ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.120 by root, Fri Nov 16 01:54:25 2007 UTC vs.
Revision 1.483 by root, Tue Jul 31 04:45:58 2018 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
37# include "config.h" 45# include "config.h"
46# endif
47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
38 67
39# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
42# endif 71# endif
43# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
74# endif
75# else
76# ifndef EV_USE_MONOTONIC
77# define EV_USE_MONOTONIC 0
78# endif
79# ifndef EV_USE_REALTIME
80# define EV_USE_REALTIME 0
45# endif 81# endif
46# endif 82# endif
47 83
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 84# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
50# endif 91# endif
51 92
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
53# define EV_USE_POLL 1 99# define EV_USE_SELECT 0
54# endif 100# endif
55 101
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
57# define EV_USE_EPOLL 1 108# define EV_USE_POLL 0
58# endif 109# endif
59 110
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
62# endif 118# endif
63 119
64# if HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT) 120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
65# define EV_USE_PORT 1 121# ifndef EV_USE_KQUEUE
122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
66# endif 127# endif
67 128
129# if HAVE_PORT_H && HAVE_PORT_CREATE
130# ifndef EV_USE_PORT
131# define EV_USE_PORT EV_FEATURE_BACKENDS
132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
68#endif 136# endif
69 137
70#include <math.h> 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
145# endif
146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
167/* OS X, in its infinite idiocy, actually HARDCODES
168 * a limit of 1024 into their select. Where people have brains,
169 * OS X engineers apparently have a vacuum. Or maybe they were
170 * ordered to have a vacuum, or they do anything for money.
171 * This might help. Or not.
172 * Note that this must be defined early, as other include files
173 * will rely on this define as well.
174 */
175#define _DARWIN_UNLIMITED_SELECT 1
176
71#include <stdlib.h> 177#include <stdlib.h>
178#include <string.h>
72#include <fcntl.h> 179#include <fcntl.h>
73#include <stddef.h> 180#include <stddef.h>
74 181
75#include <stdio.h> 182#include <stdio.h>
76 183
77#include <assert.h> 184#include <assert.h>
78#include <errno.h> 185#include <errno.h>
79#include <sys/types.h> 186#include <sys/types.h>
80#include <time.h> 187#include <time.h>
188#include <limits.h>
81 189
82#include <signal.h> 190#include <signal.h>
83 191
192#ifdef EV_H
193# include EV_H
194#else
195# include "ev.h"
196#endif
197
198#if EV_NO_THREADS
199# undef EV_NO_SMP
200# define EV_NO_SMP 1
201# undef ECB_NO_THREADS
202# define ECB_NO_THREADS 1
203#endif
204#if EV_NO_SMP
205# undef EV_NO_SMP
206# define ECB_NO_SMP 1
207#endif
208
84#ifndef _WIN32 209#ifndef _WIN32
85# include <unistd.h>
86# include <sys/time.h> 210# include <sys/time.h>
87# include <sys/wait.h> 211# include <sys/wait.h>
212# include <unistd.h>
88#else 213#else
214# include <io.h>
89# define WIN32_LEAN_AND_MEAN 215# define WIN32_LEAN_AND_MEAN
216# include <winsock2.h>
90# include <windows.h> 217# include <windows.h>
91# ifndef EV_SELECT_IS_WINSOCKET 218# ifndef EV_SELECT_IS_WINSOCKET
92# define EV_SELECT_IS_WINSOCKET 1 219# define EV_SELECT_IS_WINSOCKET 1
93# endif 220# endif
221# undef EV_AVOID_STDIO
222#endif
223
224/* this block tries to deduce configuration from header-defined symbols and defaults */
225
226/* try to deduce the maximum number of signals on this platform */
227#if defined EV_NSIG
228/* use what's provided */
229#elif defined NSIG
230# define EV_NSIG (NSIG)
231#elif defined _NSIG
232# define EV_NSIG (_NSIG)
233#elif defined SIGMAX
234# define EV_NSIG (SIGMAX+1)
235#elif defined SIG_MAX
236# define EV_NSIG (SIG_MAX+1)
237#elif defined _SIG_MAX
238# define EV_NSIG (_SIG_MAX+1)
239#elif defined MAXSIG
240# define EV_NSIG (MAXSIG+1)
241#elif defined MAX_SIG
242# define EV_NSIG (MAX_SIG+1)
243#elif defined SIGARRAYSIZE
244# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
245#elif defined _sys_nsig
246# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
247#else
248# define EV_NSIG (8 * sizeof (sigset_t) + 1)
249#endif
250
251#ifndef EV_USE_FLOOR
252# define EV_USE_FLOOR 0
253#endif
254
255#ifndef EV_USE_CLOCK_SYSCALL
256# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
257# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
258# else
259# define EV_USE_CLOCK_SYSCALL 0
94#endif 260# endif
261#endif
95 262
96/**/ 263#if !(_POSIX_TIMERS > 0)
264# ifndef EV_USE_MONOTONIC
265# define EV_USE_MONOTONIC 0
266# endif
267# ifndef EV_USE_REALTIME
268# define EV_USE_REALTIME 0
269# endif
270#endif
97 271
98#ifndef EV_USE_MONOTONIC 272#ifndef EV_USE_MONOTONIC
273# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
274# define EV_USE_MONOTONIC EV_FEATURE_OS
275# else
99# define EV_USE_MONOTONIC 1 276# define EV_USE_MONOTONIC 0
277# endif
100#endif 278#endif
101 279
102#ifndef EV_USE_REALTIME 280#ifndef EV_USE_REALTIME
103# define EV_USE_REALTIME 1 281# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
282#endif
283
284#ifndef EV_USE_NANOSLEEP
285# if _POSIX_C_SOURCE >= 199309L
286# define EV_USE_NANOSLEEP EV_FEATURE_OS
287# else
288# define EV_USE_NANOSLEEP 0
289# endif
104#endif 290#endif
105 291
106#ifndef EV_USE_SELECT 292#ifndef EV_USE_SELECT
107# define EV_USE_SELECT 1 293# define EV_USE_SELECT EV_FEATURE_BACKENDS
108# define EV_SELECT_USE_FD_SET 1
109#endif 294#endif
110 295
111#ifndef EV_USE_POLL 296#ifndef EV_USE_POLL
112# ifdef _WIN32 297# ifdef _WIN32
113# define EV_USE_POLL 0 298# define EV_USE_POLL 0
114# else 299# else
115# define EV_USE_POLL 1 300# define EV_USE_POLL EV_FEATURE_BACKENDS
116# endif 301# endif
117#endif 302#endif
118 303
119#ifndef EV_USE_EPOLL 304#ifndef EV_USE_EPOLL
305# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
306# define EV_USE_EPOLL EV_FEATURE_BACKENDS
307# else
120# define EV_USE_EPOLL 0 308# define EV_USE_EPOLL 0
309# endif
121#endif 310#endif
122 311
123#ifndef EV_USE_KQUEUE 312#ifndef EV_USE_KQUEUE
124# define EV_USE_KQUEUE 0 313# define EV_USE_KQUEUE 0
125#endif 314#endif
126 315
127#ifndef EV_USE_PORT 316#ifndef EV_USE_PORT
128# define EV_USE_PORT 0 317# define EV_USE_PORT 0
129#endif 318#endif
130 319
131/**/ 320#ifndef EV_USE_INOTIFY
321# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
322# define EV_USE_INOTIFY EV_FEATURE_OS
323# else
324# define EV_USE_INOTIFY 0
325# endif
326#endif
132 327
133/* darwin simply cannot be helped */ 328#ifndef EV_PID_HASHSIZE
134#ifdef __APPLE__ 329# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
330#endif
331
332#ifndef EV_INOTIFY_HASHSIZE
333# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
334#endif
335
336#ifndef EV_USE_EVENTFD
337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338# define EV_USE_EVENTFD EV_FEATURE_OS
339# else
340# define EV_USE_EVENTFD 0
341# endif
342#endif
343
344#ifndef EV_USE_SIGNALFD
345# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
346# define EV_USE_SIGNALFD EV_FEATURE_OS
347# else
348# define EV_USE_SIGNALFD 0
349# endif
350#endif
351
352#if 0 /* debugging */
353# define EV_VERIFY 3
354# define EV_USE_4HEAP 1
355# define EV_HEAP_CACHE_AT 1
356#endif
357
358#ifndef EV_VERIFY
359# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
360#endif
361
362#ifndef EV_USE_4HEAP
363# define EV_USE_4HEAP EV_FEATURE_DATA
364#endif
365
366#ifndef EV_HEAP_CACHE_AT
367# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
368#endif
369
370#ifdef __ANDROID__
371/* supposedly, android doesn't typedef fd_mask */
372# undef EV_USE_SELECT
373# define EV_USE_SELECT 0
374/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
375# undef EV_USE_CLOCK_SYSCALL
376# define EV_USE_CLOCK_SYSCALL 0
377#endif
378
379/* aix's poll.h seems to cause lots of trouble */
380#ifdef _AIX
381/* AIX has a completely broken poll.h header */
135# undef EV_USE_POLL 382# undef EV_USE_POLL
136# undef EV_USE_KQUEUE 383# define EV_USE_POLL 0
384#endif
385
386/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
387/* which makes programs even slower. might work on other unices, too. */
388#if EV_USE_CLOCK_SYSCALL
389# include <sys/syscall.h>
390# ifdef SYS_clock_gettime
391# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
392# undef EV_USE_MONOTONIC
393# define EV_USE_MONOTONIC 1
394# else
395# undef EV_USE_CLOCK_SYSCALL
396# define EV_USE_CLOCK_SYSCALL 0
137#endif 397# endif
398#endif
399
400/* this block fixes any misconfiguration where we know we run into trouble otherwise */
138 401
139#ifndef CLOCK_MONOTONIC 402#ifndef CLOCK_MONOTONIC
140# undef EV_USE_MONOTONIC 403# undef EV_USE_MONOTONIC
141# define EV_USE_MONOTONIC 0 404# define EV_USE_MONOTONIC 0
142#endif 405#endif
144#ifndef CLOCK_REALTIME 407#ifndef CLOCK_REALTIME
145# undef EV_USE_REALTIME 408# undef EV_USE_REALTIME
146# define EV_USE_REALTIME 0 409# define EV_USE_REALTIME 0
147#endif 410#endif
148 411
149#if EV_SELECT_IS_WINSOCKET 412#if !EV_STAT_ENABLE
413# undef EV_USE_INOTIFY
414# define EV_USE_INOTIFY 0
415#endif
416
417#if !EV_USE_NANOSLEEP
418/* hp-ux has it in sys/time.h, which we unconditionally include above */
419# if !defined _WIN32 && !defined __hpux
420# include <sys/select.h>
421# endif
422#endif
423
424#if EV_USE_INOTIFY
425# include <sys/statfs.h>
426# include <sys/inotify.h>
427/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
428# ifndef IN_DONT_FOLLOW
429# undef EV_USE_INOTIFY
430# define EV_USE_INOTIFY 0
431# endif
432#endif
433
434#if EV_USE_EVENTFD
435/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
150# include <winsock.h> 436# include <stdint.h>
437# ifndef EFD_NONBLOCK
438# define EFD_NONBLOCK O_NONBLOCK
439# endif
440# ifndef EFD_CLOEXEC
441# ifdef O_CLOEXEC
442# define EFD_CLOEXEC O_CLOEXEC
443# else
444# define EFD_CLOEXEC 02000000
445# endif
446# endif
447EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
448#endif
449
450#if EV_USE_SIGNALFD
451/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
452# include <stdint.h>
453# ifndef SFD_NONBLOCK
454# define SFD_NONBLOCK O_NONBLOCK
455# endif
456# ifndef SFD_CLOEXEC
457# ifdef O_CLOEXEC
458# define SFD_CLOEXEC O_CLOEXEC
459# else
460# define SFD_CLOEXEC 02000000
461# endif
462# endif
463EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
464
465struct signalfd_siginfo
466{
467 uint32_t ssi_signo;
468 char pad[128 - sizeof (uint32_t)];
469};
151#endif 470#endif
152 471
153/**/ 472/**/
473
474#if EV_VERIFY >= 3
475# define EV_FREQUENT_CHECK ev_verify (EV_A)
476#else
477# define EV_FREQUENT_CHECK do { } while (0)
478#endif
479
480/*
481 * This is used to work around floating point rounding problems.
482 * This value is good at least till the year 4000.
483 */
484#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
485/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
154 486
155#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 487#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
156#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 488#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
157#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
158/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
159 489
490#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
491#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
492
493/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
494/* ECB.H BEGIN */
495/*
496 * libecb - http://software.schmorp.de/pkg/libecb
497 *
498 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
499 * Copyright (©) 2011 Emanuele Giaquinta
500 * All rights reserved.
501 *
502 * Redistribution and use in source and binary forms, with or without modifica-
503 * tion, are permitted provided that the following conditions are met:
504 *
505 * 1. Redistributions of source code must retain the above copyright notice,
506 * this list of conditions and the following disclaimer.
507 *
508 * 2. Redistributions in binary form must reproduce the above copyright
509 * notice, this list of conditions and the following disclaimer in the
510 * documentation and/or other materials provided with the distribution.
511 *
512 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
513 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
514 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
515 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
516 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
517 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
518 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
519 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
520 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
521 * OF THE POSSIBILITY OF SUCH DAMAGE.
522 *
523 * Alternatively, the contents of this file may be used under the terms of
524 * the GNU General Public License ("GPL") version 2 or any later version,
525 * in which case the provisions of the GPL are applicable instead of
526 * the above. If you wish to allow the use of your version of this file
527 * only under the terms of the GPL and not to allow others to use your
528 * version of this file under the BSD license, indicate your decision
529 * by deleting the provisions above and replace them with the notice
530 * and other provisions required by the GPL. If you do not delete the
531 * provisions above, a recipient may use your version of this file under
532 * either the BSD or the GPL.
533 */
534
160#ifdef EV_H 535#ifndef ECB_H
161# include EV_H 536#define ECB_H
162#else 537
163# include "ev.h" 538/* 16 bits major, 16 bits minor */
539#define ECB_VERSION 0x00010005
540
541#ifdef _WIN32
542 typedef signed char int8_t;
543 typedef unsigned char uint8_t;
544 typedef signed short int16_t;
545 typedef unsigned short uint16_t;
546 typedef signed int int32_t;
547 typedef unsigned int uint32_t;
548 #if __GNUC__
549 typedef signed long long int64_t;
550 typedef unsigned long long uint64_t;
551 #else /* _MSC_VER || __BORLANDC__ */
552 typedef signed __int64 int64_t;
553 typedef unsigned __int64 uint64_t;
164#endif 554 #endif
555 #ifdef _WIN64
556 #define ECB_PTRSIZE 8
557 typedef uint64_t uintptr_t;
558 typedef int64_t intptr_t;
559 #else
560 #define ECB_PTRSIZE 4
561 typedef uint32_t uintptr_t;
562 typedef int32_t intptr_t;
563 #endif
564#else
565 #include <inttypes.h>
566 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
567 #define ECB_PTRSIZE 8
568 #else
569 #define ECB_PTRSIZE 4
570 #endif
571#endif
165 572
166#if __GNUC__ >= 3 573#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
574#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
575
576/* work around x32 idiocy by defining proper macros */
577#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
578 #if _ILP32
579 #define ECB_AMD64_X32 1
580 #else
581 #define ECB_AMD64 1
582 #endif
583#endif
584
585/* many compilers define _GNUC_ to some versions but then only implement
586 * what their idiot authors think are the "more important" extensions,
587 * causing enormous grief in return for some better fake benchmark numbers.
588 * or so.
589 * we try to detect these and simply assume they are not gcc - if they have
590 * an issue with that they should have done it right in the first place.
591 */
592#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
593 #define ECB_GCC_VERSION(major,minor) 0
594#else
595 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
596#endif
597
598#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
599
600#if __clang__ && defined __has_builtin
601 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
602#else
603 #define ECB_CLANG_BUILTIN(x) 0
604#endif
605
606#if __clang__ && defined __has_extension
607 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
608#else
609 #define ECB_CLANG_EXTENSION(x) 0
610#endif
611
612#define ECB_CPP (__cplusplus+0)
613#define ECB_CPP11 (__cplusplus >= 201103L)
614
615#if ECB_CPP
616 #define ECB_C 0
617 #define ECB_STDC_VERSION 0
618#else
619 #define ECB_C 1
620 #define ECB_STDC_VERSION __STDC_VERSION__
621#endif
622
623#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
624#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
625
626#if ECB_CPP
627 #define ECB_EXTERN_C extern "C"
628 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
629 #define ECB_EXTERN_C_END }
630#else
631 #define ECB_EXTERN_C extern
632 #define ECB_EXTERN_C_BEG
633 #define ECB_EXTERN_C_END
634#endif
635
636/*****************************************************************************/
637
638/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
639/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
640
641#if ECB_NO_THREADS
642 #define ECB_NO_SMP 1
643#endif
644
645#if ECB_NO_SMP
646 #define ECB_MEMORY_FENCE do { } while (0)
647#endif
648
649/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
650#if __xlC__ && ECB_CPP
651 #include <builtins.h>
652#endif
653
654#if 1400 <= _MSC_VER
655 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
656#endif
657
658#ifndef ECB_MEMORY_FENCE
659 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
660 #if __i386 || __i386__
661 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
662 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
663 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
664 #elif ECB_GCC_AMD64
665 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
666 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
667 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
668 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
669 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
670 #elif defined __ARM_ARCH_2__ \
671 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
672 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
673 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
674 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
675 || defined __ARM_ARCH_5TEJ__
676 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
677 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
678 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
679 || defined __ARM_ARCH_6T2__
680 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
681 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
682 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
683 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
684 #elif __aarch64__
685 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
686 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
687 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
688 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
689 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
690 #elif defined __s390__ || defined __s390x__
691 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
692 #elif defined __mips__
693 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
694 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
695 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
696 #elif defined __alpha__
697 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
698 #elif defined __hppa__
699 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
700 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
701 #elif defined __ia64__
702 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
703 #elif defined __m68k__
704 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
705 #elif defined __m88k__
706 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
707 #elif defined __sh__
708 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
709 #endif
710 #endif
711#endif
712
713#ifndef ECB_MEMORY_FENCE
714 #if ECB_GCC_VERSION(4,7)
715 /* see comment below (stdatomic.h) about the C11 memory model. */
716 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
717 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
718 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
719
720 #elif ECB_CLANG_EXTENSION(c_atomic)
721 /* see comment below (stdatomic.h) about the C11 memory model. */
722 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
723 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
724 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
725
726 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
727 #define ECB_MEMORY_FENCE __sync_synchronize ()
728 #elif _MSC_VER >= 1500 /* VC++ 2008 */
729 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
730 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
731 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
732 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
733 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
734 #elif _MSC_VER >= 1400 /* VC++ 2005 */
735 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
736 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
737 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
738 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
739 #elif defined _WIN32
740 #include <WinNT.h>
741 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
742 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
743 #include <mbarrier.h>
744 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
745 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
746 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
747 #elif __xlC__
748 #define ECB_MEMORY_FENCE __sync ()
749 #endif
750#endif
751
752#ifndef ECB_MEMORY_FENCE
753 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
754 /* we assume that these memory fences work on all variables/all memory accesses, */
755 /* not just C11 atomics and atomic accesses */
756 #include <stdatomic.h>
757 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
758 /* any fence other than seq_cst, which isn't very efficient for us. */
759 /* Why that is, we don't know - either the C11 memory model is quite useless */
760 /* for most usages, or gcc and clang have a bug */
761 /* I *currently* lean towards the latter, and inefficiently implement */
762 /* all three of ecb's fences as a seq_cst fence */
763 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
764 /* for all __atomic_thread_fence's except seq_cst */
765 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
766 #endif
767#endif
768
769#ifndef ECB_MEMORY_FENCE
770 #if !ECB_AVOID_PTHREADS
771 /*
772 * if you get undefined symbol references to pthread_mutex_lock,
773 * or failure to find pthread.h, then you should implement
774 * the ECB_MEMORY_FENCE operations for your cpu/compiler
775 * OR provide pthread.h and link against the posix thread library
776 * of your system.
777 */
778 #include <pthread.h>
779 #define ECB_NEEDS_PTHREADS 1
780 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
781
782 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
783 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
784 #endif
785#endif
786
787#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
788 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
789#endif
790
791#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
792 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
793#endif
794
795/*****************************************************************************/
796
797#if ECB_CPP
798 #define ecb_inline static inline
799#elif ECB_GCC_VERSION(2,5)
800 #define ecb_inline static __inline__
801#elif ECB_C99
802 #define ecb_inline static inline
803#else
804 #define ecb_inline static
805#endif
806
807#if ECB_GCC_VERSION(3,3)
808 #define ecb_restrict __restrict__
809#elif ECB_C99
810 #define ecb_restrict restrict
811#else
812 #define ecb_restrict
813#endif
814
815typedef int ecb_bool;
816
817#define ECB_CONCAT_(a, b) a ## b
818#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
819#define ECB_STRINGIFY_(a) # a
820#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
821#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
822
823#define ecb_function_ ecb_inline
824
825#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
826 #define ecb_attribute(attrlist) __attribute__ (attrlist)
827#else
828 #define ecb_attribute(attrlist)
829#endif
830
831#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
832 #define ecb_is_constant(expr) __builtin_constant_p (expr)
833#else
834 /* possible C11 impl for integral types
835 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
836 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
837
838 #define ecb_is_constant(expr) 0
839#endif
840
841#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
167# define expect(expr,value) __builtin_expect ((expr),(value)) 842 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
168# define inline inline
169#else 843#else
170# define expect(expr,value) (expr) 844 #define ecb_expect(expr,value) (expr)
171# define inline static
172#endif 845#endif
173 846
847#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
848 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
849#else
850 #define ecb_prefetch(addr,rw,locality)
851#endif
852
853/* no emulation for ecb_decltype */
854#if ECB_CPP11
855 // older implementations might have problems with decltype(x)::type, work around it
856 template<class T> struct ecb_decltype_t { typedef T type; };
857 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
858#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
859 #define ecb_decltype(x) __typeof__ (x)
860#endif
861
862#if _MSC_VER >= 1300
863 #define ecb_deprecated __declspec (deprecated)
864#else
865 #define ecb_deprecated ecb_attribute ((__deprecated__))
866#endif
867
868#if _MSC_VER >= 1500
869 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
870#elif ECB_GCC_VERSION(4,5)
871 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
872#else
873 #define ecb_deprecated_message(msg) ecb_deprecated
874#endif
875
876#if _MSC_VER >= 1400
877 #define ecb_noinline __declspec (noinline)
878#else
879 #define ecb_noinline ecb_attribute ((__noinline__))
880#endif
881
882#define ecb_unused ecb_attribute ((__unused__))
883#define ecb_const ecb_attribute ((__const__))
884#define ecb_pure ecb_attribute ((__pure__))
885
886#if ECB_C11 || __IBMC_NORETURN
887 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
888 #define ecb_noreturn _Noreturn
889#elif ECB_CPP11
890 #define ecb_noreturn [[noreturn]]
891#elif _MSC_VER >= 1200
892 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
893 #define ecb_noreturn __declspec (noreturn)
894#else
895 #define ecb_noreturn ecb_attribute ((__noreturn__))
896#endif
897
898#if ECB_GCC_VERSION(4,3)
899 #define ecb_artificial ecb_attribute ((__artificial__))
900 #define ecb_hot ecb_attribute ((__hot__))
901 #define ecb_cold ecb_attribute ((__cold__))
902#else
903 #define ecb_artificial
904 #define ecb_hot
905 #define ecb_cold
906#endif
907
908/* put around conditional expressions if you are very sure that the */
909/* expression is mostly true or mostly false. note that these return */
910/* booleans, not the expression. */
174#define expect_false(expr) expect ((expr) != 0, 0) 911#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
175#define expect_true(expr) expect ((expr) != 0, 1) 912#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
913/* for compatibility to the rest of the world */
914#define ecb_likely(expr) ecb_expect_true (expr)
915#define ecb_unlikely(expr) ecb_expect_false (expr)
176 916
917/* count trailing zero bits and count # of one bits */
918#if ECB_GCC_VERSION(3,4) \
919 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
920 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
921 && ECB_CLANG_BUILTIN(__builtin_popcount))
922 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
923 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
924 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
925 #define ecb_ctz32(x) __builtin_ctz (x)
926 #define ecb_ctz64(x) __builtin_ctzll (x)
927 #define ecb_popcount32(x) __builtin_popcount (x)
928 /* no popcountll */
929#else
930 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
931 ecb_function_ ecb_const int
932 ecb_ctz32 (uint32_t x)
933 {
934#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
935 unsigned long r;
936 _BitScanForward (&r, x);
937 return (int)r;
938#else
939 int r = 0;
940
941 x &= ~x + 1; /* this isolates the lowest bit */
942
943#if ECB_branchless_on_i386
944 r += !!(x & 0xaaaaaaaa) << 0;
945 r += !!(x & 0xcccccccc) << 1;
946 r += !!(x & 0xf0f0f0f0) << 2;
947 r += !!(x & 0xff00ff00) << 3;
948 r += !!(x & 0xffff0000) << 4;
949#else
950 if (x & 0xaaaaaaaa) r += 1;
951 if (x & 0xcccccccc) r += 2;
952 if (x & 0xf0f0f0f0) r += 4;
953 if (x & 0xff00ff00) r += 8;
954 if (x & 0xffff0000) r += 16;
955#endif
956
957 return r;
958#endif
959 }
960
961 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
962 ecb_function_ ecb_const int
963 ecb_ctz64 (uint64_t x)
964 {
965#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
966 unsigned long r;
967 _BitScanForward64 (&r, x);
968 return (int)r;
969#else
970 int shift = x & 0xffffffff ? 0 : 32;
971 return ecb_ctz32 (x >> shift) + shift;
972#endif
973 }
974
975 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
976 ecb_function_ ecb_const int
977 ecb_popcount32 (uint32_t x)
978 {
979 x -= (x >> 1) & 0x55555555;
980 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
981 x = ((x >> 4) + x) & 0x0f0f0f0f;
982 x *= 0x01010101;
983
984 return x >> 24;
985 }
986
987 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
988 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
989 {
990#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
991 unsigned long r;
992 _BitScanReverse (&r, x);
993 return (int)r;
994#else
995 int r = 0;
996
997 if (x >> 16) { x >>= 16; r += 16; }
998 if (x >> 8) { x >>= 8; r += 8; }
999 if (x >> 4) { x >>= 4; r += 4; }
1000 if (x >> 2) { x >>= 2; r += 2; }
1001 if (x >> 1) { r += 1; }
1002
1003 return r;
1004#endif
1005 }
1006
1007 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1008 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1009 {
1010#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1011 unsigned long r;
1012 _BitScanReverse64 (&r, x);
1013 return (int)r;
1014#else
1015 int r = 0;
1016
1017 if (x >> 32) { x >>= 32; r += 32; }
1018
1019 return r + ecb_ld32 (x);
1020#endif
1021 }
1022#endif
1023
1024ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1025ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1026ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1027ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1028
1029ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1030ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1031{
1032 return ( (x * 0x0802U & 0x22110U)
1033 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1034}
1035
1036ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1037ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1038{
1039 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1040 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1041 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1042 x = ( x >> 8 ) | ( x << 8);
1043
1044 return x;
1045}
1046
1047ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1048ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1049{
1050 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1051 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1052 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1053 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1054 x = ( x >> 16 ) | ( x << 16);
1055
1056 return x;
1057}
1058
1059/* popcount64 is only available on 64 bit cpus as gcc builtin */
1060/* so for this version we are lazy */
1061ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1062ecb_function_ ecb_const int
1063ecb_popcount64 (uint64_t x)
1064{
1065 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1066}
1067
1068ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1069ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1070ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1071ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1072ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1073ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1074ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1075ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1076
1077ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1078ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1079ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1080ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1081ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1082ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1083ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1084ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1085
1086#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1087 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1088 #define ecb_bswap16(x) __builtin_bswap16 (x)
1089 #else
1090 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1091 #endif
1092 #define ecb_bswap32(x) __builtin_bswap32 (x)
1093 #define ecb_bswap64(x) __builtin_bswap64 (x)
1094#elif _MSC_VER
1095 #include <stdlib.h>
1096 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1097 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1098 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1099#else
1100 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1101 ecb_function_ ecb_const uint16_t
1102 ecb_bswap16 (uint16_t x)
1103 {
1104 return ecb_rotl16 (x, 8);
1105 }
1106
1107 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1108 ecb_function_ ecb_const uint32_t
1109 ecb_bswap32 (uint32_t x)
1110 {
1111 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1112 }
1113
1114 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1115 ecb_function_ ecb_const uint64_t
1116 ecb_bswap64 (uint64_t x)
1117 {
1118 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1119 }
1120#endif
1121
1122#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1123 #define ecb_unreachable() __builtin_unreachable ()
1124#else
1125 /* this seems to work fine, but gcc always emits a warning for it :/ */
1126 ecb_inline ecb_noreturn void ecb_unreachable (void);
1127 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1128#endif
1129
1130/* try to tell the compiler that some condition is definitely true */
1131#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1132
1133ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1134ecb_inline ecb_const uint32_t
1135ecb_byteorder_helper (void)
1136{
1137 /* the union code still generates code under pressure in gcc, */
1138 /* but less than using pointers, and always seems to */
1139 /* successfully return a constant. */
1140 /* the reason why we have this horrible preprocessor mess */
1141 /* is to avoid it in all cases, at least on common architectures */
1142 /* or when using a recent enough gcc version (>= 4.6) */
1143#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1144 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1145 #define ECB_LITTLE_ENDIAN 1
1146 return 0x44332211;
1147#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1148 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1149 #define ECB_BIG_ENDIAN 1
1150 return 0x11223344;
1151#else
1152 union
1153 {
1154 uint8_t c[4];
1155 uint32_t u;
1156 } u = { 0x11, 0x22, 0x33, 0x44 };
1157 return u.u;
1158#endif
1159}
1160
1161ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1162ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1163ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1164ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1165
1166#if ECB_GCC_VERSION(3,0) || ECB_C99
1167 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1168#else
1169 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1170#endif
1171
1172#if ECB_CPP
1173 template<typename T>
1174 static inline T ecb_div_rd (T val, T div)
1175 {
1176 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1177 }
1178 template<typename T>
1179 static inline T ecb_div_ru (T val, T div)
1180 {
1181 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1182 }
1183#else
1184 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1185 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1186#endif
1187
1188#if ecb_cplusplus_does_not_suck
1189 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1190 template<typename T, int N>
1191 static inline int ecb_array_length (const T (&arr)[N])
1192 {
1193 return N;
1194 }
1195#else
1196 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1197#endif
1198
1199ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1200ecb_function_ ecb_const uint32_t
1201ecb_binary16_to_binary32 (uint32_t x)
1202{
1203 unsigned int s = (x & 0x8000) << (31 - 15);
1204 int e = (x >> 10) & 0x001f;
1205 unsigned int m = x & 0x03ff;
1206
1207 if (ecb_expect_false (e == 31))
1208 /* infinity or NaN */
1209 e = 255 - (127 - 15);
1210 else if (ecb_expect_false (!e))
1211 {
1212 if (ecb_expect_true (!m))
1213 /* zero, handled by code below by forcing e to 0 */
1214 e = 0 - (127 - 15);
1215 else
1216 {
1217 /* subnormal, renormalise */
1218 unsigned int s = 10 - ecb_ld32 (m);
1219
1220 m = (m << s) & 0x3ff; /* mask implicit bit */
1221 e -= s - 1;
1222 }
1223 }
1224
1225 /* e and m now are normalised, or zero, (or inf or nan) */
1226 e += 127 - 15;
1227
1228 return s | (e << 23) | (m << (23 - 10));
1229}
1230
1231ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1232ecb_function_ ecb_const uint16_t
1233ecb_binary32_to_binary16 (uint32_t x)
1234{
1235 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1236 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1237 unsigned int m = x & 0x007fffff;
1238
1239 x &= 0x7fffffff;
1240
1241 /* if it's within range of binary16 normals, use fast path */
1242 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1243 {
1244 /* mantissa round-to-even */
1245 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1246
1247 /* handle overflow */
1248 if (ecb_expect_false (m >= 0x00800000))
1249 {
1250 m >>= 1;
1251 e += 1;
1252 }
1253
1254 return s | (e << 10) | (m >> (23 - 10));
1255 }
1256
1257 /* handle large numbers and infinity */
1258 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1259 return s | 0x7c00;
1260
1261 /* handle zero, subnormals and small numbers */
1262 if (ecb_expect_true (x < 0x38800000))
1263 {
1264 /* zero */
1265 if (ecb_expect_true (!x))
1266 return s;
1267
1268 /* handle subnormals */
1269
1270 /* too small, will be zero */
1271 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1272 return s;
1273
1274 m |= 0x00800000; /* make implicit bit explicit */
1275
1276 /* very tricky - we need to round to the nearest e (+10) bit value */
1277 {
1278 unsigned int bits = 14 - e;
1279 unsigned int half = (1 << (bits - 1)) - 1;
1280 unsigned int even = (m >> bits) & 1;
1281
1282 /* if this overflows, we will end up with a normalised number */
1283 m = (m + half + even) >> bits;
1284 }
1285
1286 return s | m;
1287 }
1288
1289 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1290 m >>= 13;
1291
1292 return s | 0x7c00 | m | !m;
1293}
1294
1295/*******************************************************************************/
1296/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1297
1298/* basically, everything uses "ieee pure-endian" floating point numbers */
1299/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1300#if 0 \
1301 || __i386 || __i386__ \
1302 || ECB_GCC_AMD64 \
1303 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1304 || defined __s390__ || defined __s390x__ \
1305 || defined __mips__ \
1306 || defined __alpha__ \
1307 || defined __hppa__ \
1308 || defined __ia64__ \
1309 || defined __m68k__ \
1310 || defined __m88k__ \
1311 || defined __sh__ \
1312 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1313 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1314 || defined __aarch64__
1315 #define ECB_STDFP 1
1316 #include <string.h> /* for memcpy */
1317#else
1318 #define ECB_STDFP 0
1319#endif
1320
1321#ifndef ECB_NO_LIBM
1322
1323 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1324
1325 /* only the oldest of old doesn't have this one. solaris. */
1326 #ifdef INFINITY
1327 #define ECB_INFINITY INFINITY
1328 #else
1329 #define ECB_INFINITY HUGE_VAL
1330 #endif
1331
1332 #ifdef NAN
1333 #define ECB_NAN NAN
1334 #else
1335 #define ECB_NAN ECB_INFINITY
1336 #endif
1337
1338 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1339 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1340 #define ecb_frexpf(x,e) frexpf ((x), (e))
1341 #else
1342 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1343 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1344 #endif
1345
1346 /* convert a float to ieee single/binary32 */
1347 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1348 ecb_function_ ecb_const uint32_t
1349 ecb_float_to_binary32 (float x)
1350 {
1351 uint32_t r;
1352
1353 #if ECB_STDFP
1354 memcpy (&r, &x, 4);
1355 #else
1356 /* slow emulation, works for anything but -0 */
1357 uint32_t m;
1358 int e;
1359
1360 if (x == 0e0f ) return 0x00000000U;
1361 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1362 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1363 if (x != x ) return 0x7fbfffffU;
1364
1365 m = ecb_frexpf (x, &e) * 0x1000000U;
1366
1367 r = m & 0x80000000U;
1368
1369 if (r)
1370 m = -m;
1371
1372 if (e <= -126)
1373 {
1374 m &= 0xffffffU;
1375 m >>= (-125 - e);
1376 e = -126;
1377 }
1378
1379 r |= (e + 126) << 23;
1380 r |= m & 0x7fffffU;
1381 #endif
1382
1383 return r;
1384 }
1385
1386 /* converts an ieee single/binary32 to a float */
1387 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1388 ecb_function_ ecb_const float
1389 ecb_binary32_to_float (uint32_t x)
1390 {
1391 float r;
1392
1393 #if ECB_STDFP
1394 memcpy (&r, &x, 4);
1395 #else
1396 /* emulation, only works for normals and subnormals and +0 */
1397 int neg = x >> 31;
1398 int e = (x >> 23) & 0xffU;
1399
1400 x &= 0x7fffffU;
1401
1402 if (e)
1403 x |= 0x800000U;
1404 else
1405 e = 1;
1406
1407 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1408 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1409
1410 r = neg ? -r : r;
1411 #endif
1412
1413 return r;
1414 }
1415
1416 /* convert a double to ieee double/binary64 */
1417 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1418 ecb_function_ ecb_const uint64_t
1419 ecb_double_to_binary64 (double x)
1420 {
1421 uint64_t r;
1422
1423 #if ECB_STDFP
1424 memcpy (&r, &x, 8);
1425 #else
1426 /* slow emulation, works for anything but -0 */
1427 uint64_t m;
1428 int e;
1429
1430 if (x == 0e0 ) return 0x0000000000000000U;
1431 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1432 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1433 if (x != x ) return 0X7ff7ffffffffffffU;
1434
1435 m = frexp (x, &e) * 0x20000000000000U;
1436
1437 r = m & 0x8000000000000000;;
1438
1439 if (r)
1440 m = -m;
1441
1442 if (e <= -1022)
1443 {
1444 m &= 0x1fffffffffffffU;
1445 m >>= (-1021 - e);
1446 e = -1022;
1447 }
1448
1449 r |= ((uint64_t)(e + 1022)) << 52;
1450 r |= m & 0xfffffffffffffU;
1451 #endif
1452
1453 return r;
1454 }
1455
1456 /* converts an ieee double/binary64 to a double */
1457 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1458 ecb_function_ ecb_const double
1459 ecb_binary64_to_double (uint64_t x)
1460 {
1461 double r;
1462
1463 #if ECB_STDFP
1464 memcpy (&r, &x, 8);
1465 #else
1466 /* emulation, only works for normals and subnormals and +0 */
1467 int neg = x >> 63;
1468 int e = (x >> 52) & 0x7ffU;
1469
1470 x &= 0xfffffffffffffU;
1471
1472 if (e)
1473 x |= 0x10000000000000U;
1474 else
1475 e = 1;
1476
1477 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1478 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1479
1480 r = neg ? -r : r;
1481 #endif
1482
1483 return r;
1484 }
1485
1486 /* convert a float to ieee half/binary16 */
1487 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1488 ecb_function_ ecb_const uint16_t
1489 ecb_float_to_binary16 (float x)
1490 {
1491 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1492 }
1493
1494 /* convert an ieee half/binary16 to float */
1495 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1496 ecb_function_ ecb_const float
1497 ecb_binary16_to_float (uint16_t x)
1498 {
1499 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1500 }
1501
1502#endif
1503
1504#endif
1505
1506/* ECB.H END */
1507
1508#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1509/* if your architecture doesn't need memory fences, e.g. because it is
1510 * single-cpu/core, or if you use libev in a project that doesn't use libev
1511 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1512 * libev, in which cases the memory fences become nops.
1513 * alternatively, you can remove this #error and link against libpthread,
1514 * which will then provide the memory fences.
1515 */
1516# error "memory fences not defined for your architecture, please report"
1517#endif
1518
1519#ifndef ECB_MEMORY_FENCE
1520# define ECB_MEMORY_FENCE do { } while (0)
1521# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1522# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1523#endif
1524
1525#define expect_false(cond) ecb_expect_false (cond)
1526#define expect_true(cond) ecb_expect_true (cond)
1527#define noinline ecb_noinline
1528
1529#define inline_size ecb_inline
1530
1531#if EV_FEATURE_CODE
1532# define inline_speed ecb_inline
1533#else
1534# define inline_speed noinline static
1535#endif
1536
177#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1537#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1538
1539#if EV_MINPRI == EV_MAXPRI
1540# define ABSPRI(w) (((W)w), 0)
1541#else
178#define ABSPRI(w) ((w)->priority - EV_MINPRI) 1542# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1543#endif
179 1544
180#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 1545#define EMPTY /* required for microsofts broken pseudo-c compiler */
181#define EMPTY2(a,b) /* used to suppress some warnings */ 1546#define EMPTY2(a,b) /* used to suppress some warnings */
182 1547
183typedef struct ev_watcher *W; 1548typedef ev_watcher *W;
184typedef struct ev_watcher_list *WL; 1549typedef ev_watcher_list *WL;
185typedef struct ev_watcher_time *WT; 1550typedef ev_watcher_time *WT;
186 1551
1552#define ev_active(w) ((W)(w))->active
1553#define ev_at(w) ((WT)(w))->at
1554
1555#if EV_USE_REALTIME
1556/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1557/* giving it a reasonably high chance of working on typical architectures */
1558static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1559#endif
1560
1561#if EV_USE_MONOTONIC
187static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1562static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1563#endif
1564
1565#ifndef EV_FD_TO_WIN32_HANDLE
1566# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1567#endif
1568#ifndef EV_WIN32_HANDLE_TO_FD
1569# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1570#endif
1571#ifndef EV_WIN32_CLOSE_FD
1572# define EV_WIN32_CLOSE_FD(fd) close (fd)
1573#endif
188 1574
189#ifdef _WIN32 1575#ifdef _WIN32
190# include "ev_win32.c" 1576# include "ev_win32.c"
191#endif 1577#endif
192 1578
193/*****************************************************************************/ 1579/*****************************************************************************/
194 1580
1581/* define a suitable floor function (only used by periodics atm) */
1582
1583#if EV_USE_FLOOR
1584# include <math.h>
1585# define ev_floor(v) floor (v)
1586#else
1587
1588#include <float.h>
1589
1590/* a floor() replacement function, should be independent of ev_tstamp type */
1591noinline
1592static ev_tstamp
1593ev_floor (ev_tstamp v)
1594{
1595 /* the choice of shift factor is not terribly important */
1596#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1597 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1598#else
1599 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1600#endif
1601
1602 /* argument too large for an unsigned long? */
1603 if (expect_false (v >= shift))
1604 {
1605 ev_tstamp f;
1606
1607 if (v == v - 1.)
1608 return v; /* very large number */
1609
1610 f = shift * ev_floor (v * (1. / shift));
1611 return f + ev_floor (v - f);
1612 }
1613
1614 /* special treatment for negative args? */
1615 if (expect_false (v < 0.))
1616 {
1617 ev_tstamp f = -ev_floor (-v);
1618
1619 return f - (f == v ? 0 : 1);
1620 }
1621
1622 /* fits into an unsigned long */
1623 return (unsigned long)v;
1624}
1625
1626#endif
1627
1628/*****************************************************************************/
1629
1630#ifdef __linux
1631# include <sys/utsname.h>
1632#endif
1633
1634noinline ecb_cold
1635static unsigned int
1636ev_linux_version (void)
1637{
1638#ifdef __linux
1639 unsigned int v = 0;
1640 struct utsname buf;
1641 int i;
1642 char *p = buf.release;
1643
1644 if (uname (&buf))
1645 return 0;
1646
1647 for (i = 3+1; --i; )
1648 {
1649 unsigned int c = 0;
1650
1651 for (;;)
1652 {
1653 if (*p >= '0' && *p <= '9')
1654 c = c * 10 + *p++ - '0';
1655 else
1656 {
1657 p += *p == '.';
1658 break;
1659 }
1660 }
1661
1662 v = (v << 8) | c;
1663 }
1664
1665 return v;
1666#else
1667 return 0;
1668#endif
1669}
1670
1671/*****************************************************************************/
1672
1673#if EV_AVOID_STDIO
1674noinline ecb_cold
1675static void
1676ev_printerr (const char *msg)
1677{
1678 write (STDERR_FILENO, msg, strlen (msg));
1679}
1680#endif
1681
195static void (*syserr_cb)(const char *msg); 1682static void (*syserr_cb)(const char *msg) EV_THROW;
196 1683
1684ecb_cold
1685void
197void ev_set_syserr_cb (void (*cb)(const char *msg)) 1686ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
198{ 1687{
199 syserr_cb = cb; 1688 syserr_cb = cb;
200} 1689}
201 1690
1691noinline ecb_cold
202static void 1692static void
203syserr (const char *msg) 1693ev_syserr (const char *msg)
204{ 1694{
205 if (!msg) 1695 if (!msg)
206 msg = "(libev) system error"; 1696 msg = "(libev) system error";
207 1697
208 if (syserr_cb) 1698 if (syserr_cb)
209 syserr_cb (msg); 1699 syserr_cb (msg);
210 else 1700 else
211 { 1701 {
1702#if EV_AVOID_STDIO
1703 ev_printerr (msg);
1704 ev_printerr (": ");
1705 ev_printerr (strerror (errno));
1706 ev_printerr ("\n");
1707#else
212 perror (msg); 1708 perror (msg);
1709#endif
213 abort (); 1710 abort ();
214 } 1711 }
215} 1712}
216 1713
1714static void *
1715ev_realloc_emul (void *ptr, long size) EV_THROW
1716{
1717 /* some systems, notably openbsd and darwin, fail to properly
1718 * implement realloc (x, 0) (as required by both ansi c-89 and
1719 * the single unix specification, so work around them here.
1720 * recently, also (at least) fedora and debian started breaking it,
1721 * despite documenting it otherwise.
1722 */
1723
1724 if (size)
1725 return realloc (ptr, size);
1726
1727 free (ptr);
1728 return 0;
1729}
1730
217static void *(*alloc)(void *ptr, long size); 1731static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
218 1732
1733ecb_cold
1734void
219void ev_set_allocator (void *(*cb)(void *ptr, long size)) 1735ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
220{ 1736{
221 alloc = cb; 1737 alloc = cb;
222} 1738}
223 1739
224static void * 1740inline_speed void *
225ev_realloc (void *ptr, long size) 1741ev_realloc (void *ptr, long size)
226{ 1742{
227 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1743 ptr = alloc (ptr, size);
228 1744
229 if (!ptr && size) 1745 if (!ptr && size)
230 { 1746 {
1747#if EV_AVOID_STDIO
1748 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1749#else
231 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1750 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1751#endif
232 abort (); 1752 abort ();
233 } 1753 }
234 1754
235 return ptr; 1755 return ptr;
236} 1756}
238#define ev_malloc(size) ev_realloc (0, (size)) 1758#define ev_malloc(size) ev_realloc (0, (size))
239#define ev_free(ptr) ev_realloc ((ptr), 0) 1759#define ev_free(ptr) ev_realloc ((ptr), 0)
240 1760
241/*****************************************************************************/ 1761/*****************************************************************************/
242 1762
1763/* set in reify when reification needed */
1764#define EV_ANFD_REIFY 1
1765
1766/* file descriptor info structure */
243typedef struct 1767typedef struct
244{ 1768{
245 WL head; 1769 WL head;
246 unsigned char events; 1770 unsigned char events; /* the events watched for */
1771 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1772 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
247 unsigned char reify; 1773 unsigned char unused;
1774#if EV_USE_EPOLL
1775 unsigned int egen; /* generation counter to counter epoll bugs */
1776#endif
248#if EV_SELECT_IS_WINSOCKET 1777#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
249 SOCKET handle; 1778 SOCKET handle;
250#endif 1779#endif
1780#if EV_USE_IOCP
1781 OVERLAPPED or, ow;
1782#endif
251} ANFD; 1783} ANFD;
252 1784
1785/* stores the pending event set for a given watcher */
253typedef struct 1786typedef struct
254{ 1787{
255 W w; 1788 W w;
256 int events; 1789 int events; /* the pending event set for the given watcher */
257} ANPENDING; 1790} ANPENDING;
1791
1792#if EV_USE_INOTIFY
1793/* hash table entry per inotify-id */
1794typedef struct
1795{
1796 WL head;
1797} ANFS;
1798#endif
1799
1800/* Heap Entry */
1801#if EV_HEAP_CACHE_AT
1802 /* a heap element */
1803 typedef struct {
1804 ev_tstamp at;
1805 WT w;
1806 } ANHE;
1807
1808 #define ANHE_w(he) (he).w /* access watcher, read-write */
1809 #define ANHE_at(he) (he).at /* access cached at, read-only */
1810 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1811#else
1812 /* a heap element */
1813 typedef WT ANHE;
1814
1815 #define ANHE_w(he) (he)
1816 #define ANHE_at(he) (he)->at
1817 #define ANHE_at_cache(he)
1818#endif
258 1819
259#if EV_MULTIPLICITY 1820#if EV_MULTIPLICITY
260 1821
261 struct ev_loop 1822 struct ev_loop
262 { 1823 {
267 #undef VAR 1828 #undef VAR
268 }; 1829 };
269 #include "ev_wrap.h" 1830 #include "ev_wrap.h"
270 1831
271 static struct ev_loop default_loop_struct; 1832 static struct ev_loop default_loop_struct;
272 struct ev_loop *ev_default_loop_ptr; 1833 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
273 1834
274#else 1835#else
275 1836
276 ev_tstamp ev_rt_now; 1837 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
277 #define VAR(name,decl) static decl; 1838 #define VAR(name,decl) static decl;
278 #include "ev_vars.h" 1839 #include "ev_vars.h"
279 #undef VAR 1840 #undef VAR
280 1841
281 static int ev_default_loop_ptr; 1842 static int ev_default_loop_ptr;
282 1843
283#endif 1844#endif
284 1845
1846#if EV_FEATURE_API
1847# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1848# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1849# define EV_INVOKE_PENDING invoke_cb (EV_A)
1850#else
1851# define EV_RELEASE_CB (void)0
1852# define EV_ACQUIRE_CB (void)0
1853# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1854#endif
1855
1856#define EVBREAK_RECURSE 0x80
1857
285/*****************************************************************************/ 1858/*****************************************************************************/
286 1859
1860#ifndef EV_HAVE_EV_TIME
287ev_tstamp 1861ev_tstamp
288ev_time (void) 1862ev_time (void) EV_THROW
289{ 1863{
290#if EV_USE_REALTIME 1864#if EV_USE_REALTIME
1865 if (expect_true (have_realtime))
1866 {
291 struct timespec ts; 1867 struct timespec ts;
292 clock_gettime (CLOCK_REALTIME, &ts); 1868 clock_gettime (CLOCK_REALTIME, &ts);
293 return ts.tv_sec + ts.tv_nsec * 1e-9; 1869 return ts.tv_sec + ts.tv_nsec * 1e-9;
294#else 1870 }
1871#endif
1872
295 struct timeval tv; 1873 struct timeval tv;
296 gettimeofday (&tv, 0); 1874 gettimeofday (&tv, 0);
297 return tv.tv_sec + tv.tv_usec * 1e-6; 1875 return tv.tv_sec + tv.tv_usec * 1e-6;
298#endif
299} 1876}
1877#endif
300 1878
301inline ev_tstamp 1879inline_size ev_tstamp
302get_clock (void) 1880get_clock (void)
303{ 1881{
304#if EV_USE_MONOTONIC 1882#if EV_USE_MONOTONIC
305 if (expect_true (have_monotonic)) 1883 if (expect_true (have_monotonic))
306 { 1884 {
313 return ev_time (); 1891 return ev_time ();
314} 1892}
315 1893
316#if EV_MULTIPLICITY 1894#if EV_MULTIPLICITY
317ev_tstamp 1895ev_tstamp
318ev_now (EV_P) 1896ev_now (EV_P) EV_THROW
319{ 1897{
320 return ev_rt_now; 1898 return ev_rt_now;
321} 1899}
322#endif 1900#endif
323 1901
324#define array_roundsize(type,n) (((n) | 4) & ~3) 1902void
1903ev_sleep (ev_tstamp delay) EV_THROW
1904{
1905 if (delay > 0.)
1906 {
1907#if EV_USE_NANOSLEEP
1908 struct timespec ts;
1909
1910 EV_TS_SET (ts, delay);
1911 nanosleep (&ts, 0);
1912#elif defined _WIN32
1913 /* maybe this should round up, as ms is very low resolution */
1914 /* compared to select (µs) or nanosleep (ns) */
1915 Sleep ((unsigned long)(delay * 1e3));
1916#else
1917 struct timeval tv;
1918
1919 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1920 /* something not guaranteed by newer posix versions, but guaranteed */
1921 /* by older ones */
1922 EV_TV_SET (tv, delay);
1923 select (0, 0, 0, 0, &tv);
1924#endif
1925 }
1926}
1927
1928/*****************************************************************************/
1929
1930#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1931
1932/* find a suitable new size for the given array, */
1933/* hopefully by rounding to a nice-to-malloc size */
1934inline_size int
1935array_nextsize (int elem, int cur, int cnt)
1936{
1937 int ncur = cur + 1;
1938
1939 do
1940 ncur <<= 1;
1941 while (cnt > ncur);
1942
1943 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1944 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1945 {
1946 ncur *= elem;
1947 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1948 ncur = ncur - sizeof (void *) * 4;
1949 ncur /= elem;
1950 }
1951
1952 return ncur;
1953}
1954
1955noinline ecb_cold
1956static void *
1957array_realloc (int elem, void *base, int *cur, int cnt)
1958{
1959 *cur = array_nextsize (elem, *cur, cnt);
1960 return ev_realloc (base, elem * *cur);
1961}
1962
1963#define array_init_zero(base,count) \
1964 memset ((void *)(base), 0, sizeof (*(base)) * (count))
325 1965
326#define array_needsize(type,base,cur,cnt,init) \ 1966#define array_needsize(type,base,cur,cnt,init) \
327 if (expect_false ((cnt) > cur)) \ 1967 if (expect_false ((cnt) > (cur))) \
328 { \ 1968 { \
329 int newcnt = cur; \ 1969 ecb_unused int ocur_ = (cur); \
330 do \ 1970 (base) = (type *)array_realloc \
331 { \ 1971 (sizeof (type), (base), &(cur), (cnt)); \
332 newcnt = array_roundsize (type, newcnt << 1); \ 1972 init ((base) + (ocur_), (cur) - ocur_); \
333 } \
334 while ((cnt) > newcnt); \
335 \
336 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
337 init (base + cur, newcnt - cur); \
338 cur = newcnt; \
339 } 1973 }
340 1974
1975#if 0
341#define array_slim(type,stem) \ 1976#define array_slim(type,stem) \
342 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 1977 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
343 { \ 1978 { \
344 stem ## max = array_roundsize (stem ## cnt >> 1); \ 1979 stem ## max = array_roundsize (stem ## cnt >> 1); \
345 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 1980 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
346 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1981 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
347 } 1982 }
1983#endif
348 1984
349#define array_free(stem, idx) \ 1985#define array_free(stem, idx) \
350 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1986 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
351 1987
352/*****************************************************************************/ 1988/*****************************************************************************/
353 1989
1990/* dummy callback for pending events */
1991noinline
354static void 1992static void
355anfds_init (ANFD *base, int count) 1993pendingcb (EV_P_ ev_prepare *w, int revents)
356{ 1994{
357 while (count--)
358 {
359 base->head = 0;
360 base->events = EV_NONE;
361 base->reify = 0;
362
363 ++base;
364 }
365} 1995}
366 1996
1997noinline
367void 1998void
368ev_feed_event (EV_P_ void *w, int revents) 1999ev_feed_event (EV_P_ void *w, int revents) EV_THROW
369{ 2000{
370 W w_ = (W)w; 2001 W w_ = (W)w;
2002 int pri = ABSPRI (w_);
371 2003
372 if (w_->pending) 2004 if (expect_false (w_->pending))
2005 pendings [pri][w_->pending - 1].events |= revents;
2006 else
373 { 2007 {
2008 w_->pending = ++pendingcnt [pri];
2009 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
2010 pendings [pri][w_->pending - 1].w = w_;
374 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 2011 pendings [pri][w_->pending - 1].events = revents;
375 return;
376 } 2012 }
377 2013
378 w_->pending = ++pendingcnt [ABSPRI (w_)]; 2014 pendingpri = NUMPRI - 1;
379 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
380 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
381 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
382} 2015}
383 2016
384static void 2017inline_speed void
2018feed_reverse (EV_P_ W w)
2019{
2020 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
2021 rfeeds [rfeedcnt++] = w;
2022}
2023
2024inline_size void
2025feed_reverse_done (EV_P_ int revents)
2026{
2027 do
2028 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2029 while (rfeedcnt);
2030}
2031
2032inline_speed void
385queue_events (EV_P_ W *events, int eventcnt, int type) 2033queue_events (EV_P_ W *events, int eventcnt, int type)
386{ 2034{
387 int i; 2035 int i;
388 2036
389 for (i = 0; i < eventcnt; ++i) 2037 for (i = 0; i < eventcnt; ++i)
390 ev_feed_event (EV_A_ events [i], type); 2038 ev_feed_event (EV_A_ events [i], type);
391} 2039}
392 2040
2041/*****************************************************************************/
2042
393inline void 2043inline_speed void
394fd_event (EV_P_ int fd, int revents) 2044fd_event_nocheck (EV_P_ int fd, int revents)
395{ 2045{
396 ANFD *anfd = anfds + fd; 2046 ANFD *anfd = anfds + fd;
397 struct ev_io *w; 2047 ev_io *w;
398 2048
399 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 2049 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
400 { 2050 {
401 int ev = w->events & revents; 2051 int ev = w->events & revents;
402 2052
403 if (ev) 2053 if (ev)
404 ev_feed_event (EV_A_ (W)w, ev); 2054 ev_feed_event (EV_A_ (W)w, ev);
405 } 2055 }
406} 2056}
407 2057
2058/* do not submit kernel events for fds that have reify set */
2059/* because that means they changed while we were polling for new events */
2060inline_speed void
2061fd_event (EV_P_ int fd, int revents)
2062{
2063 ANFD *anfd = anfds + fd;
2064
2065 if (expect_true (!anfd->reify))
2066 fd_event_nocheck (EV_A_ fd, revents);
2067}
2068
408void 2069void
409ev_feed_fd_event (EV_P_ int fd, int revents) 2070ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
410{ 2071{
2072 if (fd >= 0 && fd < anfdmax)
411 fd_event (EV_A_ fd, revents); 2073 fd_event_nocheck (EV_A_ fd, revents);
412} 2074}
413 2075
414/*****************************************************************************/ 2076/* make sure the external fd watch events are in-sync */
415 2077/* with the kernel/libev internal state */
416static void 2078inline_size void
417fd_reify (EV_P) 2079fd_reify (EV_P)
418{ 2080{
419 int i; 2081 int i;
420 2082
2083#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
421 for (i = 0; i < fdchangecnt; ++i) 2084 for (i = 0; i < fdchangecnt; ++i)
422 { 2085 {
423 int fd = fdchanges [i]; 2086 int fd = fdchanges [i];
424 ANFD *anfd = anfds + fd; 2087 ANFD *anfd = anfds + fd;
425 struct ev_io *w;
426 2088
427 int events = 0; 2089 if (anfd->reify & EV__IOFDSET && anfd->head)
428
429 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
430 events |= w->events;
431
432#if EV_SELECT_IS_WINSOCKET
433 if (events)
434 { 2090 {
2091 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2092
2093 if (handle != anfd->handle)
2094 {
435 unsigned long argp; 2095 unsigned long arg;
436 anfd->handle = _get_osfhandle (fd); 2096
437 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 2097 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2098
2099 /* handle changed, but fd didn't - we need to do it in two steps */
2100 backend_modify (EV_A_ fd, anfd->events, 0);
2101 anfd->events = 0;
2102 anfd->handle = handle;
2103 }
438 } 2104 }
2105 }
439#endif 2106#endif
440 2107
2108 for (i = 0; i < fdchangecnt; ++i)
2109 {
2110 int fd = fdchanges [i];
2111 ANFD *anfd = anfds + fd;
2112 ev_io *w;
2113
2114 unsigned char o_events = anfd->events;
2115 unsigned char o_reify = anfd->reify;
2116
441 anfd->reify = 0; 2117 anfd->reify = 0;
442 2118
443 method_modify (EV_A_ fd, anfd->events, events); 2119 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
2120 {
444 anfd->events = events; 2121 anfd->events = 0;
2122
2123 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2124 anfd->events |= (unsigned char)w->events;
2125
2126 if (o_events != anfd->events)
2127 o_reify = EV__IOFDSET; /* actually |= */
2128 }
2129
2130 if (o_reify & EV__IOFDSET)
2131 backend_modify (EV_A_ fd, o_events, anfd->events);
445 } 2132 }
446 2133
447 fdchangecnt = 0; 2134 fdchangecnt = 0;
448} 2135}
449 2136
450static void 2137/* something about the given fd changed */
2138inline_size
2139void
451fd_change (EV_P_ int fd) 2140fd_change (EV_P_ int fd, int flags)
452{ 2141{
453 if (anfds [fd].reify) 2142 unsigned char reify = anfds [fd].reify;
454 return;
455
456 anfds [fd].reify = 1; 2143 anfds [fd].reify |= flags;
457 2144
2145 if (expect_true (!reify))
2146 {
458 ++fdchangecnt; 2147 ++fdchangecnt;
459 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 2148 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
460 fdchanges [fdchangecnt - 1] = fd; 2149 fdchanges [fdchangecnt - 1] = fd;
2150 }
461} 2151}
462 2152
463static void 2153/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2154inline_speed ecb_cold void
464fd_kill (EV_P_ int fd) 2155fd_kill (EV_P_ int fd)
465{ 2156{
466 struct ev_io *w; 2157 ev_io *w;
467 2158
468 while ((w = (struct ev_io *)anfds [fd].head)) 2159 while ((w = (ev_io *)anfds [fd].head))
469 { 2160 {
470 ev_io_stop (EV_A_ w); 2161 ev_io_stop (EV_A_ w);
471 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2162 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
472 } 2163 }
473} 2164}
474 2165
475static int 2166/* check whether the given fd is actually valid, for error recovery */
2167inline_size ecb_cold int
476fd_valid (int fd) 2168fd_valid (int fd)
477{ 2169{
478#ifdef _WIN32 2170#ifdef _WIN32
479 return _get_osfhandle (fd) != -1; 2171 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
480#else 2172#else
481 return fcntl (fd, F_GETFD) != -1; 2173 return fcntl (fd, F_GETFD) != -1;
482#endif 2174#endif
483} 2175}
484 2176
485/* called on EBADF to verify fds */ 2177/* called on EBADF to verify fds */
2178noinline ecb_cold
486static void 2179static void
487fd_ebadf (EV_P) 2180fd_ebadf (EV_P)
488{ 2181{
489 int fd; 2182 int fd;
490 2183
491 for (fd = 0; fd < anfdmax; ++fd) 2184 for (fd = 0; fd < anfdmax; ++fd)
492 if (anfds [fd].events) 2185 if (anfds [fd].events)
493 if (!fd_valid (fd) == -1 && errno == EBADF) 2186 if (!fd_valid (fd) && errno == EBADF)
494 fd_kill (EV_A_ fd); 2187 fd_kill (EV_A_ fd);
495} 2188}
496 2189
497/* called on ENOMEM in select/poll to kill some fds and retry */ 2190/* called on ENOMEM in select/poll to kill some fds and retry */
2191noinline ecb_cold
498static void 2192static void
499fd_enomem (EV_P) 2193fd_enomem (EV_P)
500{ 2194{
501 int fd; 2195 int fd;
502 2196
503 for (fd = anfdmax; fd--; ) 2197 for (fd = anfdmax; fd--; )
504 if (anfds [fd].events) 2198 if (anfds [fd].events)
505 { 2199 {
506 fd_kill (EV_A_ fd); 2200 fd_kill (EV_A_ fd);
507 return; 2201 break;
508 } 2202 }
509} 2203}
510 2204
511/* usually called after fork if method needs to re-arm all fds from scratch */ 2205/* usually called after fork if backend needs to re-arm all fds from scratch */
2206noinline
512static void 2207static void
513fd_rearm_all (EV_P) 2208fd_rearm_all (EV_P)
514{ 2209{
515 int fd; 2210 int fd;
516 2211
517 /* this should be highly optimised to not do anything but set a flag */
518 for (fd = 0; fd < anfdmax; ++fd) 2212 for (fd = 0; fd < anfdmax; ++fd)
519 if (anfds [fd].events) 2213 if (anfds [fd].events)
520 { 2214 {
521 anfds [fd].events = 0; 2215 anfds [fd].events = 0;
522 fd_change (EV_A_ fd); 2216 anfds [fd].emask = 0;
2217 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
523 } 2218 }
524} 2219}
525 2220
2221/* used to prepare libev internal fd's */
2222/* this is not fork-safe */
2223inline_speed void
2224fd_intern (int fd)
2225{
2226#ifdef _WIN32
2227 unsigned long arg = 1;
2228 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2229#else
2230 fcntl (fd, F_SETFD, FD_CLOEXEC);
2231 fcntl (fd, F_SETFL, O_NONBLOCK);
2232#endif
2233}
2234
526/*****************************************************************************/ 2235/*****************************************************************************/
527 2236
2237/*
2238 * the heap functions want a real array index. array index 0 is guaranteed to not
2239 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2240 * the branching factor of the d-tree.
2241 */
2242
2243/*
2244 * at the moment we allow libev the luxury of two heaps,
2245 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2246 * which is more cache-efficient.
2247 * the difference is about 5% with 50000+ watchers.
2248 */
2249#if EV_USE_4HEAP
2250
2251#define DHEAP 4
2252#define HEAP0 (DHEAP - 1) /* index of first element in heap */
2253#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2254#define UPHEAP_DONE(p,k) ((p) == (k))
2255
2256/* away from the root */
2257inline_speed void
2258downheap (ANHE *heap, int N, int k)
2259{
2260 ANHE he = heap [k];
2261 ANHE *E = heap + N + HEAP0;
2262
2263 for (;;)
2264 {
2265 ev_tstamp minat;
2266 ANHE *minpos;
2267 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2268
2269 /* find minimum child */
2270 if (expect_true (pos + DHEAP - 1 < E))
2271 {
2272 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2273 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2274 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2275 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2276 }
2277 else if (pos < E)
2278 {
2279 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2280 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2281 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2282 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2283 }
2284 else
2285 break;
2286
2287 if (ANHE_at (he) <= minat)
2288 break;
2289
2290 heap [k] = *minpos;
2291 ev_active (ANHE_w (*minpos)) = k;
2292
2293 k = minpos - heap;
2294 }
2295
2296 heap [k] = he;
2297 ev_active (ANHE_w (he)) = k;
2298}
2299
2300#else /* 4HEAP */
2301
2302#define HEAP0 1
2303#define HPARENT(k) ((k) >> 1)
2304#define UPHEAP_DONE(p,k) (!(p))
2305
2306/* away from the root */
2307inline_speed void
2308downheap (ANHE *heap, int N, int k)
2309{
2310 ANHE he = heap [k];
2311
2312 for (;;)
2313 {
2314 int c = k << 1;
2315
2316 if (c >= N + HEAP0)
2317 break;
2318
2319 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2320 ? 1 : 0;
2321
2322 if (ANHE_at (he) <= ANHE_at (heap [c]))
2323 break;
2324
2325 heap [k] = heap [c];
2326 ev_active (ANHE_w (heap [k])) = k;
2327
2328 k = c;
2329 }
2330
2331 heap [k] = he;
2332 ev_active (ANHE_w (he)) = k;
2333}
2334#endif
2335
2336/* towards the root */
2337inline_speed void
2338upheap (ANHE *heap, int k)
2339{
2340 ANHE he = heap [k];
2341
2342 for (;;)
2343 {
2344 int p = HPARENT (k);
2345
2346 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2347 break;
2348
2349 heap [k] = heap [p];
2350 ev_active (ANHE_w (heap [k])) = k;
2351 k = p;
2352 }
2353
2354 heap [k] = he;
2355 ev_active (ANHE_w (he)) = k;
2356}
2357
2358/* move an element suitably so it is in a correct place */
2359inline_size void
2360adjustheap (ANHE *heap, int N, int k)
2361{
2362 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2363 upheap (heap, k);
2364 else
2365 downheap (heap, N, k);
2366}
2367
2368/* rebuild the heap: this function is used only once and executed rarely */
2369inline_size void
2370reheap (ANHE *heap, int N)
2371{
2372 int i;
2373
2374 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2375 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2376 for (i = 0; i < N; ++i)
2377 upheap (heap, i + HEAP0);
2378}
2379
2380/*****************************************************************************/
2381
2382/* associate signal watchers to a signal signal */
2383typedef struct
2384{
2385 EV_ATOMIC_T pending;
2386#if EV_MULTIPLICITY
2387 EV_P;
2388#endif
2389 WL head;
2390} ANSIG;
2391
2392static ANSIG signals [EV_NSIG - 1];
2393
2394/*****************************************************************************/
2395
2396#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2397
2398noinline ecb_cold
528static void 2399static void
529upheap (WT *heap, int k) 2400evpipe_init (EV_P)
530{ 2401{
531 WT w = heap [k]; 2402 if (!ev_is_active (&pipe_w))
532
533 while (k && heap [k >> 1]->at > w->at)
534 {
535 heap [k] = heap [k >> 1];
536 ((W)heap [k])->active = k + 1;
537 k >>= 1;
538 } 2403 {
2404 int fds [2];
539 2405
540 heap [k] = w; 2406# if EV_USE_EVENTFD
541 ((W)heap [k])->active = k + 1; 2407 fds [0] = -1;
2408 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2409 if (fds [1] < 0 && errno == EINVAL)
2410 fds [1] = eventfd (0, 0);
542 2411
543} 2412 if (fds [1] < 0)
2413# endif
2414 {
2415 while (pipe (fds))
2416 ev_syserr ("(libev) error creating signal/async pipe");
544 2417
2418 fd_intern (fds [0]);
2419 }
2420
2421 evpipe [0] = fds [0];
2422
2423 if (evpipe [1] < 0)
2424 evpipe [1] = fds [1]; /* first call, set write fd */
2425 else
2426 {
2427 /* on subsequent calls, do not change evpipe [1] */
2428 /* so that evpipe_write can always rely on its value. */
2429 /* this branch does not do anything sensible on windows, */
2430 /* so must not be executed on windows */
2431
2432 dup2 (fds [1], evpipe [1]);
2433 close (fds [1]);
2434 }
2435
2436 fd_intern (evpipe [1]);
2437
2438 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2439 ev_io_start (EV_A_ &pipe_w);
2440 ev_unref (EV_A); /* watcher should not keep loop alive */
2441 }
2442}
2443
2444inline_speed void
2445evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2446{
2447 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2448
2449 if (expect_true (*flag))
2450 return;
2451
2452 *flag = 1;
2453 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2454
2455 pipe_write_skipped = 1;
2456
2457 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2458
2459 if (pipe_write_wanted)
2460 {
2461 int old_errno;
2462
2463 pipe_write_skipped = 0;
2464 ECB_MEMORY_FENCE_RELEASE;
2465
2466 old_errno = errno; /* save errno because write will clobber it */
2467
2468#if EV_USE_EVENTFD
2469 if (evpipe [0] < 0)
2470 {
2471 uint64_t counter = 1;
2472 write (evpipe [1], &counter, sizeof (uint64_t));
2473 }
2474 else
2475#endif
2476 {
2477#ifdef _WIN32
2478 WSABUF buf;
2479 DWORD sent;
2480 buf.buf = &buf;
2481 buf.len = 1;
2482 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2483#else
2484 write (evpipe [1], &(evpipe [1]), 1);
2485#endif
2486 }
2487
2488 errno = old_errno;
2489 }
2490}
2491
2492/* called whenever the libev signal pipe */
2493/* got some events (signal, async) */
545static void 2494static void
546downheap (WT *heap, int N, int k) 2495pipecb (EV_P_ ev_io *iow, int revents)
547{ 2496{
548 WT w = heap [k]; 2497 int i;
549 2498
550 while (k < (N >> 1)) 2499 if (revents & EV_READ)
551 {
552 int j = k << 1;
553
554 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
555 ++j;
556
557 if (w->at <= heap [j]->at)
558 break;
559
560 heap [k] = heap [j];
561 ((W)heap [k])->active = k + 1;
562 k = j;
563 } 2500 {
2501#if EV_USE_EVENTFD
2502 if (evpipe [0] < 0)
2503 {
2504 uint64_t counter;
2505 read (evpipe [1], &counter, sizeof (uint64_t));
2506 }
2507 else
2508#endif
2509 {
2510 char dummy[4];
2511#ifdef _WIN32
2512 WSABUF buf;
2513 DWORD recvd;
2514 DWORD flags = 0;
2515 buf.buf = dummy;
2516 buf.len = sizeof (dummy);
2517 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2518#else
2519 read (evpipe [0], &dummy, sizeof (dummy));
2520#endif
2521 }
2522 }
564 2523
565 heap [k] = w; 2524 pipe_write_skipped = 0;
566 ((W)heap [k])->active = k + 1;
567}
568 2525
569inline void 2526 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
570adjustheap (WT *heap, int N, int k) 2527
571{ 2528#if EV_SIGNAL_ENABLE
572 upheap (heap, k); 2529 if (sig_pending)
573 downheap (heap, N, k); 2530 {
2531 sig_pending = 0;
2532
2533 ECB_MEMORY_FENCE;
2534
2535 for (i = EV_NSIG - 1; i--; )
2536 if (expect_false (signals [i].pending))
2537 ev_feed_signal_event (EV_A_ i + 1);
2538 }
2539#endif
2540
2541#if EV_ASYNC_ENABLE
2542 if (async_pending)
2543 {
2544 async_pending = 0;
2545
2546 ECB_MEMORY_FENCE;
2547
2548 for (i = asynccnt; i--; )
2549 if (asyncs [i]->sent)
2550 {
2551 asyncs [i]->sent = 0;
2552 ECB_MEMORY_FENCE_RELEASE;
2553 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2554 }
2555 }
2556#endif
574} 2557}
575 2558
576/*****************************************************************************/ 2559/*****************************************************************************/
577 2560
578typedef struct 2561void
2562ev_feed_signal (int signum) EV_THROW
579{ 2563{
580 WL head; 2564#if EV_MULTIPLICITY
581 sig_atomic_t volatile gotsig; 2565 EV_P;
582} ANSIG; 2566 ECB_MEMORY_FENCE_ACQUIRE;
2567 EV_A = signals [signum - 1].loop;
583 2568
584static ANSIG *signals; 2569 if (!EV_A)
585static int signalmax; 2570 return;
2571#endif
586 2572
587static int sigpipe [2]; 2573 signals [signum - 1].pending = 1;
588static sig_atomic_t volatile gotsig; 2574 evpipe_write (EV_A_ &sig_pending);
589static struct ev_io sigev; 2575}
590 2576
591static void 2577static void
592signals_init (ANSIG *base, int count)
593{
594 while (count--)
595 {
596 base->head = 0;
597 base->gotsig = 0;
598
599 ++base;
600 }
601}
602
603static void
604sighandler (int signum) 2578ev_sighandler (int signum)
605{ 2579{
606#if _WIN32 2580#ifdef _WIN32
607 signal (signum, sighandler); 2581 signal (signum, ev_sighandler);
608#endif 2582#endif
609 2583
610 signals [signum - 1].gotsig = 1; 2584 ev_feed_signal (signum);
611
612 if (!gotsig)
613 {
614 int old_errno = errno;
615 gotsig = 1;
616 write (sigpipe [1], &signum, 1);
617 errno = old_errno;
618 }
619} 2585}
620 2586
2587noinline
621void 2588void
622ev_feed_signal_event (EV_P_ int signum) 2589ev_feed_signal_event (EV_P_ int signum) EV_THROW
623{ 2590{
624 WL w; 2591 WL w;
625 2592
2593 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2594 return;
2595
2596 --signum;
2597
626#if EV_MULTIPLICITY 2598#if EV_MULTIPLICITY
627 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 2599 /* it is permissible to try to feed a signal to the wrong loop */
628#endif 2600 /* or, likely more useful, feeding a signal nobody is waiting for */
629 2601
630 --signum; 2602 if (expect_false (signals [signum].loop != EV_A))
631
632 if (signum < 0 || signum >= signalmax)
633 return; 2603 return;
2604#endif
634 2605
635 signals [signum].gotsig = 0; 2606 signals [signum].pending = 0;
2607 ECB_MEMORY_FENCE_RELEASE;
636 2608
637 for (w = signals [signum].head; w; w = w->next) 2609 for (w = signals [signum].head; w; w = w->next)
638 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2610 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
639} 2611}
640 2612
2613#if EV_USE_SIGNALFD
641static void 2614static void
642sigcb (EV_P_ struct ev_io *iow, int revents) 2615sigfdcb (EV_P_ ev_io *iow, int revents)
643{ 2616{
644 int signum; 2617 struct signalfd_siginfo si[2], *sip; /* these structs are big */
645 2618
646 read (sigpipe [0], &revents, 1); 2619 for (;;)
647 gotsig = 0; 2620 {
2621 ssize_t res = read (sigfd, si, sizeof (si));
648 2622
649 for (signum = signalmax; signum--; ) 2623 /* not ISO-C, as res might be -1, but works with SuS */
650 if (signals [signum].gotsig) 2624 for (sip = si; (char *)sip < (char *)si + res; ++sip)
651 ev_feed_signal_event (EV_A_ signum + 1); 2625 ev_feed_signal_event (EV_A_ sip->ssi_signo);
652}
653 2626
654inline void 2627 if (res < (ssize_t)sizeof (si))
655fd_intern (int fd) 2628 break;
656{ 2629 }
657#ifdef _WIN32
658 int arg = 1;
659 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
660#else
661 fcntl (fd, F_SETFD, FD_CLOEXEC);
662 fcntl (fd, F_SETFL, O_NONBLOCK);
663#endif
664} 2630}
2631#endif
665 2632
666static void 2633#endif
667siginit (EV_P)
668{
669 fd_intern (sigpipe [0]);
670 fd_intern (sigpipe [1]);
671
672 ev_io_set (&sigev, sigpipe [0], EV_READ);
673 ev_io_start (EV_A_ &sigev);
674 ev_unref (EV_A); /* child watcher should not keep loop alive */
675}
676 2634
677/*****************************************************************************/ 2635/*****************************************************************************/
678 2636
679static struct ev_child *childs [PID_HASHSIZE]; 2637#if EV_CHILD_ENABLE
2638static WL childs [EV_PID_HASHSIZE];
680 2639
681#ifndef _WIN32
682
683static struct ev_signal childev; 2640static ev_signal childev;
2641
2642#ifndef WIFCONTINUED
2643# define WIFCONTINUED(status) 0
2644#endif
2645
2646/* handle a single child status event */
2647inline_speed void
2648child_reap (EV_P_ int chain, int pid, int status)
2649{
2650 ev_child *w;
2651 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2652
2653 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2654 {
2655 if ((w->pid == pid || !w->pid)
2656 && (!traced || (w->flags & 1)))
2657 {
2658 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2659 w->rpid = pid;
2660 w->rstatus = status;
2661 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2662 }
2663 }
2664}
684 2665
685#ifndef WCONTINUED 2666#ifndef WCONTINUED
686# define WCONTINUED 0 2667# define WCONTINUED 0
687#endif 2668#endif
688 2669
2670/* called on sigchld etc., calls waitpid */
689static void 2671static void
690child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
691{
692 struct ev_child *w;
693
694 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
695 if (w->pid == pid || !w->pid)
696 {
697 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
698 w->rpid = pid;
699 w->rstatus = status;
700 ev_feed_event (EV_A_ (W)w, EV_CHILD);
701 }
702}
703
704static void
705childcb (EV_P_ struct ev_signal *sw, int revents) 2672childcb (EV_P_ ev_signal *sw, int revents)
706{ 2673{
707 int pid, status; 2674 int pid, status;
708 2675
2676 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
709 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 2677 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
710 { 2678 if (!WCONTINUED
2679 || errno != EINVAL
2680 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2681 return;
2682
711 /* make sure we are called again until all childs have been reaped */ 2683 /* make sure we are called again until all children have been reaped */
2684 /* we need to do it this way so that the callback gets called before we continue */
712 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2685 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
713 2686
714 child_reap (EV_A_ sw, pid, pid, status); 2687 child_reap (EV_A_ pid, pid, status);
2688 if ((EV_PID_HASHSIZE) > 1)
715 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 2689 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
716 }
717} 2690}
718 2691
719#endif 2692#endif
720 2693
721/*****************************************************************************/ 2694/*****************************************************************************/
722 2695
2696#if EV_USE_IOCP
2697# include "ev_iocp.c"
2698#endif
723#if EV_USE_PORT 2699#if EV_USE_PORT
724# include "ev_port.c" 2700# include "ev_port.c"
725#endif 2701#endif
726#if EV_USE_KQUEUE 2702#if EV_USE_KQUEUE
727# include "ev_kqueue.c" 2703# include "ev_kqueue.c"
734#endif 2710#endif
735#if EV_USE_SELECT 2711#if EV_USE_SELECT
736# include "ev_select.c" 2712# include "ev_select.c"
737#endif 2713#endif
738 2714
739int 2715ecb_cold int
740ev_version_major (void) 2716ev_version_major (void) EV_THROW
741{ 2717{
742 return EV_VERSION_MAJOR; 2718 return EV_VERSION_MAJOR;
743} 2719}
744 2720
745int 2721ecb_cold int
746ev_version_minor (void) 2722ev_version_minor (void) EV_THROW
747{ 2723{
748 return EV_VERSION_MINOR; 2724 return EV_VERSION_MINOR;
749} 2725}
750 2726
751/* return true if we are running with elevated privileges and should ignore env variables */ 2727/* return true if we are running with elevated privileges and should ignore env variables */
752static int 2728inline_size ecb_cold int
753enable_secure (void) 2729enable_secure (void)
754{ 2730{
755#ifdef _WIN32 2731#ifdef _WIN32
756 return 0; 2732 return 0;
757#else 2733#else
758 return getuid () != geteuid () 2734 return getuid () != geteuid ()
759 || getgid () != getegid (); 2735 || getgid () != getegid ();
760#endif 2736#endif
761} 2737}
762 2738
2739ecb_cold
763unsigned int 2740unsigned int
764ev_method (EV_P) 2741ev_supported_backends (void) EV_THROW
765{ 2742{
766 return method; 2743 unsigned int flags = 0;
767}
768 2744
2745 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2746 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2747 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2748 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2749 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2750
2751 return flags;
2752}
2753
2754ecb_cold
2755unsigned int
2756ev_recommended_backends (void) EV_THROW
2757{
2758 unsigned int flags = ev_supported_backends ();
2759
2760#ifndef __NetBSD__
2761 /* kqueue is borked on everything but netbsd apparently */
2762 /* it usually doesn't work correctly on anything but sockets and pipes */
2763 flags &= ~EVBACKEND_KQUEUE;
2764#endif
2765#ifdef __APPLE__
2766 /* only select works correctly on that "unix-certified" platform */
2767 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2768 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2769#endif
2770#ifdef __FreeBSD__
2771 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2772#endif
2773
2774 return flags;
2775}
2776
2777ecb_cold
2778unsigned int
2779ev_embeddable_backends (void) EV_THROW
2780{
2781 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2782
2783 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2784 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2785 flags &= ~EVBACKEND_EPOLL;
2786
2787 return flags;
2788}
2789
2790unsigned int
2791ev_backend (EV_P) EV_THROW
2792{
2793 return backend;
2794}
2795
2796#if EV_FEATURE_API
2797unsigned int
2798ev_iteration (EV_P) EV_THROW
2799{
2800 return loop_count;
2801}
2802
2803unsigned int
2804ev_depth (EV_P) EV_THROW
2805{
2806 return loop_depth;
2807}
2808
2809void
2810ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2811{
2812 io_blocktime = interval;
2813}
2814
2815void
2816ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2817{
2818 timeout_blocktime = interval;
2819}
2820
2821void
2822ev_set_userdata (EV_P_ void *data) EV_THROW
2823{
2824 userdata = data;
2825}
2826
2827void *
2828ev_userdata (EV_P) EV_THROW
2829{
2830 return userdata;
2831}
2832
2833void
2834ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2835{
2836 invoke_cb = invoke_pending_cb;
2837}
2838
2839void
2840ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2841{
2842 release_cb = release;
2843 acquire_cb = acquire;
2844}
2845#endif
2846
2847/* initialise a loop structure, must be zero-initialised */
2848noinline ecb_cold
769static void 2849static void
770loop_init (EV_P_ unsigned int flags) 2850loop_init (EV_P_ unsigned int flags) EV_THROW
771{ 2851{
772 if (!method) 2852 if (!backend)
773 { 2853 {
2854 origflags = flags;
2855
2856#if EV_USE_REALTIME
2857 if (!have_realtime)
2858 {
2859 struct timespec ts;
2860
2861 if (!clock_gettime (CLOCK_REALTIME, &ts))
2862 have_realtime = 1;
2863 }
2864#endif
2865
774#if EV_USE_MONOTONIC 2866#if EV_USE_MONOTONIC
2867 if (!have_monotonic)
775 { 2868 {
776 struct timespec ts; 2869 struct timespec ts;
2870
777 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2871 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
778 have_monotonic = 1; 2872 have_monotonic = 1;
779 } 2873 }
780#endif 2874#endif
781 2875
782 ev_rt_now = ev_time (); 2876 /* pid check not overridable via env */
783 mn_now = get_clock (); 2877#ifndef _WIN32
784 now_floor = mn_now; 2878 if (flags & EVFLAG_FORKCHECK)
785 rtmn_diff = ev_rt_now - mn_now; 2879 curpid = getpid ();
2880#endif
786 2881
787 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 2882 if (!(flags & EVFLAG_NOENV)
2883 && !enable_secure ()
2884 && getenv ("LIBEV_FLAGS"))
788 flags = atoi (getenv ("LIBEV_FLAGS")); 2885 flags = atoi (getenv ("LIBEV_FLAGS"));
789 2886
790 if (!(flags & 0x0000ffff)) 2887 ev_rt_now = ev_time ();
791 flags |= 0x0000ffff; 2888 mn_now = get_clock ();
2889 now_floor = mn_now;
2890 rtmn_diff = ev_rt_now - mn_now;
2891#if EV_FEATURE_API
2892 invoke_cb = ev_invoke_pending;
2893#endif
792 2894
793 method = 0; 2895 io_blocktime = 0.;
2896 timeout_blocktime = 0.;
2897 backend = 0;
2898 backend_fd = -1;
2899 sig_pending = 0;
2900#if EV_ASYNC_ENABLE
2901 async_pending = 0;
2902#endif
2903 pipe_write_skipped = 0;
2904 pipe_write_wanted = 0;
2905 evpipe [0] = -1;
2906 evpipe [1] = -1;
2907#if EV_USE_INOTIFY
2908 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2909#endif
2910#if EV_USE_SIGNALFD
2911 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2912#endif
2913
2914 if (!(flags & EVBACKEND_MASK))
2915 flags |= ev_recommended_backends ();
2916
2917#if EV_USE_IOCP
2918 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2919#endif
794#if EV_USE_PORT 2920#if EV_USE_PORT
795 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags); 2921 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
796#endif 2922#endif
797#if EV_USE_KQUEUE 2923#if EV_USE_KQUEUE
798 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags); 2924 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
799#endif 2925#endif
800#if EV_USE_EPOLL 2926#if EV_USE_EPOLL
801 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags); 2927 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
802#endif 2928#endif
803#if EV_USE_POLL 2929#if EV_USE_POLL
804 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags); 2930 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
805#endif 2931#endif
806#if EV_USE_SELECT 2932#if EV_USE_SELECT
807 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags); 2933 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
808#endif 2934#endif
809 2935
2936 ev_prepare_init (&pending_w, pendingcb);
2937
2938#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
810 ev_init (&sigev, sigcb); 2939 ev_init (&pipe_w, pipecb);
811 ev_set_priority (&sigev, EV_MAXPRI); 2940 ev_set_priority (&pipe_w, EV_MAXPRI);
2941#endif
812 } 2942 }
813} 2943}
814 2944
2945/* free up a loop structure */
2946ecb_cold
815void 2947void
816loop_destroy (EV_P) 2948ev_loop_destroy (EV_P)
817{ 2949{
818 int i; 2950 int i;
819 2951
2952#if EV_MULTIPLICITY
2953 /* mimic free (0) */
2954 if (!EV_A)
2955 return;
2956#endif
2957
2958#if EV_CLEANUP_ENABLE
2959 /* queue cleanup watchers (and execute them) */
2960 if (expect_false (cleanupcnt))
2961 {
2962 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2963 EV_INVOKE_PENDING;
2964 }
2965#endif
2966
2967#if EV_CHILD_ENABLE
2968 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2969 {
2970 ev_ref (EV_A); /* child watcher */
2971 ev_signal_stop (EV_A_ &childev);
2972 }
2973#endif
2974
2975 if (ev_is_active (&pipe_w))
2976 {
2977 /*ev_ref (EV_A);*/
2978 /*ev_io_stop (EV_A_ &pipe_w);*/
2979
2980 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2981 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2982 }
2983
2984#if EV_USE_SIGNALFD
2985 if (ev_is_active (&sigfd_w))
2986 close (sigfd);
2987#endif
2988
2989#if EV_USE_INOTIFY
2990 if (fs_fd >= 0)
2991 close (fs_fd);
2992#endif
2993
2994 if (backend_fd >= 0)
2995 close (backend_fd);
2996
2997#if EV_USE_IOCP
2998 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2999#endif
820#if EV_USE_PORT 3000#if EV_USE_PORT
821 if (method == EVMETHOD_PORT ) port_destroy (EV_A); 3001 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
822#endif 3002#endif
823#if EV_USE_KQUEUE 3003#if EV_USE_KQUEUE
824 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 3004 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
825#endif 3005#endif
826#if EV_USE_EPOLL 3006#if EV_USE_EPOLL
827 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 3007 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
828#endif 3008#endif
829#if EV_USE_POLL 3009#if EV_USE_POLL
830 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 3010 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
831#endif 3011#endif
832#if EV_USE_SELECT 3012#if EV_USE_SELECT
833 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 3013 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
834#endif 3014#endif
835 3015
836 for (i = NUMPRI; i--; ) 3016 for (i = NUMPRI; i--; )
3017 {
837 array_free (pending, [i]); 3018 array_free (pending, [i]);
3019#if EV_IDLE_ENABLE
3020 array_free (idle, [i]);
3021#endif
3022 }
3023
3024 ev_free (anfds); anfds = 0; anfdmax = 0;
838 3025
839 /* have to use the microsoft-never-gets-it-right macro */ 3026 /* have to use the microsoft-never-gets-it-right macro */
3027 array_free (rfeed, EMPTY);
840 array_free (fdchange, EMPTY0); 3028 array_free (fdchange, EMPTY);
841 array_free (timer, EMPTY0); 3029 array_free (timer, EMPTY);
842#if EV_PERIODICS 3030#if EV_PERIODIC_ENABLE
843 array_free (periodic, EMPTY0); 3031 array_free (periodic, EMPTY);
844#endif 3032#endif
3033#if EV_FORK_ENABLE
3034 array_free (fork, EMPTY);
3035#endif
3036#if EV_CLEANUP_ENABLE
845 array_free (idle, EMPTY0); 3037 array_free (cleanup, EMPTY);
3038#endif
846 array_free (prepare, EMPTY0); 3039 array_free (prepare, EMPTY);
847 array_free (check, EMPTY0); 3040 array_free (check, EMPTY);
3041#if EV_ASYNC_ENABLE
3042 array_free (async, EMPTY);
3043#endif
848 3044
849 method = 0; 3045 backend = 0;
850}
851 3046
3047#if EV_MULTIPLICITY
3048 if (ev_is_default_loop (EV_A))
3049#endif
3050 ev_default_loop_ptr = 0;
3051#if EV_MULTIPLICITY
3052 else
3053 ev_free (EV_A);
3054#endif
3055}
3056
3057#if EV_USE_INOTIFY
3058inline_size void infy_fork (EV_P);
3059#endif
3060
3061inline_size void
3062loop_fork (EV_P)
3063{
3064#if EV_USE_PORT
3065 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
3066#endif
3067#if EV_USE_KQUEUE
3068 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
3069#endif
3070#if EV_USE_EPOLL
3071 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
3072#endif
3073#if EV_USE_INOTIFY
3074 infy_fork (EV_A);
3075#endif
3076
3077#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3078 if (ev_is_active (&pipe_w) && postfork != 2)
3079 {
3080 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3081
3082 ev_ref (EV_A);
3083 ev_io_stop (EV_A_ &pipe_w);
3084
3085 if (evpipe [0] >= 0)
3086 EV_WIN32_CLOSE_FD (evpipe [0]);
3087
3088 evpipe_init (EV_A);
3089 /* iterate over everything, in case we missed something before */
3090 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3091 }
3092#endif
3093
3094 postfork = 0;
3095}
3096
3097#if EV_MULTIPLICITY
3098
3099ecb_cold
3100struct ev_loop *
3101ev_loop_new (unsigned int flags) EV_THROW
3102{
3103 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3104
3105 memset (EV_A, 0, sizeof (struct ev_loop));
3106 loop_init (EV_A_ flags);
3107
3108 if (ev_backend (EV_A))
3109 return EV_A;
3110
3111 ev_free (EV_A);
3112 return 0;
3113}
3114
3115#endif /* multiplicity */
3116
3117#if EV_VERIFY
3118noinline ecb_cold
852static void 3119static void
853loop_fork (EV_P) 3120verify_watcher (EV_P_ W w)
854{ 3121{
855#if EV_USE_PORT 3122 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
856 if (method == EVMETHOD_PORT ) port_fork (EV_A); 3123
3124 if (w->pending)
3125 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3126}
3127
3128noinline ecb_cold
3129static void
3130verify_heap (EV_P_ ANHE *heap, int N)
3131{
3132 int i;
3133
3134 for (i = HEAP0; i < N + HEAP0; ++i)
3135 {
3136 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3137 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3138 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3139
3140 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3141 }
3142}
3143
3144noinline ecb_cold
3145static void
3146array_verify (EV_P_ W *ws, int cnt)
3147{
3148 while (cnt--)
3149 {
3150 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3151 verify_watcher (EV_A_ ws [cnt]);
3152 }
3153}
3154#endif
3155
3156#if EV_FEATURE_API
3157void ecb_cold
3158ev_verify (EV_P) EV_THROW
3159{
3160#if EV_VERIFY
3161 int i;
3162 WL w, w2;
3163
3164 assert (activecnt >= -1);
3165
3166 assert (fdchangemax >= fdchangecnt);
3167 for (i = 0; i < fdchangecnt; ++i)
3168 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3169
3170 assert (anfdmax >= 0);
3171 for (i = 0; i < anfdmax; ++i)
3172 {
3173 int j = 0;
3174
3175 for (w = w2 = anfds [i].head; w; w = w->next)
3176 {
3177 verify_watcher (EV_A_ (W)w);
3178
3179 if (j++ & 1)
3180 {
3181 assert (("libev: io watcher list contains a loop", w != w2));
3182 w2 = w2->next;
3183 }
3184
3185 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3186 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3187 }
3188 }
3189
3190 assert (timermax >= timercnt);
3191 verify_heap (EV_A_ timers, timercnt);
3192
3193#if EV_PERIODIC_ENABLE
3194 assert (periodicmax >= periodiccnt);
3195 verify_heap (EV_A_ periodics, periodiccnt);
3196#endif
3197
3198 for (i = NUMPRI; i--; )
3199 {
3200 assert (pendingmax [i] >= pendingcnt [i]);
3201#if EV_IDLE_ENABLE
3202 assert (idleall >= 0);
3203 assert (idlemax [i] >= idlecnt [i]);
3204 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3205#endif
3206 }
3207
3208#if EV_FORK_ENABLE
3209 assert (forkmax >= forkcnt);
3210 array_verify (EV_A_ (W *)forks, forkcnt);
3211#endif
3212
3213#if EV_CLEANUP_ENABLE
3214 assert (cleanupmax >= cleanupcnt);
3215 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3216#endif
3217
3218#if EV_ASYNC_ENABLE
3219 assert (asyncmax >= asynccnt);
3220 array_verify (EV_A_ (W *)asyncs, asynccnt);
3221#endif
3222
3223#if EV_PREPARE_ENABLE
3224 assert (preparemax >= preparecnt);
3225 array_verify (EV_A_ (W *)prepares, preparecnt);
3226#endif
3227
3228#if EV_CHECK_ENABLE
3229 assert (checkmax >= checkcnt);
3230 array_verify (EV_A_ (W *)checks, checkcnt);
3231#endif
3232
3233# if 0
3234#if EV_CHILD_ENABLE
3235 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3236 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3237#endif
857#endif 3238# endif
858#if EV_USE_KQUEUE
859 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
860#endif 3239#endif
861#if EV_USE_EPOLL
862 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
863#endif
864
865 if (ev_is_active (&sigev))
866 {
867 /* default loop */
868
869 ev_ref (EV_A);
870 ev_io_stop (EV_A_ &sigev);
871 close (sigpipe [0]);
872 close (sigpipe [1]);
873
874 while (pipe (sigpipe))
875 syserr ("(libev) error creating pipe");
876
877 siginit (EV_A);
878 }
879
880 postfork = 0;
881} 3240}
3241#endif
882 3242
883#if EV_MULTIPLICITY 3243#if EV_MULTIPLICITY
3244ecb_cold
884struct ev_loop * 3245struct ev_loop *
885ev_loop_new (unsigned int flags) 3246#else
886{ 3247int
887 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
888
889 memset (loop, 0, sizeof (struct ev_loop));
890
891 loop_init (EV_A_ flags);
892
893 if (ev_method (EV_A))
894 return loop;
895
896 return 0;
897}
898
899void
900ev_loop_destroy (EV_P)
901{
902 loop_destroy (EV_A);
903 ev_free (loop);
904}
905
906void
907ev_loop_fork (EV_P)
908{
909 postfork = 1;
910}
911
912#endif 3248#endif
913 3249ev_default_loop (unsigned int flags) EV_THROW
3250{
3251 if (!ev_default_loop_ptr)
3252 {
914#if EV_MULTIPLICITY 3253#if EV_MULTIPLICITY
915struct ev_loop *
916ev_default_loop_ (unsigned int flags)
917#else
918int
919ev_default_loop (unsigned int flags)
920#endif
921{
922 if (sigpipe [0] == sigpipe [1])
923 if (pipe (sigpipe))
924 return 0;
925
926 if (!ev_default_loop_ptr)
927 {
928#if EV_MULTIPLICITY
929 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3254 EV_P = ev_default_loop_ptr = &default_loop_struct;
930#else 3255#else
931 ev_default_loop_ptr = 1; 3256 ev_default_loop_ptr = 1;
932#endif 3257#endif
933 3258
934 loop_init (EV_A_ flags); 3259 loop_init (EV_A_ flags);
935 3260
936 if (ev_method (EV_A)) 3261 if (ev_backend (EV_A))
937 { 3262 {
938 siginit (EV_A); 3263#if EV_CHILD_ENABLE
939
940#ifndef _WIN32
941 ev_signal_init (&childev, childcb, SIGCHLD); 3264 ev_signal_init (&childev, childcb, SIGCHLD);
942 ev_set_priority (&childev, EV_MAXPRI); 3265 ev_set_priority (&childev, EV_MAXPRI);
943 ev_signal_start (EV_A_ &childev); 3266 ev_signal_start (EV_A_ &childev);
944 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3267 ev_unref (EV_A); /* child watcher should not keep loop alive */
945#endif 3268#endif
950 3273
951 return ev_default_loop_ptr; 3274 return ev_default_loop_ptr;
952} 3275}
953 3276
954void 3277void
955ev_default_destroy (void) 3278ev_loop_fork (EV_P) EV_THROW
956{ 3279{
957#if EV_MULTIPLICITY
958 struct ev_loop *loop = ev_default_loop_ptr;
959#endif
960
961#ifndef _WIN32
962 ev_ref (EV_A); /* child watcher */
963 ev_signal_stop (EV_A_ &childev);
964#endif
965
966 ev_ref (EV_A); /* signal watcher */
967 ev_io_stop (EV_A_ &sigev);
968
969 close (sigpipe [0]); sigpipe [0] = 0;
970 close (sigpipe [1]); sigpipe [1] = 0;
971
972 loop_destroy (EV_A);
973}
974
975void
976ev_default_fork (void)
977{
978#if EV_MULTIPLICITY
979 struct ev_loop *loop = ev_default_loop_ptr;
980#endif
981
982 if (method)
983 postfork = 1; 3280 postfork = 1;
984} 3281}
985 3282
986/*****************************************************************************/ 3283/*****************************************************************************/
987 3284
988static int 3285void
989any_pending (EV_P) 3286ev_invoke (EV_P_ void *w, int revents)
3287{
3288 EV_CB_INVOKE ((W)w, revents);
3289}
3290
3291unsigned int
3292ev_pending_count (EV_P) EV_THROW
990{ 3293{
991 int pri; 3294 int pri;
3295 unsigned int count = 0;
992 3296
993 for (pri = NUMPRI; pri--; ) 3297 for (pri = NUMPRI; pri--; )
3298 count += pendingcnt [pri];
3299
3300 return count;
3301}
3302
3303noinline
3304void
3305ev_invoke_pending (EV_P)
3306{
3307 pendingpri = NUMPRI;
3308
3309 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3310 {
3311 --pendingpri;
3312
3313 while (pendingcnt [pendingpri])
3314 {
3315 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3316
3317 p->w->pending = 0;
3318 EV_CB_INVOKE (p->w, p->events);
3319 EV_FREQUENT_CHECK;
3320 }
3321 }
3322}
3323
3324#if EV_IDLE_ENABLE
3325/* make idle watchers pending. this handles the "call-idle */
3326/* only when higher priorities are idle" logic */
3327inline_size void
3328idle_reify (EV_P)
3329{
3330 if (expect_false (idleall))
3331 {
3332 int pri;
3333
3334 for (pri = NUMPRI; pri--; )
3335 {
994 if (pendingcnt [pri]) 3336 if (pendingcnt [pri])
995 return 1; 3337 break;
996 3338
997 return 0; 3339 if (idlecnt [pri])
3340 {
3341 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3342 break;
3343 }
3344 }
3345 }
998} 3346}
3347#endif
999 3348
3349/* make timers pending */
3350inline_size void
3351timers_reify (EV_P)
3352{
3353 EV_FREQUENT_CHECK;
3354
3355 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3356 {
3357 do
3358 {
3359 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3360
3361 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3362
3363 /* first reschedule or stop timer */
3364 if (w->repeat)
3365 {
3366 ev_at (w) += w->repeat;
3367 if (ev_at (w) < mn_now)
3368 ev_at (w) = mn_now;
3369
3370 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3371
3372 ANHE_at_cache (timers [HEAP0]);
3373 downheap (timers, timercnt, HEAP0);
3374 }
3375 else
3376 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3377
3378 EV_FREQUENT_CHECK;
3379 feed_reverse (EV_A_ (W)w);
3380 }
3381 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3382
3383 feed_reverse_done (EV_A_ EV_TIMER);
3384 }
3385}
3386
3387#if EV_PERIODIC_ENABLE
3388
3389noinline
1000static void 3390static void
1001call_pending (EV_P) 3391periodic_recalc (EV_P_ ev_periodic *w)
1002{ 3392{
1003 int pri; 3393 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3394 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
1004 3395
1005 for (pri = NUMPRI; pri--; ) 3396 /* the above almost always errs on the low side */
1006 while (pendingcnt [pri]) 3397 while (at <= ev_rt_now)
1007 { 3398 {
1008 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 3399 ev_tstamp nat = at + w->interval;
1009 3400
1010 if (p->w) 3401 /* when resolution fails us, we use ev_rt_now */
1011 { 3402 if (expect_false (nat == at))
1012 p->w->pending = 0;
1013 EV_CB_INVOKE (p->w, p->events);
1014 }
1015 }
1016}
1017
1018static void
1019timers_reify (EV_P)
1020{
1021 while (timercnt && ((WT)timers [0])->at <= mn_now)
1022 {
1023 struct ev_timer *w = timers [0];
1024
1025 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1026
1027 /* first reschedule or stop timer */
1028 if (w->repeat)
1029 { 3403 {
1030 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3404 at = ev_rt_now;
1031 3405 break;
1032 ((WT)w)->at += w->repeat;
1033 if (((WT)w)->at < mn_now)
1034 ((WT)w)->at = mn_now;
1035
1036 downheap ((WT *)timers, timercnt, 0);
1037 } 3406 }
1038 else
1039 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1040 3407
1041 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 3408 at = nat;
1042 } 3409 }
1043}
1044 3410
1045#if EV_PERIODICS 3411 ev_at (w) = at;
1046static void 3412}
3413
3414/* make periodics pending */
3415inline_size void
1047periodics_reify (EV_P) 3416periodics_reify (EV_P)
1048{ 3417{
3418 EV_FREQUENT_CHECK;
3419
1049 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 3420 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1050 { 3421 {
1051 struct ev_periodic *w = periodics [0]; 3422 do
1052
1053 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1054
1055 /* first reschedule or stop timer */
1056 if (w->reschedule_cb)
1057 { 3423 {
3424 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3425
3426 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3427
3428 /* first reschedule or stop timer */
3429 if (w->reschedule_cb)
3430 {
1058 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 3431 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3432
1059 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 3433 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3434
3435 ANHE_at_cache (periodics [HEAP0]);
1060 downheap ((WT *)periodics, periodiccnt, 0); 3436 downheap (periodics, periodiccnt, HEAP0);
3437 }
3438 else if (w->interval)
3439 {
3440 periodic_recalc (EV_A_ w);
3441 ANHE_at_cache (periodics [HEAP0]);
3442 downheap (periodics, periodiccnt, HEAP0);
3443 }
3444 else
3445 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3446
3447 EV_FREQUENT_CHECK;
3448 feed_reverse (EV_A_ (W)w);
1061 } 3449 }
1062 else if (w->interval) 3450 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1063 {
1064 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1065 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1066 downheap ((WT *)periodics, periodiccnt, 0);
1067 }
1068 else
1069 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1070 3451
1071 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 3452 feed_reverse_done (EV_A_ EV_PERIODIC);
1072 } 3453 }
1073} 3454}
1074 3455
3456/* simply recalculate all periodics */
3457/* TODO: maybe ensure that at least one event happens when jumping forward? */
3458noinline ecb_cold
1075static void 3459static void
1076periodics_reschedule (EV_P) 3460periodics_reschedule (EV_P)
1077{ 3461{
1078 int i; 3462 int i;
1079 3463
1080 /* adjust periodics after time jump */ 3464 /* adjust periodics after time jump */
1081 for (i = 0; i < periodiccnt; ++i) 3465 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1082 { 3466 {
1083 struct ev_periodic *w = periodics [i]; 3467 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1084 3468
1085 if (w->reschedule_cb) 3469 if (w->reschedule_cb)
1086 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3470 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1087 else if (w->interval) 3471 else if (w->interval)
1088 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 3472 periodic_recalc (EV_A_ w);
3473
3474 ANHE_at_cache (periodics [i]);
3475 }
3476
3477 reheap (periodics, periodiccnt);
3478}
3479#endif
3480
3481/* adjust all timers by a given offset */
3482noinline ecb_cold
3483static void
3484timers_reschedule (EV_P_ ev_tstamp adjust)
3485{
3486 int i;
3487
3488 for (i = 0; i < timercnt; ++i)
1089 } 3489 {
1090 3490 ANHE *he = timers + i + HEAP0;
1091 /* now rebuild the heap */ 3491 ANHE_w (*he)->at += adjust;
1092 for (i = periodiccnt >> 1; i--; ) 3492 ANHE_at_cache (*he);
1093 downheap ((WT *)periodics, periodiccnt, i); 3493 }
1094} 3494}
1095#endif
1096 3495
1097inline int 3496/* fetch new monotonic and realtime times from the kernel */
1098time_update_monotonic (EV_P) 3497/* also detect if there was a timejump, and act accordingly */
3498inline_speed void
3499time_update (EV_P_ ev_tstamp max_block)
1099{ 3500{
3501#if EV_USE_MONOTONIC
3502 if (expect_true (have_monotonic))
3503 {
3504 int i;
3505 ev_tstamp odiff = rtmn_diff;
3506
1100 mn_now = get_clock (); 3507 mn_now = get_clock ();
1101 3508
3509 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3510 /* interpolate in the meantime */
1102 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 3511 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1103 { 3512 {
1104 ev_rt_now = rtmn_diff + mn_now; 3513 ev_rt_now = rtmn_diff + mn_now;
1105 return 0; 3514 return;
1106 } 3515 }
1107 else 3516
1108 {
1109 now_floor = mn_now; 3517 now_floor = mn_now;
1110 ev_rt_now = ev_time (); 3518 ev_rt_now = ev_time ();
1111 return 1;
1112 }
1113}
1114 3519
1115static void 3520 /* loop a few times, before making important decisions.
1116time_update (EV_P) 3521 * on the choice of "4": one iteration isn't enough,
1117{ 3522 * in case we get preempted during the calls to
1118 int i; 3523 * ev_time and get_clock. a second call is almost guaranteed
1119 3524 * to succeed in that case, though. and looping a few more times
1120#if EV_USE_MONOTONIC 3525 * doesn't hurt either as we only do this on time-jumps or
1121 if (expect_true (have_monotonic)) 3526 * in the unlikely event of having been preempted here.
1122 { 3527 */
1123 if (time_update_monotonic (EV_A)) 3528 for (i = 4; --i; )
1124 { 3529 {
1125 ev_tstamp odiff = rtmn_diff; 3530 ev_tstamp diff;
1126
1127 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1128 {
1129 rtmn_diff = ev_rt_now - mn_now; 3531 rtmn_diff = ev_rt_now - mn_now;
1130 3532
1131 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 3533 diff = odiff - rtmn_diff;
3534
3535 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1132 return; /* all is well */ 3536 return; /* all is well */
1133 3537
1134 ev_rt_now = ev_time (); 3538 ev_rt_now = ev_time ();
1135 mn_now = get_clock (); 3539 mn_now = get_clock ();
1136 now_floor = mn_now; 3540 now_floor = mn_now;
1137 } 3541 }
1138 3542
3543 /* no timer adjustment, as the monotonic clock doesn't jump */
3544 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1139# if EV_PERIODICS 3545# if EV_PERIODIC_ENABLE
3546 periodics_reschedule (EV_A);
3547# endif
3548 }
3549 else
3550#endif
3551 {
3552 ev_rt_now = ev_time ();
3553
3554 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3555 {
3556 /* adjust timers. this is easy, as the offset is the same for all of them */
3557 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3558#if EV_PERIODIC_ENABLE
1140 periodics_reschedule (EV_A); 3559 periodics_reschedule (EV_A);
1141# endif 3560#endif
1142 /* no timer adjustment, as the monotonic clock doesn't jump */
1143 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1144 } 3561 }
1145 }
1146 else
1147#endif
1148 {
1149 ev_rt_now = ev_time ();
1150
1151 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1152 {
1153#if EV_PERIODICS
1154 periodics_reschedule (EV_A);
1155#endif
1156
1157 /* adjust timers. this is easy, as the offset is the same for all */
1158 for (i = 0; i < timercnt; ++i)
1159 ((WT)timers [i])->at += ev_rt_now - mn_now;
1160 }
1161 3562
1162 mn_now = ev_rt_now; 3563 mn_now = ev_rt_now;
1163 } 3564 }
1164} 3565}
1165 3566
1166void 3567int
1167ev_ref (EV_P)
1168{
1169 ++activecnt;
1170}
1171
1172void
1173ev_unref (EV_P)
1174{
1175 --activecnt;
1176}
1177
1178static int loop_done;
1179
1180void
1181ev_loop (EV_P_ int flags) 3568ev_run (EV_P_ int flags)
1182{ 3569{
1183 double block; 3570#if EV_FEATURE_API
1184 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 3571 ++loop_depth;
3572#endif
1185 3573
1186 while (activecnt) 3574 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3575
3576 loop_done = EVBREAK_CANCEL;
3577
3578 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3579
3580 do
1187 { 3581 {
3582#if EV_VERIFY >= 2
3583 ev_verify (EV_A);
3584#endif
3585
3586#ifndef _WIN32
3587 if (expect_false (curpid)) /* penalise the forking check even more */
3588 if (expect_false (getpid () != curpid))
3589 {
3590 curpid = getpid ();
3591 postfork = 1;
3592 }
3593#endif
3594
3595#if EV_FORK_ENABLE
3596 /* we might have forked, so queue fork handlers */
3597 if (expect_false (postfork))
3598 if (forkcnt)
3599 {
3600 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3601 EV_INVOKE_PENDING;
3602 }
3603#endif
3604
3605#if EV_PREPARE_ENABLE
1188 /* queue check watchers (and execute them) */ 3606 /* queue prepare watchers (and execute them) */
1189 if (expect_false (preparecnt)) 3607 if (expect_false (preparecnt))
1190 { 3608 {
1191 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3609 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1192 call_pending (EV_A); 3610 EV_INVOKE_PENDING;
1193 } 3611 }
3612#endif
3613
3614 if (expect_false (loop_done))
3615 break;
1194 3616
1195 /* we might have forked, so reify kernel state if necessary */ 3617 /* we might have forked, so reify kernel state if necessary */
1196 if (expect_false (postfork)) 3618 if (expect_false (postfork))
1197 loop_fork (EV_A); 3619 loop_fork (EV_A);
1198 3620
1199 /* update fd-related kernel structures */ 3621 /* update fd-related kernel structures */
1200 fd_reify (EV_A); 3622 fd_reify (EV_A);
1201 3623
1202 /* calculate blocking time */ 3624 /* calculate blocking time */
3625 {
3626 ev_tstamp waittime = 0.;
3627 ev_tstamp sleeptime = 0.;
1203 3628
1204 /* we only need this for !monotonic clock or timers, but as we basically 3629 /* remember old timestamp for io_blocktime calculation */
1205 always have timers, we just calculate it always */ 3630 ev_tstamp prev_mn_now = mn_now;
1206#if EV_USE_MONOTONIC 3631
1207 if (expect_true (have_monotonic)) 3632 /* update time to cancel out callback processing overhead */
1208 time_update_monotonic (EV_A); 3633 time_update (EV_A_ 1e100);
1209 else 3634
1210#endif 3635 /* from now on, we want a pipe-wake-up */
3636 pipe_write_wanted = 1;
3637
3638 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3639
3640 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1211 { 3641 {
1212 ev_rt_now = ev_time ();
1213 mn_now = ev_rt_now;
1214 }
1215
1216 if (flags & EVLOOP_NONBLOCK || idlecnt)
1217 block = 0.;
1218 else
1219 {
1220 block = MAX_BLOCKTIME; 3642 waittime = MAX_BLOCKTIME;
1221 3643
1222 if (timercnt) 3644 if (timercnt)
1223 { 3645 {
1224 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 3646 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1225 if (block > to) block = to; 3647 if (waittime > to) waittime = to;
1226 } 3648 }
1227 3649
1228#if EV_PERIODICS 3650#if EV_PERIODIC_ENABLE
1229 if (periodiccnt) 3651 if (periodiccnt)
1230 { 3652 {
1231 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 3653 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1232 if (block > to) block = to; 3654 if (waittime > to) waittime = to;
1233 } 3655 }
1234#endif 3656#endif
1235 3657
1236 if (block < 0.) block = 0.; 3658 /* don't let timeouts decrease the waittime below timeout_blocktime */
3659 if (expect_false (waittime < timeout_blocktime))
3660 waittime = timeout_blocktime;
3661
3662 /* at this point, we NEED to wait, so we have to ensure */
3663 /* to pass a minimum nonzero value to the backend */
3664 if (expect_false (waittime < backend_mintime))
3665 waittime = backend_mintime;
3666
3667 /* extra check because io_blocktime is commonly 0 */
3668 if (expect_false (io_blocktime))
3669 {
3670 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3671
3672 if (sleeptime > waittime - backend_mintime)
3673 sleeptime = waittime - backend_mintime;
3674
3675 if (expect_true (sleeptime > 0.))
3676 {
3677 ev_sleep (sleeptime);
3678 waittime -= sleeptime;
3679 }
3680 }
1237 } 3681 }
1238 3682
1239 method_poll (EV_A_ block); 3683#if EV_FEATURE_API
3684 ++loop_count;
3685#endif
3686 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3687 backend_poll (EV_A_ waittime);
3688 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1240 3689
3690 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3691
3692 ECB_MEMORY_FENCE_ACQUIRE;
3693 if (pipe_write_skipped)
3694 {
3695 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3696 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3697 }
3698
3699
1241 /* update ev_rt_now, do magic */ 3700 /* update ev_rt_now, do magic */
1242 time_update (EV_A); 3701 time_update (EV_A_ waittime + sleeptime);
3702 }
1243 3703
1244 /* queue pending timers and reschedule them */ 3704 /* queue pending timers and reschedule them */
1245 timers_reify (EV_A); /* relative timers called last */ 3705 timers_reify (EV_A); /* relative timers called last */
1246#if EV_PERIODICS 3706#if EV_PERIODIC_ENABLE
1247 periodics_reify (EV_A); /* absolute timers called first */ 3707 periodics_reify (EV_A); /* absolute timers called first */
1248#endif 3708#endif
1249 3709
3710#if EV_IDLE_ENABLE
1250 /* queue idle watchers unless io or timers are pending */ 3711 /* queue idle watchers unless other events are pending */
1251 if (idlecnt && !any_pending (EV_A)) 3712 idle_reify (EV_A);
1252 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 3713#endif
1253 3714
3715#if EV_CHECK_ENABLE
1254 /* queue check watchers, to be executed first */ 3716 /* queue check watchers, to be executed first */
1255 if (checkcnt) 3717 if (expect_false (checkcnt))
1256 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3718 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3719#endif
1257 3720
1258 call_pending (EV_A); 3721 EV_INVOKE_PENDING;
1259
1260 if (loop_done)
1261 break;
1262 } 3722 }
3723 while (expect_true (
3724 activecnt
3725 && !loop_done
3726 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3727 ));
1263 3728
1264 if (loop_done != 2) 3729 if (loop_done == EVBREAK_ONE)
1265 loop_done = 0; 3730 loop_done = EVBREAK_CANCEL;
1266}
1267 3731
3732#if EV_FEATURE_API
3733 --loop_depth;
3734#endif
3735
3736 return activecnt;
3737}
3738
1268void 3739void
1269ev_unloop (EV_P_ int how) 3740ev_break (EV_P_ int how) EV_THROW
1270{ 3741{
1271 loop_done = how; 3742 loop_done = how;
1272} 3743}
1273 3744
3745void
3746ev_ref (EV_P) EV_THROW
3747{
3748 ++activecnt;
3749}
3750
3751void
3752ev_unref (EV_P) EV_THROW
3753{
3754 --activecnt;
3755}
3756
3757void
3758ev_now_update (EV_P) EV_THROW
3759{
3760 time_update (EV_A_ 1e100);
3761}
3762
3763void
3764ev_suspend (EV_P) EV_THROW
3765{
3766 ev_now_update (EV_A);
3767}
3768
3769void
3770ev_resume (EV_P) EV_THROW
3771{
3772 ev_tstamp mn_prev = mn_now;
3773
3774 ev_now_update (EV_A);
3775 timers_reschedule (EV_A_ mn_now - mn_prev);
3776#if EV_PERIODIC_ENABLE
3777 /* TODO: really do this? */
3778 periodics_reschedule (EV_A);
3779#endif
3780}
3781
1274/*****************************************************************************/ 3782/*****************************************************************************/
3783/* singly-linked list management, used when the expected list length is short */
1275 3784
1276inline void 3785inline_size void
1277wlist_add (WL *head, WL elem) 3786wlist_add (WL *head, WL elem)
1278{ 3787{
1279 elem->next = *head; 3788 elem->next = *head;
1280 *head = elem; 3789 *head = elem;
1281} 3790}
1282 3791
1283inline void 3792inline_size void
1284wlist_del (WL *head, WL elem) 3793wlist_del (WL *head, WL elem)
1285{ 3794{
1286 while (*head) 3795 while (*head)
1287 { 3796 {
1288 if (*head == elem) 3797 if (expect_true (*head == elem))
1289 { 3798 {
1290 *head = elem->next; 3799 *head = elem->next;
1291 return; 3800 break;
1292 } 3801 }
1293 3802
1294 head = &(*head)->next; 3803 head = &(*head)->next;
1295 } 3804 }
1296} 3805}
1297 3806
3807/* internal, faster, version of ev_clear_pending */
1298inline void 3808inline_speed void
1299ev_clear_pending (EV_P_ W w) 3809clear_pending (EV_P_ W w)
1300{ 3810{
1301 if (w->pending) 3811 if (w->pending)
1302 { 3812 {
1303 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3813 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1304 w->pending = 0; 3814 w->pending = 0;
1305 } 3815 }
1306} 3816}
1307 3817
3818int
3819ev_clear_pending (EV_P_ void *w) EV_THROW
3820{
3821 W w_ = (W)w;
3822 int pending = w_->pending;
3823
3824 if (expect_true (pending))
3825 {
3826 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3827 p->w = (W)&pending_w;
3828 w_->pending = 0;
3829 return p->events;
3830 }
3831 else
3832 return 0;
3833}
3834
1308inline void 3835inline_size void
3836pri_adjust (EV_P_ W w)
3837{
3838 int pri = ev_priority (w);
3839 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3840 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3841 ev_set_priority (w, pri);
3842}
3843
3844inline_speed void
1309ev_start (EV_P_ W w, int active) 3845ev_start (EV_P_ W w, int active)
1310{ 3846{
1311 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 3847 pri_adjust (EV_A_ w);
1312 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1313
1314 w->active = active; 3848 w->active = active;
1315 ev_ref (EV_A); 3849 ev_ref (EV_A);
1316} 3850}
1317 3851
1318inline void 3852inline_size void
1319ev_stop (EV_P_ W w) 3853ev_stop (EV_P_ W w)
1320{ 3854{
1321 ev_unref (EV_A); 3855 ev_unref (EV_A);
1322 w->active = 0; 3856 w->active = 0;
1323} 3857}
1324 3858
1325/*****************************************************************************/ 3859/*****************************************************************************/
1326 3860
3861noinline
1327void 3862void
1328ev_io_start (EV_P_ struct ev_io *w) 3863ev_io_start (EV_P_ ev_io *w) EV_THROW
1329{ 3864{
1330 int fd = w->fd; 3865 int fd = w->fd;
1331 3866
1332 if (ev_is_active (w)) 3867 if (expect_false (ev_is_active (w)))
1333 return; 3868 return;
1334 3869
1335 assert (("ev_io_start called with negative fd", fd >= 0)); 3870 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3871 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3872
3873 EV_FREQUENT_CHECK;
1336 3874
1337 ev_start (EV_A_ (W)w, 1); 3875 ev_start (EV_A_ (W)w, 1);
1338 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3876 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1339 wlist_add ((WL *)&anfds[fd].head, (WL)w); 3877 wlist_add (&anfds[fd].head, (WL)w);
1340 3878
1341 fd_change (EV_A_ fd); 3879 /* common bug, apparently */
1342} 3880 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
1343 3881
3882 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3883 w->events &= ~EV__IOFDSET;
3884
3885 EV_FREQUENT_CHECK;
3886}
3887
3888noinline
1344void 3889void
1345ev_io_stop (EV_P_ struct ev_io *w) 3890ev_io_stop (EV_P_ ev_io *w) EV_THROW
1346{ 3891{
1347 ev_clear_pending (EV_A_ (W)w); 3892 clear_pending (EV_A_ (W)w);
1348 if (!ev_is_active (w)) 3893 if (expect_false (!ev_is_active (w)))
1349 return; 3894 return;
1350 3895
1351 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3896 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1352 3897
3898 EV_FREQUENT_CHECK;
3899
1353 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 3900 wlist_del (&anfds[w->fd].head, (WL)w);
1354 ev_stop (EV_A_ (W)w); 3901 ev_stop (EV_A_ (W)w);
1355 3902
1356 fd_change (EV_A_ w->fd); 3903 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1357}
1358 3904
3905 EV_FREQUENT_CHECK;
3906}
3907
3908noinline
1359void 3909void
1360ev_timer_start (EV_P_ struct ev_timer *w) 3910ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1361{ 3911{
1362 if (ev_is_active (w)) 3912 if (expect_false (ev_is_active (w)))
1363 return; 3913 return;
1364 3914
1365 ((WT)w)->at += mn_now; 3915 ev_at (w) += mn_now;
1366 3916
1367 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3917 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1368 3918
3919 EV_FREQUENT_CHECK;
3920
3921 ++timercnt;
1369 ev_start (EV_A_ (W)w, ++timercnt); 3922 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1370 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 3923 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1371 timers [timercnt - 1] = w; 3924 ANHE_w (timers [ev_active (w)]) = (WT)w;
1372 upheap ((WT *)timers, timercnt - 1); 3925 ANHE_at_cache (timers [ev_active (w)]);
3926 upheap (timers, ev_active (w));
1373 3927
3928 EV_FREQUENT_CHECK;
3929
1374 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3930 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1375} 3931}
1376 3932
3933noinline
1377void 3934void
1378ev_timer_stop (EV_P_ struct ev_timer *w) 3935ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1379{ 3936{
1380 ev_clear_pending (EV_A_ (W)w); 3937 clear_pending (EV_A_ (W)w);
1381 if (!ev_is_active (w)) 3938 if (expect_false (!ev_is_active (w)))
1382 return; 3939 return;
1383 3940
3941 EV_FREQUENT_CHECK;
3942
3943 {
3944 int active = ev_active (w);
3945
1384 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3946 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1385 3947
1386 if (((W)w)->active < timercnt--) 3948 --timercnt;
3949
3950 if (expect_true (active < timercnt + HEAP0))
1387 { 3951 {
1388 timers [((W)w)->active - 1] = timers [timercnt]; 3952 timers [active] = timers [timercnt + HEAP0];
1389 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3953 adjustheap (timers, timercnt, active);
1390 } 3954 }
3955 }
1391 3956
1392 ((WT)w)->at -= mn_now; 3957 ev_at (w) -= mn_now;
1393 3958
1394 ev_stop (EV_A_ (W)w); 3959 ev_stop (EV_A_ (W)w);
1395}
1396 3960
3961 EV_FREQUENT_CHECK;
3962}
3963
3964noinline
1397void 3965void
1398ev_timer_again (EV_P_ struct ev_timer *w) 3966ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1399{ 3967{
3968 EV_FREQUENT_CHECK;
3969
3970 clear_pending (EV_A_ (W)w);
3971
1400 if (ev_is_active (w)) 3972 if (ev_is_active (w))
1401 { 3973 {
1402 if (w->repeat) 3974 if (w->repeat)
1403 { 3975 {
1404 ((WT)w)->at = mn_now + w->repeat; 3976 ev_at (w) = mn_now + w->repeat;
3977 ANHE_at_cache (timers [ev_active (w)]);
1405 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3978 adjustheap (timers, timercnt, ev_active (w));
1406 } 3979 }
1407 else 3980 else
1408 ev_timer_stop (EV_A_ w); 3981 ev_timer_stop (EV_A_ w);
1409 } 3982 }
1410 else if (w->repeat) 3983 else if (w->repeat)
1411 { 3984 {
1412 w->at = w->repeat; 3985 ev_at (w) = w->repeat;
1413 ev_timer_start (EV_A_ w); 3986 ev_timer_start (EV_A_ w);
1414 } 3987 }
1415}
1416 3988
3989 EV_FREQUENT_CHECK;
3990}
3991
3992ev_tstamp
3993ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3994{
3995 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3996}
3997
1417#if EV_PERIODICS 3998#if EV_PERIODIC_ENABLE
3999noinline
1418void 4000void
1419ev_periodic_start (EV_P_ struct ev_periodic *w) 4001ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1420{ 4002{
1421 if (ev_is_active (w)) 4003 if (expect_false (ev_is_active (w)))
1422 return; 4004 return;
1423 4005
1424 if (w->reschedule_cb) 4006 if (w->reschedule_cb)
1425 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 4007 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1426 else if (w->interval) 4008 else if (w->interval)
1427 { 4009 {
1428 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 4010 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1429 /* this formula differs from the one in periodic_reify because we do not always round up */ 4011 periodic_recalc (EV_A_ w);
1430 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1431 } 4012 }
4013 else
4014 ev_at (w) = w->offset;
1432 4015
4016 EV_FREQUENT_CHECK;
4017
4018 ++periodiccnt;
1433 ev_start (EV_A_ (W)w, ++periodiccnt); 4019 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1434 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 4020 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1435 periodics [periodiccnt - 1] = w; 4021 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1436 upheap ((WT *)periodics, periodiccnt - 1); 4022 ANHE_at_cache (periodics [ev_active (w)]);
4023 upheap (periodics, ev_active (w));
1437 4024
4025 EV_FREQUENT_CHECK;
4026
1438 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 4027 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1439} 4028}
1440 4029
4030noinline
1441void 4031void
1442ev_periodic_stop (EV_P_ struct ev_periodic *w) 4032ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1443{ 4033{
1444 ev_clear_pending (EV_A_ (W)w); 4034 clear_pending (EV_A_ (W)w);
1445 if (!ev_is_active (w)) 4035 if (expect_false (!ev_is_active (w)))
1446 return; 4036 return;
1447 4037
4038 EV_FREQUENT_CHECK;
4039
4040 {
4041 int active = ev_active (w);
4042
1448 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 4043 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1449 4044
1450 if (((W)w)->active < periodiccnt--) 4045 --periodiccnt;
4046
4047 if (expect_true (active < periodiccnt + HEAP0))
1451 { 4048 {
1452 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 4049 periodics [active] = periodics [periodiccnt + HEAP0];
1453 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 4050 adjustheap (periodics, periodiccnt, active);
1454 } 4051 }
4052 }
1455 4053
1456 ev_stop (EV_A_ (W)w); 4054 ev_stop (EV_A_ (W)w);
1457}
1458 4055
4056 EV_FREQUENT_CHECK;
4057}
4058
4059noinline
1459void 4060void
1460ev_periodic_again (EV_P_ struct ev_periodic *w) 4061ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1461{ 4062{
1462 /* TODO: use adjustheap and recalculation */ 4063 /* TODO: use adjustheap and recalculation */
1463 ev_periodic_stop (EV_A_ w); 4064 ev_periodic_stop (EV_A_ w);
1464 ev_periodic_start (EV_A_ w); 4065 ev_periodic_start (EV_A_ w);
1465} 4066}
1466#endif 4067#endif
1467 4068
1468void
1469ev_idle_start (EV_P_ struct ev_idle *w)
1470{
1471 if (ev_is_active (w))
1472 return;
1473
1474 ev_start (EV_A_ (W)w, ++idlecnt);
1475 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1476 idles [idlecnt - 1] = w;
1477}
1478
1479void
1480ev_idle_stop (EV_P_ struct ev_idle *w)
1481{
1482 ev_clear_pending (EV_A_ (W)w);
1483 if (!ev_is_active (w))
1484 return;
1485
1486 idles [((W)w)->active - 1] = idles [--idlecnt];
1487 ev_stop (EV_A_ (W)w);
1488}
1489
1490void
1491ev_prepare_start (EV_P_ struct ev_prepare *w)
1492{
1493 if (ev_is_active (w))
1494 return;
1495
1496 ev_start (EV_A_ (W)w, ++preparecnt);
1497 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1498 prepares [preparecnt - 1] = w;
1499}
1500
1501void
1502ev_prepare_stop (EV_P_ struct ev_prepare *w)
1503{
1504 ev_clear_pending (EV_A_ (W)w);
1505 if (!ev_is_active (w))
1506 return;
1507
1508 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1509 ev_stop (EV_A_ (W)w);
1510}
1511
1512void
1513ev_check_start (EV_P_ struct ev_check *w)
1514{
1515 if (ev_is_active (w))
1516 return;
1517
1518 ev_start (EV_A_ (W)w, ++checkcnt);
1519 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1520 checks [checkcnt - 1] = w;
1521}
1522
1523void
1524ev_check_stop (EV_P_ struct ev_check *w)
1525{
1526 ev_clear_pending (EV_A_ (W)w);
1527 if (!ev_is_active (w))
1528 return;
1529
1530 checks [((W)w)->active - 1] = checks [--checkcnt];
1531 ev_stop (EV_A_ (W)w);
1532}
1533
1534#ifndef SA_RESTART 4069#ifndef SA_RESTART
1535# define SA_RESTART 0 4070# define SA_RESTART 0
1536#endif 4071#endif
1537 4072
4073#if EV_SIGNAL_ENABLE
4074
4075noinline
1538void 4076void
1539ev_signal_start (EV_P_ struct ev_signal *w) 4077ev_signal_start (EV_P_ ev_signal *w) EV_THROW
1540{ 4078{
4079 if (expect_false (ev_is_active (w)))
4080 return;
4081
4082 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4083
1541#if EV_MULTIPLICITY 4084#if EV_MULTIPLICITY
1542 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4085 assert (("libev: a signal must not be attached to two different loops",
4086 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4087
4088 signals [w->signum - 1].loop = EV_A;
4089 ECB_MEMORY_FENCE_RELEASE;
4090#endif
4091
4092 EV_FREQUENT_CHECK;
4093
4094#if EV_USE_SIGNALFD
4095 if (sigfd == -2)
4096 {
4097 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
4098 if (sigfd < 0 && errno == EINVAL)
4099 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
4100
4101 if (sigfd >= 0)
4102 {
4103 fd_intern (sigfd); /* doing it twice will not hurt */
4104
4105 sigemptyset (&sigfd_set);
4106
4107 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4108 ev_set_priority (&sigfd_w, EV_MAXPRI);
4109 ev_io_start (EV_A_ &sigfd_w);
4110 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4111 }
4112 }
4113
4114 if (sigfd >= 0)
4115 {
4116 /* TODO: check .head */
4117 sigaddset (&sigfd_set, w->signum);
4118 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4119
4120 signalfd (sigfd, &sigfd_set, 0);
4121 }
4122#endif
4123
4124 ev_start (EV_A_ (W)w, 1);
4125 wlist_add (&signals [w->signum - 1].head, (WL)w);
4126
4127 if (!((WL)w)->next)
4128# if EV_USE_SIGNALFD
4129 if (sigfd < 0) /*TODO*/
1543#endif 4130# endif
1544 if (ev_is_active (w)) 4131 {
4132# ifdef _WIN32
4133 evpipe_init (EV_A);
4134
4135 signal (w->signum, ev_sighandler);
4136# else
4137 struct sigaction sa;
4138
4139 evpipe_init (EV_A);
4140
4141 sa.sa_handler = ev_sighandler;
4142 sigfillset (&sa.sa_mask);
4143 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
4144 sigaction (w->signum, &sa, 0);
4145
4146 if (origflags & EVFLAG_NOSIGMASK)
4147 {
4148 sigemptyset (&sa.sa_mask);
4149 sigaddset (&sa.sa_mask, w->signum);
4150 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4151 }
4152#endif
4153 }
4154
4155 EV_FREQUENT_CHECK;
4156}
4157
4158noinline
4159void
4160ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
4161{
4162 clear_pending (EV_A_ (W)w);
4163 if (expect_false (!ev_is_active (w)))
1545 return; 4164 return;
1546 4165
1547 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 4166 EV_FREQUENT_CHECK;
4167
4168 wlist_del (&signals [w->signum - 1].head, (WL)w);
4169 ev_stop (EV_A_ (W)w);
4170
4171 if (!signals [w->signum - 1].head)
4172 {
4173#if EV_MULTIPLICITY
4174 signals [w->signum - 1].loop = 0; /* unattach from signal */
4175#endif
4176#if EV_USE_SIGNALFD
4177 if (sigfd >= 0)
4178 {
4179 sigset_t ss;
4180
4181 sigemptyset (&ss);
4182 sigaddset (&ss, w->signum);
4183 sigdelset (&sigfd_set, w->signum);
4184
4185 signalfd (sigfd, &sigfd_set, 0);
4186 sigprocmask (SIG_UNBLOCK, &ss, 0);
4187 }
4188 else
4189#endif
4190 signal (w->signum, SIG_DFL);
4191 }
4192
4193 EV_FREQUENT_CHECK;
4194}
4195
4196#endif
4197
4198#if EV_CHILD_ENABLE
4199
4200void
4201ev_child_start (EV_P_ ev_child *w) EV_THROW
4202{
4203#if EV_MULTIPLICITY
4204 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
4205#endif
4206 if (expect_false (ev_is_active (w)))
4207 return;
4208
4209 EV_FREQUENT_CHECK;
1548 4210
1549 ev_start (EV_A_ (W)w, 1); 4211 ev_start (EV_A_ (W)w, 1);
1550 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 4212 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1551 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1552 4213
1553 if (!((WL)w)->next) 4214 EV_FREQUENT_CHECK;
1554 {
1555#if _WIN32
1556 signal (w->signum, sighandler);
1557#else
1558 struct sigaction sa;
1559 sa.sa_handler = sighandler;
1560 sigfillset (&sa.sa_mask);
1561 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1562 sigaction (w->signum, &sa, 0);
1563#endif
1564 }
1565} 4215}
1566 4216
1567void 4217void
1568ev_signal_stop (EV_P_ struct ev_signal *w) 4218ev_child_stop (EV_P_ ev_child *w) EV_THROW
1569{ 4219{
1570 ev_clear_pending (EV_A_ (W)w); 4220 clear_pending (EV_A_ (W)w);
1571 if (!ev_is_active (w)) 4221 if (expect_false (!ev_is_active (w)))
1572 return; 4222 return;
1573 4223
1574 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 4224 EV_FREQUENT_CHECK;
4225
4226 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1575 ev_stop (EV_A_ (W)w); 4227 ev_stop (EV_A_ (W)w);
1576 4228
1577 if (!signals [w->signum - 1].head) 4229 EV_FREQUENT_CHECK;
1578 signal (w->signum, SIG_DFL);
1579} 4230}
1580 4231
1581void 4232#endif
1582ev_child_start (EV_P_ struct ev_child *w) 4233
1583{ 4234#if EV_STAT_ENABLE
1584#if EV_MULTIPLICITY 4235
1585 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4236# ifdef _WIN32
4237# undef lstat
4238# define lstat(a,b) _stati64 (a,b)
1586#endif 4239# endif
1587 if (ev_is_active (w)) 4240
4241#define DEF_STAT_INTERVAL 5.0074891
4242#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4243#define MIN_STAT_INTERVAL 0.1074891
4244
4245noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4246
4247#if EV_USE_INOTIFY
4248
4249/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4250# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4251
4252noinline
4253static void
4254infy_add (EV_P_ ev_stat *w)
4255{
4256 w->wd = inotify_add_watch (fs_fd, w->path,
4257 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4258 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4259 | IN_DONT_FOLLOW | IN_MASK_ADD);
4260
4261 if (w->wd >= 0)
4262 {
4263 struct statfs sfs;
4264
4265 /* now local changes will be tracked by inotify, but remote changes won't */
4266 /* unless the filesystem is known to be local, we therefore still poll */
4267 /* also do poll on <2.6.25, but with normal frequency */
4268
4269 if (!fs_2625)
4270 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4271 else if (!statfs (w->path, &sfs)
4272 && (sfs.f_type == 0x1373 /* devfs */
4273 || sfs.f_type == 0x4006 /* fat */
4274 || sfs.f_type == 0x4d44 /* msdos */
4275 || sfs.f_type == 0xEF53 /* ext2/3 */
4276 || sfs.f_type == 0x72b6 /* jffs2 */
4277 || sfs.f_type == 0x858458f6 /* ramfs */
4278 || sfs.f_type == 0x5346544e /* ntfs */
4279 || sfs.f_type == 0x3153464a /* jfs */
4280 || sfs.f_type == 0x9123683e /* btrfs */
4281 || sfs.f_type == 0x52654973 /* reiser3 */
4282 || sfs.f_type == 0x01021994 /* tmpfs */
4283 || sfs.f_type == 0x58465342 /* xfs */))
4284 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4285 else
4286 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
4287 }
4288 else
4289 {
4290 /* can't use inotify, continue to stat */
4291 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4292
4293 /* if path is not there, monitor some parent directory for speedup hints */
4294 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4295 /* but an efficiency issue only */
4296 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4297 {
4298 char path [4096];
4299 strcpy (path, w->path);
4300
4301 do
4302 {
4303 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4304 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4305
4306 char *pend = strrchr (path, '/');
4307
4308 if (!pend || pend == path)
4309 break;
4310
4311 *pend = 0;
4312 w->wd = inotify_add_watch (fs_fd, path, mask);
4313 }
4314 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4315 }
4316 }
4317
4318 if (w->wd >= 0)
4319 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4320
4321 /* now re-arm timer, if required */
4322 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4323 ev_timer_again (EV_A_ &w->timer);
4324 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4325}
4326
4327noinline
4328static void
4329infy_del (EV_P_ ev_stat *w)
4330{
4331 int slot;
4332 int wd = w->wd;
4333
4334 if (wd < 0)
1588 return; 4335 return;
1589 4336
4337 w->wd = -2;
4338 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4339 wlist_del (&fs_hash [slot].head, (WL)w);
4340
4341 /* remove this watcher, if others are watching it, they will rearm */
4342 inotify_rm_watch (fs_fd, wd);
4343}
4344
4345noinline
4346static void
4347infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4348{
4349 if (slot < 0)
4350 /* overflow, need to check for all hash slots */
4351 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4352 infy_wd (EV_A_ slot, wd, ev);
4353 else
4354 {
4355 WL w_;
4356
4357 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4358 {
4359 ev_stat *w = (ev_stat *)w_;
4360 w_ = w_->next; /* lets us remove this watcher and all before it */
4361
4362 if (w->wd == wd || wd == -1)
4363 {
4364 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4365 {
4366 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4367 w->wd = -1;
4368 infy_add (EV_A_ w); /* re-add, no matter what */
4369 }
4370
4371 stat_timer_cb (EV_A_ &w->timer, 0);
4372 }
4373 }
4374 }
4375}
4376
4377static void
4378infy_cb (EV_P_ ev_io *w, int revents)
4379{
4380 char buf [EV_INOTIFY_BUFSIZE];
4381 int ofs;
4382 int len = read (fs_fd, buf, sizeof (buf));
4383
4384 for (ofs = 0; ofs < len; )
4385 {
4386 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4387 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4388 ofs += sizeof (struct inotify_event) + ev->len;
4389 }
4390}
4391
4392inline_size ecb_cold
4393void
4394ev_check_2625 (EV_P)
4395{
4396 /* kernels < 2.6.25 are borked
4397 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4398 */
4399 if (ev_linux_version () < 0x020619)
4400 return;
4401
4402 fs_2625 = 1;
4403}
4404
4405inline_size int
4406infy_newfd (void)
4407{
4408#if defined IN_CLOEXEC && defined IN_NONBLOCK
4409 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4410 if (fd >= 0)
4411 return fd;
4412#endif
4413 return inotify_init ();
4414}
4415
4416inline_size void
4417infy_init (EV_P)
4418{
4419 if (fs_fd != -2)
4420 return;
4421
4422 fs_fd = -1;
4423
4424 ev_check_2625 (EV_A);
4425
4426 fs_fd = infy_newfd ();
4427
4428 if (fs_fd >= 0)
4429 {
4430 fd_intern (fs_fd);
4431 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4432 ev_set_priority (&fs_w, EV_MAXPRI);
4433 ev_io_start (EV_A_ &fs_w);
4434 ev_unref (EV_A);
4435 }
4436}
4437
4438inline_size void
4439infy_fork (EV_P)
4440{
4441 int slot;
4442
4443 if (fs_fd < 0)
4444 return;
4445
4446 ev_ref (EV_A);
4447 ev_io_stop (EV_A_ &fs_w);
4448 close (fs_fd);
4449 fs_fd = infy_newfd ();
4450
4451 if (fs_fd >= 0)
4452 {
4453 fd_intern (fs_fd);
4454 ev_io_set (&fs_w, fs_fd, EV_READ);
4455 ev_io_start (EV_A_ &fs_w);
4456 ev_unref (EV_A);
4457 }
4458
4459 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4460 {
4461 WL w_ = fs_hash [slot].head;
4462 fs_hash [slot].head = 0;
4463
4464 while (w_)
4465 {
4466 ev_stat *w = (ev_stat *)w_;
4467 w_ = w_->next; /* lets us add this watcher */
4468
4469 w->wd = -1;
4470
4471 if (fs_fd >= 0)
4472 infy_add (EV_A_ w); /* re-add, no matter what */
4473 else
4474 {
4475 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4476 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4477 ev_timer_again (EV_A_ &w->timer);
4478 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4479 }
4480 }
4481 }
4482}
4483
4484#endif
4485
4486#ifdef _WIN32
4487# define EV_LSTAT(p,b) _stati64 (p, b)
4488#else
4489# define EV_LSTAT(p,b) lstat (p, b)
4490#endif
4491
4492void
4493ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
4494{
4495 if (lstat (w->path, &w->attr) < 0)
4496 w->attr.st_nlink = 0;
4497 else if (!w->attr.st_nlink)
4498 w->attr.st_nlink = 1;
4499}
4500
4501noinline
4502static void
4503stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4504{
4505 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4506
4507 ev_statdata prev = w->attr;
4508 ev_stat_stat (EV_A_ w);
4509
4510 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4511 if (
4512 prev.st_dev != w->attr.st_dev
4513 || prev.st_ino != w->attr.st_ino
4514 || prev.st_mode != w->attr.st_mode
4515 || prev.st_nlink != w->attr.st_nlink
4516 || prev.st_uid != w->attr.st_uid
4517 || prev.st_gid != w->attr.st_gid
4518 || prev.st_rdev != w->attr.st_rdev
4519 || prev.st_size != w->attr.st_size
4520 || prev.st_atime != w->attr.st_atime
4521 || prev.st_mtime != w->attr.st_mtime
4522 || prev.st_ctime != w->attr.st_ctime
4523 ) {
4524 /* we only update w->prev on actual differences */
4525 /* in case we test more often than invoke the callback, */
4526 /* to ensure that prev is always different to attr */
4527 w->prev = prev;
4528
4529 #if EV_USE_INOTIFY
4530 if (fs_fd >= 0)
4531 {
4532 infy_del (EV_A_ w);
4533 infy_add (EV_A_ w);
4534 ev_stat_stat (EV_A_ w); /* avoid race... */
4535 }
4536 #endif
4537
4538 ev_feed_event (EV_A_ w, EV_STAT);
4539 }
4540}
4541
4542void
4543ev_stat_start (EV_P_ ev_stat *w) EV_THROW
4544{
4545 if (expect_false (ev_is_active (w)))
4546 return;
4547
4548 ev_stat_stat (EV_A_ w);
4549
4550 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4551 w->interval = MIN_STAT_INTERVAL;
4552
4553 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4554 ev_set_priority (&w->timer, ev_priority (w));
4555
4556#if EV_USE_INOTIFY
4557 infy_init (EV_A);
4558
4559 if (fs_fd >= 0)
4560 infy_add (EV_A_ w);
4561 else
4562#endif
4563 {
4564 ev_timer_again (EV_A_ &w->timer);
4565 ev_unref (EV_A);
4566 }
4567
1590 ev_start (EV_A_ (W)w, 1); 4568 ev_start (EV_A_ (W)w, 1);
1591 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1592}
1593 4569
4570 EV_FREQUENT_CHECK;
4571}
4572
1594void 4573void
1595ev_child_stop (EV_P_ struct ev_child *w) 4574ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
1596{ 4575{
1597 ev_clear_pending (EV_A_ (W)w); 4576 clear_pending (EV_A_ (W)w);
1598 if (!ev_is_active (w)) 4577 if (expect_false (!ev_is_active (w)))
1599 return; 4578 return;
1600 4579
1601 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4580 EV_FREQUENT_CHECK;
4581
4582#if EV_USE_INOTIFY
4583 infy_del (EV_A_ w);
4584#endif
4585
4586 if (ev_is_active (&w->timer))
4587 {
4588 ev_ref (EV_A);
4589 ev_timer_stop (EV_A_ &w->timer);
4590 }
4591
1602 ev_stop (EV_A_ (W)w); 4592 ev_stop (EV_A_ (W)w);
4593
4594 EV_FREQUENT_CHECK;
1603} 4595}
4596#endif
4597
4598#if EV_IDLE_ENABLE
4599void
4600ev_idle_start (EV_P_ ev_idle *w) EV_THROW
4601{
4602 if (expect_false (ev_is_active (w)))
4603 return;
4604
4605 pri_adjust (EV_A_ (W)w);
4606
4607 EV_FREQUENT_CHECK;
4608
4609 {
4610 int active = ++idlecnt [ABSPRI (w)];
4611
4612 ++idleall;
4613 ev_start (EV_A_ (W)w, active);
4614
4615 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
4616 idles [ABSPRI (w)][active - 1] = w;
4617 }
4618
4619 EV_FREQUENT_CHECK;
4620}
4621
4622void
4623ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
4624{
4625 clear_pending (EV_A_ (W)w);
4626 if (expect_false (!ev_is_active (w)))
4627 return;
4628
4629 EV_FREQUENT_CHECK;
4630
4631 {
4632 int active = ev_active (w);
4633
4634 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4635 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4636
4637 ev_stop (EV_A_ (W)w);
4638 --idleall;
4639 }
4640
4641 EV_FREQUENT_CHECK;
4642}
4643#endif
4644
4645#if EV_PREPARE_ENABLE
4646void
4647ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4648{
4649 if (expect_false (ev_is_active (w)))
4650 return;
4651
4652 EV_FREQUENT_CHECK;
4653
4654 ev_start (EV_A_ (W)w, ++preparecnt);
4655 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4656 prepares [preparecnt - 1] = w;
4657
4658 EV_FREQUENT_CHECK;
4659}
4660
4661void
4662ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4663{
4664 clear_pending (EV_A_ (W)w);
4665 if (expect_false (!ev_is_active (w)))
4666 return;
4667
4668 EV_FREQUENT_CHECK;
4669
4670 {
4671 int active = ev_active (w);
4672
4673 prepares [active - 1] = prepares [--preparecnt];
4674 ev_active (prepares [active - 1]) = active;
4675 }
4676
4677 ev_stop (EV_A_ (W)w);
4678
4679 EV_FREQUENT_CHECK;
4680}
4681#endif
4682
4683#if EV_CHECK_ENABLE
4684void
4685ev_check_start (EV_P_ ev_check *w) EV_THROW
4686{
4687 if (expect_false (ev_is_active (w)))
4688 return;
4689
4690 EV_FREQUENT_CHECK;
4691
4692 ev_start (EV_A_ (W)w, ++checkcnt);
4693 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4694 checks [checkcnt - 1] = w;
4695
4696 EV_FREQUENT_CHECK;
4697}
4698
4699void
4700ev_check_stop (EV_P_ ev_check *w) EV_THROW
4701{
4702 clear_pending (EV_A_ (W)w);
4703 if (expect_false (!ev_is_active (w)))
4704 return;
4705
4706 EV_FREQUENT_CHECK;
4707
4708 {
4709 int active = ev_active (w);
4710
4711 checks [active - 1] = checks [--checkcnt];
4712 ev_active (checks [active - 1]) = active;
4713 }
4714
4715 ev_stop (EV_A_ (W)w);
4716
4717 EV_FREQUENT_CHECK;
4718}
4719#endif
4720
4721#if EV_EMBED_ENABLE
4722noinline
4723void
4724ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4725{
4726 ev_run (w->other, EVRUN_NOWAIT);
4727}
4728
4729static void
4730embed_io_cb (EV_P_ ev_io *io, int revents)
4731{
4732 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4733
4734 if (ev_cb (w))
4735 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4736 else
4737 ev_run (w->other, EVRUN_NOWAIT);
4738}
4739
4740static void
4741embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4742{
4743 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4744
4745 {
4746 EV_P = w->other;
4747
4748 while (fdchangecnt)
4749 {
4750 fd_reify (EV_A);
4751 ev_run (EV_A_ EVRUN_NOWAIT);
4752 }
4753 }
4754}
4755
4756static void
4757embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4758{
4759 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4760
4761 ev_embed_stop (EV_A_ w);
4762
4763 {
4764 EV_P = w->other;
4765
4766 ev_loop_fork (EV_A);
4767 ev_run (EV_A_ EVRUN_NOWAIT);
4768 }
4769
4770 ev_embed_start (EV_A_ w);
4771}
4772
4773#if 0
4774static void
4775embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4776{
4777 ev_idle_stop (EV_A_ idle);
4778}
4779#endif
4780
4781void
4782ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4783{
4784 if (expect_false (ev_is_active (w)))
4785 return;
4786
4787 {
4788 EV_P = w->other;
4789 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4790 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4791 }
4792
4793 EV_FREQUENT_CHECK;
4794
4795 ev_set_priority (&w->io, ev_priority (w));
4796 ev_io_start (EV_A_ &w->io);
4797
4798 ev_prepare_init (&w->prepare, embed_prepare_cb);
4799 ev_set_priority (&w->prepare, EV_MINPRI);
4800 ev_prepare_start (EV_A_ &w->prepare);
4801
4802 ev_fork_init (&w->fork, embed_fork_cb);
4803 ev_fork_start (EV_A_ &w->fork);
4804
4805 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4806
4807 ev_start (EV_A_ (W)w, 1);
4808
4809 EV_FREQUENT_CHECK;
4810}
4811
4812void
4813ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4814{
4815 clear_pending (EV_A_ (W)w);
4816 if (expect_false (!ev_is_active (w)))
4817 return;
4818
4819 EV_FREQUENT_CHECK;
4820
4821 ev_io_stop (EV_A_ &w->io);
4822 ev_prepare_stop (EV_A_ &w->prepare);
4823 ev_fork_stop (EV_A_ &w->fork);
4824
4825 ev_stop (EV_A_ (W)w);
4826
4827 EV_FREQUENT_CHECK;
4828}
4829#endif
4830
4831#if EV_FORK_ENABLE
4832void
4833ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4834{
4835 if (expect_false (ev_is_active (w)))
4836 return;
4837
4838 EV_FREQUENT_CHECK;
4839
4840 ev_start (EV_A_ (W)w, ++forkcnt);
4841 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4842 forks [forkcnt - 1] = w;
4843
4844 EV_FREQUENT_CHECK;
4845}
4846
4847void
4848ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4849{
4850 clear_pending (EV_A_ (W)w);
4851 if (expect_false (!ev_is_active (w)))
4852 return;
4853
4854 EV_FREQUENT_CHECK;
4855
4856 {
4857 int active = ev_active (w);
4858
4859 forks [active - 1] = forks [--forkcnt];
4860 ev_active (forks [active - 1]) = active;
4861 }
4862
4863 ev_stop (EV_A_ (W)w);
4864
4865 EV_FREQUENT_CHECK;
4866}
4867#endif
4868
4869#if EV_CLEANUP_ENABLE
4870void
4871ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4872{
4873 if (expect_false (ev_is_active (w)))
4874 return;
4875
4876 EV_FREQUENT_CHECK;
4877
4878 ev_start (EV_A_ (W)w, ++cleanupcnt);
4879 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4880 cleanups [cleanupcnt - 1] = w;
4881
4882 /* cleanup watchers should never keep a refcount on the loop */
4883 ev_unref (EV_A);
4884 EV_FREQUENT_CHECK;
4885}
4886
4887void
4888ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4889{
4890 clear_pending (EV_A_ (W)w);
4891 if (expect_false (!ev_is_active (w)))
4892 return;
4893
4894 EV_FREQUENT_CHECK;
4895 ev_ref (EV_A);
4896
4897 {
4898 int active = ev_active (w);
4899
4900 cleanups [active - 1] = cleanups [--cleanupcnt];
4901 ev_active (cleanups [active - 1]) = active;
4902 }
4903
4904 ev_stop (EV_A_ (W)w);
4905
4906 EV_FREQUENT_CHECK;
4907}
4908#endif
4909
4910#if EV_ASYNC_ENABLE
4911void
4912ev_async_start (EV_P_ ev_async *w) EV_THROW
4913{
4914 if (expect_false (ev_is_active (w)))
4915 return;
4916
4917 w->sent = 0;
4918
4919 evpipe_init (EV_A);
4920
4921 EV_FREQUENT_CHECK;
4922
4923 ev_start (EV_A_ (W)w, ++asynccnt);
4924 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4925 asyncs [asynccnt - 1] = w;
4926
4927 EV_FREQUENT_CHECK;
4928}
4929
4930void
4931ev_async_stop (EV_P_ ev_async *w) EV_THROW
4932{
4933 clear_pending (EV_A_ (W)w);
4934 if (expect_false (!ev_is_active (w)))
4935 return;
4936
4937 EV_FREQUENT_CHECK;
4938
4939 {
4940 int active = ev_active (w);
4941
4942 asyncs [active - 1] = asyncs [--asynccnt];
4943 ev_active (asyncs [active - 1]) = active;
4944 }
4945
4946 ev_stop (EV_A_ (W)w);
4947
4948 EV_FREQUENT_CHECK;
4949}
4950
4951void
4952ev_async_send (EV_P_ ev_async *w) EV_THROW
4953{
4954 w->sent = 1;
4955 evpipe_write (EV_A_ &async_pending);
4956}
4957#endif
1604 4958
1605/*****************************************************************************/ 4959/*****************************************************************************/
1606 4960
1607struct ev_once 4961struct ev_once
1608{ 4962{
1609 struct ev_io io; 4963 ev_io io;
1610 struct ev_timer to; 4964 ev_timer to;
1611 void (*cb)(int revents, void *arg); 4965 void (*cb)(int revents, void *arg);
1612 void *arg; 4966 void *arg;
1613}; 4967};
1614 4968
1615static void 4969static void
1616once_cb (EV_P_ struct ev_once *once, int revents) 4970once_cb (EV_P_ struct ev_once *once, int revents)
1617{ 4971{
1618 void (*cb)(int revents, void *arg) = once->cb; 4972 void (*cb)(int revents, void *arg) = once->cb;
1619 void *arg = once->arg; 4973 void *arg = once->arg;
1620 4974
1621 ev_io_stop (EV_A_ &once->io); 4975 ev_io_stop (EV_A_ &once->io);
1622 ev_timer_stop (EV_A_ &once->to); 4976 ev_timer_stop (EV_A_ &once->to);
1623 ev_free (once); 4977 ev_free (once);
1624 4978
1625 cb (revents, arg); 4979 cb (revents, arg);
1626} 4980}
1627 4981
1628static void 4982static void
1629once_cb_io (EV_P_ struct ev_io *w, int revents) 4983once_cb_io (EV_P_ ev_io *w, int revents)
1630{ 4984{
1631 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4985 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4986
4987 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1632} 4988}
1633 4989
1634static void 4990static void
1635once_cb_to (EV_P_ struct ev_timer *w, int revents) 4991once_cb_to (EV_P_ ev_timer *w, int revents)
1636{ 4992{
1637 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4993 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
1638}
1639 4994
4995 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4996}
4997
1640void 4998void
1641ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4999ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
1642{ 5000{
1643 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 5001 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1644 5002
1645 if (!once) 5003 if (expect_false (!once))
5004 {
1646 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 5005 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1647 else 5006 return;
1648 { 5007 }
5008
1649 once->cb = cb; 5009 once->cb = cb;
1650 once->arg = arg; 5010 once->arg = arg;
1651 5011
1652 ev_init (&once->io, once_cb_io); 5012 ev_init (&once->io, once_cb_io);
1653 if (fd >= 0) 5013 if (fd >= 0)
5014 {
5015 ev_io_set (&once->io, fd, events);
5016 ev_io_start (EV_A_ &once->io);
5017 }
5018
5019 ev_init (&once->to, once_cb_to);
5020 if (timeout >= 0.)
5021 {
5022 ev_timer_set (&once->to, timeout, 0.);
5023 ev_timer_start (EV_A_ &once->to);
5024 }
5025}
5026
5027/*****************************************************************************/
5028
5029#if EV_WALK_ENABLE
5030ecb_cold
5031void
5032ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
5033{
5034 int i, j;
5035 ev_watcher_list *wl, *wn;
5036
5037 if (types & (EV_IO | EV_EMBED))
5038 for (i = 0; i < anfdmax; ++i)
5039 for (wl = anfds [i].head; wl; )
1654 { 5040 {
1655 ev_io_set (&once->io, fd, events); 5041 wn = wl->next;
1656 ev_io_start (EV_A_ &once->io); 5042
5043#if EV_EMBED_ENABLE
5044 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5045 {
5046 if (types & EV_EMBED)
5047 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5048 }
5049 else
5050#endif
5051#if EV_USE_INOTIFY
5052 if (ev_cb ((ev_io *)wl) == infy_cb)
5053 ;
5054 else
5055#endif
5056 if ((ev_io *)wl != &pipe_w)
5057 if (types & EV_IO)
5058 cb (EV_A_ EV_IO, wl);
5059
5060 wl = wn;
1657 } 5061 }
1658 5062
1659 ev_init (&once->to, once_cb_to); 5063 if (types & (EV_TIMER | EV_STAT))
1660 if (timeout >= 0.) 5064 for (i = timercnt + HEAP0; i-- > HEAP0; )
5065#if EV_STAT_ENABLE
5066 /*TODO: timer is not always active*/
5067 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1661 { 5068 {
1662 ev_timer_set (&once->to, timeout, 0.); 5069 if (types & EV_STAT)
1663 ev_timer_start (EV_A_ &once->to); 5070 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1664 } 5071 }
1665 } 5072 else
1666} 5073#endif
5074 if (types & EV_TIMER)
5075 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1667 5076
1668#ifdef __cplusplus 5077#if EV_PERIODIC_ENABLE
1669} 5078 if (types & EV_PERIODIC)
5079 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5080 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5081#endif
5082
5083#if EV_IDLE_ENABLE
5084 if (types & EV_IDLE)
5085 for (j = NUMPRI; j--; )
5086 for (i = idlecnt [j]; i--; )
5087 cb (EV_A_ EV_IDLE, idles [j][i]);
5088#endif
5089
5090#if EV_FORK_ENABLE
5091 if (types & EV_FORK)
5092 for (i = forkcnt; i--; )
5093 if (ev_cb (forks [i]) != embed_fork_cb)
5094 cb (EV_A_ EV_FORK, forks [i]);
5095#endif
5096
5097#if EV_ASYNC_ENABLE
5098 if (types & EV_ASYNC)
5099 for (i = asynccnt; i--; )
5100 cb (EV_A_ EV_ASYNC, asyncs [i]);
5101#endif
5102
5103#if EV_PREPARE_ENABLE
5104 if (types & EV_PREPARE)
5105 for (i = preparecnt; i--; )
5106# if EV_EMBED_ENABLE
5107 if (ev_cb (prepares [i]) != embed_prepare_cb)
1670#endif 5108# endif
5109 cb (EV_A_ EV_PREPARE, prepares [i]);
5110#endif
1671 5111
5112#if EV_CHECK_ENABLE
5113 if (types & EV_CHECK)
5114 for (i = checkcnt; i--; )
5115 cb (EV_A_ EV_CHECK, checks [i]);
5116#endif
5117
5118#if EV_SIGNAL_ENABLE
5119 if (types & EV_SIGNAL)
5120 for (i = 0; i < EV_NSIG - 1; ++i)
5121 for (wl = signals [i].head; wl; )
5122 {
5123 wn = wl->next;
5124 cb (EV_A_ EV_SIGNAL, wl);
5125 wl = wn;
5126 }
5127#endif
5128
5129#if EV_CHILD_ENABLE
5130 if (types & EV_CHILD)
5131 for (i = (EV_PID_HASHSIZE); i--; )
5132 for (wl = childs [i]; wl; )
5133 {
5134 wn = wl->next;
5135 cb (EV_A_ EV_CHILD, wl);
5136 wl = wn;
5137 }
5138#endif
5139/* EV_STAT 0x00001000 /* stat data changed */
5140/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5141}
5142#endif
5143
5144#if EV_MULTIPLICITY
5145 #include "ev_wrap.h"
5146#endif
5147

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines