ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.263 by root, Wed Oct 1 18:50:03 2008 UTC vs.
Revision 1.482 by root, Sat Jul 28 04:15:15 2018 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
130# endif 163# endif
131 164
132#endif 165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
150#else 184#else
151# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
152#endif 197#endif
153 198
154#ifndef _WIN32 199#ifndef _WIN32
155# include <sys/time.h> 200# include <sys/time.h>
156# include <sys/wait.h> 201# include <sys/wait.h>
157# include <unistd.h> 202# include <unistd.h>
158#else 203#else
159# include <io.h> 204# include <io.h>
160# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
161# include <windows.h> 207# include <windows.h>
162# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
163# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
164# endif 210# endif
211# undef EV_AVOID_STDIO
165#endif 212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
166 221
167/* this block tries to deduce configuration from header-defined symbols and defaults */ 222/* this block tries to deduce configuration from header-defined symbols and defaults */
168 223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# define EV_NSIG (8 * sizeof (sigset_t) + 1)
247#endif
248
249#ifndef EV_USE_FLOOR
250# define EV_USE_FLOOR 0
251#endif
252
253#ifndef EV_USE_CLOCK_SYSCALL
254# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
255# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
256# else
257# define EV_USE_CLOCK_SYSCALL 0
258# endif
259#endif
260
261#if !(_POSIX_TIMERS > 0)
262# ifndef EV_USE_MONOTONIC
263# define EV_USE_MONOTONIC 0
264# endif
265# ifndef EV_USE_REALTIME
266# define EV_USE_REALTIME 0
267# endif
268#endif
269
169#ifndef EV_USE_MONOTONIC 270#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 271# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1 272# define EV_USE_MONOTONIC EV_FEATURE_OS
172# else 273# else
173# define EV_USE_MONOTONIC 0 274# define EV_USE_MONOTONIC 0
174# endif 275# endif
175#endif 276#endif
176 277
177#ifndef EV_USE_REALTIME 278#ifndef EV_USE_REALTIME
178# define EV_USE_REALTIME 0 279# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
179#endif 280#endif
180 281
181#ifndef EV_USE_NANOSLEEP 282#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L 283# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1 284# define EV_USE_NANOSLEEP EV_FEATURE_OS
184# else 285# else
185# define EV_USE_NANOSLEEP 0 286# define EV_USE_NANOSLEEP 0
186# endif 287# endif
187#endif 288#endif
188 289
189#ifndef EV_USE_SELECT 290#ifndef EV_USE_SELECT
190# define EV_USE_SELECT 1 291# define EV_USE_SELECT EV_FEATURE_BACKENDS
191#endif 292#endif
192 293
193#ifndef EV_USE_POLL 294#ifndef EV_USE_POLL
194# ifdef _WIN32 295# ifdef _WIN32
195# define EV_USE_POLL 0 296# define EV_USE_POLL 0
196# else 297# else
197# define EV_USE_POLL 1 298# define EV_USE_POLL EV_FEATURE_BACKENDS
198# endif 299# endif
199#endif 300#endif
200 301
201#ifndef EV_USE_EPOLL 302#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1 304# define EV_USE_EPOLL EV_FEATURE_BACKENDS
204# else 305# else
205# define EV_USE_EPOLL 0 306# define EV_USE_EPOLL 0
206# endif 307# endif
207#endif 308#endif
208 309
214# define EV_USE_PORT 0 315# define EV_USE_PORT 0
215#endif 316#endif
216 317
217#ifndef EV_USE_INOTIFY 318#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1 320# define EV_USE_INOTIFY EV_FEATURE_OS
220# else 321# else
221# define EV_USE_INOTIFY 0 322# define EV_USE_INOTIFY 0
222# endif 323# endif
223#endif 324#endif
224 325
225#ifndef EV_PID_HASHSIZE 326#ifndef EV_PID_HASHSIZE
226# if EV_MINIMAL 327# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
227# define EV_PID_HASHSIZE 1
228# else
229# define EV_PID_HASHSIZE 16
230# endif
231#endif 328#endif
232 329
233#ifndef EV_INOTIFY_HASHSIZE 330#ifndef EV_INOTIFY_HASHSIZE
234# if EV_MINIMAL 331# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
235# define EV_INOTIFY_HASHSIZE 1
236# else
237# define EV_INOTIFY_HASHSIZE 16
238# endif
239#endif 332#endif
240 333
241#ifndef EV_USE_EVENTFD 334#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 335# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1 336# define EV_USE_EVENTFD EV_FEATURE_OS
244# else 337# else
245# define EV_USE_EVENTFD 0 338# define EV_USE_EVENTFD 0
339# endif
340#endif
341
342#ifndef EV_USE_SIGNALFD
343# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
344# define EV_USE_SIGNALFD EV_FEATURE_OS
345# else
346# define EV_USE_SIGNALFD 0
246# endif 347# endif
247#endif 348#endif
248 349
249#if 0 /* debugging */ 350#if 0 /* debugging */
250# define EV_VERIFY 3 351# define EV_VERIFY 3
251# define EV_USE_4HEAP 1 352# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1 353# define EV_HEAP_CACHE_AT 1
253#endif 354#endif
254 355
255#ifndef EV_VERIFY 356#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL 357# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
257#endif 358#endif
258 359
259#ifndef EV_USE_4HEAP 360#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL 361# define EV_USE_4HEAP EV_FEATURE_DATA
261#endif 362#endif
262 363
263#ifndef EV_HEAP_CACHE_AT 364#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL 365# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
366#endif
367
368#ifdef __ANDROID__
369/* supposedly, android doesn't typedef fd_mask */
370# undef EV_USE_SELECT
371# define EV_USE_SELECT 0
372/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
373# undef EV_USE_CLOCK_SYSCALL
374# define EV_USE_CLOCK_SYSCALL 0
375#endif
376
377/* aix's poll.h seems to cause lots of trouble */
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
380# undef EV_USE_POLL
381# define EV_USE_POLL 0
382#endif
383
384/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
385/* which makes programs even slower. might work on other unices, too. */
386#if EV_USE_CLOCK_SYSCALL
387# include <sys/syscall.h>
388# ifdef SYS_clock_gettime
389# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
390# undef EV_USE_MONOTONIC
391# define EV_USE_MONOTONIC 1
392# else
393# undef EV_USE_CLOCK_SYSCALL
394# define EV_USE_CLOCK_SYSCALL 0
395# endif
265#endif 396#endif
266 397
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 398/* this block fixes any misconfiguration where we know we run into trouble otherwise */
268 399
269#ifndef CLOCK_MONOTONIC 400#ifndef CLOCK_MONOTONIC
280# undef EV_USE_INOTIFY 411# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0 412# define EV_USE_INOTIFY 0
282#endif 413#endif
283 414
284#if !EV_USE_NANOSLEEP 415#if !EV_USE_NANOSLEEP
285# ifndef _WIN32 416/* hp-ux has it in sys/time.h, which we unconditionally include above */
417# if !defined _WIN32 && !defined __hpux
286# include <sys/select.h> 418# include <sys/select.h>
287# endif 419# endif
288#endif 420#endif
289 421
290#if EV_USE_INOTIFY 422#if EV_USE_INOTIFY
423# include <sys/statfs.h>
291# include <sys/inotify.h> 424# include <sys/inotify.h>
292/* some very old inotify.h headers don't have IN_DONT_FOLLOW */ 425/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
293# ifndef IN_DONT_FOLLOW 426# ifndef IN_DONT_FOLLOW
294# undef EV_USE_INOTIFY 427# undef EV_USE_INOTIFY
295# define EV_USE_INOTIFY 0 428# define EV_USE_INOTIFY 0
296# endif 429# endif
297#endif 430#endif
298 431
299#if EV_SELECT_IS_WINSOCKET
300# include <winsock.h>
301#endif
302
303#if EV_USE_EVENTFD 432#if EV_USE_EVENTFD
304/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 433/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
305# include <stdint.h> 434# include <stdint.h>
306# ifdef __cplusplus 435# ifndef EFD_NONBLOCK
307extern "C" { 436# define EFD_NONBLOCK O_NONBLOCK
308# endif 437# endif
309int eventfd (unsigned int initval, int flags); 438# ifndef EFD_CLOEXEC
310# ifdef __cplusplus 439# ifdef O_CLOEXEC
311} 440# define EFD_CLOEXEC O_CLOEXEC
441# else
442# define EFD_CLOEXEC 02000000
443# endif
312# endif 444# endif
445EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
446#endif
447
448#if EV_USE_SIGNALFD
449/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
450# include <stdint.h>
451# ifndef SFD_NONBLOCK
452# define SFD_NONBLOCK O_NONBLOCK
453# endif
454# ifndef SFD_CLOEXEC
455# ifdef O_CLOEXEC
456# define SFD_CLOEXEC O_CLOEXEC
457# else
458# define SFD_CLOEXEC 02000000
459# endif
460# endif
461EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
462
463struct signalfd_siginfo
464{
465 uint32_t ssi_signo;
466 char pad[128 - sizeof (uint32_t)];
467};
313#endif 468#endif
314 469
315/**/ 470/**/
316 471
317#if EV_VERIFY >= 3 472#if EV_VERIFY >= 3
318# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 473# define EV_FREQUENT_CHECK ev_verify (EV_A)
319#else 474#else
320# define EV_FREQUENT_CHECK do { } while (0) 475# define EV_FREQUENT_CHECK do { } while (0)
321#endif 476#endif
322 477
323/* 478/*
324 * This is used to avoid floating point rounding problems. 479 * This is used to work around floating point rounding problems.
325 * It is added to ev_rt_now when scheduling periodics
326 * to ensure progress, time-wise, even when rounding
327 * errors are against us.
328 * This value is good at least till the year 4000. 480 * This value is good at least till the year 4000.
329 * Better solutions welcome.
330 */ 481 */
331#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 482#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
483/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
332 484
333#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 485#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
334#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 486#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
335/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
336 487
488#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
489#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
490
491/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
492/* ECB.H BEGIN */
493/*
494 * libecb - http://software.schmorp.de/pkg/libecb
495 *
496 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
497 * Copyright (©) 2011 Emanuele Giaquinta
498 * All rights reserved.
499 *
500 * Redistribution and use in source and binary forms, with or without modifica-
501 * tion, are permitted provided that the following conditions are met:
502 *
503 * 1. Redistributions of source code must retain the above copyright notice,
504 * this list of conditions and the following disclaimer.
505 *
506 * 2. Redistributions in binary form must reproduce the above copyright
507 * notice, this list of conditions and the following disclaimer in the
508 * documentation and/or other materials provided with the distribution.
509 *
510 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
511 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
512 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
513 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
514 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
515 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
516 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
517 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
518 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
519 * OF THE POSSIBILITY OF SUCH DAMAGE.
520 *
521 * Alternatively, the contents of this file may be used under the terms of
522 * the GNU General Public License ("GPL") version 2 or any later version,
523 * in which case the provisions of the GPL are applicable instead of
524 * the above. If you wish to allow the use of your version of this file
525 * only under the terms of the GPL and not to allow others to use your
526 * version of this file under the BSD license, indicate your decision
527 * by deleting the provisions above and replace them with the notice
528 * and other provisions required by the GPL. If you do not delete the
529 * provisions above, a recipient may use your version of this file under
530 * either the BSD or the GPL.
531 */
532
533#ifndef ECB_H
534#define ECB_H
535
536/* 16 bits major, 16 bits minor */
537#define ECB_VERSION 0x00010005
538
539#ifdef _WIN32
540 typedef signed char int8_t;
541 typedef unsigned char uint8_t;
542 typedef signed short int16_t;
543 typedef unsigned short uint16_t;
544 typedef signed int int32_t;
545 typedef unsigned int uint32_t;
337#if __GNUC__ >= 4 546 #if __GNUC__
547 typedef signed long long int64_t;
548 typedef unsigned long long uint64_t;
549 #else /* _MSC_VER || __BORLANDC__ */
550 typedef signed __int64 int64_t;
551 typedef unsigned __int64 uint64_t;
552 #endif
553 #ifdef _WIN64
554 #define ECB_PTRSIZE 8
555 typedef uint64_t uintptr_t;
556 typedef int64_t intptr_t;
557 #else
558 #define ECB_PTRSIZE 4
559 typedef uint32_t uintptr_t;
560 typedef int32_t intptr_t;
561 #endif
562#else
563 #include <inttypes.h>
564 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
565 #define ECB_PTRSIZE 8
566 #else
567 #define ECB_PTRSIZE 4
568 #endif
569#endif
570
571#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
572#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
573
574/* work around x32 idiocy by defining proper macros */
575#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
576 #if _ILP32
577 #define ECB_AMD64_X32 1
578 #else
579 #define ECB_AMD64 1
580 #endif
581#endif
582
583/* many compilers define _GNUC_ to some versions but then only implement
584 * what their idiot authors think are the "more important" extensions,
585 * causing enormous grief in return for some better fake benchmark numbers.
586 * or so.
587 * we try to detect these and simply assume they are not gcc - if they have
588 * an issue with that they should have done it right in the first place.
589 */
590#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
591 #define ECB_GCC_VERSION(major,minor) 0
592#else
593 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
594#endif
595
596#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
597
598#if __clang__ && defined __has_builtin
599 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
600#else
601 #define ECB_CLANG_BUILTIN(x) 0
602#endif
603
604#if __clang__ && defined __has_extension
605 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
606#else
607 #define ECB_CLANG_EXTENSION(x) 0
608#endif
609
610#define ECB_CPP (__cplusplus+0)
611#define ECB_CPP11 (__cplusplus >= 201103L)
612
613#if ECB_CPP
614 #define ECB_C 0
615 #define ECB_STDC_VERSION 0
616#else
617 #define ECB_C 1
618 #define ECB_STDC_VERSION __STDC_VERSION__
619#endif
620
621#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
622#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
623
624#if ECB_CPP
625 #define ECB_EXTERN_C extern "C"
626 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
627 #define ECB_EXTERN_C_END }
628#else
629 #define ECB_EXTERN_C extern
630 #define ECB_EXTERN_C_BEG
631 #define ECB_EXTERN_C_END
632#endif
633
634/*****************************************************************************/
635
636/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
637/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
638
639#if ECB_NO_THREADS
640 #define ECB_NO_SMP 1
641#endif
642
643#if ECB_NO_SMP
644 #define ECB_MEMORY_FENCE do { } while (0)
645#endif
646
647/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
648#if __xlC__ && ECB_CPP
649 #include <builtins.h>
650#endif
651
652#if 1400 <= _MSC_VER
653 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
654#endif
655
656#ifndef ECB_MEMORY_FENCE
657 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
658 #if __i386 || __i386__
659 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
660 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
661 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
662 #elif ECB_GCC_AMD64
663 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
664 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
665 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
666 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
667 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
668 #elif defined __ARM_ARCH_2__ \
669 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
670 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
671 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
672 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
673 || defined __ARM_ARCH_5TEJ__
674 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
675 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
676 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
677 || defined __ARM_ARCH_6T2__
678 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
679 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
680 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
681 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
682 #elif __aarch64__
683 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
684 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
685 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
686 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
687 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
688 #elif defined __s390__ || defined __s390x__
689 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
690 #elif defined __mips__
691 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
692 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
693 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
694 #elif defined __alpha__
695 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
696 #elif defined __hppa__
697 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
698 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
699 #elif defined __ia64__
700 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
701 #elif defined __m68k__
702 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
703 #elif defined __m88k__
704 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
705 #elif defined __sh__
706 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
707 #endif
708 #endif
709#endif
710
711#ifndef ECB_MEMORY_FENCE
712 #if ECB_GCC_VERSION(4,7)
713 /* see comment below (stdatomic.h) about the C11 memory model. */
714 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
715 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
716 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
717
718 #elif ECB_CLANG_EXTENSION(c_atomic)
719 /* see comment below (stdatomic.h) about the C11 memory model. */
720 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
721 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
722 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
723
724 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
725 #define ECB_MEMORY_FENCE __sync_synchronize ()
726 #elif _MSC_VER >= 1500 /* VC++ 2008 */
727 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
728 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
729 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
730 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
731 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
732 #elif _MSC_VER >= 1400 /* VC++ 2005 */
733 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
734 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
735 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
736 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
737 #elif defined _WIN32
738 #include <WinNT.h>
739 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
740 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
741 #include <mbarrier.h>
742 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
743 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
744 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
745 #elif __xlC__
746 #define ECB_MEMORY_FENCE __sync ()
747 #endif
748#endif
749
750#ifndef ECB_MEMORY_FENCE
751 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
752 /* we assume that these memory fences work on all variables/all memory accesses, */
753 /* not just C11 atomics and atomic accesses */
754 #include <stdatomic.h>
755 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
756 /* any fence other than seq_cst, which isn't very efficient for us. */
757 /* Why that is, we don't know - either the C11 memory model is quite useless */
758 /* for most usages, or gcc and clang have a bug */
759 /* I *currently* lean towards the latter, and inefficiently implement */
760 /* all three of ecb's fences as a seq_cst fence */
761 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
762 /* for all __atomic_thread_fence's except seq_cst */
763 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
764 #endif
765#endif
766
767#ifndef ECB_MEMORY_FENCE
768 #if !ECB_AVOID_PTHREADS
769 /*
770 * if you get undefined symbol references to pthread_mutex_lock,
771 * or failure to find pthread.h, then you should implement
772 * the ECB_MEMORY_FENCE operations for your cpu/compiler
773 * OR provide pthread.h and link against the posix thread library
774 * of your system.
775 */
776 #include <pthread.h>
777 #define ECB_NEEDS_PTHREADS 1
778 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
779
780 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
781 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
782 #endif
783#endif
784
785#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
786 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
787#endif
788
789#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
790 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
791#endif
792
793/*****************************************************************************/
794
795#if ECB_CPP
796 #define ecb_inline static inline
797#elif ECB_GCC_VERSION(2,5)
798 #define ecb_inline static __inline__
799#elif ECB_C99
800 #define ecb_inline static inline
801#else
802 #define ecb_inline static
803#endif
804
805#if ECB_GCC_VERSION(3,3)
806 #define ecb_restrict __restrict__
807#elif ECB_C99
808 #define ecb_restrict restrict
809#else
810 #define ecb_restrict
811#endif
812
813typedef int ecb_bool;
814
815#define ECB_CONCAT_(a, b) a ## b
816#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
817#define ECB_STRINGIFY_(a) # a
818#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
819#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
820
821#define ecb_function_ ecb_inline
822
823#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
824 #define ecb_attribute(attrlist) __attribute__ (attrlist)
825#else
826 #define ecb_attribute(attrlist)
827#endif
828
829#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
830 #define ecb_is_constant(expr) __builtin_constant_p (expr)
831#else
832 /* possible C11 impl for integral types
833 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
834 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
835
836 #define ecb_is_constant(expr) 0
837#endif
838
839#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
338# define expect(expr,value) __builtin_expect ((expr),(value)) 840 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
339# define noinline __attribute__ ((noinline))
340#else 841#else
341# define expect(expr,value) (expr) 842 #define ecb_expect(expr,value) (expr)
342# define noinline
343# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
344# define inline
345# endif 843#endif
346#endif
347 844
845#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
846 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
847#else
848 #define ecb_prefetch(addr,rw,locality)
849#endif
850
851/* no emulation for ecb_decltype */
852#if ECB_CPP11
853 // older implementations might have problems with decltype(x)::type, work around it
854 template<class T> struct ecb_decltype_t { typedef T type; };
855 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
856#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
857 #define ecb_decltype(x) __typeof__ (x)
858#endif
859
860#if _MSC_VER >= 1300
861 #define ecb_deprecated __declspec (deprecated)
862#else
863 #define ecb_deprecated ecb_attribute ((__deprecated__))
864#endif
865
866#if _MSC_VER >= 1500
867 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
868#elif ECB_GCC_VERSION(4,5)
869 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
870#else
871 #define ecb_deprecated_message(msg) ecb_deprecated
872#endif
873
874#if _MSC_VER >= 1400
875 #define ecb_noinline __declspec (noinline)
876#else
877 #define ecb_noinline ecb_attribute ((__noinline__))
878#endif
879
880#define ecb_unused ecb_attribute ((__unused__))
881#define ecb_const ecb_attribute ((__const__))
882#define ecb_pure ecb_attribute ((__pure__))
883
884#if ECB_C11 || __IBMC_NORETURN
885 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
886 #define ecb_noreturn _Noreturn
887#elif ECB_CPP11
888 #define ecb_noreturn [[noreturn]]
889#elif _MSC_VER >= 1200
890 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
891 #define ecb_noreturn __declspec (noreturn)
892#else
893 #define ecb_noreturn ecb_attribute ((__noreturn__))
894#endif
895
896#if ECB_GCC_VERSION(4,3)
897 #define ecb_artificial ecb_attribute ((__artificial__))
898 #define ecb_hot ecb_attribute ((__hot__))
899 #define ecb_cold ecb_attribute ((__cold__))
900#else
901 #define ecb_artificial
902 #define ecb_hot
903 #define ecb_cold
904#endif
905
906/* put around conditional expressions if you are very sure that the */
907/* expression is mostly true or mostly false. note that these return */
908/* booleans, not the expression. */
348#define expect_false(expr) expect ((expr) != 0, 0) 909#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
349#define expect_true(expr) expect ((expr) != 0, 1) 910#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
911/* for compatibility to the rest of the world */
912#define ecb_likely(expr) ecb_expect_true (expr)
913#define ecb_unlikely(expr) ecb_expect_false (expr)
914
915/* count trailing zero bits and count # of one bits */
916#if ECB_GCC_VERSION(3,4) \
917 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
918 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
919 && ECB_CLANG_BUILTIN(__builtin_popcount))
920 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
921 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
922 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
923 #define ecb_ctz32(x) __builtin_ctz (x)
924 #define ecb_ctz64(x) __builtin_ctzll (x)
925 #define ecb_popcount32(x) __builtin_popcount (x)
926 /* no popcountll */
927#else
928 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
929 ecb_function_ ecb_const int
930 ecb_ctz32 (uint32_t x)
931 {
932#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
933 unsigned long r;
934 _BitScanForward (&r, x);
935 return (int)r;
936#else
937 int r = 0;
938
939 x &= ~x + 1; /* this isolates the lowest bit */
940
941#if ECB_branchless_on_i386
942 r += !!(x & 0xaaaaaaaa) << 0;
943 r += !!(x & 0xcccccccc) << 1;
944 r += !!(x & 0xf0f0f0f0) << 2;
945 r += !!(x & 0xff00ff00) << 3;
946 r += !!(x & 0xffff0000) << 4;
947#else
948 if (x & 0xaaaaaaaa) r += 1;
949 if (x & 0xcccccccc) r += 2;
950 if (x & 0xf0f0f0f0) r += 4;
951 if (x & 0xff00ff00) r += 8;
952 if (x & 0xffff0000) r += 16;
953#endif
954
955 return r;
956#endif
957 }
958
959 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
960 ecb_function_ ecb_const int
961 ecb_ctz64 (uint64_t x)
962 {
963#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
964 unsigned long r;
965 _BitScanForward64 (&r, x);
966 return (int)r;
967#else
968 int shift = x & 0xffffffff ? 0 : 32;
969 return ecb_ctz32 (x >> shift) + shift;
970#endif
971 }
972
973 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
974 ecb_function_ ecb_const int
975 ecb_popcount32 (uint32_t x)
976 {
977 x -= (x >> 1) & 0x55555555;
978 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
979 x = ((x >> 4) + x) & 0x0f0f0f0f;
980 x *= 0x01010101;
981
982 return x >> 24;
983 }
984
985 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
986 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
987 {
988#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
989 unsigned long r;
990 _BitScanReverse (&r, x);
991 return (int)r;
992#else
993 int r = 0;
994
995 if (x >> 16) { x >>= 16; r += 16; }
996 if (x >> 8) { x >>= 8; r += 8; }
997 if (x >> 4) { x >>= 4; r += 4; }
998 if (x >> 2) { x >>= 2; r += 2; }
999 if (x >> 1) { r += 1; }
1000
1001 return r;
1002#endif
1003 }
1004
1005 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1006 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1007 {
1008#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1009 unsigned long r;
1010 _BitScanReverse64 (&r, x);
1011 return (int)r;
1012#else
1013 int r = 0;
1014
1015 if (x >> 32) { x >>= 32; r += 32; }
1016
1017 return r + ecb_ld32 (x);
1018#endif
1019 }
1020#endif
1021
1022ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1023ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1024ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1025ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1026
1027ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1028ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1029{
1030 return ( (x * 0x0802U & 0x22110U)
1031 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1032}
1033
1034ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1035ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1036{
1037 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1038 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1039 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1040 x = ( x >> 8 ) | ( x << 8);
1041
1042 return x;
1043}
1044
1045ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1046ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1047{
1048 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1049 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1050 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1051 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1052 x = ( x >> 16 ) | ( x << 16);
1053
1054 return x;
1055}
1056
1057/* popcount64 is only available on 64 bit cpus as gcc builtin */
1058/* so for this version we are lazy */
1059ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1060ecb_function_ ecb_const int
1061ecb_popcount64 (uint64_t x)
1062{
1063 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1064}
1065
1066ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1067ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1068ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1069ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1070ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1071ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1072ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1073ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1074
1075ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1076ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1077ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1078ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1079ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1080ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1081ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1082ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1083
1084#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1085 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1086 #define ecb_bswap16(x) __builtin_bswap16 (x)
1087 #else
1088 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1089 #endif
1090 #define ecb_bswap32(x) __builtin_bswap32 (x)
1091 #define ecb_bswap64(x) __builtin_bswap64 (x)
1092#elif _MSC_VER
1093 #include <stdlib.h>
1094 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1095 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1096 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1097#else
1098 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1099 ecb_function_ ecb_const uint16_t
1100 ecb_bswap16 (uint16_t x)
1101 {
1102 return ecb_rotl16 (x, 8);
1103 }
1104
1105 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1106 ecb_function_ ecb_const uint32_t
1107 ecb_bswap32 (uint32_t x)
1108 {
1109 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1110 }
1111
1112 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1113 ecb_function_ ecb_const uint64_t
1114 ecb_bswap64 (uint64_t x)
1115 {
1116 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1117 }
1118#endif
1119
1120#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1121 #define ecb_unreachable() __builtin_unreachable ()
1122#else
1123 /* this seems to work fine, but gcc always emits a warning for it :/ */
1124 ecb_inline ecb_noreturn void ecb_unreachable (void);
1125 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1126#endif
1127
1128/* try to tell the compiler that some condition is definitely true */
1129#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1130
1131ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1132ecb_inline ecb_const uint32_t
1133ecb_byteorder_helper (void)
1134{
1135 /* the union code still generates code under pressure in gcc, */
1136 /* but less than using pointers, and always seems to */
1137 /* successfully return a constant. */
1138 /* the reason why we have this horrible preprocessor mess */
1139 /* is to avoid it in all cases, at least on common architectures */
1140 /* or when using a recent enough gcc version (>= 4.6) */
1141#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1142 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1143 #define ECB_LITTLE_ENDIAN 1
1144 return 0x44332211;
1145#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1146 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1147 #define ECB_BIG_ENDIAN 1
1148 return 0x11223344;
1149#else
1150 union
1151 {
1152 uint8_t c[4];
1153 uint32_t u;
1154 } u = { 0x11, 0x22, 0x33, 0x44 };
1155 return u.u;
1156#endif
1157}
1158
1159ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1160ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1161ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1162ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1163
1164#if ECB_GCC_VERSION(3,0) || ECB_C99
1165 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1166#else
1167 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1168#endif
1169
1170#if ECB_CPP
1171 template<typename T>
1172 static inline T ecb_div_rd (T val, T div)
1173 {
1174 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1175 }
1176 template<typename T>
1177 static inline T ecb_div_ru (T val, T div)
1178 {
1179 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1180 }
1181#else
1182 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1183 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1184#endif
1185
1186#if ecb_cplusplus_does_not_suck
1187 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1188 template<typename T, int N>
1189 static inline int ecb_array_length (const T (&arr)[N])
1190 {
1191 return N;
1192 }
1193#else
1194 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1195#endif
1196
1197ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1198ecb_function_ ecb_const uint32_t
1199ecb_binary16_to_binary32 (uint32_t x)
1200{
1201 unsigned int s = (x & 0x8000) << (31 - 15);
1202 int e = (x >> 10) & 0x001f;
1203 unsigned int m = x & 0x03ff;
1204
1205 if (ecb_expect_false (e == 31))
1206 /* infinity or NaN */
1207 e = 255 - (127 - 15);
1208 else if (ecb_expect_false (!e))
1209 {
1210 if (ecb_expect_true (!m))
1211 /* zero, handled by code below by forcing e to 0 */
1212 e = 0 - (127 - 15);
1213 else
1214 {
1215 /* subnormal, renormalise */
1216 unsigned int s = 10 - ecb_ld32 (m);
1217
1218 m = (m << s) & 0x3ff; /* mask implicit bit */
1219 e -= s - 1;
1220 }
1221 }
1222
1223 /* e and m now are normalised, or zero, (or inf or nan) */
1224 e += 127 - 15;
1225
1226 return s | (e << 23) | (m << (23 - 10));
1227}
1228
1229ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1230ecb_function_ ecb_const uint16_t
1231ecb_binary32_to_binary16 (uint32_t x)
1232{
1233 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1234 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1235 unsigned int m = x & 0x007fffff;
1236
1237 x &= 0x7fffffff;
1238
1239 /* if it's within range of binary16 normals, use fast path */
1240 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1241 {
1242 /* mantissa round-to-even */
1243 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1244
1245 /* handle overflow */
1246 if (ecb_expect_false (m >= 0x00800000))
1247 {
1248 m >>= 1;
1249 e += 1;
1250 }
1251
1252 return s | (e << 10) | (m >> (23 - 10));
1253 }
1254
1255 /* handle large numbers and infinity */
1256 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1257 return s | 0x7c00;
1258
1259 /* handle zero, subnormals and small numbers */
1260 if (ecb_expect_true (x < 0x38800000))
1261 {
1262 /* zero */
1263 if (ecb_expect_true (!x))
1264 return s;
1265
1266 /* handle subnormals */
1267
1268 /* too small, will be zero */
1269 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1270 return s;
1271
1272 m |= 0x00800000; /* make implicit bit explicit */
1273
1274 /* very tricky - we need to round to the nearest e (+10) bit value */
1275 {
1276 unsigned int bits = 14 - e;
1277 unsigned int half = (1 << (bits - 1)) - 1;
1278 unsigned int even = (m >> bits) & 1;
1279
1280 /* if this overflows, we will end up with a normalised number */
1281 m = (m + half + even) >> bits;
1282 }
1283
1284 return s | m;
1285 }
1286
1287 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1288 m >>= 13;
1289
1290 return s | 0x7c00 | m | !m;
1291}
1292
1293/*******************************************************************************/
1294/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1295
1296/* basically, everything uses "ieee pure-endian" floating point numbers */
1297/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1298#if 0 \
1299 || __i386 || __i386__ \
1300 || ECB_GCC_AMD64 \
1301 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1302 || defined __s390__ || defined __s390x__ \
1303 || defined __mips__ \
1304 || defined __alpha__ \
1305 || defined __hppa__ \
1306 || defined __ia64__ \
1307 || defined __m68k__ \
1308 || defined __m88k__ \
1309 || defined __sh__ \
1310 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1311 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1312 || defined __aarch64__
1313 #define ECB_STDFP 1
1314 #include <string.h> /* for memcpy */
1315#else
1316 #define ECB_STDFP 0
1317#endif
1318
1319#ifndef ECB_NO_LIBM
1320
1321 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1322
1323 /* only the oldest of old doesn't have this one. solaris. */
1324 #ifdef INFINITY
1325 #define ECB_INFINITY INFINITY
1326 #else
1327 #define ECB_INFINITY HUGE_VAL
1328 #endif
1329
1330 #ifdef NAN
1331 #define ECB_NAN NAN
1332 #else
1333 #define ECB_NAN ECB_INFINITY
1334 #endif
1335
1336 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1337 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1338 #define ecb_frexpf(x,e) frexpf ((x), (e))
1339 #else
1340 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1341 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1342 #endif
1343
1344 /* convert a float to ieee single/binary32 */
1345 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1346 ecb_function_ ecb_const uint32_t
1347 ecb_float_to_binary32 (float x)
1348 {
1349 uint32_t r;
1350
1351 #if ECB_STDFP
1352 memcpy (&r, &x, 4);
1353 #else
1354 /* slow emulation, works for anything but -0 */
1355 uint32_t m;
1356 int e;
1357
1358 if (x == 0e0f ) return 0x00000000U;
1359 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1360 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1361 if (x != x ) return 0x7fbfffffU;
1362
1363 m = ecb_frexpf (x, &e) * 0x1000000U;
1364
1365 r = m & 0x80000000U;
1366
1367 if (r)
1368 m = -m;
1369
1370 if (e <= -126)
1371 {
1372 m &= 0xffffffU;
1373 m >>= (-125 - e);
1374 e = -126;
1375 }
1376
1377 r |= (e + 126) << 23;
1378 r |= m & 0x7fffffU;
1379 #endif
1380
1381 return r;
1382 }
1383
1384 /* converts an ieee single/binary32 to a float */
1385 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1386 ecb_function_ ecb_const float
1387 ecb_binary32_to_float (uint32_t x)
1388 {
1389 float r;
1390
1391 #if ECB_STDFP
1392 memcpy (&r, &x, 4);
1393 #else
1394 /* emulation, only works for normals and subnormals and +0 */
1395 int neg = x >> 31;
1396 int e = (x >> 23) & 0xffU;
1397
1398 x &= 0x7fffffU;
1399
1400 if (e)
1401 x |= 0x800000U;
1402 else
1403 e = 1;
1404
1405 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1406 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1407
1408 r = neg ? -r : r;
1409 #endif
1410
1411 return r;
1412 }
1413
1414 /* convert a double to ieee double/binary64 */
1415 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1416 ecb_function_ ecb_const uint64_t
1417 ecb_double_to_binary64 (double x)
1418 {
1419 uint64_t r;
1420
1421 #if ECB_STDFP
1422 memcpy (&r, &x, 8);
1423 #else
1424 /* slow emulation, works for anything but -0 */
1425 uint64_t m;
1426 int e;
1427
1428 if (x == 0e0 ) return 0x0000000000000000U;
1429 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1430 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1431 if (x != x ) return 0X7ff7ffffffffffffU;
1432
1433 m = frexp (x, &e) * 0x20000000000000U;
1434
1435 r = m & 0x8000000000000000;;
1436
1437 if (r)
1438 m = -m;
1439
1440 if (e <= -1022)
1441 {
1442 m &= 0x1fffffffffffffU;
1443 m >>= (-1021 - e);
1444 e = -1022;
1445 }
1446
1447 r |= ((uint64_t)(e + 1022)) << 52;
1448 r |= m & 0xfffffffffffffU;
1449 #endif
1450
1451 return r;
1452 }
1453
1454 /* converts an ieee double/binary64 to a double */
1455 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1456 ecb_function_ ecb_const double
1457 ecb_binary64_to_double (uint64_t x)
1458 {
1459 double r;
1460
1461 #if ECB_STDFP
1462 memcpy (&r, &x, 8);
1463 #else
1464 /* emulation, only works for normals and subnormals and +0 */
1465 int neg = x >> 63;
1466 int e = (x >> 52) & 0x7ffU;
1467
1468 x &= 0xfffffffffffffU;
1469
1470 if (e)
1471 x |= 0x10000000000000U;
1472 else
1473 e = 1;
1474
1475 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1476 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1477
1478 r = neg ? -r : r;
1479 #endif
1480
1481 return r;
1482 }
1483
1484 /* convert a float to ieee half/binary16 */
1485 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1486 ecb_function_ ecb_const uint16_t
1487 ecb_float_to_binary16 (float x)
1488 {
1489 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1490 }
1491
1492 /* convert an ieee half/binary16 to float */
1493 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1494 ecb_function_ ecb_const float
1495 ecb_binary16_to_float (uint16_t x)
1496 {
1497 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1498 }
1499
1500#endif
1501
1502#endif
1503
1504/* ECB.H END */
1505
1506#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1507/* if your architecture doesn't need memory fences, e.g. because it is
1508 * single-cpu/core, or if you use libev in a project that doesn't use libev
1509 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1510 * libev, in which cases the memory fences become nops.
1511 * alternatively, you can remove this #error and link against libpthread,
1512 * which will then provide the memory fences.
1513 */
1514# error "memory fences not defined for your architecture, please report"
1515#endif
1516
1517#ifndef ECB_MEMORY_FENCE
1518# define ECB_MEMORY_FENCE do { } while (0)
1519# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1520# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1521#endif
1522
1523#define expect_false(cond) ecb_expect_false (cond)
1524#define expect_true(cond) ecb_expect_true (cond)
1525#define noinline ecb_noinline
1526
350#define inline_size static inline 1527#define inline_size ecb_inline
351 1528
352#if EV_MINIMAL 1529#if EV_FEATURE_CODE
353# define inline_speed static noinline
354#else
355# define inline_speed static inline 1530# define inline_speed ecb_inline
1531#else
1532# define inline_speed noinline static
356#endif 1533#endif
357 1534
358#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1535#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1536
1537#if EV_MINPRI == EV_MAXPRI
1538# define ABSPRI(w) (((W)w), 0)
1539#else
359#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1540# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1541#endif
360 1542
361#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1543#define EMPTY /* required for microsofts broken pseudo-c compiler */
362#define EMPTY2(a,b) /* used to suppress some warnings */ 1544#define EMPTY2(a,b) /* used to suppress some warnings */
363 1545
364typedef ev_watcher *W; 1546typedef ev_watcher *W;
366typedef ev_watcher_time *WT; 1548typedef ev_watcher_time *WT;
367 1549
368#define ev_active(w) ((W)(w))->active 1550#define ev_active(w) ((W)(w))->active
369#define ev_at(w) ((WT)(w))->at 1551#define ev_at(w) ((WT)(w))->at
370 1552
1553#if EV_USE_REALTIME
1554/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1555/* giving it a reasonably high chance of working on typical architectures */
1556static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1557#endif
1558
371#if EV_USE_MONOTONIC 1559#if EV_USE_MONOTONIC
372/* sig_atomic_t is used to avoid per-thread variables or locking but still */
373/* giving it a reasonably high chance of working on typical architetcures */
374static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1560static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1561#endif
1562
1563#ifndef EV_FD_TO_WIN32_HANDLE
1564# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1565#endif
1566#ifndef EV_WIN32_HANDLE_TO_FD
1567# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1568#endif
1569#ifndef EV_WIN32_CLOSE_FD
1570# define EV_WIN32_CLOSE_FD(fd) close (fd)
375#endif 1571#endif
376 1572
377#ifdef _WIN32 1573#ifdef _WIN32
378# include "ev_win32.c" 1574# include "ev_win32.c"
379#endif 1575#endif
380 1576
381/*****************************************************************************/ 1577/*****************************************************************************/
382 1578
1579/* define a suitable floor function (only used by periodics atm) */
1580
1581#if EV_USE_FLOOR
1582# include <math.h>
1583# define ev_floor(v) floor (v)
1584#else
1585
1586#include <float.h>
1587
1588/* a floor() replacement function, should be independent of ev_tstamp type */
1589noinline
1590static ev_tstamp
1591ev_floor (ev_tstamp v)
1592{
1593 /* the choice of shift factor is not terribly important */
1594#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1595 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1596#else
1597 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1598#endif
1599
1600 /* argument too large for an unsigned long? */
1601 if (expect_false (v >= shift))
1602 {
1603 ev_tstamp f;
1604
1605 if (v == v - 1.)
1606 return v; /* very large number */
1607
1608 f = shift * ev_floor (v * (1. / shift));
1609 return f + ev_floor (v - f);
1610 }
1611
1612 /* special treatment for negative args? */
1613 if (expect_false (v < 0.))
1614 {
1615 ev_tstamp f = -ev_floor (-v);
1616
1617 return f - (f == v ? 0 : 1);
1618 }
1619
1620 /* fits into an unsigned long */
1621 return (unsigned long)v;
1622}
1623
1624#endif
1625
1626/*****************************************************************************/
1627
1628#ifdef __linux
1629# include <sys/utsname.h>
1630#endif
1631
1632noinline ecb_cold
1633static unsigned int
1634ev_linux_version (void)
1635{
1636#ifdef __linux
1637 unsigned int v = 0;
1638 struct utsname buf;
1639 int i;
1640 char *p = buf.release;
1641
1642 if (uname (&buf))
1643 return 0;
1644
1645 for (i = 3+1; --i; )
1646 {
1647 unsigned int c = 0;
1648
1649 for (;;)
1650 {
1651 if (*p >= '0' && *p <= '9')
1652 c = c * 10 + *p++ - '0';
1653 else
1654 {
1655 p += *p == '.';
1656 break;
1657 }
1658 }
1659
1660 v = (v << 8) | c;
1661 }
1662
1663 return v;
1664#else
1665 return 0;
1666#endif
1667}
1668
1669/*****************************************************************************/
1670
1671#if EV_AVOID_STDIO
1672noinline ecb_cold
1673static void
1674ev_printerr (const char *msg)
1675{
1676 write (STDERR_FILENO, msg, strlen (msg));
1677}
1678#endif
1679
383static void (*syserr_cb)(const char *msg); 1680static void (*syserr_cb)(const char *msg) EV_THROW;
384 1681
1682ecb_cold
385void 1683void
386ev_set_syserr_cb (void (*cb)(const char *msg)) 1684ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
387{ 1685{
388 syserr_cb = cb; 1686 syserr_cb = cb;
389} 1687}
390 1688
391static void noinline 1689noinline ecb_cold
1690static void
392syserr (const char *msg) 1691ev_syserr (const char *msg)
393{ 1692{
394 if (!msg) 1693 if (!msg)
395 msg = "(libev) system error"; 1694 msg = "(libev) system error";
396 1695
397 if (syserr_cb) 1696 if (syserr_cb)
398 syserr_cb (msg); 1697 syserr_cb (msg);
399 else 1698 else
400 { 1699 {
1700#if EV_AVOID_STDIO
1701 ev_printerr (msg);
1702 ev_printerr (": ");
1703 ev_printerr (strerror (errno));
1704 ev_printerr ("\n");
1705#else
401 perror (msg); 1706 perror (msg);
1707#endif
402 abort (); 1708 abort ();
403 } 1709 }
404} 1710}
405 1711
406static void * 1712static void *
407ev_realloc_emul (void *ptr, long size) 1713ev_realloc_emul (void *ptr, long size) EV_THROW
408{ 1714{
409 /* some systems, notably openbsd and darwin, fail to properly 1715 /* some systems, notably openbsd and darwin, fail to properly
410 * implement realloc (x, 0) (as required by both ansi c-98 and 1716 * implement realloc (x, 0) (as required by both ansi c-89 and
411 * the single unix specification, so work around them here. 1717 * the single unix specification, so work around them here.
1718 * recently, also (at least) fedora and debian started breaking it,
1719 * despite documenting it otherwise.
412 */ 1720 */
413 1721
414 if (size) 1722 if (size)
415 return realloc (ptr, size); 1723 return realloc (ptr, size);
416 1724
417 free (ptr); 1725 free (ptr);
418 return 0; 1726 return 0;
419} 1727}
420 1728
421static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1729static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
422 1730
1731ecb_cold
423void 1732void
424ev_set_allocator (void *(*cb)(void *ptr, long size)) 1733ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
425{ 1734{
426 alloc = cb; 1735 alloc = cb;
427} 1736}
428 1737
429inline_speed void * 1738inline_speed void *
431{ 1740{
432 ptr = alloc (ptr, size); 1741 ptr = alloc (ptr, size);
433 1742
434 if (!ptr && size) 1743 if (!ptr && size)
435 { 1744 {
1745#if EV_AVOID_STDIO
1746 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1747#else
436 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1748 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1749#endif
437 abort (); 1750 abort ();
438 } 1751 }
439 1752
440 return ptr; 1753 return ptr;
441} 1754}
443#define ev_malloc(size) ev_realloc (0, (size)) 1756#define ev_malloc(size) ev_realloc (0, (size))
444#define ev_free(ptr) ev_realloc ((ptr), 0) 1757#define ev_free(ptr) ev_realloc ((ptr), 0)
445 1758
446/*****************************************************************************/ 1759/*****************************************************************************/
447 1760
1761/* set in reify when reification needed */
1762#define EV_ANFD_REIFY 1
1763
1764/* file descriptor info structure */
448typedef struct 1765typedef struct
449{ 1766{
450 WL head; 1767 WL head;
451 unsigned char events; 1768 unsigned char events; /* the events watched for */
1769 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1770 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
452 unsigned char reify; 1771 unsigned char unused;
1772#if EV_USE_EPOLL
1773 unsigned int egen; /* generation counter to counter epoll bugs */
1774#endif
453#if EV_SELECT_IS_WINSOCKET 1775#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
454 SOCKET handle; 1776 SOCKET handle;
455#endif 1777#endif
1778#if EV_USE_IOCP
1779 OVERLAPPED or, ow;
1780#endif
456} ANFD; 1781} ANFD;
457 1782
1783/* stores the pending event set for a given watcher */
458typedef struct 1784typedef struct
459{ 1785{
460 W w; 1786 W w;
461 int events; 1787 int events; /* the pending event set for the given watcher */
462} ANPENDING; 1788} ANPENDING;
463 1789
464#if EV_USE_INOTIFY 1790#if EV_USE_INOTIFY
465/* hash table entry per inotify-id */ 1791/* hash table entry per inotify-id */
466typedef struct 1792typedef struct
469} ANFS; 1795} ANFS;
470#endif 1796#endif
471 1797
472/* Heap Entry */ 1798/* Heap Entry */
473#if EV_HEAP_CACHE_AT 1799#if EV_HEAP_CACHE_AT
1800 /* a heap element */
474 typedef struct { 1801 typedef struct {
475 ev_tstamp at; 1802 ev_tstamp at;
476 WT w; 1803 WT w;
477 } ANHE; 1804 } ANHE;
478 1805
479 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1806 #define ANHE_w(he) (he).w /* access watcher, read-write */
480 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1807 #define ANHE_at(he) (he).at /* access cached at, read-only */
481 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 1808 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
482#else 1809#else
1810 /* a heap element */
483 typedef WT ANHE; 1811 typedef WT ANHE;
484 1812
485 #define ANHE_w(he) (he) 1813 #define ANHE_w(he) (he)
486 #define ANHE_at(he) (he)->at 1814 #define ANHE_at(he) (he)->at
487 #define ANHE_at_cache(he) 1815 #define ANHE_at_cache(he)
498 #undef VAR 1826 #undef VAR
499 }; 1827 };
500 #include "ev_wrap.h" 1828 #include "ev_wrap.h"
501 1829
502 static struct ev_loop default_loop_struct; 1830 static struct ev_loop default_loop_struct;
503 struct ev_loop *ev_default_loop_ptr; 1831 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
504 1832
505#else 1833#else
506 1834
507 ev_tstamp ev_rt_now; 1835 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
508 #define VAR(name,decl) static decl; 1836 #define VAR(name,decl) static decl;
509 #include "ev_vars.h" 1837 #include "ev_vars.h"
510 #undef VAR 1838 #undef VAR
511 1839
512 static int ev_default_loop_ptr; 1840 static int ev_default_loop_ptr;
513 1841
514#endif 1842#endif
515 1843
1844#if EV_FEATURE_API
1845# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1846# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1847# define EV_INVOKE_PENDING invoke_cb (EV_A)
1848#else
1849# define EV_RELEASE_CB (void)0
1850# define EV_ACQUIRE_CB (void)0
1851# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1852#endif
1853
1854#define EVBREAK_RECURSE 0x80
1855
516/*****************************************************************************/ 1856/*****************************************************************************/
517 1857
1858#ifndef EV_HAVE_EV_TIME
518ev_tstamp 1859ev_tstamp
519ev_time (void) 1860ev_time (void) EV_THROW
520{ 1861{
521#if EV_USE_REALTIME 1862#if EV_USE_REALTIME
1863 if (expect_true (have_realtime))
1864 {
522 struct timespec ts; 1865 struct timespec ts;
523 clock_gettime (CLOCK_REALTIME, &ts); 1866 clock_gettime (CLOCK_REALTIME, &ts);
524 return ts.tv_sec + ts.tv_nsec * 1e-9; 1867 return ts.tv_sec + ts.tv_nsec * 1e-9;
525#else 1868 }
1869#endif
1870
526 struct timeval tv; 1871 struct timeval tv;
527 gettimeofday (&tv, 0); 1872 gettimeofday (&tv, 0);
528 return tv.tv_sec + tv.tv_usec * 1e-6; 1873 return tv.tv_sec + tv.tv_usec * 1e-6;
529#endif
530} 1874}
1875#endif
531 1876
532ev_tstamp inline_size 1877inline_size ev_tstamp
533get_clock (void) 1878get_clock (void)
534{ 1879{
535#if EV_USE_MONOTONIC 1880#if EV_USE_MONOTONIC
536 if (expect_true (have_monotonic)) 1881 if (expect_true (have_monotonic))
537 { 1882 {
544 return ev_time (); 1889 return ev_time ();
545} 1890}
546 1891
547#if EV_MULTIPLICITY 1892#if EV_MULTIPLICITY
548ev_tstamp 1893ev_tstamp
549ev_now (EV_P) 1894ev_now (EV_P) EV_THROW
550{ 1895{
551 return ev_rt_now; 1896 return ev_rt_now;
552} 1897}
553#endif 1898#endif
554 1899
555void 1900void
556ev_sleep (ev_tstamp delay) 1901ev_sleep (ev_tstamp delay) EV_THROW
557{ 1902{
558 if (delay > 0.) 1903 if (delay > 0.)
559 { 1904 {
560#if EV_USE_NANOSLEEP 1905#if EV_USE_NANOSLEEP
561 struct timespec ts; 1906 struct timespec ts;
562 1907
563 ts.tv_sec = (time_t)delay; 1908 EV_TS_SET (ts, delay);
564 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
565
566 nanosleep (&ts, 0); 1909 nanosleep (&ts, 0);
567#elif defined(_WIN32) 1910#elif defined _WIN32
1911 /* maybe this should round up, as ms is very low resolution */
1912 /* compared to select (µs) or nanosleep (ns) */
568 Sleep ((unsigned long)(delay * 1e3)); 1913 Sleep ((unsigned long)(delay * 1e3));
569#else 1914#else
570 struct timeval tv; 1915 struct timeval tv;
571 1916
572 tv.tv_sec = (time_t)delay;
573 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
574
575 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 1917 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
576 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 1918 /* something not guaranteed by newer posix versions, but guaranteed */
577 /* by older ones */ 1919 /* by older ones */
1920 EV_TV_SET (tv, delay);
578 select (0, 0, 0, 0, &tv); 1921 select (0, 0, 0, 0, &tv);
579#endif 1922#endif
580 } 1923 }
581} 1924}
582 1925
583/*****************************************************************************/ 1926/*****************************************************************************/
584 1927
585#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1928#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
586 1929
587int inline_size 1930/* find a suitable new size for the given array, */
1931/* hopefully by rounding to a nice-to-malloc size */
1932inline_size int
588array_nextsize (int elem, int cur, int cnt) 1933array_nextsize (int elem, int cur, int cnt)
589{ 1934{
590 int ncur = cur + 1; 1935 int ncur = cur + 1;
591 1936
592 do 1937 do
593 ncur <<= 1; 1938 ncur <<= 1;
594 while (cnt > ncur); 1939 while (cnt > ncur);
595 1940
596 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 1941 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
597 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 1942 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
598 { 1943 {
599 ncur *= elem; 1944 ncur *= elem;
600 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 1945 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
601 ncur = ncur - sizeof (void *) * 4; 1946 ncur = ncur - sizeof (void *) * 4;
603 } 1948 }
604 1949
605 return ncur; 1950 return ncur;
606} 1951}
607 1952
608static noinline void * 1953noinline ecb_cold
1954static void *
609array_realloc (int elem, void *base, int *cur, int cnt) 1955array_realloc (int elem, void *base, int *cur, int cnt)
610{ 1956{
611 *cur = array_nextsize (elem, *cur, cnt); 1957 *cur = array_nextsize (elem, *cur, cnt);
612 return ev_realloc (base, elem * *cur); 1958 return ev_realloc (base, elem * *cur);
613} 1959}
1960
1961#define array_init_zero(base,count) \
1962 memset ((void *)(base), 0, sizeof (*(base)) * (count))
614 1963
615#define array_needsize(type,base,cur,cnt,init) \ 1964#define array_needsize(type,base,cur,cnt,init) \
616 if (expect_false ((cnt) > (cur))) \ 1965 if (expect_false ((cnt) > (cur))) \
617 { \ 1966 { \
618 int ocur_ = (cur); \ 1967 ecb_unused int ocur_ = (cur); \
619 (base) = (type *)array_realloc \ 1968 (base) = (type *)array_realloc \
620 (sizeof (type), (base), &(cur), (cnt)); \ 1969 (sizeof (type), (base), &(cur), (cnt)); \
621 init ((base) + (ocur_), (cur) - ocur_); \ 1970 init ((base) + (ocur_), (cur) - ocur_); \
622 } 1971 }
623 1972
630 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1979 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
631 } 1980 }
632#endif 1981#endif
633 1982
634#define array_free(stem, idx) \ 1983#define array_free(stem, idx) \
635 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1984 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
636 1985
637/*****************************************************************************/ 1986/*****************************************************************************/
638 1987
1988/* dummy callback for pending events */
639void noinline 1989noinline
1990static void
1991pendingcb (EV_P_ ev_prepare *w, int revents)
1992{
1993}
1994
1995noinline
1996void
640ev_feed_event (EV_P_ void *w, int revents) 1997ev_feed_event (EV_P_ void *w, int revents) EV_THROW
641{ 1998{
642 W w_ = (W)w; 1999 W w_ = (W)w;
643 int pri = ABSPRI (w_); 2000 int pri = ABSPRI (w_);
644 2001
645 if (expect_false (w_->pending)) 2002 if (expect_false (w_->pending))
649 w_->pending = ++pendingcnt [pri]; 2006 w_->pending = ++pendingcnt [pri];
650 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 2007 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
651 pendings [pri][w_->pending - 1].w = w_; 2008 pendings [pri][w_->pending - 1].w = w_;
652 pendings [pri][w_->pending - 1].events = revents; 2009 pendings [pri][w_->pending - 1].events = revents;
653 } 2010 }
654}
655 2011
656void inline_speed 2012 pendingpri = NUMPRI - 1;
2013}
2014
2015inline_speed void
2016feed_reverse (EV_P_ W w)
2017{
2018 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
2019 rfeeds [rfeedcnt++] = w;
2020}
2021
2022inline_size void
2023feed_reverse_done (EV_P_ int revents)
2024{
2025 do
2026 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2027 while (rfeedcnt);
2028}
2029
2030inline_speed void
657queue_events (EV_P_ W *events, int eventcnt, int type) 2031queue_events (EV_P_ W *events, int eventcnt, int type)
658{ 2032{
659 int i; 2033 int i;
660 2034
661 for (i = 0; i < eventcnt; ++i) 2035 for (i = 0; i < eventcnt; ++i)
662 ev_feed_event (EV_A_ events [i], type); 2036 ev_feed_event (EV_A_ events [i], type);
663} 2037}
664 2038
665/*****************************************************************************/ 2039/*****************************************************************************/
666 2040
667void inline_size 2041inline_speed void
668anfds_init (ANFD *base, int count)
669{
670 while (count--)
671 {
672 base->head = 0;
673 base->events = EV_NONE;
674 base->reify = 0;
675
676 ++base;
677 }
678}
679
680void inline_speed
681fd_event (EV_P_ int fd, int revents) 2042fd_event_nocheck (EV_P_ int fd, int revents)
682{ 2043{
683 ANFD *anfd = anfds + fd; 2044 ANFD *anfd = anfds + fd;
684 ev_io *w; 2045 ev_io *w;
685 2046
686 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2047 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
690 if (ev) 2051 if (ev)
691 ev_feed_event (EV_A_ (W)w, ev); 2052 ev_feed_event (EV_A_ (W)w, ev);
692 } 2053 }
693} 2054}
694 2055
2056/* do not submit kernel events for fds that have reify set */
2057/* because that means they changed while we were polling for new events */
2058inline_speed void
2059fd_event (EV_P_ int fd, int revents)
2060{
2061 ANFD *anfd = anfds + fd;
2062
2063 if (expect_true (!anfd->reify))
2064 fd_event_nocheck (EV_A_ fd, revents);
2065}
2066
695void 2067void
696ev_feed_fd_event (EV_P_ int fd, int revents) 2068ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
697{ 2069{
698 if (fd >= 0 && fd < anfdmax) 2070 if (fd >= 0 && fd < anfdmax)
699 fd_event (EV_A_ fd, revents); 2071 fd_event_nocheck (EV_A_ fd, revents);
700} 2072}
701 2073
702void inline_size 2074/* make sure the external fd watch events are in-sync */
2075/* with the kernel/libev internal state */
2076inline_size void
703fd_reify (EV_P) 2077fd_reify (EV_P)
704{ 2078{
705 int i; 2079 int i;
2080
2081#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2082 for (i = 0; i < fdchangecnt; ++i)
2083 {
2084 int fd = fdchanges [i];
2085 ANFD *anfd = anfds + fd;
2086
2087 if (anfd->reify & EV__IOFDSET && anfd->head)
2088 {
2089 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2090
2091 if (handle != anfd->handle)
2092 {
2093 unsigned long arg;
2094
2095 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2096
2097 /* handle changed, but fd didn't - we need to do it in two steps */
2098 backend_modify (EV_A_ fd, anfd->events, 0);
2099 anfd->events = 0;
2100 anfd->handle = handle;
2101 }
2102 }
2103 }
2104#endif
706 2105
707 for (i = 0; i < fdchangecnt; ++i) 2106 for (i = 0; i < fdchangecnt; ++i)
708 { 2107 {
709 int fd = fdchanges [i]; 2108 int fd = fdchanges [i];
710 ANFD *anfd = anfds + fd; 2109 ANFD *anfd = anfds + fd;
711 ev_io *w; 2110 ev_io *w;
712 2111
713 unsigned char events = 0; 2112 unsigned char o_events = anfd->events;
2113 unsigned char o_reify = anfd->reify;
714 2114
715 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2115 anfd->reify = 0;
716 events |= (unsigned char)w->events;
717 2116
718#if EV_SELECT_IS_WINSOCKET 2117 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
719 if (events)
720 { 2118 {
721 unsigned long arg; 2119 anfd->events = 0;
722 #ifdef EV_FD_TO_WIN32_HANDLE 2120
723 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 2121 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
724 #else 2122 anfd->events |= (unsigned char)w->events;
725 anfd->handle = _get_osfhandle (fd); 2123
726 #endif 2124 if (o_events != anfd->events)
727 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 2125 o_reify = EV__IOFDSET; /* actually |= */
728 } 2126 }
729#endif
730 2127
731 { 2128 if (o_reify & EV__IOFDSET)
732 unsigned char o_events = anfd->events;
733 unsigned char o_reify = anfd->reify;
734
735 anfd->reify = 0;
736 anfd->events = events;
737
738 if (o_events != events || o_reify & EV_IOFDSET)
739 backend_modify (EV_A_ fd, o_events, events); 2129 backend_modify (EV_A_ fd, o_events, anfd->events);
740 }
741 } 2130 }
742 2131
743 fdchangecnt = 0; 2132 fdchangecnt = 0;
744} 2133}
745 2134
2135/* something about the given fd changed */
746void inline_size 2136inline_size
2137void
747fd_change (EV_P_ int fd, int flags) 2138fd_change (EV_P_ int fd, int flags)
748{ 2139{
749 unsigned char reify = anfds [fd].reify; 2140 unsigned char reify = anfds [fd].reify;
750 anfds [fd].reify |= flags; 2141 anfds [fd].reify |= flags;
751 2142
755 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 2146 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
756 fdchanges [fdchangecnt - 1] = fd; 2147 fdchanges [fdchangecnt - 1] = fd;
757 } 2148 }
758} 2149}
759 2150
760void inline_speed 2151/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2152inline_speed ecb_cold void
761fd_kill (EV_P_ int fd) 2153fd_kill (EV_P_ int fd)
762{ 2154{
763 ev_io *w; 2155 ev_io *w;
764 2156
765 while ((w = (ev_io *)anfds [fd].head)) 2157 while ((w = (ev_io *)anfds [fd].head))
767 ev_io_stop (EV_A_ w); 2159 ev_io_stop (EV_A_ w);
768 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2160 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
769 } 2161 }
770} 2162}
771 2163
772int inline_size 2164/* check whether the given fd is actually valid, for error recovery */
2165inline_size ecb_cold int
773fd_valid (int fd) 2166fd_valid (int fd)
774{ 2167{
775#ifdef _WIN32 2168#ifdef _WIN32
776 return _get_osfhandle (fd) != -1; 2169 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
777#else 2170#else
778 return fcntl (fd, F_GETFD) != -1; 2171 return fcntl (fd, F_GETFD) != -1;
779#endif 2172#endif
780} 2173}
781 2174
782/* called on EBADF to verify fds */ 2175/* called on EBADF to verify fds */
783static void noinline 2176noinline ecb_cold
2177static void
784fd_ebadf (EV_P) 2178fd_ebadf (EV_P)
785{ 2179{
786 int fd; 2180 int fd;
787 2181
788 for (fd = 0; fd < anfdmax; ++fd) 2182 for (fd = 0; fd < anfdmax; ++fd)
790 if (!fd_valid (fd) && errno == EBADF) 2184 if (!fd_valid (fd) && errno == EBADF)
791 fd_kill (EV_A_ fd); 2185 fd_kill (EV_A_ fd);
792} 2186}
793 2187
794/* called on ENOMEM in select/poll to kill some fds and retry */ 2188/* called on ENOMEM in select/poll to kill some fds and retry */
795static void noinline 2189noinline ecb_cold
2190static void
796fd_enomem (EV_P) 2191fd_enomem (EV_P)
797{ 2192{
798 int fd; 2193 int fd;
799 2194
800 for (fd = anfdmax; fd--; ) 2195 for (fd = anfdmax; fd--; )
801 if (anfds [fd].events) 2196 if (anfds [fd].events)
802 { 2197 {
803 fd_kill (EV_A_ fd); 2198 fd_kill (EV_A_ fd);
804 return; 2199 break;
805 } 2200 }
806} 2201}
807 2202
808/* usually called after fork if backend needs to re-arm all fds from scratch */ 2203/* usually called after fork if backend needs to re-arm all fds from scratch */
809static void noinline 2204noinline
2205static void
810fd_rearm_all (EV_P) 2206fd_rearm_all (EV_P)
811{ 2207{
812 int fd; 2208 int fd;
813 2209
814 for (fd = 0; fd < anfdmax; ++fd) 2210 for (fd = 0; fd < anfdmax; ++fd)
815 if (anfds [fd].events) 2211 if (anfds [fd].events)
816 { 2212 {
817 anfds [fd].events = 0; 2213 anfds [fd].events = 0;
2214 anfds [fd].emask = 0;
818 fd_change (EV_A_ fd, EV_IOFDSET | 1); 2215 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
819 } 2216 }
820} 2217}
821 2218
2219/* used to prepare libev internal fd's */
2220/* this is not fork-safe */
2221inline_speed void
2222fd_intern (int fd)
2223{
2224#ifdef _WIN32
2225 unsigned long arg = 1;
2226 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2227#else
2228 fcntl (fd, F_SETFD, FD_CLOEXEC);
2229 fcntl (fd, F_SETFL, O_NONBLOCK);
2230#endif
2231}
2232
822/*****************************************************************************/ 2233/*****************************************************************************/
823 2234
824/* 2235/*
825 * the heap functions want a real array index. array index 0 uis guaranteed to not 2236 * the heap functions want a real array index. array index 0 is guaranteed to not
826 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 2237 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
827 * the branching factor of the d-tree. 2238 * the branching factor of the d-tree.
828 */ 2239 */
829 2240
830/* 2241/*
839#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 2250#define HEAP0 (DHEAP - 1) /* index of first element in heap */
840#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 2251#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
841#define UPHEAP_DONE(p,k) ((p) == (k)) 2252#define UPHEAP_DONE(p,k) ((p) == (k))
842 2253
843/* away from the root */ 2254/* away from the root */
844void inline_speed 2255inline_speed void
845downheap (ANHE *heap, int N, int k) 2256downheap (ANHE *heap, int N, int k)
846{ 2257{
847 ANHE he = heap [k]; 2258 ANHE he = heap [k];
848 ANHE *E = heap + N + HEAP0; 2259 ANHE *E = heap + N + HEAP0;
849 2260
889#define HEAP0 1 2300#define HEAP0 1
890#define HPARENT(k) ((k) >> 1) 2301#define HPARENT(k) ((k) >> 1)
891#define UPHEAP_DONE(p,k) (!(p)) 2302#define UPHEAP_DONE(p,k) (!(p))
892 2303
893/* away from the root */ 2304/* away from the root */
894void inline_speed 2305inline_speed void
895downheap (ANHE *heap, int N, int k) 2306downheap (ANHE *heap, int N, int k)
896{ 2307{
897 ANHE he = heap [k]; 2308 ANHE he = heap [k];
898 2309
899 for (;;) 2310 for (;;)
900 { 2311 {
901 int c = k << 1; 2312 int c = k << 1;
902 2313
903 if (c > N + HEAP0 - 1) 2314 if (c >= N + HEAP0)
904 break; 2315 break;
905 2316
906 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 2317 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
907 ? 1 : 0; 2318 ? 1 : 0;
908 2319
919 ev_active (ANHE_w (he)) = k; 2330 ev_active (ANHE_w (he)) = k;
920} 2331}
921#endif 2332#endif
922 2333
923/* towards the root */ 2334/* towards the root */
924void inline_speed 2335inline_speed void
925upheap (ANHE *heap, int k) 2336upheap (ANHE *heap, int k)
926{ 2337{
927 ANHE he = heap [k]; 2338 ANHE he = heap [k];
928 2339
929 for (;;) 2340 for (;;)
940 2351
941 heap [k] = he; 2352 heap [k] = he;
942 ev_active (ANHE_w (he)) = k; 2353 ev_active (ANHE_w (he)) = k;
943} 2354}
944 2355
945void inline_size 2356/* move an element suitably so it is in a correct place */
2357inline_size void
946adjustheap (ANHE *heap, int N, int k) 2358adjustheap (ANHE *heap, int N, int k)
947{ 2359{
948 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 2360 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
949 upheap (heap, k); 2361 upheap (heap, k);
950 else 2362 else
951 downheap (heap, N, k); 2363 downheap (heap, N, k);
952} 2364}
953 2365
954/* rebuild the heap: this function is used only once and executed rarely */ 2366/* rebuild the heap: this function is used only once and executed rarely */
955void inline_size 2367inline_size void
956reheap (ANHE *heap, int N) 2368reheap (ANHE *heap, int N)
957{ 2369{
958 int i; 2370 int i;
959 2371
960 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 2372 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
963 upheap (heap, i + HEAP0); 2375 upheap (heap, i + HEAP0);
964} 2376}
965 2377
966/*****************************************************************************/ 2378/*****************************************************************************/
967 2379
2380/* associate signal watchers to a signal signal */
968typedef struct 2381typedef struct
969{ 2382{
2383 EV_ATOMIC_T pending;
2384#if EV_MULTIPLICITY
2385 EV_P;
2386#endif
970 WL head; 2387 WL head;
971 EV_ATOMIC_T gotsig;
972} ANSIG; 2388} ANSIG;
973 2389
974static ANSIG *signals; 2390static ANSIG signals [EV_NSIG - 1];
975static int signalmax;
976
977static EV_ATOMIC_T gotsig;
978
979void inline_size
980signals_init (ANSIG *base, int count)
981{
982 while (count--)
983 {
984 base->head = 0;
985 base->gotsig = 0;
986
987 ++base;
988 }
989}
990 2391
991/*****************************************************************************/ 2392/*****************************************************************************/
992 2393
993void inline_speed 2394#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
994fd_intern (int fd)
995{
996#ifdef _WIN32
997 unsigned long arg = 1;
998 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
999#else
1000 fcntl (fd, F_SETFD, FD_CLOEXEC);
1001 fcntl (fd, F_SETFL, O_NONBLOCK);
1002#endif
1003}
1004 2395
1005static void noinline 2396noinline ecb_cold
2397static void
1006evpipe_init (EV_P) 2398evpipe_init (EV_P)
1007{ 2399{
1008 if (!ev_is_active (&pipeev)) 2400 if (!ev_is_active (&pipe_w))
2401 {
2402 int fds [2];
2403
2404# if EV_USE_EVENTFD
2405 fds [0] = -1;
2406 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2407 if (fds [1] < 0 && errno == EINVAL)
2408 fds [1] = eventfd (0, 0);
2409
2410 if (fds [1] < 0)
2411# endif
2412 {
2413 while (pipe (fds))
2414 ev_syserr ("(libev) error creating signal/async pipe");
2415
2416 fd_intern (fds [0]);
2417 }
2418
2419 evpipe [0] = fds [0];
2420
2421 if (evpipe [1] < 0)
2422 evpipe [1] = fds [1]; /* first call, set write fd */
2423 else
2424 {
2425 /* on subsequent calls, do not change evpipe [1] */
2426 /* so that evpipe_write can always rely on its value. */
2427 /* this branch does not do anything sensible on windows, */
2428 /* so must not be executed on windows */
2429
2430 dup2 (fds [1], evpipe [1]);
2431 close (fds [1]);
2432 }
2433
2434 fd_intern (evpipe [1]);
2435
2436 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2437 ev_io_start (EV_A_ &pipe_w);
2438 ev_unref (EV_A); /* watcher should not keep loop alive */
1009 { 2439 }
2440}
2441
2442inline_speed void
2443evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2444{
2445 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2446
2447 if (expect_true (*flag))
2448 return;
2449
2450 *flag = 1;
2451 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2452
2453 pipe_write_skipped = 1;
2454
2455 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2456
2457 if (pipe_write_wanted)
2458 {
2459 int old_errno;
2460
2461 pipe_write_skipped = 0;
2462 ECB_MEMORY_FENCE_RELEASE;
2463
2464 old_errno = errno; /* save errno because write will clobber it */
2465
1010#if EV_USE_EVENTFD 2466#if EV_USE_EVENTFD
1011 if ((evfd = eventfd (0, 0)) >= 0) 2467 if (evpipe [0] < 0)
1012 { 2468 {
1013 evpipe [0] = -1; 2469 uint64_t counter = 1;
1014 fd_intern (evfd); 2470 write (evpipe [1], &counter, sizeof (uint64_t));
1015 ev_io_set (&pipeev, evfd, EV_READ);
1016 } 2471 }
1017 else 2472 else
1018#endif 2473#endif
1019 { 2474 {
1020 while (pipe (evpipe)) 2475#ifdef _WIN32
1021 syserr ("(libev) error creating signal/async pipe"); 2476 WSABUF buf;
1022 2477 DWORD sent;
1023 fd_intern (evpipe [0]); 2478 buf.buf = &buf;
1024 fd_intern (evpipe [1]); 2479 buf.len = 1;
1025 ev_io_set (&pipeev, evpipe [0], EV_READ); 2480 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2481#else
2482 write (evpipe [1], &(evpipe [1]), 1);
2483#endif
1026 } 2484 }
1027 2485
1028 ev_io_start (EV_A_ &pipeev); 2486 errno = old_errno;
1029 ev_unref (EV_A); /* watcher should not keep loop alive */
1030 }
1031}
1032
1033void inline_size
1034evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1035{
1036 if (!*flag)
1037 { 2487 }
1038 int old_errno = errno; /* save errno because write might clobber it */ 2488}
1039 2489
1040 *flag = 1; 2490/* called whenever the libev signal pipe */
2491/* got some events (signal, async) */
2492static void
2493pipecb (EV_P_ ev_io *iow, int revents)
2494{
2495 int i;
1041 2496
2497 if (revents & EV_READ)
2498 {
1042#if EV_USE_EVENTFD 2499#if EV_USE_EVENTFD
1043 if (evfd >= 0) 2500 if (evpipe [0] < 0)
1044 { 2501 {
1045 uint64_t counter = 1; 2502 uint64_t counter;
1046 write (evfd, &counter, sizeof (uint64_t)); 2503 read (evpipe [1], &counter, sizeof (uint64_t));
1047 } 2504 }
1048 else 2505 else
1049#endif 2506#endif
1050 write (evpipe [1], &old_errno, 1); 2507 {
1051
1052 errno = old_errno;
1053 }
1054}
1055
1056static void
1057pipecb (EV_P_ ev_io *iow, int revents)
1058{
1059#if EV_USE_EVENTFD
1060 if (evfd >= 0)
1061 {
1062 uint64_t counter;
1063 read (evfd, &counter, sizeof (uint64_t));
1064 }
1065 else
1066#endif
1067 {
1068 char dummy; 2508 char dummy[4];
2509#ifdef _WIN32
2510 WSABUF buf;
2511 DWORD recvd;
2512 DWORD flags = 0;
2513 buf.buf = dummy;
2514 buf.len = sizeof (dummy);
2515 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2516#else
1069 read (evpipe [0], &dummy, 1); 2517 read (evpipe [0], &dummy, sizeof (dummy));
2518#endif
2519 }
2520 }
2521
2522 pipe_write_skipped = 0;
2523
2524 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2525
2526#if EV_SIGNAL_ENABLE
2527 if (sig_pending)
1070 } 2528 {
2529 sig_pending = 0;
1071 2530
1072 if (gotsig && ev_is_default_loop (EV_A)) 2531 ECB_MEMORY_FENCE;
1073 {
1074 int signum;
1075 gotsig = 0;
1076 2532
1077 for (signum = signalmax; signum--; ) 2533 for (i = EV_NSIG - 1; i--; )
1078 if (signals [signum].gotsig) 2534 if (expect_false (signals [i].pending))
1079 ev_feed_signal_event (EV_A_ signum + 1); 2535 ev_feed_signal_event (EV_A_ i + 1);
1080 } 2536 }
2537#endif
1081 2538
1082#if EV_ASYNC_ENABLE 2539#if EV_ASYNC_ENABLE
1083 if (gotasync) 2540 if (async_pending)
1084 { 2541 {
1085 int i; 2542 async_pending = 0;
1086 gotasync = 0; 2543
2544 ECB_MEMORY_FENCE;
1087 2545
1088 for (i = asynccnt; i--; ) 2546 for (i = asynccnt; i--; )
1089 if (asyncs [i]->sent) 2547 if (asyncs [i]->sent)
1090 { 2548 {
1091 asyncs [i]->sent = 0; 2549 asyncs [i]->sent = 0;
2550 ECB_MEMORY_FENCE_RELEASE;
1092 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2551 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1093 } 2552 }
1094 } 2553 }
1095#endif 2554#endif
1096} 2555}
1097 2556
1098/*****************************************************************************/ 2557/*****************************************************************************/
1099 2558
2559void
2560ev_feed_signal (int signum) EV_THROW
2561{
2562#if EV_MULTIPLICITY
2563 EV_P;
2564 ECB_MEMORY_FENCE_ACQUIRE;
2565 EV_A = signals [signum - 1].loop;
2566
2567 if (!EV_A)
2568 return;
2569#endif
2570
2571 signals [signum - 1].pending = 1;
2572 evpipe_write (EV_A_ &sig_pending);
2573}
2574
1100static void 2575static void
1101ev_sighandler (int signum) 2576ev_sighandler (int signum)
1102{ 2577{
2578#ifdef _WIN32
2579 signal (signum, ev_sighandler);
2580#endif
2581
2582 ev_feed_signal (signum);
2583}
2584
2585noinline
2586void
2587ev_feed_signal_event (EV_P_ int signum) EV_THROW
2588{
2589 WL w;
2590
2591 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2592 return;
2593
2594 --signum;
2595
1103#if EV_MULTIPLICITY 2596#if EV_MULTIPLICITY
1104 struct ev_loop *loop = &default_loop_struct; 2597 /* it is permissible to try to feed a signal to the wrong loop */
1105#endif 2598 /* or, likely more useful, feeding a signal nobody is waiting for */
1106 2599
1107#if _WIN32 2600 if (expect_false (signals [signum].loop != EV_A))
1108 signal (signum, ev_sighandler);
1109#endif
1110
1111 signals [signum - 1].gotsig = 1;
1112 evpipe_write (EV_A_ &gotsig);
1113}
1114
1115void noinline
1116ev_feed_signal_event (EV_P_ int signum)
1117{
1118 WL w;
1119
1120#if EV_MULTIPLICITY
1121 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1122#endif
1123
1124 --signum;
1125
1126 if (signum < 0 || signum >= signalmax)
1127 return; 2601 return;
2602#endif
1128 2603
1129 signals [signum].gotsig = 0; 2604 signals [signum].pending = 0;
2605 ECB_MEMORY_FENCE_RELEASE;
1130 2606
1131 for (w = signals [signum].head; w; w = w->next) 2607 for (w = signals [signum].head; w; w = w->next)
1132 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2608 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1133} 2609}
1134 2610
2611#if EV_USE_SIGNALFD
2612static void
2613sigfdcb (EV_P_ ev_io *iow, int revents)
2614{
2615 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2616
2617 for (;;)
2618 {
2619 ssize_t res = read (sigfd, si, sizeof (si));
2620
2621 /* not ISO-C, as res might be -1, but works with SuS */
2622 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2623 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2624
2625 if (res < (ssize_t)sizeof (si))
2626 break;
2627 }
2628}
2629#endif
2630
2631#endif
2632
1135/*****************************************************************************/ 2633/*****************************************************************************/
1136 2634
2635#if EV_CHILD_ENABLE
1137static WL childs [EV_PID_HASHSIZE]; 2636static WL childs [EV_PID_HASHSIZE];
1138
1139#ifndef _WIN32
1140 2637
1141static ev_signal childev; 2638static ev_signal childev;
1142 2639
1143#ifndef WIFCONTINUED 2640#ifndef WIFCONTINUED
1144# define WIFCONTINUED(status) 0 2641# define WIFCONTINUED(status) 0
1145#endif 2642#endif
1146 2643
1147void inline_speed 2644/* handle a single child status event */
2645inline_speed void
1148child_reap (EV_P_ int chain, int pid, int status) 2646child_reap (EV_P_ int chain, int pid, int status)
1149{ 2647{
1150 ev_child *w; 2648 ev_child *w;
1151 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2649 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1152 2650
1153 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2651 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1154 { 2652 {
1155 if ((w->pid == pid || !w->pid) 2653 if ((w->pid == pid || !w->pid)
1156 && (!traced || (w->flags & 1))) 2654 && (!traced || (w->flags & 1)))
1157 { 2655 {
1158 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2656 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1165 2663
1166#ifndef WCONTINUED 2664#ifndef WCONTINUED
1167# define WCONTINUED 0 2665# define WCONTINUED 0
1168#endif 2666#endif
1169 2667
2668/* called on sigchld etc., calls waitpid */
1170static void 2669static void
1171childcb (EV_P_ ev_signal *sw, int revents) 2670childcb (EV_P_ ev_signal *sw, int revents)
1172{ 2671{
1173 int pid, status; 2672 int pid, status;
1174 2673
1182 /* make sure we are called again until all children have been reaped */ 2681 /* make sure we are called again until all children have been reaped */
1183 /* we need to do it this way so that the callback gets called before we continue */ 2682 /* we need to do it this way so that the callback gets called before we continue */
1184 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2683 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1185 2684
1186 child_reap (EV_A_ pid, pid, status); 2685 child_reap (EV_A_ pid, pid, status);
1187 if (EV_PID_HASHSIZE > 1) 2686 if ((EV_PID_HASHSIZE) > 1)
1188 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2687 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1189} 2688}
1190 2689
1191#endif 2690#endif
1192 2691
1193/*****************************************************************************/ 2692/*****************************************************************************/
1194 2693
2694#if EV_USE_IOCP
2695# include "ev_iocp.c"
2696#endif
1195#if EV_USE_PORT 2697#if EV_USE_PORT
1196# include "ev_port.c" 2698# include "ev_port.c"
1197#endif 2699#endif
1198#if EV_USE_KQUEUE 2700#if EV_USE_KQUEUE
1199# include "ev_kqueue.c" 2701# include "ev_kqueue.c"
1206#endif 2708#endif
1207#if EV_USE_SELECT 2709#if EV_USE_SELECT
1208# include "ev_select.c" 2710# include "ev_select.c"
1209#endif 2711#endif
1210 2712
1211int 2713ecb_cold int
1212ev_version_major (void) 2714ev_version_major (void) EV_THROW
1213{ 2715{
1214 return EV_VERSION_MAJOR; 2716 return EV_VERSION_MAJOR;
1215} 2717}
1216 2718
1217int 2719ecb_cold int
1218ev_version_minor (void) 2720ev_version_minor (void) EV_THROW
1219{ 2721{
1220 return EV_VERSION_MINOR; 2722 return EV_VERSION_MINOR;
1221} 2723}
1222 2724
1223/* return true if we are running with elevated privileges and should ignore env variables */ 2725/* return true if we are running with elevated privileges and should ignore env variables */
1224int inline_size 2726inline_size ecb_cold int
1225enable_secure (void) 2727enable_secure (void)
1226{ 2728{
1227#ifdef _WIN32 2729#ifdef _WIN32
1228 return 0; 2730 return 0;
1229#else 2731#else
1230 return getuid () != geteuid () 2732 return getuid () != geteuid ()
1231 || getgid () != getegid (); 2733 || getgid () != getegid ();
1232#endif 2734#endif
1233} 2735}
1234 2736
2737ecb_cold
1235unsigned int 2738unsigned int
1236ev_supported_backends (void) 2739ev_supported_backends (void) EV_THROW
1237{ 2740{
1238 unsigned int flags = 0; 2741 unsigned int flags = 0;
1239 2742
1240 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2743 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1241 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2744 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1244 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2747 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1245 2748
1246 return flags; 2749 return flags;
1247} 2750}
1248 2751
2752ecb_cold
1249unsigned int 2753unsigned int
1250ev_recommended_backends (void) 2754ev_recommended_backends (void) EV_THROW
1251{ 2755{
1252 unsigned int flags = ev_supported_backends (); 2756 unsigned int flags = ev_supported_backends ();
1253 2757
1254#ifndef __NetBSD__ 2758#ifndef __NetBSD__
1255 /* kqueue is borked on everything but netbsd apparently */ 2759 /* kqueue is borked on everything but netbsd apparently */
1256 /* it usually doesn't work correctly on anything but sockets and pipes */ 2760 /* it usually doesn't work correctly on anything but sockets and pipes */
1257 flags &= ~EVBACKEND_KQUEUE; 2761 flags &= ~EVBACKEND_KQUEUE;
1258#endif 2762#endif
1259#ifdef __APPLE__ 2763#ifdef __APPLE__
1260 // flags &= ~EVBACKEND_KQUEUE; for documentation 2764 /* only select works correctly on that "unix-certified" platform */
1261 flags &= ~EVBACKEND_POLL; 2765 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2766 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2767#endif
2768#ifdef __FreeBSD__
2769 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1262#endif 2770#endif
1263 2771
1264 return flags; 2772 return flags;
1265} 2773}
1266 2774
2775ecb_cold
1267unsigned int 2776unsigned int
1268ev_embeddable_backends (void) 2777ev_embeddable_backends (void) EV_THROW
1269{ 2778{
1270 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2779 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1271 2780
1272 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 2781 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1273 /* please fix it and tell me how to detect the fix */ 2782 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1274 flags &= ~EVBACKEND_EPOLL; 2783 flags &= ~EVBACKEND_EPOLL;
1275 2784
1276 return flags; 2785 return flags;
1277} 2786}
1278 2787
1279unsigned int 2788unsigned int
1280ev_backend (EV_P) 2789ev_backend (EV_P) EV_THROW
1281{ 2790{
1282 return backend; 2791 return backend;
1283} 2792}
1284 2793
2794#if EV_FEATURE_API
1285unsigned int 2795unsigned int
1286ev_loop_count (EV_P) 2796ev_iteration (EV_P) EV_THROW
1287{ 2797{
1288 return loop_count; 2798 return loop_count;
1289} 2799}
1290 2800
2801unsigned int
2802ev_depth (EV_P) EV_THROW
2803{
2804 return loop_depth;
2805}
2806
1291void 2807void
1292ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2808ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1293{ 2809{
1294 io_blocktime = interval; 2810 io_blocktime = interval;
1295} 2811}
1296 2812
1297void 2813void
1298ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2814ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1299{ 2815{
1300 timeout_blocktime = interval; 2816 timeout_blocktime = interval;
1301} 2817}
1302 2818
1303static void noinline 2819void
2820ev_set_userdata (EV_P_ void *data) EV_THROW
2821{
2822 userdata = data;
2823}
2824
2825void *
2826ev_userdata (EV_P) EV_THROW
2827{
2828 return userdata;
2829}
2830
2831void
2832ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2833{
2834 invoke_cb = invoke_pending_cb;
2835}
2836
2837void
2838ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2839{
2840 release_cb = release;
2841 acquire_cb = acquire;
2842}
2843#endif
2844
2845/* initialise a loop structure, must be zero-initialised */
2846noinline ecb_cold
2847static void
1304loop_init (EV_P_ unsigned int flags) 2848loop_init (EV_P_ unsigned int flags) EV_THROW
1305{ 2849{
1306 if (!backend) 2850 if (!backend)
1307 { 2851 {
2852 origflags = flags;
2853
2854#if EV_USE_REALTIME
2855 if (!have_realtime)
2856 {
2857 struct timespec ts;
2858
2859 if (!clock_gettime (CLOCK_REALTIME, &ts))
2860 have_realtime = 1;
2861 }
2862#endif
2863
1308#if EV_USE_MONOTONIC 2864#if EV_USE_MONOTONIC
2865 if (!have_monotonic)
1309 { 2866 {
1310 struct timespec ts; 2867 struct timespec ts;
2868
1311 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2869 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1312 have_monotonic = 1; 2870 have_monotonic = 1;
1313 } 2871 }
1314#endif
1315
1316 ev_rt_now = ev_time ();
1317 mn_now = get_clock ();
1318 now_floor = mn_now;
1319 rtmn_diff = ev_rt_now - mn_now;
1320
1321 io_blocktime = 0.;
1322 timeout_blocktime = 0.;
1323 backend = 0;
1324 backend_fd = -1;
1325 gotasync = 0;
1326#if EV_USE_INOTIFY
1327 fs_fd = -2;
1328#endif 2872#endif
1329 2873
1330 /* pid check not overridable via env */ 2874 /* pid check not overridable via env */
1331#ifndef _WIN32 2875#ifndef _WIN32
1332 if (flags & EVFLAG_FORKCHECK) 2876 if (flags & EVFLAG_FORKCHECK)
1336 if (!(flags & EVFLAG_NOENV) 2880 if (!(flags & EVFLAG_NOENV)
1337 && !enable_secure () 2881 && !enable_secure ()
1338 && getenv ("LIBEV_FLAGS")) 2882 && getenv ("LIBEV_FLAGS"))
1339 flags = atoi (getenv ("LIBEV_FLAGS")); 2883 flags = atoi (getenv ("LIBEV_FLAGS"));
1340 2884
1341 if (!(flags & 0x0000ffffU)) 2885 ev_rt_now = ev_time ();
2886 mn_now = get_clock ();
2887 now_floor = mn_now;
2888 rtmn_diff = ev_rt_now - mn_now;
2889#if EV_FEATURE_API
2890 invoke_cb = ev_invoke_pending;
2891#endif
2892
2893 io_blocktime = 0.;
2894 timeout_blocktime = 0.;
2895 backend = 0;
2896 backend_fd = -1;
2897 sig_pending = 0;
2898#if EV_ASYNC_ENABLE
2899 async_pending = 0;
2900#endif
2901 pipe_write_skipped = 0;
2902 pipe_write_wanted = 0;
2903 evpipe [0] = -1;
2904 evpipe [1] = -1;
2905#if EV_USE_INOTIFY
2906 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2907#endif
2908#if EV_USE_SIGNALFD
2909 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2910#endif
2911
2912 if (!(flags & EVBACKEND_MASK))
1342 flags |= ev_recommended_backends (); 2913 flags |= ev_recommended_backends ();
1343 2914
2915#if EV_USE_IOCP
2916 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2917#endif
1344#if EV_USE_PORT 2918#if EV_USE_PORT
1345 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2919 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1346#endif 2920#endif
1347#if EV_USE_KQUEUE 2921#if EV_USE_KQUEUE
1348 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2922 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1355#endif 2929#endif
1356#if EV_USE_SELECT 2930#if EV_USE_SELECT
1357 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2931 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1358#endif 2932#endif
1359 2933
2934 ev_prepare_init (&pending_w, pendingcb);
2935
2936#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1360 ev_init (&pipeev, pipecb); 2937 ev_init (&pipe_w, pipecb);
1361 ev_set_priority (&pipeev, EV_MAXPRI); 2938 ev_set_priority (&pipe_w, EV_MAXPRI);
2939#endif
1362 } 2940 }
1363} 2941}
1364 2942
1365static void noinline 2943/* free up a loop structure */
2944ecb_cold
2945void
1366loop_destroy (EV_P) 2946ev_loop_destroy (EV_P)
1367{ 2947{
1368 int i; 2948 int i;
1369 2949
2950#if EV_MULTIPLICITY
2951 /* mimic free (0) */
2952 if (!EV_A)
2953 return;
2954#endif
2955
2956#if EV_CLEANUP_ENABLE
2957 /* queue cleanup watchers (and execute them) */
2958 if (expect_false (cleanupcnt))
2959 {
2960 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2961 EV_INVOKE_PENDING;
2962 }
2963#endif
2964
2965#if EV_CHILD_ENABLE
2966 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2967 {
2968 ev_ref (EV_A); /* child watcher */
2969 ev_signal_stop (EV_A_ &childev);
2970 }
2971#endif
2972
1370 if (ev_is_active (&pipeev)) 2973 if (ev_is_active (&pipe_w))
1371 { 2974 {
1372 ev_ref (EV_A); /* signal watcher */ 2975 /*ev_ref (EV_A);*/
1373 ev_io_stop (EV_A_ &pipeev); 2976 /*ev_io_stop (EV_A_ &pipe_w);*/
1374 2977
2978 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2979 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2980 }
2981
1375#if EV_USE_EVENTFD 2982#if EV_USE_SIGNALFD
1376 if (evfd >= 0) 2983 if (ev_is_active (&sigfd_w))
1377 close (evfd); 2984 close (sigfd);
1378#endif 2985#endif
1379
1380 if (evpipe [0] >= 0)
1381 {
1382 close (evpipe [0]);
1383 close (evpipe [1]);
1384 }
1385 }
1386 2986
1387#if EV_USE_INOTIFY 2987#if EV_USE_INOTIFY
1388 if (fs_fd >= 0) 2988 if (fs_fd >= 0)
1389 close (fs_fd); 2989 close (fs_fd);
1390#endif 2990#endif
1391 2991
1392 if (backend_fd >= 0) 2992 if (backend_fd >= 0)
1393 close (backend_fd); 2993 close (backend_fd);
1394 2994
2995#if EV_USE_IOCP
2996 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2997#endif
1395#if EV_USE_PORT 2998#if EV_USE_PORT
1396 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2999 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1397#endif 3000#endif
1398#if EV_USE_KQUEUE 3001#if EV_USE_KQUEUE
1399 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 3002 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1414#if EV_IDLE_ENABLE 3017#if EV_IDLE_ENABLE
1415 array_free (idle, [i]); 3018 array_free (idle, [i]);
1416#endif 3019#endif
1417 } 3020 }
1418 3021
1419 ev_free (anfds); anfdmax = 0; 3022 ev_free (anfds); anfds = 0; anfdmax = 0;
1420 3023
1421 /* have to use the microsoft-never-gets-it-right macro */ 3024 /* have to use the microsoft-never-gets-it-right macro */
3025 array_free (rfeed, EMPTY);
1422 array_free (fdchange, EMPTY); 3026 array_free (fdchange, EMPTY);
1423 array_free (timer, EMPTY); 3027 array_free (timer, EMPTY);
1424#if EV_PERIODIC_ENABLE 3028#if EV_PERIODIC_ENABLE
1425 array_free (periodic, EMPTY); 3029 array_free (periodic, EMPTY);
1426#endif 3030#endif
1427#if EV_FORK_ENABLE 3031#if EV_FORK_ENABLE
1428 array_free (fork, EMPTY); 3032 array_free (fork, EMPTY);
1429#endif 3033#endif
3034#if EV_CLEANUP_ENABLE
3035 array_free (cleanup, EMPTY);
3036#endif
1430 array_free (prepare, EMPTY); 3037 array_free (prepare, EMPTY);
1431 array_free (check, EMPTY); 3038 array_free (check, EMPTY);
1432#if EV_ASYNC_ENABLE 3039#if EV_ASYNC_ENABLE
1433 array_free (async, EMPTY); 3040 array_free (async, EMPTY);
1434#endif 3041#endif
1435 3042
1436 backend = 0; 3043 backend = 0;
3044
3045#if EV_MULTIPLICITY
3046 if (ev_is_default_loop (EV_A))
3047#endif
3048 ev_default_loop_ptr = 0;
3049#if EV_MULTIPLICITY
3050 else
3051 ev_free (EV_A);
3052#endif
1437} 3053}
1438 3054
1439#if EV_USE_INOTIFY 3055#if EV_USE_INOTIFY
1440void inline_size infy_fork (EV_P); 3056inline_size void infy_fork (EV_P);
1441#endif 3057#endif
1442 3058
1443void inline_size 3059inline_size void
1444loop_fork (EV_P) 3060loop_fork (EV_P)
1445{ 3061{
1446#if EV_USE_PORT 3062#if EV_USE_PORT
1447 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 3063 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1448#endif 3064#endif
1454#endif 3070#endif
1455#if EV_USE_INOTIFY 3071#if EV_USE_INOTIFY
1456 infy_fork (EV_A); 3072 infy_fork (EV_A);
1457#endif 3073#endif
1458 3074
1459 if (ev_is_active (&pipeev)) 3075#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3076 if (ev_is_active (&pipe_w) && postfork != 2)
1460 { 3077 {
1461 /* this "locks" the handlers against writing to the pipe */ 3078 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1462 /* while we modify the fd vars */
1463 gotsig = 1;
1464#if EV_ASYNC_ENABLE
1465 gotasync = 1;
1466#endif
1467 3079
1468 ev_ref (EV_A); 3080 ev_ref (EV_A);
1469 ev_io_stop (EV_A_ &pipeev); 3081 ev_io_stop (EV_A_ &pipe_w);
1470
1471#if EV_USE_EVENTFD
1472 if (evfd >= 0)
1473 close (evfd);
1474#endif
1475 3082
1476 if (evpipe [0] >= 0) 3083 if (evpipe [0] >= 0)
1477 { 3084 EV_WIN32_CLOSE_FD (evpipe [0]);
1478 close (evpipe [0]);
1479 close (evpipe [1]);
1480 }
1481 3085
1482 evpipe_init (EV_A); 3086 evpipe_init (EV_A);
1483 /* now iterate over everything, in case we missed something */ 3087 /* iterate over everything, in case we missed something before */
1484 pipecb (EV_A_ &pipeev, EV_READ); 3088 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1485 } 3089 }
3090#endif
1486 3091
1487 postfork = 0; 3092 postfork = 0;
1488} 3093}
1489 3094
1490#if EV_MULTIPLICITY 3095#if EV_MULTIPLICITY
1491 3096
3097ecb_cold
1492struct ev_loop * 3098struct ev_loop *
1493ev_loop_new (unsigned int flags) 3099ev_loop_new (unsigned int flags) EV_THROW
1494{ 3100{
1495 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 3101 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1496 3102
1497 memset (loop, 0, sizeof (struct ev_loop)); 3103 memset (EV_A, 0, sizeof (struct ev_loop));
1498
1499 loop_init (EV_A_ flags); 3104 loop_init (EV_A_ flags);
1500 3105
1501 if (ev_backend (EV_A)) 3106 if (ev_backend (EV_A))
1502 return loop; 3107 return EV_A;
1503 3108
3109 ev_free (EV_A);
1504 return 0; 3110 return 0;
1505} 3111}
1506 3112
1507void 3113#endif /* multiplicity */
1508ev_loop_destroy (EV_P)
1509{
1510 loop_destroy (EV_A);
1511 ev_free (loop);
1512}
1513
1514void
1515ev_loop_fork (EV_P)
1516{
1517 postfork = 1; /* must be in line with ev_default_fork */
1518}
1519 3114
1520#if EV_VERIFY 3115#if EV_VERIFY
1521static void noinline 3116noinline ecb_cold
3117static void
1522verify_watcher (EV_P_ W w) 3118verify_watcher (EV_P_ W w)
1523{ 3119{
1524 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 3120 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1525 3121
1526 if (w->pending) 3122 if (w->pending)
1527 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 3123 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1528} 3124}
1529 3125
1530static void noinline 3126noinline ecb_cold
3127static void
1531verify_heap (EV_P_ ANHE *heap, int N) 3128verify_heap (EV_P_ ANHE *heap, int N)
1532{ 3129{
1533 int i; 3130 int i;
1534 3131
1535 for (i = HEAP0; i < N + HEAP0; ++i) 3132 for (i = HEAP0; i < N + HEAP0; ++i)
1536 { 3133 {
1537 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 3134 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1538 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 3135 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1539 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 3136 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1540 3137
1541 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 3138 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1542 } 3139 }
1543} 3140}
1544 3141
1545static void noinline 3142noinline ecb_cold
3143static void
1546array_verify (EV_P_ W *ws, int cnt) 3144array_verify (EV_P_ W *ws, int cnt)
1547{ 3145{
1548 while (cnt--) 3146 while (cnt--)
1549 { 3147 {
1550 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 3148 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1551 verify_watcher (EV_A_ ws [cnt]); 3149 verify_watcher (EV_A_ ws [cnt]);
1552 } 3150 }
1553} 3151}
1554#endif 3152#endif
1555 3153
1556void 3154#if EV_FEATURE_API
1557ev_loop_verify (EV_P) 3155void ecb_cold
3156ev_verify (EV_P) EV_THROW
1558{ 3157{
1559#if EV_VERIFY 3158#if EV_VERIFY
1560 int i; 3159 int i;
1561 WL w; 3160 WL w, w2;
1562 3161
1563 assert (activecnt >= -1); 3162 assert (activecnt >= -1);
1564 3163
1565 assert (fdchangemax >= fdchangecnt); 3164 assert (fdchangemax >= fdchangecnt);
1566 for (i = 0; i < fdchangecnt; ++i) 3165 for (i = 0; i < fdchangecnt; ++i)
1567 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 3166 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1568 3167
1569 assert (anfdmax >= 0); 3168 assert (anfdmax >= 0);
1570 for (i = 0; i < anfdmax; ++i) 3169 for (i = 0; i < anfdmax; ++i)
3170 {
3171 int j = 0;
3172
1571 for (w = anfds [i].head; w; w = w->next) 3173 for (w = w2 = anfds [i].head; w; w = w->next)
1572 { 3174 {
1573 verify_watcher (EV_A_ (W)w); 3175 verify_watcher (EV_A_ (W)w);
3176
3177 if (j++ & 1)
3178 {
3179 assert (("libev: io watcher list contains a loop", w != w2));
3180 w2 = w2->next;
3181 }
3182
1574 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 3183 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1575 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 3184 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1576 } 3185 }
3186 }
1577 3187
1578 assert (timermax >= timercnt); 3188 assert (timermax >= timercnt);
1579 verify_heap (EV_A_ timers, timercnt); 3189 verify_heap (EV_A_ timers, timercnt);
1580 3190
1581#if EV_PERIODIC_ENABLE 3191#if EV_PERIODIC_ENABLE
1596#if EV_FORK_ENABLE 3206#if EV_FORK_ENABLE
1597 assert (forkmax >= forkcnt); 3207 assert (forkmax >= forkcnt);
1598 array_verify (EV_A_ (W *)forks, forkcnt); 3208 array_verify (EV_A_ (W *)forks, forkcnt);
1599#endif 3209#endif
1600 3210
3211#if EV_CLEANUP_ENABLE
3212 assert (cleanupmax >= cleanupcnt);
3213 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3214#endif
3215
1601#if EV_ASYNC_ENABLE 3216#if EV_ASYNC_ENABLE
1602 assert (asyncmax >= asynccnt); 3217 assert (asyncmax >= asynccnt);
1603 array_verify (EV_A_ (W *)asyncs, asynccnt); 3218 array_verify (EV_A_ (W *)asyncs, asynccnt);
1604#endif 3219#endif
1605 3220
3221#if EV_PREPARE_ENABLE
1606 assert (preparemax >= preparecnt); 3222 assert (preparemax >= preparecnt);
1607 array_verify (EV_A_ (W *)prepares, preparecnt); 3223 array_verify (EV_A_ (W *)prepares, preparecnt);
3224#endif
1608 3225
3226#if EV_CHECK_ENABLE
1609 assert (checkmax >= checkcnt); 3227 assert (checkmax >= checkcnt);
1610 array_verify (EV_A_ (W *)checks, checkcnt); 3228 array_verify (EV_A_ (W *)checks, checkcnt);
3229#endif
1611 3230
1612# if 0 3231# if 0
3232#if EV_CHILD_ENABLE
1613 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 3233 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1614 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 3234 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3235#endif
1615# endif 3236# endif
1616#endif 3237#endif
1617} 3238}
1618 3239#endif
1619#endif /* multiplicity */
1620 3240
1621#if EV_MULTIPLICITY 3241#if EV_MULTIPLICITY
3242ecb_cold
1622struct ev_loop * 3243struct ev_loop *
1623ev_default_loop_init (unsigned int flags)
1624#else 3244#else
1625int 3245int
3246#endif
1626ev_default_loop (unsigned int flags) 3247ev_default_loop (unsigned int flags) EV_THROW
1627#endif
1628{ 3248{
1629 if (!ev_default_loop_ptr) 3249 if (!ev_default_loop_ptr)
1630 { 3250 {
1631#if EV_MULTIPLICITY 3251#if EV_MULTIPLICITY
1632 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3252 EV_P = ev_default_loop_ptr = &default_loop_struct;
1633#else 3253#else
1634 ev_default_loop_ptr = 1; 3254 ev_default_loop_ptr = 1;
1635#endif 3255#endif
1636 3256
1637 loop_init (EV_A_ flags); 3257 loop_init (EV_A_ flags);
1638 3258
1639 if (ev_backend (EV_A)) 3259 if (ev_backend (EV_A))
1640 { 3260 {
1641#ifndef _WIN32 3261#if EV_CHILD_ENABLE
1642 ev_signal_init (&childev, childcb, SIGCHLD); 3262 ev_signal_init (&childev, childcb, SIGCHLD);
1643 ev_set_priority (&childev, EV_MAXPRI); 3263 ev_set_priority (&childev, EV_MAXPRI);
1644 ev_signal_start (EV_A_ &childev); 3264 ev_signal_start (EV_A_ &childev);
1645 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3265 ev_unref (EV_A); /* child watcher should not keep loop alive */
1646#endif 3266#endif
1651 3271
1652 return ev_default_loop_ptr; 3272 return ev_default_loop_ptr;
1653} 3273}
1654 3274
1655void 3275void
1656ev_default_destroy (void) 3276ev_loop_fork (EV_P) EV_THROW
1657{ 3277{
1658#if EV_MULTIPLICITY 3278 postfork = 1;
1659 struct ev_loop *loop = ev_default_loop_ptr;
1660#endif
1661
1662#ifndef _WIN32
1663 ev_ref (EV_A); /* child watcher */
1664 ev_signal_stop (EV_A_ &childev);
1665#endif
1666
1667 loop_destroy (EV_A);
1668}
1669
1670void
1671ev_default_fork (void)
1672{
1673#if EV_MULTIPLICITY
1674 struct ev_loop *loop = ev_default_loop_ptr;
1675#endif
1676
1677 if (backend)
1678 postfork = 1; /* must be in line with ev_loop_fork */
1679} 3279}
1680 3280
1681/*****************************************************************************/ 3281/*****************************************************************************/
1682 3282
1683void 3283void
1684ev_invoke (EV_P_ void *w, int revents) 3284ev_invoke (EV_P_ void *w, int revents)
1685{ 3285{
1686 EV_CB_INVOKE ((W)w, revents); 3286 EV_CB_INVOKE ((W)w, revents);
1687} 3287}
1688 3288
1689void inline_speed 3289unsigned int
1690call_pending (EV_P) 3290ev_pending_count (EV_P) EV_THROW
1691{ 3291{
1692 int pri; 3292 int pri;
3293 unsigned int count = 0;
1693 3294
1694 for (pri = NUMPRI; pri--; ) 3295 for (pri = NUMPRI; pri--; )
3296 count += pendingcnt [pri];
3297
3298 return count;
3299}
3300
3301noinline
3302void
3303ev_invoke_pending (EV_P)
3304{
3305 pendingpri = NUMPRI;
3306
3307 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3308 {
3309 --pendingpri;
3310
1695 while (pendingcnt [pri]) 3311 while (pendingcnt [pendingpri])
1696 {
1697 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1698
1699 if (expect_true (p->w))
1700 { 3312 {
1701 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 3313 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1702 3314
1703 p->w->pending = 0; 3315 p->w->pending = 0;
1704 EV_CB_INVOKE (p->w, p->events); 3316 EV_CB_INVOKE (p->w, p->events);
1705 EV_FREQUENT_CHECK; 3317 EV_FREQUENT_CHECK;
1706 } 3318 }
1707 } 3319 }
1708} 3320}
1709 3321
1710#if EV_IDLE_ENABLE 3322#if EV_IDLE_ENABLE
1711void inline_size 3323/* make idle watchers pending. this handles the "call-idle */
3324/* only when higher priorities are idle" logic */
3325inline_size void
1712idle_reify (EV_P) 3326idle_reify (EV_P)
1713{ 3327{
1714 if (expect_false (idleall)) 3328 if (expect_false (idleall))
1715 { 3329 {
1716 int pri; 3330 int pri;
1728 } 3342 }
1729 } 3343 }
1730} 3344}
1731#endif 3345#endif
1732 3346
1733void inline_size 3347/* make timers pending */
3348inline_size void
1734timers_reify (EV_P) 3349timers_reify (EV_P)
1735{ 3350{
1736 EV_FREQUENT_CHECK; 3351 EV_FREQUENT_CHECK;
1737 3352
1738 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 3353 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1739 { 3354 {
1740 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 3355 do
1741
1742 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1743
1744 /* first reschedule or stop timer */
1745 if (w->repeat)
1746 { 3356 {
3357 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3358
3359 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3360
3361 /* first reschedule or stop timer */
3362 if (w->repeat)
3363 {
1747 ev_at (w) += w->repeat; 3364 ev_at (w) += w->repeat;
1748 if (ev_at (w) < mn_now) 3365 if (ev_at (w) < mn_now)
1749 ev_at (w) = mn_now; 3366 ev_at (w) = mn_now;
1750 3367
1751 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3368 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1752 3369
1753 ANHE_at_cache (timers [HEAP0]); 3370 ANHE_at_cache (timers [HEAP0]);
1754 downheap (timers, timercnt, HEAP0); 3371 downheap (timers, timercnt, HEAP0);
3372 }
3373 else
3374 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3375
3376 EV_FREQUENT_CHECK;
3377 feed_reverse (EV_A_ (W)w);
1755 } 3378 }
1756 else 3379 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1757 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1758 3380
1759 EV_FREQUENT_CHECK; 3381 feed_reverse_done (EV_A_ EV_TIMER);
1760 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1761 } 3382 }
1762} 3383}
1763 3384
1764#if EV_PERIODIC_ENABLE 3385#if EV_PERIODIC_ENABLE
1765void inline_size 3386
3387noinline
3388static void
3389periodic_recalc (EV_P_ ev_periodic *w)
3390{
3391 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3392 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3393
3394 /* the above almost always errs on the low side */
3395 while (at <= ev_rt_now)
3396 {
3397 ev_tstamp nat = at + w->interval;
3398
3399 /* when resolution fails us, we use ev_rt_now */
3400 if (expect_false (nat == at))
3401 {
3402 at = ev_rt_now;
3403 break;
3404 }
3405
3406 at = nat;
3407 }
3408
3409 ev_at (w) = at;
3410}
3411
3412/* make periodics pending */
3413inline_size void
1766periodics_reify (EV_P) 3414periodics_reify (EV_P)
1767{ 3415{
1768 EV_FREQUENT_CHECK; 3416 EV_FREQUENT_CHECK;
1769 3417
1770 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 3418 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1771 { 3419 {
1772 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 3420 do
1773
1774 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1775
1776 /* first reschedule or stop timer */
1777 if (w->reschedule_cb)
1778 { 3421 {
3422 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3423
3424 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3425
3426 /* first reschedule or stop timer */
3427 if (w->reschedule_cb)
3428 {
1779 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3429 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1780 3430
1781 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 3431 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1782 3432
1783 ANHE_at_cache (periodics [HEAP0]); 3433 ANHE_at_cache (periodics [HEAP0]);
1784 downheap (periodics, periodiccnt, HEAP0); 3434 downheap (periodics, periodiccnt, HEAP0);
3435 }
3436 else if (w->interval)
3437 {
3438 periodic_recalc (EV_A_ w);
3439 ANHE_at_cache (periodics [HEAP0]);
3440 downheap (periodics, periodiccnt, HEAP0);
3441 }
3442 else
3443 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3444
3445 EV_FREQUENT_CHECK;
3446 feed_reverse (EV_A_ (W)w);
1785 } 3447 }
1786 else if (w->interval) 3448 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1787 {
1788 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1789 /* if next trigger time is not sufficiently in the future, put it there */
1790 /* this might happen because of floating point inexactness */
1791 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1792 {
1793 ev_at (w) += w->interval;
1794 3449
1795 /* if interval is unreasonably low we might still have a time in the past */
1796 /* so correct this. this will make the periodic very inexact, but the user */
1797 /* has effectively asked to get triggered more often than possible */
1798 if (ev_at (w) < ev_rt_now)
1799 ev_at (w) = ev_rt_now;
1800 }
1801
1802 ANHE_at_cache (periodics [HEAP0]);
1803 downheap (periodics, periodiccnt, HEAP0);
1804 }
1805 else
1806 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1807
1808 EV_FREQUENT_CHECK;
1809 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 3450 feed_reverse_done (EV_A_ EV_PERIODIC);
1810 } 3451 }
1811} 3452}
1812 3453
1813static void noinline 3454/* simply recalculate all periodics */
3455/* TODO: maybe ensure that at least one event happens when jumping forward? */
3456noinline ecb_cold
3457static void
1814periodics_reschedule (EV_P) 3458periodics_reschedule (EV_P)
1815{ 3459{
1816 int i; 3460 int i;
1817 3461
1818 /* adjust periodics after time jump */ 3462 /* adjust periodics after time jump */
1821 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 3465 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1822 3466
1823 if (w->reschedule_cb) 3467 if (w->reschedule_cb)
1824 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3468 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1825 else if (w->interval) 3469 else if (w->interval)
1826 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 3470 periodic_recalc (EV_A_ w);
1827 3471
1828 ANHE_at_cache (periodics [i]); 3472 ANHE_at_cache (periodics [i]);
1829 } 3473 }
1830 3474
1831 reheap (periodics, periodiccnt); 3475 reheap (periodics, periodiccnt);
1832} 3476}
1833#endif 3477#endif
1834 3478
1835void inline_speed 3479/* adjust all timers by a given offset */
3480noinline ecb_cold
3481static void
3482timers_reschedule (EV_P_ ev_tstamp adjust)
3483{
3484 int i;
3485
3486 for (i = 0; i < timercnt; ++i)
3487 {
3488 ANHE *he = timers + i + HEAP0;
3489 ANHE_w (*he)->at += adjust;
3490 ANHE_at_cache (*he);
3491 }
3492}
3493
3494/* fetch new monotonic and realtime times from the kernel */
3495/* also detect if there was a timejump, and act accordingly */
3496inline_speed void
1836time_update (EV_P_ ev_tstamp max_block) 3497time_update (EV_P_ ev_tstamp max_block)
1837{ 3498{
1838 int i;
1839
1840#if EV_USE_MONOTONIC 3499#if EV_USE_MONOTONIC
1841 if (expect_true (have_monotonic)) 3500 if (expect_true (have_monotonic))
1842 { 3501 {
3502 int i;
1843 ev_tstamp odiff = rtmn_diff; 3503 ev_tstamp odiff = rtmn_diff;
1844 3504
1845 mn_now = get_clock (); 3505 mn_now = get_clock ();
1846 3506
1847 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3507 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1863 * doesn't hurt either as we only do this on time-jumps or 3523 * doesn't hurt either as we only do this on time-jumps or
1864 * in the unlikely event of having been preempted here. 3524 * in the unlikely event of having been preempted here.
1865 */ 3525 */
1866 for (i = 4; --i; ) 3526 for (i = 4; --i; )
1867 { 3527 {
3528 ev_tstamp diff;
1868 rtmn_diff = ev_rt_now - mn_now; 3529 rtmn_diff = ev_rt_now - mn_now;
1869 3530
3531 diff = odiff - rtmn_diff;
3532
1870 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 3533 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1871 return; /* all is well */ 3534 return; /* all is well */
1872 3535
1873 ev_rt_now = ev_time (); 3536 ev_rt_now = ev_time ();
1874 mn_now = get_clock (); 3537 mn_now = get_clock ();
1875 now_floor = mn_now; 3538 now_floor = mn_now;
1876 } 3539 }
1877 3540
3541 /* no timer adjustment, as the monotonic clock doesn't jump */
3542 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1878# if EV_PERIODIC_ENABLE 3543# if EV_PERIODIC_ENABLE
1879 periodics_reschedule (EV_A); 3544 periodics_reschedule (EV_A);
1880# endif 3545# endif
1881 /* no timer adjustment, as the monotonic clock doesn't jump */
1882 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1883 } 3546 }
1884 else 3547 else
1885#endif 3548#endif
1886 { 3549 {
1887 ev_rt_now = ev_time (); 3550 ev_rt_now = ev_time ();
1888 3551
1889 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3552 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1890 { 3553 {
3554 /* adjust timers. this is easy, as the offset is the same for all of them */
3555 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1891#if EV_PERIODIC_ENABLE 3556#if EV_PERIODIC_ENABLE
1892 periodics_reschedule (EV_A); 3557 periodics_reschedule (EV_A);
1893#endif 3558#endif
1894 /* adjust timers. this is easy, as the offset is the same for all of them */
1895 for (i = 0; i < timercnt; ++i)
1896 {
1897 ANHE *he = timers + i + HEAP0;
1898 ANHE_w (*he)->at += ev_rt_now - mn_now;
1899 ANHE_at_cache (*he);
1900 }
1901 } 3559 }
1902 3560
1903 mn_now = ev_rt_now; 3561 mn_now = ev_rt_now;
1904 } 3562 }
1905} 3563}
1906 3564
1907void 3565int
1908ev_ref (EV_P)
1909{
1910 ++activecnt;
1911}
1912
1913void
1914ev_unref (EV_P)
1915{
1916 --activecnt;
1917}
1918
1919void
1920ev_now_update (EV_P)
1921{
1922 time_update (EV_A_ 1e100);
1923}
1924
1925static int loop_done;
1926
1927void
1928ev_loop (EV_P_ int flags) 3566ev_run (EV_P_ int flags)
1929{ 3567{
3568#if EV_FEATURE_API
3569 ++loop_depth;
3570#endif
3571
3572 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3573
1930 loop_done = EVUNLOOP_CANCEL; 3574 loop_done = EVBREAK_CANCEL;
1931 3575
1932 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3576 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1933 3577
1934 do 3578 do
1935 { 3579 {
1936#if EV_VERIFY >= 2 3580#if EV_VERIFY >= 2
1937 ev_loop_verify (EV_A); 3581 ev_verify (EV_A);
1938#endif 3582#endif
1939 3583
1940#ifndef _WIN32 3584#ifndef _WIN32
1941 if (expect_false (curpid)) /* penalise the forking check even more */ 3585 if (expect_false (curpid)) /* penalise the forking check even more */
1942 if (expect_false (getpid () != curpid)) 3586 if (expect_false (getpid () != curpid))
1950 /* we might have forked, so queue fork handlers */ 3594 /* we might have forked, so queue fork handlers */
1951 if (expect_false (postfork)) 3595 if (expect_false (postfork))
1952 if (forkcnt) 3596 if (forkcnt)
1953 { 3597 {
1954 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3598 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1955 call_pending (EV_A); 3599 EV_INVOKE_PENDING;
1956 } 3600 }
1957#endif 3601#endif
1958 3602
3603#if EV_PREPARE_ENABLE
1959 /* queue prepare watchers (and execute them) */ 3604 /* queue prepare watchers (and execute them) */
1960 if (expect_false (preparecnt)) 3605 if (expect_false (preparecnt))
1961 { 3606 {
1962 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3607 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1963 call_pending (EV_A); 3608 EV_INVOKE_PENDING;
1964 } 3609 }
3610#endif
1965 3611
1966 if (expect_false (!activecnt)) 3612 if (expect_false (loop_done))
1967 break; 3613 break;
1968 3614
1969 /* we might have forked, so reify kernel state if necessary */ 3615 /* we might have forked, so reify kernel state if necessary */
1970 if (expect_false (postfork)) 3616 if (expect_false (postfork))
1971 loop_fork (EV_A); 3617 loop_fork (EV_A);
1976 /* calculate blocking time */ 3622 /* calculate blocking time */
1977 { 3623 {
1978 ev_tstamp waittime = 0.; 3624 ev_tstamp waittime = 0.;
1979 ev_tstamp sleeptime = 0.; 3625 ev_tstamp sleeptime = 0.;
1980 3626
3627 /* remember old timestamp for io_blocktime calculation */
3628 ev_tstamp prev_mn_now = mn_now;
3629
3630 /* update time to cancel out callback processing overhead */
3631 time_update (EV_A_ 1e100);
3632
3633 /* from now on, we want a pipe-wake-up */
3634 pipe_write_wanted = 1;
3635
3636 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3637
1981 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3638 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1982 { 3639 {
1983 /* update time to cancel out callback processing overhead */
1984 time_update (EV_A_ 1e100);
1985
1986 waittime = MAX_BLOCKTIME; 3640 waittime = MAX_BLOCKTIME;
1987 3641
1988 if (timercnt) 3642 if (timercnt)
1989 { 3643 {
1990 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 3644 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1991 if (waittime > to) waittime = to; 3645 if (waittime > to) waittime = to;
1992 } 3646 }
1993 3647
1994#if EV_PERIODIC_ENABLE 3648#if EV_PERIODIC_ENABLE
1995 if (periodiccnt) 3649 if (periodiccnt)
1996 { 3650 {
1997 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3651 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1998 if (waittime > to) waittime = to; 3652 if (waittime > to) waittime = to;
1999 } 3653 }
2000#endif 3654#endif
2001 3655
3656 /* don't let timeouts decrease the waittime below timeout_blocktime */
2002 if (expect_false (waittime < timeout_blocktime)) 3657 if (expect_false (waittime < timeout_blocktime))
2003 waittime = timeout_blocktime; 3658 waittime = timeout_blocktime;
2004 3659
2005 sleeptime = waittime - backend_fudge; 3660 /* at this point, we NEED to wait, so we have to ensure */
3661 /* to pass a minimum nonzero value to the backend */
3662 if (expect_false (waittime < backend_mintime))
3663 waittime = backend_mintime;
2006 3664
3665 /* extra check because io_blocktime is commonly 0 */
2007 if (expect_true (sleeptime > io_blocktime)) 3666 if (expect_false (io_blocktime))
2008 sleeptime = io_blocktime;
2009
2010 if (sleeptime)
2011 { 3667 {
3668 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3669
3670 if (sleeptime > waittime - backend_mintime)
3671 sleeptime = waittime - backend_mintime;
3672
3673 if (expect_true (sleeptime > 0.))
3674 {
2012 ev_sleep (sleeptime); 3675 ev_sleep (sleeptime);
2013 waittime -= sleeptime; 3676 waittime -= sleeptime;
3677 }
2014 } 3678 }
2015 } 3679 }
2016 3680
3681#if EV_FEATURE_API
2017 ++loop_count; 3682 ++loop_count;
3683#endif
3684 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2018 backend_poll (EV_A_ waittime); 3685 backend_poll (EV_A_ waittime);
3686 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3687
3688 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3689
3690 ECB_MEMORY_FENCE_ACQUIRE;
3691 if (pipe_write_skipped)
3692 {
3693 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3694 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3695 }
3696
2019 3697
2020 /* update ev_rt_now, do magic */ 3698 /* update ev_rt_now, do magic */
2021 time_update (EV_A_ waittime + sleeptime); 3699 time_update (EV_A_ waittime + sleeptime);
2022 } 3700 }
2023 3701
2030#if EV_IDLE_ENABLE 3708#if EV_IDLE_ENABLE
2031 /* queue idle watchers unless other events are pending */ 3709 /* queue idle watchers unless other events are pending */
2032 idle_reify (EV_A); 3710 idle_reify (EV_A);
2033#endif 3711#endif
2034 3712
3713#if EV_CHECK_ENABLE
2035 /* queue check watchers, to be executed first */ 3714 /* queue check watchers, to be executed first */
2036 if (expect_false (checkcnt)) 3715 if (expect_false (checkcnt))
2037 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3716 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3717#endif
2038 3718
2039 call_pending (EV_A); 3719 EV_INVOKE_PENDING;
2040 } 3720 }
2041 while (expect_true ( 3721 while (expect_true (
2042 activecnt 3722 activecnt
2043 && !loop_done 3723 && !loop_done
2044 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3724 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2045 )); 3725 ));
2046 3726
2047 if (loop_done == EVUNLOOP_ONE) 3727 if (loop_done == EVBREAK_ONE)
2048 loop_done = EVUNLOOP_CANCEL; 3728 loop_done = EVBREAK_CANCEL;
2049}
2050 3729
3730#if EV_FEATURE_API
3731 --loop_depth;
3732#endif
3733
3734 return activecnt;
3735}
3736
2051void 3737void
2052ev_unloop (EV_P_ int how) 3738ev_break (EV_P_ int how) EV_THROW
2053{ 3739{
2054 loop_done = how; 3740 loop_done = how;
2055} 3741}
2056 3742
3743void
3744ev_ref (EV_P) EV_THROW
3745{
3746 ++activecnt;
3747}
3748
3749void
3750ev_unref (EV_P) EV_THROW
3751{
3752 --activecnt;
3753}
3754
3755void
3756ev_now_update (EV_P) EV_THROW
3757{
3758 time_update (EV_A_ 1e100);
3759}
3760
3761void
3762ev_suspend (EV_P) EV_THROW
3763{
3764 ev_now_update (EV_A);
3765}
3766
3767void
3768ev_resume (EV_P) EV_THROW
3769{
3770 ev_tstamp mn_prev = mn_now;
3771
3772 ev_now_update (EV_A);
3773 timers_reschedule (EV_A_ mn_now - mn_prev);
3774#if EV_PERIODIC_ENABLE
3775 /* TODO: really do this? */
3776 periodics_reschedule (EV_A);
3777#endif
3778}
3779
2057/*****************************************************************************/ 3780/*****************************************************************************/
3781/* singly-linked list management, used when the expected list length is short */
2058 3782
2059void inline_size 3783inline_size void
2060wlist_add (WL *head, WL elem) 3784wlist_add (WL *head, WL elem)
2061{ 3785{
2062 elem->next = *head; 3786 elem->next = *head;
2063 *head = elem; 3787 *head = elem;
2064} 3788}
2065 3789
2066void inline_size 3790inline_size void
2067wlist_del (WL *head, WL elem) 3791wlist_del (WL *head, WL elem)
2068{ 3792{
2069 while (*head) 3793 while (*head)
2070 { 3794 {
2071 if (*head == elem) 3795 if (expect_true (*head == elem))
2072 { 3796 {
2073 *head = elem->next; 3797 *head = elem->next;
2074 return; 3798 break;
2075 } 3799 }
2076 3800
2077 head = &(*head)->next; 3801 head = &(*head)->next;
2078 } 3802 }
2079} 3803}
2080 3804
2081void inline_speed 3805/* internal, faster, version of ev_clear_pending */
3806inline_speed void
2082clear_pending (EV_P_ W w) 3807clear_pending (EV_P_ W w)
2083{ 3808{
2084 if (w->pending) 3809 if (w->pending)
2085 { 3810 {
2086 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3811 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2087 w->pending = 0; 3812 w->pending = 0;
2088 } 3813 }
2089} 3814}
2090 3815
2091int 3816int
2092ev_clear_pending (EV_P_ void *w) 3817ev_clear_pending (EV_P_ void *w) EV_THROW
2093{ 3818{
2094 W w_ = (W)w; 3819 W w_ = (W)w;
2095 int pending = w_->pending; 3820 int pending = w_->pending;
2096 3821
2097 if (expect_true (pending)) 3822 if (expect_true (pending))
2098 { 3823 {
2099 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3824 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3825 p->w = (W)&pending_w;
2100 w_->pending = 0; 3826 w_->pending = 0;
2101 p->w = 0;
2102 return p->events; 3827 return p->events;
2103 } 3828 }
2104 else 3829 else
2105 return 0; 3830 return 0;
2106} 3831}
2107 3832
2108void inline_size 3833inline_size void
2109pri_adjust (EV_P_ W w) 3834pri_adjust (EV_P_ W w)
2110{ 3835{
2111 int pri = w->priority; 3836 int pri = ev_priority (w);
2112 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3837 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2113 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3838 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2114 w->priority = pri; 3839 ev_set_priority (w, pri);
2115} 3840}
2116 3841
2117void inline_speed 3842inline_speed void
2118ev_start (EV_P_ W w, int active) 3843ev_start (EV_P_ W w, int active)
2119{ 3844{
2120 pri_adjust (EV_A_ w); 3845 pri_adjust (EV_A_ w);
2121 w->active = active; 3846 w->active = active;
2122 ev_ref (EV_A); 3847 ev_ref (EV_A);
2123} 3848}
2124 3849
2125void inline_size 3850inline_size void
2126ev_stop (EV_P_ W w) 3851ev_stop (EV_P_ W w)
2127{ 3852{
2128 ev_unref (EV_A); 3853 ev_unref (EV_A);
2129 w->active = 0; 3854 w->active = 0;
2130} 3855}
2131 3856
2132/*****************************************************************************/ 3857/*****************************************************************************/
2133 3858
2134void noinline 3859noinline
3860void
2135ev_io_start (EV_P_ ev_io *w) 3861ev_io_start (EV_P_ ev_io *w) EV_THROW
2136{ 3862{
2137 int fd = w->fd; 3863 int fd = w->fd;
2138 3864
2139 if (expect_false (ev_is_active (w))) 3865 if (expect_false (ev_is_active (w)))
2140 return; 3866 return;
2141 3867
2142 assert (("ev_io_start called with negative fd", fd >= 0)); 3868 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3869 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2143 3870
2144 EV_FREQUENT_CHECK; 3871 EV_FREQUENT_CHECK;
2145 3872
2146 ev_start (EV_A_ (W)w, 1); 3873 ev_start (EV_A_ (W)w, 1);
2147 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3874 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2148 wlist_add (&anfds[fd].head, (WL)w); 3875 wlist_add (&anfds[fd].head, (WL)w);
2149 3876
3877 /* common bug, apparently */
3878 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3879
2150 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3880 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2151 w->events &= ~EV_IOFDSET; 3881 w->events &= ~EV__IOFDSET;
2152 3882
2153 EV_FREQUENT_CHECK; 3883 EV_FREQUENT_CHECK;
2154} 3884}
2155 3885
2156void noinline 3886noinline
3887void
2157ev_io_stop (EV_P_ ev_io *w) 3888ev_io_stop (EV_P_ ev_io *w) EV_THROW
2158{ 3889{
2159 clear_pending (EV_A_ (W)w); 3890 clear_pending (EV_A_ (W)w);
2160 if (expect_false (!ev_is_active (w))) 3891 if (expect_false (!ev_is_active (w)))
2161 return; 3892 return;
2162 3893
2163 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3894 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2164 3895
2165 EV_FREQUENT_CHECK; 3896 EV_FREQUENT_CHECK;
2166 3897
2167 wlist_del (&anfds[w->fd].head, (WL)w); 3898 wlist_del (&anfds[w->fd].head, (WL)w);
2168 ev_stop (EV_A_ (W)w); 3899 ev_stop (EV_A_ (W)w);
2169 3900
2170 fd_change (EV_A_ w->fd, 1); 3901 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2171 3902
2172 EV_FREQUENT_CHECK; 3903 EV_FREQUENT_CHECK;
2173} 3904}
2174 3905
2175void noinline 3906noinline
3907void
2176ev_timer_start (EV_P_ ev_timer *w) 3908ev_timer_start (EV_P_ ev_timer *w) EV_THROW
2177{ 3909{
2178 if (expect_false (ev_is_active (w))) 3910 if (expect_false (ev_is_active (w)))
2179 return; 3911 return;
2180 3912
2181 ev_at (w) += mn_now; 3913 ev_at (w) += mn_now;
2182 3914
2183 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3915 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2184 3916
2185 EV_FREQUENT_CHECK; 3917 EV_FREQUENT_CHECK;
2186 3918
2187 ++timercnt; 3919 ++timercnt;
2188 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 3920 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2191 ANHE_at_cache (timers [ev_active (w)]); 3923 ANHE_at_cache (timers [ev_active (w)]);
2192 upheap (timers, ev_active (w)); 3924 upheap (timers, ev_active (w));
2193 3925
2194 EV_FREQUENT_CHECK; 3926 EV_FREQUENT_CHECK;
2195 3927
2196 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 3928 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2197} 3929}
2198 3930
2199void noinline 3931noinline
3932void
2200ev_timer_stop (EV_P_ ev_timer *w) 3933ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
2201{ 3934{
2202 clear_pending (EV_A_ (W)w); 3935 clear_pending (EV_A_ (W)w);
2203 if (expect_false (!ev_is_active (w))) 3936 if (expect_false (!ev_is_active (w)))
2204 return; 3937 return;
2205 3938
2206 EV_FREQUENT_CHECK; 3939 EV_FREQUENT_CHECK;
2207 3940
2208 { 3941 {
2209 int active = ev_active (w); 3942 int active = ev_active (w);
2210 3943
2211 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 3944 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2212 3945
2213 --timercnt; 3946 --timercnt;
2214 3947
2215 if (expect_true (active < timercnt + HEAP0)) 3948 if (expect_true (active < timercnt + HEAP0))
2216 { 3949 {
2217 timers [active] = timers [timercnt + HEAP0]; 3950 timers [active] = timers [timercnt + HEAP0];
2218 adjustheap (timers, timercnt, active); 3951 adjustheap (timers, timercnt, active);
2219 } 3952 }
2220 } 3953 }
2221 3954
2222 EV_FREQUENT_CHECK;
2223
2224 ev_at (w) -= mn_now; 3955 ev_at (w) -= mn_now;
2225 3956
2226 ev_stop (EV_A_ (W)w); 3957 ev_stop (EV_A_ (W)w);
2227}
2228 3958
3959 EV_FREQUENT_CHECK;
3960}
3961
2229void noinline 3962noinline
3963void
2230ev_timer_again (EV_P_ ev_timer *w) 3964ev_timer_again (EV_P_ ev_timer *w) EV_THROW
2231{ 3965{
2232 EV_FREQUENT_CHECK; 3966 EV_FREQUENT_CHECK;
3967
3968 clear_pending (EV_A_ (W)w);
2233 3969
2234 if (ev_is_active (w)) 3970 if (ev_is_active (w))
2235 { 3971 {
2236 if (w->repeat) 3972 if (w->repeat)
2237 { 3973 {
2249 } 3985 }
2250 3986
2251 EV_FREQUENT_CHECK; 3987 EV_FREQUENT_CHECK;
2252} 3988}
2253 3989
3990ev_tstamp
3991ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3992{
3993 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3994}
3995
2254#if EV_PERIODIC_ENABLE 3996#if EV_PERIODIC_ENABLE
2255void noinline 3997noinline
3998void
2256ev_periodic_start (EV_P_ ev_periodic *w) 3999ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
2257{ 4000{
2258 if (expect_false (ev_is_active (w))) 4001 if (expect_false (ev_is_active (w)))
2259 return; 4002 return;
2260 4003
2261 if (w->reschedule_cb) 4004 if (w->reschedule_cb)
2262 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 4005 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2263 else if (w->interval) 4006 else if (w->interval)
2264 { 4007 {
2265 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 4008 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2266 /* this formula differs from the one in periodic_reify because we do not always round up */ 4009 periodic_recalc (EV_A_ w);
2267 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2268 } 4010 }
2269 else 4011 else
2270 ev_at (w) = w->offset; 4012 ev_at (w) = w->offset;
2271 4013
2272 EV_FREQUENT_CHECK; 4014 EV_FREQUENT_CHECK;
2278 ANHE_at_cache (periodics [ev_active (w)]); 4020 ANHE_at_cache (periodics [ev_active (w)]);
2279 upheap (periodics, ev_active (w)); 4021 upheap (periodics, ev_active (w));
2280 4022
2281 EV_FREQUENT_CHECK; 4023 EV_FREQUENT_CHECK;
2282 4024
2283 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 4025 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2284} 4026}
2285 4027
2286void noinline 4028noinline
4029void
2287ev_periodic_stop (EV_P_ ev_periodic *w) 4030ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
2288{ 4031{
2289 clear_pending (EV_A_ (W)w); 4032 clear_pending (EV_A_ (W)w);
2290 if (expect_false (!ev_is_active (w))) 4033 if (expect_false (!ev_is_active (w)))
2291 return; 4034 return;
2292 4035
2293 EV_FREQUENT_CHECK; 4036 EV_FREQUENT_CHECK;
2294 4037
2295 { 4038 {
2296 int active = ev_active (w); 4039 int active = ev_active (w);
2297 4040
2298 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 4041 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2299 4042
2300 --periodiccnt; 4043 --periodiccnt;
2301 4044
2302 if (expect_true (active < periodiccnt + HEAP0)) 4045 if (expect_true (active < periodiccnt + HEAP0))
2303 { 4046 {
2304 periodics [active] = periodics [periodiccnt + HEAP0]; 4047 periodics [active] = periodics [periodiccnt + HEAP0];
2305 adjustheap (periodics, periodiccnt, active); 4048 adjustheap (periodics, periodiccnt, active);
2306 } 4049 }
2307 } 4050 }
2308 4051
2309 EV_FREQUENT_CHECK;
2310
2311 ev_stop (EV_A_ (W)w); 4052 ev_stop (EV_A_ (W)w);
2312}
2313 4053
4054 EV_FREQUENT_CHECK;
4055}
4056
2314void noinline 4057noinline
4058void
2315ev_periodic_again (EV_P_ ev_periodic *w) 4059ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
2316{ 4060{
2317 /* TODO: use adjustheap and recalculation */ 4061 /* TODO: use adjustheap and recalculation */
2318 ev_periodic_stop (EV_A_ w); 4062 ev_periodic_stop (EV_A_ w);
2319 ev_periodic_start (EV_A_ w); 4063 ev_periodic_start (EV_A_ w);
2320} 4064}
2322 4066
2323#ifndef SA_RESTART 4067#ifndef SA_RESTART
2324# define SA_RESTART 0 4068# define SA_RESTART 0
2325#endif 4069#endif
2326 4070
4071#if EV_SIGNAL_ENABLE
4072
2327void noinline 4073noinline
4074void
2328ev_signal_start (EV_P_ ev_signal *w) 4075ev_signal_start (EV_P_ ev_signal *w) EV_THROW
2329{ 4076{
2330#if EV_MULTIPLICITY
2331 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2332#endif
2333 if (expect_false (ev_is_active (w))) 4077 if (expect_false (ev_is_active (w)))
2334 return; 4078 return;
2335 4079
2336 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 4080 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2337 4081
2338 evpipe_init (EV_A); 4082#if EV_MULTIPLICITY
4083 assert (("libev: a signal must not be attached to two different loops",
4084 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2339 4085
2340 EV_FREQUENT_CHECK; 4086 signals [w->signum - 1].loop = EV_A;
4087 ECB_MEMORY_FENCE_RELEASE;
4088#endif
2341 4089
4090 EV_FREQUENT_CHECK;
4091
4092#if EV_USE_SIGNALFD
4093 if (sigfd == -2)
2342 { 4094 {
2343#ifndef _WIN32 4095 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2344 sigset_t full, prev; 4096 if (sigfd < 0 && errno == EINVAL)
2345 sigfillset (&full); 4097 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2346 sigprocmask (SIG_SETMASK, &full, &prev);
2347#endif
2348 4098
2349 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 4099 if (sigfd >= 0)
4100 {
4101 fd_intern (sigfd); /* doing it twice will not hurt */
2350 4102
2351#ifndef _WIN32 4103 sigemptyset (&sigfd_set);
2352 sigprocmask (SIG_SETMASK, &prev, 0); 4104
2353#endif 4105 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4106 ev_set_priority (&sigfd_w, EV_MAXPRI);
4107 ev_io_start (EV_A_ &sigfd_w);
4108 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4109 }
2354 } 4110 }
4111
4112 if (sigfd >= 0)
4113 {
4114 /* TODO: check .head */
4115 sigaddset (&sigfd_set, w->signum);
4116 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4117
4118 signalfd (sigfd, &sigfd_set, 0);
4119 }
4120#endif
2355 4121
2356 ev_start (EV_A_ (W)w, 1); 4122 ev_start (EV_A_ (W)w, 1);
2357 wlist_add (&signals [w->signum - 1].head, (WL)w); 4123 wlist_add (&signals [w->signum - 1].head, (WL)w);
2358 4124
2359 if (!((WL)w)->next) 4125 if (!((WL)w)->next)
4126# if EV_USE_SIGNALFD
4127 if (sigfd < 0) /*TODO*/
4128# endif
2360 { 4129 {
2361#if _WIN32 4130# ifdef _WIN32
4131 evpipe_init (EV_A);
4132
2362 signal (w->signum, ev_sighandler); 4133 signal (w->signum, ev_sighandler);
2363#else 4134# else
2364 struct sigaction sa; 4135 struct sigaction sa;
4136
4137 evpipe_init (EV_A);
4138
2365 sa.sa_handler = ev_sighandler; 4139 sa.sa_handler = ev_sighandler;
2366 sigfillset (&sa.sa_mask); 4140 sigfillset (&sa.sa_mask);
2367 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 4141 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2368 sigaction (w->signum, &sa, 0); 4142 sigaction (w->signum, &sa, 0);
4143
4144 if (origflags & EVFLAG_NOSIGMASK)
4145 {
4146 sigemptyset (&sa.sa_mask);
4147 sigaddset (&sa.sa_mask, w->signum);
4148 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4149 }
2369#endif 4150#endif
2370 } 4151 }
2371 4152
2372 EV_FREQUENT_CHECK; 4153 EV_FREQUENT_CHECK;
2373} 4154}
2374 4155
2375void noinline 4156noinline
4157void
2376ev_signal_stop (EV_P_ ev_signal *w) 4158ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
2377{ 4159{
2378 clear_pending (EV_A_ (W)w); 4160 clear_pending (EV_A_ (W)w);
2379 if (expect_false (!ev_is_active (w))) 4161 if (expect_false (!ev_is_active (w)))
2380 return; 4162 return;
2381 4163
2383 4165
2384 wlist_del (&signals [w->signum - 1].head, (WL)w); 4166 wlist_del (&signals [w->signum - 1].head, (WL)w);
2385 ev_stop (EV_A_ (W)w); 4167 ev_stop (EV_A_ (W)w);
2386 4168
2387 if (!signals [w->signum - 1].head) 4169 if (!signals [w->signum - 1].head)
2388 signal (w->signum, SIG_DFL); 4170 {
2389
2390 EV_FREQUENT_CHECK;
2391}
2392
2393void
2394ev_child_start (EV_P_ ev_child *w)
2395{
2396#if EV_MULTIPLICITY 4171#if EV_MULTIPLICITY
4172 signals [w->signum - 1].loop = 0; /* unattach from signal */
4173#endif
4174#if EV_USE_SIGNALFD
4175 if (sigfd >= 0)
4176 {
4177 sigset_t ss;
4178
4179 sigemptyset (&ss);
4180 sigaddset (&ss, w->signum);
4181 sigdelset (&sigfd_set, w->signum);
4182
4183 signalfd (sigfd, &sigfd_set, 0);
4184 sigprocmask (SIG_UNBLOCK, &ss, 0);
4185 }
4186 else
4187#endif
4188 signal (w->signum, SIG_DFL);
4189 }
4190
4191 EV_FREQUENT_CHECK;
4192}
4193
4194#endif
4195
4196#if EV_CHILD_ENABLE
4197
4198void
4199ev_child_start (EV_P_ ev_child *w) EV_THROW
4200{
4201#if EV_MULTIPLICITY
2397 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4202 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2398#endif 4203#endif
2399 if (expect_false (ev_is_active (w))) 4204 if (expect_false (ev_is_active (w)))
2400 return; 4205 return;
2401 4206
2402 EV_FREQUENT_CHECK; 4207 EV_FREQUENT_CHECK;
2403 4208
2404 ev_start (EV_A_ (W)w, 1); 4209 ev_start (EV_A_ (W)w, 1);
2405 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4210 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2406 4211
2407 EV_FREQUENT_CHECK; 4212 EV_FREQUENT_CHECK;
2408} 4213}
2409 4214
2410void 4215void
2411ev_child_stop (EV_P_ ev_child *w) 4216ev_child_stop (EV_P_ ev_child *w) EV_THROW
2412{ 4217{
2413 clear_pending (EV_A_ (W)w); 4218 clear_pending (EV_A_ (W)w);
2414 if (expect_false (!ev_is_active (w))) 4219 if (expect_false (!ev_is_active (w)))
2415 return; 4220 return;
2416 4221
2417 EV_FREQUENT_CHECK; 4222 EV_FREQUENT_CHECK;
2418 4223
2419 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4224 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2420 ev_stop (EV_A_ (W)w); 4225 ev_stop (EV_A_ (W)w);
2421 4226
2422 EV_FREQUENT_CHECK; 4227 EV_FREQUENT_CHECK;
2423} 4228}
4229
4230#endif
2424 4231
2425#if EV_STAT_ENABLE 4232#if EV_STAT_ENABLE
2426 4233
2427# ifdef _WIN32 4234# ifdef _WIN32
2428# undef lstat 4235# undef lstat
2429# define lstat(a,b) _stati64 (a,b) 4236# define lstat(a,b) _stati64 (a,b)
2430# endif 4237# endif
2431 4238
2432#define DEF_STAT_INTERVAL 5.0074891 4239#define DEF_STAT_INTERVAL 5.0074891
4240#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2433#define MIN_STAT_INTERVAL 0.1074891 4241#define MIN_STAT_INTERVAL 0.1074891
2434 4242
2435static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 4243noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2436 4244
2437#if EV_USE_INOTIFY 4245#if EV_USE_INOTIFY
2438# define EV_INOTIFY_BUFSIZE 8192
2439 4246
2440static void noinline 4247/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4248# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4249
4250noinline
4251static void
2441infy_add (EV_P_ ev_stat *w) 4252infy_add (EV_P_ ev_stat *w)
2442{ 4253{
2443 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 4254 w->wd = inotify_add_watch (fs_fd, w->path,
4255 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4256 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4257 | IN_DONT_FOLLOW | IN_MASK_ADD);
2444 4258
2445 if (w->wd < 0) 4259 if (w->wd >= 0)
4260 {
4261 struct statfs sfs;
4262
4263 /* now local changes will be tracked by inotify, but remote changes won't */
4264 /* unless the filesystem is known to be local, we therefore still poll */
4265 /* also do poll on <2.6.25, but with normal frequency */
4266
4267 if (!fs_2625)
4268 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4269 else if (!statfs (w->path, &sfs)
4270 && (sfs.f_type == 0x1373 /* devfs */
4271 || sfs.f_type == 0x4006 /* fat */
4272 || sfs.f_type == 0x4d44 /* msdos */
4273 || sfs.f_type == 0xEF53 /* ext2/3 */
4274 || sfs.f_type == 0x72b6 /* jffs2 */
4275 || sfs.f_type == 0x858458f6 /* ramfs */
4276 || sfs.f_type == 0x5346544e /* ntfs */
4277 || sfs.f_type == 0x3153464a /* jfs */
4278 || sfs.f_type == 0x9123683e /* btrfs */
4279 || sfs.f_type == 0x52654973 /* reiser3 */
4280 || sfs.f_type == 0x01021994 /* tmpfs */
4281 || sfs.f_type == 0x58465342 /* xfs */))
4282 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4283 else
4284 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2446 { 4285 }
2447 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 4286 else
4287 {
4288 /* can't use inotify, continue to stat */
4289 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2448 4290
2449 /* monitor some parent directory for speedup hints */ 4291 /* if path is not there, monitor some parent directory for speedup hints */
2450 /* note that exceeding the hardcoded limit is not a correctness issue, */ 4292 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2451 /* but an efficiency issue only */ 4293 /* but an efficiency issue only */
2452 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4294 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2453 { 4295 {
2454 char path [4096]; 4296 char path [4096];
2455 strcpy (path, w->path); 4297 strcpy (path, w->path);
2459 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 4301 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2460 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 4302 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2461 4303
2462 char *pend = strrchr (path, '/'); 4304 char *pend = strrchr (path, '/');
2463 4305
2464 if (!pend) 4306 if (!pend || pend == path)
2465 break; /* whoops, no '/', complain to your admin */ 4307 break;
2466 4308
2467 *pend = 0; 4309 *pend = 0;
2468 w->wd = inotify_add_watch (fs_fd, path, mask); 4310 w->wd = inotify_add_watch (fs_fd, path, mask);
2469 } 4311 }
2470 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4312 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2471 } 4313 }
2472 } 4314 }
2473 else
2474 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2475 4315
2476 if (w->wd >= 0) 4316 if (w->wd >= 0)
2477 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4317 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2478}
2479 4318
2480static void noinline 4319 /* now re-arm timer, if required */
4320 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4321 ev_timer_again (EV_A_ &w->timer);
4322 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4323}
4324
4325noinline
4326static void
2481infy_del (EV_P_ ev_stat *w) 4327infy_del (EV_P_ ev_stat *w)
2482{ 4328{
2483 int slot; 4329 int slot;
2484 int wd = w->wd; 4330 int wd = w->wd;
2485 4331
2486 if (wd < 0) 4332 if (wd < 0)
2487 return; 4333 return;
2488 4334
2489 w->wd = -2; 4335 w->wd = -2;
2490 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4336 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2491 wlist_del (&fs_hash [slot].head, (WL)w); 4337 wlist_del (&fs_hash [slot].head, (WL)w);
2492 4338
2493 /* remove this watcher, if others are watching it, they will rearm */ 4339 /* remove this watcher, if others are watching it, they will rearm */
2494 inotify_rm_watch (fs_fd, wd); 4340 inotify_rm_watch (fs_fd, wd);
2495} 4341}
2496 4342
2497static void noinline 4343noinline
4344static void
2498infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4345infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2499{ 4346{
2500 if (slot < 0) 4347 if (slot < 0)
2501 /* overflow, need to check for all hahs slots */ 4348 /* overflow, need to check for all hash slots */
2502 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4349 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2503 infy_wd (EV_A_ slot, wd, ev); 4350 infy_wd (EV_A_ slot, wd, ev);
2504 else 4351 else
2505 { 4352 {
2506 WL w_; 4353 WL w_;
2507 4354
2508 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4355 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2509 { 4356 {
2510 ev_stat *w = (ev_stat *)w_; 4357 ev_stat *w = (ev_stat *)w_;
2511 w_ = w_->next; /* lets us remove this watcher and all before it */ 4358 w_ = w_->next; /* lets us remove this watcher and all before it */
2512 4359
2513 if (w->wd == wd || wd == -1) 4360 if (w->wd == wd || wd == -1)
2514 { 4361 {
2515 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4362 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2516 { 4363 {
4364 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2517 w->wd = -1; 4365 w->wd = -1;
2518 infy_add (EV_A_ w); /* re-add, no matter what */ 4366 infy_add (EV_A_ w); /* re-add, no matter what */
2519 } 4367 }
2520 4368
2521 stat_timer_cb (EV_A_ &w->timer, 0); 4369 stat_timer_cb (EV_A_ &w->timer, 0);
2526 4374
2527static void 4375static void
2528infy_cb (EV_P_ ev_io *w, int revents) 4376infy_cb (EV_P_ ev_io *w, int revents)
2529{ 4377{
2530 char buf [EV_INOTIFY_BUFSIZE]; 4378 char buf [EV_INOTIFY_BUFSIZE];
2531 struct inotify_event *ev = (struct inotify_event *)buf;
2532 int ofs; 4379 int ofs;
2533 int len = read (fs_fd, buf, sizeof (buf)); 4380 int len = read (fs_fd, buf, sizeof (buf));
2534 4381
2535 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4382 for (ofs = 0; ofs < len; )
4383 {
4384 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2536 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4385 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4386 ofs += sizeof (struct inotify_event) + ev->len;
4387 }
2537} 4388}
2538 4389
2539void inline_size 4390inline_size ecb_cold
4391void
4392ev_check_2625 (EV_P)
4393{
4394 /* kernels < 2.6.25 are borked
4395 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4396 */
4397 if (ev_linux_version () < 0x020619)
4398 return;
4399
4400 fs_2625 = 1;
4401}
4402
4403inline_size int
4404infy_newfd (void)
4405{
4406#if defined IN_CLOEXEC && defined IN_NONBLOCK
4407 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4408 if (fd >= 0)
4409 return fd;
4410#endif
4411 return inotify_init ();
4412}
4413
4414inline_size void
2540infy_init (EV_P) 4415infy_init (EV_P)
2541{ 4416{
2542 if (fs_fd != -2) 4417 if (fs_fd != -2)
2543 return; 4418 return;
2544 4419
4420 fs_fd = -1;
4421
4422 ev_check_2625 (EV_A);
4423
2545 fs_fd = inotify_init (); 4424 fs_fd = infy_newfd ();
2546 4425
2547 if (fs_fd >= 0) 4426 if (fs_fd >= 0)
2548 { 4427 {
4428 fd_intern (fs_fd);
2549 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4429 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2550 ev_set_priority (&fs_w, EV_MAXPRI); 4430 ev_set_priority (&fs_w, EV_MAXPRI);
2551 ev_io_start (EV_A_ &fs_w); 4431 ev_io_start (EV_A_ &fs_w);
4432 ev_unref (EV_A);
2552 } 4433 }
2553} 4434}
2554 4435
2555void inline_size 4436inline_size void
2556infy_fork (EV_P) 4437infy_fork (EV_P)
2557{ 4438{
2558 int slot; 4439 int slot;
2559 4440
2560 if (fs_fd < 0) 4441 if (fs_fd < 0)
2561 return; 4442 return;
2562 4443
4444 ev_ref (EV_A);
4445 ev_io_stop (EV_A_ &fs_w);
2563 close (fs_fd); 4446 close (fs_fd);
2564 fs_fd = inotify_init (); 4447 fs_fd = infy_newfd ();
2565 4448
4449 if (fs_fd >= 0)
4450 {
4451 fd_intern (fs_fd);
4452 ev_io_set (&fs_w, fs_fd, EV_READ);
4453 ev_io_start (EV_A_ &fs_w);
4454 ev_unref (EV_A);
4455 }
4456
2566 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4457 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2567 { 4458 {
2568 WL w_ = fs_hash [slot].head; 4459 WL w_ = fs_hash [slot].head;
2569 fs_hash [slot].head = 0; 4460 fs_hash [slot].head = 0;
2570 4461
2571 while (w_) 4462 while (w_)
2576 w->wd = -1; 4467 w->wd = -1;
2577 4468
2578 if (fs_fd >= 0) 4469 if (fs_fd >= 0)
2579 infy_add (EV_A_ w); /* re-add, no matter what */ 4470 infy_add (EV_A_ w); /* re-add, no matter what */
2580 else 4471 else
4472 {
4473 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4474 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2581 ev_timer_start (EV_A_ &w->timer); 4475 ev_timer_again (EV_A_ &w->timer);
4476 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4477 }
2582 } 4478 }
2583
2584 } 4479 }
2585} 4480}
2586 4481
2587#endif 4482#endif
2588 4483
2591#else 4486#else
2592# define EV_LSTAT(p,b) lstat (p, b) 4487# define EV_LSTAT(p,b) lstat (p, b)
2593#endif 4488#endif
2594 4489
2595void 4490void
2596ev_stat_stat (EV_P_ ev_stat *w) 4491ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2597{ 4492{
2598 if (lstat (w->path, &w->attr) < 0) 4493 if (lstat (w->path, &w->attr) < 0)
2599 w->attr.st_nlink = 0; 4494 w->attr.st_nlink = 0;
2600 else if (!w->attr.st_nlink) 4495 else if (!w->attr.st_nlink)
2601 w->attr.st_nlink = 1; 4496 w->attr.st_nlink = 1;
2602} 4497}
2603 4498
2604static void noinline 4499noinline
4500static void
2605stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4501stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2606{ 4502{
2607 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4503 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2608 4504
2609 /* we copy this here each the time so that */ 4505 ev_statdata prev = w->attr;
2610 /* prev has the old value when the callback gets invoked */
2611 w->prev = w->attr;
2612 ev_stat_stat (EV_A_ w); 4506 ev_stat_stat (EV_A_ w);
2613 4507
2614 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4508 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2615 if ( 4509 if (
2616 w->prev.st_dev != w->attr.st_dev 4510 prev.st_dev != w->attr.st_dev
2617 || w->prev.st_ino != w->attr.st_ino 4511 || prev.st_ino != w->attr.st_ino
2618 || w->prev.st_mode != w->attr.st_mode 4512 || prev.st_mode != w->attr.st_mode
2619 || w->prev.st_nlink != w->attr.st_nlink 4513 || prev.st_nlink != w->attr.st_nlink
2620 || w->prev.st_uid != w->attr.st_uid 4514 || prev.st_uid != w->attr.st_uid
2621 || w->prev.st_gid != w->attr.st_gid 4515 || prev.st_gid != w->attr.st_gid
2622 || w->prev.st_rdev != w->attr.st_rdev 4516 || prev.st_rdev != w->attr.st_rdev
2623 || w->prev.st_size != w->attr.st_size 4517 || prev.st_size != w->attr.st_size
2624 || w->prev.st_atime != w->attr.st_atime 4518 || prev.st_atime != w->attr.st_atime
2625 || w->prev.st_mtime != w->attr.st_mtime 4519 || prev.st_mtime != w->attr.st_mtime
2626 || w->prev.st_ctime != w->attr.st_ctime 4520 || prev.st_ctime != w->attr.st_ctime
2627 ) { 4521 ) {
4522 /* we only update w->prev on actual differences */
4523 /* in case we test more often than invoke the callback, */
4524 /* to ensure that prev is always different to attr */
4525 w->prev = prev;
4526
2628 #if EV_USE_INOTIFY 4527 #if EV_USE_INOTIFY
4528 if (fs_fd >= 0)
4529 {
2629 infy_del (EV_A_ w); 4530 infy_del (EV_A_ w);
2630 infy_add (EV_A_ w); 4531 infy_add (EV_A_ w);
2631 ev_stat_stat (EV_A_ w); /* avoid race... */ 4532 ev_stat_stat (EV_A_ w); /* avoid race... */
4533 }
2632 #endif 4534 #endif
2633 4535
2634 ev_feed_event (EV_A_ w, EV_STAT); 4536 ev_feed_event (EV_A_ w, EV_STAT);
2635 } 4537 }
2636} 4538}
2637 4539
2638void 4540void
2639ev_stat_start (EV_P_ ev_stat *w) 4541ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2640{ 4542{
2641 if (expect_false (ev_is_active (w))) 4543 if (expect_false (ev_is_active (w)))
2642 return; 4544 return;
2643 4545
2644 /* since we use memcmp, we need to clear any padding data etc. */
2645 memset (&w->prev, 0, sizeof (ev_statdata));
2646 memset (&w->attr, 0, sizeof (ev_statdata));
2647
2648 ev_stat_stat (EV_A_ w); 4546 ev_stat_stat (EV_A_ w);
2649 4547
4548 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2650 if (w->interval < MIN_STAT_INTERVAL) 4549 w->interval = MIN_STAT_INTERVAL;
2651 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2652 4550
2653 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4551 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2654 ev_set_priority (&w->timer, ev_priority (w)); 4552 ev_set_priority (&w->timer, ev_priority (w));
2655 4553
2656#if EV_USE_INOTIFY 4554#if EV_USE_INOTIFY
2657 infy_init (EV_A); 4555 infy_init (EV_A);
2658 4556
2659 if (fs_fd >= 0) 4557 if (fs_fd >= 0)
2660 infy_add (EV_A_ w); 4558 infy_add (EV_A_ w);
2661 else 4559 else
2662#endif 4560#endif
4561 {
2663 ev_timer_start (EV_A_ &w->timer); 4562 ev_timer_again (EV_A_ &w->timer);
4563 ev_unref (EV_A);
4564 }
2664 4565
2665 ev_start (EV_A_ (W)w, 1); 4566 ev_start (EV_A_ (W)w, 1);
2666 4567
2667 EV_FREQUENT_CHECK; 4568 EV_FREQUENT_CHECK;
2668} 4569}
2669 4570
2670void 4571void
2671ev_stat_stop (EV_P_ ev_stat *w) 4572ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2672{ 4573{
2673 clear_pending (EV_A_ (W)w); 4574 clear_pending (EV_A_ (W)w);
2674 if (expect_false (!ev_is_active (w))) 4575 if (expect_false (!ev_is_active (w)))
2675 return; 4576 return;
2676 4577
2677 EV_FREQUENT_CHECK; 4578 EV_FREQUENT_CHECK;
2678 4579
2679#if EV_USE_INOTIFY 4580#if EV_USE_INOTIFY
2680 infy_del (EV_A_ w); 4581 infy_del (EV_A_ w);
2681#endif 4582#endif
4583
4584 if (ev_is_active (&w->timer))
4585 {
4586 ev_ref (EV_A);
2682 ev_timer_stop (EV_A_ &w->timer); 4587 ev_timer_stop (EV_A_ &w->timer);
4588 }
2683 4589
2684 ev_stop (EV_A_ (W)w); 4590 ev_stop (EV_A_ (W)w);
2685 4591
2686 EV_FREQUENT_CHECK; 4592 EV_FREQUENT_CHECK;
2687} 4593}
2688#endif 4594#endif
2689 4595
2690#if EV_IDLE_ENABLE 4596#if EV_IDLE_ENABLE
2691void 4597void
2692ev_idle_start (EV_P_ ev_idle *w) 4598ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2693{ 4599{
2694 if (expect_false (ev_is_active (w))) 4600 if (expect_false (ev_is_active (w)))
2695 return; 4601 return;
2696 4602
2697 pri_adjust (EV_A_ (W)w); 4603 pri_adjust (EV_A_ (W)w);
2710 4616
2711 EV_FREQUENT_CHECK; 4617 EV_FREQUENT_CHECK;
2712} 4618}
2713 4619
2714void 4620void
2715ev_idle_stop (EV_P_ ev_idle *w) 4621ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2716{ 4622{
2717 clear_pending (EV_A_ (W)w); 4623 clear_pending (EV_A_ (W)w);
2718 if (expect_false (!ev_is_active (w))) 4624 if (expect_false (!ev_is_active (w)))
2719 return; 4625 return;
2720 4626
2732 4638
2733 EV_FREQUENT_CHECK; 4639 EV_FREQUENT_CHECK;
2734} 4640}
2735#endif 4641#endif
2736 4642
4643#if EV_PREPARE_ENABLE
2737void 4644void
2738ev_prepare_start (EV_P_ ev_prepare *w) 4645ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2739{ 4646{
2740 if (expect_false (ev_is_active (w))) 4647 if (expect_false (ev_is_active (w)))
2741 return; 4648 return;
2742 4649
2743 EV_FREQUENT_CHECK; 4650 EV_FREQUENT_CHECK;
2748 4655
2749 EV_FREQUENT_CHECK; 4656 EV_FREQUENT_CHECK;
2750} 4657}
2751 4658
2752void 4659void
2753ev_prepare_stop (EV_P_ ev_prepare *w) 4660ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2754{ 4661{
2755 clear_pending (EV_A_ (W)w); 4662 clear_pending (EV_A_ (W)w);
2756 if (expect_false (!ev_is_active (w))) 4663 if (expect_false (!ev_is_active (w)))
2757 return; 4664 return;
2758 4665
2767 4674
2768 ev_stop (EV_A_ (W)w); 4675 ev_stop (EV_A_ (W)w);
2769 4676
2770 EV_FREQUENT_CHECK; 4677 EV_FREQUENT_CHECK;
2771} 4678}
4679#endif
2772 4680
4681#if EV_CHECK_ENABLE
2773void 4682void
2774ev_check_start (EV_P_ ev_check *w) 4683ev_check_start (EV_P_ ev_check *w) EV_THROW
2775{ 4684{
2776 if (expect_false (ev_is_active (w))) 4685 if (expect_false (ev_is_active (w)))
2777 return; 4686 return;
2778 4687
2779 EV_FREQUENT_CHECK; 4688 EV_FREQUENT_CHECK;
2784 4693
2785 EV_FREQUENT_CHECK; 4694 EV_FREQUENT_CHECK;
2786} 4695}
2787 4696
2788void 4697void
2789ev_check_stop (EV_P_ ev_check *w) 4698ev_check_stop (EV_P_ ev_check *w) EV_THROW
2790{ 4699{
2791 clear_pending (EV_A_ (W)w); 4700 clear_pending (EV_A_ (W)w);
2792 if (expect_false (!ev_is_active (w))) 4701 if (expect_false (!ev_is_active (w)))
2793 return; 4702 return;
2794 4703
2803 4712
2804 ev_stop (EV_A_ (W)w); 4713 ev_stop (EV_A_ (W)w);
2805 4714
2806 EV_FREQUENT_CHECK; 4715 EV_FREQUENT_CHECK;
2807} 4716}
4717#endif
2808 4718
2809#if EV_EMBED_ENABLE 4719#if EV_EMBED_ENABLE
2810void noinline 4720noinline
4721void
2811ev_embed_sweep (EV_P_ ev_embed *w) 4722ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2812{ 4723{
2813 ev_loop (w->other, EVLOOP_NONBLOCK); 4724 ev_run (w->other, EVRUN_NOWAIT);
2814} 4725}
2815 4726
2816static void 4727static void
2817embed_io_cb (EV_P_ ev_io *io, int revents) 4728embed_io_cb (EV_P_ ev_io *io, int revents)
2818{ 4729{
2819 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4730 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2820 4731
2821 if (ev_cb (w)) 4732 if (ev_cb (w))
2822 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4733 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2823 else 4734 else
2824 ev_loop (w->other, EVLOOP_NONBLOCK); 4735 ev_run (w->other, EVRUN_NOWAIT);
2825} 4736}
2826 4737
2827static void 4738static void
2828embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4739embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2829{ 4740{
2830 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4741 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2831 4742
2832 { 4743 {
2833 struct ev_loop *loop = w->other; 4744 EV_P = w->other;
2834 4745
2835 while (fdchangecnt) 4746 while (fdchangecnt)
2836 { 4747 {
2837 fd_reify (EV_A); 4748 fd_reify (EV_A);
2838 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4749 ev_run (EV_A_ EVRUN_NOWAIT);
2839 } 4750 }
2840 } 4751 }
2841} 4752}
2842 4753
2843static void 4754static void
2844embed_fork_cb (EV_P_ ev_fork *fork_w, int revents) 4755embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2845{ 4756{
2846 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 4757 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2847 4758
4759 ev_embed_stop (EV_A_ w);
4760
2848 { 4761 {
2849 struct ev_loop *loop = w->other; 4762 EV_P = w->other;
2850 4763
2851 ev_loop_fork (EV_A); 4764 ev_loop_fork (EV_A);
4765 ev_run (EV_A_ EVRUN_NOWAIT);
2852 } 4766 }
4767
4768 ev_embed_start (EV_A_ w);
2853} 4769}
2854 4770
2855#if 0 4771#if 0
2856static void 4772static void
2857embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4773embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2859 ev_idle_stop (EV_A_ idle); 4775 ev_idle_stop (EV_A_ idle);
2860} 4776}
2861#endif 4777#endif
2862 4778
2863void 4779void
2864ev_embed_start (EV_P_ ev_embed *w) 4780ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2865{ 4781{
2866 if (expect_false (ev_is_active (w))) 4782 if (expect_false (ev_is_active (w)))
2867 return; 4783 return;
2868 4784
2869 { 4785 {
2870 struct ev_loop *loop = w->other; 4786 EV_P = w->other;
2871 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4787 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2872 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4788 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2873 } 4789 }
2874 4790
2875 EV_FREQUENT_CHECK; 4791 EV_FREQUENT_CHECK;
2876 4792
2890 4806
2891 EV_FREQUENT_CHECK; 4807 EV_FREQUENT_CHECK;
2892} 4808}
2893 4809
2894void 4810void
2895ev_embed_stop (EV_P_ ev_embed *w) 4811ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2896{ 4812{
2897 clear_pending (EV_A_ (W)w); 4813 clear_pending (EV_A_ (W)w);
2898 if (expect_false (!ev_is_active (w))) 4814 if (expect_false (!ev_is_active (w)))
2899 return; 4815 return;
2900 4816
2902 4818
2903 ev_io_stop (EV_A_ &w->io); 4819 ev_io_stop (EV_A_ &w->io);
2904 ev_prepare_stop (EV_A_ &w->prepare); 4820 ev_prepare_stop (EV_A_ &w->prepare);
2905 ev_fork_stop (EV_A_ &w->fork); 4821 ev_fork_stop (EV_A_ &w->fork);
2906 4822
4823 ev_stop (EV_A_ (W)w);
4824
2907 EV_FREQUENT_CHECK; 4825 EV_FREQUENT_CHECK;
2908} 4826}
2909#endif 4827#endif
2910 4828
2911#if EV_FORK_ENABLE 4829#if EV_FORK_ENABLE
2912void 4830void
2913ev_fork_start (EV_P_ ev_fork *w) 4831ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2914{ 4832{
2915 if (expect_false (ev_is_active (w))) 4833 if (expect_false (ev_is_active (w)))
2916 return; 4834 return;
2917 4835
2918 EV_FREQUENT_CHECK; 4836 EV_FREQUENT_CHECK;
2923 4841
2924 EV_FREQUENT_CHECK; 4842 EV_FREQUENT_CHECK;
2925} 4843}
2926 4844
2927void 4845void
2928ev_fork_stop (EV_P_ ev_fork *w) 4846ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2929{ 4847{
2930 clear_pending (EV_A_ (W)w); 4848 clear_pending (EV_A_ (W)w);
2931 if (expect_false (!ev_is_active (w))) 4849 if (expect_false (!ev_is_active (w)))
2932 return; 4850 return;
2933 4851
2944 4862
2945 EV_FREQUENT_CHECK; 4863 EV_FREQUENT_CHECK;
2946} 4864}
2947#endif 4865#endif
2948 4866
2949#if EV_ASYNC_ENABLE 4867#if EV_CLEANUP_ENABLE
2950void 4868void
2951ev_async_start (EV_P_ ev_async *w) 4869ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
2952{ 4870{
2953 if (expect_false (ev_is_active (w))) 4871 if (expect_false (ev_is_active (w)))
2954 return; 4872 return;
4873
4874 EV_FREQUENT_CHECK;
4875
4876 ev_start (EV_A_ (W)w, ++cleanupcnt);
4877 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4878 cleanups [cleanupcnt - 1] = w;
4879
4880 /* cleanup watchers should never keep a refcount on the loop */
4881 ev_unref (EV_A);
4882 EV_FREQUENT_CHECK;
4883}
4884
4885void
4886ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4887{
4888 clear_pending (EV_A_ (W)w);
4889 if (expect_false (!ev_is_active (w)))
4890 return;
4891
4892 EV_FREQUENT_CHECK;
4893 ev_ref (EV_A);
4894
4895 {
4896 int active = ev_active (w);
4897
4898 cleanups [active - 1] = cleanups [--cleanupcnt];
4899 ev_active (cleanups [active - 1]) = active;
4900 }
4901
4902 ev_stop (EV_A_ (W)w);
4903
4904 EV_FREQUENT_CHECK;
4905}
4906#endif
4907
4908#if EV_ASYNC_ENABLE
4909void
4910ev_async_start (EV_P_ ev_async *w) EV_THROW
4911{
4912 if (expect_false (ev_is_active (w)))
4913 return;
4914
4915 w->sent = 0;
2955 4916
2956 evpipe_init (EV_A); 4917 evpipe_init (EV_A);
2957 4918
2958 EV_FREQUENT_CHECK; 4919 EV_FREQUENT_CHECK;
2959 4920
2963 4924
2964 EV_FREQUENT_CHECK; 4925 EV_FREQUENT_CHECK;
2965} 4926}
2966 4927
2967void 4928void
2968ev_async_stop (EV_P_ ev_async *w) 4929ev_async_stop (EV_P_ ev_async *w) EV_THROW
2969{ 4930{
2970 clear_pending (EV_A_ (W)w); 4931 clear_pending (EV_A_ (W)w);
2971 if (expect_false (!ev_is_active (w))) 4932 if (expect_false (!ev_is_active (w)))
2972 return; 4933 return;
2973 4934
2984 4945
2985 EV_FREQUENT_CHECK; 4946 EV_FREQUENT_CHECK;
2986} 4947}
2987 4948
2988void 4949void
2989ev_async_send (EV_P_ ev_async *w) 4950ev_async_send (EV_P_ ev_async *w) EV_THROW
2990{ 4951{
2991 w->sent = 1; 4952 w->sent = 1;
2992 evpipe_write (EV_A_ &gotasync); 4953 evpipe_write (EV_A_ &async_pending);
2993} 4954}
2994#endif 4955#endif
2995 4956
2996/*****************************************************************************/ 4957/*****************************************************************************/
2997 4958
3031 4992
3032 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io)); 4993 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3033} 4994}
3034 4995
3035void 4996void
3036ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4997ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
3037{ 4998{
3038 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4999 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3039 5000
3040 if (expect_false (!once)) 5001 if (expect_false (!once))
3041 { 5002 {
3042 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 5003 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3043 return; 5004 return;
3044 } 5005 }
3045 5006
3046 once->cb = cb; 5007 once->cb = cb;
3047 once->arg = arg; 5008 once->arg = arg;
3059 ev_timer_set (&once->to, timeout, 0.); 5020 ev_timer_set (&once->to, timeout, 0.);
3060 ev_timer_start (EV_A_ &once->to); 5021 ev_timer_start (EV_A_ &once->to);
3061 } 5022 }
3062} 5023}
3063 5024
5025/*****************************************************************************/
5026
5027#if EV_WALK_ENABLE
5028ecb_cold
5029void
5030ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
5031{
5032 int i, j;
5033 ev_watcher_list *wl, *wn;
5034
5035 if (types & (EV_IO | EV_EMBED))
5036 for (i = 0; i < anfdmax; ++i)
5037 for (wl = anfds [i].head; wl; )
5038 {
5039 wn = wl->next;
5040
5041#if EV_EMBED_ENABLE
5042 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5043 {
5044 if (types & EV_EMBED)
5045 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5046 }
5047 else
5048#endif
5049#if EV_USE_INOTIFY
5050 if (ev_cb ((ev_io *)wl) == infy_cb)
5051 ;
5052 else
5053#endif
5054 if ((ev_io *)wl != &pipe_w)
5055 if (types & EV_IO)
5056 cb (EV_A_ EV_IO, wl);
5057
5058 wl = wn;
5059 }
5060
5061 if (types & (EV_TIMER | EV_STAT))
5062 for (i = timercnt + HEAP0; i-- > HEAP0; )
5063#if EV_STAT_ENABLE
5064 /*TODO: timer is not always active*/
5065 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5066 {
5067 if (types & EV_STAT)
5068 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5069 }
5070 else
5071#endif
5072 if (types & EV_TIMER)
5073 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5074
5075#if EV_PERIODIC_ENABLE
5076 if (types & EV_PERIODIC)
5077 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5078 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5079#endif
5080
5081#if EV_IDLE_ENABLE
5082 if (types & EV_IDLE)
5083 for (j = NUMPRI; j--; )
5084 for (i = idlecnt [j]; i--; )
5085 cb (EV_A_ EV_IDLE, idles [j][i]);
5086#endif
5087
5088#if EV_FORK_ENABLE
5089 if (types & EV_FORK)
5090 for (i = forkcnt; i--; )
5091 if (ev_cb (forks [i]) != embed_fork_cb)
5092 cb (EV_A_ EV_FORK, forks [i]);
5093#endif
5094
5095#if EV_ASYNC_ENABLE
5096 if (types & EV_ASYNC)
5097 for (i = asynccnt; i--; )
5098 cb (EV_A_ EV_ASYNC, asyncs [i]);
5099#endif
5100
5101#if EV_PREPARE_ENABLE
5102 if (types & EV_PREPARE)
5103 for (i = preparecnt; i--; )
5104# if EV_EMBED_ENABLE
5105 if (ev_cb (prepares [i]) != embed_prepare_cb)
5106# endif
5107 cb (EV_A_ EV_PREPARE, prepares [i]);
5108#endif
5109
5110#if EV_CHECK_ENABLE
5111 if (types & EV_CHECK)
5112 for (i = checkcnt; i--; )
5113 cb (EV_A_ EV_CHECK, checks [i]);
5114#endif
5115
5116#if EV_SIGNAL_ENABLE
5117 if (types & EV_SIGNAL)
5118 for (i = 0; i < EV_NSIG - 1; ++i)
5119 for (wl = signals [i].head; wl; )
5120 {
5121 wn = wl->next;
5122 cb (EV_A_ EV_SIGNAL, wl);
5123 wl = wn;
5124 }
5125#endif
5126
5127#if EV_CHILD_ENABLE
5128 if (types & EV_CHILD)
5129 for (i = (EV_PID_HASHSIZE); i--; )
5130 for (wl = childs [i]; wl; )
5131 {
5132 wn = wl->next;
5133 cb (EV_A_ EV_CHILD, wl);
5134 wl = wn;
5135 }
5136#endif
5137/* EV_STAT 0x00001000 /* stat data changed */
5138/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5139}
5140#endif
5141
3064#if EV_MULTIPLICITY 5142#if EV_MULTIPLICITY
3065 #include "ev_wrap.h" 5143 #include "ev_wrap.h"
3066#endif 5144#endif
3067 5145
3068#ifdef __cplusplus
3069}
3070#endif
3071

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines