ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.48 by root, Sat Nov 3 12:19:31 2007 UTC vs.
Revision 1.68 by root, Mon Nov 5 20:19:00 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h> 59#include <unistd.h>
70 92
71#ifndef EV_USE_KQUEUE 93#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 94# define EV_USE_KQUEUE 0
73#endif 95#endif
74 96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
103#endif
104
75#ifndef EV_USE_REALTIME 105#ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 1 106# define EV_USE_REALTIME 1
77#endif 107#endif
78 108
79/**/ 109/**/
113 143
114typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
115typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
117 147
118static ev_tstamp now_floor, now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
119ev_tstamp ev_now;
120int ev_method;
121 149
122static int have_monotonic; /* runtime */ 150#if WIN32
123 151/* note: the comment below could not be substantiated, but what would I care */
124static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 152/* MSDN says this is required to handle SIGFPE */
125static void (*method_modify)(int fd, int oev, int nev); 153volatile double SIGFPE_REQ = 0.0f;
126static void (*method_poll)(ev_tstamp timeout); 154#endif
127 155
128/*****************************************************************************/ 156/*****************************************************************************/
129 157
130ev_tstamp 158typedef struct
159{
160 WL head;
161 unsigned char events;
162 unsigned char reify;
163} ANFD;
164
165typedef struct
166{
167 W w;
168 int events;
169} ANPENDING;
170
171#if EV_MULTIPLICITY
172
173struct ev_loop
174{
175# define VAR(name,decl) decl;
176# include "ev_vars.h"
177};
178# undef VAR
179# include "ev_wrap.h"
180
181#else
182
183# define VAR(name,decl) static decl;
184# include "ev_vars.h"
185# undef VAR
186
187#endif
188
189/*****************************************************************************/
190
191inline ev_tstamp
131ev_time (void) 192ev_time (void)
132{ 193{
133#if EV_USE_REALTIME 194#if EV_USE_REALTIME
134 struct timespec ts; 195 struct timespec ts;
135 clock_gettime (CLOCK_REALTIME, &ts); 196 clock_gettime (CLOCK_REALTIME, &ts);
139 gettimeofday (&tv, 0); 200 gettimeofday (&tv, 0);
140 return tv.tv_sec + tv.tv_usec * 1e-6; 201 return tv.tv_sec + tv.tv_usec * 1e-6;
141#endif 202#endif
142} 203}
143 204
144static ev_tstamp 205inline ev_tstamp
145get_clock (void) 206get_clock (void)
146{ 207{
147#if EV_USE_MONOTONIC 208#if EV_USE_MONOTONIC
148 if (expect_true (have_monotonic)) 209 if (expect_true (have_monotonic))
149 { 210 {
152 return ts.tv_sec + ts.tv_nsec * 1e-9; 213 return ts.tv_sec + ts.tv_nsec * 1e-9;
153 } 214 }
154#endif 215#endif
155 216
156 return ev_time (); 217 return ev_time ();
218}
219
220ev_tstamp
221ev_now (EV_P)
222{
223 return rt_now;
157} 224}
158 225
159#define array_roundsize(base,n) ((n) | 4 & ~3) 226#define array_roundsize(base,n) ((n) | 4 & ~3)
160 227
161#define array_needsize(base,cur,cnt,init) \ 228#define array_needsize(base,cur,cnt,init) \
171 base = realloc (base, sizeof (*base) * (newcnt)); \ 238 base = realloc (base, sizeof (*base) * (newcnt)); \
172 init (base + cur, newcnt - cur); \ 239 init (base + cur, newcnt - cur); \
173 cur = newcnt; \ 240 cur = newcnt; \
174 } 241 }
175 242
243#define array_slim(stem) \
244 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
245 { \
246 stem ## max = array_roundsize (stem ## cnt >> 1); \
247 base = realloc (base, sizeof (*base) * (stem ## max)); \
248 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
249 }
250
251#define array_free(stem, idx) \
252 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
253
176/*****************************************************************************/ 254/*****************************************************************************/
177
178typedef struct
179{
180 struct ev_io *head;
181 unsigned char events;
182 unsigned char reify;
183} ANFD;
184
185static ANFD *anfds;
186static int anfdmax;
187 255
188static void 256static void
189anfds_init (ANFD *base, int count) 257anfds_init (ANFD *base, int count)
190{ 258{
191 while (count--) 259 while (count--)
196 264
197 ++base; 265 ++base;
198 } 266 }
199} 267}
200 268
201typedef struct
202{
203 W w;
204 int events;
205} ANPENDING;
206
207static ANPENDING *pendings [NUMPRI];
208static int pendingmax [NUMPRI], pendingcnt [NUMPRI];
209
210static void 269static void
211event (W w, int events) 270event (EV_P_ W w, int events)
212{ 271{
213 if (w->pending) 272 if (w->pending)
214 { 273 {
215 pendings [ABSPRI (w)][w->pending - 1].events |= events; 274 pendings [ABSPRI (w)][w->pending - 1].events |= events;
216 return; 275 return;
221 pendings [ABSPRI (w)][w->pending - 1].w = w; 280 pendings [ABSPRI (w)][w->pending - 1].w = w;
222 pendings [ABSPRI (w)][w->pending - 1].events = events; 281 pendings [ABSPRI (w)][w->pending - 1].events = events;
223} 282}
224 283
225static void 284static void
226queue_events (W *events, int eventcnt, int type) 285queue_events (EV_P_ W *events, int eventcnt, int type)
227{ 286{
228 int i; 287 int i;
229 288
230 for (i = 0; i < eventcnt; ++i) 289 for (i = 0; i < eventcnt; ++i)
231 event (events [i], type); 290 event (EV_A_ events [i], type);
232} 291}
233 292
234static void 293static void
235fd_event (int fd, int events) 294fd_event (EV_P_ int fd, int events)
236{ 295{
237 ANFD *anfd = anfds + fd; 296 ANFD *anfd = anfds + fd;
238 struct ev_io *w; 297 struct ev_io *w;
239 298
240 for (w = anfd->head; w; w = w->next) 299 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
241 { 300 {
242 int ev = w->events & events; 301 int ev = w->events & events;
243 302
244 if (ev) 303 if (ev)
245 event ((W)w, ev); 304 event (EV_A_ (W)w, ev);
246 } 305 }
247} 306}
248 307
249/*****************************************************************************/ 308/*****************************************************************************/
250 309
251static int *fdchanges;
252static int fdchangemax, fdchangecnt;
253
254static void 310static void
255fd_reify (void) 311fd_reify (EV_P)
256{ 312{
257 int i; 313 int i;
258 314
259 for (i = 0; i < fdchangecnt; ++i) 315 for (i = 0; i < fdchangecnt; ++i)
260 { 316 {
262 ANFD *anfd = anfds + fd; 318 ANFD *anfd = anfds + fd;
263 struct ev_io *w; 319 struct ev_io *w;
264 320
265 int events = 0; 321 int events = 0;
266 322
267 for (w = anfd->head; w; w = w->next) 323 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
268 events |= w->events; 324 events |= w->events;
269 325
270 anfd->reify = 0; 326 anfd->reify = 0;
271 327
272 if (anfd->events != events)
273 {
274 method_modify (fd, anfd->events, events); 328 method_modify (EV_A_ fd, anfd->events, events);
275 anfd->events = events; 329 anfd->events = events;
276 }
277 } 330 }
278 331
279 fdchangecnt = 0; 332 fdchangecnt = 0;
280} 333}
281 334
282static void 335static void
283fd_change (int fd) 336fd_change (EV_P_ int fd)
284{ 337{
285 if (anfds [fd].reify || fdchangecnt < 0) 338 if (anfds [fd].reify || fdchangecnt < 0)
286 return; 339 return;
287 340
288 anfds [fd].reify = 1; 341 anfds [fd].reify = 1;
291 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 344 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
292 fdchanges [fdchangecnt - 1] = fd; 345 fdchanges [fdchangecnt - 1] = fd;
293} 346}
294 347
295static void 348static void
296fd_kill (int fd) 349fd_kill (EV_P_ int fd)
297{ 350{
298 struct ev_io *w; 351 struct ev_io *w;
299 352
300 printf ("killing fd %d\n", fd);//D
301 while ((w = anfds [fd].head)) 353 while ((w = (struct ev_io *)anfds [fd].head))
302 { 354 {
303 ev_io_stop (w); 355 ev_io_stop (EV_A_ w);
304 event ((W)w, EV_ERROR | EV_READ | EV_WRITE); 356 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
305 } 357 }
306} 358}
307 359
308/* called on EBADF to verify fds */ 360/* called on EBADF to verify fds */
309static void 361static void
310fd_ebadf (void) 362fd_ebadf (EV_P)
311{ 363{
312 int fd; 364 int fd;
313 365
314 for (fd = 0; fd < anfdmax; ++fd) 366 for (fd = 0; fd < anfdmax; ++fd)
315 if (anfds [fd].events) 367 if (anfds [fd].events)
316 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 368 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
317 fd_kill (fd); 369 fd_kill (EV_A_ fd);
318} 370}
319 371
320/* called on ENOMEM in select/poll to kill some fds and retry */ 372/* called on ENOMEM in select/poll to kill some fds and retry */
321static void 373static void
322fd_enomem (void) 374fd_enomem (EV_P)
323{ 375{
324 int fd = anfdmax; 376 int fd;
325 377
326 while (fd--) 378 for (fd = anfdmax; fd--; )
327 if (anfds [fd].events) 379 if (anfds [fd].events)
328 { 380 {
329 close (fd);
330 fd_kill (fd); 381 fd_kill (EV_A_ fd);
331 return; 382 return;
332 } 383 }
333} 384}
334 385
386/* susually called after fork if method needs to re-arm all fds from scratch */
387static void
388fd_rearm_all (EV_P)
389{
390 int fd;
391
392 /* this should be highly optimised to not do anything but set a flag */
393 for (fd = 0; fd < anfdmax; ++fd)
394 if (anfds [fd].events)
395 {
396 anfds [fd].events = 0;
397 fd_change (EV_A_ fd);
398 }
399}
400
335/*****************************************************************************/ 401/*****************************************************************************/
336 402
337static struct ev_timer **timers;
338static int timermax, timercnt;
339
340static struct ev_periodic **periodics;
341static int periodicmax, periodiccnt;
342
343static void 403static void
344upheap (WT *timers, int k) 404upheap (WT *heap, int k)
345{ 405{
346 WT w = timers [k]; 406 WT w = heap [k];
347 407
348 while (k && timers [k >> 1]->at > w->at) 408 while (k && heap [k >> 1]->at > w->at)
349 { 409 {
350 timers [k] = timers [k >> 1]; 410 heap [k] = heap [k >> 1];
351 timers [k]->active = k + 1; 411 ((W)heap [k])->active = k + 1;
352 k >>= 1; 412 k >>= 1;
353 } 413 }
354 414
355 timers [k] = w; 415 heap [k] = w;
356 timers [k]->active = k + 1; 416 ((W)heap [k])->active = k + 1;
357 417
358} 418}
359 419
360static void 420static void
361downheap (WT *timers, int N, int k) 421downheap (WT *heap, int N, int k)
362{ 422{
363 WT w = timers [k]; 423 WT w = heap [k];
364 424
365 while (k < (N >> 1)) 425 while (k < (N >> 1))
366 { 426 {
367 int j = k << 1; 427 int j = k << 1;
368 428
369 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 429 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
370 ++j; 430 ++j;
371 431
372 if (w->at <= timers [j]->at) 432 if (w->at <= heap [j]->at)
373 break; 433 break;
374 434
375 timers [k] = timers [j]; 435 heap [k] = heap [j];
376 timers [k]->active = k + 1; 436 ((W)heap [k])->active = k + 1;
377 k = j; 437 k = j;
378 } 438 }
379 439
380 timers [k] = w; 440 heap [k] = w;
381 timers [k]->active = k + 1; 441 ((W)heap [k])->active = k + 1;
382} 442}
383 443
384/*****************************************************************************/ 444/*****************************************************************************/
385 445
386typedef struct 446typedef struct
387{ 447{
388 struct ev_signal *head; 448 WL head;
389 sig_atomic_t volatile gotsig; 449 sig_atomic_t volatile gotsig;
390} ANSIG; 450} ANSIG;
391 451
392static ANSIG *signals; 452static ANSIG *signals;
393static int signalmax; 453static int signalmax;
409} 469}
410 470
411static void 471static void
412sighandler (int signum) 472sighandler (int signum)
413{ 473{
474#if WIN32
475 signal (signum, sighandler);
476#endif
477
414 signals [signum - 1].gotsig = 1; 478 signals [signum - 1].gotsig = 1;
415 479
416 if (!gotsig) 480 if (!gotsig)
417 { 481 {
418 int old_errno = errno; 482 int old_errno = errno;
421 errno = old_errno; 485 errno = old_errno;
422 } 486 }
423} 487}
424 488
425static void 489static void
426sigcb (struct ev_io *iow, int revents) 490sigcb (EV_P_ struct ev_io *iow, int revents)
427{ 491{
428 struct ev_signal *w; 492 WL w;
429 int signum; 493 int signum;
430 494
431 read (sigpipe [0], &revents, 1); 495 read (sigpipe [0], &revents, 1);
432 gotsig = 0; 496 gotsig = 0;
433 497
435 if (signals [signum].gotsig) 499 if (signals [signum].gotsig)
436 { 500 {
437 signals [signum].gotsig = 0; 501 signals [signum].gotsig = 0;
438 502
439 for (w = signals [signum].head; w; w = w->next) 503 for (w = signals [signum].head; w; w = w->next)
440 event ((W)w, EV_SIGNAL); 504 event (EV_A_ (W)w, EV_SIGNAL);
441 } 505 }
442} 506}
443 507
444static void 508static void
445siginit (void) 509siginit (EV_P)
446{ 510{
447#ifndef WIN32 511#ifndef WIN32
448 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 512 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
449 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 513 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
450 514
452 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 516 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
453 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 517 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
454#endif 518#endif
455 519
456 ev_io_set (&sigev, sigpipe [0], EV_READ); 520 ev_io_set (&sigev, sigpipe [0], EV_READ);
457 ev_io_start (&sigev); 521 ev_io_start (EV_A_ &sigev);
522 ev_unref (EV_A); /* child watcher should not keep loop alive */
458} 523}
459 524
460/*****************************************************************************/ 525/*****************************************************************************/
461 526
462static struct ev_idle **idles; 527#ifndef WIN32
463static int idlemax, idlecnt;
464
465static struct ev_prepare **prepares;
466static int preparemax, preparecnt;
467
468static struct ev_check **checks;
469static int checkmax, checkcnt;
470
471/*****************************************************************************/
472 528
473static struct ev_child *childs [PID_HASHSIZE]; 529static struct ev_child *childs [PID_HASHSIZE];
474static struct ev_signal childev; 530static struct ev_signal childev;
475 531
476#ifndef WIN32
477
478#ifndef WCONTINUED 532#ifndef WCONTINUED
479# define WCONTINUED 0 533# define WCONTINUED 0
480#endif 534#endif
481 535
482static void 536static void
483child_reap (struct ev_signal *sw, int chain, int pid, int status) 537child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
484{ 538{
485 struct ev_child *w; 539 struct ev_child *w;
486 540
487 for (w = childs [chain & (PID_HASHSIZE - 1)]; w; w = w->next) 541 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
488 if (w->pid == pid || !w->pid) 542 if (w->pid == pid || !w->pid)
489 { 543 {
490 w->priority = sw->priority; /* need to do it *now* */ 544 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
491 w->rpid = pid; 545 w->rpid = pid;
492 w->rstatus = status; 546 w->rstatus = status;
493 printf ("rpid %p %d %d\n", w, pid, w->pid);//D
494 event ((W)w, EV_CHILD); 547 event (EV_A_ (W)w, EV_CHILD);
495 } 548 }
496} 549}
497 550
498static void 551static void
499childcb (struct ev_signal *sw, int revents) 552childcb (EV_P_ struct ev_signal *sw, int revents)
500{ 553{
501 int pid, status; 554 int pid, status;
502 555
503 printf ("chld %x\n", revents);//D
504 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 556 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
505 { 557 {
506 /* make sure we are called again until all childs have been reaped */ 558 /* make sure we are called again until all childs have been reaped */
507 event ((W)sw, EV_SIGNAL); 559 event (EV_A_ (W)sw, EV_SIGNAL);
508 560
509 child_reap (sw, pid, pid, status); 561 child_reap (EV_A_ sw, pid, pid, status);
510 child_reap (sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 562 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
511 } 563 }
512} 564}
513 565
514#endif 566#endif
515 567
538ev_version_minor (void) 590ev_version_minor (void)
539{ 591{
540 return EV_VERSION_MINOR; 592 return EV_VERSION_MINOR;
541} 593}
542 594
543/* return true if we are running with elevated privileges and ignore env variables */ 595/* return true if we are running with elevated privileges and should ignore env variables */
544static int 596static int
545enable_secure () 597enable_secure (void)
546{ 598{
599#ifdef WIN32
600 return 0;
601#else
547 return getuid () != geteuid () 602 return getuid () != geteuid ()
548 || getgid () != getegid (); 603 || getgid () != getegid ();
604#endif
549} 605}
550 606
551int ev_init (int methods) 607int
608ev_method (EV_P)
552{ 609{
610 return method;
611}
612
613static void
614loop_init (EV_P_ int methods)
615{
553 if (!ev_method) 616 if (!method)
554 { 617 {
555#if EV_USE_MONOTONIC 618#if EV_USE_MONOTONIC
556 { 619 {
557 struct timespec ts; 620 struct timespec ts;
558 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 621 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
559 have_monotonic = 1; 622 have_monotonic = 1;
560 } 623 }
561#endif 624#endif
562 625
563 ev_now = ev_time (); 626 rt_now = ev_time ();
564 now = get_clock (); 627 mn_now = get_clock ();
565 now_floor = now; 628 now_floor = mn_now;
566 diff = ev_now - now; 629 rtmn_diff = rt_now - mn_now;
567
568 if (pipe (sigpipe))
569 return 0;
570 630
571 if (methods == EVMETHOD_AUTO) 631 if (methods == EVMETHOD_AUTO)
572 if (!enable_secure () && getenv ("LIBEV_METHODS")) 632 if (!enable_secure () && getenv ("LIBEV_METHODS"))
573 methods = atoi (getenv ("LIBEV_METHODS")); 633 methods = atoi (getenv ("LIBEV_METHODS"));
574 else 634 else
575 methods = EVMETHOD_ANY; 635 methods = EVMETHOD_ANY;
576 636
577 ev_method = 0; 637 method = 0;
638#if EV_USE_WIN32
639 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
640#endif
578#if EV_USE_KQUEUE 641#if EV_USE_KQUEUE
579 if (!ev_method && (methods & EVMETHOD_KQUEUE)) kqueue_init (methods); 642 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
580#endif 643#endif
581#if EV_USE_EPOLL 644#if EV_USE_EPOLL
582 if (!ev_method && (methods & EVMETHOD_EPOLL )) epoll_init (methods); 645 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
583#endif 646#endif
584#if EV_USE_POLL 647#if EV_USE_POLL
585 if (!ev_method && (methods & EVMETHOD_POLL )) poll_init (methods); 648 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
586#endif 649#endif
587#if EV_USE_SELECT 650#if EV_USE_SELECT
588 if (!ev_method && (methods & EVMETHOD_SELECT)) select_init (methods); 651 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
589#endif 652#endif
653 }
654}
590 655
656void
657loop_destroy (EV_P)
658{
659 int i;
660
661#if EV_USE_WIN32
662 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
663#endif
664#if EV_USE_KQUEUE
665 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
666#endif
667#if EV_USE_EPOLL
668 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
669#endif
670#if EV_USE_POLL
671 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
672#endif
673#if EV_USE_SELECT
674 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
675#endif
676
677 for (i = NUMPRI; i--; )
678 array_free (pending, [i]);
679
680 array_free (fdchange, );
681 array_free (timer, );
682 array_free (periodic, );
683 array_free (idle, );
684 array_free (prepare, );
685 array_free (check, );
686
687 method = 0;
688 /*TODO*/
689}
690
691void
692loop_fork (EV_P)
693{
694 /*TODO*/
695#if EV_USE_EPOLL
696 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
697#endif
698#if EV_USE_KQUEUE
699 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
700#endif
701}
702
703#if EV_MULTIPLICITY
704struct ev_loop *
705ev_loop_new (int methods)
706{
707 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
708
709 loop_init (EV_A_ methods);
710
711 if (ev_method (EV_A))
712 return loop;
713
714 return 0;
715}
716
717void
718ev_loop_destroy (EV_P)
719{
720 loop_destroy (EV_A);
721 free (loop);
722}
723
724void
725ev_loop_fork (EV_P)
726{
727 loop_fork (EV_A);
728}
729
730#endif
731
732#if EV_MULTIPLICITY
733struct ev_loop default_loop_struct;
734static struct ev_loop *default_loop;
735
736struct ev_loop *
737#else
738static int default_loop;
739
740int
741#endif
742ev_default_loop (int methods)
743{
744 if (sigpipe [0] == sigpipe [1])
745 if (pipe (sigpipe))
746 return 0;
747
748 if (!default_loop)
749 {
750#if EV_MULTIPLICITY
751 struct ev_loop *loop = default_loop = &default_loop_struct;
752#else
753 default_loop = 1;
754#endif
755
756 loop_init (EV_A_ methods);
757
591 if (ev_method) 758 if (ev_method (EV_A))
592 { 759 {
593 ev_watcher_init (&sigev, sigcb); 760 ev_watcher_init (&sigev, sigcb);
594 ev_set_priority (&sigev, EV_MAXPRI); 761 ev_set_priority (&sigev, EV_MAXPRI);
595 siginit (); 762 siginit (EV_A);
596 763
597#ifndef WIN32 764#ifndef WIN32
598 ev_signal_init (&childev, childcb, SIGCHLD); 765 ev_signal_init (&childev, childcb, SIGCHLD);
599 ev_set_priority (&childev, EV_MAXPRI); 766 ev_set_priority (&childev, EV_MAXPRI);
600 ev_signal_start (&childev); 767 ev_signal_start (EV_A_ &childev);
768 ev_unref (EV_A); /* child watcher should not keep loop alive */
601#endif 769#endif
602 } 770 }
771 else
772 default_loop = 0;
603 } 773 }
604 774
605 return ev_method; 775 return default_loop;
606} 776}
607 777
608/*****************************************************************************/
609
610void 778void
611ev_fork_prepare (void) 779ev_default_destroy (void)
612{ 780{
613 /* nop */ 781#if EV_MULTIPLICITY
614} 782 struct ev_loop *loop = default_loop;
615
616void
617ev_fork_parent (void)
618{
619 /* nop */
620}
621
622void
623ev_fork_child (void)
624{
625#if EV_USE_EPOLL
626 if (ev_method == EVMETHOD_EPOLL)
627 epoll_postfork_child ();
628#endif 783#endif
629 784
785 ev_ref (EV_A); /* child watcher */
786 ev_signal_stop (EV_A_ &childev);
787
788 ev_ref (EV_A); /* signal watcher */
630 ev_io_stop (&sigev); 789 ev_io_stop (EV_A_ &sigev);
790
791 close (sigpipe [0]); sigpipe [0] = 0;
792 close (sigpipe [1]); sigpipe [1] = 0;
793
794 loop_destroy (EV_A);
795}
796
797void
798ev_default_fork (void)
799{
800#if EV_MULTIPLICITY
801 struct ev_loop *loop = default_loop;
802#endif
803
804 loop_fork (EV_A);
805
806 ev_io_stop (EV_A_ &sigev);
631 close (sigpipe [0]); 807 close (sigpipe [0]);
632 close (sigpipe [1]); 808 close (sigpipe [1]);
633 pipe (sigpipe); 809 pipe (sigpipe);
810
811 ev_ref (EV_A); /* signal watcher */
634 siginit (); 812 siginit (EV_A);
635} 813}
636 814
637/*****************************************************************************/ 815/*****************************************************************************/
638 816
639static void 817static void
640call_pending (void) 818call_pending (EV_P)
641{ 819{
642 int pri; 820 int pri;
643 821
644 for (pri = NUMPRI; pri--; ) 822 for (pri = NUMPRI; pri--; )
645 while (pendingcnt [pri]) 823 while (pendingcnt [pri])
647 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 825 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
648 826
649 if (p->w) 827 if (p->w)
650 { 828 {
651 p->w->pending = 0; 829 p->w->pending = 0;
652 p->w->cb (p->w, p->events); 830 p->w->cb (EV_A_ p->w, p->events);
653 } 831 }
654 } 832 }
655} 833}
656 834
657static void 835static void
658timers_reify (void) 836timers_reify (EV_P)
659{ 837{
660 while (timercnt && timers [0]->at <= now) 838 while (timercnt && ((WT)timers [0])->at <= mn_now)
661 { 839 {
662 struct ev_timer *w = timers [0]; 840 struct ev_timer *w = timers [0];
841
842 assert (("inactive timer on timer heap detected", ev_is_active (w)));
663 843
664 /* first reschedule or stop timer */ 844 /* first reschedule or stop timer */
665 if (w->repeat) 845 if (w->repeat)
666 { 846 {
667 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 847 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
668 w->at = now + w->repeat; 848 ((WT)w)->at = mn_now + w->repeat;
669 downheap ((WT *)timers, timercnt, 0); 849 downheap ((WT *)timers, timercnt, 0);
670 } 850 }
671 else 851 else
672 ev_timer_stop (w); /* nonrepeating: stop timer */ 852 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
673 853
674 event ((W)w, EV_TIMEOUT); 854 event (EV_A_ (W)w, EV_TIMEOUT);
675 } 855 }
676} 856}
677 857
678static void 858static void
679periodics_reify (void) 859periodics_reify (EV_P)
680{ 860{
681 while (periodiccnt && periodics [0]->at <= ev_now) 861 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
682 { 862 {
683 struct ev_periodic *w = periodics [0]; 863 struct ev_periodic *w = periodics [0];
864
865 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
684 866
685 /* first reschedule or stop timer */ 867 /* first reschedule or stop timer */
686 if (w->interval) 868 if (w->interval)
687 { 869 {
688 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 870 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
689 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 871 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
690 downheap ((WT *)periodics, periodiccnt, 0); 872 downheap ((WT *)periodics, periodiccnt, 0);
691 } 873 }
692 else 874 else
693 ev_periodic_stop (w); /* nonrepeating: stop timer */ 875 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
694 876
695 event ((W)w, EV_PERIODIC); 877 event (EV_A_ (W)w, EV_PERIODIC);
696 } 878 }
697} 879}
698 880
699static void 881static void
700periodics_reschedule (ev_tstamp diff) 882periodics_reschedule (EV_P)
701{ 883{
702 int i; 884 int i;
703 885
704 /* adjust periodics after time jump */ 886 /* adjust periodics after time jump */
705 for (i = 0; i < periodiccnt; ++i) 887 for (i = 0; i < periodiccnt; ++i)
706 { 888 {
707 struct ev_periodic *w = periodics [i]; 889 struct ev_periodic *w = periodics [i];
708 890
709 if (w->interval) 891 if (w->interval)
710 { 892 {
711 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 893 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
712 894
713 if (fabs (diff) >= 1e-4) 895 if (fabs (diff) >= 1e-4)
714 { 896 {
715 ev_periodic_stop (w); 897 ev_periodic_stop (EV_A_ w);
716 ev_periodic_start (w); 898 ev_periodic_start (EV_A_ w);
717 899
718 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 900 i = 0; /* restart loop, inefficient, but time jumps should be rare */
719 } 901 }
720 } 902 }
721 } 903 }
722} 904}
723 905
724static int 906inline int
725time_update_monotonic (void) 907time_update_monotonic (EV_P)
726{ 908{
727 now = get_clock (); 909 mn_now = get_clock ();
728 910
729 if (expect_true (now - now_floor < MIN_TIMEJUMP * .5)) 911 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
730 { 912 {
731 ev_now = now + diff; 913 rt_now = rtmn_diff + mn_now;
732 return 0; 914 return 0;
733 } 915 }
734 else 916 else
735 { 917 {
736 now_floor = now; 918 now_floor = mn_now;
737 ev_now = ev_time (); 919 rt_now = ev_time ();
738 return 1; 920 return 1;
739 } 921 }
740} 922}
741 923
742static void 924static void
743time_update (void) 925time_update (EV_P)
744{ 926{
745 int i; 927 int i;
746 928
747#if EV_USE_MONOTONIC 929#if EV_USE_MONOTONIC
748 if (expect_true (have_monotonic)) 930 if (expect_true (have_monotonic))
749 { 931 {
750 if (time_update_monotonic ()) 932 if (time_update_monotonic (EV_A))
751 { 933 {
752 ev_tstamp odiff = diff; 934 ev_tstamp odiff = rtmn_diff;
753 935
754 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 936 for (i = 4; --i; ) /* loop a few times, before making important decisions */
755 { 937 {
756 diff = ev_now - now; 938 rtmn_diff = rt_now - mn_now;
757 939
758 if (fabs (odiff - diff) < MIN_TIMEJUMP) 940 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
759 return; /* all is well */ 941 return; /* all is well */
760 942
761 ev_now = ev_time (); 943 rt_now = ev_time ();
762 now = get_clock (); 944 mn_now = get_clock ();
763 now_floor = now; 945 now_floor = mn_now;
764 } 946 }
765 947
766 periodics_reschedule (diff - odiff); 948 periodics_reschedule (EV_A);
767 /* no timer adjustment, as the monotonic clock doesn't jump */ 949 /* no timer adjustment, as the monotonic clock doesn't jump */
950 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
768 } 951 }
769 } 952 }
770 else 953 else
771#endif 954#endif
772 { 955 {
773 ev_now = ev_time (); 956 rt_now = ev_time ();
774 957
775 if (expect_false (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 958 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
776 { 959 {
777 periodics_reschedule (ev_now - now); 960 periodics_reschedule (EV_A);
778 961
779 /* adjust timers. this is easy, as the offset is the same for all */ 962 /* adjust timers. this is easy, as the offset is the same for all */
780 for (i = 0; i < timercnt; ++i) 963 for (i = 0; i < timercnt; ++i)
781 timers [i]->at += diff; 964 ((WT)timers [i])->at += rt_now - mn_now;
782 } 965 }
783 966
784 now = ev_now; 967 mn_now = rt_now;
785 } 968 }
786} 969}
787 970
788int ev_loop_done; 971void
972ev_ref (EV_P)
973{
974 ++activecnt;
975}
789 976
977void
978ev_unref (EV_P)
979{
980 --activecnt;
981}
982
983static int loop_done;
984
985void
790void ev_loop (int flags) 986ev_loop (EV_P_ int flags)
791{ 987{
792 double block; 988 double block;
793 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 989 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
794 990
795 do 991 do
796 { 992 {
797 /* queue check watchers (and execute them) */ 993 /* queue check watchers (and execute them) */
798 if (expect_false (preparecnt)) 994 if (expect_false (preparecnt))
799 { 995 {
800 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 996 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
801 call_pending (); 997 call_pending (EV_A);
802 } 998 }
803 999
804 /* update fd-related kernel structures */ 1000 /* update fd-related kernel structures */
805 fd_reify (); 1001 fd_reify (EV_A);
806 1002
807 /* calculate blocking time */ 1003 /* calculate blocking time */
808 1004
809 /* we only need this for !monotonic clockor timers, but as we basically 1005 /* we only need this for !monotonic clockor timers, but as we basically
810 always have timers, we just calculate it always */ 1006 always have timers, we just calculate it always */
811#if EV_USE_MONOTONIC 1007#if EV_USE_MONOTONIC
812 if (expect_true (have_monotonic)) 1008 if (expect_true (have_monotonic))
813 time_update_monotonic (); 1009 time_update_monotonic (EV_A);
814 else 1010 else
815#endif 1011#endif
816 { 1012 {
817 ev_now = ev_time (); 1013 rt_now = ev_time ();
818 now = ev_now; 1014 mn_now = rt_now;
819 } 1015 }
820 1016
821 if (flags & EVLOOP_NONBLOCK || idlecnt) 1017 if (flags & EVLOOP_NONBLOCK || idlecnt)
822 block = 0.; 1018 block = 0.;
823 else 1019 else
824 { 1020 {
825 block = MAX_BLOCKTIME; 1021 block = MAX_BLOCKTIME;
826 1022
827 if (timercnt) 1023 if (timercnt)
828 { 1024 {
829 ev_tstamp to = timers [0]->at - now + method_fudge; 1025 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
830 if (block > to) block = to; 1026 if (block > to) block = to;
831 } 1027 }
832 1028
833 if (periodiccnt) 1029 if (periodiccnt)
834 { 1030 {
835 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1031 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
836 if (block > to) block = to; 1032 if (block > to) block = to;
837 } 1033 }
838 1034
839 if (block < 0.) block = 0.; 1035 if (block < 0.) block = 0.;
840 } 1036 }
841 1037
842 method_poll (block); 1038 method_poll (EV_A_ block);
843 1039
844 /* update ev_now, do magic */ 1040 /* update rt_now, do magic */
845 time_update (); 1041 time_update (EV_A);
846 1042
847 /* queue pending timers and reschedule them */ 1043 /* queue pending timers and reschedule them */
848 timers_reify (); /* relative timers called last */ 1044 timers_reify (EV_A); /* relative timers called last */
849 periodics_reify (); /* absolute timers called first */ 1045 periodics_reify (EV_A); /* absolute timers called first */
850 1046
851 /* queue idle watchers unless io or timers are pending */ 1047 /* queue idle watchers unless io or timers are pending */
852 if (!pendingcnt) 1048 if (!pendingcnt)
853 queue_events ((W *)idles, idlecnt, EV_IDLE); 1049 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
854 1050
855 /* queue check watchers, to be executed first */ 1051 /* queue check watchers, to be executed first */
856 if (checkcnt) 1052 if (checkcnt)
857 queue_events ((W *)checks, checkcnt, EV_CHECK); 1053 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
858 1054
859 call_pending (); 1055 call_pending (EV_A);
860 } 1056 }
861 while (!ev_loop_done); 1057 while (activecnt && !loop_done);
862 1058
863 if (ev_loop_done != 2) 1059 if (loop_done != 2)
864 ev_loop_done = 0; 1060 loop_done = 0;
1061}
1062
1063void
1064ev_unloop (EV_P_ int how)
1065{
1066 loop_done = how;
865} 1067}
866 1068
867/*****************************************************************************/ 1069/*****************************************************************************/
868 1070
869static void 1071inline void
870wlist_add (WL *head, WL elem) 1072wlist_add (WL *head, WL elem)
871{ 1073{
872 elem->next = *head; 1074 elem->next = *head;
873 *head = elem; 1075 *head = elem;
874} 1076}
875 1077
876static void 1078inline void
877wlist_del (WL *head, WL elem) 1079wlist_del (WL *head, WL elem)
878{ 1080{
879 while (*head) 1081 while (*head)
880 { 1082 {
881 if (*head == elem) 1083 if (*head == elem)
886 1088
887 head = &(*head)->next; 1089 head = &(*head)->next;
888 } 1090 }
889} 1091}
890 1092
891static void 1093inline void
892ev_clear_pending (W w) 1094ev_clear_pending (EV_P_ W w)
893{ 1095{
894 if (w->pending) 1096 if (w->pending)
895 { 1097 {
896 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1098 pendings [ABSPRI (w)][w->pending - 1].w = 0;
897 w->pending = 0; 1099 w->pending = 0;
898 } 1100 }
899} 1101}
900 1102
901static void 1103inline void
902ev_start (W w, int active) 1104ev_start (EV_P_ W w, int active)
903{ 1105{
904 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1106 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
905 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 1107 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
906 1108
907 w->active = active; 1109 w->active = active;
1110 ev_ref (EV_A);
908} 1111}
909 1112
910static void 1113inline void
911ev_stop (W w) 1114ev_stop (EV_P_ W w)
912{ 1115{
1116 ev_unref (EV_A);
913 w->active = 0; 1117 w->active = 0;
914} 1118}
915 1119
916/*****************************************************************************/ 1120/*****************************************************************************/
917 1121
918void 1122void
919ev_io_start (struct ev_io *w) 1123ev_io_start (EV_P_ struct ev_io *w)
920{ 1124{
921 int fd = w->fd; 1125 int fd = w->fd;
922 1126
923 if (ev_is_active (w)) 1127 if (ev_is_active (w))
924 return; 1128 return;
925 1129
926 assert (("ev_io_start called with negative fd", fd >= 0)); 1130 assert (("ev_io_start called with negative fd", fd >= 0));
927 1131
928 ev_start ((W)w, 1); 1132 ev_start (EV_A_ (W)w, 1);
929 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1133 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
930 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1134 wlist_add ((WL *)&anfds[fd].head, (WL)w);
931 1135
932 fd_change (fd); 1136 fd_change (EV_A_ fd);
933} 1137}
934 1138
935void 1139void
936ev_io_stop (struct ev_io *w) 1140ev_io_stop (EV_P_ struct ev_io *w)
937{ 1141{
938 ev_clear_pending ((W)w); 1142 ev_clear_pending (EV_A_ (W)w);
939 if (!ev_is_active (w)) 1143 if (!ev_is_active (w))
940 return; 1144 return;
941 1145
942 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1146 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
943 ev_stop ((W)w); 1147 ev_stop (EV_A_ (W)w);
944 1148
945 fd_change (w->fd); 1149 fd_change (EV_A_ w->fd);
946} 1150}
947 1151
948void 1152void
949ev_timer_start (struct ev_timer *w) 1153ev_timer_start (EV_P_ struct ev_timer *w)
950{ 1154{
951 if (ev_is_active (w)) 1155 if (ev_is_active (w))
952 return; 1156 return;
953 1157
954 w->at += now; 1158 ((WT)w)->at += mn_now;
955 1159
956 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1160 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
957 1161
958 ev_start ((W)w, ++timercnt); 1162 ev_start (EV_A_ (W)w, ++timercnt);
959 array_needsize (timers, timermax, timercnt, ); 1163 array_needsize (timers, timermax, timercnt, );
960 timers [timercnt - 1] = w; 1164 timers [timercnt - 1] = w;
961 upheap ((WT *)timers, timercnt - 1); 1165 upheap ((WT *)timers, timercnt - 1);
962}
963 1166
1167 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1168}
1169
964void 1170void
965ev_timer_stop (struct ev_timer *w) 1171ev_timer_stop (EV_P_ struct ev_timer *w)
966{ 1172{
967 ev_clear_pending ((W)w); 1173 ev_clear_pending (EV_A_ (W)w);
968 if (!ev_is_active (w)) 1174 if (!ev_is_active (w))
969 return; 1175 return;
970 1176
1177 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1178
971 if (w->active < timercnt--) 1179 if (((W)w)->active < timercnt--)
972 { 1180 {
973 timers [w->active - 1] = timers [timercnt]; 1181 timers [((W)w)->active - 1] = timers [timercnt];
974 downheap ((WT *)timers, timercnt, w->active - 1); 1182 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
975 } 1183 }
976 1184
977 w->at = w->repeat; 1185 ((WT)w)->at = w->repeat;
978 1186
979 ev_stop ((W)w); 1187 ev_stop (EV_A_ (W)w);
980} 1188}
981 1189
982void 1190void
983ev_timer_again (struct ev_timer *w) 1191ev_timer_again (EV_P_ struct ev_timer *w)
984{ 1192{
985 if (ev_is_active (w)) 1193 if (ev_is_active (w))
986 { 1194 {
987 if (w->repeat) 1195 if (w->repeat)
988 { 1196 {
989 w->at = now + w->repeat; 1197 ((WT)w)->at = mn_now + w->repeat;
990 downheap ((WT *)timers, timercnt, w->active - 1); 1198 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
991 } 1199 }
992 else 1200 else
993 ev_timer_stop (w); 1201 ev_timer_stop (EV_A_ w);
994 } 1202 }
995 else if (w->repeat) 1203 else if (w->repeat)
996 ev_timer_start (w); 1204 ev_timer_start (EV_A_ w);
997} 1205}
998 1206
999void 1207void
1000ev_periodic_start (struct ev_periodic *w) 1208ev_periodic_start (EV_P_ struct ev_periodic *w)
1001{ 1209{
1002 if (ev_is_active (w)) 1210 if (ev_is_active (w))
1003 return; 1211 return;
1004 1212
1005 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1213 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1006 1214
1007 /* this formula differs from the one in periodic_reify because we do not always round up */ 1215 /* this formula differs from the one in periodic_reify because we do not always round up */
1008 if (w->interval) 1216 if (w->interval)
1009 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1217 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1010 1218
1011 ev_start ((W)w, ++periodiccnt); 1219 ev_start (EV_A_ (W)w, ++periodiccnt);
1012 array_needsize (periodics, periodicmax, periodiccnt, ); 1220 array_needsize (periodics, periodicmax, periodiccnt, );
1013 periodics [periodiccnt - 1] = w; 1221 periodics [periodiccnt - 1] = w;
1014 upheap ((WT *)periodics, periodiccnt - 1); 1222 upheap ((WT *)periodics, periodiccnt - 1);
1015}
1016 1223
1224 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1225}
1226
1017void 1227void
1018ev_periodic_stop (struct ev_periodic *w) 1228ev_periodic_stop (EV_P_ struct ev_periodic *w)
1019{ 1229{
1020 ev_clear_pending ((W)w); 1230 ev_clear_pending (EV_A_ (W)w);
1021 if (!ev_is_active (w)) 1231 if (!ev_is_active (w))
1022 return; 1232 return;
1023 1233
1234 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1235
1024 if (w->active < periodiccnt--) 1236 if (((W)w)->active < periodiccnt--)
1025 { 1237 {
1026 periodics [w->active - 1] = periodics [periodiccnt]; 1238 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1027 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1239 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1028 } 1240 }
1029 1241
1030 ev_stop ((W)w); 1242 ev_stop (EV_A_ (W)w);
1243}
1244
1245void
1246ev_idle_start (EV_P_ struct ev_idle *w)
1247{
1248 if (ev_is_active (w))
1249 return;
1250
1251 ev_start (EV_A_ (W)w, ++idlecnt);
1252 array_needsize (idles, idlemax, idlecnt, );
1253 idles [idlecnt - 1] = w;
1254}
1255
1256void
1257ev_idle_stop (EV_P_ struct ev_idle *w)
1258{
1259 ev_clear_pending (EV_A_ (W)w);
1260 if (ev_is_active (w))
1261 return;
1262
1263 idles [((W)w)->active - 1] = idles [--idlecnt];
1264 ev_stop (EV_A_ (W)w);
1265}
1266
1267void
1268ev_prepare_start (EV_P_ struct ev_prepare *w)
1269{
1270 if (ev_is_active (w))
1271 return;
1272
1273 ev_start (EV_A_ (W)w, ++preparecnt);
1274 array_needsize (prepares, preparemax, preparecnt, );
1275 prepares [preparecnt - 1] = w;
1276}
1277
1278void
1279ev_prepare_stop (EV_P_ struct ev_prepare *w)
1280{
1281 ev_clear_pending (EV_A_ (W)w);
1282 if (ev_is_active (w))
1283 return;
1284
1285 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1286 ev_stop (EV_A_ (W)w);
1287}
1288
1289void
1290ev_check_start (EV_P_ struct ev_check *w)
1291{
1292 if (ev_is_active (w))
1293 return;
1294
1295 ev_start (EV_A_ (W)w, ++checkcnt);
1296 array_needsize (checks, checkmax, checkcnt, );
1297 checks [checkcnt - 1] = w;
1298}
1299
1300void
1301ev_check_stop (EV_P_ struct ev_check *w)
1302{
1303 ev_clear_pending (EV_A_ (W)w);
1304 if (ev_is_active (w))
1305 return;
1306
1307 checks [((W)w)->active - 1] = checks [--checkcnt];
1308 ev_stop (EV_A_ (W)w);
1031} 1309}
1032 1310
1033#ifndef SA_RESTART 1311#ifndef SA_RESTART
1034# define SA_RESTART 0 1312# define SA_RESTART 0
1035#endif 1313#endif
1036 1314
1037void 1315void
1038ev_signal_start (struct ev_signal *w) 1316ev_signal_start (EV_P_ struct ev_signal *w)
1039{ 1317{
1318#if EV_MULTIPLICITY
1319 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1320#endif
1040 if (ev_is_active (w)) 1321 if (ev_is_active (w))
1041 return; 1322 return;
1042 1323
1043 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1324 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1044 1325
1045 ev_start ((W)w, 1); 1326 ev_start (EV_A_ (W)w, 1);
1046 array_needsize (signals, signalmax, w->signum, signals_init); 1327 array_needsize (signals, signalmax, w->signum, signals_init);
1047 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1328 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1048 1329
1049 if (!w->next) 1330 if (!((WL)w)->next)
1050 { 1331 {
1332#if WIN32
1333 signal (w->signum, sighandler);
1334#else
1051 struct sigaction sa; 1335 struct sigaction sa;
1052 sa.sa_handler = sighandler; 1336 sa.sa_handler = sighandler;
1053 sigfillset (&sa.sa_mask); 1337 sigfillset (&sa.sa_mask);
1054 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1338 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1055 sigaction (w->signum, &sa, 0); 1339 sigaction (w->signum, &sa, 0);
1340#endif
1056 } 1341 }
1057} 1342}
1058 1343
1059void 1344void
1060ev_signal_stop (struct ev_signal *w) 1345ev_signal_stop (EV_P_ struct ev_signal *w)
1061{ 1346{
1062 ev_clear_pending ((W)w); 1347 ev_clear_pending (EV_A_ (W)w);
1063 if (!ev_is_active (w)) 1348 if (!ev_is_active (w))
1064 return; 1349 return;
1065 1350
1066 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1351 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1067 ev_stop ((W)w); 1352 ev_stop (EV_A_ (W)w);
1068 1353
1069 if (!signals [w->signum - 1].head) 1354 if (!signals [w->signum - 1].head)
1070 signal (w->signum, SIG_DFL); 1355 signal (w->signum, SIG_DFL);
1071} 1356}
1072 1357
1073void 1358void
1074ev_idle_start (struct ev_idle *w) 1359ev_child_start (EV_P_ struct ev_child *w)
1075{ 1360{
1361#if EV_MULTIPLICITY
1362 assert (("child watchers are only supported in the default loop", loop == default_loop));
1363#endif
1076 if (ev_is_active (w)) 1364 if (ev_is_active (w))
1077 return; 1365 return;
1078 1366
1079 ev_start ((W)w, ++idlecnt); 1367 ev_start (EV_A_ (W)w, 1);
1080 array_needsize (idles, idlemax, idlecnt, ); 1368 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1081 idles [idlecnt - 1] = w;
1082} 1369}
1083 1370
1084void 1371void
1085ev_idle_stop (struct ev_idle *w) 1372ev_child_stop (EV_P_ struct ev_child *w)
1086{ 1373{
1087 ev_clear_pending ((W)w); 1374 ev_clear_pending (EV_A_ (W)w);
1088 if (ev_is_active (w)) 1375 if (ev_is_active (w))
1089 return; 1376 return;
1090 1377
1091 idles [w->active - 1] = idles [--idlecnt];
1092 ev_stop ((W)w);
1093}
1094
1095void
1096ev_prepare_start (struct ev_prepare *w)
1097{
1098 if (ev_is_active (w))
1099 return;
1100
1101 ev_start ((W)w, ++preparecnt);
1102 array_needsize (prepares, preparemax, preparecnt, );
1103 prepares [preparecnt - 1] = w;
1104}
1105
1106void
1107ev_prepare_stop (struct ev_prepare *w)
1108{
1109 ev_clear_pending ((W)w);
1110 if (ev_is_active (w))
1111 return;
1112
1113 prepares [w->active - 1] = prepares [--preparecnt];
1114 ev_stop ((W)w);
1115}
1116
1117void
1118ev_check_start (struct ev_check *w)
1119{
1120 if (ev_is_active (w))
1121 return;
1122
1123 ev_start ((W)w, ++checkcnt);
1124 array_needsize (checks, checkmax, checkcnt, );
1125 checks [checkcnt - 1] = w;
1126}
1127
1128void
1129ev_check_stop (struct ev_check *w)
1130{
1131 ev_clear_pending ((W)w);
1132 if (ev_is_active (w))
1133 return;
1134
1135 checks [w->active - 1] = checks [--checkcnt];
1136 ev_stop ((W)w);
1137}
1138
1139void
1140ev_child_start (struct ev_child *w)
1141{
1142 if (ev_is_active (w))
1143 return;
1144
1145 ev_start ((W)w, 1);
1146 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1147}
1148
1149void
1150ev_child_stop (struct ev_child *w)
1151{
1152 ev_clear_pending ((W)w);
1153 if (ev_is_active (w))
1154 return;
1155
1156 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1378 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1157 ev_stop ((W)w); 1379 ev_stop (EV_A_ (W)w);
1158} 1380}
1159 1381
1160/*****************************************************************************/ 1382/*****************************************************************************/
1161 1383
1162struct ev_once 1384struct ev_once
1166 void (*cb)(int revents, void *arg); 1388 void (*cb)(int revents, void *arg);
1167 void *arg; 1389 void *arg;
1168}; 1390};
1169 1391
1170static void 1392static void
1171once_cb (struct ev_once *once, int revents) 1393once_cb (EV_P_ struct ev_once *once, int revents)
1172{ 1394{
1173 void (*cb)(int revents, void *arg) = once->cb; 1395 void (*cb)(int revents, void *arg) = once->cb;
1174 void *arg = once->arg; 1396 void *arg = once->arg;
1175 1397
1176 ev_io_stop (&once->io); 1398 ev_io_stop (EV_A_ &once->io);
1177 ev_timer_stop (&once->to); 1399 ev_timer_stop (EV_A_ &once->to);
1178 free (once); 1400 free (once);
1179 1401
1180 cb (revents, arg); 1402 cb (revents, arg);
1181} 1403}
1182 1404
1183static void 1405static void
1184once_cb_io (struct ev_io *w, int revents) 1406once_cb_io (EV_P_ struct ev_io *w, int revents)
1185{ 1407{
1186 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1408 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1187} 1409}
1188 1410
1189static void 1411static void
1190once_cb_to (struct ev_timer *w, int revents) 1412once_cb_to (EV_P_ struct ev_timer *w, int revents)
1191{ 1413{
1192 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1414 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1193} 1415}
1194 1416
1195void 1417void
1196ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1418ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1197{ 1419{
1198 struct ev_once *once = malloc (sizeof (struct ev_once)); 1420 struct ev_once *once = malloc (sizeof (struct ev_once));
1199 1421
1200 if (!once) 1422 if (!once)
1201 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1423 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1206 1428
1207 ev_watcher_init (&once->io, once_cb_io); 1429 ev_watcher_init (&once->io, once_cb_io);
1208 if (fd >= 0) 1430 if (fd >= 0)
1209 { 1431 {
1210 ev_io_set (&once->io, fd, events); 1432 ev_io_set (&once->io, fd, events);
1211 ev_io_start (&once->io); 1433 ev_io_start (EV_A_ &once->io);
1212 } 1434 }
1213 1435
1214 ev_watcher_init (&once->to, once_cb_to); 1436 ev_watcher_init (&once->to, once_cb_to);
1215 if (timeout >= 0.) 1437 if (timeout >= 0.)
1216 { 1438 {
1217 ev_timer_set (&once->to, timeout, 0.); 1439 ev_timer_set (&once->to, timeout, 0.);
1218 ev_timer_start (&once->to); 1440 ev_timer_start (EV_A_ &once->to);
1219 } 1441 }
1220 } 1442 }
1221} 1443}
1222 1444
1223/*****************************************************************************/
1224
1225#if 0
1226
1227struct ev_io wio;
1228
1229static void
1230sin_cb (struct ev_io *w, int revents)
1231{
1232 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1233}
1234
1235static void
1236ocb (struct ev_timer *w, int revents)
1237{
1238 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1239 ev_timer_stop (w);
1240 ev_timer_start (w);
1241}
1242
1243static void
1244scb (struct ev_signal *w, int revents)
1245{
1246 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1247 ev_io_stop (&wio);
1248 ev_io_start (&wio);
1249}
1250
1251static void
1252gcb (struct ev_signal *w, int revents)
1253{
1254 fprintf (stderr, "generic %x\n", revents);
1255
1256}
1257
1258int main (void)
1259{
1260 ev_init (0);
1261
1262 ev_io_init (&wio, sin_cb, 0, EV_READ);
1263 ev_io_start (&wio);
1264
1265 struct ev_timer t[10000];
1266
1267#if 0
1268 int i;
1269 for (i = 0; i < 10000; ++i)
1270 {
1271 struct ev_timer *w = t + i;
1272 ev_watcher_init (w, ocb, i);
1273 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1274 ev_timer_start (w);
1275 if (drand48 () < 0.5)
1276 ev_timer_stop (w);
1277 }
1278#endif
1279
1280 struct ev_timer t1;
1281 ev_timer_init (&t1, ocb, 5, 10);
1282 ev_timer_start (&t1);
1283
1284 struct ev_signal sig;
1285 ev_signal_init (&sig, scb, SIGQUIT);
1286 ev_signal_start (&sig);
1287
1288 struct ev_check cw;
1289 ev_check_init (&cw, gcb);
1290 ev_check_start (&cw);
1291
1292 struct ev_idle iw;
1293 ev_idle_init (&iw, gcb);
1294 ev_idle_start (&iw);
1295
1296 ev_loop (0);
1297
1298 return 0;
1299}
1300
1301#endif
1302
1303
1304
1305

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines