ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.48 by root, Sat Nov 3 12:19:31 2007 UTC vs.
Revision 1.69 by root, Tue Nov 6 00:10:04 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h> 59#include <unistd.h>
70 92
71#ifndef EV_USE_KQUEUE 93#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 94# define EV_USE_KQUEUE 0
73#endif 95#endif
74 96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
103#endif
104
75#ifndef EV_USE_REALTIME 105#ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 1 106# define EV_USE_REALTIME 1
77#endif 107#endif
78 108
79/**/ 109/**/
113 143
114typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
115typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
117 147
118static ev_tstamp now_floor, now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
119ev_tstamp ev_now;
120int ev_method;
121 149
122static int have_monotonic; /* runtime */ 150#if WIN32
123 151/* note: the comment below could not be substantiated, but what would I care */
124static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 152/* MSDN says this is required to handle SIGFPE */
125static void (*method_modify)(int fd, int oev, int nev); 153volatile double SIGFPE_REQ = 0.0f;
126static void (*method_poll)(ev_tstamp timeout); 154#endif
127 155
128/*****************************************************************************/ 156/*****************************************************************************/
129 157
130ev_tstamp 158static void (*syserr_cb)(void);
159
160void ev_set_syserr_cb (void (*cb)(void))
161{
162 syserr_cb = cb;
163}
164
165static void
166syserr (void)
167{
168 if (syserr_cb)
169 syserr_cb ();
170 else
171 {
172 perror ("libev");
173 abort ();
174 }
175}
176
177static void *(*alloc)(void *ptr, long size);
178
179void ev_set_allocator (void *(*cb)(void *ptr, long size))
180{
181 alloc = cb;
182}
183
184static void *
185ev_realloc (void *ptr, long size)
186{
187 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
188
189 if (!ptr && size)
190 {
191 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
192 abort ();
193 }
194
195 return ptr;
196}
197
198#define ev_malloc(size) ev_realloc (0, (size))
199#define ev_free(ptr) ev_realloc ((ptr), 0)
200
201/*****************************************************************************/
202
203typedef struct
204{
205 WL head;
206 unsigned char events;
207 unsigned char reify;
208} ANFD;
209
210typedef struct
211{
212 W w;
213 int events;
214} ANPENDING;
215
216#if EV_MULTIPLICITY
217
218struct ev_loop
219{
220# define VAR(name,decl) decl;
221# include "ev_vars.h"
222};
223# undef VAR
224# include "ev_wrap.h"
225
226#else
227
228# define VAR(name,decl) static decl;
229# include "ev_vars.h"
230# undef VAR
231
232#endif
233
234/*****************************************************************************/
235
236inline ev_tstamp
131ev_time (void) 237ev_time (void)
132{ 238{
133#if EV_USE_REALTIME 239#if EV_USE_REALTIME
134 struct timespec ts; 240 struct timespec ts;
135 clock_gettime (CLOCK_REALTIME, &ts); 241 clock_gettime (CLOCK_REALTIME, &ts);
139 gettimeofday (&tv, 0); 245 gettimeofday (&tv, 0);
140 return tv.tv_sec + tv.tv_usec * 1e-6; 246 return tv.tv_sec + tv.tv_usec * 1e-6;
141#endif 247#endif
142} 248}
143 249
144static ev_tstamp 250inline ev_tstamp
145get_clock (void) 251get_clock (void)
146{ 252{
147#if EV_USE_MONOTONIC 253#if EV_USE_MONOTONIC
148 if (expect_true (have_monotonic)) 254 if (expect_true (have_monotonic))
149 { 255 {
154#endif 260#endif
155 261
156 return ev_time (); 262 return ev_time ();
157} 263}
158 264
265ev_tstamp
266ev_now (EV_P)
267{
268 return rt_now;
269}
270
159#define array_roundsize(base,n) ((n) | 4 & ~3) 271#define array_roundsize(base,n) ((n) | 4 & ~3)
160 272
161#define array_needsize(base,cur,cnt,init) \ 273#define array_needsize(base,cur,cnt,init) \
162 if (expect_false ((cnt) > cur)) \ 274 if (expect_false ((cnt) > cur)) \
163 { \ 275 { \
164 int newcnt = cur; \ 276 int newcnt = cur; \
165 do \ 277 do \
166 { \ 278 { \
167 newcnt = array_roundsize (base, newcnt << 1); \ 279 newcnt = array_roundsize (base, newcnt << 1); \
168 } \ 280 } \
169 while ((cnt) > newcnt); \ 281 while ((cnt) > newcnt); \
170 \ 282 \
171 base = realloc (base, sizeof (*base) * (newcnt)); \ 283 base = ev_realloc (base, sizeof (*base) * (newcnt)); \
172 init (base + cur, newcnt - cur); \ 284 init (base + cur, newcnt - cur); \
173 cur = newcnt; \ 285 cur = newcnt; \
174 } 286 }
287
288#define array_slim(stem) \
289 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
290 { \
291 stem ## max = array_roundsize (stem ## cnt >> 1); \
292 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \
293 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
294 }
295
296#define array_free(stem, idx) \
297 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
175 298
176/*****************************************************************************/ 299/*****************************************************************************/
177
178typedef struct
179{
180 struct ev_io *head;
181 unsigned char events;
182 unsigned char reify;
183} ANFD;
184
185static ANFD *anfds;
186static int anfdmax;
187 300
188static void 301static void
189anfds_init (ANFD *base, int count) 302anfds_init (ANFD *base, int count)
190{ 303{
191 while (count--) 304 while (count--)
196 309
197 ++base; 310 ++base;
198 } 311 }
199} 312}
200 313
201typedef struct
202{
203 W w;
204 int events;
205} ANPENDING;
206
207static ANPENDING *pendings [NUMPRI];
208static int pendingmax [NUMPRI], pendingcnt [NUMPRI];
209
210static void 314static void
211event (W w, int events) 315event (EV_P_ W w, int events)
212{ 316{
213 if (w->pending) 317 if (w->pending)
214 { 318 {
215 pendings [ABSPRI (w)][w->pending - 1].events |= events; 319 pendings [ABSPRI (w)][w->pending - 1].events |= events;
216 return; 320 return;
221 pendings [ABSPRI (w)][w->pending - 1].w = w; 325 pendings [ABSPRI (w)][w->pending - 1].w = w;
222 pendings [ABSPRI (w)][w->pending - 1].events = events; 326 pendings [ABSPRI (w)][w->pending - 1].events = events;
223} 327}
224 328
225static void 329static void
226queue_events (W *events, int eventcnt, int type) 330queue_events (EV_P_ W *events, int eventcnt, int type)
227{ 331{
228 int i; 332 int i;
229 333
230 for (i = 0; i < eventcnt; ++i) 334 for (i = 0; i < eventcnt; ++i)
231 event (events [i], type); 335 event (EV_A_ events [i], type);
232} 336}
233 337
234static void 338static void
235fd_event (int fd, int events) 339fd_event (EV_P_ int fd, int events)
236{ 340{
237 ANFD *anfd = anfds + fd; 341 ANFD *anfd = anfds + fd;
238 struct ev_io *w; 342 struct ev_io *w;
239 343
240 for (w = anfd->head; w; w = w->next) 344 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
241 { 345 {
242 int ev = w->events & events; 346 int ev = w->events & events;
243 347
244 if (ev) 348 if (ev)
245 event ((W)w, ev); 349 event (EV_A_ (W)w, ev);
246 } 350 }
247} 351}
248 352
249/*****************************************************************************/ 353/*****************************************************************************/
250 354
251static int *fdchanges;
252static int fdchangemax, fdchangecnt;
253
254static void 355static void
255fd_reify (void) 356fd_reify (EV_P)
256{ 357{
257 int i; 358 int i;
258 359
259 for (i = 0; i < fdchangecnt; ++i) 360 for (i = 0; i < fdchangecnt; ++i)
260 { 361 {
262 ANFD *anfd = anfds + fd; 363 ANFD *anfd = anfds + fd;
263 struct ev_io *w; 364 struct ev_io *w;
264 365
265 int events = 0; 366 int events = 0;
266 367
267 for (w = anfd->head; w; w = w->next) 368 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
268 events |= w->events; 369 events |= w->events;
269 370
270 anfd->reify = 0; 371 anfd->reify = 0;
271 372
272 if (anfd->events != events)
273 {
274 method_modify (fd, anfd->events, events); 373 method_modify (EV_A_ fd, anfd->events, events);
275 anfd->events = events; 374 anfd->events = events;
276 }
277 } 375 }
278 376
279 fdchangecnt = 0; 377 fdchangecnt = 0;
280} 378}
281 379
282static void 380static void
283fd_change (int fd) 381fd_change (EV_P_ int fd)
284{ 382{
285 if (anfds [fd].reify || fdchangecnt < 0) 383 if (anfds [fd].reify || fdchangecnt < 0)
286 return; 384 return;
287 385
288 anfds [fd].reify = 1; 386 anfds [fd].reify = 1;
291 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 389 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
292 fdchanges [fdchangecnt - 1] = fd; 390 fdchanges [fdchangecnt - 1] = fd;
293} 391}
294 392
295static void 393static void
296fd_kill (int fd) 394fd_kill (EV_P_ int fd)
297{ 395{
298 struct ev_io *w; 396 struct ev_io *w;
299 397
300 printf ("killing fd %d\n", fd);//D
301 while ((w = anfds [fd].head)) 398 while ((w = (struct ev_io *)anfds [fd].head))
302 { 399 {
303 ev_io_stop (w); 400 ev_io_stop (EV_A_ w);
304 event ((W)w, EV_ERROR | EV_READ | EV_WRITE); 401 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
305 } 402 }
306} 403}
307 404
308/* called on EBADF to verify fds */ 405/* called on EBADF to verify fds */
309static void 406static void
310fd_ebadf (void) 407fd_ebadf (EV_P)
311{ 408{
312 int fd; 409 int fd;
313 410
314 for (fd = 0; fd < anfdmax; ++fd) 411 for (fd = 0; fd < anfdmax; ++fd)
315 if (anfds [fd].events) 412 if (anfds [fd].events)
316 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 413 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
317 fd_kill (fd); 414 fd_kill (EV_A_ fd);
318} 415}
319 416
320/* called on ENOMEM in select/poll to kill some fds and retry */ 417/* called on ENOMEM in select/poll to kill some fds and retry */
321static void 418static void
322fd_enomem (void) 419fd_enomem (EV_P)
323{ 420{
324 int fd = anfdmax; 421 int fd;
325 422
326 while (fd--) 423 for (fd = anfdmax; fd--; )
327 if (anfds [fd].events) 424 if (anfds [fd].events)
328 { 425 {
329 close (fd);
330 fd_kill (fd); 426 fd_kill (EV_A_ fd);
331 return; 427 return;
332 } 428 }
333} 429}
334 430
431/* susually called after fork if method needs to re-arm all fds from scratch */
432static void
433fd_rearm_all (EV_P)
434{
435 int fd;
436
437 /* this should be highly optimised to not do anything but set a flag */
438 for (fd = 0; fd < anfdmax; ++fd)
439 if (anfds [fd].events)
440 {
441 anfds [fd].events = 0;
442 fd_change (EV_A_ fd);
443 }
444}
445
335/*****************************************************************************/ 446/*****************************************************************************/
336 447
337static struct ev_timer **timers;
338static int timermax, timercnt;
339
340static struct ev_periodic **periodics;
341static int periodicmax, periodiccnt;
342
343static void 448static void
344upheap (WT *timers, int k) 449upheap (WT *heap, int k)
345{ 450{
346 WT w = timers [k]; 451 WT w = heap [k];
347 452
348 while (k && timers [k >> 1]->at > w->at) 453 while (k && heap [k >> 1]->at > w->at)
349 { 454 {
350 timers [k] = timers [k >> 1]; 455 heap [k] = heap [k >> 1];
351 timers [k]->active = k + 1; 456 ((W)heap [k])->active = k + 1;
352 k >>= 1; 457 k >>= 1;
353 } 458 }
354 459
355 timers [k] = w; 460 heap [k] = w;
356 timers [k]->active = k + 1; 461 ((W)heap [k])->active = k + 1;
357 462
358} 463}
359 464
360static void 465static void
361downheap (WT *timers, int N, int k) 466downheap (WT *heap, int N, int k)
362{ 467{
363 WT w = timers [k]; 468 WT w = heap [k];
364 469
365 while (k < (N >> 1)) 470 while (k < (N >> 1))
366 { 471 {
367 int j = k << 1; 472 int j = k << 1;
368 473
369 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 474 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
370 ++j; 475 ++j;
371 476
372 if (w->at <= timers [j]->at) 477 if (w->at <= heap [j]->at)
373 break; 478 break;
374 479
375 timers [k] = timers [j]; 480 heap [k] = heap [j];
376 timers [k]->active = k + 1; 481 ((W)heap [k])->active = k + 1;
377 k = j; 482 k = j;
378 } 483 }
379 484
380 timers [k] = w; 485 heap [k] = w;
381 timers [k]->active = k + 1; 486 ((W)heap [k])->active = k + 1;
382} 487}
383 488
384/*****************************************************************************/ 489/*****************************************************************************/
385 490
386typedef struct 491typedef struct
387{ 492{
388 struct ev_signal *head; 493 WL head;
389 sig_atomic_t volatile gotsig; 494 sig_atomic_t volatile gotsig;
390} ANSIG; 495} ANSIG;
391 496
392static ANSIG *signals; 497static ANSIG *signals;
393static int signalmax; 498static int signalmax;
409} 514}
410 515
411static void 516static void
412sighandler (int signum) 517sighandler (int signum)
413{ 518{
519#if WIN32
520 signal (signum, sighandler);
521#endif
522
414 signals [signum - 1].gotsig = 1; 523 signals [signum - 1].gotsig = 1;
415 524
416 if (!gotsig) 525 if (!gotsig)
417 { 526 {
418 int old_errno = errno; 527 int old_errno = errno;
421 errno = old_errno; 530 errno = old_errno;
422 } 531 }
423} 532}
424 533
425static void 534static void
426sigcb (struct ev_io *iow, int revents) 535sigcb (EV_P_ struct ev_io *iow, int revents)
427{ 536{
428 struct ev_signal *w; 537 WL w;
429 int signum; 538 int signum;
430 539
431 read (sigpipe [0], &revents, 1); 540 read (sigpipe [0], &revents, 1);
432 gotsig = 0; 541 gotsig = 0;
433 542
435 if (signals [signum].gotsig) 544 if (signals [signum].gotsig)
436 { 545 {
437 signals [signum].gotsig = 0; 546 signals [signum].gotsig = 0;
438 547
439 for (w = signals [signum].head; w; w = w->next) 548 for (w = signals [signum].head; w; w = w->next)
440 event ((W)w, EV_SIGNAL); 549 event (EV_A_ (W)w, EV_SIGNAL);
441 } 550 }
442} 551}
443 552
444static void 553static void
445siginit (void) 554siginit (EV_P)
446{ 555{
447#ifndef WIN32 556#ifndef WIN32
448 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 557 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
449 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 558 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
450 559
452 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 561 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
453 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 562 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
454#endif 563#endif
455 564
456 ev_io_set (&sigev, sigpipe [0], EV_READ); 565 ev_io_set (&sigev, sigpipe [0], EV_READ);
457 ev_io_start (&sigev); 566 ev_io_start (EV_A_ &sigev);
567 ev_unref (EV_A); /* child watcher should not keep loop alive */
458} 568}
459 569
460/*****************************************************************************/ 570/*****************************************************************************/
461 571
462static struct ev_idle **idles; 572#ifndef WIN32
463static int idlemax, idlecnt;
464
465static struct ev_prepare **prepares;
466static int preparemax, preparecnt;
467
468static struct ev_check **checks;
469static int checkmax, checkcnt;
470
471/*****************************************************************************/
472 573
473static struct ev_child *childs [PID_HASHSIZE]; 574static struct ev_child *childs [PID_HASHSIZE];
474static struct ev_signal childev; 575static struct ev_signal childev;
475 576
476#ifndef WIN32
477
478#ifndef WCONTINUED 577#ifndef WCONTINUED
479# define WCONTINUED 0 578# define WCONTINUED 0
480#endif 579#endif
481 580
482static void 581static void
483child_reap (struct ev_signal *sw, int chain, int pid, int status) 582child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
484{ 583{
485 struct ev_child *w; 584 struct ev_child *w;
486 585
487 for (w = childs [chain & (PID_HASHSIZE - 1)]; w; w = w->next) 586 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
488 if (w->pid == pid || !w->pid) 587 if (w->pid == pid || !w->pid)
489 { 588 {
490 w->priority = sw->priority; /* need to do it *now* */ 589 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
491 w->rpid = pid; 590 w->rpid = pid;
492 w->rstatus = status; 591 w->rstatus = status;
493 printf ("rpid %p %d %d\n", w, pid, w->pid);//D
494 event ((W)w, EV_CHILD); 592 event (EV_A_ (W)w, EV_CHILD);
495 } 593 }
496} 594}
497 595
498static void 596static void
499childcb (struct ev_signal *sw, int revents) 597childcb (EV_P_ struct ev_signal *sw, int revents)
500{ 598{
501 int pid, status; 599 int pid, status;
502 600
503 printf ("chld %x\n", revents);//D
504 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 601 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
505 { 602 {
506 /* make sure we are called again until all childs have been reaped */ 603 /* make sure we are called again until all childs have been reaped */
507 event ((W)sw, EV_SIGNAL); 604 event (EV_A_ (W)sw, EV_SIGNAL);
508 605
509 child_reap (sw, pid, pid, status); 606 child_reap (EV_A_ sw, pid, pid, status);
510 child_reap (sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 607 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
511 } 608 }
512} 609}
513 610
514#endif 611#endif
515 612
538ev_version_minor (void) 635ev_version_minor (void)
539{ 636{
540 return EV_VERSION_MINOR; 637 return EV_VERSION_MINOR;
541} 638}
542 639
543/* return true if we are running with elevated privileges and ignore env variables */ 640/* return true if we are running with elevated privileges and should ignore env variables */
544static int 641static int
545enable_secure () 642enable_secure (void)
546{ 643{
644#ifdef WIN32
645 return 0;
646#else
547 return getuid () != geteuid () 647 return getuid () != geteuid ()
548 || getgid () != getegid (); 648 || getgid () != getegid ();
649#endif
549} 650}
550 651
551int ev_init (int methods) 652int
653ev_method (EV_P)
552{ 654{
655 return method;
656}
657
658static void
659loop_init (EV_P_ int methods)
660{
553 if (!ev_method) 661 if (!method)
554 { 662 {
555#if EV_USE_MONOTONIC 663#if EV_USE_MONOTONIC
556 { 664 {
557 struct timespec ts; 665 struct timespec ts;
558 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 666 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
559 have_monotonic = 1; 667 have_monotonic = 1;
560 } 668 }
561#endif 669#endif
562 670
563 ev_now = ev_time (); 671 rt_now = ev_time ();
564 now = get_clock (); 672 mn_now = get_clock ();
565 now_floor = now; 673 now_floor = mn_now;
566 diff = ev_now - now; 674 rtmn_diff = rt_now - mn_now;
567
568 if (pipe (sigpipe))
569 return 0;
570 675
571 if (methods == EVMETHOD_AUTO) 676 if (methods == EVMETHOD_AUTO)
572 if (!enable_secure () && getenv ("LIBEV_METHODS")) 677 if (!enable_secure () && getenv ("LIBEV_METHODS"))
573 methods = atoi (getenv ("LIBEV_METHODS")); 678 methods = atoi (getenv ("LIBEV_METHODS"));
574 else 679 else
575 methods = EVMETHOD_ANY; 680 methods = EVMETHOD_ANY;
576 681
577 ev_method = 0; 682 method = 0;
683#if EV_USE_WIN32
684 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
685#endif
578#if EV_USE_KQUEUE 686#if EV_USE_KQUEUE
579 if (!ev_method && (methods & EVMETHOD_KQUEUE)) kqueue_init (methods); 687 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
580#endif 688#endif
581#if EV_USE_EPOLL 689#if EV_USE_EPOLL
582 if (!ev_method && (methods & EVMETHOD_EPOLL )) epoll_init (methods); 690 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
583#endif 691#endif
584#if EV_USE_POLL 692#if EV_USE_POLL
585 if (!ev_method && (methods & EVMETHOD_POLL )) poll_init (methods); 693 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
586#endif 694#endif
587#if EV_USE_SELECT 695#if EV_USE_SELECT
588 if (!ev_method && (methods & EVMETHOD_SELECT)) select_init (methods); 696 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
589#endif 697#endif
698 }
699}
590 700
701void
702loop_destroy (EV_P)
703{
704 int i;
705
706#if EV_USE_WIN32
707 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
708#endif
709#if EV_USE_KQUEUE
710 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
711#endif
712#if EV_USE_EPOLL
713 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
714#endif
715#if EV_USE_POLL
716 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
717#endif
718#if EV_USE_SELECT
719 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
720#endif
721
722 for (i = NUMPRI; i--; )
723 array_free (pending, [i]);
724
725 array_free (fdchange, );
726 array_free (timer, );
727 array_free (periodic, );
728 array_free (idle, );
729 array_free (prepare, );
730 array_free (check, );
731
732 method = 0;
733 /*TODO*/
734}
735
736void
737loop_fork (EV_P)
738{
739 /*TODO*/
740#if EV_USE_EPOLL
741 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
742#endif
743#if EV_USE_KQUEUE
744 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
745#endif
746}
747
748#if EV_MULTIPLICITY
749struct ev_loop *
750ev_loop_new (int methods)
751{
752 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
753
754 memset (loop, 0, sizeof (struct ev_loop));
755
756 loop_init (EV_A_ methods);
757
758 if (ev_method (EV_A))
759 return loop;
760
761 return 0;
762}
763
764void
765ev_loop_destroy (EV_P)
766{
767 loop_destroy (EV_A);
768 ev_free (loop);
769}
770
771void
772ev_loop_fork (EV_P)
773{
774 loop_fork (EV_A);
775}
776
777#endif
778
779#if EV_MULTIPLICITY
780struct ev_loop default_loop_struct;
781static struct ev_loop *default_loop;
782
783struct ev_loop *
784#else
785static int default_loop;
786
787int
788#endif
789ev_default_loop (int methods)
790{
791 if (sigpipe [0] == sigpipe [1])
792 if (pipe (sigpipe))
793 return 0;
794
795 if (!default_loop)
796 {
797#if EV_MULTIPLICITY
798 struct ev_loop *loop = default_loop = &default_loop_struct;
799#else
800 default_loop = 1;
801#endif
802
803 loop_init (EV_A_ methods);
804
591 if (ev_method) 805 if (ev_method (EV_A))
592 { 806 {
593 ev_watcher_init (&sigev, sigcb); 807 ev_watcher_init (&sigev, sigcb);
594 ev_set_priority (&sigev, EV_MAXPRI); 808 ev_set_priority (&sigev, EV_MAXPRI);
595 siginit (); 809 siginit (EV_A);
596 810
597#ifndef WIN32 811#ifndef WIN32
598 ev_signal_init (&childev, childcb, SIGCHLD); 812 ev_signal_init (&childev, childcb, SIGCHLD);
599 ev_set_priority (&childev, EV_MAXPRI); 813 ev_set_priority (&childev, EV_MAXPRI);
600 ev_signal_start (&childev); 814 ev_signal_start (EV_A_ &childev);
815 ev_unref (EV_A); /* child watcher should not keep loop alive */
601#endif 816#endif
602 } 817 }
818 else
819 default_loop = 0;
603 } 820 }
604 821
605 return ev_method; 822 return default_loop;
606} 823}
607 824
608/*****************************************************************************/
609
610void 825void
611ev_fork_prepare (void) 826ev_default_destroy (void)
612{ 827{
613 /* nop */ 828#if EV_MULTIPLICITY
614} 829 struct ev_loop *loop = default_loop;
615
616void
617ev_fork_parent (void)
618{
619 /* nop */
620}
621
622void
623ev_fork_child (void)
624{
625#if EV_USE_EPOLL
626 if (ev_method == EVMETHOD_EPOLL)
627 epoll_postfork_child ();
628#endif 830#endif
629 831
832 ev_ref (EV_A); /* child watcher */
833 ev_signal_stop (EV_A_ &childev);
834
835 ev_ref (EV_A); /* signal watcher */
630 ev_io_stop (&sigev); 836 ev_io_stop (EV_A_ &sigev);
837
838 close (sigpipe [0]); sigpipe [0] = 0;
839 close (sigpipe [1]); sigpipe [1] = 0;
840
841 loop_destroy (EV_A);
842}
843
844void
845ev_default_fork (void)
846{
847#if EV_MULTIPLICITY
848 struct ev_loop *loop = default_loop;
849#endif
850
851 loop_fork (EV_A);
852
853 ev_io_stop (EV_A_ &sigev);
631 close (sigpipe [0]); 854 close (sigpipe [0]);
632 close (sigpipe [1]); 855 close (sigpipe [1]);
633 pipe (sigpipe); 856 pipe (sigpipe);
857
858 ev_ref (EV_A); /* signal watcher */
634 siginit (); 859 siginit (EV_A);
635} 860}
636 861
637/*****************************************************************************/ 862/*****************************************************************************/
638 863
639static void 864static void
640call_pending (void) 865call_pending (EV_P)
641{ 866{
642 int pri; 867 int pri;
643 868
644 for (pri = NUMPRI; pri--; ) 869 for (pri = NUMPRI; pri--; )
645 while (pendingcnt [pri]) 870 while (pendingcnt [pri])
647 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 872 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
648 873
649 if (p->w) 874 if (p->w)
650 { 875 {
651 p->w->pending = 0; 876 p->w->pending = 0;
652 p->w->cb (p->w, p->events); 877 p->w->cb (EV_A_ p->w, p->events);
653 } 878 }
654 } 879 }
655} 880}
656 881
657static void 882static void
658timers_reify (void) 883timers_reify (EV_P)
659{ 884{
660 while (timercnt && timers [0]->at <= now) 885 while (timercnt && ((WT)timers [0])->at <= mn_now)
661 { 886 {
662 struct ev_timer *w = timers [0]; 887 struct ev_timer *w = timers [0];
888
889 assert (("inactive timer on timer heap detected", ev_is_active (w)));
663 890
664 /* first reschedule or stop timer */ 891 /* first reschedule or stop timer */
665 if (w->repeat) 892 if (w->repeat)
666 { 893 {
667 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 894 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
668 w->at = now + w->repeat; 895 ((WT)w)->at = mn_now + w->repeat;
669 downheap ((WT *)timers, timercnt, 0); 896 downheap ((WT *)timers, timercnt, 0);
670 } 897 }
671 else 898 else
672 ev_timer_stop (w); /* nonrepeating: stop timer */ 899 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
673 900
674 event ((W)w, EV_TIMEOUT); 901 event (EV_A_ (W)w, EV_TIMEOUT);
675 } 902 }
676} 903}
677 904
678static void 905static void
679periodics_reify (void) 906periodics_reify (EV_P)
680{ 907{
681 while (periodiccnt && periodics [0]->at <= ev_now) 908 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
682 { 909 {
683 struct ev_periodic *w = periodics [0]; 910 struct ev_periodic *w = periodics [0];
911
912 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
684 913
685 /* first reschedule or stop timer */ 914 /* first reschedule or stop timer */
686 if (w->interval) 915 if (w->interval)
687 { 916 {
688 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 917 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
689 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 918 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
690 downheap ((WT *)periodics, periodiccnt, 0); 919 downheap ((WT *)periodics, periodiccnt, 0);
691 } 920 }
692 else 921 else
693 ev_periodic_stop (w); /* nonrepeating: stop timer */ 922 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
694 923
695 event ((W)w, EV_PERIODIC); 924 event (EV_A_ (W)w, EV_PERIODIC);
696 } 925 }
697} 926}
698 927
699static void 928static void
700periodics_reschedule (ev_tstamp diff) 929periodics_reschedule (EV_P)
701{ 930{
702 int i; 931 int i;
703 932
704 /* adjust periodics after time jump */ 933 /* adjust periodics after time jump */
705 for (i = 0; i < periodiccnt; ++i) 934 for (i = 0; i < periodiccnt; ++i)
706 { 935 {
707 struct ev_periodic *w = periodics [i]; 936 struct ev_periodic *w = periodics [i];
708 937
709 if (w->interval) 938 if (w->interval)
710 { 939 {
711 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 940 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
712 941
713 if (fabs (diff) >= 1e-4) 942 if (fabs (diff) >= 1e-4)
714 { 943 {
715 ev_periodic_stop (w); 944 ev_periodic_stop (EV_A_ w);
716 ev_periodic_start (w); 945 ev_periodic_start (EV_A_ w);
717 946
718 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 947 i = 0; /* restart loop, inefficient, but time jumps should be rare */
719 } 948 }
720 } 949 }
721 } 950 }
722} 951}
723 952
724static int 953inline int
725time_update_monotonic (void) 954time_update_monotonic (EV_P)
726{ 955{
727 now = get_clock (); 956 mn_now = get_clock ();
728 957
729 if (expect_true (now - now_floor < MIN_TIMEJUMP * .5)) 958 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
730 { 959 {
731 ev_now = now + diff; 960 rt_now = rtmn_diff + mn_now;
732 return 0; 961 return 0;
733 } 962 }
734 else 963 else
735 { 964 {
736 now_floor = now; 965 now_floor = mn_now;
737 ev_now = ev_time (); 966 rt_now = ev_time ();
738 return 1; 967 return 1;
739 } 968 }
740} 969}
741 970
742static void 971static void
743time_update (void) 972time_update (EV_P)
744{ 973{
745 int i; 974 int i;
746 975
747#if EV_USE_MONOTONIC 976#if EV_USE_MONOTONIC
748 if (expect_true (have_monotonic)) 977 if (expect_true (have_monotonic))
749 { 978 {
750 if (time_update_monotonic ()) 979 if (time_update_monotonic (EV_A))
751 { 980 {
752 ev_tstamp odiff = diff; 981 ev_tstamp odiff = rtmn_diff;
753 982
754 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 983 for (i = 4; --i; ) /* loop a few times, before making important decisions */
755 { 984 {
756 diff = ev_now - now; 985 rtmn_diff = rt_now - mn_now;
757 986
758 if (fabs (odiff - diff) < MIN_TIMEJUMP) 987 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
759 return; /* all is well */ 988 return; /* all is well */
760 989
761 ev_now = ev_time (); 990 rt_now = ev_time ();
762 now = get_clock (); 991 mn_now = get_clock ();
763 now_floor = now; 992 now_floor = mn_now;
764 } 993 }
765 994
766 periodics_reschedule (diff - odiff); 995 periodics_reschedule (EV_A);
767 /* no timer adjustment, as the monotonic clock doesn't jump */ 996 /* no timer adjustment, as the monotonic clock doesn't jump */
997 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
768 } 998 }
769 } 999 }
770 else 1000 else
771#endif 1001#endif
772 { 1002 {
773 ev_now = ev_time (); 1003 rt_now = ev_time ();
774 1004
775 if (expect_false (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1005 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
776 { 1006 {
777 periodics_reschedule (ev_now - now); 1007 periodics_reschedule (EV_A);
778 1008
779 /* adjust timers. this is easy, as the offset is the same for all */ 1009 /* adjust timers. this is easy, as the offset is the same for all */
780 for (i = 0; i < timercnt; ++i) 1010 for (i = 0; i < timercnt; ++i)
781 timers [i]->at += diff; 1011 ((WT)timers [i])->at += rt_now - mn_now;
782 } 1012 }
783 1013
784 now = ev_now; 1014 mn_now = rt_now;
785 } 1015 }
786} 1016}
787 1017
788int ev_loop_done; 1018void
1019ev_ref (EV_P)
1020{
1021 ++activecnt;
1022}
789 1023
1024void
1025ev_unref (EV_P)
1026{
1027 --activecnt;
1028}
1029
1030static int loop_done;
1031
1032void
790void ev_loop (int flags) 1033ev_loop (EV_P_ int flags)
791{ 1034{
792 double block; 1035 double block;
793 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1036 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
794 1037
795 do 1038 do
796 { 1039 {
797 /* queue check watchers (and execute them) */ 1040 /* queue check watchers (and execute them) */
798 if (expect_false (preparecnt)) 1041 if (expect_false (preparecnt))
799 { 1042 {
800 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 1043 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
801 call_pending (); 1044 call_pending (EV_A);
802 } 1045 }
803 1046
804 /* update fd-related kernel structures */ 1047 /* update fd-related kernel structures */
805 fd_reify (); 1048 fd_reify (EV_A);
806 1049
807 /* calculate blocking time */ 1050 /* calculate blocking time */
808 1051
809 /* we only need this for !monotonic clockor timers, but as we basically 1052 /* we only need this for !monotonic clockor timers, but as we basically
810 always have timers, we just calculate it always */ 1053 always have timers, we just calculate it always */
811#if EV_USE_MONOTONIC 1054#if EV_USE_MONOTONIC
812 if (expect_true (have_monotonic)) 1055 if (expect_true (have_monotonic))
813 time_update_monotonic (); 1056 time_update_monotonic (EV_A);
814 else 1057 else
815#endif 1058#endif
816 { 1059 {
817 ev_now = ev_time (); 1060 rt_now = ev_time ();
818 now = ev_now; 1061 mn_now = rt_now;
819 } 1062 }
820 1063
821 if (flags & EVLOOP_NONBLOCK || idlecnt) 1064 if (flags & EVLOOP_NONBLOCK || idlecnt)
822 block = 0.; 1065 block = 0.;
823 else 1066 else
824 { 1067 {
825 block = MAX_BLOCKTIME; 1068 block = MAX_BLOCKTIME;
826 1069
827 if (timercnt) 1070 if (timercnt)
828 { 1071 {
829 ev_tstamp to = timers [0]->at - now + method_fudge; 1072 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
830 if (block > to) block = to; 1073 if (block > to) block = to;
831 } 1074 }
832 1075
833 if (periodiccnt) 1076 if (periodiccnt)
834 { 1077 {
835 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1078 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
836 if (block > to) block = to; 1079 if (block > to) block = to;
837 } 1080 }
838 1081
839 if (block < 0.) block = 0.; 1082 if (block < 0.) block = 0.;
840 } 1083 }
841 1084
842 method_poll (block); 1085 method_poll (EV_A_ block);
843 1086
844 /* update ev_now, do magic */ 1087 /* update rt_now, do magic */
845 time_update (); 1088 time_update (EV_A);
846 1089
847 /* queue pending timers and reschedule them */ 1090 /* queue pending timers and reschedule them */
848 timers_reify (); /* relative timers called last */ 1091 timers_reify (EV_A); /* relative timers called last */
849 periodics_reify (); /* absolute timers called first */ 1092 periodics_reify (EV_A); /* absolute timers called first */
850 1093
851 /* queue idle watchers unless io or timers are pending */ 1094 /* queue idle watchers unless io or timers are pending */
852 if (!pendingcnt) 1095 if (!pendingcnt)
853 queue_events ((W *)idles, idlecnt, EV_IDLE); 1096 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
854 1097
855 /* queue check watchers, to be executed first */ 1098 /* queue check watchers, to be executed first */
856 if (checkcnt) 1099 if (checkcnt)
857 queue_events ((W *)checks, checkcnt, EV_CHECK); 1100 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
858 1101
859 call_pending (); 1102 call_pending (EV_A);
860 } 1103 }
861 while (!ev_loop_done); 1104 while (activecnt && !loop_done);
862 1105
863 if (ev_loop_done != 2) 1106 if (loop_done != 2)
864 ev_loop_done = 0; 1107 loop_done = 0;
1108}
1109
1110void
1111ev_unloop (EV_P_ int how)
1112{
1113 loop_done = how;
865} 1114}
866 1115
867/*****************************************************************************/ 1116/*****************************************************************************/
868 1117
869static void 1118inline void
870wlist_add (WL *head, WL elem) 1119wlist_add (WL *head, WL elem)
871{ 1120{
872 elem->next = *head; 1121 elem->next = *head;
873 *head = elem; 1122 *head = elem;
874} 1123}
875 1124
876static void 1125inline void
877wlist_del (WL *head, WL elem) 1126wlist_del (WL *head, WL elem)
878{ 1127{
879 while (*head) 1128 while (*head)
880 { 1129 {
881 if (*head == elem) 1130 if (*head == elem)
886 1135
887 head = &(*head)->next; 1136 head = &(*head)->next;
888 } 1137 }
889} 1138}
890 1139
891static void 1140inline void
892ev_clear_pending (W w) 1141ev_clear_pending (EV_P_ W w)
893{ 1142{
894 if (w->pending) 1143 if (w->pending)
895 { 1144 {
896 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1145 pendings [ABSPRI (w)][w->pending - 1].w = 0;
897 w->pending = 0; 1146 w->pending = 0;
898 } 1147 }
899} 1148}
900 1149
901static void 1150inline void
902ev_start (W w, int active) 1151ev_start (EV_P_ W w, int active)
903{ 1152{
904 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1153 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
905 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 1154 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
906 1155
907 w->active = active; 1156 w->active = active;
1157 ev_ref (EV_A);
908} 1158}
909 1159
910static void 1160inline void
911ev_stop (W w) 1161ev_stop (EV_P_ W w)
912{ 1162{
1163 ev_unref (EV_A);
913 w->active = 0; 1164 w->active = 0;
914} 1165}
915 1166
916/*****************************************************************************/ 1167/*****************************************************************************/
917 1168
918void 1169void
919ev_io_start (struct ev_io *w) 1170ev_io_start (EV_P_ struct ev_io *w)
920{ 1171{
921 int fd = w->fd; 1172 int fd = w->fd;
922 1173
923 if (ev_is_active (w)) 1174 if (ev_is_active (w))
924 return; 1175 return;
925 1176
926 assert (("ev_io_start called with negative fd", fd >= 0)); 1177 assert (("ev_io_start called with negative fd", fd >= 0));
927 1178
928 ev_start ((W)w, 1); 1179 ev_start (EV_A_ (W)w, 1);
929 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1180 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
930 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1181 wlist_add ((WL *)&anfds[fd].head, (WL)w);
931 1182
932 fd_change (fd); 1183 fd_change (EV_A_ fd);
933} 1184}
934 1185
935void 1186void
936ev_io_stop (struct ev_io *w) 1187ev_io_stop (EV_P_ struct ev_io *w)
937{ 1188{
938 ev_clear_pending ((W)w); 1189 ev_clear_pending (EV_A_ (W)w);
939 if (!ev_is_active (w)) 1190 if (!ev_is_active (w))
940 return; 1191 return;
941 1192
942 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1193 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
943 ev_stop ((W)w); 1194 ev_stop (EV_A_ (W)w);
944 1195
945 fd_change (w->fd); 1196 fd_change (EV_A_ w->fd);
946} 1197}
947 1198
948void 1199void
949ev_timer_start (struct ev_timer *w) 1200ev_timer_start (EV_P_ struct ev_timer *w)
950{ 1201{
951 if (ev_is_active (w)) 1202 if (ev_is_active (w))
952 return; 1203 return;
953 1204
954 w->at += now; 1205 ((WT)w)->at += mn_now;
955 1206
956 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1207 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
957 1208
958 ev_start ((W)w, ++timercnt); 1209 ev_start (EV_A_ (W)w, ++timercnt);
959 array_needsize (timers, timermax, timercnt, ); 1210 array_needsize (timers, timermax, timercnt, );
960 timers [timercnt - 1] = w; 1211 timers [timercnt - 1] = w;
961 upheap ((WT *)timers, timercnt - 1); 1212 upheap ((WT *)timers, timercnt - 1);
962}
963 1213
1214 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1215}
1216
964void 1217void
965ev_timer_stop (struct ev_timer *w) 1218ev_timer_stop (EV_P_ struct ev_timer *w)
966{ 1219{
967 ev_clear_pending ((W)w); 1220 ev_clear_pending (EV_A_ (W)w);
968 if (!ev_is_active (w)) 1221 if (!ev_is_active (w))
969 return; 1222 return;
970 1223
1224 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1225
971 if (w->active < timercnt--) 1226 if (((W)w)->active < timercnt--)
972 { 1227 {
973 timers [w->active - 1] = timers [timercnt]; 1228 timers [((W)w)->active - 1] = timers [timercnt];
974 downheap ((WT *)timers, timercnt, w->active - 1); 1229 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
975 } 1230 }
976 1231
977 w->at = w->repeat; 1232 ((WT)w)->at = w->repeat;
978 1233
979 ev_stop ((W)w); 1234 ev_stop (EV_A_ (W)w);
980} 1235}
981 1236
982void 1237void
983ev_timer_again (struct ev_timer *w) 1238ev_timer_again (EV_P_ struct ev_timer *w)
984{ 1239{
985 if (ev_is_active (w)) 1240 if (ev_is_active (w))
986 { 1241 {
987 if (w->repeat) 1242 if (w->repeat)
988 { 1243 {
989 w->at = now + w->repeat; 1244 ((WT)w)->at = mn_now + w->repeat;
990 downheap ((WT *)timers, timercnt, w->active - 1); 1245 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
991 } 1246 }
992 else 1247 else
993 ev_timer_stop (w); 1248 ev_timer_stop (EV_A_ w);
994 } 1249 }
995 else if (w->repeat) 1250 else if (w->repeat)
996 ev_timer_start (w); 1251 ev_timer_start (EV_A_ w);
997} 1252}
998 1253
999void 1254void
1000ev_periodic_start (struct ev_periodic *w) 1255ev_periodic_start (EV_P_ struct ev_periodic *w)
1001{ 1256{
1002 if (ev_is_active (w)) 1257 if (ev_is_active (w))
1003 return; 1258 return;
1004 1259
1005 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1260 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1006 1261
1007 /* this formula differs from the one in periodic_reify because we do not always round up */ 1262 /* this formula differs from the one in periodic_reify because we do not always round up */
1008 if (w->interval) 1263 if (w->interval)
1009 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1264 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1010 1265
1011 ev_start ((W)w, ++periodiccnt); 1266 ev_start (EV_A_ (W)w, ++periodiccnt);
1012 array_needsize (periodics, periodicmax, periodiccnt, ); 1267 array_needsize (periodics, periodicmax, periodiccnt, );
1013 periodics [periodiccnt - 1] = w; 1268 periodics [periodiccnt - 1] = w;
1014 upheap ((WT *)periodics, periodiccnt - 1); 1269 upheap ((WT *)periodics, periodiccnt - 1);
1015}
1016 1270
1271 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1272}
1273
1017void 1274void
1018ev_periodic_stop (struct ev_periodic *w) 1275ev_periodic_stop (EV_P_ struct ev_periodic *w)
1019{ 1276{
1020 ev_clear_pending ((W)w); 1277 ev_clear_pending (EV_A_ (W)w);
1021 if (!ev_is_active (w)) 1278 if (!ev_is_active (w))
1022 return; 1279 return;
1023 1280
1281 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1282
1024 if (w->active < periodiccnt--) 1283 if (((W)w)->active < periodiccnt--)
1025 { 1284 {
1026 periodics [w->active - 1] = periodics [periodiccnt]; 1285 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1027 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1286 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1028 } 1287 }
1029 1288
1030 ev_stop ((W)w); 1289 ev_stop (EV_A_ (W)w);
1290}
1291
1292void
1293ev_idle_start (EV_P_ struct ev_idle *w)
1294{
1295 if (ev_is_active (w))
1296 return;
1297
1298 ev_start (EV_A_ (W)w, ++idlecnt);
1299 array_needsize (idles, idlemax, idlecnt, );
1300 idles [idlecnt - 1] = w;
1301}
1302
1303void
1304ev_idle_stop (EV_P_ struct ev_idle *w)
1305{
1306 ev_clear_pending (EV_A_ (W)w);
1307 if (ev_is_active (w))
1308 return;
1309
1310 idles [((W)w)->active - 1] = idles [--idlecnt];
1311 ev_stop (EV_A_ (W)w);
1312}
1313
1314void
1315ev_prepare_start (EV_P_ struct ev_prepare *w)
1316{
1317 if (ev_is_active (w))
1318 return;
1319
1320 ev_start (EV_A_ (W)w, ++preparecnt);
1321 array_needsize (prepares, preparemax, preparecnt, );
1322 prepares [preparecnt - 1] = w;
1323}
1324
1325void
1326ev_prepare_stop (EV_P_ struct ev_prepare *w)
1327{
1328 ev_clear_pending (EV_A_ (W)w);
1329 if (ev_is_active (w))
1330 return;
1331
1332 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1333 ev_stop (EV_A_ (W)w);
1334}
1335
1336void
1337ev_check_start (EV_P_ struct ev_check *w)
1338{
1339 if (ev_is_active (w))
1340 return;
1341
1342 ev_start (EV_A_ (W)w, ++checkcnt);
1343 array_needsize (checks, checkmax, checkcnt, );
1344 checks [checkcnt - 1] = w;
1345}
1346
1347void
1348ev_check_stop (EV_P_ struct ev_check *w)
1349{
1350 ev_clear_pending (EV_A_ (W)w);
1351 if (ev_is_active (w))
1352 return;
1353
1354 checks [((W)w)->active - 1] = checks [--checkcnt];
1355 ev_stop (EV_A_ (W)w);
1031} 1356}
1032 1357
1033#ifndef SA_RESTART 1358#ifndef SA_RESTART
1034# define SA_RESTART 0 1359# define SA_RESTART 0
1035#endif 1360#endif
1036 1361
1037void 1362void
1038ev_signal_start (struct ev_signal *w) 1363ev_signal_start (EV_P_ struct ev_signal *w)
1039{ 1364{
1365#if EV_MULTIPLICITY
1366 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1367#endif
1040 if (ev_is_active (w)) 1368 if (ev_is_active (w))
1041 return; 1369 return;
1042 1370
1043 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1371 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1044 1372
1045 ev_start ((W)w, 1); 1373 ev_start (EV_A_ (W)w, 1);
1046 array_needsize (signals, signalmax, w->signum, signals_init); 1374 array_needsize (signals, signalmax, w->signum, signals_init);
1047 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1375 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1048 1376
1049 if (!w->next) 1377 if (!((WL)w)->next)
1050 { 1378 {
1379#if WIN32
1380 signal (w->signum, sighandler);
1381#else
1051 struct sigaction sa; 1382 struct sigaction sa;
1052 sa.sa_handler = sighandler; 1383 sa.sa_handler = sighandler;
1053 sigfillset (&sa.sa_mask); 1384 sigfillset (&sa.sa_mask);
1054 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1385 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1055 sigaction (w->signum, &sa, 0); 1386 sigaction (w->signum, &sa, 0);
1387#endif
1056 } 1388 }
1057} 1389}
1058 1390
1059void 1391void
1060ev_signal_stop (struct ev_signal *w) 1392ev_signal_stop (EV_P_ struct ev_signal *w)
1061{ 1393{
1062 ev_clear_pending ((W)w); 1394 ev_clear_pending (EV_A_ (W)w);
1063 if (!ev_is_active (w)) 1395 if (!ev_is_active (w))
1064 return; 1396 return;
1065 1397
1066 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1398 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1067 ev_stop ((W)w); 1399 ev_stop (EV_A_ (W)w);
1068 1400
1069 if (!signals [w->signum - 1].head) 1401 if (!signals [w->signum - 1].head)
1070 signal (w->signum, SIG_DFL); 1402 signal (w->signum, SIG_DFL);
1071} 1403}
1072 1404
1073void 1405void
1074ev_idle_start (struct ev_idle *w) 1406ev_child_start (EV_P_ struct ev_child *w)
1075{ 1407{
1408#if EV_MULTIPLICITY
1409 assert (("child watchers are only supported in the default loop", loop == default_loop));
1410#endif
1076 if (ev_is_active (w)) 1411 if (ev_is_active (w))
1077 return; 1412 return;
1078 1413
1079 ev_start ((W)w, ++idlecnt); 1414 ev_start (EV_A_ (W)w, 1);
1080 array_needsize (idles, idlemax, idlecnt, ); 1415 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1081 idles [idlecnt - 1] = w;
1082} 1416}
1083 1417
1084void 1418void
1085ev_idle_stop (struct ev_idle *w) 1419ev_child_stop (EV_P_ struct ev_child *w)
1086{ 1420{
1087 ev_clear_pending ((W)w); 1421 ev_clear_pending (EV_A_ (W)w);
1088 if (ev_is_active (w)) 1422 if (ev_is_active (w))
1089 return; 1423 return;
1090 1424
1091 idles [w->active - 1] = idles [--idlecnt];
1092 ev_stop ((W)w);
1093}
1094
1095void
1096ev_prepare_start (struct ev_prepare *w)
1097{
1098 if (ev_is_active (w))
1099 return;
1100
1101 ev_start ((W)w, ++preparecnt);
1102 array_needsize (prepares, preparemax, preparecnt, );
1103 prepares [preparecnt - 1] = w;
1104}
1105
1106void
1107ev_prepare_stop (struct ev_prepare *w)
1108{
1109 ev_clear_pending ((W)w);
1110 if (ev_is_active (w))
1111 return;
1112
1113 prepares [w->active - 1] = prepares [--preparecnt];
1114 ev_stop ((W)w);
1115}
1116
1117void
1118ev_check_start (struct ev_check *w)
1119{
1120 if (ev_is_active (w))
1121 return;
1122
1123 ev_start ((W)w, ++checkcnt);
1124 array_needsize (checks, checkmax, checkcnt, );
1125 checks [checkcnt - 1] = w;
1126}
1127
1128void
1129ev_check_stop (struct ev_check *w)
1130{
1131 ev_clear_pending ((W)w);
1132 if (ev_is_active (w))
1133 return;
1134
1135 checks [w->active - 1] = checks [--checkcnt];
1136 ev_stop ((W)w);
1137}
1138
1139void
1140ev_child_start (struct ev_child *w)
1141{
1142 if (ev_is_active (w))
1143 return;
1144
1145 ev_start ((W)w, 1);
1146 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1147}
1148
1149void
1150ev_child_stop (struct ev_child *w)
1151{
1152 ev_clear_pending ((W)w);
1153 if (ev_is_active (w))
1154 return;
1155
1156 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1425 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1157 ev_stop ((W)w); 1426 ev_stop (EV_A_ (W)w);
1158} 1427}
1159 1428
1160/*****************************************************************************/ 1429/*****************************************************************************/
1161 1430
1162struct ev_once 1431struct ev_once
1166 void (*cb)(int revents, void *arg); 1435 void (*cb)(int revents, void *arg);
1167 void *arg; 1436 void *arg;
1168}; 1437};
1169 1438
1170static void 1439static void
1171once_cb (struct ev_once *once, int revents) 1440once_cb (EV_P_ struct ev_once *once, int revents)
1172{ 1441{
1173 void (*cb)(int revents, void *arg) = once->cb; 1442 void (*cb)(int revents, void *arg) = once->cb;
1174 void *arg = once->arg; 1443 void *arg = once->arg;
1175 1444
1176 ev_io_stop (&once->io); 1445 ev_io_stop (EV_A_ &once->io);
1177 ev_timer_stop (&once->to); 1446 ev_timer_stop (EV_A_ &once->to);
1178 free (once); 1447 ev_free (once);
1179 1448
1180 cb (revents, arg); 1449 cb (revents, arg);
1181} 1450}
1182 1451
1183static void 1452static void
1184once_cb_io (struct ev_io *w, int revents) 1453once_cb_io (EV_P_ struct ev_io *w, int revents)
1185{ 1454{
1186 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1455 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1187} 1456}
1188 1457
1189static void 1458static void
1190once_cb_to (struct ev_timer *w, int revents) 1459once_cb_to (EV_P_ struct ev_timer *w, int revents)
1191{ 1460{
1192 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1461 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1193} 1462}
1194 1463
1195void 1464void
1196ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1465ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1197{ 1466{
1198 struct ev_once *once = malloc (sizeof (struct ev_once)); 1467 struct ev_once *once = ev_malloc (sizeof (struct ev_once));
1199 1468
1200 if (!once) 1469 if (!once)
1201 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1470 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1202 else 1471 else
1203 { 1472 {
1206 1475
1207 ev_watcher_init (&once->io, once_cb_io); 1476 ev_watcher_init (&once->io, once_cb_io);
1208 if (fd >= 0) 1477 if (fd >= 0)
1209 { 1478 {
1210 ev_io_set (&once->io, fd, events); 1479 ev_io_set (&once->io, fd, events);
1211 ev_io_start (&once->io); 1480 ev_io_start (EV_A_ &once->io);
1212 } 1481 }
1213 1482
1214 ev_watcher_init (&once->to, once_cb_to); 1483 ev_watcher_init (&once->to, once_cb_to);
1215 if (timeout >= 0.) 1484 if (timeout >= 0.)
1216 { 1485 {
1217 ev_timer_set (&once->to, timeout, 0.); 1486 ev_timer_set (&once->to, timeout, 0.);
1218 ev_timer_start (&once->to); 1487 ev_timer_start (EV_A_ &once->to);
1219 } 1488 }
1220 } 1489 }
1221} 1490}
1222 1491
1223/*****************************************************************************/
1224
1225#if 0
1226
1227struct ev_io wio;
1228
1229static void
1230sin_cb (struct ev_io *w, int revents)
1231{
1232 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1233}
1234
1235static void
1236ocb (struct ev_timer *w, int revents)
1237{
1238 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1239 ev_timer_stop (w);
1240 ev_timer_start (w);
1241}
1242
1243static void
1244scb (struct ev_signal *w, int revents)
1245{
1246 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1247 ev_io_stop (&wio);
1248 ev_io_start (&wio);
1249}
1250
1251static void
1252gcb (struct ev_signal *w, int revents)
1253{
1254 fprintf (stderr, "generic %x\n", revents);
1255
1256}
1257
1258int main (void)
1259{
1260 ev_init (0);
1261
1262 ev_io_init (&wio, sin_cb, 0, EV_READ);
1263 ev_io_start (&wio);
1264
1265 struct ev_timer t[10000];
1266
1267#if 0
1268 int i;
1269 for (i = 0; i < 10000; ++i)
1270 {
1271 struct ev_timer *w = t + i;
1272 ev_watcher_init (w, ocb, i);
1273 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1274 ev_timer_start (w);
1275 if (drand48 () < 0.5)
1276 ev_timer_stop (w);
1277 }
1278#endif
1279
1280 struct ev_timer t1;
1281 ev_timer_init (&t1, ocb, 5, 10);
1282 ev_timer_start (&t1);
1283
1284 struct ev_signal sig;
1285 ev_signal_init (&sig, scb, SIGQUIT);
1286 ev_signal_start (&sig);
1287
1288 struct ev_check cw;
1289 ev_check_init (&cw, gcb);
1290 ev_check_start (&cw);
1291
1292 struct ev_idle iw;
1293 ev_idle_init (&iw, gcb);
1294 ev_idle_start (&iw);
1295
1296 ev_loop (0);
1297
1298 return 0;
1299}
1300
1301#endif
1302
1303
1304
1305

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines