ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.48 by root, Sat Nov 3 12:19:31 2007 UTC vs.
Revision 1.313 by root, Wed Aug 19 23:44:51 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE
31#if EV_USE_CONFIG_H 46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
32# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
66# if HAVE_CLOCK_GETTIME
67# ifndef EV_USE_MONOTONIC
68# define EV_USE_MONOTONIC 1
69# endif
70# ifndef EV_USE_REALTIME
71# define EV_USE_REALTIME 0
72# endif
73# else
74# ifndef EV_USE_MONOTONIC
75# define EV_USE_MONOTONIC 0
76# endif
77# ifndef EV_USE_REALTIME
78# define EV_USE_REALTIME 0
79# endif
80# endif
81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
88# endif
89
90# ifndef EV_USE_SELECT
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
92# define EV_USE_SELECT 1
93# else
94# define EV_USE_SELECT 0
95# endif
96# endif
97
98# ifndef EV_USE_POLL
99# if HAVE_POLL && HAVE_POLL_H
100# define EV_USE_POLL 1
101# else
102# define EV_USE_POLL 0
103# endif
104# endif
105
106# ifndef EV_USE_EPOLL
107# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
108# define EV_USE_EPOLL 1
109# else
110# define EV_USE_EPOLL 0
111# endif
112# endif
113
114# ifndef EV_USE_KQUEUE
115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
116# define EV_USE_KQUEUE 1
117# else
118# define EV_USE_KQUEUE 0
119# endif
120# endif
121
122# ifndef EV_USE_PORT
123# if HAVE_PORT_H && HAVE_PORT_CREATE
124# define EV_USE_PORT 1
125# else
126# define EV_USE_PORT 0
127# endif
128# endif
129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1
133# else
134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
33#endif 154#endif
34 155
35#include <math.h> 156#include <math.h>
36#include <stdlib.h> 157#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 158#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 159#include <stddef.h>
41 160
42#include <stdio.h> 161#include <stdio.h>
43 162
44#include <assert.h> 163#include <assert.h>
45#include <errno.h> 164#include <errno.h>
46#include <sys/types.h> 165#include <sys/types.h>
166#include <time.h>
167
168#include <signal.h>
169
170#ifdef EV_H
171# include EV_H
172#else
173# include "ev.h"
174#endif
175
47#ifndef WIN32 176#ifndef _WIN32
177# include <sys/time.h>
48# include <sys/wait.h> 178# include <sys/wait.h>
179# include <unistd.h>
180#else
181# include <io.h>
182# define WIN32_LEAN_AND_MEAN
183# include <windows.h>
184# ifndef EV_SELECT_IS_WINSOCKET
185# define EV_SELECT_IS_WINSOCKET 1
49#endif 186# endif
50#include <sys/time.h> 187#endif
51#include <time.h>
52 188
53/**/ 189/* this block tries to deduce configuration from header-defined symbols and defaults */
190
191/* try to deduce the maximum number of signals on this platform */
192#if defined (EV_NSIG)
193/* use what's provided */
194#elif defined (NSIG)
195# define EV_NSIG (NSIG)
196#elif defined(_NSIG)
197# define EV_NSIG (_NSIG)
198#elif defined (SIGMAX)
199# define EV_NSIG (SIGMAX+1)
200#elif defined (SIG_MAX)
201# define EV_NSIG (SIG_MAX+1)
202#elif defined (_SIG_MAX)
203# define EV_NSIG (_SIG_MAX+1)
204#elif defined (MAXSIG)
205# define EV_NSIG (MAXSIG+1)
206#elif defined (MAX_SIG)
207# define EV_NSIG (MAX_SIG+1)
208#elif defined (SIGARRAYSIZE)
209# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
210#elif defined (_sys_nsig)
211# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
212#else
213# error "unable to find value for NSIG, please report"
214/* to make it compile regardless, just remove the above line */
215# define EV_NSIG 65
216#endif
217
218#ifndef EV_USE_CLOCK_SYSCALL
219# if __linux && __GLIBC__ >= 2
220# define EV_USE_CLOCK_SYSCALL 1
221# else
222# define EV_USE_CLOCK_SYSCALL 0
223# endif
224#endif
54 225
55#ifndef EV_USE_MONOTONIC 226#ifndef EV_USE_MONOTONIC
227# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
56# define EV_USE_MONOTONIC 1 228# define EV_USE_MONOTONIC 1
229# else
230# define EV_USE_MONOTONIC 0
231# endif
232#endif
233
234#ifndef EV_USE_REALTIME
235# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
236#endif
237
238#ifndef EV_USE_NANOSLEEP
239# if _POSIX_C_SOURCE >= 199309L
240# define EV_USE_NANOSLEEP 1
241# else
242# define EV_USE_NANOSLEEP 0
243# endif
57#endif 244#endif
58 245
59#ifndef EV_USE_SELECT 246#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1 247# define EV_USE_SELECT 1
61#endif 248#endif
62 249
63#ifndef EV_USE_POLL 250#ifndef EV_USE_POLL
64# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 251# ifdef _WIN32
252# define EV_USE_POLL 0
253# else
254# define EV_USE_POLL 1
255# endif
65#endif 256#endif
66 257
67#ifndef EV_USE_EPOLL 258#ifndef EV_USE_EPOLL
259# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
260# define EV_USE_EPOLL 1
261# else
68# define EV_USE_EPOLL 0 262# define EV_USE_EPOLL 0
263# endif
69#endif 264#endif
70 265
71#ifndef EV_USE_KQUEUE 266#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 267# define EV_USE_KQUEUE 0
73#endif 268#endif
74 269
75#ifndef EV_USE_REALTIME 270#ifndef EV_USE_PORT
271# define EV_USE_PORT 0
272#endif
273
274#ifndef EV_USE_INOTIFY
275# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
76# define EV_USE_REALTIME 1 276# define EV_USE_INOTIFY 1
277# else
278# define EV_USE_INOTIFY 0
77#endif 279# endif
280#endif
78 281
79/**/ 282#ifndef EV_PID_HASHSIZE
283# if EV_MINIMAL
284# define EV_PID_HASHSIZE 1
285# else
286# define EV_PID_HASHSIZE 16
287# endif
288#endif
289
290#ifndef EV_INOTIFY_HASHSIZE
291# if EV_MINIMAL
292# define EV_INOTIFY_HASHSIZE 1
293# else
294# define EV_INOTIFY_HASHSIZE 16
295# endif
296#endif
297
298#ifndef EV_USE_EVENTFD
299# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
300# define EV_USE_EVENTFD 1
301# else
302# define EV_USE_EVENTFD 0
303# endif
304#endif
305
306#ifndef EV_USE_SIGNALFD
307# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 9))
308# define EV_USE_SIGNALFD 1
309# else
310# define EV_USE_SIGNALFD 0
311# endif
312#endif
313
314#if 0 /* debugging */
315# define EV_VERIFY 3
316# define EV_USE_4HEAP 1
317# define EV_HEAP_CACHE_AT 1
318#endif
319
320#ifndef EV_VERIFY
321# define EV_VERIFY !EV_MINIMAL
322#endif
323
324#ifndef EV_USE_4HEAP
325# define EV_USE_4HEAP !EV_MINIMAL
326#endif
327
328#ifndef EV_HEAP_CACHE_AT
329# define EV_HEAP_CACHE_AT !EV_MINIMAL
330#endif
331
332/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
333/* which makes programs even slower. might work on other unices, too. */
334#if EV_USE_CLOCK_SYSCALL
335# include <syscall.h>
336# ifdef SYS_clock_gettime
337# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
338# undef EV_USE_MONOTONIC
339# define EV_USE_MONOTONIC 1
340# else
341# undef EV_USE_CLOCK_SYSCALL
342# define EV_USE_CLOCK_SYSCALL 0
343# endif
344#endif
345
346/* this block fixes any misconfiguration where we know we run into trouble otherwise */
80 347
81#ifndef CLOCK_MONOTONIC 348#ifndef CLOCK_MONOTONIC
82# undef EV_USE_MONOTONIC 349# undef EV_USE_MONOTONIC
83# define EV_USE_MONOTONIC 0 350# define EV_USE_MONOTONIC 0
84#endif 351#endif
86#ifndef CLOCK_REALTIME 353#ifndef CLOCK_REALTIME
87# undef EV_USE_REALTIME 354# undef EV_USE_REALTIME
88# define EV_USE_REALTIME 0 355# define EV_USE_REALTIME 0
89#endif 356#endif
90 357
358#if !EV_STAT_ENABLE
359# undef EV_USE_INOTIFY
360# define EV_USE_INOTIFY 0
361#endif
362
363#if !EV_USE_NANOSLEEP
364# ifndef _WIN32
365# include <sys/select.h>
366# endif
367#endif
368
369#if EV_USE_INOTIFY
370# include <sys/utsname.h>
371# include <sys/statfs.h>
372# include <sys/inotify.h>
373/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
374# ifndef IN_DONT_FOLLOW
375# undef EV_USE_INOTIFY
376# define EV_USE_INOTIFY 0
377# endif
378#endif
379
380#if EV_SELECT_IS_WINSOCKET
381# include <winsock.h>
382#endif
383
384#if EV_USE_EVENTFD
385/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
386# include <stdint.h>
387# ifndef EFD_NONBLOCK
388# define EFD_NONBLOCK O_NONBLOCK
389# endif
390# ifndef EFD_CLOEXEC
391# ifdef O_CLOEXEC
392# define EFD_CLOEXEC O_CLOEXEC
393# else
394# define EFD_CLOEXEC 02000000
395# endif
396# endif
397# ifdef __cplusplus
398extern "C" {
399# endif
400int eventfd (unsigned int initval, int flags);
401# ifdef __cplusplus
402}
403# endif
404#endif
405
406#if EV_USE_SIGNALFD
407# include <sys/signalfd.h>
408#endif
409
91/**/ 410/**/
92 411
412#if EV_VERIFY >= 3
413# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
414#else
415# define EV_FREQUENT_CHECK do { } while (0)
416#endif
417
418/*
419 * This is used to avoid floating point rounding problems.
420 * It is added to ev_rt_now when scheduling periodics
421 * to ensure progress, time-wise, even when rounding
422 * errors are against us.
423 * This value is good at least till the year 4000.
424 * Better solutions welcome.
425 */
426#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
427
93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 428#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 429#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 430/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
97 431
98#include "ev.h"
99
100#if __GNUC__ >= 3 432#if __GNUC__ >= 4
101# define expect(expr,value) __builtin_expect ((expr),(value)) 433# define expect(expr,value) __builtin_expect ((expr),(value))
102# define inline inline 434# define noinline __attribute__ ((noinline))
103#else 435#else
104# define expect(expr,value) (expr) 436# define expect(expr,value) (expr)
105# define inline static 437# define noinline
438# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
439# define inline
440# endif
106#endif 441#endif
107 442
108#define expect_false(expr) expect ((expr) != 0, 0) 443#define expect_false(expr) expect ((expr) != 0, 0)
109#define expect_true(expr) expect ((expr) != 0, 1) 444#define expect_true(expr) expect ((expr) != 0, 1)
445#define inline_size static inline
110 446
447#if EV_MINIMAL
448# define inline_speed static noinline
449#else
450# define inline_speed static inline
451#endif
452
111#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 453#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
454
455#if EV_MINPRI == EV_MAXPRI
456# define ABSPRI(w) (((W)w), 0)
457#else
112#define ABSPRI(w) ((w)->priority - EV_MINPRI) 458# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
459#endif
113 460
461#define EMPTY /* required for microsofts broken pseudo-c compiler */
462#define EMPTY2(a,b) /* used to suppress some warnings */
463
114typedef struct ev_watcher *W; 464typedef ev_watcher *W;
115typedef struct ev_watcher_list *WL; 465typedef ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT; 466typedef ev_watcher_time *WT;
117 467
118static ev_tstamp now_floor, now, diff; /* monotonic clock */ 468#define ev_active(w) ((W)(w))->active
119ev_tstamp ev_now; 469#define ev_at(w) ((WT)(w))->at
120int ev_method;
121 470
122static int have_monotonic; /* runtime */ 471#if EV_USE_REALTIME
472/* sig_atomic_t is used to avoid per-thread variables or locking but still */
473/* giving it a reasonably high chance of working on typical architetcures */
474static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
475#endif
123 476
124static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 477#if EV_USE_MONOTONIC
125static void (*method_modify)(int fd, int oev, int nev); 478static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
126static void (*method_poll)(ev_tstamp timeout); 479#endif
480
481#ifndef EV_FD_TO_WIN32_HANDLE
482# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
483#endif
484#ifndef EV_WIN32_HANDLE_TO_FD
485# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (fd, 0)
486#endif
487#ifndef EV_WIN32_CLOSE_FD
488# define EV_WIN32_CLOSE_FD(fd) close (fd)
489#endif
490
491#ifdef _WIN32
492# include "ev_win32.c"
493#endif
127 494
128/*****************************************************************************/ 495/*****************************************************************************/
129 496
497static void (*syserr_cb)(const char *msg);
498
499void
500ev_set_syserr_cb (void (*cb)(const char *msg))
501{
502 syserr_cb = cb;
503}
504
505static void noinline
506ev_syserr (const char *msg)
507{
508 if (!msg)
509 msg = "(libev) system error";
510
511 if (syserr_cb)
512 syserr_cb (msg);
513 else
514 {
515 perror (msg);
516 abort ();
517 }
518}
519
520static void *
521ev_realloc_emul (void *ptr, long size)
522{
523 /* some systems, notably openbsd and darwin, fail to properly
524 * implement realloc (x, 0) (as required by both ansi c-98 and
525 * the single unix specification, so work around them here.
526 */
527
528 if (size)
529 return realloc (ptr, size);
530
531 free (ptr);
532 return 0;
533}
534
535static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
536
537void
538ev_set_allocator (void *(*cb)(void *ptr, long size))
539{
540 alloc = cb;
541}
542
543inline_speed void *
544ev_realloc (void *ptr, long size)
545{
546 ptr = alloc (ptr, size);
547
548 if (!ptr && size)
549 {
550 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
551 abort ();
552 }
553
554 return ptr;
555}
556
557#define ev_malloc(size) ev_realloc (0, (size))
558#define ev_free(ptr) ev_realloc ((ptr), 0)
559
560/*****************************************************************************/
561
562/* set in reify when reification needed */
563#define EV_ANFD_REIFY 1
564
565/* file descriptor info structure */
566typedef struct
567{
568 WL head;
569 unsigned char events; /* the events watched for */
570 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
571 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
572 unsigned char unused;
573#if EV_USE_EPOLL
574 unsigned int egen; /* generation counter to counter epoll bugs */
575#endif
576#if EV_SELECT_IS_WINSOCKET
577 SOCKET handle;
578#endif
579} ANFD;
580
581/* stores the pending event set for a given watcher */
582typedef struct
583{
584 W w;
585 int events; /* the pending event set for the given watcher */
586} ANPENDING;
587
588#if EV_USE_INOTIFY
589/* hash table entry per inotify-id */
590typedef struct
591{
592 WL head;
593} ANFS;
594#endif
595
596/* Heap Entry */
597#if EV_HEAP_CACHE_AT
598 /* a heap element */
599 typedef struct {
600 ev_tstamp at;
601 WT w;
602 } ANHE;
603
604 #define ANHE_w(he) (he).w /* access watcher, read-write */
605 #define ANHE_at(he) (he).at /* access cached at, read-only */
606 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
607#else
608 /* a heap element */
609 typedef WT ANHE;
610
611 #define ANHE_w(he) (he)
612 #define ANHE_at(he) (he)->at
613 #define ANHE_at_cache(he)
614#endif
615
616#if EV_MULTIPLICITY
617
618 struct ev_loop
619 {
620 ev_tstamp ev_rt_now;
621 #define ev_rt_now ((loop)->ev_rt_now)
622 #define VAR(name,decl) decl;
623 #include "ev_vars.h"
624 #undef VAR
625 };
626 #include "ev_wrap.h"
627
628 static struct ev_loop default_loop_struct;
629 struct ev_loop *ev_default_loop_ptr;
630
631#else
632
633 ev_tstamp ev_rt_now;
634 #define VAR(name,decl) static decl;
635 #include "ev_vars.h"
636 #undef VAR
637
638 static int ev_default_loop_ptr;
639
640#endif
641
642#if EV_MINIMAL < 2
643# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
644# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
645# define EV_INVOKE_PENDING invoke_cb (EV_A)
646#else
647# define EV_RELEASE_CB (void)0
648# define EV_ACQUIRE_CB (void)0
649# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
650#endif
651
652#define EVUNLOOP_RECURSE 0x80
653
654/*****************************************************************************/
655
656#ifndef EV_HAVE_EV_TIME
130ev_tstamp 657ev_tstamp
131ev_time (void) 658ev_time (void)
132{ 659{
133#if EV_USE_REALTIME 660#if EV_USE_REALTIME
661 if (expect_true (have_realtime))
662 {
134 struct timespec ts; 663 struct timespec ts;
135 clock_gettime (CLOCK_REALTIME, &ts); 664 clock_gettime (CLOCK_REALTIME, &ts);
136 return ts.tv_sec + ts.tv_nsec * 1e-9; 665 return ts.tv_sec + ts.tv_nsec * 1e-9;
137#else 666 }
667#endif
668
138 struct timeval tv; 669 struct timeval tv;
139 gettimeofday (&tv, 0); 670 gettimeofday (&tv, 0);
140 return tv.tv_sec + tv.tv_usec * 1e-6; 671 return tv.tv_sec + tv.tv_usec * 1e-6;
141#endif
142} 672}
673#endif
143 674
144static ev_tstamp 675inline_size ev_tstamp
145get_clock (void) 676get_clock (void)
146{ 677{
147#if EV_USE_MONOTONIC 678#if EV_USE_MONOTONIC
148 if (expect_true (have_monotonic)) 679 if (expect_true (have_monotonic))
149 { 680 {
154#endif 685#endif
155 686
156 return ev_time (); 687 return ev_time ();
157} 688}
158 689
159#define array_roundsize(base,n) ((n) | 4 & ~3) 690#if EV_MULTIPLICITY
691ev_tstamp
692ev_now (EV_P)
693{
694 return ev_rt_now;
695}
696#endif
160 697
161#define array_needsize(base,cur,cnt,init) \ 698void
162 if (expect_false ((cnt) > cur)) \ 699ev_sleep (ev_tstamp delay)
163 { \ 700{
164 int newcnt = cur; \ 701 if (delay > 0.)
165 do \
166 { \
167 newcnt = array_roundsize (base, newcnt << 1); \
168 } \
169 while ((cnt) > newcnt); \
170 \
171 base = realloc (base, sizeof (*base) * (newcnt)); \
172 init (base + cur, newcnt - cur); \
173 cur = newcnt; \
174 } 702 {
703#if EV_USE_NANOSLEEP
704 struct timespec ts;
705
706 ts.tv_sec = (time_t)delay;
707 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
708
709 nanosleep (&ts, 0);
710#elif defined(_WIN32)
711 Sleep ((unsigned long)(delay * 1e3));
712#else
713 struct timeval tv;
714
715 tv.tv_sec = (time_t)delay;
716 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
717
718 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
719 /* something not guaranteed by newer posix versions, but guaranteed */
720 /* by older ones */
721 select (0, 0, 0, 0, &tv);
722#endif
723 }
724}
175 725
176/*****************************************************************************/ 726/*****************************************************************************/
177 727
178typedef struct 728#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
179{
180 struct ev_io *head;
181 unsigned char events;
182 unsigned char reify;
183} ANFD;
184 729
185static ANFD *anfds; 730/* find a suitable new size for the given array, */
186static int anfdmax; 731/* hopefully by rounding to a ncie-to-malloc size */
187 732inline_size int
188static void 733array_nextsize (int elem, int cur, int cnt)
189anfds_init (ANFD *base, int count)
190{ 734{
191 while (count--) 735 int ncur = cur + 1;
192 {
193 base->head = 0;
194 base->events = EV_NONE;
195 base->reify = 0;
196 736
197 ++base; 737 do
738 ncur <<= 1;
739 while (cnt > ncur);
740
741 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
742 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
198 } 743 {
199} 744 ncur *= elem;
200 745 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
201typedef struct 746 ncur = ncur - sizeof (void *) * 4;
202{ 747 ncur /= elem;
203 W w;
204 int events;
205} ANPENDING;
206
207static ANPENDING *pendings [NUMPRI];
208static int pendingmax [NUMPRI], pendingcnt [NUMPRI];
209
210static void
211event (W w, int events)
212{
213 if (w->pending)
214 { 748 }
749
750 return ncur;
751}
752
753static noinline void *
754array_realloc (int elem, void *base, int *cur, int cnt)
755{
756 *cur = array_nextsize (elem, *cur, cnt);
757 return ev_realloc (base, elem * *cur);
758}
759
760#define array_init_zero(base,count) \
761 memset ((void *)(base), 0, sizeof (*(base)) * (count))
762
763#define array_needsize(type,base,cur,cnt,init) \
764 if (expect_false ((cnt) > (cur))) \
765 { \
766 int ocur_ = (cur); \
767 (base) = (type *)array_realloc \
768 (sizeof (type), (base), &(cur), (cnt)); \
769 init ((base) + (ocur_), (cur) - ocur_); \
770 }
771
772#if 0
773#define array_slim(type,stem) \
774 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
775 { \
776 stem ## max = array_roundsize (stem ## cnt >> 1); \
777 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
778 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
779 }
780#endif
781
782#define array_free(stem, idx) \
783 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
784
785/*****************************************************************************/
786
787/* dummy callback for pending events */
788static void noinline
789pendingcb (EV_P_ ev_prepare *w, int revents)
790{
791}
792
793void noinline
794ev_feed_event (EV_P_ void *w, int revents)
795{
796 W w_ = (W)w;
797 int pri = ABSPRI (w_);
798
799 if (expect_false (w_->pending))
800 pendings [pri][w_->pending - 1].events |= revents;
801 else
802 {
803 w_->pending = ++pendingcnt [pri];
804 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
805 pendings [pri][w_->pending - 1].w = w_;
215 pendings [ABSPRI (w)][w->pending - 1].events |= events; 806 pendings [pri][w_->pending - 1].events = revents;
216 return;
217 } 807 }
218
219 w->pending = ++pendingcnt [ABSPRI (w)];
220 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
221 pendings [ABSPRI (w)][w->pending - 1].w = w;
222 pendings [ABSPRI (w)][w->pending - 1].events = events;
223} 808}
224 809
225static void 810inline_speed void
811feed_reverse (EV_P_ W w)
812{
813 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
814 rfeeds [rfeedcnt++] = w;
815}
816
817inline_size void
818feed_reverse_done (EV_P_ int revents)
819{
820 do
821 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
822 while (rfeedcnt);
823}
824
825inline_speed void
226queue_events (W *events, int eventcnt, int type) 826queue_events (EV_P_ W *events, int eventcnt, int type)
227{ 827{
228 int i; 828 int i;
229 829
230 for (i = 0; i < eventcnt; ++i) 830 for (i = 0; i < eventcnt; ++i)
231 event (events [i], type); 831 ev_feed_event (EV_A_ events [i], type);
232} 832}
233 833
234static void 834/*****************************************************************************/
835
836inline_speed void
235fd_event (int fd, int events) 837fd_event_nc (EV_P_ int fd, int revents)
236{ 838{
237 ANFD *anfd = anfds + fd; 839 ANFD *anfd = anfds + fd;
238 struct ev_io *w; 840 ev_io *w;
239 841
240 for (w = anfd->head; w; w = w->next) 842 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
241 { 843 {
242 int ev = w->events & events; 844 int ev = w->events & revents;
243 845
244 if (ev) 846 if (ev)
245 event ((W)w, ev); 847 ev_feed_event (EV_A_ (W)w, ev);
246 } 848 }
247} 849}
248 850
249/*****************************************************************************/ 851/* do not submit kernel events for fds that have reify set */
852/* because that means they changed while we were polling for new events */
853inline_speed void
854fd_event (EV_P_ int fd, int revents)
855{
856 ANFD *anfd = anfds + fd;
250 857
251static int *fdchanges; 858 if (expect_true (!anfd->reify))
252static int fdchangemax, fdchangecnt; 859 fd_event_nc (EV_A_ fd, revents);
860}
253 861
254static void 862void
255fd_reify (void) 863ev_feed_fd_event (EV_P_ int fd, int revents)
864{
865 if (fd >= 0 && fd < anfdmax)
866 fd_event_nc (EV_A_ fd, revents);
867}
868
869/* make sure the external fd watch events are in-sync */
870/* with the kernel/libev internal state */
871inline_size void
872fd_reify (EV_P)
256{ 873{
257 int i; 874 int i;
258 875
259 for (i = 0; i < fdchangecnt; ++i) 876 for (i = 0; i < fdchangecnt; ++i)
260 { 877 {
261 int fd = fdchanges [i]; 878 int fd = fdchanges [i];
262 ANFD *anfd = anfds + fd; 879 ANFD *anfd = anfds + fd;
263 struct ev_io *w; 880 ev_io *w;
264 881
265 int events = 0; 882 unsigned char events = 0;
266 883
267 for (w = anfd->head; w; w = w->next) 884 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
268 events |= w->events; 885 events |= (unsigned char)w->events;
269 886
270 anfd->reify = 0; 887#if EV_SELECT_IS_WINSOCKET
271 888 if (events)
272 if (anfd->events != events)
273 { 889 {
274 method_modify (fd, anfd->events, events); 890 unsigned long arg;
275 anfd->events = events; 891 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
892 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
276 } 893 }
894#endif
895
896 {
897 unsigned char o_events = anfd->events;
898 unsigned char o_reify = anfd->reify;
899
900 anfd->reify = 0;
901 anfd->events = events;
902
903 if (o_events != events || o_reify & EV__IOFDSET)
904 backend_modify (EV_A_ fd, o_events, events);
905 }
277 } 906 }
278 907
279 fdchangecnt = 0; 908 fdchangecnt = 0;
280} 909}
281 910
282static void 911/* something about the given fd changed */
283fd_change (int fd) 912inline_size void
913fd_change (EV_P_ int fd, int flags)
284{ 914{
285 if (anfds [fd].reify || fdchangecnt < 0) 915 unsigned char reify = anfds [fd].reify;
286 return;
287
288 anfds [fd].reify = 1; 916 anfds [fd].reify |= flags;
289 917
918 if (expect_true (!reify))
919 {
290 ++fdchangecnt; 920 ++fdchangecnt;
291 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 921 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
292 fdchanges [fdchangecnt - 1] = fd; 922 fdchanges [fdchangecnt - 1] = fd;
923 }
293} 924}
294 925
295static void 926/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
927inline_speed void
296fd_kill (int fd) 928fd_kill (EV_P_ int fd)
297{ 929{
298 struct ev_io *w; 930 ev_io *w;
299 931
300 printf ("killing fd %d\n", fd);//D
301 while ((w = anfds [fd].head)) 932 while ((w = (ev_io *)anfds [fd].head))
302 { 933 {
303 ev_io_stop (w); 934 ev_io_stop (EV_A_ w);
304 event ((W)w, EV_ERROR | EV_READ | EV_WRITE); 935 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
305 } 936 }
937}
938
939/* check whether the given fd is atcually valid, for error recovery */
940inline_size int
941fd_valid (int fd)
942{
943#ifdef _WIN32
944 return _get_osfhandle (fd) != -1;
945#else
946 return fcntl (fd, F_GETFD) != -1;
947#endif
306} 948}
307 949
308/* called on EBADF to verify fds */ 950/* called on EBADF to verify fds */
309static void 951static void noinline
310fd_ebadf (void) 952fd_ebadf (EV_P)
311{ 953{
312 int fd; 954 int fd;
313 955
314 for (fd = 0; fd < anfdmax; ++fd) 956 for (fd = 0; fd < anfdmax; ++fd)
315 if (anfds [fd].events) 957 if (anfds [fd].events)
316 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 958 if (!fd_valid (fd) && errno == EBADF)
317 fd_kill (fd); 959 fd_kill (EV_A_ fd);
318} 960}
319 961
320/* called on ENOMEM in select/poll to kill some fds and retry */ 962/* called on ENOMEM in select/poll to kill some fds and retry */
321static void 963static void noinline
322fd_enomem (void) 964fd_enomem (EV_P)
323{ 965{
324 int fd = anfdmax; 966 int fd;
325 967
326 while (fd--) 968 for (fd = anfdmax; fd--; )
327 if (anfds [fd].events) 969 if (anfds [fd].events)
328 { 970 {
329 close (fd);
330 fd_kill (fd); 971 fd_kill (EV_A_ fd);
331 return; 972 break;
332 } 973 }
333} 974}
334 975
976/* usually called after fork if backend needs to re-arm all fds from scratch */
977static void noinline
978fd_rearm_all (EV_P)
979{
980 int fd;
981
982 for (fd = 0; fd < anfdmax; ++fd)
983 if (anfds [fd].events)
984 {
985 anfds [fd].events = 0;
986 anfds [fd].emask = 0;
987 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
988 }
989}
990
335/*****************************************************************************/ 991/*****************************************************************************/
336 992
337static struct ev_timer **timers; 993/*
338static int timermax, timercnt; 994 * the heap functions want a real array index. array index 0 uis guaranteed to not
995 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
996 * the branching factor of the d-tree.
997 */
339 998
340static struct ev_periodic **periodics; 999/*
341static int periodicmax, periodiccnt; 1000 * at the moment we allow libev the luxury of two heaps,
1001 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1002 * which is more cache-efficient.
1003 * the difference is about 5% with 50000+ watchers.
1004 */
1005#if EV_USE_4HEAP
342 1006
1007#define DHEAP 4
1008#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1009#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1010#define UPHEAP_DONE(p,k) ((p) == (k))
1011
1012/* away from the root */
1013inline_speed void
1014downheap (ANHE *heap, int N, int k)
1015{
1016 ANHE he = heap [k];
1017 ANHE *E = heap + N + HEAP0;
1018
1019 for (;;)
1020 {
1021 ev_tstamp minat;
1022 ANHE *minpos;
1023 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1024
1025 /* find minimum child */
1026 if (expect_true (pos + DHEAP - 1 < E))
1027 {
1028 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1029 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1030 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1031 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1032 }
1033 else if (pos < E)
1034 {
1035 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1036 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1037 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1038 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1039 }
1040 else
1041 break;
1042
1043 if (ANHE_at (he) <= minat)
1044 break;
1045
1046 heap [k] = *minpos;
1047 ev_active (ANHE_w (*minpos)) = k;
1048
1049 k = minpos - heap;
1050 }
1051
1052 heap [k] = he;
1053 ev_active (ANHE_w (he)) = k;
1054}
1055
1056#else /* 4HEAP */
1057
1058#define HEAP0 1
1059#define HPARENT(k) ((k) >> 1)
1060#define UPHEAP_DONE(p,k) (!(p))
1061
1062/* away from the root */
1063inline_speed void
1064downheap (ANHE *heap, int N, int k)
1065{
1066 ANHE he = heap [k];
1067
1068 for (;;)
1069 {
1070 int c = k << 1;
1071
1072 if (c >= N + HEAP0)
1073 break;
1074
1075 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1076 ? 1 : 0;
1077
1078 if (ANHE_at (he) <= ANHE_at (heap [c]))
1079 break;
1080
1081 heap [k] = heap [c];
1082 ev_active (ANHE_w (heap [k])) = k;
1083
1084 k = c;
1085 }
1086
1087 heap [k] = he;
1088 ev_active (ANHE_w (he)) = k;
1089}
1090#endif
1091
1092/* towards the root */
1093inline_speed void
1094upheap (ANHE *heap, int k)
1095{
1096 ANHE he = heap [k];
1097
1098 for (;;)
1099 {
1100 int p = HPARENT (k);
1101
1102 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1103 break;
1104
1105 heap [k] = heap [p];
1106 ev_active (ANHE_w (heap [k])) = k;
1107 k = p;
1108 }
1109
1110 heap [k] = he;
1111 ev_active (ANHE_w (he)) = k;
1112}
1113
1114/* move an element suitably so it is in a correct place */
1115inline_size void
1116adjustheap (ANHE *heap, int N, int k)
1117{
1118 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1119 upheap (heap, k);
1120 else
1121 downheap (heap, N, k);
1122}
1123
1124/* rebuild the heap: this function is used only once and executed rarely */
1125inline_size void
1126reheap (ANHE *heap, int N)
1127{
1128 int i;
1129
1130 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1131 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1132 for (i = 0; i < N; ++i)
1133 upheap (heap, i + HEAP0);
1134}
1135
1136/*****************************************************************************/
1137
1138/* associate signal watchers to a signal signal */
1139typedef struct
1140{
1141 EV_ATOMIC_T pending;
1142#if EV_MULTIPLICITY
1143 EV_P;
1144#endif
1145 WL head;
1146} ANSIG;
1147
1148static ANSIG signals [EV_NSIG - 1];
1149
1150/*****************************************************************************/
1151
1152/* used to prepare libev internal fd's */
1153/* this is not fork-safe */
1154inline_speed void
1155fd_intern (int fd)
1156{
1157#ifdef _WIN32
1158 unsigned long arg = 1;
1159 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1160#else
1161 fcntl (fd, F_SETFD, FD_CLOEXEC);
1162 fcntl (fd, F_SETFL, O_NONBLOCK);
1163#endif
1164}
1165
1166static void noinline
1167evpipe_init (EV_P)
1168{
1169 if (!ev_is_active (&pipe_w))
1170 {
1171#if EV_USE_EVENTFD
1172 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1173 if (evfd < 0 && errno == EINVAL)
1174 evfd = eventfd (0, 0);
1175
1176 if (evfd >= 0)
1177 {
1178 evpipe [0] = -1;
1179 fd_intern (evfd); /* doing it twice doesn't hurt */
1180 ev_io_set (&pipe_w, evfd, EV_READ);
1181 }
1182 else
1183#endif
1184 {
1185 while (pipe (evpipe))
1186 ev_syserr ("(libev) error creating signal/async pipe");
1187
1188 fd_intern (evpipe [0]);
1189 fd_intern (evpipe [1]);
1190 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1191 }
1192
1193 ev_io_start (EV_A_ &pipe_w);
1194 ev_unref (EV_A); /* watcher should not keep loop alive */
1195 }
1196}
1197
1198inline_size void
1199evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1200{
1201 if (!*flag)
1202 {
1203 int old_errno = errno; /* save errno because write might clobber it */
1204
1205 *flag = 1;
1206
1207#if EV_USE_EVENTFD
1208 if (evfd >= 0)
1209 {
1210 uint64_t counter = 1;
1211 write (evfd, &counter, sizeof (uint64_t));
1212 }
1213 else
1214#endif
1215 write (evpipe [1], &old_errno, 1);
1216
1217 errno = old_errno;
1218 }
1219}
1220
1221/* called whenever the libev signal pipe */
1222/* got some events (signal, async) */
343static void 1223static void
344upheap (WT *timers, int k) 1224pipecb (EV_P_ ev_io *iow, int revents)
345{ 1225{
346 WT w = timers [k]; 1226 int i;
347 1227
348 while (k && timers [k >> 1]->at > w->at) 1228#if EV_USE_EVENTFD
349 { 1229 if (evfd >= 0)
350 timers [k] = timers [k >> 1];
351 timers [k]->active = k + 1;
352 k >>= 1;
353 } 1230 {
1231 uint64_t counter;
1232 read (evfd, &counter, sizeof (uint64_t));
1233 }
1234 else
1235#endif
1236 {
1237 char dummy;
1238 read (evpipe [0], &dummy, 1);
1239 }
354 1240
355 timers [k] = w; 1241 if (sig_pending)
356 timers [k]->active = k + 1; 1242 {
1243 sig_pending = 0;
357 1244
1245 for (i = EV_NSIG - 1; i--; )
1246 if (expect_false (signals [i].pending))
1247 ev_feed_signal_event (EV_A_ i + 1);
1248 }
1249
1250#if EV_ASYNC_ENABLE
1251 if (async_pending)
1252 {
1253 async_pending = 0;
1254
1255 for (i = asynccnt; i--; )
1256 if (asyncs [i]->sent)
1257 {
1258 asyncs [i]->sent = 0;
1259 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1260 }
1261 }
1262#endif
358} 1263}
1264
1265/*****************************************************************************/
359 1266
360static void 1267static void
361downheap (WT *timers, int N, int k) 1268ev_sighandler (int signum)
362{ 1269{
363 WT w = timers [k]; 1270#if EV_MULTIPLICITY
1271 EV_P = signals [signum - 1].loop;
1272#endif
364 1273
365 while (k < (N >> 1)) 1274#if _WIN32
366 { 1275 signal (signum, ev_sighandler);
367 int j = k << 1; 1276#endif
368 1277
369 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 1278 signals [signum - 1].pending = 1;
370 ++j; 1279 evpipe_write (EV_A_ &sig_pending);
1280}
371 1281
372 if (w->at <= timers [j]->at) 1282void noinline
1283ev_feed_signal_event (EV_P_ int signum)
1284{
1285 WL w;
1286
1287 if (expect_false (signum <= 0 || signum > EV_NSIG))
1288 return;
1289
1290 --signum;
1291
1292#if EV_MULTIPLICITY
1293 /* it is permissible to try to feed a signal to the wrong loop */
1294 /* or, likely more useful, feeding a signal nobody is waiting for */
1295
1296 if (expect_false (signals [signum].loop != EV_A))
1297 return;
1298#endif
1299
1300 signals [signum].pending = 0;
1301
1302 for (w = signals [signum].head; w; w = w->next)
1303 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1304}
1305
1306#if EV_USE_SIGNALFD
1307static void
1308sigfdcb (EV_P_ ev_io *iow, int revents)
1309{
1310 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1311
1312 for (;;)
1313 {
1314 ssize_t res = read (sigfd, si, sizeof (si));
1315
1316 /* not ISO-C, as res might be -1, but works with SuS */
1317 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1318 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1319
1320 if (res < (ssize_t)sizeof (si))
373 break; 1321 break;
374
375 timers [k] = timers [j];
376 timers [k]->active = k + 1;
377 k = j;
378 } 1322 }
379
380 timers [k] = w;
381 timers [k]->active = k + 1;
382} 1323}
1324#endif
383 1325
384/*****************************************************************************/ 1326/*****************************************************************************/
385 1327
386typedef struct 1328static WL childs [EV_PID_HASHSIZE];
387{
388 struct ev_signal *head;
389 sig_atomic_t volatile gotsig;
390} ANSIG;
391 1329
392static ANSIG *signals;
393static int signalmax;
394
395static int sigpipe [2];
396static sig_atomic_t volatile gotsig;
397static struct ev_io sigev;
398
399static void
400signals_init (ANSIG *base, int count)
401{
402 while (count--)
403 {
404 base->head = 0;
405 base->gotsig = 0;
406
407 ++base;
408 }
409}
410
411static void
412sighandler (int signum)
413{
414 signals [signum - 1].gotsig = 1;
415
416 if (!gotsig)
417 {
418 int old_errno = errno;
419 gotsig = 1;
420 write (sigpipe [1], &signum, 1);
421 errno = old_errno;
422 }
423}
424
425static void
426sigcb (struct ev_io *iow, int revents)
427{
428 struct ev_signal *w;
429 int signum;
430
431 read (sigpipe [0], &revents, 1);
432 gotsig = 0;
433
434 for (signum = signalmax; signum--; )
435 if (signals [signum].gotsig)
436 {
437 signals [signum].gotsig = 0;
438
439 for (w = signals [signum].head; w; w = w->next)
440 event ((W)w, EV_SIGNAL);
441 }
442}
443
444static void
445siginit (void)
446{
447#ifndef WIN32 1330#ifndef _WIN32
448 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
449 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
450 1331
451 /* rather than sort out wether we really need nb, set it */
452 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
453 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
454#endif
455
456 ev_io_set (&sigev, sigpipe [0], EV_READ);
457 ev_io_start (&sigev);
458}
459
460/*****************************************************************************/
461
462static struct ev_idle **idles;
463static int idlemax, idlecnt;
464
465static struct ev_prepare **prepares;
466static int preparemax, preparecnt;
467
468static struct ev_check **checks;
469static int checkmax, checkcnt;
470
471/*****************************************************************************/
472
473static struct ev_child *childs [PID_HASHSIZE];
474static struct ev_signal childev; 1332static ev_signal childev;
475 1333
476#ifndef WIN32 1334#ifndef WIFCONTINUED
1335# define WIFCONTINUED(status) 0
1336#endif
1337
1338/* handle a single child status event */
1339inline_speed void
1340child_reap (EV_P_ int chain, int pid, int status)
1341{
1342 ev_child *w;
1343 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1344
1345 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1346 {
1347 if ((w->pid == pid || !w->pid)
1348 && (!traced || (w->flags & 1)))
1349 {
1350 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1351 w->rpid = pid;
1352 w->rstatus = status;
1353 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1354 }
1355 }
1356}
477 1357
478#ifndef WCONTINUED 1358#ifndef WCONTINUED
479# define WCONTINUED 0 1359# define WCONTINUED 0
480#endif 1360#endif
481 1361
1362/* called on sigchld etc., calls waitpid */
482static void 1363static void
483child_reap (struct ev_signal *sw, int chain, int pid, int status)
484{
485 struct ev_child *w;
486
487 for (w = childs [chain & (PID_HASHSIZE - 1)]; w; w = w->next)
488 if (w->pid == pid || !w->pid)
489 {
490 w->priority = sw->priority; /* need to do it *now* */
491 w->rpid = pid;
492 w->rstatus = status;
493 printf ("rpid %p %d %d\n", w, pid, w->pid);//D
494 event ((W)w, EV_CHILD);
495 }
496}
497
498static void
499childcb (struct ev_signal *sw, int revents) 1364childcb (EV_P_ ev_signal *sw, int revents)
500{ 1365{
501 int pid, status; 1366 int pid, status;
502 1367
503 printf ("chld %x\n", revents);//D 1368 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
504 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1369 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
505 { 1370 if (!WCONTINUED
1371 || errno != EINVAL
1372 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1373 return;
1374
506 /* make sure we are called again until all childs have been reaped */ 1375 /* make sure we are called again until all children have been reaped */
1376 /* we need to do it this way so that the callback gets called before we continue */
507 event ((W)sw, EV_SIGNAL); 1377 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
508 1378
509 child_reap (sw, pid, pid, status); 1379 child_reap (EV_A_ pid, pid, status);
1380 if (EV_PID_HASHSIZE > 1)
510 child_reap (sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1381 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
511 }
512} 1382}
513 1383
514#endif 1384#endif
515 1385
516/*****************************************************************************/ 1386/*****************************************************************************/
517 1387
1388#if EV_USE_PORT
1389# include "ev_port.c"
1390#endif
518#if EV_USE_KQUEUE 1391#if EV_USE_KQUEUE
519# include "ev_kqueue.c" 1392# include "ev_kqueue.c"
520#endif 1393#endif
521#if EV_USE_EPOLL 1394#if EV_USE_EPOLL
522# include "ev_epoll.c" 1395# include "ev_epoll.c"
538ev_version_minor (void) 1411ev_version_minor (void)
539{ 1412{
540 return EV_VERSION_MINOR; 1413 return EV_VERSION_MINOR;
541} 1414}
542 1415
543/* return true if we are running with elevated privileges and ignore env variables */ 1416/* return true if we are running with elevated privileges and should ignore env variables */
544static int 1417int inline_size
545enable_secure () 1418enable_secure (void)
546{ 1419{
1420#ifdef _WIN32
1421 return 0;
1422#else
547 return getuid () != geteuid () 1423 return getuid () != geteuid ()
548 || getgid () != getegid (); 1424 || getgid () != getegid ();
1425#endif
549} 1426}
550 1427
551int ev_init (int methods) 1428unsigned int
1429ev_supported_backends (void)
552{ 1430{
553 if (!ev_method) 1431 unsigned int flags = 0;
1432
1433 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1434 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1435 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1436 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1437 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1438
1439 return flags;
1440}
1441
1442unsigned int
1443ev_recommended_backends (void)
1444{
1445 unsigned int flags = ev_supported_backends ();
1446
1447#ifndef __NetBSD__
1448 /* kqueue is borked on everything but netbsd apparently */
1449 /* it usually doesn't work correctly on anything but sockets and pipes */
1450 flags &= ~EVBACKEND_KQUEUE;
1451#endif
1452#ifdef __APPLE__
1453 /* only select works correctly on that "unix-certified" platform */
1454 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1455 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1456#endif
1457
1458 return flags;
1459}
1460
1461unsigned int
1462ev_embeddable_backends (void)
1463{
1464 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1465
1466 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1467 /* please fix it and tell me how to detect the fix */
1468 flags &= ~EVBACKEND_EPOLL;
1469
1470 return flags;
1471}
1472
1473unsigned int
1474ev_backend (EV_P)
1475{
1476 return backend;
1477}
1478
1479#if EV_MINIMAL < 2
1480unsigned int
1481ev_loop_count (EV_P)
1482{
1483 return loop_count;
1484}
1485
1486unsigned int
1487ev_loop_depth (EV_P)
1488{
1489 return loop_depth;
1490}
1491
1492void
1493ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1494{
1495 io_blocktime = interval;
1496}
1497
1498void
1499ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1500{
1501 timeout_blocktime = interval;
1502}
1503
1504void
1505ev_set_userdata (EV_P_ void *data)
1506{
1507 userdata = data;
1508}
1509
1510void *
1511ev_userdata (EV_P)
1512{
1513 return userdata;
1514}
1515
1516void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1517{
1518 invoke_cb = invoke_pending_cb;
1519}
1520
1521void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1522{
1523 release_cb = release;
1524 acquire_cb = acquire;
1525}
1526#endif
1527
1528/* initialise a loop structure, must be zero-initialised */
1529static void noinline
1530loop_init (EV_P_ unsigned int flags)
1531{
1532 if (!backend)
554 { 1533 {
1534#if EV_USE_REALTIME
1535 if (!have_realtime)
1536 {
1537 struct timespec ts;
1538
1539 if (!clock_gettime (CLOCK_REALTIME, &ts))
1540 have_realtime = 1;
1541 }
1542#endif
1543
555#if EV_USE_MONOTONIC 1544#if EV_USE_MONOTONIC
1545 if (!have_monotonic)
1546 {
1547 struct timespec ts;
1548
1549 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1550 have_monotonic = 1;
1551 }
1552#endif
1553
1554 /* pid check not overridable via env */
1555#ifndef _WIN32
1556 if (flags & EVFLAG_FORKCHECK)
1557 curpid = getpid ();
1558#endif
1559
1560 if (!(flags & EVFLAG_NOENV)
1561 && !enable_secure ()
1562 && getenv ("LIBEV_FLAGS"))
1563 flags = atoi (getenv ("LIBEV_FLAGS"));
1564
1565 ev_rt_now = ev_time ();
1566 mn_now = get_clock ();
1567 now_floor = mn_now;
1568 rtmn_diff = ev_rt_now - mn_now;
1569#if EV_MINIMAL < 2
1570 invoke_cb = ev_invoke_pending;
1571#endif
1572
1573 io_blocktime = 0.;
1574 timeout_blocktime = 0.;
1575 backend = 0;
1576 backend_fd = -1;
1577 sig_pending = 0;
1578#if EV_ASYNC_ENABLE
1579 async_pending = 0;
1580#endif
1581#if EV_USE_INOTIFY
1582 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1583#endif
1584#if EV_USE_SIGNALFD
1585 sigfd = flags & EVFLAG_NOSIGFD ? -1 : -2;
1586#endif
1587
1588 if (!(flags & 0x0000ffffU))
1589 flags |= ev_recommended_backends ();
1590
1591#if EV_USE_PORT
1592 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1593#endif
1594#if EV_USE_KQUEUE
1595 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1596#endif
1597#if EV_USE_EPOLL
1598 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1599#endif
1600#if EV_USE_POLL
1601 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1602#endif
1603#if EV_USE_SELECT
1604 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1605#endif
1606
1607 ev_prepare_init (&pending_w, pendingcb);
1608
1609 ev_init (&pipe_w, pipecb);
1610 ev_set_priority (&pipe_w, EV_MAXPRI);
1611 }
1612}
1613
1614/* free up a loop structure */
1615static void noinline
1616loop_destroy (EV_P)
1617{
1618 int i;
1619
1620 if (ev_is_active (&pipe_w))
1621 {
1622 /*ev_ref (EV_A);*/
1623 /*ev_io_stop (EV_A_ &pipe_w);*/
1624
1625#if EV_USE_EVENTFD
1626 if (evfd >= 0)
1627 close (evfd);
1628#endif
1629
1630 if (evpipe [0] >= 0)
1631 {
1632 EV_WIN32_CLOSE_FD (evpipe [0]);
1633 EV_WIN32_CLOSE_FD (evpipe [1]);
1634 }
1635 }
1636
1637#if EV_USE_SIGNALFD
1638 if (ev_is_active (&sigfd_w))
1639 {
1640 /*ev_ref (EV_A);*/
1641 /*ev_io_stop (EV_A_ &sigfd_w);*/
1642
1643 close (sigfd);
1644 }
1645#endif
1646
1647#if EV_USE_INOTIFY
1648 if (fs_fd >= 0)
1649 close (fs_fd);
1650#endif
1651
1652 if (backend_fd >= 0)
1653 close (backend_fd);
1654
1655#if EV_USE_PORT
1656 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1657#endif
1658#if EV_USE_KQUEUE
1659 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1660#endif
1661#if EV_USE_EPOLL
1662 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1663#endif
1664#if EV_USE_POLL
1665 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1666#endif
1667#if EV_USE_SELECT
1668 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1669#endif
1670
1671 for (i = NUMPRI; i--; )
1672 {
1673 array_free (pending, [i]);
1674#if EV_IDLE_ENABLE
1675 array_free (idle, [i]);
1676#endif
1677 }
1678
1679 ev_free (anfds); anfds = 0; anfdmax = 0;
1680
1681 /* have to use the microsoft-never-gets-it-right macro */
1682 array_free (rfeed, EMPTY);
1683 array_free (fdchange, EMPTY);
1684 array_free (timer, EMPTY);
1685#if EV_PERIODIC_ENABLE
1686 array_free (periodic, EMPTY);
1687#endif
1688#if EV_FORK_ENABLE
1689 array_free (fork, EMPTY);
1690#endif
1691 array_free (prepare, EMPTY);
1692 array_free (check, EMPTY);
1693#if EV_ASYNC_ENABLE
1694 array_free (async, EMPTY);
1695#endif
1696
1697 backend = 0;
1698}
1699
1700#if EV_USE_INOTIFY
1701inline_size void infy_fork (EV_P);
1702#endif
1703
1704inline_size void
1705loop_fork (EV_P)
1706{
1707#if EV_USE_PORT
1708 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1709#endif
1710#if EV_USE_KQUEUE
1711 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1712#endif
1713#if EV_USE_EPOLL
1714 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1715#endif
1716#if EV_USE_INOTIFY
1717 infy_fork (EV_A);
1718#endif
1719
1720 if (ev_is_active (&pipe_w))
1721 {
1722 /* this "locks" the handlers against writing to the pipe */
1723 /* while we modify the fd vars */
1724 sig_pending = 1;
1725#if EV_ASYNC_ENABLE
1726 async_pending = 1;
1727#endif
1728
1729 ev_ref (EV_A);
1730 ev_io_stop (EV_A_ &pipe_w);
1731
1732#if EV_USE_EVENTFD
1733 if (evfd >= 0)
1734 close (evfd);
1735#endif
1736
1737 if (evpipe [0] >= 0)
1738 {
1739 EV_WIN32_CLOSE_FD (evpipe [0]);
1740 EV_WIN32_CLOSE_FD (evpipe [1]);
1741 }
1742
1743 evpipe_init (EV_A);
1744 /* now iterate over everything, in case we missed something */
1745 pipecb (EV_A_ &pipe_w, EV_READ);
1746 }
1747
1748 postfork = 0;
1749}
1750
1751#if EV_MULTIPLICITY
1752
1753struct ev_loop *
1754ev_loop_new (unsigned int flags)
1755{
1756 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1757
1758 memset (EV_A, 0, sizeof (struct ev_loop));
1759 loop_init (EV_A_ flags);
1760
1761 if (ev_backend (EV_A))
1762 return EV_A;
1763
1764 return 0;
1765}
1766
1767void
1768ev_loop_destroy (EV_P)
1769{
1770 loop_destroy (EV_A);
1771 ev_free (loop);
1772}
1773
1774void
1775ev_loop_fork (EV_P)
1776{
1777 postfork = 1; /* must be in line with ev_default_fork */
1778}
1779#endif /* multiplicity */
1780
1781#if EV_VERIFY
1782static void noinline
1783verify_watcher (EV_P_ W w)
1784{
1785 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1786
1787 if (w->pending)
1788 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1789}
1790
1791static void noinline
1792verify_heap (EV_P_ ANHE *heap, int N)
1793{
1794 int i;
1795
1796 for (i = HEAP0; i < N + HEAP0; ++i)
1797 {
1798 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1799 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1800 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1801
1802 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1803 }
1804}
1805
1806static void noinline
1807array_verify (EV_P_ W *ws, int cnt)
1808{
1809 while (cnt--)
1810 {
1811 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1812 verify_watcher (EV_A_ ws [cnt]);
1813 }
1814}
1815#endif
1816
1817#if EV_MINIMAL < 2
1818void
1819ev_loop_verify (EV_P)
1820{
1821#if EV_VERIFY
1822 int i;
1823 WL w;
1824
1825 assert (activecnt >= -1);
1826
1827 assert (fdchangemax >= fdchangecnt);
1828 for (i = 0; i < fdchangecnt; ++i)
1829 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1830
1831 assert (anfdmax >= 0);
1832 for (i = 0; i < anfdmax; ++i)
1833 for (w = anfds [i].head; w; w = w->next)
556 { 1834 {
557 struct timespec ts; 1835 verify_watcher (EV_A_ (W)w);
558 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1836 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
559 have_monotonic = 1; 1837 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
560 } 1838 }
1839
1840 assert (timermax >= timercnt);
1841 verify_heap (EV_A_ timers, timercnt);
1842
1843#if EV_PERIODIC_ENABLE
1844 assert (periodicmax >= periodiccnt);
1845 verify_heap (EV_A_ periodics, periodiccnt);
1846#endif
1847
1848 for (i = NUMPRI; i--; )
1849 {
1850 assert (pendingmax [i] >= pendingcnt [i]);
1851#if EV_IDLE_ENABLE
1852 assert (idleall >= 0);
1853 assert (idlemax [i] >= idlecnt [i]);
1854 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1855#endif
1856 }
1857
1858#if EV_FORK_ENABLE
1859 assert (forkmax >= forkcnt);
1860 array_verify (EV_A_ (W *)forks, forkcnt);
1861#endif
1862
1863#if EV_ASYNC_ENABLE
1864 assert (asyncmax >= asynccnt);
1865 array_verify (EV_A_ (W *)asyncs, asynccnt);
1866#endif
1867
1868 assert (preparemax >= preparecnt);
1869 array_verify (EV_A_ (W *)prepares, preparecnt);
1870
1871 assert (checkmax >= checkcnt);
1872 array_verify (EV_A_ (W *)checks, checkcnt);
1873
1874# if 0
1875 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1876 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
561#endif 1877# endif
562
563 ev_now = ev_time ();
564 now = get_clock ();
565 now_floor = now;
566 diff = ev_now - now;
567
568 if (pipe (sigpipe))
569 return 0;
570
571 if (methods == EVMETHOD_AUTO)
572 if (!enable_secure () && getenv ("LIBEV_METHODS"))
573 methods = atoi (getenv ("LIBEV_METHODS"));
574 else
575 methods = EVMETHOD_ANY;
576
577 ev_method = 0;
578#if EV_USE_KQUEUE
579 if (!ev_method && (methods & EVMETHOD_KQUEUE)) kqueue_init (methods);
580#endif 1878#endif
581#if EV_USE_EPOLL 1879}
582 if (!ev_method && (methods & EVMETHOD_EPOLL )) epoll_init (methods);
583#endif 1880#endif
584#if EV_USE_POLL
585 if (!ev_method && (methods & EVMETHOD_POLL )) poll_init (methods);
586#endif
587#if EV_USE_SELECT
588 if (!ev_method && (methods & EVMETHOD_SELECT)) select_init (methods);
589#endif
590 1881
591 if (ev_method) 1882#if EV_MULTIPLICITY
1883struct ev_loop *
1884ev_default_loop_init (unsigned int flags)
1885#else
1886int
1887ev_default_loop (unsigned int flags)
1888#endif
1889{
1890 if (!ev_default_loop_ptr)
1891 {
1892#if EV_MULTIPLICITY
1893 EV_P = ev_default_loop_ptr = &default_loop_struct;
1894#else
1895 ev_default_loop_ptr = 1;
1896#endif
1897
1898 loop_init (EV_A_ flags);
1899
1900 if (ev_backend (EV_A))
592 { 1901 {
593 ev_watcher_init (&sigev, sigcb);
594 ev_set_priority (&sigev, EV_MAXPRI);
595 siginit ();
596
597#ifndef WIN32 1902#ifndef _WIN32
598 ev_signal_init (&childev, childcb, SIGCHLD); 1903 ev_signal_init (&childev, childcb, SIGCHLD);
599 ev_set_priority (&childev, EV_MAXPRI); 1904 ev_set_priority (&childev, EV_MAXPRI);
600 ev_signal_start (&childev); 1905 ev_signal_start (EV_A_ &childev);
1906 ev_unref (EV_A); /* child watcher should not keep loop alive */
601#endif 1907#endif
602 } 1908 }
1909 else
1910 ev_default_loop_ptr = 0;
603 } 1911 }
604 1912
605 return ev_method; 1913 return ev_default_loop_ptr;
1914}
1915
1916void
1917ev_default_destroy (void)
1918{
1919#if EV_MULTIPLICITY
1920 EV_P = ev_default_loop_ptr;
1921#endif
1922
1923 ev_default_loop_ptr = 0;
1924
1925#ifndef _WIN32
1926 ev_ref (EV_A); /* child watcher */
1927 ev_signal_stop (EV_A_ &childev);
1928#endif
1929
1930 loop_destroy (EV_A);
1931}
1932
1933void
1934ev_default_fork (void)
1935{
1936#if EV_MULTIPLICITY
1937 EV_P = ev_default_loop_ptr;
1938#endif
1939
1940 postfork = 1; /* must be in line with ev_loop_fork */
606} 1941}
607 1942
608/*****************************************************************************/ 1943/*****************************************************************************/
609 1944
610void 1945void
611ev_fork_prepare (void) 1946ev_invoke (EV_P_ void *w, int revents)
612{ 1947{
613 /* nop */ 1948 EV_CB_INVOKE ((W)w, revents);
614} 1949}
615 1950
616void 1951unsigned int
617ev_fork_parent (void) 1952ev_pending_count (EV_P)
618{ 1953{
619 /* nop */ 1954 int pri;
620} 1955 unsigned int count = 0;
621 1956
622void 1957 for (pri = NUMPRI; pri--; )
623ev_fork_child (void) 1958 count += pendingcnt [pri];
624{
625#if EV_USE_EPOLL
626 if (ev_method == EVMETHOD_EPOLL)
627 epoll_postfork_child ();
628#endif
629 1959
630 ev_io_stop (&sigev); 1960 return count;
631 close (sigpipe [0]);
632 close (sigpipe [1]);
633 pipe (sigpipe);
634 siginit ();
635} 1961}
636 1962
637/*****************************************************************************/ 1963void noinline
638 1964ev_invoke_pending (EV_P)
639static void
640call_pending (void)
641{ 1965{
642 int pri; 1966 int pri;
643 1967
644 for (pri = NUMPRI; pri--; ) 1968 for (pri = NUMPRI; pri--; )
645 while (pendingcnt [pri]) 1969 while (pendingcnt [pri])
646 { 1970 {
647 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1971 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
648 1972
649 if (p->w) 1973 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1974 /* ^ this is no longer true, as pending_w could be here */
1975
1976 p->w->pending = 0;
1977 EV_CB_INVOKE (p->w, p->events);
1978 EV_FREQUENT_CHECK;
1979 }
1980}
1981
1982#if EV_IDLE_ENABLE
1983/* make idle watchers pending. this handles the "call-idle */
1984/* only when higher priorities are idle" logic */
1985inline_size void
1986idle_reify (EV_P)
1987{
1988 if (expect_false (idleall))
1989 {
1990 int pri;
1991
1992 for (pri = NUMPRI; pri--; )
1993 {
1994 if (pendingcnt [pri])
1995 break;
1996
1997 if (idlecnt [pri])
1998 {
1999 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2000 break;
2001 }
2002 }
2003 }
2004}
2005#endif
2006
2007/* make timers pending */
2008inline_size void
2009timers_reify (EV_P)
2010{
2011 EV_FREQUENT_CHECK;
2012
2013 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2014 {
2015 do
2016 {
2017 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2018
2019 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2020
2021 /* first reschedule or stop timer */
2022 if (w->repeat)
2023 {
2024 ev_at (w) += w->repeat;
2025 if (ev_at (w) < mn_now)
2026 ev_at (w) = mn_now;
2027
2028 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2029
2030 ANHE_at_cache (timers [HEAP0]);
2031 downheap (timers, timercnt, HEAP0);
2032 }
2033 else
2034 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2035
2036 EV_FREQUENT_CHECK;
2037 feed_reverse (EV_A_ (W)w);
2038 }
2039 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2040
2041 feed_reverse_done (EV_A_ EV_TIMEOUT);
2042 }
2043}
2044
2045#if EV_PERIODIC_ENABLE
2046/* make periodics pending */
2047inline_size void
2048periodics_reify (EV_P)
2049{
2050 EV_FREQUENT_CHECK;
2051
2052 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2053 {
2054 int feed_count = 0;
2055
2056 do
2057 {
2058 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2059
2060 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2061
2062 /* first reschedule or stop timer */
2063 if (w->reschedule_cb)
2064 {
2065 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2066
2067 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2068
2069 ANHE_at_cache (periodics [HEAP0]);
2070 downheap (periodics, periodiccnt, HEAP0);
2071 }
2072 else if (w->interval)
2073 {
2074 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2075 /* if next trigger time is not sufficiently in the future, put it there */
2076 /* this might happen because of floating point inexactness */
2077 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2078 {
2079 ev_at (w) += w->interval;
2080
2081 /* if interval is unreasonably low we might still have a time in the past */
2082 /* so correct this. this will make the periodic very inexact, but the user */
2083 /* has effectively asked to get triggered more often than possible */
2084 if (ev_at (w) < ev_rt_now)
2085 ev_at (w) = ev_rt_now;
2086 }
2087
2088 ANHE_at_cache (periodics [HEAP0]);
2089 downheap (periodics, periodiccnt, HEAP0);
2090 }
2091 else
2092 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2093
2094 EV_FREQUENT_CHECK;
2095 feed_reverse (EV_A_ (W)w);
2096 }
2097 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2098
2099 feed_reverse_done (EV_A_ EV_PERIODIC);
2100 }
2101}
2102
2103/* simply recalculate all periodics */
2104/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2105static void noinline
2106periodics_reschedule (EV_P)
2107{
2108 int i;
2109
2110 /* adjust periodics after time jump */
2111 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2112 {
2113 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2114
2115 if (w->reschedule_cb)
2116 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2117 else if (w->interval)
2118 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2119
2120 ANHE_at_cache (periodics [i]);
2121 }
2122
2123 reheap (periodics, periodiccnt);
2124}
2125#endif
2126
2127/* adjust all timers by a given offset */
2128static void noinline
2129timers_reschedule (EV_P_ ev_tstamp adjust)
2130{
2131 int i;
2132
2133 for (i = 0; i < timercnt; ++i)
2134 {
2135 ANHE *he = timers + i + HEAP0;
2136 ANHE_w (*he)->at += adjust;
2137 ANHE_at_cache (*he);
2138 }
2139}
2140
2141/* fetch new monotonic and realtime times from the kernel */
2142/* also detetc if there was a timejump, and act accordingly */
2143inline_speed void
2144time_update (EV_P_ ev_tstamp max_block)
2145{
2146#if EV_USE_MONOTONIC
2147 if (expect_true (have_monotonic))
2148 {
2149 int i;
2150 ev_tstamp odiff = rtmn_diff;
2151
2152 mn_now = get_clock ();
2153
2154 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2155 /* interpolate in the meantime */
2156 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2157 {
2158 ev_rt_now = rtmn_diff + mn_now;
2159 return;
2160 }
2161
2162 now_floor = mn_now;
2163 ev_rt_now = ev_time ();
2164
2165 /* loop a few times, before making important decisions.
2166 * on the choice of "4": one iteration isn't enough,
2167 * in case we get preempted during the calls to
2168 * ev_time and get_clock. a second call is almost guaranteed
2169 * to succeed in that case, though. and looping a few more times
2170 * doesn't hurt either as we only do this on time-jumps or
2171 * in the unlikely event of having been preempted here.
2172 */
2173 for (i = 4; --i; )
2174 {
2175 rtmn_diff = ev_rt_now - mn_now;
2176
2177 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
2178 return; /* all is well */
2179
2180 ev_rt_now = ev_time ();
2181 mn_now = get_clock ();
2182 now_floor = mn_now;
2183 }
2184
2185 /* no timer adjustment, as the monotonic clock doesn't jump */
2186 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2187# if EV_PERIODIC_ENABLE
2188 periodics_reschedule (EV_A);
2189# endif
2190 }
2191 else
2192#endif
2193 {
2194 ev_rt_now = ev_time ();
2195
2196 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2197 {
2198 /* adjust timers. this is easy, as the offset is the same for all of them */
2199 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2200#if EV_PERIODIC_ENABLE
2201 periodics_reschedule (EV_A);
2202#endif
2203 }
2204
2205 mn_now = ev_rt_now;
2206 }
2207}
2208
2209void
2210ev_loop (EV_P_ int flags)
2211{
2212#if EV_MINIMAL < 2
2213 ++loop_depth;
2214#endif
2215
2216 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2217
2218 loop_done = EVUNLOOP_CANCEL;
2219
2220 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2221
2222 do
2223 {
2224#if EV_VERIFY >= 2
2225 ev_loop_verify (EV_A);
2226#endif
2227
2228#ifndef _WIN32
2229 if (expect_false (curpid)) /* penalise the forking check even more */
2230 if (expect_false (getpid () != curpid))
650 { 2231 {
651 p->w->pending = 0; 2232 curpid = getpid ();
652 p->w->cb (p->w, p->events); 2233 postfork = 1;
653 } 2234 }
2235#endif
2236
2237#if EV_FORK_ENABLE
2238 /* we might have forked, so queue fork handlers */
2239 if (expect_false (postfork))
2240 if (forkcnt)
2241 {
2242 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2243 EV_INVOKE_PENDING;
2244 }
2245#endif
2246
2247 /* queue prepare watchers (and execute them) */
2248 if (expect_false (preparecnt))
2249 {
2250 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2251 EV_INVOKE_PENDING;
2252 }
2253
2254 if (expect_false (loop_done))
2255 break;
2256
2257 /* we might have forked, so reify kernel state if necessary */
2258 if (expect_false (postfork))
2259 loop_fork (EV_A);
2260
2261 /* update fd-related kernel structures */
2262 fd_reify (EV_A);
2263
2264 /* calculate blocking time */
2265 {
2266 ev_tstamp waittime = 0.;
2267 ev_tstamp sleeptime = 0.;
2268
2269 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
2270 {
2271 /* remember old timestamp for io_blocktime calculation */
2272 ev_tstamp prev_mn_now = mn_now;
2273
2274 /* update time to cancel out callback processing overhead */
2275 time_update (EV_A_ 1e100);
2276
2277 waittime = MAX_BLOCKTIME;
2278
2279 if (timercnt)
2280 {
2281 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
2282 if (waittime > to) waittime = to;
2283 }
2284
2285#if EV_PERIODIC_ENABLE
2286 if (periodiccnt)
2287 {
2288 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2289 if (waittime > to) waittime = to;
2290 }
2291#endif
2292
2293 /* don't let timeouts decrease the waittime below timeout_blocktime */
2294 if (expect_false (waittime < timeout_blocktime))
2295 waittime = timeout_blocktime;
2296
2297 /* extra check because io_blocktime is commonly 0 */
2298 if (expect_false (io_blocktime))
2299 {
2300 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2301
2302 if (sleeptime > waittime - backend_fudge)
2303 sleeptime = waittime - backend_fudge;
2304
2305 if (expect_true (sleeptime > 0.))
2306 {
2307 ev_sleep (sleeptime);
2308 waittime -= sleeptime;
2309 }
2310 }
2311 }
2312
2313#if EV_MINIMAL < 2
2314 ++loop_count;
2315#endif
2316 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2317 backend_poll (EV_A_ waittime);
2318 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2319
2320 /* update ev_rt_now, do magic */
2321 time_update (EV_A_ waittime + sleeptime);
654 } 2322 }
655}
656 2323
657static void 2324 /* queue pending timers and reschedule them */
658timers_reify (void) 2325 timers_reify (EV_A); /* relative timers called last */
2326#if EV_PERIODIC_ENABLE
2327 periodics_reify (EV_A); /* absolute timers called first */
2328#endif
2329
2330#if EV_IDLE_ENABLE
2331 /* queue idle watchers unless other events are pending */
2332 idle_reify (EV_A);
2333#endif
2334
2335 /* queue check watchers, to be executed first */
2336 if (expect_false (checkcnt))
2337 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2338
2339 EV_INVOKE_PENDING;
2340 }
2341 while (expect_true (
2342 activecnt
2343 && !loop_done
2344 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2345 ));
2346
2347 if (loop_done == EVUNLOOP_ONE)
2348 loop_done = EVUNLOOP_CANCEL;
2349
2350#if EV_MINIMAL < 2
2351 --loop_depth;
2352#endif
2353}
2354
2355void
2356ev_unloop (EV_P_ int how)
659{ 2357{
660 while (timercnt && timers [0]->at <= now) 2358 loop_done = how;
2359}
2360
2361void
2362ev_ref (EV_P)
2363{
2364 ++activecnt;
2365}
2366
2367void
2368ev_unref (EV_P)
2369{
2370 --activecnt;
2371}
2372
2373void
2374ev_now_update (EV_P)
2375{
2376 time_update (EV_A_ 1e100);
2377}
2378
2379void
2380ev_suspend (EV_P)
2381{
2382 ev_now_update (EV_A);
2383}
2384
2385void
2386ev_resume (EV_P)
2387{
2388 ev_tstamp mn_prev = mn_now;
2389
2390 ev_now_update (EV_A);
2391 timers_reschedule (EV_A_ mn_now - mn_prev);
2392#if EV_PERIODIC_ENABLE
2393 /* TODO: really do this? */
2394 periodics_reschedule (EV_A);
2395#endif
2396}
2397
2398/*****************************************************************************/
2399/* singly-linked list management, used when the expected list length is short */
2400
2401inline_size void
2402wlist_add (WL *head, WL elem)
2403{
2404 elem->next = *head;
2405 *head = elem;
2406}
2407
2408inline_size void
2409wlist_del (WL *head, WL elem)
2410{
2411 while (*head)
2412 {
2413 if (expect_true (*head == elem))
2414 {
2415 *head = elem->next;
2416 break;
2417 }
2418
2419 head = &(*head)->next;
2420 }
2421}
2422
2423/* internal, faster, version of ev_clear_pending */
2424inline_speed void
2425clear_pending (EV_P_ W w)
2426{
2427 if (w->pending)
2428 {
2429 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2430 w->pending = 0;
2431 }
2432}
2433
2434int
2435ev_clear_pending (EV_P_ void *w)
2436{
2437 W w_ = (W)w;
2438 int pending = w_->pending;
2439
2440 if (expect_true (pending))
2441 {
2442 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2443 p->w = (W)&pending_w;
2444 w_->pending = 0;
2445 return p->events;
2446 }
2447 else
2448 return 0;
2449}
2450
2451inline_size void
2452pri_adjust (EV_P_ W w)
2453{
2454 int pri = ev_priority (w);
2455 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2456 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2457 ev_set_priority (w, pri);
2458}
2459
2460inline_speed void
2461ev_start (EV_P_ W w, int active)
2462{
2463 pri_adjust (EV_A_ w);
2464 w->active = active;
2465 ev_ref (EV_A);
2466}
2467
2468inline_size void
2469ev_stop (EV_P_ W w)
2470{
2471 ev_unref (EV_A);
2472 w->active = 0;
2473}
2474
2475/*****************************************************************************/
2476
2477void noinline
2478ev_io_start (EV_P_ ev_io *w)
2479{
2480 int fd = w->fd;
2481
2482 if (expect_false (ev_is_active (w)))
2483 return;
2484
2485 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2486 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2487
2488 EV_FREQUENT_CHECK;
2489
2490 ev_start (EV_A_ (W)w, 1);
2491 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2492 wlist_add (&anfds[fd].head, (WL)w);
2493
2494 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2495 w->events &= ~EV__IOFDSET;
2496
2497 EV_FREQUENT_CHECK;
2498}
2499
2500void noinline
2501ev_io_stop (EV_P_ ev_io *w)
2502{
2503 clear_pending (EV_A_ (W)w);
2504 if (expect_false (!ev_is_active (w)))
2505 return;
2506
2507 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2508
2509 EV_FREQUENT_CHECK;
2510
2511 wlist_del (&anfds[w->fd].head, (WL)w);
2512 ev_stop (EV_A_ (W)w);
2513
2514 fd_change (EV_A_ w->fd, 1);
2515
2516 EV_FREQUENT_CHECK;
2517}
2518
2519void noinline
2520ev_timer_start (EV_P_ ev_timer *w)
2521{
2522 if (expect_false (ev_is_active (w)))
2523 return;
2524
2525 ev_at (w) += mn_now;
2526
2527 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2528
2529 EV_FREQUENT_CHECK;
2530
2531 ++timercnt;
2532 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2533 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2534 ANHE_w (timers [ev_active (w)]) = (WT)w;
2535 ANHE_at_cache (timers [ev_active (w)]);
2536 upheap (timers, ev_active (w));
2537
2538 EV_FREQUENT_CHECK;
2539
2540 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2541}
2542
2543void noinline
2544ev_timer_stop (EV_P_ ev_timer *w)
2545{
2546 clear_pending (EV_A_ (W)w);
2547 if (expect_false (!ev_is_active (w)))
2548 return;
2549
2550 EV_FREQUENT_CHECK;
2551
2552 {
2553 int active = ev_active (w);
2554
2555 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2556
2557 --timercnt;
2558
2559 if (expect_true (active < timercnt + HEAP0))
661 { 2560 {
662 struct ev_timer *w = timers [0]; 2561 timers [active] = timers [timercnt + HEAP0];
2562 adjustheap (timers, timercnt, active);
2563 }
2564 }
663 2565
664 /* first reschedule or stop timer */ 2566 EV_FREQUENT_CHECK;
2567
2568 ev_at (w) -= mn_now;
2569
2570 ev_stop (EV_A_ (W)w);
2571}
2572
2573void noinline
2574ev_timer_again (EV_P_ ev_timer *w)
2575{
2576 EV_FREQUENT_CHECK;
2577
2578 if (ev_is_active (w))
2579 {
665 if (w->repeat) 2580 if (w->repeat)
666 { 2581 {
667 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
668 w->at = now + w->repeat; 2582 ev_at (w) = mn_now + w->repeat;
669 downheap ((WT *)timers, timercnt, 0); 2583 ANHE_at_cache (timers [ev_active (w)]);
2584 adjustheap (timers, timercnt, ev_active (w));
670 } 2585 }
671 else 2586 else
672 ev_timer_stop (w); /* nonrepeating: stop timer */ 2587 ev_timer_stop (EV_A_ w);
673
674 event ((W)w, EV_TIMEOUT);
675 }
676}
677
678static void
679periodics_reify (void)
680{
681 while (periodiccnt && periodics [0]->at <= ev_now)
682 { 2588 }
683 struct ev_periodic *w = periodics [0]; 2589 else if (w->repeat)
2590 {
2591 ev_at (w) = w->repeat;
2592 ev_timer_start (EV_A_ w);
2593 }
684 2594
685 /* first reschedule or stop timer */ 2595 EV_FREQUENT_CHECK;
2596}
2597
2598ev_tstamp
2599ev_timer_remaining (EV_P_ ev_timer *w)
2600{
2601 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2602}
2603
2604#if EV_PERIODIC_ENABLE
2605void noinline
2606ev_periodic_start (EV_P_ ev_periodic *w)
2607{
2608 if (expect_false (ev_is_active (w)))
2609 return;
2610
2611 if (w->reschedule_cb)
2612 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
686 if (w->interval) 2613 else if (w->interval)
2614 {
2615 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2616 /* this formula differs from the one in periodic_reify because we do not always round up */
2617 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2618 }
2619 else
2620 ev_at (w) = w->offset;
2621
2622 EV_FREQUENT_CHECK;
2623
2624 ++periodiccnt;
2625 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2626 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2627 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2628 ANHE_at_cache (periodics [ev_active (w)]);
2629 upheap (periodics, ev_active (w));
2630
2631 EV_FREQUENT_CHECK;
2632
2633 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2634}
2635
2636void noinline
2637ev_periodic_stop (EV_P_ ev_periodic *w)
2638{
2639 clear_pending (EV_A_ (W)w);
2640 if (expect_false (!ev_is_active (w)))
2641 return;
2642
2643 EV_FREQUENT_CHECK;
2644
2645 {
2646 int active = ev_active (w);
2647
2648 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2649
2650 --periodiccnt;
2651
2652 if (expect_true (active < periodiccnt + HEAP0))
2653 {
2654 periodics [active] = periodics [periodiccnt + HEAP0];
2655 adjustheap (periodics, periodiccnt, active);
2656 }
2657 }
2658
2659 EV_FREQUENT_CHECK;
2660
2661 ev_stop (EV_A_ (W)w);
2662}
2663
2664void noinline
2665ev_periodic_again (EV_P_ ev_periodic *w)
2666{
2667 /* TODO: use adjustheap and recalculation */
2668 ev_periodic_stop (EV_A_ w);
2669 ev_periodic_start (EV_A_ w);
2670}
2671#endif
2672
2673#ifndef SA_RESTART
2674# define SA_RESTART 0
2675#endif
2676
2677void noinline
2678ev_signal_start (EV_P_ ev_signal *w)
2679{
2680 if (expect_false (ev_is_active (w)))
2681 return;
2682
2683 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2684
2685#if EV_MULTIPLICITY
2686 assert (("libev: a signal must not be attached to two different loops",
2687 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2688
2689 signals [w->signum - 1].loop = EV_A;
2690#endif
2691
2692 EV_FREQUENT_CHECK;
2693
2694#if EV_USE_SIGNALFD
2695 if (sigfd == -2)
2696 {
2697 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2698 if (sigfd < 0 && errno == EINVAL)
2699 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2700
2701 if (sigfd >= 0)
687 { 2702 {
688 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 2703 fd_intern (sigfd); /* doing it twice will not hurt */
689 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 2704
690 downheap ((WT *)periodics, periodiccnt, 0); 2705 sigemptyset (&sigfd_set);
2706
2707 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2708 ev_set_priority (&sigfd_w, EV_MAXPRI);
2709 ev_io_start (EV_A_ &sigfd_w);
2710 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2711 }
2712 }
2713
2714 if (sigfd >= 0)
2715 {
2716 /* TODO: check .head */
2717 sigaddset (&sigfd_set, w->signum);
2718 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2719
2720 signalfd (sigfd, &sigfd_set, 0);
2721 }
2722#endif
2723
2724 ev_start (EV_A_ (W)w, 1);
2725 wlist_add (&signals [w->signum - 1].head, (WL)w);
2726
2727 if (!((WL)w)->next)
2728# if EV_USE_SIGNALFD
2729 if (sigfd < 0) /*TODO*/
2730# endif
2731 {
2732# if _WIN32
2733 signal (w->signum, ev_sighandler);
2734# else
2735 struct sigaction sa;
2736
2737 evpipe_init (EV_A);
2738
2739 sa.sa_handler = ev_sighandler;
2740 sigfillset (&sa.sa_mask);
2741 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2742 sigaction (w->signum, &sa, 0);
2743
2744 sigemptyset (&sa.sa_mask);
2745 sigaddset (&sa.sa_mask, w->signum);
2746 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2747#endif
2748 }
2749
2750 EV_FREQUENT_CHECK;
2751}
2752
2753void noinline
2754ev_signal_stop (EV_P_ ev_signal *w)
2755{
2756 clear_pending (EV_A_ (W)w);
2757 if (expect_false (!ev_is_active (w)))
2758 return;
2759
2760 EV_FREQUENT_CHECK;
2761
2762 wlist_del (&signals [w->signum - 1].head, (WL)w);
2763 ev_stop (EV_A_ (W)w);
2764
2765 if (!signals [w->signum - 1].head)
2766 {
2767#if EV_MULTIPLICITY
2768 signals [w->signum - 1].loop = 0; /* unattach from signal */
2769#endif
2770#if EV_USE_SIGNALFD
2771 if (sigfd >= 0)
2772 {
2773 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2774 sigdelset (&sigfd_set, w->signum);
2775 signalfd (sigfd, &sigfd_set, 0);
2776 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2777 /*TODO: maybe unblock signal? */
691 } 2778 }
692 else 2779 else
693 ev_periodic_stop (w); /* nonrepeating: stop timer */ 2780#endif
694 2781 signal (w->signum, SIG_DFL);
695 event ((W)w, EV_PERIODIC);
696 }
697}
698
699static void
700periodics_reschedule (ev_tstamp diff)
701{
702 int i;
703
704 /* adjust periodics after time jump */
705 for (i = 0; i < periodiccnt; ++i)
706 { 2782 }
707 struct ev_periodic *w = periodics [i];
708 2783
709 if (w->interval) 2784 EV_FREQUENT_CHECK;
2785}
2786
2787void
2788ev_child_start (EV_P_ ev_child *w)
2789{
2790#if EV_MULTIPLICITY
2791 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2792#endif
2793 if (expect_false (ev_is_active (w)))
2794 return;
2795
2796 EV_FREQUENT_CHECK;
2797
2798 ev_start (EV_A_ (W)w, 1);
2799 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2800
2801 EV_FREQUENT_CHECK;
2802}
2803
2804void
2805ev_child_stop (EV_P_ ev_child *w)
2806{
2807 clear_pending (EV_A_ (W)w);
2808 if (expect_false (!ev_is_active (w)))
2809 return;
2810
2811 EV_FREQUENT_CHECK;
2812
2813 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2814 ev_stop (EV_A_ (W)w);
2815
2816 EV_FREQUENT_CHECK;
2817}
2818
2819#if EV_STAT_ENABLE
2820
2821# ifdef _WIN32
2822# undef lstat
2823# define lstat(a,b) _stati64 (a,b)
2824# endif
2825
2826#define DEF_STAT_INTERVAL 5.0074891
2827#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2828#define MIN_STAT_INTERVAL 0.1074891
2829
2830static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2831
2832#if EV_USE_INOTIFY
2833# define EV_INOTIFY_BUFSIZE 8192
2834
2835static void noinline
2836infy_add (EV_P_ ev_stat *w)
2837{
2838 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2839
2840 if (w->wd < 0)
2841 {
2842 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2843 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2844
2845 /* monitor some parent directory for speedup hints */
2846 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2847 /* but an efficiency issue only */
2848 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
710 { 2849 {
711 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 2850 char path [4096];
2851 strcpy (path, w->path);
712 2852
713 if (fabs (diff) >= 1e-4) 2853 do
714 { 2854 {
715 ev_periodic_stop (w); 2855 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
716 ev_periodic_start (w); 2856 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
717 2857
718 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 2858 char *pend = strrchr (path, '/');
2859
2860 if (!pend || pend == path)
2861 break;
2862
2863 *pend = 0;
2864 w->wd = inotify_add_watch (fs_fd, path, mask);
2865 }
2866 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2867 }
2868 }
2869
2870 if (w->wd >= 0)
2871 {
2872 struct statfs sfs;
2873
2874 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2875
2876 /* now local changes will be tracked by inotify, but remote changes won't */
2877 /* unless the filesystem it known to be local, we therefore still poll */
2878 /* also do poll on <2.6.25, but with normal frequency */
2879
2880 if (fs_2625 && !statfs (w->path, &sfs))
2881 if (sfs.f_type == 0x1373 /* devfs */
2882 || sfs.f_type == 0xEF53 /* ext2/3 */
2883 || sfs.f_type == 0x3153464a /* jfs */
2884 || sfs.f_type == 0x52654973 /* reiser3 */
2885 || sfs.f_type == 0x01021994 /* tempfs */
2886 || sfs.f_type == 0x58465342 /* xfs */)
2887 return;
2888
2889 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2890 ev_timer_again (EV_A_ &w->timer);
2891 }
2892}
2893
2894static void noinline
2895infy_del (EV_P_ ev_stat *w)
2896{
2897 int slot;
2898 int wd = w->wd;
2899
2900 if (wd < 0)
2901 return;
2902
2903 w->wd = -2;
2904 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2905 wlist_del (&fs_hash [slot].head, (WL)w);
2906
2907 /* remove this watcher, if others are watching it, they will rearm */
2908 inotify_rm_watch (fs_fd, wd);
2909}
2910
2911static void noinline
2912infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2913{
2914 if (slot < 0)
2915 /* overflow, need to check for all hash slots */
2916 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2917 infy_wd (EV_A_ slot, wd, ev);
2918 else
2919 {
2920 WL w_;
2921
2922 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2923 {
2924 ev_stat *w = (ev_stat *)w_;
2925 w_ = w_->next; /* lets us remove this watcher and all before it */
2926
2927 if (w->wd == wd || wd == -1)
2928 {
2929 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2930 {
2931 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2932 w->wd = -1;
2933 infy_add (EV_A_ w); /* re-add, no matter what */
2934 }
2935
2936 stat_timer_cb (EV_A_ &w->timer, 0);
719 } 2937 }
720 } 2938 }
721 } 2939 }
722} 2940}
723 2941
724static int 2942static void
725time_update_monotonic (void) 2943infy_cb (EV_P_ ev_io *w, int revents)
726{ 2944{
727 now = get_clock (); 2945 char buf [EV_INOTIFY_BUFSIZE];
2946 struct inotify_event *ev = (struct inotify_event *)buf;
2947 int ofs;
2948 int len = read (fs_fd, buf, sizeof (buf));
728 2949
729 if (expect_true (now - now_floor < MIN_TIMEJUMP * .5)) 2950 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
730 { 2951 infy_wd (EV_A_ ev->wd, ev->wd, ev);
731 ev_now = now + diff; 2952}
2953
2954inline_size void
2955check_2625 (EV_P)
2956{
2957 /* kernels < 2.6.25 are borked
2958 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2959 */
2960 struct utsname buf;
2961 int major, minor, micro;
2962
2963 if (uname (&buf))
732 return 0; 2964 return;
2965
2966 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2967 return;
2968
2969 if (major < 2
2970 || (major == 2 && minor < 6)
2971 || (major == 2 && minor == 6 && micro < 25))
2972 return;
2973
2974 fs_2625 = 1;
2975}
2976
2977inline_size void
2978infy_init (EV_P)
2979{
2980 if (fs_fd != -2)
2981 return;
2982
2983 fs_fd = -1;
2984
2985 check_2625 (EV_A);
2986
2987 fs_fd = inotify_init ();
2988
2989 if (fs_fd >= 0)
733 } 2990 {
2991 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2992 ev_set_priority (&fs_w, EV_MAXPRI);
2993 ev_io_start (EV_A_ &fs_w);
2994 }
2995}
2996
2997inline_size void
2998infy_fork (EV_P)
2999{
3000 int slot;
3001
3002 if (fs_fd < 0)
3003 return;
3004
3005 close (fs_fd);
3006 fs_fd = inotify_init ();
3007
3008 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
3009 {
3010 WL w_ = fs_hash [slot].head;
3011 fs_hash [slot].head = 0;
3012
3013 while (w_)
3014 {
3015 ev_stat *w = (ev_stat *)w_;
3016 w_ = w_->next; /* lets us add this watcher */
3017
3018 w->wd = -1;
3019
3020 if (fs_fd >= 0)
3021 infy_add (EV_A_ w); /* re-add, no matter what */
3022 else
3023 ev_timer_again (EV_A_ &w->timer);
3024 }
3025 }
3026}
3027
3028#endif
3029
3030#ifdef _WIN32
3031# define EV_LSTAT(p,b) _stati64 (p, b)
3032#else
3033# define EV_LSTAT(p,b) lstat (p, b)
3034#endif
3035
3036void
3037ev_stat_stat (EV_P_ ev_stat *w)
3038{
3039 if (lstat (w->path, &w->attr) < 0)
3040 w->attr.st_nlink = 0;
3041 else if (!w->attr.st_nlink)
3042 w->attr.st_nlink = 1;
3043}
3044
3045static void noinline
3046stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3047{
3048 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3049
3050 /* we copy this here each the time so that */
3051 /* prev has the old value when the callback gets invoked */
3052 w->prev = w->attr;
3053 ev_stat_stat (EV_A_ w);
3054
3055 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3056 if (
3057 w->prev.st_dev != w->attr.st_dev
3058 || w->prev.st_ino != w->attr.st_ino
3059 || w->prev.st_mode != w->attr.st_mode
3060 || w->prev.st_nlink != w->attr.st_nlink
3061 || w->prev.st_uid != w->attr.st_uid
3062 || w->prev.st_gid != w->attr.st_gid
3063 || w->prev.st_rdev != w->attr.st_rdev
3064 || w->prev.st_size != w->attr.st_size
3065 || w->prev.st_atime != w->attr.st_atime
3066 || w->prev.st_mtime != w->attr.st_mtime
3067 || w->prev.st_ctime != w->attr.st_ctime
3068 ) {
3069 #if EV_USE_INOTIFY
3070 if (fs_fd >= 0)
3071 {
3072 infy_del (EV_A_ w);
3073 infy_add (EV_A_ w);
3074 ev_stat_stat (EV_A_ w); /* avoid race... */
3075 }
3076 #endif
3077
3078 ev_feed_event (EV_A_ w, EV_STAT);
3079 }
3080}
3081
3082void
3083ev_stat_start (EV_P_ ev_stat *w)
3084{
3085 if (expect_false (ev_is_active (w)))
3086 return;
3087
3088 ev_stat_stat (EV_A_ w);
3089
3090 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3091 w->interval = MIN_STAT_INTERVAL;
3092
3093 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3094 ev_set_priority (&w->timer, ev_priority (w));
3095
3096#if EV_USE_INOTIFY
3097 infy_init (EV_A);
3098
3099 if (fs_fd >= 0)
3100 infy_add (EV_A_ w);
734 else 3101 else
735 { 3102#endif
736 now_floor = now; 3103 ev_timer_again (EV_A_ &w->timer);
737 ev_now = ev_time (); 3104
3105 ev_start (EV_A_ (W)w, 1);
3106
3107 EV_FREQUENT_CHECK;
3108}
3109
3110void
3111ev_stat_stop (EV_P_ ev_stat *w)
3112{
3113 clear_pending (EV_A_ (W)w);
3114 if (expect_false (!ev_is_active (w)))
738 return 1; 3115 return;
3116
3117 EV_FREQUENT_CHECK;
3118
3119#if EV_USE_INOTIFY
3120 infy_del (EV_A_ w);
3121#endif
3122 ev_timer_stop (EV_A_ &w->timer);
3123
3124 ev_stop (EV_A_ (W)w);
3125
3126 EV_FREQUENT_CHECK;
3127}
3128#endif
3129
3130#if EV_IDLE_ENABLE
3131void
3132ev_idle_start (EV_P_ ev_idle *w)
3133{
3134 if (expect_false (ev_is_active (w)))
3135 return;
3136
3137 pri_adjust (EV_A_ (W)w);
3138
3139 EV_FREQUENT_CHECK;
3140
3141 {
3142 int active = ++idlecnt [ABSPRI (w)];
3143
3144 ++idleall;
3145 ev_start (EV_A_ (W)w, active);
3146
3147 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3148 idles [ABSPRI (w)][active - 1] = w;
739 } 3149 }
3150
3151 EV_FREQUENT_CHECK;
3152}
3153
3154void
3155ev_idle_stop (EV_P_ ev_idle *w)
3156{
3157 clear_pending (EV_A_ (W)w);
3158 if (expect_false (!ev_is_active (w)))
3159 return;
3160
3161 EV_FREQUENT_CHECK;
3162
3163 {
3164 int active = ev_active (w);
3165
3166 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3167 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3168
3169 ev_stop (EV_A_ (W)w);
3170 --idleall;
3171 }
3172
3173 EV_FREQUENT_CHECK;
3174}
3175#endif
3176
3177void
3178ev_prepare_start (EV_P_ ev_prepare *w)
3179{
3180 if (expect_false (ev_is_active (w)))
3181 return;
3182
3183 EV_FREQUENT_CHECK;
3184
3185 ev_start (EV_A_ (W)w, ++preparecnt);
3186 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3187 prepares [preparecnt - 1] = w;
3188
3189 EV_FREQUENT_CHECK;
3190}
3191
3192void
3193ev_prepare_stop (EV_P_ ev_prepare *w)
3194{
3195 clear_pending (EV_A_ (W)w);
3196 if (expect_false (!ev_is_active (w)))
3197 return;
3198
3199 EV_FREQUENT_CHECK;
3200
3201 {
3202 int active = ev_active (w);
3203
3204 prepares [active - 1] = prepares [--preparecnt];
3205 ev_active (prepares [active - 1]) = active;
3206 }
3207
3208 ev_stop (EV_A_ (W)w);
3209
3210 EV_FREQUENT_CHECK;
3211}
3212
3213void
3214ev_check_start (EV_P_ ev_check *w)
3215{
3216 if (expect_false (ev_is_active (w)))
3217 return;
3218
3219 EV_FREQUENT_CHECK;
3220
3221 ev_start (EV_A_ (W)w, ++checkcnt);
3222 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3223 checks [checkcnt - 1] = w;
3224
3225 EV_FREQUENT_CHECK;
3226}
3227
3228void
3229ev_check_stop (EV_P_ ev_check *w)
3230{
3231 clear_pending (EV_A_ (W)w);
3232 if (expect_false (!ev_is_active (w)))
3233 return;
3234
3235 EV_FREQUENT_CHECK;
3236
3237 {
3238 int active = ev_active (w);
3239
3240 checks [active - 1] = checks [--checkcnt];
3241 ev_active (checks [active - 1]) = active;
3242 }
3243
3244 ev_stop (EV_A_ (W)w);
3245
3246 EV_FREQUENT_CHECK;
3247}
3248
3249#if EV_EMBED_ENABLE
3250void noinline
3251ev_embed_sweep (EV_P_ ev_embed *w)
3252{
3253 ev_loop (w->other, EVLOOP_NONBLOCK);
740} 3254}
741 3255
742static void 3256static void
743time_update (void) 3257embed_io_cb (EV_P_ ev_io *io, int revents)
744{ 3258{
745 int i; 3259 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
746 3260
747#if EV_USE_MONOTONIC 3261 if (ev_cb (w))
748 if (expect_true (have_monotonic)) 3262 ev_feed_event (EV_A_ (W)w, EV_EMBED);
749 {
750 if (time_update_monotonic ())
751 {
752 ev_tstamp odiff = diff;
753
754 for (i = 4; --i; ) /* loop a few times, before making important decisions */
755 {
756 diff = ev_now - now;
757
758 if (fabs (odiff - diff) < MIN_TIMEJUMP)
759 return; /* all is well */
760
761 ev_now = ev_time ();
762 now = get_clock ();
763 now_floor = now;
764 }
765
766 periodics_reschedule (diff - odiff);
767 /* no timer adjustment, as the monotonic clock doesn't jump */
768 }
769 }
770 else 3263 else
771#endif 3264 ev_loop (w->other, EVLOOP_NONBLOCK);
3265}
3266
3267static void
3268embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3269{
3270 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3271
772 { 3272 {
773 ev_now = ev_time (); 3273 EV_P = w->other;
774 3274
775 if (expect_false (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 3275 while (fdchangecnt)
776 { 3276 {
777 periodics_reschedule (ev_now - now); 3277 fd_reify (EV_A);
778 3278 ev_loop (EV_A_ EVLOOP_NONBLOCK);
779 /* adjust timers. this is easy, as the offset is the same for all */
780 for (i = 0; i < timercnt; ++i)
781 timers [i]->at += diff;
782 } 3279 }
783
784 now = ev_now;
785 } 3280 }
786} 3281}
787 3282
788int ev_loop_done; 3283static void
789 3284embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
790void ev_loop (int flags)
791{ 3285{
792 double block; 3286 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
793 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
794 3287
795 do 3288 ev_embed_stop (EV_A_ w);
3289
796 { 3290 {
797 /* queue check watchers (and execute them) */ 3291 EV_P = w->other;
798 if (expect_false (preparecnt))
799 {
800 queue_events ((W *)prepares, preparecnt, EV_PREPARE);
801 call_pending ();
802 }
803 3292
804 /* update fd-related kernel structures */ 3293 ev_loop_fork (EV_A);
805 fd_reify (); 3294 ev_loop (EV_A_ EVLOOP_NONBLOCK);
806
807 /* calculate blocking time */
808
809 /* we only need this for !monotonic clockor timers, but as we basically
810 always have timers, we just calculate it always */
811#if EV_USE_MONOTONIC
812 if (expect_true (have_monotonic))
813 time_update_monotonic ();
814 else
815#endif
816 {
817 ev_now = ev_time ();
818 now = ev_now;
819 }
820
821 if (flags & EVLOOP_NONBLOCK || idlecnt)
822 block = 0.;
823 else
824 {
825 block = MAX_BLOCKTIME;
826
827 if (timercnt)
828 {
829 ev_tstamp to = timers [0]->at - now + method_fudge;
830 if (block > to) block = to;
831 }
832
833 if (periodiccnt)
834 {
835 ev_tstamp to = periodics [0]->at - ev_now + method_fudge;
836 if (block > to) block = to;
837 }
838
839 if (block < 0.) block = 0.;
840 }
841
842 method_poll (block);
843
844 /* update ev_now, do magic */
845 time_update ();
846
847 /* queue pending timers and reschedule them */
848 timers_reify (); /* relative timers called last */
849 periodics_reify (); /* absolute timers called first */
850
851 /* queue idle watchers unless io or timers are pending */
852 if (!pendingcnt)
853 queue_events ((W *)idles, idlecnt, EV_IDLE);
854
855 /* queue check watchers, to be executed first */
856 if (checkcnt)
857 queue_events ((W *)checks, checkcnt, EV_CHECK);
858
859 call_pending ();
860 } 3295 }
861 while (!ev_loop_done);
862 3296
863 if (ev_loop_done != 2) 3297 ev_embed_start (EV_A_ w);
864 ev_loop_done = 0;
865} 3298}
3299
3300#if 0
3301static void
3302embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3303{
3304 ev_idle_stop (EV_A_ idle);
3305}
3306#endif
3307
3308void
3309ev_embed_start (EV_P_ ev_embed *w)
3310{
3311 if (expect_false (ev_is_active (w)))
3312 return;
3313
3314 {
3315 EV_P = w->other;
3316 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3317 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3318 }
3319
3320 EV_FREQUENT_CHECK;
3321
3322 ev_set_priority (&w->io, ev_priority (w));
3323 ev_io_start (EV_A_ &w->io);
3324
3325 ev_prepare_init (&w->prepare, embed_prepare_cb);
3326 ev_set_priority (&w->prepare, EV_MINPRI);
3327 ev_prepare_start (EV_A_ &w->prepare);
3328
3329 ev_fork_init (&w->fork, embed_fork_cb);
3330 ev_fork_start (EV_A_ &w->fork);
3331
3332 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3333
3334 ev_start (EV_A_ (W)w, 1);
3335
3336 EV_FREQUENT_CHECK;
3337}
3338
3339void
3340ev_embed_stop (EV_P_ ev_embed *w)
3341{
3342 clear_pending (EV_A_ (W)w);
3343 if (expect_false (!ev_is_active (w)))
3344 return;
3345
3346 EV_FREQUENT_CHECK;
3347
3348 ev_io_stop (EV_A_ &w->io);
3349 ev_prepare_stop (EV_A_ &w->prepare);
3350 ev_fork_stop (EV_A_ &w->fork);
3351
3352 EV_FREQUENT_CHECK;
3353}
3354#endif
3355
3356#if EV_FORK_ENABLE
3357void
3358ev_fork_start (EV_P_ ev_fork *w)
3359{
3360 if (expect_false (ev_is_active (w)))
3361 return;
3362
3363 EV_FREQUENT_CHECK;
3364
3365 ev_start (EV_A_ (W)w, ++forkcnt);
3366 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3367 forks [forkcnt - 1] = w;
3368
3369 EV_FREQUENT_CHECK;
3370}
3371
3372void
3373ev_fork_stop (EV_P_ ev_fork *w)
3374{
3375 clear_pending (EV_A_ (W)w);
3376 if (expect_false (!ev_is_active (w)))
3377 return;
3378
3379 EV_FREQUENT_CHECK;
3380
3381 {
3382 int active = ev_active (w);
3383
3384 forks [active - 1] = forks [--forkcnt];
3385 ev_active (forks [active - 1]) = active;
3386 }
3387
3388 ev_stop (EV_A_ (W)w);
3389
3390 EV_FREQUENT_CHECK;
3391}
3392#endif
3393
3394#if EV_ASYNC_ENABLE
3395void
3396ev_async_start (EV_P_ ev_async *w)
3397{
3398 if (expect_false (ev_is_active (w)))
3399 return;
3400
3401 evpipe_init (EV_A);
3402
3403 EV_FREQUENT_CHECK;
3404
3405 ev_start (EV_A_ (W)w, ++asynccnt);
3406 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3407 asyncs [asynccnt - 1] = w;
3408
3409 EV_FREQUENT_CHECK;
3410}
3411
3412void
3413ev_async_stop (EV_P_ ev_async *w)
3414{
3415 clear_pending (EV_A_ (W)w);
3416 if (expect_false (!ev_is_active (w)))
3417 return;
3418
3419 EV_FREQUENT_CHECK;
3420
3421 {
3422 int active = ev_active (w);
3423
3424 asyncs [active - 1] = asyncs [--asynccnt];
3425 ev_active (asyncs [active - 1]) = active;
3426 }
3427
3428 ev_stop (EV_A_ (W)w);
3429
3430 EV_FREQUENT_CHECK;
3431}
3432
3433void
3434ev_async_send (EV_P_ ev_async *w)
3435{
3436 w->sent = 1;
3437 evpipe_write (EV_A_ &async_pending);
3438}
3439#endif
866 3440
867/*****************************************************************************/ 3441/*****************************************************************************/
868 3442
869static void
870wlist_add (WL *head, WL elem)
871{
872 elem->next = *head;
873 *head = elem;
874}
875
876static void
877wlist_del (WL *head, WL elem)
878{
879 while (*head)
880 {
881 if (*head == elem)
882 {
883 *head = elem->next;
884 return;
885 }
886
887 head = &(*head)->next;
888 }
889}
890
891static void
892ev_clear_pending (W w)
893{
894 if (w->pending)
895 {
896 pendings [ABSPRI (w)][w->pending - 1].w = 0;
897 w->pending = 0;
898 }
899}
900
901static void
902ev_start (W w, int active)
903{
904 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
905 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
906
907 w->active = active;
908}
909
910static void
911ev_stop (W w)
912{
913 w->active = 0;
914}
915
916/*****************************************************************************/
917
918void
919ev_io_start (struct ev_io *w)
920{
921 int fd = w->fd;
922
923 if (ev_is_active (w))
924 return;
925
926 assert (("ev_io_start called with negative fd", fd >= 0));
927
928 ev_start ((W)w, 1);
929 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
930 wlist_add ((WL *)&anfds[fd].head, (WL)w);
931
932 fd_change (fd);
933}
934
935void
936ev_io_stop (struct ev_io *w)
937{
938 ev_clear_pending ((W)w);
939 if (!ev_is_active (w))
940 return;
941
942 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
943 ev_stop ((W)w);
944
945 fd_change (w->fd);
946}
947
948void
949ev_timer_start (struct ev_timer *w)
950{
951 if (ev_is_active (w))
952 return;
953
954 w->at += now;
955
956 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
957
958 ev_start ((W)w, ++timercnt);
959 array_needsize (timers, timermax, timercnt, );
960 timers [timercnt - 1] = w;
961 upheap ((WT *)timers, timercnt - 1);
962}
963
964void
965ev_timer_stop (struct ev_timer *w)
966{
967 ev_clear_pending ((W)w);
968 if (!ev_is_active (w))
969 return;
970
971 if (w->active < timercnt--)
972 {
973 timers [w->active - 1] = timers [timercnt];
974 downheap ((WT *)timers, timercnt, w->active - 1);
975 }
976
977 w->at = w->repeat;
978
979 ev_stop ((W)w);
980}
981
982void
983ev_timer_again (struct ev_timer *w)
984{
985 if (ev_is_active (w))
986 {
987 if (w->repeat)
988 {
989 w->at = now + w->repeat;
990 downheap ((WT *)timers, timercnt, w->active - 1);
991 }
992 else
993 ev_timer_stop (w);
994 }
995 else if (w->repeat)
996 ev_timer_start (w);
997}
998
999void
1000ev_periodic_start (struct ev_periodic *w)
1001{
1002 if (ev_is_active (w))
1003 return;
1004
1005 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1006
1007 /* this formula differs from the one in periodic_reify because we do not always round up */
1008 if (w->interval)
1009 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval;
1010
1011 ev_start ((W)w, ++periodiccnt);
1012 array_needsize (periodics, periodicmax, periodiccnt, );
1013 periodics [periodiccnt - 1] = w;
1014 upheap ((WT *)periodics, periodiccnt - 1);
1015}
1016
1017void
1018ev_periodic_stop (struct ev_periodic *w)
1019{
1020 ev_clear_pending ((W)w);
1021 if (!ev_is_active (w))
1022 return;
1023
1024 if (w->active < periodiccnt--)
1025 {
1026 periodics [w->active - 1] = periodics [periodiccnt];
1027 downheap ((WT *)periodics, periodiccnt, w->active - 1);
1028 }
1029
1030 ev_stop ((W)w);
1031}
1032
1033#ifndef SA_RESTART
1034# define SA_RESTART 0
1035#endif
1036
1037void
1038ev_signal_start (struct ev_signal *w)
1039{
1040 if (ev_is_active (w))
1041 return;
1042
1043 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1044
1045 ev_start ((W)w, 1);
1046 array_needsize (signals, signalmax, w->signum, signals_init);
1047 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1048
1049 if (!w->next)
1050 {
1051 struct sigaction sa;
1052 sa.sa_handler = sighandler;
1053 sigfillset (&sa.sa_mask);
1054 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1055 sigaction (w->signum, &sa, 0);
1056 }
1057}
1058
1059void
1060ev_signal_stop (struct ev_signal *w)
1061{
1062 ev_clear_pending ((W)w);
1063 if (!ev_is_active (w))
1064 return;
1065
1066 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1067 ev_stop ((W)w);
1068
1069 if (!signals [w->signum - 1].head)
1070 signal (w->signum, SIG_DFL);
1071}
1072
1073void
1074ev_idle_start (struct ev_idle *w)
1075{
1076 if (ev_is_active (w))
1077 return;
1078
1079 ev_start ((W)w, ++idlecnt);
1080 array_needsize (idles, idlemax, idlecnt, );
1081 idles [idlecnt - 1] = w;
1082}
1083
1084void
1085ev_idle_stop (struct ev_idle *w)
1086{
1087 ev_clear_pending ((W)w);
1088 if (ev_is_active (w))
1089 return;
1090
1091 idles [w->active - 1] = idles [--idlecnt];
1092 ev_stop ((W)w);
1093}
1094
1095void
1096ev_prepare_start (struct ev_prepare *w)
1097{
1098 if (ev_is_active (w))
1099 return;
1100
1101 ev_start ((W)w, ++preparecnt);
1102 array_needsize (prepares, preparemax, preparecnt, );
1103 prepares [preparecnt - 1] = w;
1104}
1105
1106void
1107ev_prepare_stop (struct ev_prepare *w)
1108{
1109 ev_clear_pending ((W)w);
1110 if (ev_is_active (w))
1111 return;
1112
1113 prepares [w->active - 1] = prepares [--preparecnt];
1114 ev_stop ((W)w);
1115}
1116
1117void
1118ev_check_start (struct ev_check *w)
1119{
1120 if (ev_is_active (w))
1121 return;
1122
1123 ev_start ((W)w, ++checkcnt);
1124 array_needsize (checks, checkmax, checkcnt, );
1125 checks [checkcnt - 1] = w;
1126}
1127
1128void
1129ev_check_stop (struct ev_check *w)
1130{
1131 ev_clear_pending ((W)w);
1132 if (ev_is_active (w))
1133 return;
1134
1135 checks [w->active - 1] = checks [--checkcnt];
1136 ev_stop ((W)w);
1137}
1138
1139void
1140ev_child_start (struct ev_child *w)
1141{
1142 if (ev_is_active (w))
1143 return;
1144
1145 ev_start ((W)w, 1);
1146 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1147}
1148
1149void
1150ev_child_stop (struct ev_child *w)
1151{
1152 ev_clear_pending ((W)w);
1153 if (ev_is_active (w))
1154 return;
1155
1156 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1157 ev_stop ((W)w);
1158}
1159
1160/*****************************************************************************/
1161
1162struct ev_once 3443struct ev_once
1163{ 3444{
1164 struct ev_io io; 3445 ev_io io;
1165 struct ev_timer to; 3446 ev_timer to;
1166 void (*cb)(int revents, void *arg); 3447 void (*cb)(int revents, void *arg);
1167 void *arg; 3448 void *arg;
1168}; 3449};
1169 3450
1170static void 3451static void
1171once_cb (struct ev_once *once, int revents) 3452once_cb (EV_P_ struct ev_once *once, int revents)
1172{ 3453{
1173 void (*cb)(int revents, void *arg) = once->cb; 3454 void (*cb)(int revents, void *arg) = once->cb;
1174 void *arg = once->arg; 3455 void *arg = once->arg;
1175 3456
1176 ev_io_stop (&once->io); 3457 ev_io_stop (EV_A_ &once->io);
1177 ev_timer_stop (&once->to); 3458 ev_timer_stop (EV_A_ &once->to);
1178 free (once); 3459 ev_free (once);
1179 3460
1180 cb (revents, arg); 3461 cb (revents, arg);
1181} 3462}
1182 3463
1183static void 3464static void
1184once_cb_io (struct ev_io *w, int revents) 3465once_cb_io (EV_P_ ev_io *w, int revents)
1185{ 3466{
1186 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3467 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3468
3469 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1187} 3470}
1188 3471
1189static void 3472static void
1190once_cb_to (struct ev_timer *w, int revents) 3473once_cb_to (EV_P_ ev_timer *w, int revents)
1191{ 3474{
1192 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3475 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
1193}
1194 3476
3477 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3478}
3479
1195void 3480void
1196ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3481ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1197{ 3482{
1198 struct ev_once *once = malloc (sizeof (struct ev_once)); 3483 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1199 3484
1200 if (!once) 3485 if (expect_false (!once))
3486 {
1201 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3487 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1202 else 3488 return;
1203 { 3489 }
3490
1204 once->cb = cb; 3491 once->cb = cb;
1205 once->arg = arg; 3492 once->arg = arg;
1206 3493
1207 ev_watcher_init (&once->io, once_cb_io); 3494 ev_init (&once->io, once_cb_io);
1208 if (fd >= 0) 3495 if (fd >= 0)
3496 {
3497 ev_io_set (&once->io, fd, events);
3498 ev_io_start (EV_A_ &once->io);
3499 }
3500
3501 ev_init (&once->to, once_cb_to);
3502 if (timeout >= 0.)
3503 {
3504 ev_timer_set (&once->to, timeout, 0.);
3505 ev_timer_start (EV_A_ &once->to);
3506 }
3507}
3508
3509/*****************************************************************************/
3510
3511#if EV_WALK_ENABLE
3512void
3513ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3514{
3515 int i, j;
3516 ev_watcher_list *wl, *wn;
3517
3518 if (types & (EV_IO | EV_EMBED))
3519 for (i = 0; i < anfdmax; ++i)
3520 for (wl = anfds [i].head; wl; )
1209 { 3521 {
1210 ev_io_set (&once->io, fd, events); 3522 wn = wl->next;
1211 ev_io_start (&once->io); 3523
3524#if EV_EMBED_ENABLE
3525 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3526 {
3527 if (types & EV_EMBED)
3528 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3529 }
3530 else
3531#endif
3532#if EV_USE_INOTIFY
3533 if (ev_cb ((ev_io *)wl) == infy_cb)
3534 ;
3535 else
3536#endif
3537 if ((ev_io *)wl != &pipe_w)
3538 if (types & EV_IO)
3539 cb (EV_A_ EV_IO, wl);
3540
3541 wl = wn;
1212 } 3542 }
1213 3543
1214 ev_watcher_init (&once->to, once_cb_to); 3544 if (types & (EV_TIMER | EV_STAT))
1215 if (timeout >= 0.) 3545 for (i = timercnt + HEAP0; i-- > HEAP0; )
3546#if EV_STAT_ENABLE
3547 /*TODO: timer is not always active*/
3548 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1216 { 3549 {
1217 ev_timer_set (&once->to, timeout, 0.); 3550 if (types & EV_STAT)
1218 ev_timer_start (&once->to); 3551 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1219 } 3552 }
1220 } 3553 else
1221} 3554#endif
3555 if (types & EV_TIMER)
3556 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1222 3557
1223/*****************************************************************************/ 3558#if EV_PERIODIC_ENABLE
3559 if (types & EV_PERIODIC)
3560 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3561 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3562#endif
1224 3563
1225#if 0 3564#if EV_IDLE_ENABLE
3565 if (types & EV_IDLE)
3566 for (j = NUMPRI; i--; )
3567 for (i = idlecnt [j]; i--; )
3568 cb (EV_A_ EV_IDLE, idles [j][i]);
3569#endif
1226 3570
1227struct ev_io wio; 3571#if EV_FORK_ENABLE
3572 if (types & EV_FORK)
3573 for (i = forkcnt; i--; )
3574 if (ev_cb (forks [i]) != embed_fork_cb)
3575 cb (EV_A_ EV_FORK, forks [i]);
3576#endif
1228 3577
1229static void 3578#if EV_ASYNC_ENABLE
1230sin_cb (struct ev_io *w, int revents) 3579 if (types & EV_ASYNC)
1231{ 3580 for (i = asynccnt; i--; )
1232 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents); 3581 cb (EV_A_ EV_ASYNC, asyncs [i]);
1233} 3582#endif
1234 3583
1235static void 3584 if (types & EV_PREPARE)
1236ocb (struct ev_timer *w, int revents) 3585 for (i = preparecnt; i--; )
1237{ 3586#if EV_EMBED_ENABLE
1238 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data); 3587 if (ev_cb (prepares [i]) != embed_prepare_cb)
1239 ev_timer_stop (w); 3588#endif
1240 ev_timer_start (w); 3589 cb (EV_A_ EV_PREPARE, prepares [i]);
1241}
1242 3590
1243static void 3591 if (types & EV_CHECK)
1244scb (struct ev_signal *w, int revents) 3592 for (i = checkcnt; i--; )
1245{ 3593 cb (EV_A_ EV_CHECK, checks [i]);
1246 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1247 ev_io_stop (&wio);
1248 ev_io_start (&wio);
1249}
1250 3594
1251static void 3595 if (types & EV_SIGNAL)
1252gcb (struct ev_signal *w, int revents)
1253{
1254 fprintf (stderr, "generic %x\n", revents);
1255
1256}
1257
1258int main (void)
1259{
1260 ev_init (0);
1261
1262 ev_io_init (&wio, sin_cb, 0, EV_READ);
1263 ev_io_start (&wio);
1264
1265 struct ev_timer t[10000];
1266
1267#if 0
1268 int i;
1269 for (i = 0; i < 10000; ++i) 3596 for (i = 0; i < EV_NSIG - 1; ++i)
1270 { 3597 for (wl = signals [i].head; wl; )
1271 struct ev_timer *w = t + i; 3598 {
1272 ev_watcher_init (w, ocb, i); 3599 wn = wl->next;
1273 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533); 3600 cb (EV_A_ EV_SIGNAL, wl);
1274 ev_timer_start (w); 3601 wl = wn;
1275 if (drand48 () < 0.5) 3602 }
1276 ev_timer_stop (w);
1277 }
1278#endif
1279 3603
1280 struct ev_timer t1; 3604 if (types & EV_CHILD)
1281 ev_timer_init (&t1, ocb, 5, 10); 3605 for (i = EV_PID_HASHSIZE; i--; )
1282 ev_timer_start (&t1); 3606 for (wl = childs [i]; wl; )
1283 3607 {
1284 struct ev_signal sig; 3608 wn = wl->next;
1285 ev_signal_init (&sig, scb, SIGQUIT); 3609 cb (EV_A_ EV_CHILD, wl);
1286 ev_signal_start (&sig); 3610 wl = wn;
1287 3611 }
1288 struct ev_check cw; 3612/* EV_STAT 0x00001000 /* stat data changed */
1289 ev_check_init (&cw, gcb); 3613/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
1290 ev_check_start (&cw);
1291
1292 struct ev_idle iw;
1293 ev_idle_init (&iw, gcb);
1294 ev_idle_start (&iw);
1295
1296 ev_loop (0);
1297
1298 return 0;
1299} 3614}
1300
1301#endif 3615#endif
1302 3616
3617#if EV_MULTIPLICITY
3618 #include "ev_wrap.h"
3619#endif
1303 3620
3621#ifdef __cplusplus
3622}
3623#endif
1304 3624
1305

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines