ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.48 by root, Sat Nov 3 12:19:31 2007 UTC vs.
Revision 1.62 by root, Sun Nov 4 20:38:07 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h> 59#include <unistd.h>
70 92
71#ifndef EV_USE_KQUEUE 93#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 94# define EV_USE_KQUEUE 0
73#endif 95#endif
74 96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
103#endif
104
75#ifndef EV_USE_REALTIME 105#ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 1 106# define EV_USE_REALTIME 1
77#endif 107#endif
78 108
79/**/ 109/**/
113 143
114typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
115typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
117 147
118static ev_tstamp now_floor, now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
119ev_tstamp ev_now;
120int ev_method;
121
122static int have_monotonic; /* runtime */
123
124static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
125static void (*method_modify)(int fd, int oev, int nev);
126static void (*method_poll)(ev_tstamp timeout);
127 149
128/*****************************************************************************/ 150/*****************************************************************************/
129 151
130ev_tstamp 152typedef struct
153{
154 struct ev_watcher_list *head;
155 unsigned char events;
156 unsigned char reify;
157} ANFD;
158
159typedef struct
160{
161 W w;
162 int events;
163} ANPENDING;
164
165#if EV_MULTIPLICITY
166
167struct ev_loop
168{
169# define VAR(name,decl) decl;
170# include "ev_vars.h"
171};
172# undef VAR
173# include "ev_wrap.h"
174
175#else
176
177# define VAR(name,decl) static decl;
178# include "ev_vars.h"
179# undef VAR
180
181#endif
182
183/*****************************************************************************/
184
185inline ev_tstamp
131ev_time (void) 186ev_time (void)
132{ 187{
133#if EV_USE_REALTIME 188#if EV_USE_REALTIME
134 struct timespec ts; 189 struct timespec ts;
135 clock_gettime (CLOCK_REALTIME, &ts); 190 clock_gettime (CLOCK_REALTIME, &ts);
139 gettimeofday (&tv, 0); 194 gettimeofday (&tv, 0);
140 return tv.tv_sec + tv.tv_usec * 1e-6; 195 return tv.tv_sec + tv.tv_usec * 1e-6;
141#endif 196#endif
142} 197}
143 198
144static ev_tstamp 199inline ev_tstamp
145get_clock (void) 200get_clock (void)
146{ 201{
147#if EV_USE_MONOTONIC 202#if EV_USE_MONOTONIC
148 if (expect_true (have_monotonic)) 203 if (expect_true (have_monotonic))
149 { 204 {
152 return ts.tv_sec + ts.tv_nsec * 1e-9; 207 return ts.tv_sec + ts.tv_nsec * 1e-9;
153 } 208 }
154#endif 209#endif
155 210
156 return ev_time (); 211 return ev_time ();
212}
213
214ev_tstamp
215ev_now (EV_P)
216{
217 return rt_now;
157} 218}
158 219
159#define array_roundsize(base,n) ((n) | 4 & ~3) 220#define array_roundsize(base,n) ((n) | 4 & ~3)
160 221
161#define array_needsize(base,cur,cnt,init) \ 222#define array_needsize(base,cur,cnt,init) \
173 cur = newcnt; \ 234 cur = newcnt; \
174 } 235 }
175 236
176/*****************************************************************************/ 237/*****************************************************************************/
177 238
178typedef struct
179{
180 struct ev_io *head;
181 unsigned char events;
182 unsigned char reify;
183} ANFD;
184
185static ANFD *anfds;
186static int anfdmax;
187
188static void 239static void
189anfds_init (ANFD *base, int count) 240anfds_init (ANFD *base, int count)
190{ 241{
191 while (count--) 242 while (count--)
192 { 243 {
196 247
197 ++base; 248 ++base;
198 } 249 }
199} 250}
200 251
201typedef struct
202{
203 W w;
204 int events;
205} ANPENDING;
206
207static ANPENDING *pendings [NUMPRI];
208static int pendingmax [NUMPRI], pendingcnt [NUMPRI];
209
210static void 252static void
211event (W w, int events) 253event (EV_P_ W w, int events)
212{ 254{
213 if (w->pending) 255 if (w->pending)
214 { 256 {
215 pendings [ABSPRI (w)][w->pending - 1].events |= events; 257 pendings [ABSPRI (w)][w->pending - 1].events |= events;
216 return; 258 return;
221 pendings [ABSPRI (w)][w->pending - 1].w = w; 263 pendings [ABSPRI (w)][w->pending - 1].w = w;
222 pendings [ABSPRI (w)][w->pending - 1].events = events; 264 pendings [ABSPRI (w)][w->pending - 1].events = events;
223} 265}
224 266
225static void 267static void
226queue_events (W *events, int eventcnt, int type) 268queue_events (EV_P_ W *events, int eventcnt, int type)
227{ 269{
228 int i; 270 int i;
229 271
230 for (i = 0; i < eventcnt; ++i) 272 for (i = 0; i < eventcnt; ++i)
231 event (events [i], type); 273 event (EV_A_ events [i], type);
232} 274}
233 275
234static void 276static void
235fd_event (int fd, int events) 277fd_event (EV_P_ int fd, int events)
236{ 278{
237 ANFD *anfd = anfds + fd; 279 ANFD *anfd = anfds + fd;
238 struct ev_io *w; 280 struct ev_io *w;
239 281
240 for (w = anfd->head; w; w = w->next) 282 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
241 { 283 {
242 int ev = w->events & events; 284 int ev = w->events & events;
243 285
244 if (ev) 286 if (ev)
245 event ((W)w, ev); 287 event (EV_A_ (W)w, ev);
246 } 288 }
247} 289}
248 290
249/*****************************************************************************/ 291/*****************************************************************************/
250 292
251static int *fdchanges;
252static int fdchangemax, fdchangecnt;
253
254static void 293static void
255fd_reify (void) 294fd_reify (EV_P)
256{ 295{
257 int i; 296 int i;
258 297
259 for (i = 0; i < fdchangecnt; ++i) 298 for (i = 0; i < fdchangecnt; ++i)
260 { 299 {
262 ANFD *anfd = anfds + fd; 301 ANFD *anfd = anfds + fd;
263 struct ev_io *w; 302 struct ev_io *w;
264 303
265 int events = 0; 304 int events = 0;
266 305
267 for (w = anfd->head; w; w = w->next) 306 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
268 events |= w->events; 307 events |= w->events;
269 308
270 anfd->reify = 0; 309 anfd->reify = 0;
271 310
272 if (anfd->events != events) 311 if (anfd->events != events)
273 { 312 {
274 method_modify (fd, anfd->events, events); 313 method_modify (EV_A_ fd, anfd->events, events);
275 anfd->events = events; 314 anfd->events = events;
276 } 315 }
277 } 316 }
278 317
279 fdchangecnt = 0; 318 fdchangecnt = 0;
280} 319}
281 320
282static void 321static void
283fd_change (int fd) 322fd_change (EV_P_ int fd)
284{ 323{
285 if (anfds [fd].reify || fdchangecnt < 0) 324 if (anfds [fd].reify || fdchangecnt < 0)
286 return; 325 return;
287 326
288 anfds [fd].reify = 1; 327 anfds [fd].reify = 1;
291 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 330 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
292 fdchanges [fdchangecnt - 1] = fd; 331 fdchanges [fdchangecnt - 1] = fd;
293} 332}
294 333
295static void 334static void
296fd_kill (int fd) 335fd_kill (EV_P_ int fd)
297{ 336{
298 struct ev_io *w; 337 struct ev_io *w;
299 338
300 printf ("killing fd %d\n", fd);//D
301 while ((w = anfds [fd].head)) 339 while ((w = (struct ev_io *)anfds [fd].head))
302 { 340 {
303 ev_io_stop (w); 341 ev_io_stop (EV_A_ w);
304 event ((W)w, EV_ERROR | EV_READ | EV_WRITE); 342 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
305 } 343 }
306} 344}
307 345
308/* called on EBADF to verify fds */ 346/* called on EBADF to verify fds */
309static void 347static void
310fd_ebadf (void) 348fd_ebadf (EV_P)
311{ 349{
312 int fd; 350 int fd;
313 351
314 for (fd = 0; fd < anfdmax; ++fd) 352 for (fd = 0; fd < anfdmax; ++fd)
315 if (anfds [fd].events) 353 if (anfds [fd].events)
316 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 354 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
317 fd_kill (fd); 355 fd_kill (EV_A_ fd);
318} 356}
319 357
320/* called on ENOMEM in select/poll to kill some fds and retry */ 358/* called on ENOMEM in select/poll to kill some fds and retry */
321static void 359static void
322fd_enomem (void) 360fd_enomem (EV_P)
323{ 361{
324 int fd = anfdmax; 362 int fd;
325 363
326 while (fd--) 364 for (fd = anfdmax; fd--; )
327 if (anfds [fd].events) 365 if (anfds [fd].events)
328 { 366 {
329 close (fd); 367 close (fd);
330 fd_kill (fd); 368 fd_kill (EV_A_ fd);
331 return; 369 return;
332 } 370 }
333} 371}
334 372
373/* susually called after fork if method needs to re-arm all fds from scratch */
374static void
375fd_rearm_all (EV_P)
376{
377 int fd;
378
379 /* this should be highly optimised to not do anything but set a flag */
380 for (fd = 0; fd < anfdmax; ++fd)
381 if (anfds [fd].events)
382 {
383 anfds [fd].events = 0;
384 fd_change (EV_A_ fd);
385 }
386}
387
335/*****************************************************************************/ 388/*****************************************************************************/
336 389
337static struct ev_timer **timers;
338static int timermax, timercnt;
339
340static struct ev_periodic **periodics;
341static int periodicmax, periodiccnt;
342
343static void 390static void
344upheap (WT *timers, int k) 391upheap (WT *heap, int k)
345{ 392{
346 WT w = timers [k]; 393 WT w = heap [k];
347 394
348 while (k && timers [k >> 1]->at > w->at) 395 while (k && heap [k >> 1]->at > w->at)
349 { 396 {
350 timers [k] = timers [k >> 1]; 397 heap [k] = heap [k >> 1];
351 timers [k]->active = k + 1; 398 ((W)heap [k])->active = k + 1;
352 k >>= 1; 399 k >>= 1;
353 } 400 }
354 401
355 timers [k] = w; 402 heap [k] = w;
356 timers [k]->active = k + 1; 403 ((W)heap [k])->active = k + 1;
357 404
358} 405}
359 406
360static void 407static void
361downheap (WT *timers, int N, int k) 408downheap (WT *heap, int N, int k)
362{ 409{
363 WT w = timers [k]; 410 WT w = heap [k];
364 411
365 while (k < (N >> 1)) 412 while (k < (N >> 1))
366 { 413 {
367 int j = k << 1; 414 int j = k << 1;
368 415
369 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 416 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
370 ++j; 417 ++j;
371 418
372 if (w->at <= timers [j]->at) 419 if (w->at <= heap [j]->at)
373 break; 420 break;
374 421
375 timers [k] = timers [j]; 422 heap [k] = heap [j];
376 timers [k]->active = k + 1; 423 ((W)heap [k])->active = k + 1;
377 k = j; 424 k = j;
378 } 425 }
379 426
380 timers [k] = w; 427 heap [k] = w;
381 timers [k]->active = k + 1; 428 ((W)heap [k])->active = k + 1;
382} 429}
383 430
384/*****************************************************************************/ 431/*****************************************************************************/
385 432
386typedef struct 433typedef struct
387{ 434{
388 struct ev_signal *head; 435 struct ev_watcher_list *head;
389 sig_atomic_t volatile gotsig; 436 sig_atomic_t volatile gotsig;
390} ANSIG; 437} ANSIG;
391 438
392static ANSIG *signals; 439static ANSIG *signals;
393static int signalmax; 440static int signalmax;
421 errno = old_errno; 468 errno = old_errno;
422 } 469 }
423} 470}
424 471
425static void 472static void
426sigcb (struct ev_io *iow, int revents) 473sigcb (EV_P_ struct ev_io *iow, int revents)
427{ 474{
428 struct ev_signal *w; 475 struct ev_watcher_list *w;
429 int signum; 476 int signum;
430 477
431 read (sigpipe [0], &revents, 1); 478 read (sigpipe [0], &revents, 1);
432 gotsig = 0; 479 gotsig = 0;
433 480
435 if (signals [signum].gotsig) 482 if (signals [signum].gotsig)
436 { 483 {
437 signals [signum].gotsig = 0; 484 signals [signum].gotsig = 0;
438 485
439 for (w = signals [signum].head; w; w = w->next) 486 for (w = signals [signum].head; w; w = w->next)
440 event ((W)w, EV_SIGNAL); 487 event (EV_A_ (W)w, EV_SIGNAL);
441 } 488 }
442} 489}
443 490
444static void 491static void
445siginit (void) 492siginit (EV_P)
446{ 493{
447#ifndef WIN32 494#ifndef WIN32
448 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 495 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
449 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 496 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
450 497
452 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 499 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
453 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 500 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
454#endif 501#endif
455 502
456 ev_io_set (&sigev, sigpipe [0], EV_READ); 503 ev_io_set (&sigev, sigpipe [0], EV_READ);
457 ev_io_start (&sigev); 504 ev_io_start (EV_A_ &sigev);
505 ev_unref (EV_A); /* child watcher should not keep loop alive */
458} 506}
459 507
460/*****************************************************************************/ 508/*****************************************************************************/
461 509
462static struct ev_idle **idles; 510#ifndef WIN32
463static int idlemax, idlecnt;
464
465static struct ev_prepare **prepares;
466static int preparemax, preparecnt;
467
468static struct ev_check **checks;
469static int checkmax, checkcnt;
470
471/*****************************************************************************/
472 511
473static struct ev_child *childs [PID_HASHSIZE]; 512static struct ev_child *childs [PID_HASHSIZE];
474static struct ev_signal childev; 513static struct ev_signal childev;
475 514
476#ifndef WIN32
477
478#ifndef WCONTINUED 515#ifndef WCONTINUED
479# define WCONTINUED 0 516# define WCONTINUED 0
480#endif 517#endif
481 518
482static void 519static void
483child_reap (struct ev_signal *sw, int chain, int pid, int status) 520child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
484{ 521{
485 struct ev_child *w; 522 struct ev_child *w;
486 523
487 for (w = childs [chain & (PID_HASHSIZE - 1)]; w; w = w->next) 524 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
488 if (w->pid == pid || !w->pid) 525 if (w->pid == pid || !w->pid)
489 { 526 {
490 w->priority = sw->priority; /* need to do it *now* */ 527 w->priority = sw->priority; /* need to do it *now* */
491 w->rpid = pid; 528 w->rpid = pid;
492 w->rstatus = status; 529 w->rstatus = status;
493 printf ("rpid %p %d %d\n", w, pid, w->pid);//D
494 event ((W)w, EV_CHILD); 530 event (EV_A_ (W)w, EV_CHILD);
495 } 531 }
496} 532}
497 533
498static void 534static void
499childcb (struct ev_signal *sw, int revents) 535childcb (EV_P_ struct ev_signal *sw, int revents)
500{ 536{
501 int pid, status; 537 int pid, status;
502 538
503 printf ("chld %x\n", revents);//D
504 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 539 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
505 { 540 {
506 /* make sure we are called again until all childs have been reaped */ 541 /* make sure we are called again until all childs have been reaped */
507 event ((W)sw, EV_SIGNAL); 542 event (EV_A_ (W)sw, EV_SIGNAL);
508 543
509 child_reap (sw, pid, pid, status); 544 child_reap (EV_A_ sw, pid, pid, status);
510 child_reap (sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 545 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
511 } 546 }
512} 547}
513 548
514#endif 549#endif
515 550
538ev_version_minor (void) 573ev_version_minor (void)
539{ 574{
540 return EV_VERSION_MINOR; 575 return EV_VERSION_MINOR;
541} 576}
542 577
543/* return true if we are running with elevated privileges and ignore env variables */ 578/* return true if we are running with elevated privileges and should ignore env variables */
544static int 579static int
545enable_secure () 580enable_secure (void)
546{ 581{
582#ifdef WIN32
583 return 0;
584#else
547 return getuid () != geteuid () 585 return getuid () != geteuid ()
548 || getgid () != getegid (); 586 || getgid () != getegid ();
587#endif
549} 588}
550 589
551int ev_init (int methods) 590int
591ev_method (EV_P)
552{ 592{
593 return method;
594}
595
596static void
597loop_init (EV_P_ int methods)
598{
553 if (!ev_method) 599 if (!method)
554 { 600 {
555#if EV_USE_MONOTONIC 601#if EV_USE_MONOTONIC
556 { 602 {
557 struct timespec ts; 603 struct timespec ts;
558 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 604 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
559 have_monotonic = 1; 605 have_monotonic = 1;
560 } 606 }
561#endif 607#endif
562 608
563 ev_now = ev_time (); 609 rt_now = ev_time ();
564 now = get_clock (); 610 mn_now = get_clock ();
565 now_floor = now; 611 now_floor = mn_now;
566 diff = ev_now - now; 612 rtmn_diff = rt_now - mn_now;
567
568 if (pipe (sigpipe))
569 return 0;
570 613
571 if (methods == EVMETHOD_AUTO) 614 if (methods == EVMETHOD_AUTO)
572 if (!enable_secure () && getenv ("LIBEV_METHODS")) 615 if (!enable_secure () && getenv ("LIBEV_METHODS"))
573 methods = atoi (getenv ("LIBEV_METHODS")); 616 methods = atoi (getenv ("LIBEV_METHODS"));
574 else 617 else
575 methods = EVMETHOD_ANY; 618 methods = EVMETHOD_ANY;
576 619
577 ev_method = 0; 620 method = 0;
621#if EV_USE_WIN32
622 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
623#endif
578#if EV_USE_KQUEUE 624#if EV_USE_KQUEUE
579 if (!ev_method && (methods & EVMETHOD_KQUEUE)) kqueue_init (methods); 625 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
580#endif 626#endif
581#if EV_USE_EPOLL 627#if EV_USE_EPOLL
582 if (!ev_method && (methods & EVMETHOD_EPOLL )) epoll_init (methods); 628 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
583#endif 629#endif
584#if EV_USE_POLL 630#if EV_USE_POLL
585 if (!ev_method && (methods & EVMETHOD_POLL )) poll_init (methods); 631 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
586#endif 632#endif
587#if EV_USE_SELECT 633#if EV_USE_SELECT
588 if (!ev_method && (methods & EVMETHOD_SELECT)) select_init (methods); 634 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
589#endif 635#endif
636 }
637}
590 638
639void
640loop_destroy (EV_P)
641{
642#if EV_USE_WIN32
643 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
644#endif
645#if EV_USE_KQUEUE
646 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
647#endif
648#if EV_USE_EPOLL
649 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
650#endif
651#if EV_USE_POLL
652 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
653#endif
654#if EV_USE_SELECT
655 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
656#endif
657
658 method = 0;
659 /*TODO*/
660}
661
662void
663loop_fork (EV_P)
664{
665 /*TODO*/
666#if EV_USE_EPOLL
667 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
668#endif
669#if EV_USE_KQUEUE
670 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
671#endif
672}
673
674#if EV_MULTIPLICITY
675struct ev_loop *
676ev_loop_new (int methods)
677{
678 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
679
680 loop_init (EV_A_ methods);
681
682 if (ev_method (EV_A))
683 return loop;
684
685 return 0;
686}
687
688void
689ev_loop_destroy (EV_P)
690{
691 loop_destroy (EV_A);
692 free (loop);
693}
694
695void
696ev_loop_fork (EV_P)
697{
698 loop_fork (EV_A);
699}
700
701#endif
702
703#if EV_MULTIPLICITY
704struct ev_loop default_loop_struct;
705static struct ev_loop *default_loop;
706
707struct ev_loop *
708#else
709static int default_loop;
710
711int
712#endif
713ev_default_loop (int methods)
714{
715 if (sigpipe [0] == sigpipe [1])
716 if (pipe (sigpipe))
717 return 0;
718
719 if (!default_loop)
720 {
721#if EV_MULTIPLICITY
722 struct ev_loop *loop = default_loop = &default_loop_struct;
723#else
724 default_loop = 1;
725#endif
726
727 loop_init (EV_A_ methods);
728
591 if (ev_method) 729 if (ev_method (EV_A))
592 { 730 {
593 ev_watcher_init (&sigev, sigcb); 731 ev_watcher_init (&sigev, sigcb);
594 ev_set_priority (&sigev, EV_MAXPRI); 732 ev_set_priority (&sigev, EV_MAXPRI);
595 siginit (); 733 siginit (EV_A);
596 734
597#ifndef WIN32 735#ifndef WIN32
598 ev_signal_init (&childev, childcb, SIGCHLD); 736 ev_signal_init (&childev, childcb, SIGCHLD);
599 ev_set_priority (&childev, EV_MAXPRI); 737 ev_set_priority (&childev, EV_MAXPRI);
600 ev_signal_start (&childev); 738 ev_signal_start (EV_A_ &childev);
739 ev_unref (EV_A); /* child watcher should not keep loop alive */
601#endif 740#endif
602 } 741 }
742 else
743 default_loop = 0;
603 } 744 }
604 745
605 return ev_method; 746 return default_loop;
606} 747}
607 748
608/*****************************************************************************/
609
610void 749void
611ev_fork_prepare (void) 750ev_default_destroy (void)
612{ 751{
613 /* nop */ 752#if EV_MULTIPLICITY
614} 753 struct ev_loop *loop = default_loop;
615
616void
617ev_fork_parent (void)
618{
619 /* nop */
620}
621
622void
623ev_fork_child (void)
624{
625#if EV_USE_EPOLL
626 if (ev_method == EVMETHOD_EPOLL)
627 epoll_postfork_child ();
628#endif 754#endif
629 755
756 ev_ref (EV_A); /* child watcher */
757 ev_signal_stop (EV_A_ &childev);
758
759 ev_ref (EV_A); /* signal watcher */
630 ev_io_stop (&sigev); 760 ev_io_stop (EV_A_ &sigev);
761
762 close (sigpipe [0]); sigpipe [0] = 0;
763 close (sigpipe [1]); sigpipe [1] = 0;
764
765 loop_destroy (EV_A);
766}
767
768void
769ev_default_fork (void)
770{
771#if EV_MULTIPLICITY
772 struct ev_loop *loop = default_loop;
773#endif
774
775 loop_fork (EV_A);
776
777 ev_io_stop (EV_A_ &sigev);
631 close (sigpipe [0]); 778 close (sigpipe [0]);
632 close (sigpipe [1]); 779 close (sigpipe [1]);
633 pipe (sigpipe); 780 pipe (sigpipe);
781
782 ev_ref (EV_A); /* signal watcher */
634 siginit (); 783 siginit (EV_A);
635} 784}
636 785
637/*****************************************************************************/ 786/*****************************************************************************/
638 787
639static void 788static void
640call_pending (void) 789call_pending (EV_P)
641{ 790{
642 int pri; 791 int pri;
643 792
644 for (pri = NUMPRI; pri--; ) 793 for (pri = NUMPRI; pri--; )
645 while (pendingcnt [pri]) 794 while (pendingcnt [pri])
647 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 796 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
648 797
649 if (p->w) 798 if (p->w)
650 { 799 {
651 p->w->pending = 0; 800 p->w->pending = 0;
652 p->w->cb (p->w, p->events); 801 p->w->cb (EV_A_ p->w, p->events);
653 } 802 }
654 } 803 }
655} 804}
656 805
657static void 806static void
658timers_reify (void) 807timers_reify (EV_P)
659{ 808{
660 while (timercnt && timers [0]->at <= now) 809 while (timercnt && timers [0]->at <= mn_now)
661 { 810 {
662 struct ev_timer *w = timers [0]; 811 struct ev_timer *w = timers [0];
812
813 assert (("inactive timer on timer heap detected", ev_is_active (w)));
663 814
664 /* first reschedule or stop timer */ 815 /* first reschedule or stop timer */
665 if (w->repeat) 816 if (w->repeat)
666 { 817 {
667 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 818 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
668 w->at = now + w->repeat; 819 w->at = mn_now + w->repeat;
669 downheap ((WT *)timers, timercnt, 0); 820 downheap ((WT *)timers, timercnt, 0);
670 } 821 }
671 else 822 else
672 ev_timer_stop (w); /* nonrepeating: stop timer */ 823 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
673 824
674 event ((W)w, EV_TIMEOUT); 825 event (EV_A_ (W)w, EV_TIMEOUT);
675 } 826 }
676} 827}
677 828
678static void 829static void
679periodics_reify (void) 830periodics_reify (EV_P)
680{ 831{
681 while (periodiccnt && periodics [0]->at <= ev_now) 832 while (periodiccnt && periodics [0]->at <= rt_now)
682 { 833 {
683 struct ev_periodic *w = periodics [0]; 834 struct ev_periodic *w = periodics [0];
835
836 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
684 837
685 /* first reschedule or stop timer */ 838 /* first reschedule or stop timer */
686 if (w->interval) 839 if (w->interval)
687 { 840 {
688 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 841 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
689 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 842 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
690 downheap ((WT *)periodics, periodiccnt, 0); 843 downheap ((WT *)periodics, periodiccnt, 0);
691 } 844 }
692 else 845 else
693 ev_periodic_stop (w); /* nonrepeating: stop timer */ 846 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
694 847
695 event ((W)w, EV_PERIODIC); 848 event (EV_A_ (W)w, EV_PERIODIC);
696 } 849 }
697} 850}
698 851
699static void 852static void
700periodics_reschedule (ev_tstamp diff) 853periodics_reschedule (EV_P)
701{ 854{
702 int i; 855 int i;
703 856
704 /* adjust periodics after time jump */ 857 /* adjust periodics after time jump */
705 for (i = 0; i < periodiccnt; ++i) 858 for (i = 0; i < periodiccnt; ++i)
706 { 859 {
707 struct ev_periodic *w = periodics [i]; 860 struct ev_periodic *w = periodics [i];
708 861
709 if (w->interval) 862 if (w->interval)
710 { 863 {
711 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 864 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
712 865
713 if (fabs (diff) >= 1e-4) 866 if (fabs (diff) >= 1e-4)
714 { 867 {
715 ev_periodic_stop (w); 868 ev_periodic_stop (EV_A_ w);
716 ev_periodic_start (w); 869 ev_periodic_start (EV_A_ w);
717 870
718 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 871 i = 0; /* restart loop, inefficient, but time jumps should be rare */
719 } 872 }
720 } 873 }
721 } 874 }
722} 875}
723 876
724static int 877inline int
725time_update_monotonic (void) 878time_update_monotonic (EV_P)
726{ 879{
727 now = get_clock (); 880 mn_now = get_clock ();
728 881
729 if (expect_true (now - now_floor < MIN_TIMEJUMP * .5)) 882 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
730 { 883 {
731 ev_now = now + diff; 884 rt_now = rtmn_diff + mn_now;
732 return 0; 885 return 0;
733 } 886 }
734 else 887 else
735 { 888 {
736 now_floor = now; 889 now_floor = mn_now;
737 ev_now = ev_time (); 890 rt_now = ev_time ();
738 return 1; 891 return 1;
739 } 892 }
740} 893}
741 894
742static void 895static void
743time_update (void) 896time_update (EV_P)
744{ 897{
745 int i; 898 int i;
746 899
747#if EV_USE_MONOTONIC 900#if EV_USE_MONOTONIC
748 if (expect_true (have_monotonic)) 901 if (expect_true (have_monotonic))
749 { 902 {
750 if (time_update_monotonic ()) 903 if (time_update_monotonic (EV_A))
751 { 904 {
752 ev_tstamp odiff = diff; 905 ev_tstamp odiff = rtmn_diff;
753 906
754 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 907 for (i = 4; --i; ) /* loop a few times, before making important decisions */
755 { 908 {
756 diff = ev_now - now; 909 rtmn_diff = rt_now - mn_now;
757 910
758 if (fabs (odiff - diff) < MIN_TIMEJUMP) 911 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
759 return; /* all is well */ 912 return; /* all is well */
760 913
761 ev_now = ev_time (); 914 rt_now = ev_time ();
762 now = get_clock (); 915 mn_now = get_clock ();
763 now_floor = now; 916 now_floor = mn_now;
764 } 917 }
765 918
766 periodics_reschedule (diff - odiff); 919 periodics_reschedule (EV_A);
767 /* no timer adjustment, as the monotonic clock doesn't jump */ 920 /* no timer adjustment, as the monotonic clock doesn't jump */
921 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
768 } 922 }
769 } 923 }
770 else 924 else
771#endif 925#endif
772 { 926 {
773 ev_now = ev_time (); 927 rt_now = ev_time ();
774 928
775 if (expect_false (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 929 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
776 { 930 {
777 periodics_reschedule (ev_now - now); 931 periodics_reschedule (EV_A);
778 932
779 /* adjust timers. this is easy, as the offset is the same for all */ 933 /* adjust timers. this is easy, as the offset is the same for all */
780 for (i = 0; i < timercnt; ++i) 934 for (i = 0; i < timercnt; ++i)
781 timers [i]->at += diff; 935 timers [i]->at += rt_now - mn_now;
782 } 936 }
783 937
784 now = ev_now; 938 mn_now = rt_now;
785 } 939 }
786} 940}
787 941
788int ev_loop_done; 942void
943ev_ref (EV_P)
944{
945 ++activecnt;
946}
789 947
948void
949ev_unref (EV_P)
950{
951 --activecnt;
952}
953
954static int loop_done;
955
956void
790void ev_loop (int flags) 957ev_loop (EV_P_ int flags)
791{ 958{
792 double block; 959 double block;
793 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 960 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
794 961
795 do 962 do
796 { 963 {
797 /* queue check watchers (and execute them) */ 964 /* queue check watchers (and execute them) */
798 if (expect_false (preparecnt)) 965 if (expect_false (preparecnt))
799 { 966 {
800 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 967 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
801 call_pending (); 968 call_pending (EV_A);
802 } 969 }
803 970
804 /* update fd-related kernel structures */ 971 /* update fd-related kernel structures */
805 fd_reify (); 972 fd_reify (EV_A);
806 973
807 /* calculate blocking time */ 974 /* calculate blocking time */
808 975
809 /* we only need this for !monotonic clockor timers, but as we basically 976 /* we only need this for !monotonic clockor timers, but as we basically
810 always have timers, we just calculate it always */ 977 always have timers, we just calculate it always */
811#if EV_USE_MONOTONIC 978#if EV_USE_MONOTONIC
812 if (expect_true (have_monotonic)) 979 if (expect_true (have_monotonic))
813 time_update_monotonic (); 980 time_update_monotonic (EV_A);
814 else 981 else
815#endif 982#endif
816 { 983 {
817 ev_now = ev_time (); 984 rt_now = ev_time ();
818 now = ev_now; 985 mn_now = rt_now;
819 } 986 }
820 987
821 if (flags & EVLOOP_NONBLOCK || idlecnt) 988 if (flags & EVLOOP_NONBLOCK || idlecnt)
822 block = 0.; 989 block = 0.;
823 else 990 else
824 { 991 {
825 block = MAX_BLOCKTIME; 992 block = MAX_BLOCKTIME;
826 993
827 if (timercnt) 994 if (timercnt)
828 { 995 {
829 ev_tstamp to = timers [0]->at - now + method_fudge; 996 ev_tstamp to = timers [0]->at - mn_now + method_fudge;
830 if (block > to) block = to; 997 if (block > to) block = to;
831 } 998 }
832 999
833 if (periodiccnt) 1000 if (periodiccnt)
834 { 1001 {
835 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1002 ev_tstamp to = periodics [0]->at - rt_now + method_fudge;
836 if (block > to) block = to; 1003 if (block > to) block = to;
837 } 1004 }
838 1005
839 if (block < 0.) block = 0.; 1006 if (block < 0.) block = 0.;
840 } 1007 }
841 1008
842 method_poll (block); 1009 method_poll (EV_A_ block);
843 1010
844 /* update ev_now, do magic */ 1011 /* update rt_now, do magic */
845 time_update (); 1012 time_update (EV_A);
846 1013
847 /* queue pending timers and reschedule them */ 1014 /* queue pending timers and reschedule them */
848 timers_reify (); /* relative timers called last */ 1015 timers_reify (EV_A); /* relative timers called last */
849 periodics_reify (); /* absolute timers called first */ 1016 periodics_reify (EV_A); /* absolute timers called first */
850 1017
851 /* queue idle watchers unless io or timers are pending */ 1018 /* queue idle watchers unless io or timers are pending */
852 if (!pendingcnt) 1019 if (!pendingcnt)
853 queue_events ((W *)idles, idlecnt, EV_IDLE); 1020 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
854 1021
855 /* queue check watchers, to be executed first */ 1022 /* queue check watchers, to be executed first */
856 if (checkcnt) 1023 if (checkcnt)
857 queue_events ((W *)checks, checkcnt, EV_CHECK); 1024 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
858 1025
859 call_pending (); 1026 call_pending (EV_A);
860 } 1027 }
861 while (!ev_loop_done); 1028 while (activecnt && !loop_done);
862 1029
863 if (ev_loop_done != 2) 1030 if (loop_done != 2)
864 ev_loop_done = 0; 1031 loop_done = 0;
1032}
1033
1034void
1035ev_unloop (EV_P_ int how)
1036{
1037 loop_done = how;
865} 1038}
866 1039
867/*****************************************************************************/ 1040/*****************************************************************************/
868 1041
869static void 1042inline void
870wlist_add (WL *head, WL elem) 1043wlist_add (WL *head, WL elem)
871{ 1044{
872 elem->next = *head; 1045 elem->next = *head;
873 *head = elem; 1046 *head = elem;
874} 1047}
875 1048
876static void 1049inline void
877wlist_del (WL *head, WL elem) 1050wlist_del (WL *head, WL elem)
878{ 1051{
879 while (*head) 1052 while (*head)
880 { 1053 {
881 if (*head == elem) 1054 if (*head == elem)
886 1059
887 head = &(*head)->next; 1060 head = &(*head)->next;
888 } 1061 }
889} 1062}
890 1063
891static void 1064inline void
892ev_clear_pending (W w) 1065ev_clear_pending (EV_P_ W w)
893{ 1066{
894 if (w->pending) 1067 if (w->pending)
895 { 1068 {
896 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1069 pendings [ABSPRI (w)][w->pending - 1].w = 0;
897 w->pending = 0; 1070 w->pending = 0;
898 } 1071 }
899} 1072}
900 1073
901static void 1074inline void
902ev_start (W w, int active) 1075ev_start (EV_P_ W w, int active)
903{ 1076{
904 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1077 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
905 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 1078 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
906 1079
907 w->active = active; 1080 w->active = active;
1081 ev_ref (EV_A);
908} 1082}
909 1083
910static void 1084inline void
911ev_stop (W w) 1085ev_stop (EV_P_ W w)
912{ 1086{
1087 ev_unref (EV_A);
913 w->active = 0; 1088 w->active = 0;
914} 1089}
915 1090
916/*****************************************************************************/ 1091/*****************************************************************************/
917 1092
918void 1093void
919ev_io_start (struct ev_io *w) 1094ev_io_start (EV_P_ struct ev_io *w)
920{ 1095{
921 int fd = w->fd; 1096 int fd = w->fd;
922 1097
923 if (ev_is_active (w)) 1098 if (ev_is_active (w))
924 return; 1099 return;
925 1100
926 assert (("ev_io_start called with negative fd", fd >= 0)); 1101 assert (("ev_io_start called with negative fd", fd >= 0));
927 1102
928 ev_start ((W)w, 1); 1103 ev_start (EV_A_ (W)w, 1);
929 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1104 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
930 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1105 wlist_add ((WL *)&anfds[fd].head, (WL)w);
931 1106
932 fd_change (fd); 1107 fd_change (EV_A_ fd);
933} 1108}
934 1109
935void 1110void
936ev_io_stop (struct ev_io *w) 1111ev_io_stop (EV_P_ struct ev_io *w)
937{ 1112{
938 ev_clear_pending ((W)w); 1113 ev_clear_pending (EV_A_ (W)w);
939 if (!ev_is_active (w)) 1114 if (!ev_is_active (w))
940 return; 1115 return;
941 1116
942 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1117 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
943 ev_stop ((W)w); 1118 ev_stop (EV_A_ (W)w);
944 1119
945 fd_change (w->fd); 1120 fd_change (EV_A_ w->fd);
946} 1121}
947 1122
948void 1123void
949ev_timer_start (struct ev_timer *w) 1124ev_timer_start (EV_P_ struct ev_timer *w)
950{ 1125{
951 if (ev_is_active (w)) 1126 if (ev_is_active (w))
952 return; 1127 return;
953 1128
954 w->at += now; 1129 w->at += mn_now;
955 1130
956 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1131 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
957 1132
958 ev_start ((W)w, ++timercnt); 1133 ev_start (EV_A_ (W)w, ++timercnt);
959 array_needsize (timers, timermax, timercnt, ); 1134 array_needsize (timers, timermax, timercnt, );
960 timers [timercnt - 1] = w; 1135 timers [timercnt - 1] = w;
961 upheap ((WT *)timers, timercnt - 1); 1136 upheap ((WT *)timers, timercnt - 1);
962}
963 1137
1138 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1139}
1140
964void 1141void
965ev_timer_stop (struct ev_timer *w) 1142ev_timer_stop (EV_P_ struct ev_timer *w)
966{ 1143{
967 ev_clear_pending ((W)w); 1144 ev_clear_pending (EV_A_ (W)w);
968 if (!ev_is_active (w)) 1145 if (!ev_is_active (w))
969 return; 1146 return;
970 1147
1148 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1149
971 if (w->active < timercnt--) 1150 if (((W)w)->active < timercnt--)
972 { 1151 {
973 timers [w->active - 1] = timers [timercnt]; 1152 timers [((W)w)->active - 1] = timers [timercnt];
974 downheap ((WT *)timers, timercnt, w->active - 1); 1153 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
975 } 1154 }
976 1155
977 w->at = w->repeat; 1156 w->at = w->repeat;
978 1157
979 ev_stop ((W)w); 1158 ev_stop (EV_A_ (W)w);
980} 1159}
981 1160
982void 1161void
983ev_timer_again (struct ev_timer *w) 1162ev_timer_again (EV_P_ struct ev_timer *w)
984{ 1163{
985 if (ev_is_active (w)) 1164 if (ev_is_active (w))
986 { 1165 {
987 if (w->repeat) 1166 if (w->repeat)
988 { 1167 {
989 w->at = now + w->repeat; 1168 w->at = mn_now + w->repeat;
990 downheap ((WT *)timers, timercnt, w->active - 1); 1169 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
991 } 1170 }
992 else 1171 else
993 ev_timer_stop (w); 1172 ev_timer_stop (EV_A_ w);
994 } 1173 }
995 else if (w->repeat) 1174 else if (w->repeat)
996 ev_timer_start (w); 1175 ev_timer_start (EV_A_ w);
997} 1176}
998 1177
999void 1178void
1000ev_periodic_start (struct ev_periodic *w) 1179ev_periodic_start (EV_P_ struct ev_periodic *w)
1001{ 1180{
1002 if (ev_is_active (w)) 1181 if (ev_is_active (w))
1003 return; 1182 return;
1004 1183
1005 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1184 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1006 1185
1007 /* this formula differs from the one in periodic_reify because we do not always round up */ 1186 /* this formula differs from the one in periodic_reify because we do not always round up */
1008 if (w->interval) 1187 if (w->interval)
1009 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1188 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval;
1010 1189
1011 ev_start ((W)w, ++periodiccnt); 1190 ev_start (EV_A_ (W)w, ++periodiccnt);
1012 array_needsize (periodics, periodicmax, periodiccnt, ); 1191 array_needsize (periodics, periodicmax, periodiccnt, );
1013 periodics [periodiccnt - 1] = w; 1192 periodics [periodiccnt - 1] = w;
1014 upheap ((WT *)periodics, periodiccnt - 1); 1193 upheap ((WT *)periodics, periodiccnt - 1);
1015}
1016 1194
1195 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1196}
1197
1017void 1198void
1018ev_periodic_stop (struct ev_periodic *w) 1199ev_periodic_stop (EV_P_ struct ev_periodic *w)
1019{ 1200{
1020 ev_clear_pending ((W)w); 1201 ev_clear_pending (EV_A_ (W)w);
1021 if (!ev_is_active (w)) 1202 if (!ev_is_active (w))
1022 return; 1203 return;
1023 1204
1205 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1206
1024 if (w->active < periodiccnt--) 1207 if (((W)w)->active < periodiccnt--)
1025 { 1208 {
1026 periodics [w->active - 1] = periodics [periodiccnt]; 1209 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1027 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1210 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1028 } 1211 }
1029 1212
1030 ev_stop ((W)w); 1213 ev_stop (EV_A_ (W)w);
1214}
1215
1216void
1217ev_idle_start (EV_P_ struct ev_idle *w)
1218{
1219 if (ev_is_active (w))
1220 return;
1221
1222 ev_start (EV_A_ (W)w, ++idlecnt);
1223 array_needsize (idles, idlemax, idlecnt, );
1224 idles [idlecnt - 1] = w;
1225}
1226
1227void
1228ev_idle_stop (EV_P_ struct ev_idle *w)
1229{
1230 ev_clear_pending (EV_A_ (W)w);
1231 if (ev_is_active (w))
1232 return;
1233
1234 idles [((W)w)->active - 1] = idles [--idlecnt];
1235 ev_stop (EV_A_ (W)w);
1236}
1237
1238void
1239ev_prepare_start (EV_P_ struct ev_prepare *w)
1240{
1241 if (ev_is_active (w))
1242 return;
1243
1244 ev_start (EV_A_ (W)w, ++preparecnt);
1245 array_needsize (prepares, preparemax, preparecnt, );
1246 prepares [preparecnt - 1] = w;
1247}
1248
1249void
1250ev_prepare_stop (EV_P_ struct ev_prepare *w)
1251{
1252 ev_clear_pending (EV_A_ (W)w);
1253 if (ev_is_active (w))
1254 return;
1255
1256 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1257 ev_stop (EV_A_ (W)w);
1258}
1259
1260void
1261ev_check_start (EV_P_ struct ev_check *w)
1262{
1263 if (ev_is_active (w))
1264 return;
1265
1266 ev_start (EV_A_ (W)w, ++checkcnt);
1267 array_needsize (checks, checkmax, checkcnt, );
1268 checks [checkcnt - 1] = w;
1269}
1270
1271void
1272ev_check_stop (EV_P_ struct ev_check *w)
1273{
1274 ev_clear_pending (EV_A_ (W)w);
1275 if (ev_is_active (w))
1276 return;
1277
1278 checks [((W)w)->active - 1] = checks [--checkcnt];
1279 ev_stop (EV_A_ (W)w);
1031} 1280}
1032 1281
1033#ifndef SA_RESTART 1282#ifndef SA_RESTART
1034# define SA_RESTART 0 1283# define SA_RESTART 0
1035#endif 1284#endif
1036 1285
1037void 1286void
1038ev_signal_start (struct ev_signal *w) 1287ev_signal_start (EV_P_ struct ev_signal *w)
1039{ 1288{
1289#if EV_MULTIPLICITY
1290 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1291#endif
1040 if (ev_is_active (w)) 1292 if (ev_is_active (w))
1041 return; 1293 return;
1042 1294
1043 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1295 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1044 1296
1045 ev_start ((W)w, 1); 1297 ev_start (EV_A_ (W)w, 1);
1046 array_needsize (signals, signalmax, w->signum, signals_init); 1298 array_needsize (signals, signalmax, w->signum, signals_init);
1047 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1299 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1048 1300
1049 if (!w->next) 1301 if (!w->next)
1050 { 1302 {
1055 sigaction (w->signum, &sa, 0); 1307 sigaction (w->signum, &sa, 0);
1056 } 1308 }
1057} 1309}
1058 1310
1059void 1311void
1060ev_signal_stop (struct ev_signal *w) 1312ev_signal_stop (EV_P_ struct ev_signal *w)
1061{ 1313{
1062 ev_clear_pending ((W)w); 1314 ev_clear_pending (EV_A_ (W)w);
1063 if (!ev_is_active (w)) 1315 if (!ev_is_active (w))
1064 return; 1316 return;
1065 1317
1066 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1318 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1067 ev_stop ((W)w); 1319 ev_stop (EV_A_ (W)w);
1068 1320
1069 if (!signals [w->signum - 1].head) 1321 if (!signals [w->signum - 1].head)
1070 signal (w->signum, SIG_DFL); 1322 signal (w->signum, SIG_DFL);
1071} 1323}
1072 1324
1073void 1325void
1074ev_idle_start (struct ev_idle *w) 1326ev_child_start (EV_P_ struct ev_child *w)
1075{ 1327{
1328#if EV_MULTIPLICITY
1329 assert (("child watchers are only supported in the default loop", loop == default_loop));
1330#endif
1076 if (ev_is_active (w)) 1331 if (ev_is_active (w))
1077 return; 1332 return;
1078 1333
1079 ev_start ((W)w, ++idlecnt); 1334 ev_start (EV_A_ (W)w, 1);
1080 array_needsize (idles, idlemax, idlecnt, ); 1335 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1081 idles [idlecnt - 1] = w;
1082} 1336}
1083 1337
1084void 1338void
1085ev_idle_stop (struct ev_idle *w) 1339ev_child_stop (EV_P_ struct ev_child *w)
1086{ 1340{
1087 ev_clear_pending ((W)w); 1341 ev_clear_pending (EV_A_ (W)w);
1088 if (ev_is_active (w)) 1342 if (ev_is_active (w))
1089 return; 1343 return;
1090 1344
1091 idles [w->active - 1] = idles [--idlecnt];
1092 ev_stop ((W)w);
1093}
1094
1095void
1096ev_prepare_start (struct ev_prepare *w)
1097{
1098 if (ev_is_active (w))
1099 return;
1100
1101 ev_start ((W)w, ++preparecnt);
1102 array_needsize (prepares, preparemax, preparecnt, );
1103 prepares [preparecnt - 1] = w;
1104}
1105
1106void
1107ev_prepare_stop (struct ev_prepare *w)
1108{
1109 ev_clear_pending ((W)w);
1110 if (ev_is_active (w))
1111 return;
1112
1113 prepares [w->active - 1] = prepares [--preparecnt];
1114 ev_stop ((W)w);
1115}
1116
1117void
1118ev_check_start (struct ev_check *w)
1119{
1120 if (ev_is_active (w))
1121 return;
1122
1123 ev_start ((W)w, ++checkcnt);
1124 array_needsize (checks, checkmax, checkcnt, );
1125 checks [checkcnt - 1] = w;
1126}
1127
1128void
1129ev_check_stop (struct ev_check *w)
1130{
1131 ev_clear_pending ((W)w);
1132 if (ev_is_active (w))
1133 return;
1134
1135 checks [w->active - 1] = checks [--checkcnt];
1136 ev_stop ((W)w);
1137}
1138
1139void
1140ev_child_start (struct ev_child *w)
1141{
1142 if (ev_is_active (w))
1143 return;
1144
1145 ev_start ((W)w, 1);
1146 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1147}
1148
1149void
1150ev_child_stop (struct ev_child *w)
1151{
1152 ev_clear_pending ((W)w);
1153 if (ev_is_active (w))
1154 return;
1155
1156 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1345 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1157 ev_stop ((W)w); 1346 ev_stop (EV_A_ (W)w);
1158} 1347}
1159 1348
1160/*****************************************************************************/ 1349/*****************************************************************************/
1161 1350
1162struct ev_once 1351struct ev_once
1166 void (*cb)(int revents, void *arg); 1355 void (*cb)(int revents, void *arg);
1167 void *arg; 1356 void *arg;
1168}; 1357};
1169 1358
1170static void 1359static void
1171once_cb (struct ev_once *once, int revents) 1360once_cb (EV_P_ struct ev_once *once, int revents)
1172{ 1361{
1173 void (*cb)(int revents, void *arg) = once->cb; 1362 void (*cb)(int revents, void *arg) = once->cb;
1174 void *arg = once->arg; 1363 void *arg = once->arg;
1175 1364
1176 ev_io_stop (&once->io); 1365 ev_io_stop (EV_A_ &once->io);
1177 ev_timer_stop (&once->to); 1366 ev_timer_stop (EV_A_ &once->to);
1178 free (once); 1367 free (once);
1179 1368
1180 cb (revents, arg); 1369 cb (revents, arg);
1181} 1370}
1182 1371
1183static void 1372static void
1184once_cb_io (struct ev_io *w, int revents) 1373once_cb_io (EV_P_ struct ev_io *w, int revents)
1185{ 1374{
1186 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1375 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1187} 1376}
1188 1377
1189static void 1378static void
1190once_cb_to (struct ev_timer *w, int revents) 1379once_cb_to (EV_P_ struct ev_timer *w, int revents)
1191{ 1380{
1192 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1381 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1193} 1382}
1194 1383
1195void 1384void
1196ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1385ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1197{ 1386{
1198 struct ev_once *once = malloc (sizeof (struct ev_once)); 1387 struct ev_once *once = malloc (sizeof (struct ev_once));
1199 1388
1200 if (!once) 1389 if (!once)
1201 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1390 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1206 1395
1207 ev_watcher_init (&once->io, once_cb_io); 1396 ev_watcher_init (&once->io, once_cb_io);
1208 if (fd >= 0) 1397 if (fd >= 0)
1209 { 1398 {
1210 ev_io_set (&once->io, fd, events); 1399 ev_io_set (&once->io, fd, events);
1211 ev_io_start (&once->io); 1400 ev_io_start (EV_A_ &once->io);
1212 } 1401 }
1213 1402
1214 ev_watcher_init (&once->to, once_cb_to); 1403 ev_watcher_init (&once->to, once_cb_to);
1215 if (timeout >= 0.) 1404 if (timeout >= 0.)
1216 { 1405 {
1217 ev_timer_set (&once->to, timeout, 0.); 1406 ev_timer_set (&once->to, timeout, 0.);
1218 ev_timer_start (&once->to); 1407 ev_timer_start (EV_A_ &once->to);
1219 } 1408 }
1220 } 1409 }
1221} 1410}
1222 1411
1223/*****************************************************************************/
1224
1225#if 0
1226
1227struct ev_io wio;
1228
1229static void
1230sin_cb (struct ev_io *w, int revents)
1231{
1232 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1233}
1234
1235static void
1236ocb (struct ev_timer *w, int revents)
1237{
1238 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1239 ev_timer_stop (w);
1240 ev_timer_start (w);
1241}
1242
1243static void
1244scb (struct ev_signal *w, int revents)
1245{
1246 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1247 ev_io_stop (&wio);
1248 ev_io_start (&wio);
1249}
1250
1251static void
1252gcb (struct ev_signal *w, int revents)
1253{
1254 fprintf (stderr, "generic %x\n", revents);
1255
1256}
1257
1258int main (void)
1259{
1260 ev_init (0);
1261
1262 ev_io_init (&wio, sin_cb, 0, EV_READ);
1263 ev_io_start (&wio);
1264
1265 struct ev_timer t[10000];
1266
1267#if 0
1268 int i;
1269 for (i = 0; i < 10000; ++i)
1270 {
1271 struct ev_timer *w = t + i;
1272 ev_watcher_init (w, ocb, i);
1273 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1274 ev_timer_start (w);
1275 if (drand48 () < 0.5)
1276 ev_timer_stop (w);
1277 }
1278#endif
1279
1280 struct ev_timer t1;
1281 ev_timer_init (&t1, ocb, 5, 10);
1282 ev_timer_start (&t1);
1283
1284 struct ev_signal sig;
1285 ev_signal_init (&sig, scb, SIGQUIT);
1286 ev_signal_start (&sig);
1287
1288 struct ev_check cw;
1289 ev_check_init (&cw, gcb);
1290 ev_check_start (&cw);
1291
1292 struct ev_idle iw;
1293 ev_idle_init (&iw, gcb);
1294 ev_idle_start (&iw);
1295
1296 ev_loop (0);
1297
1298 return 0;
1299}
1300
1301#endif
1302
1303
1304
1305

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines