2452 {
2453 uint64_t counter = 1;
2454 write (evpipe [1], &counter, sizeof (uint64_t));
2455 }
2456 else
2457#endif
2458 {
2459#ifdef _WIN32
2460 WSABUF buf;
2461 DWORD sent;
2462 buf.buf = &buf;
2463 buf.len = 1;
2464 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2465#else
2466 write (evpipe [1], &(evpipe [1]), 1);
2467#endif
2468 }
2469
2470 errno = old_errno;
2471 }
2472}
2473
2474/* called whenever the libev signal pipe */
2475/* got some events (signal, async) */
387static void 2476static void
388upheap (WT *heap, int k) 2477pipecb (EV_P_ ev_io *iow, int revents)
389{ 2478{
390 WT w = heap [k]; 2479 int i;
391 2480
392 while (k && heap [k >> 1]->at > w->at) 2481 if (revents & EV_READ)
393 {
394 heap [k] = heap [k >> 1];
395 ((W)heap [k])->active = k + 1;
396 k >>= 1;
397 } 2482 {
2483#if EV_USE_EVENTFD
2484 if (evpipe [0] < 0)
2485 {
2486 uint64_t counter;
2487 read (evpipe [1], &counter, sizeof (uint64_t));
2488 }
2489 else
2490#endif
2491 {
2492 char dummy[4];
2493#ifdef _WIN32
2494 WSABUF buf;
2495 DWORD recvd;
2496 DWORD flags = 0;
2497 buf.buf = dummy;
2498 buf.len = sizeof (dummy);
2499 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2500#else
2501 read (evpipe [0], &dummy, sizeof (dummy));
2502#endif
2503 }
2504 }
398 2505
399 heap [k] = w; 2506 pipe_write_skipped = 0;
400 ((W)heap [k])->active = k + 1;
401 2507
2508 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2509
2510#if EV_SIGNAL_ENABLE
2511 if (sig_pending)
2512 {
2513 sig_pending = 0;
2514
2515 ECB_MEMORY_FENCE;
2516
2517 for (i = EV_NSIG - 1; i--; )
2518 if (expect_false (signals [i].pending))
2519 ev_feed_signal_event (EV_A_ i + 1);
2520 }
2521#endif
2522
2523#if EV_ASYNC_ENABLE
2524 if (async_pending)
2525 {
2526 async_pending = 0;
2527
2528 ECB_MEMORY_FENCE;
2529
2530 for (i = asynccnt; i--; )
2531 if (asyncs [i]->sent)
2532 {
2533 asyncs [i]->sent = 0;
2534 ECB_MEMORY_FENCE_RELEASE;
2535 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2536 }
2537 }
2538#endif
2539}
2540
2541/*****************************************************************************/
2542
2543void
2544ev_feed_signal (int signum) EV_THROW
2545{
2546#if EV_MULTIPLICITY
2547 EV_P;
2548 ECB_MEMORY_FENCE_ACQUIRE;
2549 EV_A = signals [signum - 1].loop;
2550
2551 if (!EV_A)
2552 return;
2553#endif
2554
2555 signals [signum - 1].pending = 1;
2556 evpipe_write (EV_A_ &sig_pending);
402} 2557}
403 2558
404static void 2559static void
405downheap (WT *heap, int N, int k) 2560ev_sighandler (int signum)
406{ 2561{
407 WT w = heap [k]; 2562#ifdef _WIN32
2563 signal (signum, ev_sighandler);
2564#endif
408 2565
409 while (k < (N >> 1)) 2566 ev_feed_signal (signum);
410 { 2567}
411 int j = k << 1;
412 2568
413 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 2569void noinline
414 ++j; 2570ev_feed_signal_event (EV_P_ int signum) EV_THROW
2571{
2572 WL w;
415 2573
416 if (w->at <= heap [j]->at) 2574 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2575 return;
2576
2577 --signum;
2578
2579#if EV_MULTIPLICITY
2580 /* it is permissible to try to feed a signal to the wrong loop */
2581 /* or, likely more useful, feeding a signal nobody is waiting for */
2582
2583 if (expect_false (signals [signum].loop != EV_A))
2584 return;
2585#endif
2586
2587 signals [signum].pending = 0;
2588 ECB_MEMORY_FENCE_RELEASE;
2589
2590 for (w = signals [signum].head; w; w = w->next)
2591 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2592}
2593
2594#if EV_USE_SIGNALFD
2595static void
2596sigfdcb (EV_P_ ev_io *iow, int revents)
2597{
2598 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2599
2600 for (;;)
2601 {
2602 ssize_t res = read (sigfd, si, sizeof (si));
2603
2604 /* not ISO-C, as res might be -1, but works with SuS */
2605 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2606 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2607
2608 if (res < (ssize_t)sizeof (si))
417 break; 2609 break;
418
419 heap [k] = heap [j];
420 ((W)heap [k])->active = k + 1;
421 k = j;
422 } 2610 }
423
424 heap [k] = w;
425 ((W)heap [k])->active = k + 1;
426} 2611}
2612#endif
2613
2614#endif
427 2615
428/*****************************************************************************/ 2616/*****************************************************************************/
429 2617
430typedef struct 2618#if EV_CHILD_ENABLE
431{ 2619static WL childs [EV_PID_HASHSIZE];
432 struct ev_watcher_list *head;
433 sig_atomic_t volatile gotsig;
434} ANSIG;
435 2620
436static ANSIG *signals;
437static int signalmax;
438
439static int sigpipe [2];
440static sig_atomic_t volatile gotsig;
441static struct ev_io sigev;
442
443static void
444signals_init (ANSIG *base, int count)
445{
446 while (count--)
447 {
448 base->head = 0;
449 base->gotsig = 0;
450
451 ++base;
452 }
453}
454
455static void
456sighandler (int signum)
457{
458 signals [signum - 1].gotsig = 1;
459
460 if (!gotsig)
461 {
462 int old_errno = errno;
463 gotsig = 1;
464 write (sigpipe [1], &signum, 1);
465 errno = old_errno;
466 }
467}
468
469static void
470sigcb (EV_P_ struct ev_io *iow, int revents)
471{
472 struct ev_watcher_list *w;
473 int signum;
474
475 read (sigpipe [0], &revents, 1);
476 gotsig = 0;
477
478 for (signum = signalmax; signum--; )
479 if (signals [signum].gotsig)
480 {
481 signals [signum].gotsig = 0;
482
483 for (w = signals [signum].head; w; w = w->next)
484 event (EV_A_ (W)w, EV_SIGNAL);
485 }
486}
487
488static void
489siginit (EV_P)
490{
491#ifndef WIN32
492 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
493 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
494
495 /* rather than sort out wether we really need nb, set it */
496 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
497 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
498#endif
499
500 ev_io_set (&sigev, sigpipe [0], EV_READ);
501 ev_io_start (EV_A_ &sigev);
502 ev_unref (EV_A); /* child watcher should not keep loop alive */
503}
504
505/*****************************************************************************/
506
507#ifndef WIN32
508
509static struct ev_child *childs [PID_HASHSIZE];
510static struct ev_signal childev; 2621static ev_signal childev;
2622
2623#ifndef WIFCONTINUED
2624# define WIFCONTINUED(status) 0
2625#endif
2626
2627/* handle a single child status event */
2628inline_speed void
2629child_reap (EV_P_ int chain, int pid, int status)
2630{
2631 ev_child *w;
2632 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2633
2634 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2635 {
2636 if ((w->pid == pid || !w->pid)
2637 && (!traced || (w->flags & 1)))
2638 {
2639 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2640 w->rpid = pid;
2641 w->rstatus = status;
2642 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2643 }
2644 }
2645}
511 2646
512#ifndef WCONTINUED 2647#ifndef WCONTINUED
513# define WCONTINUED 0 2648# define WCONTINUED 0
514#endif 2649#endif
515 2650
2651/* called on sigchld etc., calls waitpid */
516static void 2652static void
517child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
518{
519 struct ev_child *w;
520
521 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
522 if (w->pid == pid || !w->pid)
523 {
524 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
525 w->rpid = pid;
526 w->rstatus = status;
527 event (EV_A_ (W)w, EV_CHILD);
528 }
529}
530
531static void
532childcb (EV_P_ struct ev_signal *sw, int revents) 2653childcb (EV_P_ ev_signal *sw, int revents)
533{ 2654{
534 int pid, status; 2655 int pid, status;
535 2656
2657 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
536 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 2658 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
537 { 2659 if (!WCONTINUED
2660 || errno != EINVAL
2661 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2662 return;
2663
538 /* make sure we are called again until all childs have been reaped */ 2664 /* make sure we are called again until all children have been reaped */
2665 /* we need to do it this way so that the callback gets called before we continue */
539 event (EV_A_ (W)sw, EV_SIGNAL); 2666 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
540 2667
541 child_reap (EV_A_ sw, pid, pid, status); 2668 child_reap (EV_A_ pid, pid, status);
2669 if ((EV_PID_HASHSIZE) > 1)
542 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 2670 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
543 }
544} 2671}
545 2672
546#endif 2673#endif
547 2674
548/*****************************************************************************/ 2675/*****************************************************************************/
549 2676
2677#if EV_USE_IOCP
2678# include "ev_iocp.c"
2679#endif
2680#if EV_USE_PORT
2681# include "ev_port.c"
2682#endif
550#if EV_USE_KQUEUE 2683#if EV_USE_KQUEUE
551# include "ev_kqueue.c" 2684# include "ev_kqueue.c"
552#endif 2685#endif
553#if EV_USE_EPOLL 2686#if EV_USE_EPOLL
554# include "ev_epoll.c" 2687# include "ev_epoll.c"
558#endif 2691#endif
559#if EV_USE_SELECT 2692#if EV_USE_SELECT
560# include "ev_select.c" 2693# include "ev_select.c"
561#endif 2694#endif
562 2695
563int 2696int ecb_cold
564ev_version_major (void) 2697ev_version_major (void) EV_THROW
565{ 2698{
566 return EV_VERSION_MAJOR; 2699 return EV_VERSION_MAJOR;
567} 2700}
568 2701
569int 2702int ecb_cold
570ev_version_minor (void) 2703ev_version_minor (void) EV_THROW
571{ 2704{
572 return EV_VERSION_MINOR; 2705 return EV_VERSION_MINOR;
573} 2706}
574 2707
575/* return true if we are running with elevated privileges and should ignore env variables */ 2708/* return true if we are running with elevated privileges and should ignore env variables */
576static int 2709int inline_size ecb_cold
577enable_secure (void) 2710enable_secure (void)
578{ 2711{
579#ifdef WIN32 2712#ifdef _WIN32
580 return 0; 2713 return 0;
581#else 2714#else
582 return getuid () != geteuid () 2715 return getuid () != geteuid ()
583 || getgid () != getegid (); 2716 || getgid () != getegid ();
584#endif 2717#endif
585} 2718}
586 2719
2720unsigned int ecb_cold
2721ev_supported_backends (void) EV_THROW
2722{
2723 unsigned int flags = 0;
2724
2725 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2726 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2727 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2728 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2729 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2730
2731 return flags;
2732}
2733
2734unsigned int ecb_cold
2735ev_recommended_backends (void) EV_THROW
2736{
2737 unsigned int flags = ev_supported_backends ();
2738
2739#ifndef __NetBSD__
2740 /* kqueue is borked on everything but netbsd apparently */
2741 /* it usually doesn't work correctly on anything but sockets and pipes */
2742 flags &= ~EVBACKEND_KQUEUE;
2743#endif
2744#ifdef __APPLE__
2745 /* only select works correctly on that "unix-certified" platform */
2746 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2747 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2748#endif
2749#ifdef __FreeBSD__
2750 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2751#endif
2752
2753 return flags;
2754}
2755
2756unsigned int ecb_cold
2757ev_embeddable_backends (void) EV_THROW
2758{
2759 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2760
2761 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2762 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2763 flags &= ~EVBACKEND_EPOLL;
2764
2765 return flags;
2766}
2767
2768unsigned int
2769ev_backend (EV_P) EV_THROW
2770{
2771 return backend;
2772}
2773
2774#if EV_FEATURE_API
2775unsigned int
2776ev_iteration (EV_P) EV_THROW
2777{
2778 return loop_count;
2779}
2780
2781unsigned int
2782ev_depth (EV_P) EV_THROW
2783{
2784 return loop_depth;
2785}
2786
2787void
2788ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2789{
2790 io_blocktime = interval;
2791}
2792
2793void
2794ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2795{
2796 timeout_blocktime = interval;
2797}
2798
2799void
2800ev_set_userdata (EV_P_ void *data) EV_THROW
2801{
2802 userdata = data;
2803}
2804
2805void *
2806ev_userdata (EV_P) EV_THROW
2807{
2808 return userdata;
2809}
2810
2811void
2812ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2813{
2814 invoke_cb = invoke_pending_cb;
2815}
2816
2817void
2818ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2819{
2820 release_cb = release;
2821 acquire_cb = acquire;
2822}
2823#endif
2824
2825/* initialise a loop structure, must be zero-initialised */
2826static void noinline ecb_cold
2827loop_init (EV_P_ unsigned int flags) EV_THROW
2828{
2829 if (!backend)
2830 {
2831 origflags = flags;
2832
2833#if EV_USE_REALTIME
2834 if (!have_realtime)
2835 {
2836 struct timespec ts;
2837
2838 if (!clock_gettime (CLOCK_REALTIME, &ts))
2839 have_realtime = 1;
2840 }
2841#endif
2842
2843#if EV_USE_MONOTONIC
2844 if (!have_monotonic)
2845 {
2846 struct timespec ts;
2847
2848 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2849 have_monotonic = 1;
2850 }
2851#endif
2852
2853 /* pid check not overridable via env */
2854#ifndef _WIN32
2855 if (flags & EVFLAG_FORKCHECK)
2856 curpid = getpid ();
2857#endif
2858
2859 if (!(flags & EVFLAG_NOENV)
2860 && !enable_secure ()
2861 && getenv ("LIBEV_FLAGS"))
2862 flags = atoi (getenv ("LIBEV_FLAGS"));
2863
2864 ev_rt_now = ev_time ();
2865 mn_now = get_clock ();
2866 now_floor = mn_now;
2867 rtmn_diff = ev_rt_now - mn_now;
2868#if EV_FEATURE_API
2869 invoke_cb = ev_invoke_pending;
2870#endif
2871
2872 io_blocktime = 0.;
2873 timeout_blocktime = 0.;
2874 backend = 0;
2875 backend_fd = -1;
2876 sig_pending = 0;
2877#if EV_ASYNC_ENABLE
2878 async_pending = 0;
2879#endif
2880 pipe_write_skipped = 0;
2881 pipe_write_wanted = 0;
2882 evpipe [0] = -1;
2883 evpipe [1] = -1;
2884#if EV_USE_INOTIFY
2885 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2886#endif
2887#if EV_USE_SIGNALFD
2888 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2889#endif
2890
2891 if (!(flags & EVBACKEND_MASK))
2892 flags |= ev_recommended_backends ();
2893
2894#if EV_USE_IOCP
2895 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2896#endif
2897#if EV_USE_PORT
2898 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2899#endif
2900#if EV_USE_KQUEUE
2901 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2902#endif
2903#if EV_USE_EPOLL
2904 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2905#endif
2906#if EV_USE_POLL
2907 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2908#endif
2909#if EV_USE_SELECT
2910 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2911#endif
2912
2913 ev_prepare_init (&pending_w, pendingcb);
2914
2915#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2916 ev_init (&pipe_w, pipecb);
2917 ev_set_priority (&pipe_w, EV_MAXPRI);
2918#endif
2919 }
2920}
2921
2922/* free up a loop structure */
2923void ecb_cold
2924ev_loop_destroy (EV_P)
2925{
2926 int i;
2927
2928#if EV_MULTIPLICITY
2929 /* mimic free (0) */
2930 if (!EV_A)
2931 return;
2932#endif
2933
2934#if EV_CLEANUP_ENABLE
2935 /* queue cleanup watchers (and execute them) */
2936 if (expect_false (cleanupcnt))
2937 {
2938 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2939 EV_INVOKE_PENDING;
2940 }
2941#endif
2942
2943#if EV_CHILD_ENABLE
2944 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2945 {
2946 ev_ref (EV_A); /* child watcher */
2947 ev_signal_stop (EV_A_ &childev);
2948 }
2949#endif
2950
2951 if (ev_is_active (&pipe_w))
2952 {
2953 /*ev_ref (EV_A);*/
2954 /*ev_io_stop (EV_A_ &pipe_w);*/
2955
2956 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2957 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2958 }
2959
2960#if EV_USE_SIGNALFD
2961 if (ev_is_active (&sigfd_w))
2962 close (sigfd);
2963#endif
2964
2965#if EV_USE_INOTIFY
2966 if (fs_fd >= 0)
2967 close (fs_fd);
2968#endif
2969
2970 if (backend_fd >= 0)
2971 close (backend_fd);
2972
2973#if EV_USE_IOCP
2974 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2975#endif
2976#if EV_USE_PORT
2977 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2978#endif
2979#if EV_USE_KQUEUE
2980 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2981#endif
2982#if EV_USE_EPOLL
2983 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2984#endif
2985#if EV_USE_POLL
2986 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2987#endif
2988#if EV_USE_SELECT
2989 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2990#endif
2991
2992 for (i = NUMPRI; i--; )
2993 {
2994 array_free (pending, [i]);
2995#if EV_IDLE_ENABLE
2996 array_free (idle, [i]);
2997#endif
2998 }
2999
3000 ev_free (anfds); anfds = 0; anfdmax = 0;
3001
3002 /* have to use the microsoft-never-gets-it-right macro */
3003 array_free (rfeed, EMPTY);
3004 array_free (fdchange, EMPTY);
3005 array_free (timer, EMPTY);
3006#if EV_PERIODIC_ENABLE
3007 array_free (periodic, EMPTY);
3008#endif
3009#if EV_FORK_ENABLE
3010 array_free (fork, EMPTY);
3011#endif
3012#if EV_CLEANUP_ENABLE
3013 array_free (cleanup, EMPTY);
3014#endif
3015 array_free (prepare, EMPTY);
3016 array_free (check, EMPTY);
3017#if EV_ASYNC_ENABLE
3018 array_free (async, EMPTY);
3019#endif
3020
3021 backend = 0;
3022
3023#if EV_MULTIPLICITY
3024 if (ev_is_default_loop (EV_A))
3025#endif
3026 ev_default_loop_ptr = 0;
3027#if EV_MULTIPLICITY
3028 else
3029 ev_free (EV_A);
3030#endif
3031}
3032
3033#if EV_USE_INOTIFY
3034inline_size void infy_fork (EV_P);
3035#endif
3036
3037inline_size void
3038loop_fork (EV_P)
3039{
3040#if EV_USE_PORT
3041 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
3042#endif
3043#if EV_USE_KQUEUE
3044 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
3045#endif
3046#if EV_USE_EPOLL
3047 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
3048#endif
3049#if EV_USE_INOTIFY
3050 infy_fork (EV_A);
3051#endif
3052
3053#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3054 if (ev_is_active (&pipe_w) && postfork != 2)
3055 {
3056 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3057
3058 ev_ref (EV_A);
3059 ev_io_stop (EV_A_ &pipe_w);
3060
3061 if (evpipe [0] >= 0)
3062 EV_WIN32_CLOSE_FD (evpipe [0]);
3063
3064 evpipe_init (EV_A);
3065 /* iterate over everything, in case we missed something before */
3066 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3067 }
3068#endif
3069
3070 postfork = 0;
3071}
3072
3073#if EV_MULTIPLICITY
3074
3075struct ev_loop * ecb_cold
3076ev_loop_new (unsigned int flags) EV_THROW
3077{
3078 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3079
3080 memset (EV_A, 0, sizeof (struct ev_loop));
3081 loop_init (EV_A_ flags);
3082
3083 if (ev_backend (EV_A))
3084 return EV_A;
3085
3086 ev_free (EV_A);
3087 return 0;
3088}
3089
3090#endif /* multiplicity */
3091
3092#if EV_VERIFY
3093static void noinline ecb_cold
3094verify_watcher (EV_P_ W w)
3095{
3096 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
3097
3098 if (w->pending)
3099 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3100}
3101
3102static void noinline ecb_cold
3103verify_heap (EV_P_ ANHE *heap, int N)
3104{
3105 int i;
3106
3107 for (i = HEAP0; i < N + HEAP0; ++i)
3108 {
3109 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3110 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3111 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3112
3113 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3114 }
3115}
3116
3117static void noinline ecb_cold
3118array_verify (EV_P_ W *ws, int cnt)
3119{
3120 while (cnt--)
3121 {
3122 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3123 verify_watcher (EV_A_ ws [cnt]);
3124 }
3125}
3126#endif
3127
3128#if EV_FEATURE_API
3129void ecb_cold
3130ev_verify (EV_P) EV_THROW
3131{
3132#if EV_VERIFY
3133 int i;
3134 WL w, w2;
3135
3136 assert (activecnt >= -1);
3137
3138 assert (fdchangemax >= fdchangecnt);
3139 for (i = 0; i < fdchangecnt; ++i)
3140 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3141
3142 assert (anfdmax >= 0);
3143 for (i = 0; i < anfdmax; ++i)
3144 {
3145 int j = 0;
3146
3147 for (w = w2 = anfds [i].head; w; w = w->next)
3148 {
3149 verify_watcher (EV_A_ (W)w);
3150
3151 if (j++ & 1)
3152 {
3153 assert (("libev: io watcher list contains a loop", w != w2));
3154 w2 = w2->next;
3155 }
3156
3157 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3158 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3159 }
3160 }
3161
3162 assert (timermax >= timercnt);
3163 verify_heap (EV_A_ timers, timercnt);
3164
3165#if EV_PERIODIC_ENABLE
3166 assert (periodicmax >= periodiccnt);
3167 verify_heap (EV_A_ periodics, periodiccnt);
3168#endif
3169
3170 for (i = NUMPRI; i--; )
3171 {
3172 assert (pendingmax [i] >= pendingcnt [i]);
3173#if EV_IDLE_ENABLE
3174 assert (idleall >= 0);
3175 assert (idlemax [i] >= idlecnt [i]);
3176 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3177#endif
3178 }
3179
3180#if EV_FORK_ENABLE
3181 assert (forkmax >= forkcnt);
3182 array_verify (EV_A_ (W *)forks, forkcnt);
3183#endif
3184
3185#if EV_CLEANUP_ENABLE
3186 assert (cleanupmax >= cleanupcnt);
3187 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3188#endif
3189
3190#if EV_ASYNC_ENABLE
3191 assert (asyncmax >= asynccnt);
3192 array_verify (EV_A_ (W *)asyncs, asynccnt);
3193#endif
3194
3195#if EV_PREPARE_ENABLE
3196 assert (preparemax >= preparecnt);
3197 array_verify (EV_A_ (W *)prepares, preparecnt);
3198#endif
3199
3200#if EV_CHECK_ENABLE
3201 assert (checkmax >= checkcnt);
3202 array_verify (EV_A_ (W *)checks, checkcnt);
3203#endif
3204
3205# if 0
3206#if EV_CHILD_ENABLE
3207 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3208 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3209#endif
3210# endif
3211#endif
3212}
3213#endif
3214
3215#if EV_MULTIPLICITY
3216struct ev_loop * ecb_cold
3217#else
587int 3218int
588ev_method (EV_P) 3219#endif
3220ev_default_loop (unsigned int flags) EV_THROW
589{ 3221{
590 return method; 3222 if (!ev_default_loop_ptr)
591}
592
593static void
594loop_init (EV_P_ int methods)
595{
596 if (!method)
597 {
598#if EV_USE_MONOTONIC
599 { 3223 {
600 struct timespec ts;
601 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
602 have_monotonic = 1;
603 }
604#endif
605
606 rt_now = ev_time ();
607 mn_now = get_clock ();
608 now_floor = mn_now;
609 rtmn_diff = rt_now - mn_now;
610
611 if (methods == EVMETHOD_AUTO)
612 if (!enable_secure () && getenv ("LIBEV_METHODS"))
613 methods = atoi (getenv ("LIBEV_METHODS"));
614 else
615 methods = EVMETHOD_ANY;
616
617 method = 0;
618#if EV_USE_WIN32
619 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
620#endif
621#if EV_USE_KQUEUE
622 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
623#endif
624#if EV_USE_EPOLL
625 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
626#endif
627#if EV_USE_POLL
628 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
629#endif
630#if EV_USE_SELECT
631 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
632#endif
633 }
634}
635
636void
637loop_destroy (EV_P)
638{
639#if EV_USE_WIN32
640 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
641#endif
642#if EV_USE_KQUEUE
643 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
644#endif
645#if EV_USE_EPOLL
646 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
647#endif
648#if EV_USE_POLL
649 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
650#endif
651#if EV_USE_SELECT
652 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
653#endif
654
655 method = 0;
656 /*TODO*/
657}
658
659void
660loop_fork (EV_P)
661{
662 /*TODO*/
663#if EV_USE_EPOLL
664 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
665#endif
666#if EV_USE_KQUEUE
667 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
668#endif
669}
670
671#if EV_MULTIPLICITY 3224#if EV_MULTIPLICITY
672struct ev_loop *
673ev_loop_new (int methods)
674{
675 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
676
677 loop_init (EV_A_ methods);
678
679 if (ev_method (EV_A))
680 return loop;
681
682 return 0;
683}
684
685void
686ev_loop_destroy (EV_P)
687{
688 loop_destroy (EV_A);
689 free (loop);
690}
691
692void
693ev_loop_fork (EV_P)
694{
695 loop_fork (EV_A);
696}
697
698#endif
699
700#if EV_MULTIPLICITY
701struct ev_loop default_loop_struct;
702static struct ev_loop *default_loop;
703
704struct ev_loop *
705#else
706static int default_loop;
707
708int
709#endif
710ev_default_loop (int methods)
711{
712 if (sigpipe [0] == sigpipe [1])
713 if (pipe (sigpipe))
714 return 0;
715
716 if (!default_loop)
717 {
718#if EV_MULTIPLICITY
719 struct ev_loop *loop = default_loop = &default_loop_struct; 3225 EV_P = ev_default_loop_ptr = &default_loop_struct;
720#else 3226#else
721 default_loop = 1; 3227 ev_default_loop_ptr = 1;
722#endif 3228#endif
723 3229
724 loop_init (EV_A_ methods); 3230 loop_init (EV_A_ flags);
725 3231
726 if (ev_method (EV_A)) 3232 if (ev_backend (EV_A))
727 { 3233 {
728 ev_watcher_init (&sigev, sigcb); 3234#if EV_CHILD_ENABLE
729 ev_set_priority (&sigev, EV_MAXPRI);
730 siginit (EV_A);
731
732#ifndef WIN32
733 ev_signal_init (&childev, childcb, SIGCHLD); 3235 ev_signal_init (&childev, childcb, SIGCHLD);
734 ev_set_priority (&childev, EV_MAXPRI); 3236 ev_set_priority (&childev, EV_MAXPRI);
735 ev_signal_start (EV_A_ &childev); 3237 ev_signal_start (EV_A_ &childev);
736 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3238 ev_unref (EV_A); /* child watcher should not keep loop alive */
737#endif 3239#endif
738 } 3240 }
739 else 3241 else
740 default_loop = 0; 3242 ev_default_loop_ptr = 0;
741 } 3243 }
742 3244
743 return default_loop; 3245 return ev_default_loop_ptr;
744} 3246}
745 3247
746void 3248void
747ev_default_destroy (void) 3249ev_loop_fork (EV_P) EV_THROW
748{ 3250{
749#if EV_MULTIPLICITY 3251 postfork = 1;
750 struct ev_loop *loop = default_loop;
751#endif
752
753 ev_ref (EV_A); /* child watcher */
754 ev_signal_stop (EV_A_ &childev);
755
756 ev_ref (EV_A); /* signal watcher */
757 ev_io_stop (EV_A_ &sigev);
758
759 close (sigpipe [0]); sigpipe [0] = 0;
760 close (sigpipe [1]); sigpipe [1] = 0;
761
762 loop_destroy (EV_A);
763} 3252}
3253
3254/*****************************************************************************/
764 3255
765void 3256void
766ev_default_fork (void) 3257ev_invoke (EV_P_ void *w, int revents)
767{ 3258{
768#if EV_MULTIPLICITY 3259 EV_CB_INVOKE ((W)w, revents);
769 struct ev_loop *loop = default_loop;
770#endif
771
772 loop_fork (EV_A);
773
774 ev_io_stop (EV_A_ &sigev);
775 close (sigpipe [0]);
776 close (sigpipe [1]);
777 pipe (sigpipe);
778
779 ev_ref (EV_A); /* signal watcher */
780 siginit (EV_A);
781} 3260}
782 3261
783/*****************************************************************************/ 3262unsigned int
784 3263ev_pending_count (EV_P) EV_THROW
785static void
786call_pending (EV_P)
787{ 3264{
788 int pri; 3265 int pri;
3266 unsigned int count = 0;
789 3267
790 for (pri = NUMPRI; pri--; ) 3268 for (pri = NUMPRI; pri--; )
3269 count += pendingcnt [pri];
3270
3271 return count;
3272}
3273
3274void noinline
3275ev_invoke_pending (EV_P)
3276{
3277 pendingpri = NUMPRI;
3278
3279 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3280 {
3281 --pendingpri;
3282
791 while (pendingcnt [pri]) 3283 while (pendingcnt [pendingpri])
792 {
793 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
794
795 if (p->w)
796 {
797 p->w->pending = 0;
798
799 (*(void (**)(EV_P_ W, int))&p->w->cb) (EV_A_ p->w, p->events);
800 }
801 }
802}
803
804static void
805timers_reify (EV_P)
806{
807 while (timercnt && ((WT)timers [0])->at <= mn_now)
808 {
809 struct ev_timer *w = timers [0];
810
811 assert (("inactive timer on timer heap detected", ev_is_active (w)));
812
813 /* first reschedule or stop timer */
814 if (w->repeat)
815 { 3284 {
816 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3285 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
817 ((WT)w)->at = mn_now + w->repeat; 3286
818 downheap ((WT *)timers, timercnt, 0); 3287 p->w->pending = 0;
3288 EV_CB_INVOKE (p->w, p->events);
3289 EV_FREQUENT_CHECK;
819 } 3290 }
820 else
821 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
822
823 event (EV_A_ (W)w, EV_TIMEOUT);
824 }
825}
826
827static void
828periodics_reify (EV_P)
829{
830 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
831 { 3291 }
832 struct ev_periodic *w = periodics [0]; 3292}
833 3293
834 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 3294#if EV_IDLE_ENABLE
3295/* make idle watchers pending. this handles the "call-idle */
3296/* only when higher priorities are idle" logic */
3297inline_size void
3298idle_reify (EV_P)
3299{
3300 if (expect_false (idleall))
3301 {
3302 int pri;
835 3303
836 /* first reschedule or stop timer */ 3304 for (pri = NUMPRI; pri--; )
837 if (w->interval)
838 { 3305 {
839 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 3306 if (pendingcnt [pri])
840 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 3307 break;
841 downheap ((WT *)periodics, periodiccnt, 0);
842 }
843 else
844 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
845 3308
846 event (EV_A_ (W)w, EV_PERIODIC); 3309 if (idlecnt [pri])
847 }
848}
849
850static void
851periodics_reschedule (EV_P)
852{
853 int i;
854
855 /* adjust periodics after time jump */
856 for (i = 0; i < periodiccnt; ++i)
857 {
858 struct ev_periodic *w = periodics [i];
859
860 if (w->interval)
861 {
862 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
863
864 if (fabs (diff) >= 1e-4)
865 { 3310 {
866 ev_periodic_stop (EV_A_ w); 3311 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
867 ev_periodic_start (EV_A_ w); 3312 break;
868
869 i = 0; /* restart loop, inefficient, but time jumps should be rare */
870 } 3313 }
871 } 3314 }
872 } 3315 }
873} 3316}
3317#endif
874 3318
875inline int 3319/* make timers pending */
876time_update_monotonic (EV_P) 3320inline_size void
3321timers_reify (EV_P)
877{ 3322{
878 mn_now = get_clock (); 3323 EV_FREQUENT_CHECK;
879 3324
880 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 3325 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
881 {
882 rt_now = rtmn_diff + mn_now;
883 return 0;
884 } 3326 {
885 else 3327 do
3328 {
3329 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3330
3331 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3332
3333 /* first reschedule or stop timer */
3334 if (w->repeat)
3335 {
3336 ev_at (w) += w->repeat;
3337 if (ev_at (w) < mn_now)
3338 ev_at (w) = mn_now;
3339
3340 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3341
3342 ANHE_at_cache (timers [HEAP0]);
3343 downheap (timers, timercnt, HEAP0);
3344 }
3345 else
3346 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3347
3348 EV_FREQUENT_CHECK;
3349 feed_reverse (EV_A_ (W)w);
3350 }
3351 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3352
3353 feed_reverse_done (EV_A_ EV_TIMER);
886 { 3354 }
887 now_floor = mn_now; 3355}
888 rt_now = ev_time (); 3356
889 return 1; 3357#if EV_PERIODIC_ENABLE
3358
3359static void noinline
3360periodic_recalc (EV_P_ ev_periodic *w)
3361{
3362 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3363 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3364
3365 /* the above almost always errs on the low side */
3366 while (at <= ev_rt_now)
890 } 3367 {
891} 3368 ev_tstamp nat = at + w->interval;
892 3369
893static void 3370 /* when resolution fails us, we use ev_rt_now */
894time_update (EV_P) 3371 if (expect_false (nat == at))
3372 {
3373 at = ev_rt_now;
3374 break;
3375 }
3376
3377 at = nat;
3378 }
3379
3380 ev_at (w) = at;
3381}
3382
3383/* make periodics pending */
3384inline_size void
3385periodics_reify (EV_P)
3386{
3387 EV_FREQUENT_CHECK;
3388
3389 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3390 {
3391 do
3392 {
3393 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3394
3395 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3396
3397 /* first reschedule or stop timer */
3398 if (w->reschedule_cb)
3399 {
3400 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3401
3402 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3403
3404 ANHE_at_cache (periodics [HEAP0]);
3405 downheap (periodics, periodiccnt, HEAP0);
3406 }
3407 else if (w->interval)
3408 {
3409 periodic_recalc (EV_A_ w);
3410 ANHE_at_cache (periodics [HEAP0]);
3411 downheap (periodics, periodiccnt, HEAP0);
3412 }
3413 else
3414 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3415
3416 EV_FREQUENT_CHECK;
3417 feed_reverse (EV_A_ (W)w);
3418 }
3419 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3420
3421 feed_reverse_done (EV_A_ EV_PERIODIC);
3422 }
3423}
3424
3425/* simply recalculate all periodics */
3426/* TODO: maybe ensure that at least one event happens when jumping forward? */
3427static void noinline ecb_cold
3428periodics_reschedule (EV_P)
895{ 3429{
896 int i; 3430 int i;
897 3431
3432 /* adjust periodics after time jump */
3433 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3434 {
3435 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3436
3437 if (w->reschedule_cb)
3438 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3439 else if (w->interval)
3440 periodic_recalc (EV_A_ w);
3441
3442 ANHE_at_cache (periodics [i]);
3443 }
3444
3445 reheap (periodics, periodiccnt);
3446}
3447#endif
3448
3449/* adjust all timers by a given offset */
3450static void noinline ecb_cold
3451timers_reschedule (EV_P_ ev_tstamp adjust)
3452{
3453 int i;
3454
3455 for (i = 0; i < timercnt; ++i)
3456 {
3457 ANHE *he = timers + i + HEAP0;
3458 ANHE_w (*he)->at += adjust;
3459 ANHE_at_cache (*he);
3460 }
3461}
3462
3463/* fetch new monotonic and realtime times from the kernel */
3464/* also detect if there was a timejump, and act accordingly */
3465inline_speed void
3466time_update (EV_P_ ev_tstamp max_block)
3467{
898#if EV_USE_MONOTONIC 3468#if EV_USE_MONOTONIC
899 if (expect_true (have_monotonic)) 3469 if (expect_true (have_monotonic))
900 { 3470 {
901 if (time_update_monotonic (EV_A)) 3471 int i;
3472 ev_tstamp odiff = rtmn_diff;
3473
3474 mn_now = get_clock ();
3475
3476 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3477 /* interpolate in the meantime */
3478 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
902 { 3479 {
903 ev_tstamp odiff = rtmn_diff; 3480 ev_rt_now = rtmn_diff + mn_now;
3481 return;
3482 }
904 3483
3484 now_floor = mn_now;
3485 ev_rt_now = ev_time ();
3486
905 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 3487 /* loop a few times, before making important decisions.
3488 * on the choice of "4": one iteration isn't enough,
3489 * in case we get preempted during the calls to
3490 * ev_time and get_clock. a second call is almost guaranteed
3491 * to succeed in that case, though. and looping a few more times
3492 * doesn't hurt either as we only do this on time-jumps or
3493 * in the unlikely event of having been preempted here.
3494 */
3495 for (i = 4; --i; )
906 { 3496 {
3497 ev_tstamp diff;
907 rtmn_diff = rt_now - mn_now; 3498 rtmn_diff = ev_rt_now - mn_now;
908 3499
909 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 3500 diff = odiff - rtmn_diff;
3501
3502 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
910 return; /* all is well */ 3503 return; /* all is well */
911 3504
912 rt_now = ev_time (); 3505 ev_rt_now = ev_time ();
913 mn_now = get_clock (); 3506 mn_now = get_clock ();
914 now_floor = mn_now; 3507 now_floor = mn_now;
915 } 3508 }
916 3509
3510 /* no timer adjustment, as the monotonic clock doesn't jump */
3511 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3512# if EV_PERIODIC_ENABLE
3513 periodics_reschedule (EV_A);
3514# endif
3515 }
3516 else
3517#endif
3518 {
3519 ev_rt_now = ev_time ();
3520
3521 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3522 {
3523 /* adjust timers. this is easy, as the offset is the same for all of them */
3524 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3525#if EV_PERIODIC_ENABLE
917 periodics_reschedule (EV_A); 3526 periodics_reschedule (EV_A);
918 /* no timer adjustment, as the monotonic clock doesn't jump */ 3527#endif
919 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
920 } 3528 }
921 }
922 else
923#endif
924 {
925 rt_now = ev_time ();
926 3529
927 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
928 {
929 periodics_reschedule (EV_A);
930
931 /* adjust timers. this is easy, as the offset is the same for all */
932 for (i = 0; i < timercnt; ++i)
933 ((WT)timers [i])->at += rt_now - mn_now;
934 }
935
936 mn_now = rt_now; 3530 mn_now = ev_rt_now;
937 } 3531 }
938} 3532}
939 3533
940void 3534int
941ev_ref (EV_P)
942{
943 ++activecnt;
944}
945
946void
947ev_unref (EV_P)
948{
949 --activecnt;
950}
951
952static int loop_done;
953
954void
955ev_loop (EV_P_ int flags) 3535ev_run (EV_P_ int flags)
956{ 3536{
957 double block; 3537#if EV_FEATURE_API
958 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 3538 ++loop_depth;
3539#endif
3540
3541 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3542
3543 loop_done = EVBREAK_CANCEL;
3544
3545 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
959 3546
960 do 3547 do
961 { 3548 {
3549#if EV_VERIFY >= 2
3550 ev_verify (EV_A);
3551#endif
3552
3553#ifndef _WIN32
3554 if (expect_false (curpid)) /* penalise the forking check even more */
3555 if (expect_false (getpid () != curpid))
3556 {
3557 curpid = getpid ();
3558 postfork = 1;
3559 }
3560#endif
3561
3562#if EV_FORK_ENABLE
3563 /* we might have forked, so queue fork handlers */
3564 if (expect_false (postfork))
3565 if (forkcnt)
3566 {
3567 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3568 EV_INVOKE_PENDING;
3569 }
3570#endif
3571
3572#if EV_PREPARE_ENABLE
962 /* queue check watchers (and execute them) */ 3573 /* queue prepare watchers (and execute them) */
963 if (expect_false (preparecnt)) 3574 if (expect_false (preparecnt))
964 { 3575 {
965 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3576 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
966 call_pending (EV_A); 3577 EV_INVOKE_PENDING;
967 } 3578 }
3579#endif
3580
3581 if (expect_false (loop_done))
3582 break;
3583
3584 /* we might have forked, so reify kernel state if necessary */
3585 if (expect_false (postfork))
3586 loop_fork (EV_A);
968 3587
969 /* update fd-related kernel structures */ 3588 /* update fd-related kernel structures */
970 fd_reify (EV_A); 3589 fd_reify (EV_A);
971 3590
972 /* calculate blocking time */ 3591 /* calculate blocking time */
3592 {
3593 ev_tstamp waittime = 0.;
3594 ev_tstamp sleeptime = 0.;
973 3595
974 /* we only need this for !monotonic clockor timers, but as we basically 3596 /* remember old timestamp for io_blocktime calculation */
975 always have timers, we just calculate it always */ 3597 ev_tstamp prev_mn_now = mn_now;
976#if EV_USE_MONOTONIC 3598
977 if (expect_true (have_monotonic)) 3599 /* update time to cancel out callback processing overhead */
978 time_update_monotonic (EV_A); 3600 time_update (EV_A_ 1e100);
979 else 3601
980#endif 3602 /* from now on, we want a pipe-wake-up */
3603 pipe_write_wanted = 1;
3604
3605 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3606
3607 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
981 { 3608 {
982 rt_now = ev_time ();
983 mn_now = rt_now;
984 }
985
986 if (flags & EVLOOP_NONBLOCK || idlecnt)
987 block = 0.;
988 else
989 {
990 block = MAX_BLOCKTIME; 3609 waittime = MAX_BLOCKTIME;
991 3610
992 if (timercnt) 3611 if (timercnt)
993 { 3612 {
994 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 3613 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
995 if (block > to) block = to; 3614 if (waittime > to) waittime = to;
996 } 3615 }
997 3616
3617#if EV_PERIODIC_ENABLE
998 if (periodiccnt) 3618 if (periodiccnt)
999 { 3619 {
1000 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 3620 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1001 if (block > to) block = to; 3621 if (waittime > to) waittime = to;
1002 } 3622 }
3623#endif
1003 3624
1004 if (block < 0.) block = 0.; 3625 /* don't let timeouts decrease the waittime below timeout_blocktime */
3626 if (expect_false (waittime < timeout_blocktime))
3627 waittime = timeout_blocktime;
3628
3629 /* at this point, we NEED to wait, so we have to ensure */
3630 /* to pass a minimum nonzero value to the backend */
3631 if (expect_false (waittime < backend_mintime))
3632 waittime = backend_mintime;
3633
3634 /* extra check because io_blocktime is commonly 0 */
3635 if (expect_false (io_blocktime))
3636 {
3637 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3638
3639 if (sleeptime > waittime - backend_mintime)
3640 sleeptime = waittime - backend_mintime;
3641
3642 if (expect_true (sleeptime > 0.))
3643 {
3644 ev_sleep (sleeptime);
3645 waittime -= sleeptime;
3646 }
3647 }
1005 } 3648 }
1006 3649
1007 method_poll (EV_A_ block); 3650#if EV_FEATURE_API
3651 ++loop_count;
3652#endif
3653 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3654 backend_poll (EV_A_ waittime);
3655 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1008 3656
3657 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3658
3659 ECB_MEMORY_FENCE_ACQUIRE;
3660 if (pipe_write_skipped)
3661 {
3662 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3663 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3664 }
3665
3666
1009 /* update rt_now, do magic */ 3667 /* update ev_rt_now, do magic */
1010 time_update (EV_A); 3668 time_update (EV_A_ waittime + sleeptime);
3669 }
1011 3670
1012 /* queue pending timers and reschedule them */ 3671 /* queue pending timers and reschedule them */
1013 timers_reify (EV_A); /* relative timers called last */ 3672 timers_reify (EV_A); /* relative timers called last */
3673#if EV_PERIODIC_ENABLE
1014 periodics_reify (EV_A); /* absolute timers called first */ 3674 periodics_reify (EV_A); /* absolute timers called first */
3675#endif
1015 3676
3677#if EV_IDLE_ENABLE
1016 /* queue idle watchers unless io or timers are pending */ 3678 /* queue idle watchers unless other events are pending */
1017 if (!pendingcnt) 3679 idle_reify (EV_A);
1018 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 3680#endif
1019 3681
3682#if EV_CHECK_ENABLE
1020 /* queue check watchers, to be executed first */ 3683 /* queue check watchers, to be executed first */
1021 if (checkcnt) 3684 if (expect_false (checkcnt))
1022 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3685 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3686#endif
1023 3687
1024 call_pending (EV_A); 3688 EV_INVOKE_PENDING;
1025 } 3689 }
1026 while (activecnt && !loop_done); 3690 while (expect_true (
3691 activecnt
3692 && !loop_done
3693 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3694 ));
1027 3695
1028 if (loop_done != 2) 3696 if (loop_done == EVBREAK_ONE)
1029 loop_done = 0; 3697 loop_done = EVBREAK_CANCEL;
3698
3699#if EV_FEATURE_API
3700 --loop_depth;
3701#endif
3702
3703 return activecnt;
1030} 3704}
1031 3705
1032void 3706void
1033ev_unloop (EV_P_ int how) 3707ev_break (EV_P_ int how) EV_THROW
1034{ 3708{
1035 loop_done = how; 3709 loop_done = how;
1036} 3710}
1037 3711
3712void
3713ev_ref (EV_P) EV_THROW
3714{
3715 ++activecnt;
3716}
3717
3718void
3719ev_unref (EV_P) EV_THROW
3720{
3721 --activecnt;
3722}
3723
3724void
3725ev_now_update (EV_P) EV_THROW
3726{
3727 time_update (EV_A_ 1e100);
3728}
3729
3730void
3731ev_suspend (EV_P) EV_THROW
3732{
3733 ev_now_update (EV_A);
3734}
3735
3736void
3737ev_resume (EV_P) EV_THROW
3738{
3739 ev_tstamp mn_prev = mn_now;
3740
3741 ev_now_update (EV_A);
3742 timers_reschedule (EV_A_ mn_now - mn_prev);
3743#if EV_PERIODIC_ENABLE
3744 /* TODO: really do this? */
3745 periodics_reschedule (EV_A);
3746#endif
3747}
3748
1038/*****************************************************************************/ 3749/*****************************************************************************/
3750/* singly-linked list management, used when the expected list length is short */
1039 3751
1040inline void 3752inline_size void
1041wlist_add (WL *head, WL elem) 3753wlist_add (WL *head, WL elem)
1042{ 3754{
1043 elem->next = *head; 3755 elem->next = *head;
1044 *head = elem; 3756 *head = elem;
1045} 3757}
1046 3758
1047inline void 3759inline_size void
1048wlist_del (WL *head, WL elem) 3760wlist_del (WL *head, WL elem)
1049{ 3761{
1050 while (*head) 3762 while (*head)
1051 { 3763 {
1052 if (*head == elem) 3764 if (expect_true (*head == elem))
1053 { 3765 {
1054 *head = elem->next; 3766 *head = elem->next;
1055 return; 3767 break;
1056 } 3768 }
1057 3769
1058 head = &(*head)->next; 3770 head = &(*head)->next;
1059 } 3771 }
1060} 3772}
1061 3773
3774/* internal, faster, version of ev_clear_pending */
1062inline void 3775inline_speed void
1063ev_clear_pending (EV_P_ W w) 3776clear_pending (EV_P_ W w)
1064{ 3777{
1065 if (w->pending) 3778 if (w->pending)
1066 { 3779 {
1067 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3780 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1068 w->pending = 0; 3781 w->pending = 0;
1069 } 3782 }
1070} 3783}
1071 3784
3785int
3786ev_clear_pending (EV_P_ void *w) EV_THROW
3787{
3788 W w_ = (W)w;
3789 int pending = w_->pending;
3790
3791 if (expect_true (pending))
3792 {
3793 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3794 p->w = (W)&pending_w;
3795 w_->pending = 0;
3796 return p->events;
3797 }
3798 else
3799 return 0;
3800}
3801
1072inline void 3802inline_size void
3803pri_adjust (EV_P_ W w)
3804{
3805 int pri = ev_priority (w);
3806 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3807 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3808 ev_set_priority (w, pri);
3809}
3810
3811inline_speed void
1073ev_start (EV_P_ W w, int active) 3812ev_start (EV_P_ W w, int active)
1074{ 3813{
1075 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 3814 pri_adjust (EV_A_ w);
1076 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1077
1078 w->active = active; 3815 w->active = active;
1079 ev_ref (EV_A); 3816 ev_ref (EV_A);
1080} 3817}
1081 3818
1082inline void 3819inline_size void
1083ev_stop (EV_P_ W w) 3820ev_stop (EV_P_ W w)
1084{ 3821{
1085 ev_unref (EV_A); 3822 ev_unref (EV_A);
1086 w->active = 0; 3823 w->active = 0;
1087} 3824}
1088 3825
1089/*****************************************************************************/ 3826/*****************************************************************************/
1090 3827
1091void 3828void noinline
1092ev_io_start (EV_P_ struct ev_io *w) 3829ev_io_start (EV_P_ ev_io *w) EV_THROW
1093{ 3830{
1094 int fd = w->fd; 3831 int fd = w->fd;
1095 3832
1096 if (ev_is_active (w)) 3833 if (expect_false (ev_is_active (w)))
1097 return; 3834 return;
1098 3835
1099 assert (("ev_io_start called with negative fd", fd >= 0)); 3836 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3837 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3838
3839 EV_FREQUENT_CHECK;
1100 3840
1101 ev_start (EV_A_ (W)w, 1); 3841 ev_start (EV_A_ (W)w, 1);
1102 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 3842 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1103 wlist_add ((WL *)&anfds[fd].head, (WL)w); 3843 wlist_add (&anfds[fd].head, (WL)w);
1104 3844
1105 fd_change (EV_A_ fd); 3845 /* common bug, apparently */
1106} 3846 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
1107 3847
1108void 3848 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3849 w->events &= ~EV__IOFDSET;
3850
3851 EV_FREQUENT_CHECK;
3852}
3853
3854void noinline
1109ev_io_stop (EV_P_ struct ev_io *w) 3855ev_io_stop (EV_P_ ev_io *w) EV_THROW
1110{ 3856{
1111 ev_clear_pending (EV_A_ (W)w); 3857 clear_pending (EV_A_ (W)w);
1112 if (!ev_is_active (w)) 3858 if (expect_false (!ev_is_active (w)))
1113 return; 3859 return;
1114 3860
3861 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3862
3863 EV_FREQUENT_CHECK;
3864
1115 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 3865 wlist_del (&anfds[w->fd].head, (WL)w);
1116 ev_stop (EV_A_ (W)w); 3866 ev_stop (EV_A_ (W)w);
1117 3867
1118 fd_change (EV_A_ w->fd); 3868 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1119}
1120 3869
1121void 3870 EV_FREQUENT_CHECK;
3871}
3872
3873void noinline
1122ev_timer_start (EV_P_ struct ev_timer *w) 3874ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1123{ 3875{
1124 if (ev_is_active (w)) 3876 if (expect_false (ev_is_active (w)))
1125 return; 3877 return;
1126 3878
1127 ((WT)w)->at += mn_now; 3879 ev_at (w) += mn_now;
1128 3880
1129 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3881 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1130 3882
3883 EV_FREQUENT_CHECK;
3884
3885 ++timercnt;
1131 ev_start (EV_A_ (W)w, ++timercnt); 3886 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1132 array_needsize (timers, timermax, timercnt, ); 3887 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1133 timers [timercnt - 1] = w; 3888 ANHE_w (timers [ev_active (w)]) = (WT)w;
1134 upheap ((WT *)timers, timercnt - 1); 3889 ANHE_at_cache (timers [ev_active (w)]);
3890 upheap (timers, ev_active (w));
1135 3891
3892 EV_FREQUENT_CHECK;
3893
1136 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3894 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1137} 3895}
1138 3896
1139void 3897void noinline
1140ev_timer_stop (EV_P_ struct ev_timer *w) 3898ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1141{ 3899{
1142 ev_clear_pending (EV_A_ (W)w); 3900 clear_pending (EV_A_ (W)w);
1143 if (!ev_is_active (w)) 3901 if (expect_false (!ev_is_active (w)))
1144 return; 3902 return;
1145 3903
3904 EV_FREQUENT_CHECK;
3905
3906 {
3907 int active = ev_active (w);
3908
1146 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3909 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1147 3910
1148 if (((W)w)->active < timercnt--) 3911 --timercnt;
3912
3913 if (expect_true (active < timercnt + HEAP0))
1149 { 3914 {
1150 timers [((W)w)->active - 1] = timers [timercnt]; 3915 timers [active] = timers [timercnt + HEAP0];
1151 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3916 adjustheap (timers, timercnt, active);
1152 } 3917 }
3918 }
1153 3919
1154 ((WT)w)->at = w->repeat; 3920 ev_at (w) -= mn_now;
1155 3921
1156 ev_stop (EV_A_ (W)w); 3922 ev_stop (EV_A_ (W)w);
1157}
1158 3923
1159void 3924 EV_FREQUENT_CHECK;
3925}
3926
3927void noinline
1160ev_timer_again (EV_P_ struct ev_timer *w) 3928ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1161{ 3929{
3930 EV_FREQUENT_CHECK;
3931
3932 clear_pending (EV_A_ (W)w);
3933
1162 if (ev_is_active (w)) 3934 if (ev_is_active (w))
1163 { 3935 {
1164 if (w->repeat) 3936 if (w->repeat)
1165 { 3937 {
1166 ((WT)w)->at = mn_now + w->repeat; 3938 ev_at (w) = mn_now + w->repeat;
1167 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3939 ANHE_at_cache (timers [ev_active (w)]);
3940 adjustheap (timers, timercnt, ev_active (w));
1168 } 3941 }
1169 else 3942 else
1170 ev_timer_stop (EV_A_ w); 3943 ev_timer_stop (EV_A_ w);
1171 } 3944 }
1172 else if (w->repeat) 3945 else if (w->repeat)
3946 {
3947 ev_at (w) = w->repeat;
1173 ev_timer_start (EV_A_ w); 3948 ev_timer_start (EV_A_ w);
1174} 3949 }
1175 3950
1176void 3951 EV_FREQUENT_CHECK;
3952}
3953
3954ev_tstamp
3955ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3956{
3957 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3958}
3959
3960#if EV_PERIODIC_ENABLE
3961void noinline
1177ev_periodic_start (EV_P_ struct ev_periodic *w) 3962ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1178{ 3963{
1179 if (ev_is_active (w)) 3964 if (expect_false (ev_is_active (w)))
1180 return; 3965 return;
1181 3966
3967 if (w->reschedule_cb)
3968 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3969 else if (w->interval)
3970 {
1182 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3971 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3972 periodic_recalc (EV_A_ w);
3973 }
3974 else
3975 ev_at (w) = w->offset;
1183 3976
1184 /* this formula differs from the one in periodic_reify because we do not always round up */ 3977 EV_FREQUENT_CHECK;
1185 if (w->interval)
1186 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1187 3978
3979 ++periodiccnt;
1188 ev_start (EV_A_ (W)w, ++periodiccnt); 3980 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1189 array_needsize (periodics, periodicmax, periodiccnt, ); 3981 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1190 periodics [periodiccnt - 1] = w; 3982 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1191 upheap ((WT *)periodics, periodiccnt - 1); 3983 ANHE_at_cache (periodics [ev_active (w)]);
3984 upheap (periodics, ev_active (w));
1192 3985
3986 EV_FREQUENT_CHECK;
3987
1193 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3988 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1194} 3989}
1195 3990
1196void 3991void noinline
1197ev_periodic_stop (EV_P_ struct ev_periodic *w) 3992ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1198{ 3993{
1199 ev_clear_pending (EV_A_ (W)w); 3994 clear_pending (EV_A_ (W)w);
1200 if (!ev_is_active (w)) 3995 if (expect_false (!ev_is_active (w)))
1201 return; 3996 return;
1202 3997
3998 EV_FREQUENT_CHECK;
3999
4000 {
4001 int active = ev_active (w);
4002
1203 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 4003 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1204 4004
1205 if (((W)w)->active < periodiccnt--) 4005 --periodiccnt;
4006
4007 if (expect_true (active < periodiccnt + HEAP0))
1206 { 4008 {
1207 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 4009 periodics [active] = periodics [periodiccnt + HEAP0];
1208 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 4010 adjustheap (periodics, periodiccnt, active);
1209 } 4011 }
4012 }
1210 4013
1211 ev_stop (EV_A_ (W)w); 4014 ev_stop (EV_A_ (W)w);
1212}
1213 4015
1214void 4016 EV_FREQUENT_CHECK;
1215ev_idle_start (EV_P_ struct ev_idle *w)
1216{
1217 if (ev_is_active (w))
1218 return;
1219
1220 ev_start (EV_A_ (W)w, ++idlecnt);
1221 array_needsize (idles, idlemax, idlecnt, );
1222 idles [idlecnt - 1] = w;
1223} 4017}
1224 4018
1225void 4019void noinline
1226ev_idle_stop (EV_P_ struct ev_idle *w) 4020ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1227{ 4021{
1228 ev_clear_pending (EV_A_ (W)w); 4022 /* TODO: use adjustheap and recalculation */
1229 if (ev_is_active (w))
1230 return;
1231
1232 idles [((W)w)->active - 1] = idles [--idlecnt];
1233 ev_stop (EV_A_ (W)w); 4023 ev_periodic_stop (EV_A_ w);
4024 ev_periodic_start (EV_A_ w);
1234} 4025}
1235 4026#endif
1236void
1237ev_prepare_start (EV_P_ struct ev_prepare *w)
1238{
1239 if (ev_is_active (w))
1240 return;
1241
1242 ev_start (EV_A_ (W)w, ++preparecnt);
1243 array_needsize (prepares, preparemax, preparecnt, );
1244 prepares [preparecnt - 1] = w;
1245}
1246
1247void
1248ev_prepare_stop (EV_P_ struct ev_prepare *w)
1249{
1250 ev_clear_pending (EV_A_ (W)w);
1251 if (ev_is_active (w))
1252 return;
1253
1254 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1255 ev_stop (EV_A_ (W)w);
1256}
1257
1258void
1259ev_check_start (EV_P_ struct ev_check *w)
1260{
1261 if (ev_is_active (w))
1262 return;
1263
1264 ev_start (EV_A_ (W)w, ++checkcnt);
1265 array_needsize (checks, checkmax, checkcnt, );
1266 checks [checkcnt - 1] = w;
1267}
1268
1269void
1270ev_check_stop (EV_P_ struct ev_check *w)
1271{
1272 ev_clear_pending (EV_A_ (W)w);
1273 if (ev_is_active (w))
1274 return;
1275
1276 checks [((W)w)->active - 1] = checks [--checkcnt];
1277 ev_stop (EV_A_ (W)w);
1278}
1279 4027
1280#ifndef SA_RESTART 4028#ifndef SA_RESTART
1281# define SA_RESTART 0 4029# define SA_RESTART 0
1282#endif 4030#endif
1283 4031
4032#if EV_SIGNAL_ENABLE
4033
4034void noinline
4035ev_signal_start (EV_P_ ev_signal *w) EV_THROW
4036{
4037 if (expect_false (ev_is_active (w)))
4038 return;
4039
4040 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4041
4042#if EV_MULTIPLICITY
4043 assert (("libev: a signal must not be attached to two different loops",
4044 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4045
4046 signals [w->signum - 1].loop = EV_A;
4047 ECB_MEMORY_FENCE_RELEASE;
4048#endif
4049
4050 EV_FREQUENT_CHECK;
4051
4052#if EV_USE_SIGNALFD
4053 if (sigfd == -2)
4054 {
4055 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
4056 if (sigfd < 0 && errno == EINVAL)
4057 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
4058
4059 if (sigfd >= 0)
4060 {
4061 fd_intern (sigfd); /* doing it twice will not hurt */
4062
4063 sigemptyset (&sigfd_set);
4064
4065 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4066 ev_set_priority (&sigfd_w, EV_MAXPRI);
4067 ev_io_start (EV_A_ &sigfd_w);
4068 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4069 }
4070 }
4071
4072 if (sigfd >= 0)
4073 {
4074 /* TODO: check .head */
4075 sigaddset (&sigfd_set, w->signum);
4076 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4077
4078 signalfd (sigfd, &sigfd_set, 0);
4079 }
4080#endif
4081
4082 ev_start (EV_A_ (W)w, 1);
4083 wlist_add (&signals [w->signum - 1].head, (WL)w);
4084
4085 if (!((WL)w)->next)
4086# if EV_USE_SIGNALFD
4087 if (sigfd < 0) /*TODO*/
4088# endif
4089 {
4090# ifdef _WIN32
4091 evpipe_init (EV_A);
4092
4093 signal (w->signum, ev_sighandler);
4094# else
4095 struct sigaction sa;
4096
4097 evpipe_init (EV_A);
4098
4099 sa.sa_handler = ev_sighandler;
4100 sigfillset (&sa.sa_mask);
4101 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
4102 sigaction (w->signum, &sa, 0);
4103
4104 if (origflags & EVFLAG_NOSIGMASK)
4105 {
4106 sigemptyset (&sa.sa_mask);
4107 sigaddset (&sa.sa_mask, w->signum);
4108 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4109 }
4110#endif
4111 }
4112
4113 EV_FREQUENT_CHECK;
4114}
4115
4116void noinline
4117ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
4118{
4119 clear_pending (EV_A_ (W)w);
4120 if (expect_false (!ev_is_active (w)))
4121 return;
4122
4123 EV_FREQUENT_CHECK;
4124
4125 wlist_del (&signals [w->signum - 1].head, (WL)w);
4126 ev_stop (EV_A_ (W)w);
4127
4128 if (!signals [w->signum - 1].head)
4129 {
4130#if EV_MULTIPLICITY
4131 signals [w->signum - 1].loop = 0; /* unattach from signal */
4132#endif
4133#if EV_USE_SIGNALFD
4134 if (sigfd >= 0)
4135 {
4136 sigset_t ss;
4137
4138 sigemptyset (&ss);
4139 sigaddset (&ss, w->signum);
4140 sigdelset (&sigfd_set, w->signum);
4141
4142 signalfd (sigfd, &sigfd_set, 0);
4143 sigprocmask (SIG_UNBLOCK, &ss, 0);
4144 }
4145 else
4146#endif
4147 signal (w->signum, SIG_DFL);
4148 }
4149
4150 EV_FREQUENT_CHECK;
4151}
4152
4153#endif
4154
4155#if EV_CHILD_ENABLE
4156
1284void 4157void
1285ev_signal_start (EV_P_ struct ev_signal *w) 4158ev_child_start (EV_P_ ev_child *w) EV_THROW
1286{ 4159{
1287#if EV_MULTIPLICITY 4160#if EV_MULTIPLICITY
1288 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 4161 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1289#endif 4162#endif
1290 if (ev_is_active (w)) 4163 if (expect_false (ev_is_active (w)))
1291 return; 4164 return;
1292 4165
1293 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 4166 EV_FREQUENT_CHECK;
1294 4167
1295 ev_start (EV_A_ (W)w, 1); 4168 ev_start (EV_A_ (W)w, 1);
1296 array_needsize (signals, signalmax, w->signum, signals_init); 4169 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1297 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1298 4170
1299 if (!((WL)w)->next) 4171 EV_FREQUENT_CHECK;
1300 {
1301 struct sigaction sa;
1302 sa.sa_handler = sighandler;
1303 sigfillset (&sa.sa_mask);
1304 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1305 sigaction (w->signum, &sa, 0);
1306 }
1307} 4172}
1308 4173
1309void 4174void
1310ev_signal_stop (EV_P_ struct ev_signal *w) 4175ev_child_stop (EV_P_ ev_child *w) EV_THROW
1311{ 4176{
1312 ev_clear_pending (EV_A_ (W)w); 4177 clear_pending (EV_A_ (W)w);
1313 if (!ev_is_active (w)) 4178 if (expect_false (!ev_is_active (w)))
1314 return; 4179 return;
1315 4180
1316 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 4181 EV_FREQUENT_CHECK;
4182
4183 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1317 ev_stop (EV_A_ (W)w); 4184 ev_stop (EV_A_ (W)w);
1318 4185
1319 if (!signals [w->signum - 1].head) 4186 EV_FREQUENT_CHECK;
1320 signal (w->signum, SIG_DFL);
1321} 4187}
4188
4189#endif
4190
4191#if EV_STAT_ENABLE
4192
4193# ifdef _WIN32
4194# undef lstat
4195# define lstat(a,b) _stati64 (a,b)
4196# endif
4197
4198#define DEF_STAT_INTERVAL 5.0074891
4199#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4200#define MIN_STAT_INTERVAL 0.1074891
4201
4202static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4203
4204#if EV_USE_INOTIFY
4205
4206/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4207# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4208
4209static void noinline
4210infy_add (EV_P_ ev_stat *w)
4211{
4212 w->wd = inotify_add_watch (fs_fd, w->path,
4213 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4214 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4215 | IN_DONT_FOLLOW | IN_MASK_ADD);
4216
4217 if (w->wd >= 0)
4218 {
4219 struct statfs sfs;
4220
4221 /* now local changes will be tracked by inotify, but remote changes won't */
4222 /* unless the filesystem is known to be local, we therefore still poll */
4223 /* also do poll on <2.6.25, but with normal frequency */
4224
4225 if (!fs_2625)
4226 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4227 else if (!statfs (w->path, &sfs)
4228 && (sfs.f_type == 0x1373 /* devfs */
4229 || sfs.f_type == 0x4006 /* fat */
4230 || sfs.f_type == 0x4d44 /* msdos */
4231 || sfs.f_type == 0xEF53 /* ext2/3 */
4232 || sfs.f_type == 0x72b6 /* jffs2 */
4233 || sfs.f_type == 0x858458f6 /* ramfs */
4234 || sfs.f_type == 0x5346544e /* ntfs */
4235 || sfs.f_type == 0x3153464a /* jfs */
4236 || sfs.f_type == 0x9123683e /* btrfs */
4237 || sfs.f_type == 0x52654973 /* reiser3 */
4238 || sfs.f_type == 0x01021994 /* tmpfs */
4239 || sfs.f_type == 0x58465342 /* xfs */))
4240 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4241 else
4242 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
4243 }
4244 else
4245 {
4246 /* can't use inotify, continue to stat */
4247 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4248
4249 /* if path is not there, monitor some parent directory for speedup hints */
4250 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4251 /* but an efficiency issue only */
4252 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4253 {
4254 char path [4096];
4255 strcpy (path, w->path);
4256
4257 do
4258 {
4259 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4260 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4261
4262 char *pend = strrchr (path, '/');
4263
4264 if (!pend || pend == path)
4265 break;
4266
4267 *pend = 0;
4268 w->wd = inotify_add_watch (fs_fd, path, mask);
4269 }
4270 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4271 }
4272 }
4273
4274 if (w->wd >= 0)
4275 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4276
4277 /* now re-arm timer, if required */
4278 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4279 ev_timer_again (EV_A_ &w->timer);
4280 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4281}
4282
4283static void noinline
4284infy_del (EV_P_ ev_stat *w)
4285{
4286 int slot;
4287 int wd = w->wd;
4288
4289 if (wd < 0)
4290 return;
4291
4292 w->wd = -2;
4293 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4294 wlist_del (&fs_hash [slot].head, (WL)w);
4295
4296 /* remove this watcher, if others are watching it, they will rearm */
4297 inotify_rm_watch (fs_fd, wd);
4298}
4299
4300static void noinline
4301infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4302{
4303 if (slot < 0)
4304 /* overflow, need to check for all hash slots */
4305 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4306 infy_wd (EV_A_ slot, wd, ev);
4307 else
4308 {
4309 WL w_;
4310
4311 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4312 {
4313 ev_stat *w = (ev_stat *)w_;
4314 w_ = w_->next; /* lets us remove this watcher and all before it */
4315
4316 if (w->wd == wd || wd == -1)
4317 {
4318 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4319 {
4320 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4321 w->wd = -1;
4322 infy_add (EV_A_ w); /* re-add, no matter what */
4323 }
4324
4325 stat_timer_cb (EV_A_ &w->timer, 0);
4326 }
4327 }
4328 }
4329}
4330
4331static void
4332infy_cb (EV_P_ ev_io *w, int revents)
4333{
4334 char buf [EV_INOTIFY_BUFSIZE];
4335 int ofs;
4336 int len = read (fs_fd, buf, sizeof (buf));
4337
4338 for (ofs = 0; ofs < len; )
4339 {
4340 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4341 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4342 ofs += sizeof (struct inotify_event) + ev->len;
4343 }
4344}
4345
4346inline_size void ecb_cold
4347ev_check_2625 (EV_P)
4348{
4349 /* kernels < 2.6.25 are borked
4350 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4351 */
4352 if (ev_linux_version () < 0x020619)
4353 return;
4354
4355 fs_2625 = 1;
4356}
4357
4358inline_size int
4359infy_newfd (void)
4360{
4361#if defined IN_CLOEXEC && defined IN_NONBLOCK
4362 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4363 if (fd >= 0)
4364 return fd;
4365#endif
4366 return inotify_init ();
4367}
4368
4369inline_size void
4370infy_init (EV_P)
4371{
4372 if (fs_fd != -2)
4373 return;
4374
4375 fs_fd = -1;
4376
4377 ev_check_2625 (EV_A);
4378
4379 fs_fd = infy_newfd ();
4380
4381 if (fs_fd >= 0)
4382 {
4383 fd_intern (fs_fd);
4384 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4385 ev_set_priority (&fs_w, EV_MAXPRI);
4386 ev_io_start (EV_A_ &fs_w);
4387 ev_unref (EV_A);
4388 }
4389}
4390
4391inline_size void
4392infy_fork (EV_P)
4393{
4394 int slot;
4395
4396 if (fs_fd < 0)
4397 return;
4398
4399 ev_ref (EV_A);
4400 ev_io_stop (EV_A_ &fs_w);
4401 close (fs_fd);
4402 fs_fd = infy_newfd ();
4403
4404 if (fs_fd >= 0)
4405 {
4406 fd_intern (fs_fd);
4407 ev_io_set (&fs_w, fs_fd, EV_READ);
4408 ev_io_start (EV_A_ &fs_w);
4409 ev_unref (EV_A);
4410 }
4411
4412 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4413 {
4414 WL w_ = fs_hash [slot].head;
4415 fs_hash [slot].head = 0;
4416
4417 while (w_)
4418 {
4419 ev_stat *w = (ev_stat *)w_;
4420 w_ = w_->next; /* lets us add this watcher */
4421
4422 w->wd = -1;
4423
4424 if (fs_fd >= 0)
4425 infy_add (EV_A_ w); /* re-add, no matter what */
4426 else
4427 {
4428 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4429 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4430 ev_timer_again (EV_A_ &w->timer);
4431 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4432 }
4433 }
4434 }
4435}
4436
4437#endif
4438
4439#ifdef _WIN32
4440# define EV_LSTAT(p,b) _stati64 (p, b)
4441#else
4442# define EV_LSTAT(p,b) lstat (p, b)
4443#endif
1322 4444
1323void 4445void
1324ev_child_start (EV_P_ struct ev_child *w) 4446ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
1325{ 4447{
1326#if EV_MULTIPLICITY 4448 if (lstat (w->path, &w->attr) < 0)
1327 assert (("child watchers are only supported in the default loop", loop == default_loop)); 4449 w->attr.st_nlink = 0;
1328#endif 4450 else if (!w->attr.st_nlink)
4451 w->attr.st_nlink = 1;
4452}
4453
4454static void noinline
4455stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4456{
4457 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4458
4459 ev_statdata prev = w->attr;
4460 ev_stat_stat (EV_A_ w);
4461
4462 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4463 if (
4464 prev.st_dev != w->attr.st_dev
4465 || prev.st_ino != w->attr.st_ino
4466 || prev.st_mode != w->attr.st_mode
4467 || prev.st_nlink != w->attr.st_nlink
4468 || prev.st_uid != w->attr.st_uid
4469 || prev.st_gid != w->attr.st_gid
4470 || prev.st_rdev != w->attr.st_rdev
4471 || prev.st_size != w->attr.st_size
4472 || prev.st_atime != w->attr.st_atime
4473 || prev.st_mtime != w->attr.st_mtime
4474 || prev.st_ctime != w->attr.st_ctime
4475 ) {
4476 /* we only update w->prev on actual differences */
4477 /* in case we test more often than invoke the callback, */
4478 /* to ensure that prev is always different to attr */
4479 w->prev = prev;
4480
4481 #if EV_USE_INOTIFY
4482 if (fs_fd >= 0)
4483 {
4484 infy_del (EV_A_ w);
4485 infy_add (EV_A_ w);
4486 ev_stat_stat (EV_A_ w); /* avoid race... */
4487 }
4488 #endif
4489
4490 ev_feed_event (EV_A_ w, EV_STAT);
4491 }
4492}
4493
4494void
4495ev_stat_start (EV_P_ ev_stat *w) EV_THROW
4496{
1329 if (ev_is_active (w)) 4497 if (expect_false (ev_is_active (w)))
1330 return; 4498 return;
1331 4499
4500 ev_stat_stat (EV_A_ w);
4501
4502 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4503 w->interval = MIN_STAT_INTERVAL;
4504
4505 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4506 ev_set_priority (&w->timer, ev_priority (w));
4507
4508#if EV_USE_INOTIFY
4509 infy_init (EV_A);
4510
4511 if (fs_fd >= 0)
4512 infy_add (EV_A_ w);
4513 else
4514#endif
4515 {
4516 ev_timer_again (EV_A_ &w->timer);
4517 ev_unref (EV_A);
4518 }
4519
1332 ev_start (EV_A_ (W)w, 1); 4520 ev_start (EV_A_ (W)w, 1);
1333 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4521
4522 EV_FREQUENT_CHECK;
1334} 4523}
1335 4524
1336void 4525void
1337ev_child_stop (EV_P_ struct ev_child *w) 4526ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
1338{ 4527{
1339 ev_clear_pending (EV_A_ (W)w); 4528 clear_pending (EV_A_ (W)w);
1340 if (ev_is_active (w)) 4529 if (expect_false (!ev_is_active (w)))
1341 return; 4530 return;
1342 4531
1343 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4532 EV_FREQUENT_CHECK;
4533
4534#if EV_USE_INOTIFY
4535 infy_del (EV_A_ w);
4536#endif
4537
4538 if (ev_is_active (&w->timer))
4539 {
4540 ev_ref (EV_A);
4541 ev_timer_stop (EV_A_ &w->timer);
4542 }
4543
1344 ev_stop (EV_A_ (W)w); 4544 ev_stop (EV_A_ (W)w);
4545
4546 EV_FREQUENT_CHECK;
1345} 4547}
4548#endif
4549
4550#if EV_IDLE_ENABLE
4551void
4552ev_idle_start (EV_P_ ev_idle *w) EV_THROW
4553{
4554 if (expect_false (ev_is_active (w)))
4555 return;
4556
4557 pri_adjust (EV_A_ (W)w);
4558
4559 EV_FREQUENT_CHECK;
4560
4561 {
4562 int active = ++idlecnt [ABSPRI (w)];
4563
4564 ++idleall;
4565 ev_start (EV_A_ (W)w, active);
4566
4567 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
4568 idles [ABSPRI (w)][active - 1] = w;
4569 }
4570
4571 EV_FREQUENT_CHECK;
4572}
4573
4574void
4575ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
4576{
4577 clear_pending (EV_A_ (W)w);
4578 if (expect_false (!ev_is_active (w)))
4579 return;
4580
4581 EV_FREQUENT_CHECK;
4582
4583 {
4584 int active = ev_active (w);
4585
4586 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4587 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4588
4589 ev_stop (EV_A_ (W)w);
4590 --idleall;
4591 }
4592
4593 EV_FREQUENT_CHECK;
4594}
4595#endif
4596
4597#if EV_PREPARE_ENABLE
4598void
4599ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4600{
4601 if (expect_false (ev_is_active (w)))
4602 return;
4603
4604 EV_FREQUENT_CHECK;
4605
4606 ev_start (EV_A_ (W)w, ++preparecnt);
4607 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4608 prepares [preparecnt - 1] = w;
4609
4610 EV_FREQUENT_CHECK;
4611}
4612
4613void
4614ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4615{
4616 clear_pending (EV_A_ (W)w);
4617 if (expect_false (!ev_is_active (w)))
4618 return;
4619
4620 EV_FREQUENT_CHECK;
4621
4622 {
4623 int active = ev_active (w);
4624
4625 prepares [active - 1] = prepares [--preparecnt];
4626 ev_active (prepares [active - 1]) = active;
4627 }
4628
4629 ev_stop (EV_A_ (W)w);
4630
4631 EV_FREQUENT_CHECK;
4632}
4633#endif
4634
4635#if EV_CHECK_ENABLE
4636void
4637ev_check_start (EV_P_ ev_check *w) EV_THROW
4638{
4639 if (expect_false (ev_is_active (w)))
4640 return;
4641
4642 EV_FREQUENT_CHECK;
4643
4644 ev_start (EV_A_ (W)w, ++checkcnt);
4645 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4646 checks [checkcnt - 1] = w;
4647
4648 EV_FREQUENT_CHECK;
4649}
4650
4651void
4652ev_check_stop (EV_P_ ev_check *w) EV_THROW
4653{
4654 clear_pending (EV_A_ (W)w);
4655 if (expect_false (!ev_is_active (w)))
4656 return;
4657
4658 EV_FREQUENT_CHECK;
4659
4660 {
4661 int active = ev_active (w);
4662
4663 checks [active - 1] = checks [--checkcnt];
4664 ev_active (checks [active - 1]) = active;
4665 }
4666
4667 ev_stop (EV_A_ (W)w);
4668
4669 EV_FREQUENT_CHECK;
4670}
4671#endif
4672
4673#if EV_EMBED_ENABLE
4674void noinline
4675ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4676{
4677 ev_run (w->other, EVRUN_NOWAIT);
4678}
4679
4680static void
4681embed_io_cb (EV_P_ ev_io *io, int revents)
4682{
4683 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4684
4685 if (ev_cb (w))
4686 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4687 else
4688 ev_run (w->other, EVRUN_NOWAIT);
4689}
4690
4691static void
4692embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4693{
4694 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4695
4696 {
4697 EV_P = w->other;
4698
4699 while (fdchangecnt)
4700 {
4701 fd_reify (EV_A);
4702 ev_run (EV_A_ EVRUN_NOWAIT);
4703 }
4704 }
4705}
4706
4707static void
4708embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4709{
4710 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4711
4712 ev_embed_stop (EV_A_ w);
4713
4714 {
4715 EV_P = w->other;
4716
4717 ev_loop_fork (EV_A);
4718 ev_run (EV_A_ EVRUN_NOWAIT);
4719 }
4720
4721 ev_embed_start (EV_A_ w);
4722}
4723
4724#if 0
4725static void
4726embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4727{
4728 ev_idle_stop (EV_A_ idle);
4729}
4730#endif
4731
4732void
4733ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4734{
4735 if (expect_false (ev_is_active (w)))
4736 return;
4737
4738 {
4739 EV_P = w->other;
4740 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4741 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4742 }
4743
4744 EV_FREQUENT_CHECK;
4745
4746 ev_set_priority (&w->io, ev_priority (w));
4747 ev_io_start (EV_A_ &w->io);
4748
4749 ev_prepare_init (&w->prepare, embed_prepare_cb);
4750 ev_set_priority (&w->prepare, EV_MINPRI);
4751 ev_prepare_start (EV_A_ &w->prepare);
4752
4753 ev_fork_init (&w->fork, embed_fork_cb);
4754 ev_fork_start (EV_A_ &w->fork);
4755
4756 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4757
4758 ev_start (EV_A_ (W)w, 1);
4759
4760 EV_FREQUENT_CHECK;
4761}
4762
4763void
4764ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4765{
4766 clear_pending (EV_A_ (W)w);
4767 if (expect_false (!ev_is_active (w)))
4768 return;
4769
4770 EV_FREQUENT_CHECK;
4771
4772 ev_io_stop (EV_A_ &w->io);
4773 ev_prepare_stop (EV_A_ &w->prepare);
4774 ev_fork_stop (EV_A_ &w->fork);
4775
4776 ev_stop (EV_A_ (W)w);
4777
4778 EV_FREQUENT_CHECK;
4779}
4780#endif
4781
4782#if EV_FORK_ENABLE
4783void
4784ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4785{
4786 if (expect_false (ev_is_active (w)))
4787 return;
4788
4789 EV_FREQUENT_CHECK;
4790
4791 ev_start (EV_A_ (W)w, ++forkcnt);
4792 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4793 forks [forkcnt - 1] = w;
4794
4795 EV_FREQUENT_CHECK;
4796}
4797
4798void
4799ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4800{
4801 clear_pending (EV_A_ (W)w);
4802 if (expect_false (!ev_is_active (w)))
4803 return;
4804
4805 EV_FREQUENT_CHECK;
4806
4807 {
4808 int active = ev_active (w);
4809
4810 forks [active - 1] = forks [--forkcnt];
4811 ev_active (forks [active - 1]) = active;
4812 }
4813
4814 ev_stop (EV_A_ (W)w);
4815
4816 EV_FREQUENT_CHECK;
4817}
4818#endif
4819
4820#if EV_CLEANUP_ENABLE
4821void
4822ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4823{
4824 if (expect_false (ev_is_active (w)))
4825 return;
4826
4827 EV_FREQUENT_CHECK;
4828
4829 ev_start (EV_A_ (W)w, ++cleanupcnt);
4830 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4831 cleanups [cleanupcnt - 1] = w;
4832
4833 /* cleanup watchers should never keep a refcount on the loop */
4834 ev_unref (EV_A);
4835 EV_FREQUENT_CHECK;
4836}
4837
4838void
4839ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4840{
4841 clear_pending (EV_A_ (W)w);
4842 if (expect_false (!ev_is_active (w)))
4843 return;
4844
4845 EV_FREQUENT_CHECK;
4846 ev_ref (EV_A);
4847
4848 {
4849 int active = ev_active (w);
4850
4851 cleanups [active - 1] = cleanups [--cleanupcnt];
4852 ev_active (cleanups [active - 1]) = active;
4853 }
4854
4855 ev_stop (EV_A_ (W)w);
4856
4857 EV_FREQUENT_CHECK;
4858}
4859#endif
4860
4861#if EV_ASYNC_ENABLE
4862void
4863ev_async_start (EV_P_ ev_async *w) EV_THROW
4864{
4865 if (expect_false (ev_is_active (w)))
4866 return;
4867
4868 w->sent = 0;
4869
4870 evpipe_init (EV_A);
4871
4872 EV_FREQUENT_CHECK;
4873
4874 ev_start (EV_A_ (W)w, ++asynccnt);
4875 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4876 asyncs [asynccnt - 1] = w;
4877
4878 EV_FREQUENT_CHECK;
4879}
4880
4881void
4882ev_async_stop (EV_P_ ev_async *w) EV_THROW
4883{
4884 clear_pending (EV_A_ (W)w);
4885 if (expect_false (!ev_is_active (w)))
4886 return;
4887
4888 EV_FREQUENT_CHECK;
4889
4890 {
4891 int active = ev_active (w);
4892
4893 asyncs [active - 1] = asyncs [--asynccnt];
4894 ev_active (asyncs [active - 1]) = active;
4895 }
4896
4897 ev_stop (EV_A_ (W)w);
4898
4899 EV_FREQUENT_CHECK;
4900}
4901
4902void
4903ev_async_send (EV_P_ ev_async *w) EV_THROW
4904{
4905 w->sent = 1;
4906 evpipe_write (EV_A_ &async_pending);
4907}
4908#endif
1346 4909
1347/*****************************************************************************/ 4910/*****************************************************************************/
1348 4911
1349struct ev_once 4912struct ev_once
1350{ 4913{
1351 struct ev_io io; 4914 ev_io io;
1352 struct ev_timer to; 4915 ev_timer to;
1353 void (*cb)(int revents, void *arg); 4916 void (*cb)(int revents, void *arg);
1354 void *arg; 4917 void *arg;
1355}; 4918};
1356 4919
1357static void 4920static void
1358once_cb (EV_P_ struct ev_once *once, int revents) 4921once_cb (EV_P_ struct ev_once *once, int revents)
1359{ 4922{
1360 void (*cb)(int revents, void *arg) = once->cb; 4923 void (*cb)(int revents, void *arg) = once->cb;
1361 void *arg = once->arg; 4924 void *arg = once->arg;
1362 4925
1363 ev_io_stop (EV_A_ &once->io); 4926 ev_io_stop (EV_A_ &once->io);
1364 ev_timer_stop (EV_A_ &once->to); 4927 ev_timer_stop (EV_A_ &once->to);
1365 free (once); 4928 ev_free (once);
1366 4929
1367 cb (revents, arg); 4930 cb (revents, arg);
1368} 4931}
1369 4932
1370static void 4933static void
1371once_cb_io (EV_P_ struct ev_io *w, int revents) 4934once_cb_io (EV_P_ ev_io *w, int revents)
1372{ 4935{
1373 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4936 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4937
4938 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1374} 4939}
1375 4940
1376static void 4941static void
1377once_cb_to (EV_P_ struct ev_timer *w, int revents) 4942once_cb_to (EV_P_ ev_timer *w, int revents)
1378{ 4943{
1379 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4944 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4945
4946 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1380} 4947}
1381 4948
1382void 4949void
1383ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4950ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
1384{ 4951{
1385 struct ev_once *once = malloc (sizeof (struct ev_once)); 4952 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1386 4953
1387 if (!once) 4954 if (expect_false (!once))
4955 {
1388 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4956 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1389 else 4957 return;
1390 { 4958 }
4959
1391 once->cb = cb; 4960 once->cb = cb;
1392 once->arg = arg; 4961 once->arg = arg;
1393 4962
1394 ev_watcher_init (&once->io, once_cb_io); 4963 ev_init (&once->io, once_cb_io);
1395 if (fd >= 0) 4964 if (fd >= 0)
4965 {
4966 ev_io_set (&once->io, fd, events);
4967 ev_io_start (EV_A_ &once->io);
4968 }
4969
4970 ev_init (&once->to, once_cb_to);
4971 if (timeout >= 0.)
4972 {
4973 ev_timer_set (&once->to, timeout, 0.);
4974 ev_timer_start (EV_A_ &once->to);
4975 }
4976}
4977
4978/*****************************************************************************/
4979
4980#if EV_WALK_ENABLE
4981void ecb_cold
4982ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4983{
4984 int i, j;
4985 ev_watcher_list *wl, *wn;
4986
4987 if (types & (EV_IO | EV_EMBED))
4988 for (i = 0; i < anfdmax; ++i)
4989 for (wl = anfds [i].head; wl; )
1396 { 4990 {
1397 ev_io_set (&once->io, fd, events); 4991 wn = wl->next;
1398 ev_io_start (EV_A_ &once->io); 4992
4993#if EV_EMBED_ENABLE
4994 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4995 {
4996 if (types & EV_EMBED)
4997 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4998 }
4999 else
5000#endif
5001#if EV_USE_INOTIFY
5002 if (ev_cb ((ev_io *)wl) == infy_cb)
5003 ;
5004 else
5005#endif
5006 if ((ev_io *)wl != &pipe_w)
5007 if (types & EV_IO)
5008 cb (EV_A_ EV_IO, wl);
5009
5010 wl = wn;
1399 } 5011 }
1400 5012
1401 ev_watcher_init (&once->to, once_cb_to); 5013 if (types & (EV_TIMER | EV_STAT))
1402 if (timeout >= 0.) 5014 for (i = timercnt + HEAP0; i-- > HEAP0; )
5015#if EV_STAT_ENABLE
5016 /*TODO: timer is not always active*/
5017 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1403 { 5018 {
1404 ev_timer_set (&once->to, timeout, 0.); 5019 if (types & EV_STAT)
1405 ev_timer_start (EV_A_ &once->to); 5020 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1406 } 5021 }
1407 } 5022 else
1408} 5023#endif
5024 if (types & EV_TIMER)
5025 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1409 5026
5027#if EV_PERIODIC_ENABLE
5028 if (types & EV_PERIODIC)
5029 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5030 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5031#endif
5032
5033#if EV_IDLE_ENABLE
5034 if (types & EV_IDLE)
5035 for (j = NUMPRI; j--; )
5036 for (i = idlecnt [j]; i--; )
5037 cb (EV_A_ EV_IDLE, idles [j][i]);
5038#endif
5039
5040#if EV_FORK_ENABLE
5041 if (types & EV_FORK)
5042 for (i = forkcnt; i--; )
5043 if (ev_cb (forks [i]) != embed_fork_cb)
5044 cb (EV_A_ EV_FORK, forks [i]);
5045#endif
5046
5047#if EV_ASYNC_ENABLE
5048 if (types & EV_ASYNC)
5049 for (i = asynccnt; i--; )
5050 cb (EV_A_ EV_ASYNC, asyncs [i]);
5051#endif
5052
5053#if EV_PREPARE_ENABLE
5054 if (types & EV_PREPARE)
5055 for (i = preparecnt; i--; )
5056# if EV_EMBED_ENABLE
5057 if (ev_cb (prepares [i]) != embed_prepare_cb)
5058# endif
5059 cb (EV_A_ EV_PREPARE, prepares [i]);
5060#endif
5061
5062#if EV_CHECK_ENABLE
5063 if (types & EV_CHECK)
5064 for (i = checkcnt; i--; )
5065 cb (EV_A_ EV_CHECK, checks [i]);
5066#endif
5067
5068#if EV_SIGNAL_ENABLE
5069 if (types & EV_SIGNAL)
5070 for (i = 0; i < EV_NSIG - 1; ++i)
5071 for (wl = signals [i].head; wl; )
5072 {
5073 wn = wl->next;
5074 cb (EV_A_ EV_SIGNAL, wl);
5075 wl = wn;
5076 }
5077#endif
5078
5079#if EV_CHILD_ENABLE
5080 if (types & EV_CHILD)
5081 for (i = (EV_PID_HASHSIZE); i--; )
5082 for (wl = childs [i]; wl; )
5083 {
5084 wn = wl->next;
5085 cb (EV_A_ EV_CHILD, wl);
5086 wl = wn;
5087 }
5088#endif
5089/* EV_STAT 0x00001000 /* stat data changed */
5090/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5091}
5092#endif
5093
5094#if EV_MULTIPLICITY
5095 #include "ev_wrap.h"
5096#endif
5097

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines