ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.61 by root, Sun Nov 4 19:45:09 2007 UTC vs.
Revision 1.482 by root, Sat Jul 28 04:15:15 2018 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
39
40/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
32# include "config.h" 45# include "config.h"
46# endif
47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
33 67
34# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
69# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
71# endif
72# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
74# endif
75# else
76# ifndef EV_USE_MONOTONIC
77# define EV_USE_MONOTONIC 0
78# endif
79# ifndef EV_USE_REALTIME
80# define EV_USE_REALTIME 0
81# endif
37# endif 82# endif
38 83
84# if HAVE_NANOSLEEP
85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
91# endif
92
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
40# define EV_USE_SELECT 1 99# define EV_USE_SELECT 0
41# endif 100# endif
42 101
43# if HAVE_POLL && HAVE_POLL_H 102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
44# define EV_USE_POLL 1 108# define EV_USE_POLL 0
45# endif 109# endif
46 110
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
115# else
116# undef EV_USE_EPOLL
48# define EV_USE_EPOLL 1 117# define EV_USE_EPOLL 0
49# endif 118# endif
50 119
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121# ifndef EV_USE_KQUEUE
122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123# endif
124# else
125# undef EV_USE_KQUEUE
52# define EV_USE_KQUEUE 1 126# define EV_USE_KQUEUE 0
53# endif 127# endif
54 128
129# if HAVE_PORT_H && HAVE_PORT_CREATE
130# ifndef EV_USE_PORT
131# define EV_USE_PORT EV_FEATURE_BACKENDS
132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
55#endif 136# endif
56 137
57#include <math.h> 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
145# endif
146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
58#include <stdlib.h> 167#include <stdlib.h>
59#include <unistd.h> 168#include <string.h>
60#include <fcntl.h> 169#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 170#include <stddef.h>
63 171
64#include <stdio.h> 172#include <stdio.h>
65 173
66#include <assert.h> 174#include <assert.h>
67#include <errno.h> 175#include <errno.h>
68#include <sys/types.h> 176#include <sys/types.h>
177#include <time.h>
178#include <limits.h>
179
180#include <signal.h>
181
182#ifdef EV_H
183# include EV_H
184#else
185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
197#endif
198
69#ifndef WIN32 199#ifndef _WIN32
200# include <sys/time.h>
70# include <sys/wait.h> 201# include <sys/wait.h>
202# include <unistd.h>
203#else
204# include <io.h>
205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
207# include <windows.h>
208# ifndef EV_SELECT_IS_WINSOCKET
209# define EV_SELECT_IS_WINSOCKET 1
71#endif 210# endif
72#include <sys/time.h> 211# undef EV_AVOID_STDIO
73#include <time.h> 212#endif
74 213
75/**/ 214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
221
222/* this block tries to deduce configuration from header-defined symbols and defaults */
223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# define EV_NSIG (8 * sizeof (sigset_t) + 1)
247#endif
248
249#ifndef EV_USE_FLOOR
250# define EV_USE_FLOOR 0
251#endif
252
253#ifndef EV_USE_CLOCK_SYSCALL
254# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
255# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
256# else
257# define EV_USE_CLOCK_SYSCALL 0
258# endif
259#endif
260
261#if !(_POSIX_TIMERS > 0)
262# ifndef EV_USE_MONOTONIC
263# define EV_USE_MONOTONIC 0
264# endif
265# ifndef EV_USE_REALTIME
266# define EV_USE_REALTIME 0
267# endif
268#endif
76 269
77#ifndef EV_USE_MONOTONIC 270#ifndef EV_USE_MONOTONIC
271# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
272# define EV_USE_MONOTONIC EV_FEATURE_OS
273# else
78# define EV_USE_MONOTONIC 1 274# define EV_USE_MONOTONIC 0
275# endif
276#endif
277
278#ifndef EV_USE_REALTIME
279# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
280#endif
281
282#ifndef EV_USE_NANOSLEEP
283# if _POSIX_C_SOURCE >= 199309L
284# define EV_USE_NANOSLEEP EV_FEATURE_OS
285# else
286# define EV_USE_NANOSLEEP 0
287# endif
79#endif 288#endif
80 289
81#ifndef EV_USE_SELECT 290#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 291# define EV_USE_SELECT EV_FEATURE_BACKENDS
83#endif 292#endif
84 293
85#ifndef EV_USE_POLL 294#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 295# ifdef _WIN32
296# define EV_USE_POLL 0
297# else
298# define EV_USE_POLL EV_FEATURE_BACKENDS
299# endif
87#endif 300#endif
88 301
89#ifndef EV_USE_EPOLL 302#ifndef EV_USE_EPOLL
303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
304# define EV_USE_EPOLL EV_FEATURE_BACKENDS
305# else
90# define EV_USE_EPOLL 0 306# define EV_USE_EPOLL 0
307# endif
91#endif 308#endif
92 309
93#ifndef EV_USE_KQUEUE 310#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 311# define EV_USE_KQUEUE 0
95#endif 312#endif
96 313
97#ifndef EV_USE_REALTIME 314#ifndef EV_USE_PORT
98# define EV_USE_REALTIME 1 315# define EV_USE_PORT 0
316#endif
317
318#ifndef EV_USE_INOTIFY
319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
320# define EV_USE_INOTIFY EV_FEATURE_OS
321# else
322# define EV_USE_INOTIFY 0
99#endif 323# endif
324#endif
100 325
101/**/ 326#ifndef EV_PID_HASHSIZE
327# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
328#endif
329
330#ifndef EV_INOTIFY_HASHSIZE
331# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
332#endif
333
334#ifndef EV_USE_EVENTFD
335# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
336# define EV_USE_EVENTFD EV_FEATURE_OS
337# else
338# define EV_USE_EVENTFD 0
339# endif
340#endif
341
342#ifndef EV_USE_SIGNALFD
343# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
344# define EV_USE_SIGNALFD EV_FEATURE_OS
345# else
346# define EV_USE_SIGNALFD 0
347# endif
348#endif
349
350#if 0 /* debugging */
351# define EV_VERIFY 3
352# define EV_USE_4HEAP 1
353# define EV_HEAP_CACHE_AT 1
354#endif
355
356#ifndef EV_VERIFY
357# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
358#endif
359
360#ifndef EV_USE_4HEAP
361# define EV_USE_4HEAP EV_FEATURE_DATA
362#endif
363
364#ifndef EV_HEAP_CACHE_AT
365# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
366#endif
367
368#ifdef __ANDROID__
369/* supposedly, android doesn't typedef fd_mask */
370# undef EV_USE_SELECT
371# define EV_USE_SELECT 0
372/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
373# undef EV_USE_CLOCK_SYSCALL
374# define EV_USE_CLOCK_SYSCALL 0
375#endif
376
377/* aix's poll.h seems to cause lots of trouble */
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
380# undef EV_USE_POLL
381# define EV_USE_POLL 0
382#endif
383
384/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
385/* which makes programs even slower. might work on other unices, too. */
386#if EV_USE_CLOCK_SYSCALL
387# include <sys/syscall.h>
388# ifdef SYS_clock_gettime
389# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
390# undef EV_USE_MONOTONIC
391# define EV_USE_MONOTONIC 1
392# else
393# undef EV_USE_CLOCK_SYSCALL
394# define EV_USE_CLOCK_SYSCALL 0
395# endif
396#endif
397
398/* this block fixes any misconfiguration where we know we run into trouble otherwise */
102 399
103#ifndef CLOCK_MONOTONIC 400#ifndef CLOCK_MONOTONIC
104# undef EV_USE_MONOTONIC 401# undef EV_USE_MONOTONIC
105# define EV_USE_MONOTONIC 0 402# define EV_USE_MONOTONIC 0
106#endif 403#endif
108#ifndef CLOCK_REALTIME 405#ifndef CLOCK_REALTIME
109# undef EV_USE_REALTIME 406# undef EV_USE_REALTIME
110# define EV_USE_REALTIME 0 407# define EV_USE_REALTIME 0
111#endif 408#endif
112 409
410#if !EV_STAT_ENABLE
411# undef EV_USE_INOTIFY
412# define EV_USE_INOTIFY 0
413#endif
414
415#if !EV_USE_NANOSLEEP
416/* hp-ux has it in sys/time.h, which we unconditionally include above */
417# if !defined _WIN32 && !defined __hpux
418# include <sys/select.h>
419# endif
420#endif
421
422#if EV_USE_INOTIFY
423# include <sys/statfs.h>
424# include <sys/inotify.h>
425/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
426# ifndef IN_DONT_FOLLOW
427# undef EV_USE_INOTIFY
428# define EV_USE_INOTIFY 0
429# endif
430#endif
431
432#if EV_USE_EVENTFD
433/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434# include <stdint.h>
435# ifndef EFD_NONBLOCK
436# define EFD_NONBLOCK O_NONBLOCK
437# endif
438# ifndef EFD_CLOEXEC
439# ifdef O_CLOEXEC
440# define EFD_CLOEXEC O_CLOEXEC
441# else
442# define EFD_CLOEXEC 02000000
443# endif
444# endif
445EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
446#endif
447
448#if EV_USE_SIGNALFD
449/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
450# include <stdint.h>
451# ifndef SFD_NONBLOCK
452# define SFD_NONBLOCK O_NONBLOCK
453# endif
454# ifndef SFD_CLOEXEC
455# ifdef O_CLOEXEC
456# define SFD_CLOEXEC O_CLOEXEC
457# else
458# define SFD_CLOEXEC 02000000
459# endif
460# endif
461EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
462
463struct signalfd_siginfo
464{
465 uint32_t ssi_signo;
466 char pad[128 - sizeof (uint32_t)];
467};
468#endif
469
113/**/ 470/**/
114 471
472#if EV_VERIFY >= 3
473# define EV_FREQUENT_CHECK ev_verify (EV_A)
474#else
475# define EV_FREQUENT_CHECK do { } while (0)
476#endif
477
478/*
479 * This is used to work around floating point rounding problems.
480 * This value is good at least till the year 4000.
481 */
482#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
483/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
484
115#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 485#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
116#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 486#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
117#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
118/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
119 487
120#include "ev.h" 488#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
489#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
121 490
491/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
492/* ECB.H BEGIN */
493/*
494 * libecb - http://software.schmorp.de/pkg/libecb
495 *
496 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
497 * Copyright (©) 2011 Emanuele Giaquinta
498 * All rights reserved.
499 *
500 * Redistribution and use in source and binary forms, with or without modifica-
501 * tion, are permitted provided that the following conditions are met:
502 *
503 * 1. Redistributions of source code must retain the above copyright notice,
504 * this list of conditions and the following disclaimer.
505 *
506 * 2. Redistributions in binary form must reproduce the above copyright
507 * notice, this list of conditions and the following disclaimer in the
508 * documentation and/or other materials provided with the distribution.
509 *
510 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
511 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
512 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
513 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
514 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
515 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
516 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
517 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
518 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
519 * OF THE POSSIBILITY OF SUCH DAMAGE.
520 *
521 * Alternatively, the contents of this file may be used under the terms of
522 * the GNU General Public License ("GPL") version 2 or any later version,
523 * in which case the provisions of the GPL are applicable instead of
524 * the above. If you wish to allow the use of your version of this file
525 * only under the terms of the GPL and not to allow others to use your
526 * version of this file under the BSD license, indicate your decision
527 * by deleting the provisions above and replace them with the notice
528 * and other provisions required by the GPL. If you do not delete the
529 * provisions above, a recipient may use your version of this file under
530 * either the BSD or the GPL.
531 */
532
533#ifndef ECB_H
534#define ECB_H
535
536/* 16 bits major, 16 bits minor */
537#define ECB_VERSION 0x00010005
538
539#ifdef _WIN32
540 typedef signed char int8_t;
541 typedef unsigned char uint8_t;
542 typedef signed short int16_t;
543 typedef unsigned short uint16_t;
544 typedef signed int int32_t;
545 typedef unsigned int uint32_t;
122#if __GNUC__ >= 3 546 #if __GNUC__
123# define expect(expr,value) __builtin_expect ((expr),(value)) 547 typedef signed long long int64_t;
124# define inline inline 548 typedef unsigned long long uint64_t;
125#else 549 #else /* _MSC_VER || __BORLANDC__ */
126# define expect(expr,value) (expr) 550 typedef signed __int64 int64_t;
127# define inline static 551 typedef unsigned __int64 uint64_t;
128#endif 552 #endif
553 #ifdef _WIN64
554 #define ECB_PTRSIZE 8
555 typedef uint64_t uintptr_t;
556 typedef int64_t intptr_t;
557 #else
558 #define ECB_PTRSIZE 4
559 typedef uint32_t uintptr_t;
560 typedef int32_t intptr_t;
561 #endif
562#else
563 #include <inttypes.h>
564 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
565 #define ECB_PTRSIZE 8
566 #else
567 #define ECB_PTRSIZE 4
568 #endif
569#endif
129 570
130#define expect_false(expr) expect ((expr) != 0, 0) 571#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
131#define expect_true(expr) expect ((expr) != 0, 1) 572#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
132 573
133#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 574/* work around x32 idiocy by defining proper macros */
134#define ABSPRI(w) ((w)->priority - EV_MINPRI) 575#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
576 #if _ILP32
577 #define ECB_AMD64_X32 1
578 #else
579 #define ECB_AMD64 1
580 #endif
581#endif
135 582
136typedef struct ev_watcher *W; 583/* many compilers define _GNUC_ to some versions but then only implement
137typedef struct ev_watcher_list *WL; 584 * what their idiot authors think are the "more important" extensions,
138typedef struct ev_watcher_time *WT; 585 * causing enormous grief in return for some better fake benchmark numbers.
586 * or so.
587 * we try to detect these and simply assume they are not gcc - if they have
588 * an issue with that they should have done it right in the first place.
589 */
590#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
591 #define ECB_GCC_VERSION(major,minor) 0
592#else
593 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
594#endif
139 595
140static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 596#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
597
598#if __clang__ && defined __has_builtin
599 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
600#else
601 #define ECB_CLANG_BUILTIN(x) 0
602#endif
603
604#if __clang__ && defined __has_extension
605 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
606#else
607 #define ECB_CLANG_EXTENSION(x) 0
608#endif
609
610#define ECB_CPP (__cplusplus+0)
611#define ECB_CPP11 (__cplusplus >= 201103L)
612
613#if ECB_CPP
614 #define ECB_C 0
615 #define ECB_STDC_VERSION 0
616#else
617 #define ECB_C 1
618 #define ECB_STDC_VERSION __STDC_VERSION__
619#endif
620
621#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
622#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
623
624#if ECB_CPP
625 #define ECB_EXTERN_C extern "C"
626 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
627 #define ECB_EXTERN_C_END }
628#else
629 #define ECB_EXTERN_C extern
630 #define ECB_EXTERN_C_BEG
631 #define ECB_EXTERN_C_END
632#endif
141 633
142/*****************************************************************************/ 634/*****************************************************************************/
143 635
636/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
637/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
638
639#if ECB_NO_THREADS
640 #define ECB_NO_SMP 1
641#endif
642
643#if ECB_NO_SMP
644 #define ECB_MEMORY_FENCE do { } while (0)
645#endif
646
647/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
648#if __xlC__ && ECB_CPP
649 #include <builtins.h>
650#endif
651
652#if 1400 <= _MSC_VER
653 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
654#endif
655
656#ifndef ECB_MEMORY_FENCE
657 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
658 #if __i386 || __i386__
659 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
660 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
661 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
662 #elif ECB_GCC_AMD64
663 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
664 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
665 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
666 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
667 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
668 #elif defined __ARM_ARCH_2__ \
669 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
670 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
671 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
672 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
673 || defined __ARM_ARCH_5TEJ__
674 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
675 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
676 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
677 || defined __ARM_ARCH_6T2__
678 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
679 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
680 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
681 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
682 #elif __aarch64__
683 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
684 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
685 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
686 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
687 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
688 #elif defined __s390__ || defined __s390x__
689 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
690 #elif defined __mips__
691 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
692 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
693 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
694 #elif defined __alpha__
695 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
696 #elif defined __hppa__
697 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
698 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
699 #elif defined __ia64__
700 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
701 #elif defined __m68k__
702 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
703 #elif defined __m88k__
704 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
705 #elif defined __sh__
706 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
707 #endif
708 #endif
709#endif
710
711#ifndef ECB_MEMORY_FENCE
712 #if ECB_GCC_VERSION(4,7)
713 /* see comment below (stdatomic.h) about the C11 memory model. */
714 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
715 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
716 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
717
718 #elif ECB_CLANG_EXTENSION(c_atomic)
719 /* see comment below (stdatomic.h) about the C11 memory model. */
720 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
721 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
722 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
723
724 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
725 #define ECB_MEMORY_FENCE __sync_synchronize ()
726 #elif _MSC_VER >= 1500 /* VC++ 2008 */
727 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
728 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
729 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
730 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
731 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
732 #elif _MSC_VER >= 1400 /* VC++ 2005 */
733 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
734 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
735 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
736 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
737 #elif defined _WIN32
738 #include <WinNT.h>
739 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
740 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
741 #include <mbarrier.h>
742 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
743 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
744 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
745 #elif __xlC__
746 #define ECB_MEMORY_FENCE __sync ()
747 #endif
748#endif
749
750#ifndef ECB_MEMORY_FENCE
751 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
752 /* we assume that these memory fences work on all variables/all memory accesses, */
753 /* not just C11 atomics and atomic accesses */
754 #include <stdatomic.h>
755 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
756 /* any fence other than seq_cst, which isn't very efficient for us. */
757 /* Why that is, we don't know - either the C11 memory model is quite useless */
758 /* for most usages, or gcc and clang have a bug */
759 /* I *currently* lean towards the latter, and inefficiently implement */
760 /* all three of ecb's fences as a seq_cst fence */
761 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
762 /* for all __atomic_thread_fence's except seq_cst */
763 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
764 #endif
765#endif
766
767#ifndef ECB_MEMORY_FENCE
768 #if !ECB_AVOID_PTHREADS
769 /*
770 * if you get undefined symbol references to pthread_mutex_lock,
771 * or failure to find pthread.h, then you should implement
772 * the ECB_MEMORY_FENCE operations for your cpu/compiler
773 * OR provide pthread.h and link against the posix thread library
774 * of your system.
775 */
776 #include <pthread.h>
777 #define ECB_NEEDS_PTHREADS 1
778 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
779
780 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
781 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
782 #endif
783#endif
784
785#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
786 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
787#endif
788
789#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
790 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
791#endif
792
793/*****************************************************************************/
794
795#if ECB_CPP
796 #define ecb_inline static inline
797#elif ECB_GCC_VERSION(2,5)
798 #define ecb_inline static __inline__
799#elif ECB_C99
800 #define ecb_inline static inline
801#else
802 #define ecb_inline static
803#endif
804
805#if ECB_GCC_VERSION(3,3)
806 #define ecb_restrict __restrict__
807#elif ECB_C99
808 #define ecb_restrict restrict
809#else
810 #define ecb_restrict
811#endif
812
813typedef int ecb_bool;
814
815#define ECB_CONCAT_(a, b) a ## b
816#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
817#define ECB_STRINGIFY_(a) # a
818#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
819#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
820
821#define ecb_function_ ecb_inline
822
823#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
824 #define ecb_attribute(attrlist) __attribute__ (attrlist)
825#else
826 #define ecb_attribute(attrlist)
827#endif
828
829#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
830 #define ecb_is_constant(expr) __builtin_constant_p (expr)
831#else
832 /* possible C11 impl for integral types
833 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
834 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
835
836 #define ecb_is_constant(expr) 0
837#endif
838
839#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
840 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
841#else
842 #define ecb_expect(expr,value) (expr)
843#endif
844
845#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
846 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
847#else
848 #define ecb_prefetch(addr,rw,locality)
849#endif
850
851/* no emulation for ecb_decltype */
852#if ECB_CPP11
853 // older implementations might have problems with decltype(x)::type, work around it
854 template<class T> struct ecb_decltype_t { typedef T type; };
855 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
856#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
857 #define ecb_decltype(x) __typeof__ (x)
858#endif
859
860#if _MSC_VER >= 1300
861 #define ecb_deprecated __declspec (deprecated)
862#else
863 #define ecb_deprecated ecb_attribute ((__deprecated__))
864#endif
865
866#if _MSC_VER >= 1500
867 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
868#elif ECB_GCC_VERSION(4,5)
869 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
870#else
871 #define ecb_deprecated_message(msg) ecb_deprecated
872#endif
873
874#if _MSC_VER >= 1400
875 #define ecb_noinline __declspec (noinline)
876#else
877 #define ecb_noinline ecb_attribute ((__noinline__))
878#endif
879
880#define ecb_unused ecb_attribute ((__unused__))
881#define ecb_const ecb_attribute ((__const__))
882#define ecb_pure ecb_attribute ((__pure__))
883
884#if ECB_C11 || __IBMC_NORETURN
885 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
886 #define ecb_noreturn _Noreturn
887#elif ECB_CPP11
888 #define ecb_noreturn [[noreturn]]
889#elif _MSC_VER >= 1200
890 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
891 #define ecb_noreturn __declspec (noreturn)
892#else
893 #define ecb_noreturn ecb_attribute ((__noreturn__))
894#endif
895
896#if ECB_GCC_VERSION(4,3)
897 #define ecb_artificial ecb_attribute ((__artificial__))
898 #define ecb_hot ecb_attribute ((__hot__))
899 #define ecb_cold ecb_attribute ((__cold__))
900#else
901 #define ecb_artificial
902 #define ecb_hot
903 #define ecb_cold
904#endif
905
906/* put around conditional expressions if you are very sure that the */
907/* expression is mostly true or mostly false. note that these return */
908/* booleans, not the expression. */
909#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
910#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
911/* for compatibility to the rest of the world */
912#define ecb_likely(expr) ecb_expect_true (expr)
913#define ecb_unlikely(expr) ecb_expect_false (expr)
914
915/* count trailing zero bits and count # of one bits */
916#if ECB_GCC_VERSION(3,4) \
917 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
918 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
919 && ECB_CLANG_BUILTIN(__builtin_popcount))
920 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
921 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
922 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
923 #define ecb_ctz32(x) __builtin_ctz (x)
924 #define ecb_ctz64(x) __builtin_ctzll (x)
925 #define ecb_popcount32(x) __builtin_popcount (x)
926 /* no popcountll */
927#else
928 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
929 ecb_function_ ecb_const int
930 ecb_ctz32 (uint32_t x)
931 {
932#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
933 unsigned long r;
934 _BitScanForward (&r, x);
935 return (int)r;
936#else
937 int r = 0;
938
939 x &= ~x + 1; /* this isolates the lowest bit */
940
941#if ECB_branchless_on_i386
942 r += !!(x & 0xaaaaaaaa) << 0;
943 r += !!(x & 0xcccccccc) << 1;
944 r += !!(x & 0xf0f0f0f0) << 2;
945 r += !!(x & 0xff00ff00) << 3;
946 r += !!(x & 0xffff0000) << 4;
947#else
948 if (x & 0xaaaaaaaa) r += 1;
949 if (x & 0xcccccccc) r += 2;
950 if (x & 0xf0f0f0f0) r += 4;
951 if (x & 0xff00ff00) r += 8;
952 if (x & 0xffff0000) r += 16;
953#endif
954
955 return r;
956#endif
957 }
958
959 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
960 ecb_function_ ecb_const int
961 ecb_ctz64 (uint64_t x)
962 {
963#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
964 unsigned long r;
965 _BitScanForward64 (&r, x);
966 return (int)r;
967#else
968 int shift = x & 0xffffffff ? 0 : 32;
969 return ecb_ctz32 (x >> shift) + shift;
970#endif
971 }
972
973 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
974 ecb_function_ ecb_const int
975 ecb_popcount32 (uint32_t x)
976 {
977 x -= (x >> 1) & 0x55555555;
978 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
979 x = ((x >> 4) + x) & 0x0f0f0f0f;
980 x *= 0x01010101;
981
982 return x >> 24;
983 }
984
985 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
986 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
987 {
988#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
989 unsigned long r;
990 _BitScanReverse (&r, x);
991 return (int)r;
992#else
993 int r = 0;
994
995 if (x >> 16) { x >>= 16; r += 16; }
996 if (x >> 8) { x >>= 8; r += 8; }
997 if (x >> 4) { x >>= 4; r += 4; }
998 if (x >> 2) { x >>= 2; r += 2; }
999 if (x >> 1) { r += 1; }
1000
1001 return r;
1002#endif
1003 }
1004
1005 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1006 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1007 {
1008#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1009 unsigned long r;
1010 _BitScanReverse64 (&r, x);
1011 return (int)r;
1012#else
1013 int r = 0;
1014
1015 if (x >> 32) { x >>= 32; r += 32; }
1016
1017 return r + ecb_ld32 (x);
1018#endif
1019 }
1020#endif
1021
1022ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1023ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1024ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1025ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1026
1027ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1028ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1029{
1030 return ( (x * 0x0802U & 0x22110U)
1031 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1032}
1033
1034ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1035ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1036{
1037 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1038 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1039 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1040 x = ( x >> 8 ) | ( x << 8);
1041
1042 return x;
1043}
1044
1045ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1046ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1047{
1048 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1049 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1050 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1051 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1052 x = ( x >> 16 ) | ( x << 16);
1053
1054 return x;
1055}
1056
1057/* popcount64 is only available on 64 bit cpus as gcc builtin */
1058/* so for this version we are lazy */
1059ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1060ecb_function_ ecb_const int
1061ecb_popcount64 (uint64_t x)
1062{
1063 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1064}
1065
1066ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1067ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1068ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1069ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1070ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1071ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1072ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1073ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1074
1075ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1076ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1077ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1078ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1079ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1080ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1081ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1082ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1083
1084#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1085 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1086 #define ecb_bswap16(x) __builtin_bswap16 (x)
1087 #else
1088 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1089 #endif
1090 #define ecb_bswap32(x) __builtin_bswap32 (x)
1091 #define ecb_bswap64(x) __builtin_bswap64 (x)
1092#elif _MSC_VER
1093 #include <stdlib.h>
1094 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1095 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1096 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1097#else
1098 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1099 ecb_function_ ecb_const uint16_t
1100 ecb_bswap16 (uint16_t x)
1101 {
1102 return ecb_rotl16 (x, 8);
1103 }
1104
1105 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1106 ecb_function_ ecb_const uint32_t
1107 ecb_bswap32 (uint32_t x)
1108 {
1109 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1110 }
1111
1112 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1113 ecb_function_ ecb_const uint64_t
1114 ecb_bswap64 (uint64_t x)
1115 {
1116 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1117 }
1118#endif
1119
1120#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1121 #define ecb_unreachable() __builtin_unreachable ()
1122#else
1123 /* this seems to work fine, but gcc always emits a warning for it :/ */
1124 ecb_inline ecb_noreturn void ecb_unreachable (void);
1125 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1126#endif
1127
1128/* try to tell the compiler that some condition is definitely true */
1129#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1130
1131ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1132ecb_inline ecb_const uint32_t
1133ecb_byteorder_helper (void)
1134{
1135 /* the union code still generates code under pressure in gcc, */
1136 /* but less than using pointers, and always seems to */
1137 /* successfully return a constant. */
1138 /* the reason why we have this horrible preprocessor mess */
1139 /* is to avoid it in all cases, at least on common architectures */
1140 /* or when using a recent enough gcc version (>= 4.6) */
1141#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1142 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1143 #define ECB_LITTLE_ENDIAN 1
1144 return 0x44332211;
1145#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1146 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1147 #define ECB_BIG_ENDIAN 1
1148 return 0x11223344;
1149#else
1150 union
1151 {
1152 uint8_t c[4];
1153 uint32_t u;
1154 } u = { 0x11, 0x22, 0x33, 0x44 };
1155 return u.u;
1156#endif
1157}
1158
1159ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1160ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1161ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1162ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1163
1164#if ECB_GCC_VERSION(3,0) || ECB_C99
1165 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1166#else
1167 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1168#endif
1169
1170#if ECB_CPP
1171 template<typename T>
1172 static inline T ecb_div_rd (T val, T div)
1173 {
1174 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1175 }
1176 template<typename T>
1177 static inline T ecb_div_ru (T val, T div)
1178 {
1179 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1180 }
1181#else
1182 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1183 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1184#endif
1185
1186#if ecb_cplusplus_does_not_suck
1187 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1188 template<typename T, int N>
1189 static inline int ecb_array_length (const T (&arr)[N])
1190 {
1191 return N;
1192 }
1193#else
1194 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1195#endif
1196
1197ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1198ecb_function_ ecb_const uint32_t
1199ecb_binary16_to_binary32 (uint32_t x)
1200{
1201 unsigned int s = (x & 0x8000) << (31 - 15);
1202 int e = (x >> 10) & 0x001f;
1203 unsigned int m = x & 0x03ff;
1204
1205 if (ecb_expect_false (e == 31))
1206 /* infinity or NaN */
1207 e = 255 - (127 - 15);
1208 else if (ecb_expect_false (!e))
1209 {
1210 if (ecb_expect_true (!m))
1211 /* zero, handled by code below by forcing e to 0 */
1212 e = 0 - (127 - 15);
1213 else
1214 {
1215 /* subnormal, renormalise */
1216 unsigned int s = 10 - ecb_ld32 (m);
1217
1218 m = (m << s) & 0x3ff; /* mask implicit bit */
1219 e -= s - 1;
1220 }
1221 }
1222
1223 /* e and m now are normalised, or zero, (or inf or nan) */
1224 e += 127 - 15;
1225
1226 return s | (e << 23) | (m << (23 - 10));
1227}
1228
1229ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1230ecb_function_ ecb_const uint16_t
1231ecb_binary32_to_binary16 (uint32_t x)
1232{
1233 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1234 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1235 unsigned int m = x & 0x007fffff;
1236
1237 x &= 0x7fffffff;
1238
1239 /* if it's within range of binary16 normals, use fast path */
1240 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1241 {
1242 /* mantissa round-to-even */
1243 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1244
1245 /* handle overflow */
1246 if (ecb_expect_false (m >= 0x00800000))
1247 {
1248 m >>= 1;
1249 e += 1;
1250 }
1251
1252 return s | (e << 10) | (m >> (23 - 10));
1253 }
1254
1255 /* handle large numbers and infinity */
1256 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1257 return s | 0x7c00;
1258
1259 /* handle zero, subnormals and small numbers */
1260 if (ecb_expect_true (x < 0x38800000))
1261 {
1262 /* zero */
1263 if (ecb_expect_true (!x))
1264 return s;
1265
1266 /* handle subnormals */
1267
1268 /* too small, will be zero */
1269 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1270 return s;
1271
1272 m |= 0x00800000; /* make implicit bit explicit */
1273
1274 /* very tricky - we need to round to the nearest e (+10) bit value */
1275 {
1276 unsigned int bits = 14 - e;
1277 unsigned int half = (1 << (bits - 1)) - 1;
1278 unsigned int even = (m >> bits) & 1;
1279
1280 /* if this overflows, we will end up with a normalised number */
1281 m = (m + half + even) >> bits;
1282 }
1283
1284 return s | m;
1285 }
1286
1287 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1288 m >>= 13;
1289
1290 return s | 0x7c00 | m | !m;
1291}
1292
1293/*******************************************************************************/
1294/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1295
1296/* basically, everything uses "ieee pure-endian" floating point numbers */
1297/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1298#if 0 \
1299 || __i386 || __i386__ \
1300 || ECB_GCC_AMD64 \
1301 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1302 || defined __s390__ || defined __s390x__ \
1303 || defined __mips__ \
1304 || defined __alpha__ \
1305 || defined __hppa__ \
1306 || defined __ia64__ \
1307 || defined __m68k__ \
1308 || defined __m88k__ \
1309 || defined __sh__ \
1310 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1311 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1312 || defined __aarch64__
1313 #define ECB_STDFP 1
1314 #include <string.h> /* for memcpy */
1315#else
1316 #define ECB_STDFP 0
1317#endif
1318
1319#ifndef ECB_NO_LIBM
1320
1321 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1322
1323 /* only the oldest of old doesn't have this one. solaris. */
1324 #ifdef INFINITY
1325 #define ECB_INFINITY INFINITY
1326 #else
1327 #define ECB_INFINITY HUGE_VAL
1328 #endif
1329
1330 #ifdef NAN
1331 #define ECB_NAN NAN
1332 #else
1333 #define ECB_NAN ECB_INFINITY
1334 #endif
1335
1336 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1337 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1338 #define ecb_frexpf(x,e) frexpf ((x), (e))
1339 #else
1340 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1341 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1342 #endif
1343
1344 /* convert a float to ieee single/binary32 */
1345 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1346 ecb_function_ ecb_const uint32_t
1347 ecb_float_to_binary32 (float x)
1348 {
1349 uint32_t r;
1350
1351 #if ECB_STDFP
1352 memcpy (&r, &x, 4);
1353 #else
1354 /* slow emulation, works for anything but -0 */
1355 uint32_t m;
1356 int e;
1357
1358 if (x == 0e0f ) return 0x00000000U;
1359 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1360 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1361 if (x != x ) return 0x7fbfffffU;
1362
1363 m = ecb_frexpf (x, &e) * 0x1000000U;
1364
1365 r = m & 0x80000000U;
1366
1367 if (r)
1368 m = -m;
1369
1370 if (e <= -126)
1371 {
1372 m &= 0xffffffU;
1373 m >>= (-125 - e);
1374 e = -126;
1375 }
1376
1377 r |= (e + 126) << 23;
1378 r |= m & 0x7fffffU;
1379 #endif
1380
1381 return r;
1382 }
1383
1384 /* converts an ieee single/binary32 to a float */
1385 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1386 ecb_function_ ecb_const float
1387 ecb_binary32_to_float (uint32_t x)
1388 {
1389 float r;
1390
1391 #if ECB_STDFP
1392 memcpy (&r, &x, 4);
1393 #else
1394 /* emulation, only works for normals and subnormals and +0 */
1395 int neg = x >> 31;
1396 int e = (x >> 23) & 0xffU;
1397
1398 x &= 0x7fffffU;
1399
1400 if (e)
1401 x |= 0x800000U;
1402 else
1403 e = 1;
1404
1405 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1406 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1407
1408 r = neg ? -r : r;
1409 #endif
1410
1411 return r;
1412 }
1413
1414 /* convert a double to ieee double/binary64 */
1415 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1416 ecb_function_ ecb_const uint64_t
1417 ecb_double_to_binary64 (double x)
1418 {
1419 uint64_t r;
1420
1421 #if ECB_STDFP
1422 memcpy (&r, &x, 8);
1423 #else
1424 /* slow emulation, works for anything but -0 */
1425 uint64_t m;
1426 int e;
1427
1428 if (x == 0e0 ) return 0x0000000000000000U;
1429 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1430 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1431 if (x != x ) return 0X7ff7ffffffffffffU;
1432
1433 m = frexp (x, &e) * 0x20000000000000U;
1434
1435 r = m & 0x8000000000000000;;
1436
1437 if (r)
1438 m = -m;
1439
1440 if (e <= -1022)
1441 {
1442 m &= 0x1fffffffffffffU;
1443 m >>= (-1021 - e);
1444 e = -1022;
1445 }
1446
1447 r |= ((uint64_t)(e + 1022)) << 52;
1448 r |= m & 0xfffffffffffffU;
1449 #endif
1450
1451 return r;
1452 }
1453
1454 /* converts an ieee double/binary64 to a double */
1455 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1456 ecb_function_ ecb_const double
1457 ecb_binary64_to_double (uint64_t x)
1458 {
1459 double r;
1460
1461 #if ECB_STDFP
1462 memcpy (&r, &x, 8);
1463 #else
1464 /* emulation, only works for normals and subnormals and +0 */
1465 int neg = x >> 63;
1466 int e = (x >> 52) & 0x7ffU;
1467
1468 x &= 0xfffffffffffffU;
1469
1470 if (e)
1471 x |= 0x10000000000000U;
1472 else
1473 e = 1;
1474
1475 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1476 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1477
1478 r = neg ? -r : r;
1479 #endif
1480
1481 return r;
1482 }
1483
1484 /* convert a float to ieee half/binary16 */
1485 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1486 ecb_function_ ecb_const uint16_t
1487 ecb_float_to_binary16 (float x)
1488 {
1489 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1490 }
1491
1492 /* convert an ieee half/binary16 to float */
1493 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1494 ecb_function_ ecb_const float
1495 ecb_binary16_to_float (uint16_t x)
1496 {
1497 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1498 }
1499
1500#endif
1501
1502#endif
1503
1504/* ECB.H END */
1505
1506#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1507/* if your architecture doesn't need memory fences, e.g. because it is
1508 * single-cpu/core, or if you use libev in a project that doesn't use libev
1509 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1510 * libev, in which cases the memory fences become nops.
1511 * alternatively, you can remove this #error and link against libpthread,
1512 * which will then provide the memory fences.
1513 */
1514# error "memory fences not defined for your architecture, please report"
1515#endif
1516
1517#ifndef ECB_MEMORY_FENCE
1518# define ECB_MEMORY_FENCE do { } while (0)
1519# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1520# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1521#endif
1522
1523#define expect_false(cond) ecb_expect_false (cond)
1524#define expect_true(cond) ecb_expect_true (cond)
1525#define noinline ecb_noinline
1526
1527#define inline_size ecb_inline
1528
1529#if EV_FEATURE_CODE
1530# define inline_speed ecb_inline
1531#else
1532# define inline_speed noinline static
1533#endif
1534
1535#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1536
1537#if EV_MINPRI == EV_MAXPRI
1538# define ABSPRI(w) (((W)w), 0)
1539#else
1540# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1541#endif
1542
1543#define EMPTY /* required for microsofts broken pseudo-c compiler */
1544#define EMPTY2(a,b) /* used to suppress some warnings */
1545
1546typedef ev_watcher *W;
1547typedef ev_watcher_list *WL;
1548typedef ev_watcher_time *WT;
1549
1550#define ev_active(w) ((W)(w))->active
1551#define ev_at(w) ((WT)(w))->at
1552
1553#if EV_USE_REALTIME
1554/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1555/* giving it a reasonably high chance of working on typical architectures */
1556static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1557#endif
1558
1559#if EV_USE_MONOTONIC
1560static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1561#endif
1562
1563#ifndef EV_FD_TO_WIN32_HANDLE
1564# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1565#endif
1566#ifndef EV_WIN32_HANDLE_TO_FD
1567# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1568#endif
1569#ifndef EV_WIN32_CLOSE_FD
1570# define EV_WIN32_CLOSE_FD(fd) close (fd)
1571#endif
1572
1573#ifdef _WIN32
1574# include "ev_win32.c"
1575#endif
1576
1577/*****************************************************************************/
1578
1579/* define a suitable floor function (only used by periodics atm) */
1580
1581#if EV_USE_FLOOR
1582# include <math.h>
1583# define ev_floor(v) floor (v)
1584#else
1585
1586#include <float.h>
1587
1588/* a floor() replacement function, should be independent of ev_tstamp type */
1589noinline
1590static ev_tstamp
1591ev_floor (ev_tstamp v)
1592{
1593 /* the choice of shift factor is not terribly important */
1594#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1595 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1596#else
1597 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1598#endif
1599
1600 /* argument too large for an unsigned long? */
1601 if (expect_false (v >= shift))
1602 {
1603 ev_tstamp f;
1604
1605 if (v == v - 1.)
1606 return v; /* very large number */
1607
1608 f = shift * ev_floor (v * (1. / shift));
1609 return f + ev_floor (v - f);
1610 }
1611
1612 /* special treatment for negative args? */
1613 if (expect_false (v < 0.))
1614 {
1615 ev_tstamp f = -ev_floor (-v);
1616
1617 return f - (f == v ? 0 : 1);
1618 }
1619
1620 /* fits into an unsigned long */
1621 return (unsigned long)v;
1622}
1623
1624#endif
1625
1626/*****************************************************************************/
1627
1628#ifdef __linux
1629# include <sys/utsname.h>
1630#endif
1631
1632noinline ecb_cold
1633static unsigned int
1634ev_linux_version (void)
1635{
1636#ifdef __linux
1637 unsigned int v = 0;
1638 struct utsname buf;
1639 int i;
1640 char *p = buf.release;
1641
1642 if (uname (&buf))
1643 return 0;
1644
1645 for (i = 3+1; --i; )
1646 {
1647 unsigned int c = 0;
1648
1649 for (;;)
1650 {
1651 if (*p >= '0' && *p <= '9')
1652 c = c * 10 + *p++ - '0';
1653 else
1654 {
1655 p += *p == '.';
1656 break;
1657 }
1658 }
1659
1660 v = (v << 8) | c;
1661 }
1662
1663 return v;
1664#else
1665 return 0;
1666#endif
1667}
1668
1669/*****************************************************************************/
1670
1671#if EV_AVOID_STDIO
1672noinline ecb_cold
1673static void
1674ev_printerr (const char *msg)
1675{
1676 write (STDERR_FILENO, msg, strlen (msg));
1677}
1678#endif
1679
1680static void (*syserr_cb)(const char *msg) EV_THROW;
1681
1682ecb_cold
1683void
1684ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
1685{
1686 syserr_cb = cb;
1687}
1688
1689noinline ecb_cold
1690static void
1691ev_syserr (const char *msg)
1692{
1693 if (!msg)
1694 msg = "(libev) system error";
1695
1696 if (syserr_cb)
1697 syserr_cb (msg);
1698 else
1699 {
1700#if EV_AVOID_STDIO
1701 ev_printerr (msg);
1702 ev_printerr (": ");
1703 ev_printerr (strerror (errno));
1704 ev_printerr ("\n");
1705#else
1706 perror (msg);
1707#endif
1708 abort ();
1709 }
1710}
1711
1712static void *
1713ev_realloc_emul (void *ptr, long size) EV_THROW
1714{
1715 /* some systems, notably openbsd and darwin, fail to properly
1716 * implement realloc (x, 0) (as required by both ansi c-89 and
1717 * the single unix specification, so work around them here.
1718 * recently, also (at least) fedora and debian started breaking it,
1719 * despite documenting it otherwise.
1720 */
1721
1722 if (size)
1723 return realloc (ptr, size);
1724
1725 free (ptr);
1726 return 0;
1727}
1728
1729static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
1730
1731ecb_cold
1732void
1733ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
1734{
1735 alloc = cb;
1736}
1737
1738inline_speed void *
1739ev_realloc (void *ptr, long size)
1740{
1741 ptr = alloc (ptr, size);
1742
1743 if (!ptr && size)
1744 {
1745#if EV_AVOID_STDIO
1746 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1747#else
1748 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1749#endif
1750 abort ();
1751 }
1752
1753 return ptr;
1754}
1755
1756#define ev_malloc(size) ev_realloc (0, (size))
1757#define ev_free(ptr) ev_realloc ((ptr), 0)
1758
1759/*****************************************************************************/
1760
1761/* set in reify when reification needed */
1762#define EV_ANFD_REIFY 1
1763
1764/* file descriptor info structure */
144typedef struct 1765typedef struct
145{ 1766{
146 struct ev_watcher_list *head; 1767 WL head;
147 unsigned char events; 1768 unsigned char events; /* the events watched for */
1769 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1770 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
148 unsigned char reify; 1771 unsigned char unused;
1772#if EV_USE_EPOLL
1773 unsigned int egen; /* generation counter to counter epoll bugs */
1774#endif
1775#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1776 SOCKET handle;
1777#endif
1778#if EV_USE_IOCP
1779 OVERLAPPED or, ow;
1780#endif
149} ANFD; 1781} ANFD;
150 1782
1783/* stores the pending event set for a given watcher */
151typedef struct 1784typedef struct
152{ 1785{
153 W w; 1786 W w;
154 int events; 1787 int events; /* the pending event set for the given watcher */
155} ANPENDING; 1788} ANPENDING;
156 1789
1790#if EV_USE_INOTIFY
1791/* hash table entry per inotify-id */
1792typedef struct
1793{
1794 WL head;
1795} ANFS;
1796#endif
1797
1798/* Heap Entry */
1799#if EV_HEAP_CACHE_AT
1800 /* a heap element */
1801 typedef struct {
1802 ev_tstamp at;
1803 WT w;
1804 } ANHE;
1805
1806 #define ANHE_w(he) (he).w /* access watcher, read-write */
1807 #define ANHE_at(he) (he).at /* access cached at, read-only */
1808 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1809#else
1810 /* a heap element */
1811 typedef WT ANHE;
1812
1813 #define ANHE_w(he) (he)
1814 #define ANHE_at(he) (he)->at
1815 #define ANHE_at_cache(he)
1816#endif
1817
157#if EV_MULTIPLICITY 1818#if EV_MULTIPLICITY
158 1819
159struct ev_loop 1820 struct ev_loop
160{ 1821 {
1822 ev_tstamp ev_rt_now;
1823 #define ev_rt_now ((loop)->ev_rt_now)
161# define VAR(name,decl) decl; 1824 #define VAR(name,decl) decl;
162# include "ev_vars.h" 1825 #include "ev_vars.h"
163};
164# undef VAR 1826 #undef VAR
1827 };
165# include "ev_wrap.h" 1828 #include "ev_wrap.h"
166 1829
167#else 1830 static struct ev_loop default_loop_struct;
1831 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
168 1832
1833#else
1834
1835 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
169# define VAR(name,decl) static decl; 1836 #define VAR(name,decl) static decl;
170# include "ev_vars.h" 1837 #include "ev_vars.h"
171# undef VAR 1838 #undef VAR
172 1839
1840 static int ev_default_loop_ptr;
1841
173#endif 1842#endif
1843
1844#if EV_FEATURE_API
1845# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1846# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1847# define EV_INVOKE_PENDING invoke_cb (EV_A)
1848#else
1849# define EV_RELEASE_CB (void)0
1850# define EV_ACQUIRE_CB (void)0
1851# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1852#endif
1853
1854#define EVBREAK_RECURSE 0x80
174 1855
175/*****************************************************************************/ 1856/*****************************************************************************/
176 1857
177inline ev_tstamp 1858#ifndef EV_HAVE_EV_TIME
1859ev_tstamp
178ev_time (void) 1860ev_time (void) EV_THROW
179{ 1861{
180#if EV_USE_REALTIME 1862#if EV_USE_REALTIME
1863 if (expect_true (have_realtime))
1864 {
181 struct timespec ts; 1865 struct timespec ts;
182 clock_gettime (CLOCK_REALTIME, &ts); 1866 clock_gettime (CLOCK_REALTIME, &ts);
183 return ts.tv_sec + ts.tv_nsec * 1e-9; 1867 return ts.tv_sec + ts.tv_nsec * 1e-9;
184#else 1868 }
1869#endif
1870
185 struct timeval tv; 1871 struct timeval tv;
186 gettimeofday (&tv, 0); 1872 gettimeofday (&tv, 0);
187 return tv.tv_sec + tv.tv_usec * 1e-6; 1873 return tv.tv_sec + tv.tv_usec * 1e-6;
188#endif
189} 1874}
1875#endif
190 1876
191inline ev_tstamp 1877inline_size ev_tstamp
192get_clock (void) 1878get_clock (void)
193{ 1879{
194#if EV_USE_MONOTONIC 1880#if EV_USE_MONOTONIC
195 if (expect_true (have_monotonic)) 1881 if (expect_true (have_monotonic))
196 { 1882 {
201#endif 1887#endif
202 1888
203 return ev_time (); 1889 return ev_time ();
204} 1890}
205 1891
1892#if EV_MULTIPLICITY
206ev_tstamp 1893ev_tstamp
207ev_now (EV_P) 1894ev_now (EV_P) EV_THROW
208{ 1895{
209 return rt_now; 1896 return ev_rt_now;
210} 1897}
1898#endif
211 1899
212#define array_roundsize(base,n) ((n) | 4 & ~3) 1900void
213 1901ev_sleep (ev_tstamp delay) EV_THROW
214#define array_needsize(base,cur,cnt,init) \ 1902{
215 if (expect_false ((cnt) > cur)) \ 1903 if (delay > 0.)
216 { \
217 int newcnt = cur; \
218 do \
219 { \
220 newcnt = array_roundsize (base, newcnt << 1); \
221 } \
222 while ((cnt) > newcnt); \
223 \
224 base = realloc (base, sizeof (*base) * (newcnt)); \
225 init (base + cur, newcnt - cur); \
226 cur = newcnt; \
227 } 1904 {
1905#if EV_USE_NANOSLEEP
1906 struct timespec ts;
1907
1908 EV_TS_SET (ts, delay);
1909 nanosleep (&ts, 0);
1910#elif defined _WIN32
1911 /* maybe this should round up, as ms is very low resolution */
1912 /* compared to select (µs) or nanosleep (ns) */
1913 Sleep ((unsigned long)(delay * 1e3));
1914#else
1915 struct timeval tv;
1916
1917 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1918 /* something not guaranteed by newer posix versions, but guaranteed */
1919 /* by older ones */
1920 EV_TV_SET (tv, delay);
1921 select (0, 0, 0, 0, &tv);
1922#endif
1923 }
1924}
228 1925
229/*****************************************************************************/ 1926/*****************************************************************************/
230 1927
1928#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1929
1930/* find a suitable new size for the given array, */
1931/* hopefully by rounding to a nice-to-malloc size */
1932inline_size int
1933array_nextsize (int elem, int cur, int cnt)
1934{
1935 int ncur = cur + 1;
1936
1937 do
1938 ncur <<= 1;
1939 while (cnt > ncur);
1940
1941 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1942 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1943 {
1944 ncur *= elem;
1945 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1946 ncur = ncur - sizeof (void *) * 4;
1947 ncur /= elem;
1948 }
1949
1950 return ncur;
1951}
1952
1953noinline ecb_cold
1954static void *
1955array_realloc (int elem, void *base, int *cur, int cnt)
1956{
1957 *cur = array_nextsize (elem, *cur, cnt);
1958 return ev_realloc (base, elem * *cur);
1959}
1960
1961#define array_init_zero(base,count) \
1962 memset ((void *)(base), 0, sizeof (*(base)) * (count))
1963
1964#define array_needsize(type,base,cur,cnt,init) \
1965 if (expect_false ((cnt) > (cur))) \
1966 { \
1967 ecb_unused int ocur_ = (cur); \
1968 (base) = (type *)array_realloc \
1969 (sizeof (type), (base), &(cur), (cnt)); \
1970 init ((base) + (ocur_), (cur) - ocur_); \
1971 }
1972
1973#if 0
1974#define array_slim(type,stem) \
1975 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1976 { \
1977 stem ## max = array_roundsize (stem ## cnt >> 1); \
1978 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1979 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1980 }
1981#endif
1982
1983#define array_free(stem, idx) \
1984 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1985
1986/*****************************************************************************/
1987
1988/* dummy callback for pending events */
1989noinline
231static void 1990static void
232anfds_init (ANFD *base, int count) 1991pendingcb (EV_P_ ev_prepare *w, int revents)
233{ 1992{
234 while (count--) 1993}
235 {
236 base->head = 0;
237 base->events = EV_NONE;
238 base->reify = 0;
239 1994
240 ++base; 1995noinline
1996void
1997ev_feed_event (EV_P_ void *w, int revents) EV_THROW
1998{
1999 W w_ = (W)w;
2000 int pri = ABSPRI (w_);
2001
2002 if (expect_false (w_->pending))
2003 pendings [pri][w_->pending - 1].events |= revents;
2004 else
241 } 2005 {
242} 2006 w_->pending = ++pendingcnt [pri];
243 2007 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
244static void 2008 pendings [pri][w_->pending - 1].w = w_;
245event (EV_P_ W w, int events)
246{
247 if (w->pending)
248 {
249 pendings [ABSPRI (w)][w->pending - 1].events |= events; 2009 pendings [pri][w_->pending - 1].events = revents;
250 return;
251 } 2010 }
252 2011
253 w->pending = ++pendingcnt [ABSPRI (w)]; 2012 pendingpri = NUMPRI - 1;
254 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
255 pendings [ABSPRI (w)][w->pending - 1].w = w;
256 pendings [ABSPRI (w)][w->pending - 1].events = events;
257} 2013}
258 2014
259static void 2015inline_speed void
2016feed_reverse (EV_P_ W w)
2017{
2018 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
2019 rfeeds [rfeedcnt++] = w;
2020}
2021
2022inline_size void
2023feed_reverse_done (EV_P_ int revents)
2024{
2025 do
2026 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2027 while (rfeedcnt);
2028}
2029
2030inline_speed void
260queue_events (EV_P_ W *events, int eventcnt, int type) 2031queue_events (EV_P_ W *events, int eventcnt, int type)
261{ 2032{
262 int i; 2033 int i;
263 2034
264 for (i = 0; i < eventcnt; ++i) 2035 for (i = 0; i < eventcnt; ++i)
265 event (EV_A_ events [i], type); 2036 ev_feed_event (EV_A_ events [i], type);
266} 2037}
267 2038
268static void 2039/*****************************************************************************/
2040
2041inline_speed void
269fd_event (EV_P_ int fd, int events) 2042fd_event_nocheck (EV_P_ int fd, int revents)
270{ 2043{
271 ANFD *anfd = anfds + fd; 2044 ANFD *anfd = anfds + fd;
272 struct ev_io *w; 2045 ev_io *w;
273 2046
274 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 2047 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
275 { 2048 {
276 int ev = w->events & events; 2049 int ev = w->events & revents;
277 2050
278 if (ev) 2051 if (ev)
279 event (EV_A_ (W)w, ev); 2052 ev_feed_event (EV_A_ (W)w, ev);
280 } 2053 }
281} 2054}
282 2055
283/*****************************************************************************/ 2056/* do not submit kernel events for fds that have reify set */
2057/* because that means they changed while we were polling for new events */
2058inline_speed void
2059fd_event (EV_P_ int fd, int revents)
2060{
2061 ANFD *anfd = anfds + fd;
284 2062
285static void 2063 if (expect_true (!anfd->reify))
2064 fd_event_nocheck (EV_A_ fd, revents);
2065}
2066
2067void
2068ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
2069{
2070 if (fd >= 0 && fd < anfdmax)
2071 fd_event_nocheck (EV_A_ fd, revents);
2072}
2073
2074/* make sure the external fd watch events are in-sync */
2075/* with the kernel/libev internal state */
2076inline_size void
286fd_reify (EV_P) 2077fd_reify (EV_P)
287{ 2078{
288 int i; 2079 int i;
289 2080
2081#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
290 for (i = 0; i < fdchangecnt; ++i) 2082 for (i = 0; i < fdchangecnt; ++i)
291 { 2083 {
292 int fd = fdchanges [i]; 2084 int fd = fdchanges [i];
293 ANFD *anfd = anfds + fd; 2085 ANFD *anfd = anfds + fd;
294 struct ev_io *w;
295 2086
296 int events = 0; 2087 if (anfd->reify & EV__IOFDSET && anfd->head)
297
298 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
299 events |= w->events;
300
301 anfd->reify = 0;
302
303 if (anfd->events != events)
304 { 2088 {
2089 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2090
2091 if (handle != anfd->handle)
2092 {
2093 unsigned long arg;
2094
2095 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2096
2097 /* handle changed, but fd didn't - we need to do it in two steps */
305 method_modify (EV_A_ fd, anfd->events, events); 2098 backend_modify (EV_A_ fd, anfd->events, 0);
306 anfd->events = events; 2099 anfd->events = 0;
2100 anfd->handle = handle;
2101 }
307 } 2102 }
308 } 2103 }
2104#endif
2105
2106 for (i = 0; i < fdchangecnt; ++i)
2107 {
2108 int fd = fdchanges [i];
2109 ANFD *anfd = anfds + fd;
2110 ev_io *w;
2111
2112 unsigned char o_events = anfd->events;
2113 unsigned char o_reify = anfd->reify;
2114
2115 anfd->reify = 0;
2116
2117 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
2118 {
2119 anfd->events = 0;
2120
2121 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2122 anfd->events |= (unsigned char)w->events;
2123
2124 if (o_events != anfd->events)
2125 o_reify = EV__IOFDSET; /* actually |= */
2126 }
2127
2128 if (o_reify & EV__IOFDSET)
2129 backend_modify (EV_A_ fd, o_events, anfd->events);
2130 }
309 2131
310 fdchangecnt = 0; 2132 fdchangecnt = 0;
311} 2133}
312 2134
313static void 2135/* something about the given fd changed */
2136inline_size
2137void
314fd_change (EV_P_ int fd) 2138fd_change (EV_P_ int fd, int flags)
315{ 2139{
316 if (anfds [fd].reify || fdchangecnt < 0) 2140 unsigned char reify = anfds [fd].reify;
317 return;
318
319 anfds [fd].reify = 1; 2141 anfds [fd].reify |= flags;
320 2142
2143 if (expect_true (!reify))
2144 {
321 ++fdchangecnt; 2145 ++fdchangecnt;
322 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 2146 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
323 fdchanges [fdchangecnt - 1] = fd; 2147 fdchanges [fdchangecnt - 1] = fd;
2148 }
324} 2149}
325 2150
326static void 2151/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2152inline_speed ecb_cold void
327fd_kill (EV_P_ int fd) 2153fd_kill (EV_P_ int fd)
328{ 2154{
329 struct ev_io *w; 2155 ev_io *w;
330 2156
331 while ((w = (struct ev_io *)anfds [fd].head)) 2157 while ((w = (ev_io *)anfds [fd].head))
332 { 2158 {
333 ev_io_stop (EV_A_ w); 2159 ev_io_stop (EV_A_ w);
334 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2160 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
335 } 2161 }
2162}
2163
2164/* check whether the given fd is actually valid, for error recovery */
2165inline_size ecb_cold int
2166fd_valid (int fd)
2167{
2168#ifdef _WIN32
2169 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
2170#else
2171 return fcntl (fd, F_GETFD) != -1;
2172#endif
336} 2173}
337 2174
338/* called on EBADF to verify fds */ 2175/* called on EBADF to verify fds */
2176noinline ecb_cold
339static void 2177static void
340fd_ebadf (EV_P) 2178fd_ebadf (EV_P)
341{ 2179{
342 int fd; 2180 int fd;
343 2181
344 for (fd = 0; fd < anfdmax; ++fd) 2182 for (fd = 0; fd < anfdmax; ++fd)
345 if (anfds [fd].events) 2183 if (anfds [fd].events)
346 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 2184 if (!fd_valid (fd) && errno == EBADF)
347 fd_kill (EV_A_ fd); 2185 fd_kill (EV_A_ fd);
348} 2186}
349 2187
350/* called on ENOMEM in select/poll to kill some fds and retry */ 2188/* called on ENOMEM in select/poll to kill some fds and retry */
2189noinline ecb_cold
351static void 2190static void
352fd_enomem (EV_P) 2191fd_enomem (EV_P)
353{ 2192{
354 int fd = anfdmax; 2193 int fd;
355 2194
356 while (fd--) 2195 for (fd = anfdmax; fd--; )
357 if (anfds [fd].events) 2196 if (anfds [fd].events)
358 { 2197 {
359 close (fd);
360 fd_kill (EV_A_ fd); 2198 fd_kill (EV_A_ fd);
361 return; 2199 break;
362 } 2200 }
363} 2201}
364 2202
365/* susually called after fork if method needs to re-arm all fds from scratch */ 2203/* usually called after fork if backend needs to re-arm all fds from scratch */
2204noinline
366static void 2205static void
367fd_rearm_all (EV_P) 2206fd_rearm_all (EV_P)
368{ 2207{
369 int fd; 2208 int fd;
370 2209
371 /* this should be highly optimised to not do anything but set a flag */
372 for (fd = 0; fd < anfdmax; ++fd) 2210 for (fd = 0; fd < anfdmax; ++fd)
373 if (anfds [fd].events) 2211 if (anfds [fd].events)
374 { 2212 {
375 anfds [fd].events = 0; 2213 anfds [fd].events = 0;
376 fd_change (EV_A_ fd); 2214 anfds [fd].emask = 0;
2215 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
377 } 2216 }
378} 2217}
379 2218
2219/* used to prepare libev internal fd's */
2220/* this is not fork-safe */
2221inline_speed void
2222fd_intern (int fd)
2223{
2224#ifdef _WIN32
2225 unsigned long arg = 1;
2226 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2227#else
2228 fcntl (fd, F_SETFD, FD_CLOEXEC);
2229 fcntl (fd, F_SETFL, O_NONBLOCK);
2230#endif
2231}
2232
380/*****************************************************************************/ 2233/*****************************************************************************/
381 2234
2235/*
2236 * the heap functions want a real array index. array index 0 is guaranteed to not
2237 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2238 * the branching factor of the d-tree.
2239 */
2240
2241/*
2242 * at the moment we allow libev the luxury of two heaps,
2243 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2244 * which is more cache-efficient.
2245 * the difference is about 5% with 50000+ watchers.
2246 */
2247#if EV_USE_4HEAP
2248
2249#define DHEAP 4
2250#define HEAP0 (DHEAP - 1) /* index of first element in heap */
2251#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2252#define UPHEAP_DONE(p,k) ((p) == (k))
2253
2254/* away from the root */
2255inline_speed void
2256downheap (ANHE *heap, int N, int k)
2257{
2258 ANHE he = heap [k];
2259 ANHE *E = heap + N + HEAP0;
2260
2261 for (;;)
2262 {
2263 ev_tstamp minat;
2264 ANHE *minpos;
2265 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2266
2267 /* find minimum child */
2268 if (expect_true (pos + DHEAP - 1 < E))
2269 {
2270 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2271 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2272 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2273 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2274 }
2275 else if (pos < E)
2276 {
2277 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2278 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2279 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2280 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2281 }
2282 else
2283 break;
2284
2285 if (ANHE_at (he) <= minat)
2286 break;
2287
2288 heap [k] = *minpos;
2289 ev_active (ANHE_w (*minpos)) = k;
2290
2291 k = minpos - heap;
2292 }
2293
2294 heap [k] = he;
2295 ev_active (ANHE_w (he)) = k;
2296}
2297
2298#else /* 4HEAP */
2299
2300#define HEAP0 1
2301#define HPARENT(k) ((k) >> 1)
2302#define UPHEAP_DONE(p,k) (!(p))
2303
2304/* away from the root */
2305inline_speed void
2306downheap (ANHE *heap, int N, int k)
2307{
2308 ANHE he = heap [k];
2309
2310 for (;;)
2311 {
2312 int c = k << 1;
2313
2314 if (c >= N + HEAP0)
2315 break;
2316
2317 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2318 ? 1 : 0;
2319
2320 if (ANHE_at (he) <= ANHE_at (heap [c]))
2321 break;
2322
2323 heap [k] = heap [c];
2324 ev_active (ANHE_w (heap [k])) = k;
2325
2326 k = c;
2327 }
2328
2329 heap [k] = he;
2330 ev_active (ANHE_w (he)) = k;
2331}
2332#endif
2333
2334/* towards the root */
2335inline_speed void
2336upheap (ANHE *heap, int k)
2337{
2338 ANHE he = heap [k];
2339
2340 for (;;)
2341 {
2342 int p = HPARENT (k);
2343
2344 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2345 break;
2346
2347 heap [k] = heap [p];
2348 ev_active (ANHE_w (heap [k])) = k;
2349 k = p;
2350 }
2351
2352 heap [k] = he;
2353 ev_active (ANHE_w (he)) = k;
2354}
2355
2356/* move an element suitably so it is in a correct place */
2357inline_size void
2358adjustheap (ANHE *heap, int N, int k)
2359{
2360 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2361 upheap (heap, k);
2362 else
2363 downheap (heap, N, k);
2364}
2365
2366/* rebuild the heap: this function is used only once and executed rarely */
2367inline_size void
2368reheap (ANHE *heap, int N)
2369{
2370 int i;
2371
2372 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2373 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2374 for (i = 0; i < N; ++i)
2375 upheap (heap, i + HEAP0);
2376}
2377
2378/*****************************************************************************/
2379
2380/* associate signal watchers to a signal signal */
2381typedef struct
2382{
2383 EV_ATOMIC_T pending;
2384#if EV_MULTIPLICITY
2385 EV_P;
2386#endif
2387 WL head;
2388} ANSIG;
2389
2390static ANSIG signals [EV_NSIG - 1];
2391
2392/*****************************************************************************/
2393
2394#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2395
2396noinline ecb_cold
382static void 2397static void
383upheap (WT *heap, int k) 2398evpipe_init (EV_P)
384{ 2399{
385 WT w = heap [k]; 2400 if (!ev_is_active (&pipe_w))
386
387 while (k && heap [k >> 1]->at > w->at)
388 {
389 heap [k] = heap [k >> 1];
390 heap [k]->active = k + 1;
391 k >>= 1;
392 } 2401 {
2402 int fds [2];
393 2403
394 heap [k] = w; 2404# if EV_USE_EVENTFD
395 heap [k]->active = k + 1; 2405 fds [0] = -1;
2406 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2407 if (fds [1] < 0 && errno == EINVAL)
2408 fds [1] = eventfd (0, 0);
396 2409
397} 2410 if (fds [1] < 0)
2411# endif
2412 {
2413 while (pipe (fds))
2414 ev_syserr ("(libev) error creating signal/async pipe");
398 2415
2416 fd_intern (fds [0]);
2417 }
2418
2419 evpipe [0] = fds [0];
2420
2421 if (evpipe [1] < 0)
2422 evpipe [1] = fds [1]; /* first call, set write fd */
2423 else
2424 {
2425 /* on subsequent calls, do not change evpipe [1] */
2426 /* so that evpipe_write can always rely on its value. */
2427 /* this branch does not do anything sensible on windows, */
2428 /* so must not be executed on windows */
2429
2430 dup2 (fds [1], evpipe [1]);
2431 close (fds [1]);
2432 }
2433
2434 fd_intern (evpipe [1]);
2435
2436 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2437 ev_io_start (EV_A_ &pipe_w);
2438 ev_unref (EV_A); /* watcher should not keep loop alive */
2439 }
2440}
2441
2442inline_speed void
2443evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2444{
2445 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2446
2447 if (expect_true (*flag))
2448 return;
2449
2450 *flag = 1;
2451 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2452
2453 pipe_write_skipped = 1;
2454
2455 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2456
2457 if (pipe_write_wanted)
2458 {
2459 int old_errno;
2460
2461 pipe_write_skipped = 0;
2462 ECB_MEMORY_FENCE_RELEASE;
2463
2464 old_errno = errno; /* save errno because write will clobber it */
2465
2466#if EV_USE_EVENTFD
2467 if (evpipe [0] < 0)
2468 {
2469 uint64_t counter = 1;
2470 write (evpipe [1], &counter, sizeof (uint64_t));
2471 }
2472 else
2473#endif
2474 {
2475#ifdef _WIN32
2476 WSABUF buf;
2477 DWORD sent;
2478 buf.buf = &buf;
2479 buf.len = 1;
2480 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2481#else
2482 write (evpipe [1], &(evpipe [1]), 1);
2483#endif
2484 }
2485
2486 errno = old_errno;
2487 }
2488}
2489
2490/* called whenever the libev signal pipe */
2491/* got some events (signal, async) */
399static void 2492static void
400downheap (WT *heap, int N, int k) 2493pipecb (EV_P_ ev_io *iow, int revents)
401{ 2494{
402 WT w = heap [k]; 2495 int i;
403 2496
404 while (k < (N >> 1)) 2497 if (revents & EV_READ)
2498 {
2499#if EV_USE_EVENTFD
2500 if (evpipe [0] < 0)
2501 {
2502 uint64_t counter;
2503 read (evpipe [1], &counter, sizeof (uint64_t));
2504 }
2505 else
2506#endif
2507 {
2508 char dummy[4];
2509#ifdef _WIN32
2510 WSABUF buf;
2511 DWORD recvd;
2512 DWORD flags = 0;
2513 buf.buf = dummy;
2514 buf.len = sizeof (dummy);
2515 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2516#else
2517 read (evpipe [0], &dummy, sizeof (dummy));
2518#endif
2519 }
405 { 2520 }
406 int j = k << 1;
407 2521
408 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 2522 pipe_write_skipped = 0;
409 ++j;
410 2523
411 if (w->at <= heap [j]->at) 2524 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2525
2526#if EV_SIGNAL_ENABLE
2527 if (sig_pending)
2528 {
2529 sig_pending = 0;
2530
2531 ECB_MEMORY_FENCE;
2532
2533 for (i = EV_NSIG - 1; i--; )
2534 if (expect_false (signals [i].pending))
2535 ev_feed_signal_event (EV_A_ i + 1);
2536 }
2537#endif
2538
2539#if EV_ASYNC_ENABLE
2540 if (async_pending)
2541 {
2542 async_pending = 0;
2543
2544 ECB_MEMORY_FENCE;
2545
2546 for (i = asynccnt; i--; )
2547 if (asyncs [i]->sent)
2548 {
2549 asyncs [i]->sent = 0;
2550 ECB_MEMORY_FENCE_RELEASE;
2551 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2552 }
2553 }
2554#endif
2555}
2556
2557/*****************************************************************************/
2558
2559void
2560ev_feed_signal (int signum) EV_THROW
2561{
2562#if EV_MULTIPLICITY
2563 EV_P;
2564 ECB_MEMORY_FENCE_ACQUIRE;
2565 EV_A = signals [signum - 1].loop;
2566
2567 if (!EV_A)
2568 return;
2569#endif
2570
2571 signals [signum - 1].pending = 1;
2572 evpipe_write (EV_A_ &sig_pending);
2573}
2574
2575static void
2576ev_sighandler (int signum)
2577{
2578#ifdef _WIN32
2579 signal (signum, ev_sighandler);
2580#endif
2581
2582 ev_feed_signal (signum);
2583}
2584
2585noinline
2586void
2587ev_feed_signal_event (EV_P_ int signum) EV_THROW
2588{
2589 WL w;
2590
2591 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2592 return;
2593
2594 --signum;
2595
2596#if EV_MULTIPLICITY
2597 /* it is permissible to try to feed a signal to the wrong loop */
2598 /* or, likely more useful, feeding a signal nobody is waiting for */
2599
2600 if (expect_false (signals [signum].loop != EV_A))
2601 return;
2602#endif
2603
2604 signals [signum].pending = 0;
2605 ECB_MEMORY_FENCE_RELEASE;
2606
2607 for (w = signals [signum].head; w; w = w->next)
2608 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2609}
2610
2611#if EV_USE_SIGNALFD
2612static void
2613sigfdcb (EV_P_ ev_io *iow, int revents)
2614{
2615 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2616
2617 for (;;)
2618 {
2619 ssize_t res = read (sigfd, si, sizeof (si));
2620
2621 /* not ISO-C, as res might be -1, but works with SuS */
2622 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2623 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2624
2625 if (res < (ssize_t)sizeof (si))
412 break; 2626 break;
413
414 heap [k] = heap [j];
415 heap [k]->active = k + 1;
416 k = j;
417 } 2627 }
418
419 heap [k] = w;
420 heap [k]->active = k + 1;
421} 2628}
2629#endif
2630
2631#endif
422 2632
423/*****************************************************************************/ 2633/*****************************************************************************/
424 2634
425typedef struct 2635#if EV_CHILD_ENABLE
426{ 2636static WL childs [EV_PID_HASHSIZE];
427 struct ev_watcher_list *head;
428 sig_atomic_t volatile gotsig;
429} ANSIG;
430 2637
431static ANSIG *signals;
432static int signalmax;
433
434static int sigpipe [2];
435static sig_atomic_t volatile gotsig;
436static struct ev_io sigev;
437
438static void
439signals_init (ANSIG *base, int count)
440{
441 while (count--)
442 {
443 base->head = 0;
444 base->gotsig = 0;
445
446 ++base;
447 }
448}
449
450static void
451sighandler (int signum)
452{
453 signals [signum - 1].gotsig = 1;
454
455 if (!gotsig)
456 {
457 int old_errno = errno;
458 gotsig = 1;
459 write (sigpipe [1], &signum, 1);
460 errno = old_errno;
461 }
462}
463
464static void
465sigcb (EV_P_ struct ev_io *iow, int revents)
466{
467 struct ev_watcher_list *w;
468 int signum;
469
470 read (sigpipe [0], &revents, 1);
471 gotsig = 0;
472
473 for (signum = signalmax; signum--; )
474 if (signals [signum].gotsig)
475 {
476 signals [signum].gotsig = 0;
477
478 for (w = signals [signum].head; w; w = w->next)
479 event (EV_A_ (W)w, EV_SIGNAL);
480 }
481}
482
483static void
484siginit (EV_P)
485{
486#ifndef WIN32
487 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
488 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
489
490 /* rather than sort out wether we really need nb, set it */
491 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
492 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
493#endif
494
495 ev_io_set (&sigev, sigpipe [0], EV_READ);
496 ev_io_start (EV_A_ &sigev);
497 ev_unref (EV_A); /* child watcher should not keep loop alive */
498}
499
500/*****************************************************************************/
501
502#ifndef WIN32
503
504static struct ev_child *childs [PID_HASHSIZE];
505static struct ev_signal childev; 2638static ev_signal childev;
2639
2640#ifndef WIFCONTINUED
2641# define WIFCONTINUED(status) 0
2642#endif
2643
2644/* handle a single child status event */
2645inline_speed void
2646child_reap (EV_P_ int chain, int pid, int status)
2647{
2648 ev_child *w;
2649 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2650
2651 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2652 {
2653 if ((w->pid == pid || !w->pid)
2654 && (!traced || (w->flags & 1)))
2655 {
2656 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2657 w->rpid = pid;
2658 w->rstatus = status;
2659 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2660 }
2661 }
2662}
506 2663
507#ifndef WCONTINUED 2664#ifndef WCONTINUED
508# define WCONTINUED 0 2665# define WCONTINUED 0
509#endif 2666#endif
510 2667
2668/* called on sigchld etc., calls waitpid */
511static void 2669static void
512child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
513{
514 struct ev_child *w;
515
516 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
517 if (w->pid == pid || !w->pid)
518 {
519 w->priority = sw->priority; /* need to do it *now* */
520 w->rpid = pid;
521 w->rstatus = status;
522 event (EV_A_ (W)w, EV_CHILD);
523 }
524}
525
526static void
527childcb (EV_P_ struct ev_signal *sw, int revents) 2670childcb (EV_P_ ev_signal *sw, int revents)
528{ 2671{
529 int pid, status; 2672 int pid, status;
530 2673
2674 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
531 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 2675 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
532 { 2676 if (!WCONTINUED
2677 || errno != EINVAL
2678 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2679 return;
2680
533 /* make sure we are called again until all childs have been reaped */ 2681 /* make sure we are called again until all children have been reaped */
2682 /* we need to do it this way so that the callback gets called before we continue */
534 event (EV_A_ (W)sw, EV_SIGNAL); 2683 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
535 2684
536 child_reap (EV_A_ sw, pid, pid, status); 2685 child_reap (EV_A_ pid, pid, status);
2686 if ((EV_PID_HASHSIZE) > 1)
537 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 2687 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
538 }
539} 2688}
540 2689
541#endif 2690#endif
542 2691
543/*****************************************************************************/ 2692/*****************************************************************************/
544 2693
2694#if EV_USE_IOCP
2695# include "ev_iocp.c"
2696#endif
2697#if EV_USE_PORT
2698# include "ev_port.c"
2699#endif
545#if EV_USE_KQUEUE 2700#if EV_USE_KQUEUE
546# include "ev_kqueue.c" 2701# include "ev_kqueue.c"
547#endif 2702#endif
548#if EV_USE_EPOLL 2703#if EV_USE_EPOLL
549# include "ev_epoll.c" 2704# include "ev_epoll.c"
553#endif 2708#endif
554#if EV_USE_SELECT 2709#if EV_USE_SELECT
555# include "ev_select.c" 2710# include "ev_select.c"
556#endif 2711#endif
557 2712
558int 2713ecb_cold int
559ev_version_major (void) 2714ev_version_major (void) EV_THROW
560{ 2715{
561 return EV_VERSION_MAJOR; 2716 return EV_VERSION_MAJOR;
562} 2717}
563 2718
564int 2719ecb_cold int
565ev_version_minor (void) 2720ev_version_minor (void) EV_THROW
566{ 2721{
567 return EV_VERSION_MINOR; 2722 return EV_VERSION_MINOR;
568} 2723}
569 2724
570/* return true if we are running with elevated privileges and should ignore env variables */ 2725/* return true if we are running with elevated privileges and should ignore env variables */
571static int 2726inline_size ecb_cold int
572enable_secure (void) 2727enable_secure (void)
573{ 2728{
574#ifdef WIN32 2729#ifdef _WIN32
575 return 0; 2730 return 0;
576#else 2731#else
577 return getuid () != geteuid () 2732 return getuid () != geteuid ()
578 || getgid () != getegid (); 2733 || getgid () != getegid ();
579#endif 2734#endif
580} 2735}
581 2736
2737ecb_cold
2738unsigned int
2739ev_supported_backends (void) EV_THROW
2740{
2741 unsigned int flags = 0;
2742
2743 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2744 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2745 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2746 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2747 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2748
2749 return flags;
2750}
2751
2752ecb_cold
2753unsigned int
2754ev_recommended_backends (void) EV_THROW
2755{
2756 unsigned int flags = ev_supported_backends ();
2757
2758#ifndef __NetBSD__
2759 /* kqueue is borked on everything but netbsd apparently */
2760 /* it usually doesn't work correctly on anything but sockets and pipes */
2761 flags &= ~EVBACKEND_KQUEUE;
2762#endif
2763#ifdef __APPLE__
2764 /* only select works correctly on that "unix-certified" platform */
2765 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2766 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2767#endif
2768#ifdef __FreeBSD__
2769 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2770#endif
2771
2772 return flags;
2773}
2774
2775ecb_cold
2776unsigned int
2777ev_embeddable_backends (void) EV_THROW
2778{
2779 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2780
2781 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2782 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2783 flags &= ~EVBACKEND_EPOLL;
2784
2785 return flags;
2786}
2787
2788unsigned int
2789ev_backend (EV_P) EV_THROW
2790{
2791 return backend;
2792}
2793
2794#if EV_FEATURE_API
2795unsigned int
2796ev_iteration (EV_P) EV_THROW
2797{
2798 return loop_count;
2799}
2800
2801unsigned int
2802ev_depth (EV_P) EV_THROW
2803{
2804 return loop_depth;
2805}
2806
2807void
2808ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2809{
2810 io_blocktime = interval;
2811}
2812
2813void
2814ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2815{
2816 timeout_blocktime = interval;
2817}
2818
2819void
2820ev_set_userdata (EV_P_ void *data) EV_THROW
2821{
2822 userdata = data;
2823}
2824
2825void *
2826ev_userdata (EV_P) EV_THROW
2827{
2828 return userdata;
2829}
2830
2831void
2832ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2833{
2834 invoke_cb = invoke_pending_cb;
2835}
2836
2837void
2838ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2839{
2840 release_cb = release;
2841 acquire_cb = acquire;
2842}
2843#endif
2844
2845/* initialise a loop structure, must be zero-initialised */
2846noinline ecb_cold
2847static void
2848loop_init (EV_P_ unsigned int flags) EV_THROW
2849{
2850 if (!backend)
2851 {
2852 origflags = flags;
2853
2854#if EV_USE_REALTIME
2855 if (!have_realtime)
2856 {
2857 struct timespec ts;
2858
2859 if (!clock_gettime (CLOCK_REALTIME, &ts))
2860 have_realtime = 1;
2861 }
2862#endif
2863
2864#if EV_USE_MONOTONIC
2865 if (!have_monotonic)
2866 {
2867 struct timespec ts;
2868
2869 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2870 have_monotonic = 1;
2871 }
2872#endif
2873
2874 /* pid check not overridable via env */
2875#ifndef _WIN32
2876 if (flags & EVFLAG_FORKCHECK)
2877 curpid = getpid ();
2878#endif
2879
2880 if (!(flags & EVFLAG_NOENV)
2881 && !enable_secure ()
2882 && getenv ("LIBEV_FLAGS"))
2883 flags = atoi (getenv ("LIBEV_FLAGS"));
2884
2885 ev_rt_now = ev_time ();
2886 mn_now = get_clock ();
2887 now_floor = mn_now;
2888 rtmn_diff = ev_rt_now - mn_now;
2889#if EV_FEATURE_API
2890 invoke_cb = ev_invoke_pending;
2891#endif
2892
2893 io_blocktime = 0.;
2894 timeout_blocktime = 0.;
2895 backend = 0;
2896 backend_fd = -1;
2897 sig_pending = 0;
2898#if EV_ASYNC_ENABLE
2899 async_pending = 0;
2900#endif
2901 pipe_write_skipped = 0;
2902 pipe_write_wanted = 0;
2903 evpipe [0] = -1;
2904 evpipe [1] = -1;
2905#if EV_USE_INOTIFY
2906 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2907#endif
2908#if EV_USE_SIGNALFD
2909 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2910#endif
2911
2912 if (!(flags & EVBACKEND_MASK))
2913 flags |= ev_recommended_backends ();
2914
2915#if EV_USE_IOCP
2916 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2917#endif
2918#if EV_USE_PORT
2919 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2920#endif
2921#if EV_USE_KQUEUE
2922 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2923#endif
2924#if EV_USE_EPOLL
2925 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2926#endif
2927#if EV_USE_POLL
2928 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2929#endif
2930#if EV_USE_SELECT
2931 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2932#endif
2933
2934 ev_prepare_init (&pending_w, pendingcb);
2935
2936#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2937 ev_init (&pipe_w, pipecb);
2938 ev_set_priority (&pipe_w, EV_MAXPRI);
2939#endif
2940 }
2941}
2942
2943/* free up a loop structure */
2944ecb_cold
2945void
2946ev_loop_destroy (EV_P)
2947{
2948 int i;
2949
2950#if EV_MULTIPLICITY
2951 /* mimic free (0) */
2952 if (!EV_A)
2953 return;
2954#endif
2955
2956#if EV_CLEANUP_ENABLE
2957 /* queue cleanup watchers (and execute them) */
2958 if (expect_false (cleanupcnt))
2959 {
2960 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2961 EV_INVOKE_PENDING;
2962 }
2963#endif
2964
2965#if EV_CHILD_ENABLE
2966 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2967 {
2968 ev_ref (EV_A); /* child watcher */
2969 ev_signal_stop (EV_A_ &childev);
2970 }
2971#endif
2972
2973 if (ev_is_active (&pipe_w))
2974 {
2975 /*ev_ref (EV_A);*/
2976 /*ev_io_stop (EV_A_ &pipe_w);*/
2977
2978 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2979 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2980 }
2981
2982#if EV_USE_SIGNALFD
2983 if (ev_is_active (&sigfd_w))
2984 close (sigfd);
2985#endif
2986
2987#if EV_USE_INOTIFY
2988 if (fs_fd >= 0)
2989 close (fs_fd);
2990#endif
2991
2992 if (backend_fd >= 0)
2993 close (backend_fd);
2994
2995#if EV_USE_IOCP
2996 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2997#endif
2998#if EV_USE_PORT
2999 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
3000#endif
3001#if EV_USE_KQUEUE
3002 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
3003#endif
3004#if EV_USE_EPOLL
3005 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
3006#endif
3007#if EV_USE_POLL
3008 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
3009#endif
3010#if EV_USE_SELECT
3011 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
3012#endif
3013
3014 for (i = NUMPRI; i--; )
3015 {
3016 array_free (pending, [i]);
3017#if EV_IDLE_ENABLE
3018 array_free (idle, [i]);
3019#endif
3020 }
3021
3022 ev_free (anfds); anfds = 0; anfdmax = 0;
3023
3024 /* have to use the microsoft-never-gets-it-right macro */
3025 array_free (rfeed, EMPTY);
3026 array_free (fdchange, EMPTY);
3027 array_free (timer, EMPTY);
3028#if EV_PERIODIC_ENABLE
3029 array_free (periodic, EMPTY);
3030#endif
3031#if EV_FORK_ENABLE
3032 array_free (fork, EMPTY);
3033#endif
3034#if EV_CLEANUP_ENABLE
3035 array_free (cleanup, EMPTY);
3036#endif
3037 array_free (prepare, EMPTY);
3038 array_free (check, EMPTY);
3039#if EV_ASYNC_ENABLE
3040 array_free (async, EMPTY);
3041#endif
3042
3043 backend = 0;
3044
3045#if EV_MULTIPLICITY
3046 if (ev_is_default_loop (EV_A))
3047#endif
3048 ev_default_loop_ptr = 0;
3049#if EV_MULTIPLICITY
3050 else
3051 ev_free (EV_A);
3052#endif
3053}
3054
3055#if EV_USE_INOTIFY
3056inline_size void infy_fork (EV_P);
3057#endif
3058
3059inline_size void
3060loop_fork (EV_P)
3061{
3062#if EV_USE_PORT
3063 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
3064#endif
3065#if EV_USE_KQUEUE
3066 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
3067#endif
3068#if EV_USE_EPOLL
3069 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
3070#endif
3071#if EV_USE_INOTIFY
3072 infy_fork (EV_A);
3073#endif
3074
3075#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3076 if (ev_is_active (&pipe_w) && postfork != 2)
3077 {
3078 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3079
3080 ev_ref (EV_A);
3081 ev_io_stop (EV_A_ &pipe_w);
3082
3083 if (evpipe [0] >= 0)
3084 EV_WIN32_CLOSE_FD (evpipe [0]);
3085
3086 evpipe_init (EV_A);
3087 /* iterate over everything, in case we missed something before */
3088 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3089 }
3090#endif
3091
3092 postfork = 0;
3093}
3094
3095#if EV_MULTIPLICITY
3096
3097ecb_cold
3098struct ev_loop *
3099ev_loop_new (unsigned int flags) EV_THROW
3100{
3101 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3102
3103 memset (EV_A, 0, sizeof (struct ev_loop));
3104 loop_init (EV_A_ flags);
3105
3106 if (ev_backend (EV_A))
3107 return EV_A;
3108
3109 ev_free (EV_A);
3110 return 0;
3111}
3112
3113#endif /* multiplicity */
3114
3115#if EV_VERIFY
3116noinline ecb_cold
3117static void
3118verify_watcher (EV_P_ W w)
3119{
3120 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
3121
3122 if (w->pending)
3123 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3124}
3125
3126noinline ecb_cold
3127static void
3128verify_heap (EV_P_ ANHE *heap, int N)
3129{
3130 int i;
3131
3132 for (i = HEAP0; i < N + HEAP0; ++i)
3133 {
3134 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3135 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3136 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3137
3138 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3139 }
3140}
3141
3142noinline ecb_cold
3143static void
3144array_verify (EV_P_ W *ws, int cnt)
3145{
3146 while (cnt--)
3147 {
3148 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3149 verify_watcher (EV_A_ ws [cnt]);
3150 }
3151}
3152#endif
3153
3154#if EV_FEATURE_API
3155void ecb_cold
3156ev_verify (EV_P) EV_THROW
3157{
3158#if EV_VERIFY
3159 int i;
3160 WL w, w2;
3161
3162 assert (activecnt >= -1);
3163
3164 assert (fdchangemax >= fdchangecnt);
3165 for (i = 0; i < fdchangecnt; ++i)
3166 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3167
3168 assert (anfdmax >= 0);
3169 for (i = 0; i < anfdmax; ++i)
3170 {
3171 int j = 0;
3172
3173 for (w = w2 = anfds [i].head; w; w = w->next)
3174 {
3175 verify_watcher (EV_A_ (W)w);
3176
3177 if (j++ & 1)
3178 {
3179 assert (("libev: io watcher list contains a loop", w != w2));
3180 w2 = w2->next;
3181 }
3182
3183 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3184 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3185 }
3186 }
3187
3188 assert (timermax >= timercnt);
3189 verify_heap (EV_A_ timers, timercnt);
3190
3191#if EV_PERIODIC_ENABLE
3192 assert (periodicmax >= periodiccnt);
3193 verify_heap (EV_A_ periodics, periodiccnt);
3194#endif
3195
3196 for (i = NUMPRI; i--; )
3197 {
3198 assert (pendingmax [i] >= pendingcnt [i]);
3199#if EV_IDLE_ENABLE
3200 assert (idleall >= 0);
3201 assert (idlemax [i] >= idlecnt [i]);
3202 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3203#endif
3204 }
3205
3206#if EV_FORK_ENABLE
3207 assert (forkmax >= forkcnt);
3208 array_verify (EV_A_ (W *)forks, forkcnt);
3209#endif
3210
3211#if EV_CLEANUP_ENABLE
3212 assert (cleanupmax >= cleanupcnt);
3213 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3214#endif
3215
3216#if EV_ASYNC_ENABLE
3217 assert (asyncmax >= asynccnt);
3218 array_verify (EV_A_ (W *)asyncs, asynccnt);
3219#endif
3220
3221#if EV_PREPARE_ENABLE
3222 assert (preparemax >= preparecnt);
3223 array_verify (EV_A_ (W *)prepares, preparecnt);
3224#endif
3225
3226#if EV_CHECK_ENABLE
3227 assert (checkmax >= checkcnt);
3228 array_verify (EV_A_ (W *)checks, checkcnt);
3229#endif
3230
3231# if 0
3232#if EV_CHILD_ENABLE
3233 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3234 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3235#endif
3236# endif
3237#endif
3238}
3239#endif
3240
3241#if EV_MULTIPLICITY
3242ecb_cold
3243struct ev_loop *
3244#else
582int 3245int
583ev_method (EV_P) 3246#endif
3247ev_default_loop (unsigned int flags) EV_THROW
584{ 3248{
585 return method; 3249 if (!ev_default_loop_ptr)
586}
587
588static void
589loop_init (EV_P_ int methods)
590{
591 if (!method)
592 {
593#if EV_USE_MONOTONIC
594 { 3250 {
595 struct timespec ts;
596 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
597 have_monotonic = 1;
598 }
599#endif
600
601 rt_now = ev_time ();
602 mn_now = get_clock ();
603 now_floor = mn_now;
604 rtmn_diff = rt_now - mn_now;
605
606 if (methods == EVMETHOD_AUTO)
607 if (!enable_secure () && getenv ("LIBEV_METHODS"))
608 methods = atoi (getenv ("LIBEV_METHODS"));
609 else
610 methods = EVMETHOD_ANY;
611
612 method = 0;
613#if EV_USE_KQUEUE
614 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
615#endif
616#if EV_USE_EPOLL
617 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
618#endif
619#if EV_USE_POLL
620 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
621#endif
622#if EV_USE_SELECT
623 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
624#endif
625 }
626}
627
628void
629loop_destroy (EV_P)
630{
631#if EV_USE_KQUEUE
632 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
633#endif
634#if EV_USE_EPOLL
635 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
636#endif
637#if EV_USE_POLL
638 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
639#endif
640#if EV_USE_SELECT
641 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
642#endif
643
644 method = 0;
645 /*TODO*/
646}
647
648void
649loop_fork (EV_P)
650{
651 /*TODO*/
652#if EV_USE_EPOLL
653 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
654#endif
655#if EV_USE_KQUEUE
656 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
657#endif
658}
659
660#if EV_MULTIPLICITY 3251#if EV_MULTIPLICITY
661struct ev_loop *
662ev_loop_new (int methods)
663{
664 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
665
666 loop_init (EV_A_ methods);
667
668 if (ev_method (EV_A))
669 return loop;
670
671 return 0;
672}
673
674void
675ev_loop_destroy (EV_P)
676{
677 loop_destroy (EV_A);
678 free (loop);
679}
680
681void
682ev_loop_fork (EV_P)
683{
684 loop_fork (EV_A);
685}
686
687#endif
688
689#if EV_MULTIPLICITY
690struct ev_loop default_loop_struct;
691static struct ev_loop *default_loop;
692
693struct ev_loop *
694#else
695static int default_loop;
696
697int
698#endif
699ev_default_loop (int methods)
700{
701 if (sigpipe [0] == sigpipe [1])
702 if (pipe (sigpipe))
703 return 0;
704
705 if (!default_loop)
706 {
707#if EV_MULTIPLICITY
708 struct ev_loop *loop = default_loop = &default_loop_struct; 3252 EV_P = ev_default_loop_ptr = &default_loop_struct;
709#else 3253#else
710 default_loop = 1; 3254 ev_default_loop_ptr = 1;
711#endif 3255#endif
712 3256
713 loop_init (EV_A_ methods); 3257 loop_init (EV_A_ flags);
714 3258
715 if (ev_method (EV_A)) 3259 if (ev_backend (EV_A))
716 { 3260 {
717 ev_watcher_init (&sigev, sigcb); 3261#if EV_CHILD_ENABLE
718 ev_set_priority (&sigev, EV_MAXPRI);
719 siginit (EV_A);
720
721#ifndef WIN32
722 ev_signal_init (&childev, childcb, SIGCHLD); 3262 ev_signal_init (&childev, childcb, SIGCHLD);
723 ev_set_priority (&childev, EV_MAXPRI); 3263 ev_set_priority (&childev, EV_MAXPRI);
724 ev_signal_start (EV_A_ &childev); 3264 ev_signal_start (EV_A_ &childev);
725 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3265 ev_unref (EV_A); /* child watcher should not keep loop alive */
726#endif 3266#endif
727 } 3267 }
728 else 3268 else
729 default_loop = 0; 3269 ev_default_loop_ptr = 0;
730 } 3270 }
731 3271
732 return default_loop; 3272 return ev_default_loop_ptr;
733} 3273}
734 3274
735void 3275void
736ev_default_destroy (void) 3276ev_loop_fork (EV_P) EV_THROW
737{ 3277{
738#if EV_MULTIPLICITY 3278 postfork = 1;
739 struct ev_loop *loop = default_loop;
740#endif
741
742 ev_ref (EV_A); /* child watcher */
743 ev_signal_stop (EV_A_ &childev);
744
745 ev_ref (EV_A); /* signal watcher */
746 ev_io_stop (EV_A_ &sigev);
747
748 close (sigpipe [0]); sigpipe [0] = 0;
749 close (sigpipe [1]); sigpipe [1] = 0;
750
751 loop_destroy (EV_A);
752}
753
754void
755ev_default_fork (void)
756{
757#if EV_MULTIPLICITY
758 struct ev_loop *loop = default_loop;
759#endif
760
761 loop_fork (EV_A);
762
763 ev_io_stop (EV_A_ &sigev);
764 close (sigpipe [0]);
765 close (sigpipe [1]);
766 pipe (sigpipe);
767
768 ev_ref (EV_A); /* signal watcher */
769 siginit (EV_A);
770} 3279}
771 3280
772/*****************************************************************************/ 3281/*****************************************************************************/
773 3282
3283void
3284ev_invoke (EV_P_ void *w, int revents)
3285{
3286 EV_CB_INVOKE ((W)w, revents);
3287}
3288
3289unsigned int
3290ev_pending_count (EV_P) EV_THROW
3291{
3292 int pri;
3293 unsigned int count = 0;
3294
3295 for (pri = NUMPRI; pri--; )
3296 count += pendingcnt [pri];
3297
3298 return count;
3299}
3300
3301noinline
3302void
3303ev_invoke_pending (EV_P)
3304{
3305 pendingpri = NUMPRI;
3306
3307 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3308 {
3309 --pendingpri;
3310
3311 while (pendingcnt [pendingpri])
3312 {
3313 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3314
3315 p->w->pending = 0;
3316 EV_CB_INVOKE (p->w, p->events);
3317 EV_FREQUENT_CHECK;
3318 }
3319 }
3320}
3321
3322#if EV_IDLE_ENABLE
3323/* make idle watchers pending. this handles the "call-idle */
3324/* only when higher priorities are idle" logic */
3325inline_size void
3326idle_reify (EV_P)
3327{
3328 if (expect_false (idleall))
3329 {
3330 int pri;
3331
3332 for (pri = NUMPRI; pri--; )
3333 {
3334 if (pendingcnt [pri])
3335 break;
3336
3337 if (idlecnt [pri])
3338 {
3339 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3340 break;
3341 }
3342 }
3343 }
3344}
3345#endif
3346
3347/* make timers pending */
3348inline_size void
3349timers_reify (EV_P)
3350{
3351 EV_FREQUENT_CHECK;
3352
3353 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3354 {
3355 do
3356 {
3357 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3358
3359 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3360
3361 /* first reschedule or stop timer */
3362 if (w->repeat)
3363 {
3364 ev_at (w) += w->repeat;
3365 if (ev_at (w) < mn_now)
3366 ev_at (w) = mn_now;
3367
3368 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3369
3370 ANHE_at_cache (timers [HEAP0]);
3371 downheap (timers, timercnt, HEAP0);
3372 }
3373 else
3374 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3375
3376 EV_FREQUENT_CHECK;
3377 feed_reverse (EV_A_ (W)w);
3378 }
3379 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3380
3381 feed_reverse_done (EV_A_ EV_TIMER);
3382 }
3383}
3384
3385#if EV_PERIODIC_ENABLE
3386
3387noinline
774static void 3388static void
775call_pending (EV_P) 3389periodic_recalc (EV_P_ ev_periodic *w)
776{ 3390{
777 int pri; 3391 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3392 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
778 3393
779 for (pri = NUMPRI; pri--; ) 3394 /* the above almost always errs on the low side */
780 while (pendingcnt [pri]) 3395 while (at <= ev_rt_now)
781 { 3396 {
782 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 3397 ev_tstamp nat = at + w->interval;
783 3398
784 if (p->w) 3399 /* when resolution fails us, we use ev_rt_now */
785 { 3400 if (expect_false (nat == at))
786 p->w->pending = 0;
787 p->w->cb (EV_A_ p->w, p->events);
788 }
789 }
790}
791
792static void
793timers_reify (EV_P)
794{
795 while (timercnt && timers [0]->at <= mn_now)
796 {
797 struct ev_timer *w = timers [0];
798
799 assert (("inactive timer on timer heap detected", ev_is_active (w)));
800
801 /* first reschedule or stop timer */
802 if (w->repeat)
803 { 3401 {
804 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3402 at = ev_rt_now;
805 w->at = mn_now + w->repeat; 3403 break;
806 downheap ((WT *)timers, timercnt, 0);
807 } 3404 }
808 else
809 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
810 3405
811 event (EV_A_ (W)w, EV_TIMEOUT); 3406 at = nat;
812 } 3407 }
813}
814 3408
815static void 3409 ev_at (w) = at;
3410}
3411
3412/* make periodics pending */
3413inline_size void
816periodics_reify (EV_P) 3414periodics_reify (EV_P)
817{ 3415{
3416 EV_FREQUENT_CHECK;
3417
818 while (periodiccnt && periodics [0]->at <= rt_now) 3418 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
819 { 3419 {
820 struct ev_periodic *w = periodics [0]; 3420 do
821
822 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
823
824 /* first reschedule or stop timer */
825 if (w->interval)
826 { 3421 {
827 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 3422 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
828 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 3423
3424 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3425
3426 /* first reschedule or stop timer */
3427 if (w->reschedule_cb)
3428 {
3429 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3430
3431 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3432
3433 ANHE_at_cache (periodics [HEAP0]);
829 downheap ((WT *)periodics, periodiccnt, 0); 3434 downheap (periodics, periodiccnt, HEAP0);
3435 }
3436 else if (w->interval)
3437 {
3438 periodic_recalc (EV_A_ w);
3439 ANHE_at_cache (periodics [HEAP0]);
3440 downheap (periodics, periodiccnt, HEAP0);
3441 }
3442 else
3443 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3444
3445 EV_FREQUENT_CHECK;
3446 feed_reverse (EV_A_ (W)w);
830 } 3447 }
831 else 3448 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
832 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
833 3449
834 event (EV_A_ (W)w, EV_PERIODIC); 3450 feed_reverse_done (EV_A_ EV_PERIODIC);
835 } 3451 }
836} 3452}
837 3453
3454/* simply recalculate all periodics */
3455/* TODO: maybe ensure that at least one event happens when jumping forward? */
3456noinline ecb_cold
838static void 3457static void
839periodics_reschedule (EV_P) 3458periodics_reschedule (EV_P)
840{ 3459{
841 int i; 3460 int i;
842 3461
843 /* adjust periodics after time jump */ 3462 /* adjust periodics after time jump */
844 for (i = 0; i < periodiccnt; ++i) 3463 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
845 { 3464 {
846 struct ev_periodic *w = periodics [i]; 3465 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
847 3466
3467 if (w->reschedule_cb)
3468 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
848 if (w->interval) 3469 else if (w->interval)
849 {
850 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
851
852 if (fabs (diff) >= 1e-4)
853 {
854 ev_periodic_stop (EV_A_ w);
855 ev_periodic_start (EV_A_ w); 3470 periodic_recalc (EV_A_ w);
856 3471
857 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 3472 ANHE_at_cache (periodics [i]);
858 }
859 }
860 }
861}
862
863inline int
864time_update_monotonic (EV_P)
865{
866 mn_now = get_clock ();
867
868 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
869 { 3473 }
870 rt_now = rtmn_diff + mn_now;
871 return 0;
872 }
873 else
874 {
875 now_floor = mn_now;
876 rt_now = ev_time ();
877 return 1;
878 }
879}
880 3474
3475 reheap (periodics, periodiccnt);
3476}
3477#endif
3478
3479/* adjust all timers by a given offset */
3480noinline ecb_cold
881static void 3481static void
882time_update (EV_P) 3482timers_reschedule (EV_P_ ev_tstamp adjust)
883{ 3483{
884 int i; 3484 int i;
885 3485
3486 for (i = 0; i < timercnt; ++i)
3487 {
3488 ANHE *he = timers + i + HEAP0;
3489 ANHE_w (*he)->at += adjust;
3490 ANHE_at_cache (*he);
3491 }
3492}
3493
3494/* fetch new monotonic and realtime times from the kernel */
3495/* also detect if there was a timejump, and act accordingly */
3496inline_speed void
3497time_update (EV_P_ ev_tstamp max_block)
3498{
886#if EV_USE_MONOTONIC 3499#if EV_USE_MONOTONIC
887 if (expect_true (have_monotonic)) 3500 if (expect_true (have_monotonic))
888 { 3501 {
889 if (time_update_monotonic (EV_A)) 3502 int i;
3503 ev_tstamp odiff = rtmn_diff;
3504
3505 mn_now = get_clock ();
3506
3507 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3508 /* interpolate in the meantime */
3509 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
890 { 3510 {
891 ev_tstamp odiff = rtmn_diff; 3511 ev_rt_now = rtmn_diff + mn_now;
3512 return;
3513 }
892 3514
3515 now_floor = mn_now;
3516 ev_rt_now = ev_time ();
3517
893 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 3518 /* loop a few times, before making important decisions.
3519 * on the choice of "4": one iteration isn't enough,
3520 * in case we get preempted during the calls to
3521 * ev_time and get_clock. a second call is almost guaranteed
3522 * to succeed in that case, though. and looping a few more times
3523 * doesn't hurt either as we only do this on time-jumps or
3524 * in the unlikely event of having been preempted here.
3525 */
3526 for (i = 4; --i; )
894 { 3527 {
3528 ev_tstamp diff;
895 rtmn_diff = rt_now - mn_now; 3529 rtmn_diff = ev_rt_now - mn_now;
896 3530
897 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 3531 diff = odiff - rtmn_diff;
3532
3533 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
898 return; /* all is well */ 3534 return; /* all is well */
899 3535
900 rt_now = ev_time (); 3536 ev_rt_now = ev_time ();
901 mn_now = get_clock (); 3537 mn_now = get_clock ();
902 now_floor = mn_now; 3538 now_floor = mn_now;
903 } 3539 }
904 3540
3541 /* no timer adjustment, as the monotonic clock doesn't jump */
3542 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3543# if EV_PERIODIC_ENABLE
3544 periodics_reschedule (EV_A);
3545# endif
3546 }
3547 else
3548#endif
3549 {
3550 ev_rt_now = ev_time ();
3551
3552 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3553 {
3554 /* adjust timers. this is easy, as the offset is the same for all of them */
3555 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3556#if EV_PERIODIC_ENABLE
905 periodics_reschedule (EV_A); 3557 periodics_reschedule (EV_A);
906 /* no timer adjustment, as the monotonic clock doesn't jump */ 3558#endif
907 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
908 } 3559 }
909 }
910 else
911#endif
912 {
913 rt_now = ev_time ();
914 3560
915 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
916 {
917 periodics_reschedule (EV_A);
918
919 /* adjust timers. this is easy, as the offset is the same for all */
920 for (i = 0; i < timercnt; ++i)
921 timers [i]->at += rt_now - mn_now;
922 }
923
924 mn_now = rt_now; 3561 mn_now = ev_rt_now;
925 } 3562 }
926} 3563}
927 3564
928void 3565int
929ev_ref (EV_P)
930{
931 ++activecnt;
932}
933
934void
935ev_unref (EV_P)
936{
937 --activecnt;
938}
939
940static int loop_done;
941
942void
943ev_loop (EV_P_ int flags) 3566ev_run (EV_P_ int flags)
944{ 3567{
945 double block; 3568#if EV_FEATURE_API
946 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 3569 ++loop_depth;
3570#endif
3571
3572 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3573
3574 loop_done = EVBREAK_CANCEL;
3575
3576 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
947 3577
948 do 3578 do
949 { 3579 {
3580#if EV_VERIFY >= 2
3581 ev_verify (EV_A);
3582#endif
3583
3584#ifndef _WIN32
3585 if (expect_false (curpid)) /* penalise the forking check even more */
3586 if (expect_false (getpid () != curpid))
3587 {
3588 curpid = getpid ();
3589 postfork = 1;
3590 }
3591#endif
3592
3593#if EV_FORK_ENABLE
3594 /* we might have forked, so queue fork handlers */
3595 if (expect_false (postfork))
3596 if (forkcnt)
3597 {
3598 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3599 EV_INVOKE_PENDING;
3600 }
3601#endif
3602
3603#if EV_PREPARE_ENABLE
950 /* queue check watchers (and execute them) */ 3604 /* queue prepare watchers (and execute them) */
951 if (expect_false (preparecnt)) 3605 if (expect_false (preparecnt))
952 { 3606 {
953 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3607 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
954 call_pending (EV_A); 3608 EV_INVOKE_PENDING;
955 } 3609 }
3610#endif
3611
3612 if (expect_false (loop_done))
3613 break;
3614
3615 /* we might have forked, so reify kernel state if necessary */
3616 if (expect_false (postfork))
3617 loop_fork (EV_A);
956 3618
957 /* update fd-related kernel structures */ 3619 /* update fd-related kernel structures */
958 fd_reify (EV_A); 3620 fd_reify (EV_A);
959 3621
960 /* calculate blocking time */ 3622 /* calculate blocking time */
3623 {
3624 ev_tstamp waittime = 0.;
3625 ev_tstamp sleeptime = 0.;
961 3626
962 /* we only need this for !monotonic clockor timers, but as we basically 3627 /* remember old timestamp for io_blocktime calculation */
963 always have timers, we just calculate it always */ 3628 ev_tstamp prev_mn_now = mn_now;
964#if EV_USE_MONOTONIC 3629
965 if (expect_true (have_monotonic)) 3630 /* update time to cancel out callback processing overhead */
966 time_update_monotonic (EV_A); 3631 time_update (EV_A_ 1e100);
967 else 3632
968#endif 3633 /* from now on, we want a pipe-wake-up */
3634 pipe_write_wanted = 1;
3635
3636 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3637
3638 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
969 { 3639 {
970 rt_now = ev_time ();
971 mn_now = rt_now;
972 }
973
974 if (flags & EVLOOP_NONBLOCK || idlecnt)
975 block = 0.;
976 else
977 {
978 block = MAX_BLOCKTIME; 3640 waittime = MAX_BLOCKTIME;
979 3641
980 if (timercnt) 3642 if (timercnt)
981 { 3643 {
982 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 3644 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
983 if (block > to) block = to; 3645 if (waittime > to) waittime = to;
984 } 3646 }
985 3647
3648#if EV_PERIODIC_ENABLE
986 if (periodiccnt) 3649 if (periodiccnt)
987 { 3650 {
988 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 3651 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
989 if (block > to) block = to; 3652 if (waittime > to) waittime = to;
990 } 3653 }
3654#endif
991 3655
992 if (block < 0.) block = 0.; 3656 /* don't let timeouts decrease the waittime below timeout_blocktime */
3657 if (expect_false (waittime < timeout_blocktime))
3658 waittime = timeout_blocktime;
3659
3660 /* at this point, we NEED to wait, so we have to ensure */
3661 /* to pass a minimum nonzero value to the backend */
3662 if (expect_false (waittime < backend_mintime))
3663 waittime = backend_mintime;
3664
3665 /* extra check because io_blocktime is commonly 0 */
3666 if (expect_false (io_blocktime))
3667 {
3668 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3669
3670 if (sleeptime > waittime - backend_mintime)
3671 sleeptime = waittime - backend_mintime;
3672
3673 if (expect_true (sleeptime > 0.))
3674 {
3675 ev_sleep (sleeptime);
3676 waittime -= sleeptime;
3677 }
3678 }
993 } 3679 }
994 3680
995 method_poll (EV_A_ block); 3681#if EV_FEATURE_API
3682 ++loop_count;
3683#endif
3684 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3685 backend_poll (EV_A_ waittime);
3686 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
996 3687
3688 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3689
3690 ECB_MEMORY_FENCE_ACQUIRE;
3691 if (pipe_write_skipped)
3692 {
3693 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3694 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3695 }
3696
3697
997 /* update rt_now, do magic */ 3698 /* update ev_rt_now, do magic */
998 time_update (EV_A); 3699 time_update (EV_A_ waittime + sleeptime);
3700 }
999 3701
1000 /* queue pending timers and reschedule them */ 3702 /* queue pending timers and reschedule them */
1001 timers_reify (EV_A); /* relative timers called last */ 3703 timers_reify (EV_A); /* relative timers called last */
3704#if EV_PERIODIC_ENABLE
1002 periodics_reify (EV_A); /* absolute timers called first */ 3705 periodics_reify (EV_A); /* absolute timers called first */
3706#endif
1003 3707
3708#if EV_IDLE_ENABLE
1004 /* queue idle watchers unless io or timers are pending */ 3709 /* queue idle watchers unless other events are pending */
1005 if (!pendingcnt) 3710 idle_reify (EV_A);
1006 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 3711#endif
1007 3712
3713#if EV_CHECK_ENABLE
1008 /* queue check watchers, to be executed first */ 3714 /* queue check watchers, to be executed first */
1009 if (checkcnt) 3715 if (expect_false (checkcnt))
1010 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3716 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3717#endif
1011 3718
1012 call_pending (EV_A); 3719 EV_INVOKE_PENDING;
1013 } 3720 }
1014 while (activecnt && !loop_done); 3721 while (expect_true (
3722 activecnt
3723 && !loop_done
3724 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3725 ));
1015 3726
1016 if (loop_done != 2) 3727 if (loop_done == EVBREAK_ONE)
1017 loop_done = 0; 3728 loop_done = EVBREAK_CANCEL;
1018}
1019 3729
3730#if EV_FEATURE_API
3731 --loop_depth;
3732#endif
3733
3734 return activecnt;
3735}
3736
1020void 3737void
1021ev_unloop (EV_P_ int how) 3738ev_break (EV_P_ int how) EV_THROW
1022{ 3739{
1023 loop_done = how; 3740 loop_done = how;
1024} 3741}
1025 3742
3743void
3744ev_ref (EV_P) EV_THROW
3745{
3746 ++activecnt;
3747}
3748
3749void
3750ev_unref (EV_P) EV_THROW
3751{
3752 --activecnt;
3753}
3754
3755void
3756ev_now_update (EV_P) EV_THROW
3757{
3758 time_update (EV_A_ 1e100);
3759}
3760
3761void
3762ev_suspend (EV_P) EV_THROW
3763{
3764 ev_now_update (EV_A);
3765}
3766
3767void
3768ev_resume (EV_P) EV_THROW
3769{
3770 ev_tstamp mn_prev = mn_now;
3771
3772 ev_now_update (EV_A);
3773 timers_reschedule (EV_A_ mn_now - mn_prev);
3774#if EV_PERIODIC_ENABLE
3775 /* TODO: really do this? */
3776 periodics_reschedule (EV_A);
3777#endif
3778}
3779
1026/*****************************************************************************/ 3780/*****************************************************************************/
3781/* singly-linked list management, used when the expected list length is short */
1027 3782
1028inline void 3783inline_size void
1029wlist_add (WL *head, WL elem) 3784wlist_add (WL *head, WL elem)
1030{ 3785{
1031 elem->next = *head; 3786 elem->next = *head;
1032 *head = elem; 3787 *head = elem;
1033} 3788}
1034 3789
1035inline void 3790inline_size void
1036wlist_del (WL *head, WL elem) 3791wlist_del (WL *head, WL elem)
1037{ 3792{
1038 while (*head) 3793 while (*head)
1039 { 3794 {
1040 if (*head == elem) 3795 if (expect_true (*head == elem))
1041 { 3796 {
1042 *head = elem->next; 3797 *head = elem->next;
1043 return; 3798 break;
1044 } 3799 }
1045 3800
1046 head = &(*head)->next; 3801 head = &(*head)->next;
1047 } 3802 }
1048} 3803}
1049 3804
3805/* internal, faster, version of ev_clear_pending */
1050inline void 3806inline_speed void
1051ev_clear_pending (EV_P_ W w) 3807clear_pending (EV_P_ W w)
1052{ 3808{
1053 if (w->pending) 3809 if (w->pending)
1054 { 3810 {
1055 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3811 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1056 w->pending = 0; 3812 w->pending = 0;
1057 } 3813 }
1058} 3814}
1059 3815
3816int
3817ev_clear_pending (EV_P_ void *w) EV_THROW
3818{
3819 W w_ = (W)w;
3820 int pending = w_->pending;
3821
3822 if (expect_true (pending))
3823 {
3824 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3825 p->w = (W)&pending_w;
3826 w_->pending = 0;
3827 return p->events;
3828 }
3829 else
3830 return 0;
3831}
3832
1060inline void 3833inline_size void
3834pri_adjust (EV_P_ W w)
3835{
3836 int pri = ev_priority (w);
3837 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3838 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3839 ev_set_priority (w, pri);
3840}
3841
3842inline_speed void
1061ev_start (EV_P_ W w, int active) 3843ev_start (EV_P_ W w, int active)
1062{ 3844{
1063 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 3845 pri_adjust (EV_A_ w);
1064 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1065
1066 w->active = active; 3846 w->active = active;
1067 ev_ref (EV_A); 3847 ev_ref (EV_A);
1068} 3848}
1069 3849
1070inline void 3850inline_size void
1071ev_stop (EV_P_ W w) 3851ev_stop (EV_P_ W w)
1072{ 3852{
1073 ev_unref (EV_A); 3853 ev_unref (EV_A);
1074 w->active = 0; 3854 w->active = 0;
1075} 3855}
1076 3856
1077/*****************************************************************************/ 3857/*****************************************************************************/
1078 3858
3859noinline
1079void 3860void
1080ev_io_start (EV_P_ struct ev_io *w) 3861ev_io_start (EV_P_ ev_io *w) EV_THROW
1081{ 3862{
1082 int fd = w->fd; 3863 int fd = w->fd;
1083 3864
1084 if (ev_is_active (w)) 3865 if (expect_false (ev_is_active (w)))
1085 return; 3866 return;
1086 3867
1087 assert (("ev_io_start called with negative fd", fd >= 0)); 3868 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3869 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3870
3871 EV_FREQUENT_CHECK;
1088 3872
1089 ev_start (EV_A_ (W)w, 1); 3873 ev_start (EV_A_ (W)w, 1);
1090 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 3874 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1091 wlist_add ((WL *)&anfds[fd].head, (WL)w); 3875 wlist_add (&anfds[fd].head, (WL)w);
1092 3876
1093 fd_change (EV_A_ fd); 3877 /* common bug, apparently */
1094} 3878 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
1095 3879
3880 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3881 w->events &= ~EV__IOFDSET;
3882
3883 EV_FREQUENT_CHECK;
3884}
3885
3886noinline
1096void 3887void
1097ev_io_stop (EV_P_ struct ev_io *w) 3888ev_io_stop (EV_P_ ev_io *w) EV_THROW
1098{ 3889{
1099 ev_clear_pending (EV_A_ (W)w); 3890 clear_pending (EV_A_ (W)w);
1100 if (!ev_is_active (w)) 3891 if (expect_false (!ev_is_active (w)))
1101 return; 3892 return;
1102 3893
3894 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3895
3896 EV_FREQUENT_CHECK;
3897
1103 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 3898 wlist_del (&anfds[w->fd].head, (WL)w);
1104 ev_stop (EV_A_ (W)w); 3899 ev_stop (EV_A_ (W)w);
1105 3900
1106 fd_change (EV_A_ w->fd); 3901 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1107}
1108 3902
3903 EV_FREQUENT_CHECK;
3904}
3905
3906noinline
1109void 3907void
1110ev_timer_start (EV_P_ struct ev_timer *w) 3908ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1111{ 3909{
1112 if (ev_is_active (w)) 3910 if (expect_false (ev_is_active (w)))
1113 return; 3911 return;
1114 3912
1115 w->at += mn_now; 3913 ev_at (w) += mn_now;
1116 3914
1117 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3915 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1118 3916
3917 EV_FREQUENT_CHECK;
3918
3919 ++timercnt;
1119 ev_start (EV_A_ (W)w, ++timercnt); 3920 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1120 array_needsize (timers, timermax, timercnt, ); 3921 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1121 timers [timercnt - 1] = w; 3922 ANHE_w (timers [ev_active (w)]) = (WT)w;
1122 upheap ((WT *)timers, timercnt - 1); 3923 ANHE_at_cache (timers [ev_active (w)]);
1123} 3924 upheap (timers, ev_active (w));
1124 3925
3926 EV_FREQUENT_CHECK;
3927
3928 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3929}
3930
3931noinline
1125void 3932void
1126ev_timer_stop (EV_P_ struct ev_timer *w) 3933ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1127{ 3934{
1128 ev_clear_pending (EV_A_ (W)w); 3935 clear_pending (EV_A_ (W)w);
1129 if (!ev_is_active (w)) 3936 if (expect_false (!ev_is_active (w)))
1130 return; 3937 return;
1131 3938
1132 if (w->active < timercnt--) 3939 EV_FREQUENT_CHECK;
3940
3941 {
3942 int active = ev_active (w);
3943
3944 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3945
3946 --timercnt;
3947
3948 if (expect_true (active < timercnt + HEAP0))
1133 { 3949 {
1134 timers [w->active - 1] = timers [timercnt]; 3950 timers [active] = timers [timercnt + HEAP0];
1135 downheap ((WT *)timers, timercnt, w->active - 1); 3951 adjustheap (timers, timercnt, active);
1136 } 3952 }
3953 }
1137 3954
1138 w->at = w->repeat; 3955 ev_at (w) -= mn_now;
1139 3956
1140 ev_stop (EV_A_ (W)w); 3957 ev_stop (EV_A_ (W)w);
1141}
1142 3958
3959 EV_FREQUENT_CHECK;
3960}
3961
3962noinline
1143void 3963void
1144ev_timer_again (EV_P_ struct ev_timer *w) 3964ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1145{ 3965{
3966 EV_FREQUENT_CHECK;
3967
3968 clear_pending (EV_A_ (W)w);
3969
1146 if (ev_is_active (w)) 3970 if (ev_is_active (w))
1147 { 3971 {
1148 if (w->repeat) 3972 if (w->repeat)
1149 { 3973 {
1150 w->at = mn_now + w->repeat; 3974 ev_at (w) = mn_now + w->repeat;
3975 ANHE_at_cache (timers [ev_active (w)]);
1151 downheap ((WT *)timers, timercnt, w->active - 1); 3976 adjustheap (timers, timercnt, ev_active (w));
1152 } 3977 }
1153 else 3978 else
1154 ev_timer_stop (EV_A_ w); 3979 ev_timer_stop (EV_A_ w);
1155 } 3980 }
1156 else if (w->repeat) 3981 else if (w->repeat)
3982 {
3983 ev_at (w) = w->repeat;
1157 ev_timer_start (EV_A_ w); 3984 ev_timer_start (EV_A_ w);
1158} 3985 }
1159 3986
3987 EV_FREQUENT_CHECK;
3988}
3989
3990ev_tstamp
3991ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3992{
3993 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3994}
3995
3996#if EV_PERIODIC_ENABLE
3997noinline
1160void 3998void
1161ev_periodic_start (EV_P_ struct ev_periodic *w) 3999ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1162{ 4000{
1163 if (ev_is_active (w)) 4001 if (expect_false (ev_is_active (w)))
1164 return; 4002 return;
1165 4003
4004 if (w->reschedule_cb)
4005 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
4006 else if (w->interval)
4007 {
1166 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 4008 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
4009 periodic_recalc (EV_A_ w);
4010 }
4011 else
4012 ev_at (w) = w->offset;
1167 4013
1168 /* this formula differs from the one in periodic_reify because we do not always round up */ 4014 EV_FREQUENT_CHECK;
1169 if (w->interval)
1170 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval;
1171 4015
4016 ++periodiccnt;
1172 ev_start (EV_A_ (W)w, ++periodiccnt); 4017 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1173 array_needsize (periodics, periodicmax, periodiccnt, ); 4018 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1174 periodics [periodiccnt - 1] = w; 4019 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1175 upheap ((WT *)periodics, periodiccnt - 1); 4020 ANHE_at_cache (periodics [ev_active (w)]);
1176} 4021 upheap (periodics, ev_active (w));
1177 4022
4023 EV_FREQUENT_CHECK;
4024
4025 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
4026}
4027
4028noinline
1178void 4029void
1179ev_periodic_stop (EV_P_ struct ev_periodic *w) 4030ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1180{ 4031{
1181 ev_clear_pending (EV_A_ (W)w); 4032 clear_pending (EV_A_ (W)w);
1182 if (!ev_is_active (w)) 4033 if (expect_false (!ev_is_active (w)))
1183 return; 4034 return;
1184 4035
1185 if (w->active < periodiccnt--) 4036 EV_FREQUENT_CHECK;
4037
4038 {
4039 int active = ev_active (w);
4040
4041 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
4042
4043 --periodiccnt;
4044
4045 if (expect_true (active < periodiccnt + HEAP0))
1186 { 4046 {
1187 periodics [w->active - 1] = periodics [periodiccnt]; 4047 periodics [active] = periodics [periodiccnt + HEAP0];
1188 downheap ((WT *)periodics, periodiccnt, w->active - 1); 4048 adjustheap (periodics, periodiccnt, active);
1189 } 4049 }
4050 }
1190 4051
1191 ev_stop (EV_A_ (W)w); 4052 ev_stop (EV_A_ (W)w);
1192}
1193 4053
1194void 4054 EV_FREQUENT_CHECK;
1195ev_idle_start (EV_P_ struct ev_idle *w)
1196{
1197 if (ev_is_active (w))
1198 return;
1199
1200 ev_start (EV_A_ (W)w, ++idlecnt);
1201 array_needsize (idles, idlemax, idlecnt, );
1202 idles [idlecnt - 1] = w;
1203} 4055}
1204 4056
4057noinline
1205void 4058void
1206ev_idle_stop (EV_P_ struct ev_idle *w) 4059ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1207{ 4060{
1208 ev_clear_pending (EV_A_ (W)w); 4061 /* TODO: use adjustheap and recalculation */
1209 if (ev_is_active (w))
1210 return;
1211
1212 idles [w->active - 1] = idles [--idlecnt];
1213 ev_stop (EV_A_ (W)w); 4062 ev_periodic_stop (EV_A_ w);
4063 ev_periodic_start (EV_A_ w);
1214} 4064}
1215 4065#endif
1216void
1217ev_prepare_start (EV_P_ struct ev_prepare *w)
1218{
1219 if (ev_is_active (w))
1220 return;
1221
1222 ev_start (EV_A_ (W)w, ++preparecnt);
1223 array_needsize (prepares, preparemax, preparecnt, );
1224 prepares [preparecnt - 1] = w;
1225}
1226
1227void
1228ev_prepare_stop (EV_P_ struct ev_prepare *w)
1229{
1230 ev_clear_pending (EV_A_ (W)w);
1231 if (ev_is_active (w))
1232 return;
1233
1234 prepares [w->active - 1] = prepares [--preparecnt];
1235 ev_stop (EV_A_ (W)w);
1236}
1237
1238void
1239ev_check_start (EV_P_ struct ev_check *w)
1240{
1241 if (ev_is_active (w))
1242 return;
1243
1244 ev_start (EV_A_ (W)w, ++checkcnt);
1245 array_needsize (checks, checkmax, checkcnt, );
1246 checks [checkcnt - 1] = w;
1247}
1248
1249void
1250ev_check_stop (EV_P_ struct ev_check *w)
1251{
1252 ev_clear_pending (EV_A_ (W)w);
1253 if (ev_is_active (w))
1254 return;
1255
1256 checks [w->active - 1] = checks [--checkcnt];
1257 ev_stop (EV_A_ (W)w);
1258}
1259 4066
1260#ifndef SA_RESTART 4067#ifndef SA_RESTART
1261# define SA_RESTART 0 4068# define SA_RESTART 0
1262#endif 4069#endif
1263 4070
4071#if EV_SIGNAL_ENABLE
4072
4073noinline
1264void 4074void
1265ev_signal_start (EV_P_ struct ev_signal *w) 4075ev_signal_start (EV_P_ ev_signal *w) EV_THROW
1266{ 4076{
4077 if (expect_false (ev_is_active (w)))
4078 return;
4079
4080 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4081
1267#if EV_MULTIPLICITY 4082#if EV_MULTIPLICITY
1268 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 4083 assert (("libev: a signal must not be attached to two different loops",
4084 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4085
4086 signals [w->signum - 1].loop = EV_A;
4087 ECB_MEMORY_FENCE_RELEASE;
4088#endif
4089
4090 EV_FREQUENT_CHECK;
4091
4092#if EV_USE_SIGNALFD
4093 if (sigfd == -2)
4094 {
4095 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
4096 if (sigfd < 0 && errno == EINVAL)
4097 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
4098
4099 if (sigfd >= 0)
4100 {
4101 fd_intern (sigfd); /* doing it twice will not hurt */
4102
4103 sigemptyset (&sigfd_set);
4104
4105 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4106 ev_set_priority (&sigfd_w, EV_MAXPRI);
4107 ev_io_start (EV_A_ &sigfd_w);
4108 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4109 }
4110 }
4111
4112 if (sigfd >= 0)
4113 {
4114 /* TODO: check .head */
4115 sigaddset (&sigfd_set, w->signum);
4116 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4117
4118 signalfd (sigfd, &sigfd_set, 0);
4119 }
4120#endif
4121
4122 ev_start (EV_A_ (W)w, 1);
4123 wlist_add (&signals [w->signum - 1].head, (WL)w);
4124
4125 if (!((WL)w)->next)
4126# if EV_USE_SIGNALFD
4127 if (sigfd < 0) /*TODO*/
1269#endif 4128# endif
1270 if (ev_is_active (w)) 4129 {
4130# ifdef _WIN32
4131 evpipe_init (EV_A);
4132
4133 signal (w->signum, ev_sighandler);
4134# else
4135 struct sigaction sa;
4136
4137 evpipe_init (EV_A);
4138
4139 sa.sa_handler = ev_sighandler;
4140 sigfillset (&sa.sa_mask);
4141 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
4142 sigaction (w->signum, &sa, 0);
4143
4144 if (origflags & EVFLAG_NOSIGMASK)
4145 {
4146 sigemptyset (&sa.sa_mask);
4147 sigaddset (&sa.sa_mask, w->signum);
4148 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4149 }
4150#endif
4151 }
4152
4153 EV_FREQUENT_CHECK;
4154}
4155
4156noinline
4157void
4158ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
4159{
4160 clear_pending (EV_A_ (W)w);
4161 if (expect_false (!ev_is_active (w)))
1271 return; 4162 return;
1272 4163
1273 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 4164 EV_FREQUENT_CHECK;
4165
4166 wlist_del (&signals [w->signum - 1].head, (WL)w);
4167 ev_stop (EV_A_ (W)w);
4168
4169 if (!signals [w->signum - 1].head)
4170 {
4171#if EV_MULTIPLICITY
4172 signals [w->signum - 1].loop = 0; /* unattach from signal */
4173#endif
4174#if EV_USE_SIGNALFD
4175 if (sigfd >= 0)
4176 {
4177 sigset_t ss;
4178
4179 sigemptyset (&ss);
4180 sigaddset (&ss, w->signum);
4181 sigdelset (&sigfd_set, w->signum);
4182
4183 signalfd (sigfd, &sigfd_set, 0);
4184 sigprocmask (SIG_UNBLOCK, &ss, 0);
4185 }
4186 else
4187#endif
4188 signal (w->signum, SIG_DFL);
4189 }
4190
4191 EV_FREQUENT_CHECK;
4192}
4193
4194#endif
4195
4196#if EV_CHILD_ENABLE
4197
4198void
4199ev_child_start (EV_P_ ev_child *w) EV_THROW
4200{
4201#if EV_MULTIPLICITY
4202 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
4203#endif
4204 if (expect_false (ev_is_active (w)))
4205 return;
4206
4207 EV_FREQUENT_CHECK;
1274 4208
1275 ev_start (EV_A_ (W)w, 1); 4209 ev_start (EV_A_ (W)w, 1);
1276 array_needsize (signals, signalmax, w->signum, signals_init); 4210 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1277 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1278 4211
1279 if (!w->next) 4212 EV_FREQUENT_CHECK;
1280 {
1281 struct sigaction sa;
1282 sa.sa_handler = sighandler;
1283 sigfillset (&sa.sa_mask);
1284 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1285 sigaction (w->signum, &sa, 0);
1286 }
1287} 4213}
1288 4214
1289void 4215void
1290ev_signal_stop (EV_P_ struct ev_signal *w) 4216ev_child_stop (EV_P_ ev_child *w) EV_THROW
1291{ 4217{
1292 ev_clear_pending (EV_A_ (W)w); 4218 clear_pending (EV_A_ (W)w);
1293 if (!ev_is_active (w)) 4219 if (expect_false (!ev_is_active (w)))
1294 return; 4220 return;
1295 4221
1296 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 4222 EV_FREQUENT_CHECK;
4223
4224 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1297 ev_stop (EV_A_ (W)w); 4225 ev_stop (EV_A_ (W)w);
1298 4226
1299 if (!signals [w->signum - 1].head) 4227 EV_FREQUENT_CHECK;
1300 signal (w->signum, SIG_DFL);
1301} 4228}
1302 4229
1303void 4230#endif
1304ev_child_start (EV_P_ struct ev_child *w) 4231
1305{ 4232#if EV_STAT_ENABLE
1306#if EV_MULTIPLICITY 4233
1307 assert (("child watchers are only supported in the default loop", loop == default_loop)); 4234# ifdef _WIN32
4235# undef lstat
4236# define lstat(a,b) _stati64 (a,b)
1308#endif 4237# endif
1309 if (ev_is_active (w)) 4238
4239#define DEF_STAT_INTERVAL 5.0074891
4240#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4241#define MIN_STAT_INTERVAL 0.1074891
4242
4243noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4244
4245#if EV_USE_INOTIFY
4246
4247/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4248# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4249
4250noinline
4251static void
4252infy_add (EV_P_ ev_stat *w)
4253{
4254 w->wd = inotify_add_watch (fs_fd, w->path,
4255 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4256 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4257 | IN_DONT_FOLLOW | IN_MASK_ADD);
4258
4259 if (w->wd >= 0)
4260 {
4261 struct statfs sfs;
4262
4263 /* now local changes will be tracked by inotify, but remote changes won't */
4264 /* unless the filesystem is known to be local, we therefore still poll */
4265 /* also do poll on <2.6.25, but with normal frequency */
4266
4267 if (!fs_2625)
4268 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4269 else if (!statfs (w->path, &sfs)
4270 && (sfs.f_type == 0x1373 /* devfs */
4271 || sfs.f_type == 0x4006 /* fat */
4272 || sfs.f_type == 0x4d44 /* msdos */
4273 || sfs.f_type == 0xEF53 /* ext2/3 */
4274 || sfs.f_type == 0x72b6 /* jffs2 */
4275 || sfs.f_type == 0x858458f6 /* ramfs */
4276 || sfs.f_type == 0x5346544e /* ntfs */
4277 || sfs.f_type == 0x3153464a /* jfs */
4278 || sfs.f_type == 0x9123683e /* btrfs */
4279 || sfs.f_type == 0x52654973 /* reiser3 */
4280 || sfs.f_type == 0x01021994 /* tmpfs */
4281 || sfs.f_type == 0x58465342 /* xfs */))
4282 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4283 else
4284 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
4285 }
4286 else
4287 {
4288 /* can't use inotify, continue to stat */
4289 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4290
4291 /* if path is not there, monitor some parent directory for speedup hints */
4292 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4293 /* but an efficiency issue only */
4294 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4295 {
4296 char path [4096];
4297 strcpy (path, w->path);
4298
4299 do
4300 {
4301 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4302 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4303
4304 char *pend = strrchr (path, '/');
4305
4306 if (!pend || pend == path)
4307 break;
4308
4309 *pend = 0;
4310 w->wd = inotify_add_watch (fs_fd, path, mask);
4311 }
4312 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4313 }
4314 }
4315
4316 if (w->wd >= 0)
4317 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4318
4319 /* now re-arm timer, if required */
4320 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4321 ev_timer_again (EV_A_ &w->timer);
4322 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4323}
4324
4325noinline
4326static void
4327infy_del (EV_P_ ev_stat *w)
4328{
4329 int slot;
4330 int wd = w->wd;
4331
4332 if (wd < 0)
1310 return; 4333 return;
1311 4334
4335 w->wd = -2;
4336 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4337 wlist_del (&fs_hash [slot].head, (WL)w);
4338
4339 /* remove this watcher, if others are watching it, they will rearm */
4340 inotify_rm_watch (fs_fd, wd);
4341}
4342
4343noinline
4344static void
4345infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4346{
4347 if (slot < 0)
4348 /* overflow, need to check for all hash slots */
4349 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4350 infy_wd (EV_A_ slot, wd, ev);
4351 else
4352 {
4353 WL w_;
4354
4355 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4356 {
4357 ev_stat *w = (ev_stat *)w_;
4358 w_ = w_->next; /* lets us remove this watcher and all before it */
4359
4360 if (w->wd == wd || wd == -1)
4361 {
4362 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4363 {
4364 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4365 w->wd = -1;
4366 infy_add (EV_A_ w); /* re-add, no matter what */
4367 }
4368
4369 stat_timer_cb (EV_A_ &w->timer, 0);
4370 }
4371 }
4372 }
4373}
4374
4375static void
4376infy_cb (EV_P_ ev_io *w, int revents)
4377{
4378 char buf [EV_INOTIFY_BUFSIZE];
4379 int ofs;
4380 int len = read (fs_fd, buf, sizeof (buf));
4381
4382 for (ofs = 0; ofs < len; )
4383 {
4384 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4385 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4386 ofs += sizeof (struct inotify_event) + ev->len;
4387 }
4388}
4389
4390inline_size ecb_cold
4391void
4392ev_check_2625 (EV_P)
4393{
4394 /* kernels < 2.6.25 are borked
4395 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4396 */
4397 if (ev_linux_version () < 0x020619)
4398 return;
4399
4400 fs_2625 = 1;
4401}
4402
4403inline_size int
4404infy_newfd (void)
4405{
4406#if defined IN_CLOEXEC && defined IN_NONBLOCK
4407 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4408 if (fd >= 0)
4409 return fd;
4410#endif
4411 return inotify_init ();
4412}
4413
4414inline_size void
4415infy_init (EV_P)
4416{
4417 if (fs_fd != -2)
4418 return;
4419
4420 fs_fd = -1;
4421
4422 ev_check_2625 (EV_A);
4423
4424 fs_fd = infy_newfd ();
4425
4426 if (fs_fd >= 0)
4427 {
4428 fd_intern (fs_fd);
4429 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4430 ev_set_priority (&fs_w, EV_MAXPRI);
4431 ev_io_start (EV_A_ &fs_w);
4432 ev_unref (EV_A);
4433 }
4434}
4435
4436inline_size void
4437infy_fork (EV_P)
4438{
4439 int slot;
4440
4441 if (fs_fd < 0)
4442 return;
4443
4444 ev_ref (EV_A);
4445 ev_io_stop (EV_A_ &fs_w);
4446 close (fs_fd);
4447 fs_fd = infy_newfd ();
4448
4449 if (fs_fd >= 0)
4450 {
4451 fd_intern (fs_fd);
4452 ev_io_set (&fs_w, fs_fd, EV_READ);
4453 ev_io_start (EV_A_ &fs_w);
4454 ev_unref (EV_A);
4455 }
4456
4457 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4458 {
4459 WL w_ = fs_hash [slot].head;
4460 fs_hash [slot].head = 0;
4461
4462 while (w_)
4463 {
4464 ev_stat *w = (ev_stat *)w_;
4465 w_ = w_->next; /* lets us add this watcher */
4466
4467 w->wd = -1;
4468
4469 if (fs_fd >= 0)
4470 infy_add (EV_A_ w); /* re-add, no matter what */
4471 else
4472 {
4473 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4474 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4475 ev_timer_again (EV_A_ &w->timer);
4476 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4477 }
4478 }
4479 }
4480}
4481
4482#endif
4483
4484#ifdef _WIN32
4485# define EV_LSTAT(p,b) _stati64 (p, b)
4486#else
4487# define EV_LSTAT(p,b) lstat (p, b)
4488#endif
4489
4490void
4491ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
4492{
4493 if (lstat (w->path, &w->attr) < 0)
4494 w->attr.st_nlink = 0;
4495 else if (!w->attr.st_nlink)
4496 w->attr.st_nlink = 1;
4497}
4498
4499noinline
4500static void
4501stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4502{
4503 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4504
4505 ev_statdata prev = w->attr;
4506 ev_stat_stat (EV_A_ w);
4507
4508 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4509 if (
4510 prev.st_dev != w->attr.st_dev
4511 || prev.st_ino != w->attr.st_ino
4512 || prev.st_mode != w->attr.st_mode
4513 || prev.st_nlink != w->attr.st_nlink
4514 || prev.st_uid != w->attr.st_uid
4515 || prev.st_gid != w->attr.st_gid
4516 || prev.st_rdev != w->attr.st_rdev
4517 || prev.st_size != w->attr.st_size
4518 || prev.st_atime != w->attr.st_atime
4519 || prev.st_mtime != w->attr.st_mtime
4520 || prev.st_ctime != w->attr.st_ctime
4521 ) {
4522 /* we only update w->prev on actual differences */
4523 /* in case we test more often than invoke the callback, */
4524 /* to ensure that prev is always different to attr */
4525 w->prev = prev;
4526
4527 #if EV_USE_INOTIFY
4528 if (fs_fd >= 0)
4529 {
4530 infy_del (EV_A_ w);
4531 infy_add (EV_A_ w);
4532 ev_stat_stat (EV_A_ w); /* avoid race... */
4533 }
4534 #endif
4535
4536 ev_feed_event (EV_A_ w, EV_STAT);
4537 }
4538}
4539
4540void
4541ev_stat_start (EV_P_ ev_stat *w) EV_THROW
4542{
4543 if (expect_false (ev_is_active (w)))
4544 return;
4545
4546 ev_stat_stat (EV_A_ w);
4547
4548 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4549 w->interval = MIN_STAT_INTERVAL;
4550
4551 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4552 ev_set_priority (&w->timer, ev_priority (w));
4553
4554#if EV_USE_INOTIFY
4555 infy_init (EV_A);
4556
4557 if (fs_fd >= 0)
4558 infy_add (EV_A_ w);
4559 else
4560#endif
4561 {
4562 ev_timer_again (EV_A_ &w->timer);
4563 ev_unref (EV_A);
4564 }
4565
1312 ev_start (EV_A_ (W)w, 1); 4566 ev_start (EV_A_ (W)w, 1);
1313 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1314}
1315 4567
4568 EV_FREQUENT_CHECK;
4569}
4570
1316void 4571void
1317ev_child_stop (EV_P_ struct ev_child *w) 4572ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
1318{ 4573{
1319 ev_clear_pending (EV_A_ (W)w); 4574 clear_pending (EV_A_ (W)w);
1320 if (ev_is_active (w)) 4575 if (expect_false (!ev_is_active (w)))
1321 return; 4576 return;
1322 4577
1323 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4578 EV_FREQUENT_CHECK;
4579
4580#if EV_USE_INOTIFY
4581 infy_del (EV_A_ w);
4582#endif
4583
4584 if (ev_is_active (&w->timer))
4585 {
4586 ev_ref (EV_A);
4587 ev_timer_stop (EV_A_ &w->timer);
4588 }
4589
1324 ev_stop (EV_A_ (W)w); 4590 ev_stop (EV_A_ (W)w);
4591
4592 EV_FREQUENT_CHECK;
1325} 4593}
4594#endif
4595
4596#if EV_IDLE_ENABLE
4597void
4598ev_idle_start (EV_P_ ev_idle *w) EV_THROW
4599{
4600 if (expect_false (ev_is_active (w)))
4601 return;
4602
4603 pri_adjust (EV_A_ (W)w);
4604
4605 EV_FREQUENT_CHECK;
4606
4607 {
4608 int active = ++idlecnt [ABSPRI (w)];
4609
4610 ++idleall;
4611 ev_start (EV_A_ (W)w, active);
4612
4613 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
4614 idles [ABSPRI (w)][active - 1] = w;
4615 }
4616
4617 EV_FREQUENT_CHECK;
4618}
4619
4620void
4621ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
4622{
4623 clear_pending (EV_A_ (W)w);
4624 if (expect_false (!ev_is_active (w)))
4625 return;
4626
4627 EV_FREQUENT_CHECK;
4628
4629 {
4630 int active = ev_active (w);
4631
4632 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4633 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4634
4635 ev_stop (EV_A_ (W)w);
4636 --idleall;
4637 }
4638
4639 EV_FREQUENT_CHECK;
4640}
4641#endif
4642
4643#if EV_PREPARE_ENABLE
4644void
4645ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4646{
4647 if (expect_false (ev_is_active (w)))
4648 return;
4649
4650 EV_FREQUENT_CHECK;
4651
4652 ev_start (EV_A_ (W)w, ++preparecnt);
4653 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4654 prepares [preparecnt - 1] = w;
4655
4656 EV_FREQUENT_CHECK;
4657}
4658
4659void
4660ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4661{
4662 clear_pending (EV_A_ (W)w);
4663 if (expect_false (!ev_is_active (w)))
4664 return;
4665
4666 EV_FREQUENT_CHECK;
4667
4668 {
4669 int active = ev_active (w);
4670
4671 prepares [active - 1] = prepares [--preparecnt];
4672 ev_active (prepares [active - 1]) = active;
4673 }
4674
4675 ev_stop (EV_A_ (W)w);
4676
4677 EV_FREQUENT_CHECK;
4678}
4679#endif
4680
4681#if EV_CHECK_ENABLE
4682void
4683ev_check_start (EV_P_ ev_check *w) EV_THROW
4684{
4685 if (expect_false (ev_is_active (w)))
4686 return;
4687
4688 EV_FREQUENT_CHECK;
4689
4690 ev_start (EV_A_ (W)w, ++checkcnt);
4691 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4692 checks [checkcnt - 1] = w;
4693
4694 EV_FREQUENT_CHECK;
4695}
4696
4697void
4698ev_check_stop (EV_P_ ev_check *w) EV_THROW
4699{
4700 clear_pending (EV_A_ (W)w);
4701 if (expect_false (!ev_is_active (w)))
4702 return;
4703
4704 EV_FREQUENT_CHECK;
4705
4706 {
4707 int active = ev_active (w);
4708
4709 checks [active - 1] = checks [--checkcnt];
4710 ev_active (checks [active - 1]) = active;
4711 }
4712
4713 ev_stop (EV_A_ (W)w);
4714
4715 EV_FREQUENT_CHECK;
4716}
4717#endif
4718
4719#if EV_EMBED_ENABLE
4720noinline
4721void
4722ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4723{
4724 ev_run (w->other, EVRUN_NOWAIT);
4725}
4726
4727static void
4728embed_io_cb (EV_P_ ev_io *io, int revents)
4729{
4730 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4731
4732 if (ev_cb (w))
4733 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4734 else
4735 ev_run (w->other, EVRUN_NOWAIT);
4736}
4737
4738static void
4739embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4740{
4741 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4742
4743 {
4744 EV_P = w->other;
4745
4746 while (fdchangecnt)
4747 {
4748 fd_reify (EV_A);
4749 ev_run (EV_A_ EVRUN_NOWAIT);
4750 }
4751 }
4752}
4753
4754static void
4755embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4756{
4757 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4758
4759 ev_embed_stop (EV_A_ w);
4760
4761 {
4762 EV_P = w->other;
4763
4764 ev_loop_fork (EV_A);
4765 ev_run (EV_A_ EVRUN_NOWAIT);
4766 }
4767
4768 ev_embed_start (EV_A_ w);
4769}
4770
4771#if 0
4772static void
4773embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4774{
4775 ev_idle_stop (EV_A_ idle);
4776}
4777#endif
4778
4779void
4780ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4781{
4782 if (expect_false (ev_is_active (w)))
4783 return;
4784
4785 {
4786 EV_P = w->other;
4787 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4788 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4789 }
4790
4791 EV_FREQUENT_CHECK;
4792
4793 ev_set_priority (&w->io, ev_priority (w));
4794 ev_io_start (EV_A_ &w->io);
4795
4796 ev_prepare_init (&w->prepare, embed_prepare_cb);
4797 ev_set_priority (&w->prepare, EV_MINPRI);
4798 ev_prepare_start (EV_A_ &w->prepare);
4799
4800 ev_fork_init (&w->fork, embed_fork_cb);
4801 ev_fork_start (EV_A_ &w->fork);
4802
4803 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4804
4805 ev_start (EV_A_ (W)w, 1);
4806
4807 EV_FREQUENT_CHECK;
4808}
4809
4810void
4811ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4812{
4813 clear_pending (EV_A_ (W)w);
4814 if (expect_false (!ev_is_active (w)))
4815 return;
4816
4817 EV_FREQUENT_CHECK;
4818
4819 ev_io_stop (EV_A_ &w->io);
4820 ev_prepare_stop (EV_A_ &w->prepare);
4821 ev_fork_stop (EV_A_ &w->fork);
4822
4823 ev_stop (EV_A_ (W)w);
4824
4825 EV_FREQUENT_CHECK;
4826}
4827#endif
4828
4829#if EV_FORK_ENABLE
4830void
4831ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4832{
4833 if (expect_false (ev_is_active (w)))
4834 return;
4835
4836 EV_FREQUENT_CHECK;
4837
4838 ev_start (EV_A_ (W)w, ++forkcnt);
4839 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4840 forks [forkcnt - 1] = w;
4841
4842 EV_FREQUENT_CHECK;
4843}
4844
4845void
4846ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4847{
4848 clear_pending (EV_A_ (W)w);
4849 if (expect_false (!ev_is_active (w)))
4850 return;
4851
4852 EV_FREQUENT_CHECK;
4853
4854 {
4855 int active = ev_active (w);
4856
4857 forks [active - 1] = forks [--forkcnt];
4858 ev_active (forks [active - 1]) = active;
4859 }
4860
4861 ev_stop (EV_A_ (W)w);
4862
4863 EV_FREQUENT_CHECK;
4864}
4865#endif
4866
4867#if EV_CLEANUP_ENABLE
4868void
4869ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4870{
4871 if (expect_false (ev_is_active (w)))
4872 return;
4873
4874 EV_FREQUENT_CHECK;
4875
4876 ev_start (EV_A_ (W)w, ++cleanupcnt);
4877 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4878 cleanups [cleanupcnt - 1] = w;
4879
4880 /* cleanup watchers should never keep a refcount on the loop */
4881 ev_unref (EV_A);
4882 EV_FREQUENT_CHECK;
4883}
4884
4885void
4886ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4887{
4888 clear_pending (EV_A_ (W)w);
4889 if (expect_false (!ev_is_active (w)))
4890 return;
4891
4892 EV_FREQUENT_CHECK;
4893 ev_ref (EV_A);
4894
4895 {
4896 int active = ev_active (w);
4897
4898 cleanups [active - 1] = cleanups [--cleanupcnt];
4899 ev_active (cleanups [active - 1]) = active;
4900 }
4901
4902 ev_stop (EV_A_ (W)w);
4903
4904 EV_FREQUENT_CHECK;
4905}
4906#endif
4907
4908#if EV_ASYNC_ENABLE
4909void
4910ev_async_start (EV_P_ ev_async *w) EV_THROW
4911{
4912 if (expect_false (ev_is_active (w)))
4913 return;
4914
4915 w->sent = 0;
4916
4917 evpipe_init (EV_A);
4918
4919 EV_FREQUENT_CHECK;
4920
4921 ev_start (EV_A_ (W)w, ++asynccnt);
4922 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4923 asyncs [asynccnt - 1] = w;
4924
4925 EV_FREQUENT_CHECK;
4926}
4927
4928void
4929ev_async_stop (EV_P_ ev_async *w) EV_THROW
4930{
4931 clear_pending (EV_A_ (W)w);
4932 if (expect_false (!ev_is_active (w)))
4933 return;
4934
4935 EV_FREQUENT_CHECK;
4936
4937 {
4938 int active = ev_active (w);
4939
4940 asyncs [active - 1] = asyncs [--asynccnt];
4941 ev_active (asyncs [active - 1]) = active;
4942 }
4943
4944 ev_stop (EV_A_ (W)w);
4945
4946 EV_FREQUENT_CHECK;
4947}
4948
4949void
4950ev_async_send (EV_P_ ev_async *w) EV_THROW
4951{
4952 w->sent = 1;
4953 evpipe_write (EV_A_ &async_pending);
4954}
4955#endif
1326 4956
1327/*****************************************************************************/ 4957/*****************************************************************************/
1328 4958
1329struct ev_once 4959struct ev_once
1330{ 4960{
1331 struct ev_io io; 4961 ev_io io;
1332 struct ev_timer to; 4962 ev_timer to;
1333 void (*cb)(int revents, void *arg); 4963 void (*cb)(int revents, void *arg);
1334 void *arg; 4964 void *arg;
1335}; 4965};
1336 4966
1337static void 4967static void
1338once_cb (EV_P_ struct ev_once *once, int revents) 4968once_cb (EV_P_ struct ev_once *once, int revents)
1339{ 4969{
1340 void (*cb)(int revents, void *arg) = once->cb; 4970 void (*cb)(int revents, void *arg) = once->cb;
1341 void *arg = once->arg; 4971 void *arg = once->arg;
1342 4972
1343 ev_io_stop (EV_A_ &once->io); 4973 ev_io_stop (EV_A_ &once->io);
1344 ev_timer_stop (EV_A_ &once->to); 4974 ev_timer_stop (EV_A_ &once->to);
1345 free (once); 4975 ev_free (once);
1346 4976
1347 cb (revents, arg); 4977 cb (revents, arg);
1348} 4978}
1349 4979
1350static void 4980static void
1351once_cb_io (EV_P_ struct ev_io *w, int revents) 4981once_cb_io (EV_P_ ev_io *w, int revents)
1352{ 4982{
1353 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4983 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4984
4985 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1354} 4986}
1355 4987
1356static void 4988static void
1357once_cb_to (EV_P_ struct ev_timer *w, int revents) 4989once_cb_to (EV_P_ ev_timer *w, int revents)
1358{ 4990{
1359 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4991 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
1360}
1361 4992
4993 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4994}
4995
1362void 4996void
1363ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4997ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
1364{ 4998{
1365 struct ev_once *once = malloc (sizeof (struct ev_once)); 4999 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1366 5000
1367 if (!once) 5001 if (expect_false (!once))
5002 {
1368 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 5003 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1369 else 5004 return;
1370 { 5005 }
5006
1371 once->cb = cb; 5007 once->cb = cb;
1372 once->arg = arg; 5008 once->arg = arg;
1373 5009
1374 ev_watcher_init (&once->io, once_cb_io); 5010 ev_init (&once->io, once_cb_io);
1375 if (fd >= 0) 5011 if (fd >= 0)
5012 {
5013 ev_io_set (&once->io, fd, events);
5014 ev_io_start (EV_A_ &once->io);
5015 }
5016
5017 ev_init (&once->to, once_cb_to);
5018 if (timeout >= 0.)
5019 {
5020 ev_timer_set (&once->to, timeout, 0.);
5021 ev_timer_start (EV_A_ &once->to);
5022 }
5023}
5024
5025/*****************************************************************************/
5026
5027#if EV_WALK_ENABLE
5028ecb_cold
5029void
5030ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
5031{
5032 int i, j;
5033 ev_watcher_list *wl, *wn;
5034
5035 if (types & (EV_IO | EV_EMBED))
5036 for (i = 0; i < anfdmax; ++i)
5037 for (wl = anfds [i].head; wl; )
1376 { 5038 {
1377 ev_io_set (&once->io, fd, events); 5039 wn = wl->next;
1378 ev_io_start (EV_A_ &once->io); 5040
5041#if EV_EMBED_ENABLE
5042 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5043 {
5044 if (types & EV_EMBED)
5045 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5046 }
5047 else
5048#endif
5049#if EV_USE_INOTIFY
5050 if (ev_cb ((ev_io *)wl) == infy_cb)
5051 ;
5052 else
5053#endif
5054 if ((ev_io *)wl != &pipe_w)
5055 if (types & EV_IO)
5056 cb (EV_A_ EV_IO, wl);
5057
5058 wl = wn;
1379 } 5059 }
1380 5060
1381 ev_watcher_init (&once->to, once_cb_to); 5061 if (types & (EV_TIMER | EV_STAT))
1382 if (timeout >= 0.) 5062 for (i = timercnt + HEAP0; i-- > HEAP0; )
5063#if EV_STAT_ENABLE
5064 /*TODO: timer is not always active*/
5065 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1383 { 5066 {
1384 ev_timer_set (&once->to, timeout, 0.); 5067 if (types & EV_STAT)
1385 ev_timer_start (EV_A_ &once->to); 5068 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1386 } 5069 }
1387 } 5070 else
1388} 5071#endif
5072 if (types & EV_TIMER)
5073 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1389 5074
5075#if EV_PERIODIC_ENABLE
5076 if (types & EV_PERIODIC)
5077 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5078 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5079#endif
5080
5081#if EV_IDLE_ENABLE
5082 if (types & EV_IDLE)
5083 for (j = NUMPRI; j--; )
5084 for (i = idlecnt [j]; i--; )
5085 cb (EV_A_ EV_IDLE, idles [j][i]);
5086#endif
5087
5088#if EV_FORK_ENABLE
5089 if (types & EV_FORK)
5090 for (i = forkcnt; i--; )
5091 if (ev_cb (forks [i]) != embed_fork_cb)
5092 cb (EV_A_ EV_FORK, forks [i]);
5093#endif
5094
5095#if EV_ASYNC_ENABLE
5096 if (types & EV_ASYNC)
5097 for (i = asynccnt; i--; )
5098 cb (EV_A_ EV_ASYNC, asyncs [i]);
5099#endif
5100
5101#if EV_PREPARE_ENABLE
5102 if (types & EV_PREPARE)
5103 for (i = preparecnt; i--; )
5104# if EV_EMBED_ENABLE
5105 if (ev_cb (prepares [i]) != embed_prepare_cb)
5106# endif
5107 cb (EV_A_ EV_PREPARE, prepares [i]);
5108#endif
5109
5110#if EV_CHECK_ENABLE
5111 if (types & EV_CHECK)
5112 for (i = checkcnt; i--; )
5113 cb (EV_A_ EV_CHECK, checks [i]);
5114#endif
5115
5116#if EV_SIGNAL_ENABLE
5117 if (types & EV_SIGNAL)
5118 for (i = 0; i < EV_NSIG - 1; ++i)
5119 for (wl = signals [i].head; wl; )
5120 {
5121 wn = wl->next;
5122 cb (EV_A_ EV_SIGNAL, wl);
5123 wl = wn;
5124 }
5125#endif
5126
5127#if EV_CHILD_ENABLE
5128 if (types & EV_CHILD)
5129 for (i = (EV_PID_HASHSIZE); i--; )
5130 for (wl = childs [i]; wl; )
5131 {
5132 wn = wl->next;
5133 cb (EV_A_ EV_CHILD, wl);
5134 wl = wn;
5135 }
5136#endif
5137/* EV_STAT 0x00001000 /* stat data changed */
5138/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5139}
5140#endif
5141
5142#if EV_MULTIPLICITY
5143 #include "ev_wrap.h"
5144#endif
5145

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines