ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.186 by root, Sat Dec 15 23:14:38 2007 UTC vs.
Revision 1.483 by root, Tue Jul 31 04:45:58 2018 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
43# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
46# endif 71# endif
47# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
49# endif 74# endif
50# else 75# else
51# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
53# endif 78# endif
54# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
56# endif 81# endif
57# endif 82# endif
58 83
84# if HAVE_NANOSLEEP
59# ifndef EV_USE_SELECT 85# ifndef EV_USE_NANOSLEEP
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif 87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
65# endif 91# endif
66 92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
67# ifndef EV_USE_POLL 94# ifndef EV_USE_SELECT
68# if HAVE_POLL && HAVE_POLL_H 95# define EV_USE_SELECT EV_FEATURE_BACKENDS
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
73# endif 109# endif
74 110
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
78# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
79# define EV_USE_EPOLL 0
80# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
81# endif 118# endif
82 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
83# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
89# endif 127# endif
90 128
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
94# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
95# define EV_USE_PORT 0
96# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
97# endif 136# endif
98 137
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
102# else
103# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
104# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
105# endif 145# endif
106 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
107#endif 154# endif
108 155
109#include <math.h> 156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
167/* OS X, in its infinite idiocy, actually HARDCODES
168 * a limit of 1024 into their select. Where people have brains,
169 * OS X engineers apparently have a vacuum. Or maybe they were
170 * ordered to have a vacuum, or they do anything for money.
171 * This might help. Or not.
172 * Note that this must be defined early, as other include files
173 * will rely on this define as well.
174 */
175#define _DARWIN_UNLIMITED_SELECT 1
176
110#include <stdlib.h> 177#include <stdlib.h>
178#include <string.h>
111#include <fcntl.h> 179#include <fcntl.h>
112#include <stddef.h> 180#include <stddef.h>
113 181
114#include <stdio.h> 182#include <stdio.h>
115 183
116#include <assert.h> 184#include <assert.h>
117#include <errno.h> 185#include <errno.h>
118#include <sys/types.h> 186#include <sys/types.h>
119#include <time.h> 187#include <time.h>
188#include <limits.h>
120 189
121#include <signal.h> 190#include <signal.h>
122 191
123#ifdef EV_H 192#ifdef EV_H
124# include EV_H 193# include EV_H
125#else 194#else
126# include "ev.h" 195# include "ev.h"
196#endif
197
198#if EV_NO_THREADS
199# undef EV_NO_SMP
200# define EV_NO_SMP 1
201# undef ECB_NO_THREADS
202# define ECB_NO_THREADS 1
203#endif
204#if EV_NO_SMP
205# undef EV_NO_SMP
206# define ECB_NO_SMP 1
127#endif 207#endif
128 208
129#ifndef _WIN32 209#ifndef _WIN32
130# include <sys/time.h> 210# include <sys/time.h>
131# include <sys/wait.h> 211# include <sys/wait.h>
132# include <unistd.h> 212# include <unistd.h>
133#else 213#else
214# include <io.h>
134# define WIN32_LEAN_AND_MEAN 215# define WIN32_LEAN_AND_MEAN
216# include <winsock2.h>
135# include <windows.h> 217# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 218# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 219# define EV_SELECT_IS_WINSOCKET 1
138# endif 220# endif
221# undef EV_AVOID_STDIO
222#endif
223
224/* this block tries to deduce configuration from header-defined symbols and defaults */
225
226/* try to deduce the maximum number of signals on this platform */
227#if defined EV_NSIG
228/* use what's provided */
229#elif defined NSIG
230# define EV_NSIG (NSIG)
231#elif defined _NSIG
232# define EV_NSIG (_NSIG)
233#elif defined SIGMAX
234# define EV_NSIG (SIGMAX+1)
235#elif defined SIG_MAX
236# define EV_NSIG (SIG_MAX+1)
237#elif defined _SIG_MAX
238# define EV_NSIG (_SIG_MAX+1)
239#elif defined MAXSIG
240# define EV_NSIG (MAXSIG+1)
241#elif defined MAX_SIG
242# define EV_NSIG (MAX_SIG+1)
243#elif defined SIGARRAYSIZE
244# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
245#elif defined _sys_nsig
246# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
247#else
248# define EV_NSIG (8 * sizeof (sigset_t) + 1)
249#endif
250
251#ifndef EV_USE_FLOOR
252# define EV_USE_FLOOR 0
253#endif
254
255#ifndef EV_USE_CLOCK_SYSCALL
256# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
257# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
258# else
259# define EV_USE_CLOCK_SYSCALL 0
139#endif 260# endif
261#endif
140 262
141/**/ 263#if !(_POSIX_TIMERS > 0)
264# ifndef EV_USE_MONOTONIC
265# define EV_USE_MONOTONIC 0
266# endif
267# ifndef EV_USE_REALTIME
268# define EV_USE_REALTIME 0
269# endif
270#endif
142 271
143#ifndef EV_USE_MONOTONIC 272#ifndef EV_USE_MONOTONIC
273# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
274# define EV_USE_MONOTONIC EV_FEATURE_OS
275# else
144# define EV_USE_MONOTONIC 0 276# define EV_USE_MONOTONIC 0
277# endif
145#endif 278#endif
146 279
147#ifndef EV_USE_REALTIME 280#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 281# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
282#endif
283
284#ifndef EV_USE_NANOSLEEP
285# if _POSIX_C_SOURCE >= 199309L
286# define EV_USE_NANOSLEEP EV_FEATURE_OS
287# else
288# define EV_USE_NANOSLEEP 0
289# endif
149#endif 290#endif
150 291
151#ifndef EV_USE_SELECT 292#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 293# define EV_USE_SELECT EV_FEATURE_BACKENDS
153#endif 294#endif
154 295
155#ifndef EV_USE_POLL 296#ifndef EV_USE_POLL
156# ifdef _WIN32 297# ifdef _WIN32
157# define EV_USE_POLL 0 298# define EV_USE_POLL 0
158# else 299# else
159# define EV_USE_POLL 1 300# define EV_USE_POLL EV_FEATURE_BACKENDS
160# endif 301# endif
161#endif 302#endif
162 303
163#ifndef EV_USE_EPOLL 304#ifndef EV_USE_EPOLL
305# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
306# define EV_USE_EPOLL EV_FEATURE_BACKENDS
307# else
164# define EV_USE_EPOLL 0 308# define EV_USE_EPOLL 0
309# endif
165#endif 310#endif
166 311
167#ifndef EV_USE_KQUEUE 312#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 313# define EV_USE_KQUEUE 0
169#endif 314#endif
171#ifndef EV_USE_PORT 316#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 317# define EV_USE_PORT 0
173#endif 318#endif
174 319
175#ifndef EV_USE_INOTIFY 320#ifndef EV_USE_INOTIFY
321# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
322# define EV_USE_INOTIFY EV_FEATURE_OS
323# else
176# define EV_USE_INOTIFY 0 324# define EV_USE_INOTIFY 0
325# endif
177#endif 326#endif
178 327
179#ifndef EV_PID_HASHSIZE 328#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 329# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
181# define EV_PID_HASHSIZE 1 330#endif
331
332#ifndef EV_INOTIFY_HASHSIZE
333# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
334#endif
335
336#ifndef EV_USE_EVENTFD
337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338# define EV_USE_EVENTFD EV_FEATURE_OS
182# else 339# else
183# define EV_PID_HASHSIZE 16 340# define EV_USE_EVENTFD 0
184# endif 341# endif
185#endif 342#endif
186 343
187#ifndef EV_INOTIFY_HASHSIZE 344#ifndef EV_USE_SIGNALFD
188# if EV_MINIMAL 345# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
189# define EV_INOTIFY_HASHSIZE 1 346# define EV_USE_SIGNALFD EV_FEATURE_OS
190# else 347# else
191# define EV_INOTIFY_HASHSIZE 16 348# define EV_USE_SIGNALFD 0
192# endif 349# endif
193#endif 350#endif
194 351
195/**/ 352#if 0 /* debugging */
353# define EV_VERIFY 3
354# define EV_USE_4HEAP 1
355# define EV_HEAP_CACHE_AT 1
356#endif
357
358#ifndef EV_VERIFY
359# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
360#endif
361
362#ifndef EV_USE_4HEAP
363# define EV_USE_4HEAP EV_FEATURE_DATA
364#endif
365
366#ifndef EV_HEAP_CACHE_AT
367# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
368#endif
369
370#ifdef __ANDROID__
371/* supposedly, android doesn't typedef fd_mask */
372# undef EV_USE_SELECT
373# define EV_USE_SELECT 0
374/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
375# undef EV_USE_CLOCK_SYSCALL
376# define EV_USE_CLOCK_SYSCALL 0
377#endif
378
379/* aix's poll.h seems to cause lots of trouble */
380#ifdef _AIX
381/* AIX has a completely broken poll.h header */
382# undef EV_USE_POLL
383# define EV_USE_POLL 0
384#endif
385
386/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
387/* which makes programs even slower. might work on other unices, too. */
388#if EV_USE_CLOCK_SYSCALL
389# include <sys/syscall.h>
390# ifdef SYS_clock_gettime
391# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
392# undef EV_USE_MONOTONIC
393# define EV_USE_MONOTONIC 1
394# else
395# undef EV_USE_CLOCK_SYSCALL
396# define EV_USE_CLOCK_SYSCALL 0
397# endif
398#endif
399
400/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 401
197#ifndef CLOCK_MONOTONIC 402#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 403# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 404# define EV_USE_MONOTONIC 0
200#endif 405#endif
207#if !EV_STAT_ENABLE 412#if !EV_STAT_ENABLE
208# undef EV_USE_INOTIFY 413# undef EV_USE_INOTIFY
209# define EV_USE_INOTIFY 0 414# define EV_USE_INOTIFY 0
210#endif 415#endif
211 416
417#if !EV_USE_NANOSLEEP
418/* hp-ux has it in sys/time.h, which we unconditionally include above */
419# if !defined _WIN32 && !defined __hpux
420# include <sys/select.h>
421# endif
422#endif
423
212#if EV_USE_INOTIFY 424#if EV_USE_INOTIFY
425# include <sys/statfs.h>
213# include <sys/inotify.h> 426# include <sys/inotify.h>
427/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
428# ifndef IN_DONT_FOLLOW
429# undef EV_USE_INOTIFY
430# define EV_USE_INOTIFY 0
214#endif 431# endif
432#endif
215 433
216#if EV_SELECT_IS_WINSOCKET 434#if EV_USE_EVENTFD
435/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
217# include <winsock.h> 436# include <stdint.h>
437# ifndef EFD_NONBLOCK
438# define EFD_NONBLOCK O_NONBLOCK
439# endif
440# ifndef EFD_CLOEXEC
441# ifdef O_CLOEXEC
442# define EFD_CLOEXEC O_CLOEXEC
443# else
444# define EFD_CLOEXEC 02000000
445# endif
446# endif
447EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
448#endif
449
450#if EV_USE_SIGNALFD
451/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
452# include <stdint.h>
453# ifndef SFD_NONBLOCK
454# define SFD_NONBLOCK O_NONBLOCK
455# endif
456# ifndef SFD_CLOEXEC
457# ifdef O_CLOEXEC
458# define SFD_CLOEXEC O_CLOEXEC
459# else
460# define SFD_CLOEXEC 02000000
461# endif
462# endif
463EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
464
465struct signalfd_siginfo
466{
467 uint32_t ssi_signo;
468 char pad[128 - sizeof (uint32_t)];
469};
218#endif 470#endif
219 471
220/**/ 472/**/
221 473
474#if EV_VERIFY >= 3
475# define EV_FREQUENT_CHECK ev_verify (EV_A)
476#else
477# define EV_FREQUENT_CHECK do { } while (0)
478#endif
479
222/* 480/*
223 * This is used to avoid floating point rounding problems. 481 * This is used to work around floating point rounding problems.
224 * It is added to ev_rt_now when scheduling periodics
225 * to ensure progress, time-wise, even when rounding
226 * errors are against us.
227 * This value is good at least till the year 4000. 482 * This value is good at least till the year 4000.
228 * Better solutions welcome.
229 */ 483 */
230#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 484#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
485/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
231 486
232#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 487#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
233#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 488#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
234/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
235 489
490#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
491#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
492
493/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
494/* ECB.H BEGIN */
495/*
496 * libecb - http://software.schmorp.de/pkg/libecb
497 *
498 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
499 * Copyright (©) 2011 Emanuele Giaquinta
500 * All rights reserved.
501 *
502 * Redistribution and use in source and binary forms, with or without modifica-
503 * tion, are permitted provided that the following conditions are met:
504 *
505 * 1. Redistributions of source code must retain the above copyright notice,
506 * this list of conditions and the following disclaimer.
507 *
508 * 2. Redistributions in binary form must reproduce the above copyright
509 * notice, this list of conditions and the following disclaimer in the
510 * documentation and/or other materials provided with the distribution.
511 *
512 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
513 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
514 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
515 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
516 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
517 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
518 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
519 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
520 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
521 * OF THE POSSIBILITY OF SUCH DAMAGE.
522 *
523 * Alternatively, the contents of this file may be used under the terms of
524 * the GNU General Public License ("GPL") version 2 or any later version,
525 * in which case the provisions of the GPL are applicable instead of
526 * the above. If you wish to allow the use of your version of this file
527 * only under the terms of the GPL and not to allow others to use your
528 * version of this file under the BSD license, indicate your decision
529 * by deleting the provisions above and replace them with the notice
530 * and other provisions required by the GPL. If you do not delete the
531 * provisions above, a recipient may use your version of this file under
532 * either the BSD or the GPL.
533 */
534
535#ifndef ECB_H
536#define ECB_H
537
538/* 16 bits major, 16 bits minor */
539#define ECB_VERSION 0x00010005
540
541#ifdef _WIN32
542 typedef signed char int8_t;
543 typedef unsigned char uint8_t;
544 typedef signed short int16_t;
545 typedef unsigned short uint16_t;
546 typedef signed int int32_t;
547 typedef unsigned int uint32_t;
236#if __GNUC__ >= 4 548 #if __GNUC__
549 typedef signed long long int64_t;
550 typedef unsigned long long uint64_t;
551 #else /* _MSC_VER || __BORLANDC__ */
552 typedef signed __int64 int64_t;
553 typedef unsigned __int64 uint64_t;
554 #endif
555 #ifdef _WIN64
556 #define ECB_PTRSIZE 8
557 typedef uint64_t uintptr_t;
558 typedef int64_t intptr_t;
559 #else
560 #define ECB_PTRSIZE 4
561 typedef uint32_t uintptr_t;
562 typedef int32_t intptr_t;
563 #endif
564#else
565 #include <inttypes.h>
566 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
567 #define ECB_PTRSIZE 8
568 #else
569 #define ECB_PTRSIZE 4
570 #endif
571#endif
572
573#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
574#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
575
576/* work around x32 idiocy by defining proper macros */
577#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
578 #if _ILP32
579 #define ECB_AMD64_X32 1
580 #else
581 #define ECB_AMD64 1
582 #endif
583#endif
584
585/* many compilers define _GNUC_ to some versions but then only implement
586 * what their idiot authors think are the "more important" extensions,
587 * causing enormous grief in return for some better fake benchmark numbers.
588 * or so.
589 * we try to detect these and simply assume they are not gcc - if they have
590 * an issue with that they should have done it right in the first place.
591 */
592#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
593 #define ECB_GCC_VERSION(major,minor) 0
594#else
595 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
596#endif
597
598#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
599
600#if __clang__ && defined __has_builtin
601 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
602#else
603 #define ECB_CLANG_BUILTIN(x) 0
604#endif
605
606#if __clang__ && defined __has_extension
607 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
608#else
609 #define ECB_CLANG_EXTENSION(x) 0
610#endif
611
612#define ECB_CPP (__cplusplus+0)
613#define ECB_CPP11 (__cplusplus >= 201103L)
614
615#if ECB_CPP
616 #define ECB_C 0
617 #define ECB_STDC_VERSION 0
618#else
619 #define ECB_C 1
620 #define ECB_STDC_VERSION __STDC_VERSION__
621#endif
622
623#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
624#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
625
626#if ECB_CPP
627 #define ECB_EXTERN_C extern "C"
628 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
629 #define ECB_EXTERN_C_END }
630#else
631 #define ECB_EXTERN_C extern
632 #define ECB_EXTERN_C_BEG
633 #define ECB_EXTERN_C_END
634#endif
635
636/*****************************************************************************/
637
638/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
639/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
640
641#if ECB_NO_THREADS
642 #define ECB_NO_SMP 1
643#endif
644
645#if ECB_NO_SMP
646 #define ECB_MEMORY_FENCE do { } while (0)
647#endif
648
649/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
650#if __xlC__ && ECB_CPP
651 #include <builtins.h>
652#endif
653
654#if 1400 <= _MSC_VER
655 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
656#endif
657
658#ifndef ECB_MEMORY_FENCE
659 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
660 #if __i386 || __i386__
661 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
662 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
663 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
664 #elif ECB_GCC_AMD64
665 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
666 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
667 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
668 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
669 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
670 #elif defined __ARM_ARCH_2__ \
671 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
672 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
673 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
674 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
675 || defined __ARM_ARCH_5TEJ__
676 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
677 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
678 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
679 || defined __ARM_ARCH_6T2__
680 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
681 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
682 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
683 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
684 #elif __aarch64__
685 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
686 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
687 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
688 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
689 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
690 #elif defined __s390__ || defined __s390x__
691 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
692 #elif defined __mips__
693 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
694 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
695 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
696 #elif defined __alpha__
697 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
698 #elif defined __hppa__
699 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
700 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
701 #elif defined __ia64__
702 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
703 #elif defined __m68k__
704 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
705 #elif defined __m88k__
706 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
707 #elif defined __sh__
708 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
709 #endif
710 #endif
711#endif
712
713#ifndef ECB_MEMORY_FENCE
714 #if ECB_GCC_VERSION(4,7)
715 /* see comment below (stdatomic.h) about the C11 memory model. */
716 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
717 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
718 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
719
720 #elif ECB_CLANG_EXTENSION(c_atomic)
721 /* see comment below (stdatomic.h) about the C11 memory model. */
722 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
723 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
724 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
725
726 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
727 #define ECB_MEMORY_FENCE __sync_synchronize ()
728 #elif _MSC_VER >= 1500 /* VC++ 2008 */
729 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
730 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
731 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
732 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
733 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
734 #elif _MSC_VER >= 1400 /* VC++ 2005 */
735 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
736 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
737 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
738 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
739 #elif defined _WIN32
740 #include <WinNT.h>
741 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
742 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
743 #include <mbarrier.h>
744 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
745 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
746 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
747 #elif __xlC__
748 #define ECB_MEMORY_FENCE __sync ()
749 #endif
750#endif
751
752#ifndef ECB_MEMORY_FENCE
753 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
754 /* we assume that these memory fences work on all variables/all memory accesses, */
755 /* not just C11 atomics and atomic accesses */
756 #include <stdatomic.h>
757 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
758 /* any fence other than seq_cst, which isn't very efficient for us. */
759 /* Why that is, we don't know - either the C11 memory model is quite useless */
760 /* for most usages, or gcc and clang have a bug */
761 /* I *currently* lean towards the latter, and inefficiently implement */
762 /* all three of ecb's fences as a seq_cst fence */
763 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
764 /* for all __atomic_thread_fence's except seq_cst */
765 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
766 #endif
767#endif
768
769#ifndef ECB_MEMORY_FENCE
770 #if !ECB_AVOID_PTHREADS
771 /*
772 * if you get undefined symbol references to pthread_mutex_lock,
773 * or failure to find pthread.h, then you should implement
774 * the ECB_MEMORY_FENCE operations for your cpu/compiler
775 * OR provide pthread.h and link against the posix thread library
776 * of your system.
777 */
778 #include <pthread.h>
779 #define ECB_NEEDS_PTHREADS 1
780 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
781
782 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
783 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
784 #endif
785#endif
786
787#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
788 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
789#endif
790
791#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
792 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
793#endif
794
795/*****************************************************************************/
796
797#if ECB_CPP
798 #define ecb_inline static inline
799#elif ECB_GCC_VERSION(2,5)
800 #define ecb_inline static __inline__
801#elif ECB_C99
802 #define ecb_inline static inline
803#else
804 #define ecb_inline static
805#endif
806
807#if ECB_GCC_VERSION(3,3)
808 #define ecb_restrict __restrict__
809#elif ECB_C99
810 #define ecb_restrict restrict
811#else
812 #define ecb_restrict
813#endif
814
815typedef int ecb_bool;
816
817#define ECB_CONCAT_(a, b) a ## b
818#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
819#define ECB_STRINGIFY_(a) # a
820#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
821#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
822
823#define ecb_function_ ecb_inline
824
825#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
826 #define ecb_attribute(attrlist) __attribute__ (attrlist)
827#else
828 #define ecb_attribute(attrlist)
829#endif
830
831#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
832 #define ecb_is_constant(expr) __builtin_constant_p (expr)
833#else
834 /* possible C11 impl for integral types
835 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
836 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
837
838 #define ecb_is_constant(expr) 0
839#endif
840
841#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
237# define expect(expr,value) __builtin_expect ((expr),(value)) 842 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
238# define noinline __attribute__ ((noinline))
239#else 843#else
240# define expect(expr,value) (expr) 844 #define ecb_expect(expr,value) (expr)
241# define noinline
242# if __STDC_VERSION__ < 199901L
243# define inline
244# endif 845#endif
245#endif
246 846
847#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
848 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
849#else
850 #define ecb_prefetch(addr,rw,locality)
851#endif
852
853/* no emulation for ecb_decltype */
854#if ECB_CPP11
855 // older implementations might have problems with decltype(x)::type, work around it
856 template<class T> struct ecb_decltype_t { typedef T type; };
857 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
858#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
859 #define ecb_decltype(x) __typeof__ (x)
860#endif
861
862#if _MSC_VER >= 1300
863 #define ecb_deprecated __declspec (deprecated)
864#else
865 #define ecb_deprecated ecb_attribute ((__deprecated__))
866#endif
867
868#if _MSC_VER >= 1500
869 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
870#elif ECB_GCC_VERSION(4,5)
871 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
872#else
873 #define ecb_deprecated_message(msg) ecb_deprecated
874#endif
875
876#if _MSC_VER >= 1400
877 #define ecb_noinline __declspec (noinline)
878#else
879 #define ecb_noinline ecb_attribute ((__noinline__))
880#endif
881
882#define ecb_unused ecb_attribute ((__unused__))
883#define ecb_const ecb_attribute ((__const__))
884#define ecb_pure ecb_attribute ((__pure__))
885
886#if ECB_C11 || __IBMC_NORETURN
887 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
888 #define ecb_noreturn _Noreturn
889#elif ECB_CPP11
890 #define ecb_noreturn [[noreturn]]
891#elif _MSC_VER >= 1200
892 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
893 #define ecb_noreturn __declspec (noreturn)
894#else
895 #define ecb_noreturn ecb_attribute ((__noreturn__))
896#endif
897
898#if ECB_GCC_VERSION(4,3)
899 #define ecb_artificial ecb_attribute ((__artificial__))
900 #define ecb_hot ecb_attribute ((__hot__))
901 #define ecb_cold ecb_attribute ((__cold__))
902#else
903 #define ecb_artificial
904 #define ecb_hot
905 #define ecb_cold
906#endif
907
908/* put around conditional expressions if you are very sure that the */
909/* expression is mostly true or mostly false. note that these return */
910/* booleans, not the expression. */
247#define expect_false(expr) expect ((expr) != 0, 0) 911#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
248#define expect_true(expr) expect ((expr) != 0, 1) 912#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
913/* for compatibility to the rest of the world */
914#define ecb_likely(expr) ecb_expect_true (expr)
915#define ecb_unlikely(expr) ecb_expect_false (expr)
916
917/* count trailing zero bits and count # of one bits */
918#if ECB_GCC_VERSION(3,4) \
919 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
920 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
921 && ECB_CLANG_BUILTIN(__builtin_popcount))
922 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
923 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
924 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
925 #define ecb_ctz32(x) __builtin_ctz (x)
926 #define ecb_ctz64(x) __builtin_ctzll (x)
927 #define ecb_popcount32(x) __builtin_popcount (x)
928 /* no popcountll */
929#else
930 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
931 ecb_function_ ecb_const int
932 ecb_ctz32 (uint32_t x)
933 {
934#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
935 unsigned long r;
936 _BitScanForward (&r, x);
937 return (int)r;
938#else
939 int r = 0;
940
941 x &= ~x + 1; /* this isolates the lowest bit */
942
943#if ECB_branchless_on_i386
944 r += !!(x & 0xaaaaaaaa) << 0;
945 r += !!(x & 0xcccccccc) << 1;
946 r += !!(x & 0xf0f0f0f0) << 2;
947 r += !!(x & 0xff00ff00) << 3;
948 r += !!(x & 0xffff0000) << 4;
949#else
950 if (x & 0xaaaaaaaa) r += 1;
951 if (x & 0xcccccccc) r += 2;
952 if (x & 0xf0f0f0f0) r += 4;
953 if (x & 0xff00ff00) r += 8;
954 if (x & 0xffff0000) r += 16;
955#endif
956
957 return r;
958#endif
959 }
960
961 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
962 ecb_function_ ecb_const int
963 ecb_ctz64 (uint64_t x)
964 {
965#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
966 unsigned long r;
967 _BitScanForward64 (&r, x);
968 return (int)r;
969#else
970 int shift = x & 0xffffffff ? 0 : 32;
971 return ecb_ctz32 (x >> shift) + shift;
972#endif
973 }
974
975 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
976 ecb_function_ ecb_const int
977 ecb_popcount32 (uint32_t x)
978 {
979 x -= (x >> 1) & 0x55555555;
980 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
981 x = ((x >> 4) + x) & 0x0f0f0f0f;
982 x *= 0x01010101;
983
984 return x >> 24;
985 }
986
987 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
988 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
989 {
990#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
991 unsigned long r;
992 _BitScanReverse (&r, x);
993 return (int)r;
994#else
995 int r = 0;
996
997 if (x >> 16) { x >>= 16; r += 16; }
998 if (x >> 8) { x >>= 8; r += 8; }
999 if (x >> 4) { x >>= 4; r += 4; }
1000 if (x >> 2) { x >>= 2; r += 2; }
1001 if (x >> 1) { r += 1; }
1002
1003 return r;
1004#endif
1005 }
1006
1007 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1008 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1009 {
1010#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1011 unsigned long r;
1012 _BitScanReverse64 (&r, x);
1013 return (int)r;
1014#else
1015 int r = 0;
1016
1017 if (x >> 32) { x >>= 32; r += 32; }
1018
1019 return r + ecb_ld32 (x);
1020#endif
1021 }
1022#endif
1023
1024ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1025ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1026ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1027ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1028
1029ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1030ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1031{
1032 return ( (x * 0x0802U & 0x22110U)
1033 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1034}
1035
1036ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1037ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1038{
1039 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1040 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1041 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1042 x = ( x >> 8 ) | ( x << 8);
1043
1044 return x;
1045}
1046
1047ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1048ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1049{
1050 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1051 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1052 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1053 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1054 x = ( x >> 16 ) | ( x << 16);
1055
1056 return x;
1057}
1058
1059/* popcount64 is only available on 64 bit cpus as gcc builtin */
1060/* so for this version we are lazy */
1061ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1062ecb_function_ ecb_const int
1063ecb_popcount64 (uint64_t x)
1064{
1065 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1066}
1067
1068ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1069ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1070ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1071ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1072ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1073ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1074ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1075ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1076
1077ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1078ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1079ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1080ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1081ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1082ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1083ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1084ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1085
1086#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1087 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1088 #define ecb_bswap16(x) __builtin_bswap16 (x)
1089 #else
1090 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1091 #endif
1092 #define ecb_bswap32(x) __builtin_bswap32 (x)
1093 #define ecb_bswap64(x) __builtin_bswap64 (x)
1094#elif _MSC_VER
1095 #include <stdlib.h>
1096 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1097 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1098 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1099#else
1100 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1101 ecb_function_ ecb_const uint16_t
1102 ecb_bswap16 (uint16_t x)
1103 {
1104 return ecb_rotl16 (x, 8);
1105 }
1106
1107 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1108 ecb_function_ ecb_const uint32_t
1109 ecb_bswap32 (uint32_t x)
1110 {
1111 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1112 }
1113
1114 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1115 ecb_function_ ecb_const uint64_t
1116 ecb_bswap64 (uint64_t x)
1117 {
1118 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1119 }
1120#endif
1121
1122#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1123 #define ecb_unreachable() __builtin_unreachable ()
1124#else
1125 /* this seems to work fine, but gcc always emits a warning for it :/ */
1126 ecb_inline ecb_noreturn void ecb_unreachable (void);
1127 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1128#endif
1129
1130/* try to tell the compiler that some condition is definitely true */
1131#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1132
1133ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1134ecb_inline ecb_const uint32_t
1135ecb_byteorder_helper (void)
1136{
1137 /* the union code still generates code under pressure in gcc, */
1138 /* but less than using pointers, and always seems to */
1139 /* successfully return a constant. */
1140 /* the reason why we have this horrible preprocessor mess */
1141 /* is to avoid it in all cases, at least on common architectures */
1142 /* or when using a recent enough gcc version (>= 4.6) */
1143#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1144 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1145 #define ECB_LITTLE_ENDIAN 1
1146 return 0x44332211;
1147#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1148 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1149 #define ECB_BIG_ENDIAN 1
1150 return 0x11223344;
1151#else
1152 union
1153 {
1154 uint8_t c[4];
1155 uint32_t u;
1156 } u = { 0x11, 0x22, 0x33, 0x44 };
1157 return u.u;
1158#endif
1159}
1160
1161ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1162ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1163ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1164ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1165
1166#if ECB_GCC_VERSION(3,0) || ECB_C99
1167 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1168#else
1169 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1170#endif
1171
1172#if ECB_CPP
1173 template<typename T>
1174 static inline T ecb_div_rd (T val, T div)
1175 {
1176 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1177 }
1178 template<typename T>
1179 static inline T ecb_div_ru (T val, T div)
1180 {
1181 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1182 }
1183#else
1184 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1185 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1186#endif
1187
1188#if ecb_cplusplus_does_not_suck
1189 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1190 template<typename T, int N>
1191 static inline int ecb_array_length (const T (&arr)[N])
1192 {
1193 return N;
1194 }
1195#else
1196 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1197#endif
1198
1199ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1200ecb_function_ ecb_const uint32_t
1201ecb_binary16_to_binary32 (uint32_t x)
1202{
1203 unsigned int s = (x & 0x8000) << (31 - 15);
1204 int e = (x >> 10) & 0x001f;
1205 unsigned int m = x & 0x03ff;
1206
1207 if (ecb_expect_false (e == 31))
1208 /* infinity or NaN */
1209 e = 255 - (127 - 15);
1210 else if (ecb_expect_false (!e))
1211 {
1212 if (ecb_expect_true (!m))
1213 /* zero, handled by code below by forcing e to 0 */
1214 e = 0 - (127 - 15);
1215 else
1216 {
1217 /* subnormal, renormalise */
1218 unsigned int s = 10 - ecb_ld32 (m);
1219
1220 m = (m << s) & 0x3ff; /* mask implicit bit */
1221 e -= s - 1;
1222 }
1223 }
1224
1225 /* e and m now are normalised, or zero, (or inf or nan) */
1226 e += 127 - 15;
1227
1228 return s | (e << 23) | (m << (23 - 10));
1229}
1230
1231ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1232ecb_function_ ecb_const uint16_t
1233ecb_binary32_to_binary16 (uint32_t x)
1234{
1235 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1236 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1237 unsigned int m = x & 0x007fffff;
1238
1239 x &= 0x7fffffff;
1240
1241 /* if it's within range of binary16 normals, use fast path */
1242 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1243 {
1244 /* mantissa round-to-even */
1245 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1246
1247 /* handle overflow */
1248 if (ecb_expect_false (m >= 0x00800000))
1249 {
1250 m >>= 1;
1251 e += 1;
1252 }
1253
1254 return s | (e << 10) | (m >> (23 - 10));
1255 }
1256
1257 /* handle large numbers and infinity */
1258 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1259 return s | 0x7c00;
1260
1261 /* handle zero, subnormals and small numbers */
1262 if (ecb_expect_true (x < 0x38800000))
1263 {
1264 /* zero */
1265 if (ecb_expect_true (!x))
1266 return s;
1267
1268 /* handle subnormals */
1269
1270 /* too small, will be zero */
1271 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1272 return s;
1273
1274 m |= 0x00800000; /* make implicit bit explicit */
1275
1276 /* very tricky - we need to round to the nearest e (+10) bit value */
1277 {
1278 unsigned int bits = 14 - e;
1279 unsigned int half = (1 << (bits - 1)) - 1;
1280 unsigned int even = (m >> bits) & 1;
1281
1282 /* if this overflows, we will end up with a normalised number */
1283 m = (m + half + even) >> bits;
1284 }
1285
1286 return s | m;
1287 }
1288
1289 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1290 m >>= 13;
1291
1292 return s | 0x7c00 | m | !m;
1293}
1294
1295/*******************************************************************************/
1296/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1297
1298/* basically, everything uses "ieee pure-endian" floating point numbers */
1299/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1300#if 0 \
1301 || __i386 || __i386__ \
1302 || ECB_GCC_AMD64 \
1303 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1304 || defined __s390__ || defined __s390x__ \
1305 || defined __mips__ \
1306 || defined __alpha__ \
1307 || defined __hppa__ \
1308 || defined __ia64__ \
1309 || defined __m68k__ \
1310 || defined __m88k__ \
1311 || defined __sh__ \
1312 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1313 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1314 || defined __aarch64__
1315 #define ECB_STDFP 1
1316 #include <string.h> /* for memcpy */
1317#else
1318 #define ECB_STDFP 0
1319#endif
1320
1321#ifndef ECB_NO_LIBM
1322
1323 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1324
1325 /* only the oldest of old doesn't have this one. solaris. */
1326 #ifdef INFINITY
1327 #define ECB_INFINITY INFINITY
1328 #else
1329 #define ECB_INFINITY HUGE_VAL
1330 #endif
1331
1332 #ifdef NAN
1333 #define ECB_NAN NAN
1334 #else
1335 #define ECB_NAN ECB_INFINITY
1336 #endif
1337
1338 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1339 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1340 #define ecb_frexpf(x,e) frexpf ((x), (e))
1341 #else
1342 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1343 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1344 #endif
1345
1346 /* convert a float to ieee single/binary32 */
1347 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1348 ecb_function_ ecb_const uint32_t
1349 ecb_float_to_binary32 (float x)
1350 {
1351 uint32_t r;
1352
1353 #if ECB_STDFP
1354 memcpy (&r, &x, 4);
1355 #else
1356 /* slow emulation, works for anything but -0 */
1357 uint32_t m;
1358 int e;
1359
1360 if (x == 0e0f ) return 0x00000000U;
1361 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1362 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1363 if (x != x ) return 0x7fbfffffU;
1364
1365 m = ecb_frexpf (x, &e) * 0x1000000U;
1366
1367 r = m & 0x80000000U;
1368
1369 if (r)
1370 m = -m;
1371
1372 if (e <= -126)
1373 {
1374 m &= 0xffffffU;
1375 m >>= (-125 - e);
1376 e = -126;
1377 }
1378
1379 r |= (e + 126) << 23;
1380 r |= m & 0x7fffffU;
1381 #endif
1382
1383 return r;
1384 }
1385
1386 /* converts an ieee single/binary32 to a float */
1387 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1388 ecb_function_ ecb_const float
1389 ecb_binary32_to_float (uint32_t x)
1390 {
1391 float r;
1392
1393 #if ECB_STDFP
1394 memcpy (&r, &x, 4);
1395 #else
1396 /* emulation, only works for normals and subnormals and +0 */
1397 int neg = x >> 31;
1398 int e = (x >> 23) & 0xffU;
1399
1400 x &= 0x7fffffU;
1401
1402 if (e)
1403 x |= 0x800000U;
1404 else
1405 e = 1;
1406
1407 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1408 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1409
1410 r = neg ? -r : r;
1411 #endif
1412
1413 return r;
1414 }
1415
1416 /* convert a double to ieee double/binary64 */
1417 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1418 ecb_function_ ecb_const uint64_t
1419 ecb_double_to_binary64 (double x)
1420 {
1421 uint64_t r;
1422
1423 #if ECB_STDFP
1424 memcpy (&r, &x, 8);
1425 #else
1426 /* slow emulation, works for anything but -0 */
1427 uint64_t m;
1428 int e;
1429
1430 if (x == 0e0 ) return 0x0000000000000000U;
1431 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1432 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1433 if (x != x ) return 0X7ff7ffffffffffffU;
1434
1435 m = frexp (x, &e) * 0x20000000000000U;
1436
1437 r = m & 0x8000000000000000;;
1438
1439 if (r)
1440 m = -m;
1441
1442 if (e <= -1022)
1443 {
1444 m &= 0x1fffffffffffffU;
1445 m >>= (-1021 - e);
1446 e = -1022;
1447 }
1448
1449 r |= ((uint64_t)(e + 1022)) << 52;
1450 r |= m & 0xfffffffffffffU;
1451 #endif
1452
1453 return r;
1454 }
1455
1456 /* converts an ieee double/binary64 to a double */
1457 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1458 ecb_function_ ecb_const double
1459 ecb_binary64_to_double (uint64_t x)
1460 {
1461 double r;
1462
1463 #if ECB_STDFP
1464 memcpy (&r, &x, 8);
1465 #else
1466 /* emulation, only works for normals and subnormals and +0 */
1467 int neg = x >> 63;
1468 int e = (x >> 52) & 0x7ffU;
1469
1470 x &= 0xfffffffffffffU;
1471
1472 if (e)
1473 x |= 0x10000000000000U;
1474 else
1475 e = 1;
1476
1477 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1478 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1479
1480 r = neg ? -r : r;
1481 #endif
1482
1483 return r;
1484 }
1485
1486 /* convert a float to ieee half/binary16 */
1487 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1488 ecb_function_ ecb_const uint16_t
1489 ecb_float_to_binary16 (float x)
1490 {
1491 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1492 }
1493
1494 /* convert an ieee half/binary16 to float */
1495 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1496 ecb_function_ ecb_const float
1497 ecb_binary16_to_float (uint16_t x)
1498 {
1499 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1500 }
1501
1502#endif
1503
1504#endif
1505
1506/* ECB.H END */
1507
1508#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1509/* if your architecture doesn't need memory fences, e.g. because it is
1510 * single-cpu/core, or if you use libev in a project that doesn't use libev
1511 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1512 * libev, in which cases the memory fences become nops.
1513 * alternatively, you can remove this #error and link against libpthread,
1514 * which will then provide the memory fences.
1515 */
1516# error "memory fences not defined for your architecture, please report"
1517#endif
1518
1519#ifndef ECB_MEMORY_FENCE
1520# define ECB_MEMORY_FENCE do { } while (0)
1521# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1522# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1523#endif
1524
1525#define expect_false(cond) ecb_expect_false (cond)
1526#define expect_true(cond) ecb_expect_true (cond)
1527#define noinline ecb_noinline
1528
249#define inline_size static inline 1529#define inline_size ecb_inline
250 1530
251#if EV_MINIMAL 1531#if EV_FEATURE_CODE
252# define inline_speed static noinline
253#else
254# define inline_speed static inline 1532# define inline_speed ecb_inline
1533#else
1534# define inline_speed noinline static
255#endif 1535#endif
256 1536
257#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1537#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1538
1539#if EV_MINPRI == EV_MAXPRI
1540# define ABSPRI(w) (((W)w), 0)
1541#else
258#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1542# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1543#endif
259 1544
260#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1545#define EMPTY /* required for microsofts broken pseudo-c compiler */
261#define EMPTY2(a,b) /* used to suppress some warnings */ 1546#define EMPTY2(a,b) /* used to suppress some warnings */
262 1547
263typedef ev_watcher *W; 1548typedef ev_watcher *W;
264typedef ev_watcher_list *WL; 1549typedef ev_watcher_list *WL;
265typedef ev_watcher_time *WT; 1550typedef ev_watcher_time *WT;
266 1551
1552#define ev_active(w) ((W)(w))->active
1553#define ev_at(w) ((WT)(w))->at
1554
1555#if EV_USE_REALTIME
1556/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1557/* giving it a reasonably high chance of working on typical architectures */
1558static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1559#endif
1560
1561#if EV_USE_MONOTONIC
267static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1562static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1563#endif
1564
1565#ifndef EV_FD_TO_WIN32_HANDLE
1566# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1567#endif
1568#ifndef EV_WIN32_HANDLE_TO_FD
1569# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1570#endif
1571#ifndef EV_WIN32_CLOSE_FD
1572# define EV_WIN32_CLOSE_FD(fd) close (fd)
1573#endif
268 1574
269#ifdef _WIN32 1575#ifdef _WIN32
270# include "ev_win32.c" 1576# include "ev_win32.c"
271#endif 1577#endif
272 1578
273/*****************************************************************************/ 1579/*****************************************************************************/
274 1580
1581/* define a suitable floor function (only used by periodics atm) */
1582
1583#if EV_USE_FLOOR
1584# include <math.h>
1585# define ev_floor(v) floor (v)
1586#else
1587
1588#include <float.h>
1589
1590/* a floor() replacement function, should be independent of ev_tstamp type */
1591noinline
1592static ev_tstamp
1593ev_floor (ev_tstamp v)
1594{
1595 /* the choice of shift factor is not terribly important */
1596#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1597 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1598#else
1599 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1600#endif
1601
1602 /* argument too large for an unsigned long? */
1603 if (expect_false (v >= shift))
1604 {
1605 ev_tstamp f;
1606
1607 if (v == v - 1.)
1608 return v; /* very large number */
1609
1610 f = shift * ev_floor (v * (1. / shift));
1611 return f + ev_floor (v - f);
1612 }
1613
1614 /* special treatment for negative args? */
1615 if (expect_false (v < 0.))
1616 {
1617 ev_tstamp f = -ev_floor (-v);
1618
1619 return f - (f == v ? 0 : 1);
1620 }
1621
1622 /* fits into an unsigned long */
1623 return (unsigned long)v;
1624}
1625
1626#endif
1627
1628/*****************************************************************************/
1629
1630#ifdef __linux
1631# include <sys/utsname.h>
1632#endif
1633
1634noinline ecb_cold
1635static unsigned int
1636ev_linux_version (void)
1637{
1638#ifdef __linux
1639 unsigned int v = 0;
1640 struct utsname buf;
1641 int i;
1642 char *p = buf.release;
1643
1644 if (uname (&buf))
1645 return 0;
1646
1647 for (i = 3+1; --i; )
1648 {
1649 unsigned int c = 0;
1650
1651 for (;;)
1652 {
1653 if (*p >= '0' && *p <= '9')
1654 c = c * 10 + *p++ - '0';
1655 else
1656 {
1657 p += *p == '.';
1658 break;
1659 }
1660 }
1661
1662 v = (v << 8) | c;
1663 }
1664
1665 return v;
1666#else
1667 return 0;
1668#endif
1669}
1670
1671/*****************************************************************************/
1672
1673#if EV_AVOID_STDIO
1674noinline ecb_cold
1675static void
1676ev_printerr (const char *msg)
1677{
1678 write (STDERR_FILENO, msg, strlen (msg));
1679}
1680#endif
1681
275static void (*syserr_cb)(const char *msg); 1682static void (*syserr_cb)(const char *msg) EV_THROW;
276 1683
1684ecb_cold
277void 1685void
278ev_set_syserr_cb (void (*cb)(const char *msg)) 1686ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
279{ 1687{
280 syserr_cb = cb; 1688 syserr_cb = cb;
281} 1689}
282 1690
283static void noinline 1691noinline ecb_cold
1692static void
284syserr (const char *msg) 1693ev_syserr (const char *msg)
285{ 1694{
286 if (!msg) 1695 if (!msg)
287 msg = "(libev) system error"; 1696 msg = "(libev) system error";
288 1697
289 if (syserr_cb) 1698 if (syserr_cb)
290 syserr_cb (msg); 1699 syserr_cb (msg);
291 else 1700 else
292 { 1701 {
1702#if EV_AVOID_STDIO
1703 ev_printerr (msg);
1704 ev_printerr (": ");
1705 ev_printerr (strerror (errno));
1706 ev_printerr ("\n");
1707#else
293 perror (msg); 1708 perror (msg);
1709#endif
294 abort (); 1710 abort ();
295 } 1711 }
296} 1712}
297 1713
1714static void *
1715ev_realloc_emul (void *ptr, long size) EV_THROW
1716{
1717 /* some systems, notably openbsd and darwin, fail to properly
1718 * implement realloc (x, 0) (as required by both ansi c-89 and
1719 * the single unix specification, so work around them here.
1720 * recently, also (at least) fedora and debian started breaking it,
1721 * despite documenting it otherwise.
1722 */
1723
1724 if (size)
1725 return realloc (ptr, size);
1726
1727 free (ptr);
1728 return 0;
1729}
1730
298static void *(*alloc)(void *ptr, long size); 1731static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
299 1732
1733ecb_cold
300void 1734void
301ev_set_allocator (void *(*cb)(void *ptr, long size)) 1735ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
302{ 1736{
303 alloc = cb; 1737 alloc = cb;
304} 1738}
305 1739
306inline_speed void * 1740inline_speed void *
307ev_realloc (void *ptr, long size) 1741ev_realloc (void *ptr, long size)
308{ 1742{
309 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1743 ptr = alloc (ptr, size);
310 1744
311 if (!ptr && size) 1745 if (!ptr && size)
312 { 1746 {
1747#if EV_AVOID_STDIO
1748 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1749#else
313 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1750 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1751#endif
314 abort (); 1752 abort ();
315 } 1753 }
316 1754
317 return ptr; 1755 return ptr;
318} 1756}
320#define ev_malloc(size) ev_realloc (0, (size)) 1758#define ev_malloc(size) ev_realloc (0, (size))
321#define ev_free(ptr) ev_realloc ((ptr), 0) 1759#define ev_free(ptr) ev_realloc ((ptr), 0)
322 1760
323/*****************************************************************************/ 1761/*****************************************************************************/
324 1762
1763/* set in reify when reification needed */
1764#define EV_ANFD_REIFY 1
1765
1766/* file descriptor info structure */
325typedef struct 1767typedef struct
326{ 1768{
327 WL head; 1769 WL head;
328 unsigned char events; 1770 unsigned char events; /* the events watched for */
1771 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1772 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
329 unsigned char reify; 1773 unsigned char unused;
1774#if EV_USE_EPOLL
1775 unsigned int egen; /* generation counter to counter epoll bugs */
1776#endif
330#if EV_SELECT_IS_WINSOCKET 1777#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
331 SOCKET handle; 1778 SOCKET handle;
332#endif 1779#endif
1780#if EV_USE_IOCP
1781 OVERLAPPED or, ow;
1782#endif
333} ANFD; 1783} ANFD;
334 1784
1785/* stores the pending event set for a given watcher */
335typedef struct 1786typedef struct
336{ 1787{
337 W w; 1788 W w;
338 int events; 1789 int events; /* the pending event set for the given watcher */
339} ANPENDING; 1790} ANPENDING;
340 1791
341#if EV_USE_INOTIFY 1792#if EV_USE_INOTIFY
1793/* hash table entry per inotify-id */
342typedef struct 1794typedef struct
343{ 1795{
344 WL head; 1796 WL head;
345} ANFS; 1797} ANFS;
1798#endif
1799
1800/* Heap Entry */
1801#if EV_HEAP_CACHE_AT
1802 /* a heap element */
1803 typedef struct {
1804 ev_tstamp at;
1805 WT w;
1806 } ANHE;
1807
1808 #define ANHE_w(he) (he).w /* access watcher, read-write */
1809 #define ANHE_at(he) (he).at /* access cached at, read-only */
1810 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1811#else
1812 /* a heap element */
1813 typedef WT ANHE;
1814
1815 #define ANHE_w(he) (he)
1816 #define ANHE_at(he) (he)->at
1817 #define ANHE_at_cache(he)
346#endif 1818#endif
347 1819
348#if EV_MULTIPLICITY 1820#if EV_MULTIPLICITY
349 1821
350 struct ev_loop 1822 struct ev_loop
356 #undef VAR 1828 #undef VAR
357 }; 1829 };
358 #include "ev_wrap.h" 1830 #include "ev_wrap.h"
359 1831
360 static struct ev_loop default_loop_struct; 1832 static struct ev_loop default_loop_struct;
361 struct ev_loop *ev_default_loop_ptr; 1833 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
362 1834
363#else 1835#else
364 1836
365 ev_tstamp ev_rt_now; 1837 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
366 #define VAR(name,decl) static decl; 1838 #define VAR(name,decl) static decl;
367 #include "ev_vars.h" 1839 #include "ev_vars.h"
368 #undef VAR 1840 #undef VAR
369 1841
370 static int ev_default_loop_ptr; 1842 static int ev_default_loop_ptr;
371 1843
372#endif 1844#endif
373 1845
1846#if EV_FEATURE_API
1847# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1848# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1849# define EV_INVOKE_PENDING invoke_cb (EV_A)
1850#else
1851# define EV_RELEASE_CB (void)0
1852# define EV_ACQUIRE_CB (void)0
1853# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1854#endif
1855
1856#define EVBREAK_RECURSE 0x80
1857
374/*****************************************************************************/ 1858/*****************************************************************************/
375 1859
1860#ifndef EV_HAVE_EV_TIME
376ev_tstamp 1861ev_tstamp
377ev_time (void) 1862ev_time (void) EV_THROW
378{ 1863{
379#if EV_USE_REALTIME 1864#if EV_USE_REALTIME
1865 if (expect_true (have_realtime))
1866 {
380 struct timespec ts; 1867 struct timespec ts;
381 clock_gettime (CLOCK_REALTIME, &ts); 1868 clock_gettime (CLOCK_REALTIME, &ts);
382 return ts.tv_sec + ts.tv_nsec * 1e-9; 1869 return ts.tv_sec + ts.tv_nsec * 1e-9;
383#else 1870 }
1871#endif
1872
384 struct timeval tv; 1873 struct timeval tv;
385 gettimeofday (&tv, 0); 1874 gettimeofday (&tv, 0);
386 return tv.tv_sec + tv.tv_usec * 1e-6; 1875 return tv.tv_sec + tv.tv_usec * 1e-6;
387#endif
388} 1876}
1877#endif
389 1878
390ev_tstamp inline_size 1879inline_size ev_tstamp
391get_clock (void) 1880get_clock (void)
392{ 1881{
393#if EV_USE_MONOTONIC 1882#if EV_USE_MONOTONIC
394 if (expect_true (have_monotonic)) 1883 if (expect_true (have_monotonic))
395 { 1884 {
402 return ev_time (); 1891 return ev_time ();
403} 1892}
404 1893
405#if EV_MULTIPLICITY 1894#if EV_MULTIPLICITY
406ev_tstamp 1895ev_tstamp
407ev_now (EV_P) 1896ev_now (EV_P) EV_THROW
408{ 1897{
409 return ev_rt_now; 1898 return ev_rt_now;
410} 1899}
411#endif 1900#endif
412 1901
413int inline_size 1902void
1903ev_sleep (ev_tstamp delay) EV_THROW
1904{
1905 if (delay > 0.)
1906 {
1907#if EV_USE_NANOSLEEP
1908 struct timespec ts;
1909
1910 EV_TS_SET (ts, delay);
1911 nanosleep (&ts, 0);
1912#elif defined _WIN32
1913 /* maybe this should round up, as ms is very low resolution */
1914 /* compared to select (µs) or nanosleep (ns) */
1915 Sleep ((unsigned long)(delay * 1e3));
1916#else
1917 struct timeval tv;
1918
1919 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1920 /* something not guaranteed by newer posix versions, but guaranteed */
1921 /* by older ones */
1922 EV_TV_SET (tv, delay);
1923 select (0, 0, 0, 0, &tv);
1924#endif
1925 }
1926}
1927
1928/*****************************************************************************/
1929
1930#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1931
1932/* find a suitable new size for the given array, */
1933/* hopefully by rounding to a nice-to-malloc size */
1934inline_size int
414array_nextsize (int elem, int cur, int cnt) 1935array_nextsize (int elem, int cur, int cnt)
415{ 1936{
416 int ncur = cur + 1; 1937 int ncur = cur + 1;
417 1938
418 do 1939 do
419 ncur <<= 1; 1940 ncur <<= 1;
420 while (cnt > ncur); 1941 while (cnt > ncur);
421 1942
422 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 1943 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
423 if (elem * ncur > 4096) 1944 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
424 { 1945 {
425 ncur *= elem; 1946 ncur *= elem;
426 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 1947 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
427 ncur = ncur - sizeof (void *) * 4; 1948 ncur = ncur - sizeof (void *) * 4;
428 ncur /= elem; 1949 ncur /= elem;
429 } 1950 }
430 1951
431 return ncur; 1952 return ncur;
432} 1953}
433 1954
434static noinline void * 1955noinline ecb_cold
1956static void *
435array_realloc (int elem, void *base, int *cur, int cnt) 1957array_realloc (int elem, void *base, int *cur, int cnt)
436{ 1958{
437 *cur = array_nextsize (elem, *cur, cnt); 1959 *cur = array_nextsize (elem, *cur, cnt);
438 return ev_realloc (base, elem * *cur); 1960 return ev_realloc (base, elem * *cur);
439} 1961}
1962
1963#define array_init_zero(base,count) \
1964 memset ((void *)(base), 0, sizeof (*(base)) * (count))
440 1965
441#define array_needsize(type,base,cur,cnt,init) \ 1966#define array_needsize(type,base,cur,cnt,init) \
442 if (expect_false ((cnt) > (cur))) \ 1967 if (expect_false ((cnt) > (cur))) \
443 { \ 1968 { \
444 int ocur_ = (cur); \ 1969 ecb_unused int ocur_ = (cur); \
445 (base) = (type *)array_realloc \ 1970 (base) = (type *)array_realloc \
446 (sizeof (type), (base), &(cur), (cnt)); \ 1971 (sizeof (type), (base), &(cur), (cnt)); \
447 init ((base) + (ocur_), (cur) - ocur_); \ 1972 init ((base) + (ocur_), (cur) - ocur_); \
448 } 1973 }
449 1974
456 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1981 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
457 } 1982 }
458#endif 1983#endif
459 1984
460#define array_free(stem, idx) \ 1985#define array_free(stem, idx) \
461 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1986 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
462 1987
463/*****************************************************************************/ 1988/*****************************************************************************/
464 1989
1990/* dummy callback for pending events */
465void noinline 1991noinline
1992static void
1993pendingcb (EV_P_ ev_prepare *w, int revents)
1994{
1995}
1996
1997noinline
1998void
466ev_feed_event (EV_P_ void *w, int revents) 1999ev_feed_event (EV_P_ void *w, int revents) EV_THROW
467{ 2000{
468 W w_ = (W)w; 2001 W w_ = (W)w;
469 int pri = ABSPRI (w_); 2002 int pri = ABSPRI (w_);
470 2003
471 if (expect_false (w_->pending)) 2004 if (expect_false (w_->pending))
475 w_->pending = ++pendingcnt [pri]; 2008 w_->pending = ++pendingcnt [pri];
476 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 2009 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
477 pendings [pri][w_->pending - 1].w = w_; 2010 pendings [pri][w_->pending - 1].w = w_;
478 pendings [pri][w_->pending - 1].events = revents; 2011 pendings [pri][w_->pending - 1].events = revents;
479 } 2012 }
480}
481 2013
482void inline_speed 2014 pendingpri = NUMPRI - 1;
2015}
2016
2017inline_speed void
2018feed_reverse (EV_P_ W w)
2019{
2020 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
2021 rfeeds [rfeedcnt++] = w;
2022}
2023
2024inline_size void
2025feed_reverse_done (EV_P_ int revents)
2026{
2027 do
2028 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2029 while (rfeedcnt);
2030}
2031
2032inline_speed void
483queue_events (EV_P_ W *events, int eventcnt, int type) 2033queue_events (EV_P_ W *events, int eventcnt, int type)
484{ 2034{
485 int i; 2035 int i;
486 2036
487 for (i = 0; i < eventcnt; ++i) 2037 for (i = 0; i < eventcnt; ++i)
488 ev_feed_event (EV_A_ events [i], type); 2038 ev_feed_event (EV_A_ events [i], type);
489} 2039}
490 2040
491/*****************************************************************************/ 2041/*****************************************************************************/
492 2042
493void inline_size 2043inline_speed void
494anfds_init (ANFD *base, int count)
495{
496 while (count--)
497 {
498 base->head = 0;
499 base->events = EV_NONE;
500 base->reify = 0;
501
502 ++base;
503 }
504}
505
506void inline_speed
507fd_event (EV_P_ int fd, int revents) 2044fd_event_nocheck (EV_P_ int fd, int revents)
508{ 2045{
509 ANFD *anfd = anfds + fd; 2046 ANFD *anfd = anfds + fd;
510 ev_io *w; 2047 ev_io *w;
511 2048
512 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2049 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
516 if (ev) 2053 if (ev)
517 ev_feed_event (EV_A_ (W)w, ev); 2054 ev_feed_event (EV_A_ (W)w, ev);
518 } 2055 }
519} 2056}
520 2057
2058/* do not submit kernel events for fds that have reify set */
2059/* because that means they changed while we were polling for new events */
2060inline_speed void
2061fd_event (EV_P_ int fd, int revents)
2062{
2063 ANFD *anfd = anfds + fd;
2064
2065 if (expect_true (!anfd->reify))
2066 fd_event_nocheck (EV_A_ fd, revents);
2067}
2068
521void 2069void
522ev_feed_fd_event (EV_P_ int fd, int revents) 2070ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
523{ 2071{
524 if (fd >= 0 && fd < anfdmax) 2072 if (fd >= 0 && fd < anfdmax)
525 fd_event (EV_A_ fd, revents); 2073 fd_event_nocheck (EV_A_ fd, revents);
526} 2074}
527 2075
528void inline_size 2076/* make sure the external fd watch events are in-sync */
2077/* with the kernel/libev internal state */
2078inline_size void
529fd_reify (EV_P) 2079fd_reify (EV_P)
530{ 2080{
531 int i; 2081 int i;
2082
2083#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2084 for (i = 0; i < fdchangecnt; ++i)
2085 {
2086 int fd = fdchanges [i];
2087 ANFD *anfd = anfds + fd;
2088
2089 if (anfd->reify & EV__IOFDSET && anfd->head)
2090 {
2091 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2092
2093 if (handle != anfd->handle)
2094 {
2095 unsigned long arg;
2096
2097 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2098
2099 /* handle changed, but fd didn't - we need to do it in two steps */
2100 backend_modify (EV_A_ fd, anfd->events, 0);
2101 anfd->events = 0;
2102 anfd->handle = handle;
2103 }
2104 }
2105 }
2106#endif
532 2107
533 for (i = 0; i < fdchangecnt; ++i) 2108 for (i = 0; i < fdchangecnt; ++i)
534 { 2109 {
535 int fd = fdchanges [i]; 2110 int fd = fdchanges [i];
536 ANFD *anfd = anfds + fd; 2111 ANFD *anfd = anfds + fd;
537 ev_io *w; 2112 ev_io *w;
538 2113
539 unsigned char events = 0; 2114 unsigned char o_events = anfd->events;
2115 unsigned char o_reify = anfd->reify;
540 2116
541 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2117 anfd->reify = 0;
542 events |= (unsigned char)w->events;
543 2118
544#if EV_SELECT_IS_WINSOCKET 2119 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
545 if (events)
546 { 2120 {
547 unsigned long argp; 2121 anfd->events = 0;
548 anfd->handle = _get_osfhandle (fd); 2122
549 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 2123 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2124 anfd->events |= (unsigned char)w->events;
2125
2126 if (o_events != anfd->events)
2127 o_reify = EV__IOFDSET; /* actually |= */
550 } 2128 }
551#endif
552 2129
553 { 2130 if (o_reify & EV__IOFDSET)
554 unsigned char o_events = anfd->events;
555 unsigned char o_reify = anfd->reify;
556
557 anfd->reify = 0;
558 anfd->events = events;
559
560 if (o_events != events || o_reify & EV_IOFDSET)
561 backend_modify (EV_A_ fd, o_events, events); 2131 backend_modify (EV_A_ fd, o_events, anfd->events);
562 }
563 } 2132 }
564 2133
565 fdchangecnt = 0; 2134 fdchangecnt = 0;
566} 2135}
567 2136
2137/* something about the given fd changed */
568void inline_size 2138inline_size
2139void
569fd_change (EV_P_ int fd, int flags) 2140fd_change (EV_P_ int fd, int flags)
570{ 2141{
571 unsigned char reify = anfds [fd].reify; 2142 unsigned char reify = anfds [fd].reify;
572 anfds [fd].reify |= flags; 2143 anfds [fd].reify |= flags;
573 2144
577 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 2148 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
578 fdchanges [fdchangecnt - 1] = fd; 2149 fdchanges [fdchangecnt - 1] = fd;
579 } 2150 }
580} 2151}
581 2152
582void inline_speed 2153/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2154inline_speed ecb_cold void
583fd_kill (EV_P_ int fd) 2155fd_kill (EV_P_ int fd)
584{ 2156{
585 ev_io *w; 2157 ev_io *w;
586 2158
587 while ((w = (ev_io *)anfds [fd].head)) 2159 while ((w = (ev_io *)anfds [fd].head))
589 ev_io_stop (EV_A_ w); 2161 ev_io_stop (EV_A_ w);
590 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2162 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
591 } 2163 }
592} 2164}
593 2165
594int inline_size 2166/* check whether the given fd is actually valid, for error recovery */
2167inline_size ecb_cold int
595fd_valid (int fd) 2168fd_valid (int fd)
596{ 2169{
597#ifdef _WIN32 2170#ifdef _WIN32
598 return _get_osfhandle (fd) != -1; 2171 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
599#else 2172#else
600 return fcntl (fd, F_GETFD) != -1; 2173 return fcntl (fd, F_GETFD) != -1;
601#endif 2174#endif
602} 2175}
603 2176
604/* called on EBADF to verify fds */ 2177/* called on EBADF to verify fds */
605static void noinline 2178noinline ecb_cold
2179static void
606fd_ebadf (EV_P) 2180fd_ebadf (EV_P)
607{ 2181{
608 int fd; 2182 int fd;
609 2183
610 for (fd = 0; fd < anfdmax; ++fd) 2184 for (fd = 0; fd < anfdmax; ++fd)
611 if (anfds [fd].events) 2185 if (anfds [fd].events)
612 if (!fd_valid (fd) == -1 && errno == EBADF) 2186 if (!fd_valid (fd) && errno == EBADF)
613 fd_kill (EV_A_ fd); 2187 fd_kill (EV_A_ fd);
614} 2188}
615 2189
616/* called on ENOMEM in select/poll to kill some fds and retry */ 2190/* called on ENOMEM in select/poll to kill some fds and retry */
617static void noinline 2191noinline ecb_cold
2192static void
618fd_enomem (EV_P) 2193fd_enomem (EV_P)
619{ 2194{
620 int fd; 2195 int fd;
621 2196
622 for (fd = anfdmax; fd--; ) 2197 for (fd = anfdmax; fd--; )
623 if (anfds [fd].events) 2198 if (anfds [fd].events)
624 { 2199 {
625 fd_kill (EV_A_ fd); 2200 fd_kill (EV_A_ fd);
626 return; 2201 break;
627 } 2202 }
628} 2203}
629 2204
630/* usually called after fork if backend needs to re-arm all fds from scratch */ 2205/* usually called after fork if backend needs to re-arm all fds from scratch */
631static void noinline 2206noinline
2207static void
632fd_rearm_all (EV_P) 2208fd_rearm_all (EV_P)
633{ 2209{
634 int fd; 2210 int fd;
635 2211
636 for (fd = 0; fd < anfdmax; ++fd) 2212 for (fd = 0; fd < anfdmax; ++fd)
637 if (anfds [fd].events) 2213 if (anfds [fd].events)
638 { 2214 {
639 anfds [fd].events = 0; 2215 anfds [fd].events = 0;
2216 anfds [fd].emask = 0;
640 fd_change (EV_A_ fd, EV_IOFDSET | 1); 2217 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
641 } 2218 }
642} 2219}
643 2220
2221/* used to prepare libev internal fd's */
2222/* this is not fork-safe */
2223inline_speed void
2224fd_intern (int fd)
2225{
2226#ifdef _WIN32
2227 unsigned long arg = 1;
2228 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2229#else
2230 fcntl (fd, F_SETFD, FD_CLOEXEC);
2231 fcntl (fd, F_SETFL, O_NONBLOCK);
2232#endif
2233}
2234
644/*****************************************************************************/ 2235/*****************************************************************************/
645 2236
646void inline_speed 2237/*
647upheap (WT *heap, int k) 2238 * the heap functions want a real array index. array index 0 is guaranteed to not
648{ 2239 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
649 WT w = heap [k]; 2240 * the branching factor of the d-tree.
2241 */
650 2242
651 while (k) 2243/*
652 { 2244 * at the moment we allow libev the luxury of two heaps,
653 int p = (k - 1) >> 1; 2245 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2246 * which is more cache-efficient.
2247 * the difference is about 5% with 50000+ watchers.
2248 */
2249#if EV_USE_4HEAP
654 2250
655 if (heap [p]->at <= w->at) 2251#define DHEAP 4
2252#define HEAP0 (DHEAP - 1) /* index of first element in heap */
2253#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2254#define UPHEAP_DONE(p,k) ((p) == (k))
2255
2256/* away from the root */
2257inline_speed void
2258downheap (ANHE *heap, int N, int k)
2259{
2260 ANHE he = heap [k];
2261 ANHE *E = heap + N + HEAP0;
2262
2263 for (;;)
2264 {
2265 ev_tstamp minat;
2266 ANHE *minpos;
2267 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2268
2269 /* find minimum child */
2270 if (expect_true (pos + DHEAP - 1 < E))
2271 {
2272 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2273 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2274 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2275 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2276 }
2277 else if (pos < E)
2278 {
2279 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2280 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2281 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2282 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2283 }
2284 else
656 break; 2285 break;
657 2286
2287 if (ANHE_at (he) <= minat)
2288 break;
2289
2290 heap [k] = *minpos;
2291 ev_active (ANHE_w (*minpos)) = k;
2292
2293 k = minpos - heap;
2294 }
2295
2296 heap [k] = he;
2297 ev_active (ANHE_w (he)) = k;
2298}
2299
2300#else /* 4HEAP */
2301
2302#define HEAP0 1
2303#define HPARENT(k) ((k) >> 1)
2304#define UPHEAP_DONE(p,k) (!(p))
2305
2306/* away from the root */
2307inline_speed void
2308downheap (ANHE *heap, int N, int k)
2309{
2310 ANHE he = heap [k];
2311
2312 for (;;)
2313 {
2314 int c = k << 1;
2315
2316 if (c >= N + HEAP0)
2317 break;
2318
2319 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2320 ? 1 : 0;
2321
2322 if (ANHE_at (he) <= ANHE_at (heap [c]))
2323 break;
2324
2325 heap [k] = heap [c];
2326 ev_active (ANHE_w (heap [k])) = k;
2327
2328 k = c;
2329 }
2330
2331 heap [k] = he;
2332 ev_active (ANHE_w (he)) = k;
2333}
2334#endif
2335
2336/* towards the root */
2337inline_speed void
2338upheap (ANHE *heap, int k)
2339{
2340 ANHE he = heap [k];
2341
2342 for (;;)
2343 {
2344 int p = HPARENT (k);
2345
2346 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2347 break;
2348
658 heap [k] = heap [p]; 2349 heap [k] = heap [p];
659 ((W)heap [k])->active = k + 1; 2350 ev_active (ANHE_w (heap [k])) = k;
660 k = p; 2351 k = p;
661 } 2352 }
662 2353
663 heap [k] = w; 2354 heap [k] = he;
664 ((W)heap [k])->active = k + 1; 2355 ev_active (ANHE_w (he)) = k;
665} 2356}
666 2357
667void inline_speed 2358/* move an element suitably so it is in a correct place */
668downheap (WT *heap, int N, int k) 2359inline_size void
669{
670 WT w = heap [k];
671
672 for (;;)
673 {
674 int c = (k << 1) + 1;
675
676 if (c >= N)
677 break;
678
679 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
680 ? 1 : 0;
681
682 if (w->at <= heap [c]->at)
683 break;
684
685 heap [k] = heap [c];
686 ((W)heap [k])->active = k + 1;
687
688 k = c;
689 }
690
691 heap [k] = w;
692 ((W)heap [k])->active = k + 1;
693}
694
695void inline_size
696adjustheap (WT *heap, int N, int k) 2360adjustheap (ANHE *heap, int N, int k)
697{ 2361{
2362 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
698 upheap (heap, k); 2363 upheap (heap, k);
2364 else
699 downheap (heap, N, k); 2365 downheap (heap, N, k);
2366}
2367
2368/* rebuild the heap: this function is used only once and executed rarely */
2369inline_size void
2370reheap (ANHE *heap, int N)
2371{
2372 int i;
2373
2374 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2375 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2376 for (i = 0; i < N; ++i)
2377 upheap (heap, i + HEAP0);
700} 2378}
701 2379
702/*****************************************************************************/ 2380/*****************************************************************************/
703 2381
2382/* associate signal watchers to a signal signal */
704typedef struct 2383typedef struct
705{ 2384{
2385 EV_ATOMIC_T pending;
2386#if EV_MULTIPLICITY
2387 EV_P;
2388#endif
706 WL head; 2389 WL head;
707 sig_atomic_t volatile gotsig;
708} ANSIG; 2390} ANSIG;
709 2391
710static ANSIG *signals; 2392static ANSIG signals [EV_NSIG - 1];
711static int signalmax;
712 2393
713static int sigpipe [2]; 2394/*****************************************************************************/
714static sig_atomic_t volatile gotsig;
715static ev_io sigev;
716 2395
717void inline_size 2396#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
718signals_init (ANSIG *base, int count)
719{
720 while (count--)
721 {
722 base->head = 0;
723 base->gotsig = 0;
724 2397
725 ++base; 2398noinline ecb_cold
726 }
727}
728
729static void 2399static void
730sighandler (int signum) 2400evpipe_init (EV_P)
731{ 2401{
732#if _WIN32 2402 if (!ev_is_active (&pipe_w))
733 signal (signum, sighandler); 2403 {
2404 int fds [2];
2405
2406# if EV_USE_EVENTFD
2407 fds [0] = -1;
2408 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2409 if (fds [1] < 0 && errno == EINVAL)
2410 fds [1] = eventfd (0, 0);
2411
2412 if (fds [1] < 0)
734#endif 2413# endif
2414 {
2415 while (pipe (fds))
2416 ev_syserr ("(libev) error creating signal/async pipe");
735 2417
736 signals [signum - 1].gotsig = 1; 2418 fd_intern (fds [0]);
2419 }
737 2420
738 if (!gotsig) 2421 evpipe [0] = fds [0];
2422
2423 if (evpipe [1] < 0)
2424 evpipe [1] = fds [1]; /* first call, set write fd */
2425 else
2426 {
2427 /* on subsequent calls, do not change evpipe [1] */
2428 /* so that evpipe_write can always rely on its value. */
2429 /* this branch does not do anything sensible on windows, */
2430 /* so must not be executed on windows */
2431
2432 dup2 (fds [1], evpipe [1]);
2433 close (fds [1]);
2434 }
2435
2436 fd_intern (evpipe [1]);
2437
2438 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2439 ev_io_start (EV_A_ &pipe_w);
2440 ev_unref (EV_A); /* watcher should not keep loop alive */
739 { 2441 }
2442}
2443
2444inline_speed void
2445evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2446{
2447 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2448
2449 if (expect_true (*flag))
2450 return;
2451
2452 *flag = 1;
2453 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2454
2455 pipe_write_skipped = 1;
2456
2457 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2458
2459 if (pipe_write_wanted)
2460 {
740 int old_errno = errno; 2461 int old_errno;
741 gotsig = 1; 2462
742 write (sigpipe [1], &signum, 1); 2463 pipe_write_skipped = 0;
2464 ECB_MEMORY_FENCE_RELEASE;
2465
2466 old_errno = errno; /* save errno because write will clobber it */
2467
2468#if EV_USE_EVENTFD
2469 if (evpipe [0] < 0)
2470 {
2471 uint64_t counter = 1;
2472 write (evpipe [1], &counter, sizeof (uint64_t));
2473 }
2474 else
2475#endif
2476 {
2477#ifdef _WIN32
2478 WSABUF buf;
2479 DWORD sent;
2480 buf.buf = &buf;
2481 buf.len = 1;
2482 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2483#else
2484 write (evpipe [1], &(evpipe [1]), 1);
2485#endif
2486 }
2487
743 errno = old_errno; 2488 errno = old_errno;
744 } 2489 }
745} 2490}
746 2491
2492/* called whenever the libev signal pipe */
2493/* got some events (signal, async) */
2494static void
2495pipecb (EV_P_ ev_io *iow, int revents)
2496{
2497 int i;
2498
2499 if (revents & EV_READ)
2500 {
2501#if EV_USE_EVENTFD
2502 if (evpipe [0] < 0)
2503 {
2504 uint64_t counter;
2505 read (evpipe [1], &counter, sizeof (uint64_t));
2506 }
2507 else
2508#endif
2509 {
2510 char dummy[4];
2511#ifdef _WIN32
2512 WSABUF buf;
2513 DWORD recvd;
2514 DWORD flags = 0;
2515 buf.buf = dummy;
2516 buf.len = sizeof (dummy);
2517 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2518#else
2519 read (evpipe [0], &dummy, sizeof (dummy));
2520#endif
2521 }
2522 }
2523
2524 pipe_write_skipped = 0;
2525
2526 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2527
2528#if EV_SIGNAL_ENABLE
2529 if (sig_pending)
2530 {
2531 sig_pending = 0;
2532
2533 ECB_MEMORY_FENCE;
2534
2535 for (i = EV_NSIG - 1; i--; )
2536 if (expect_false (signals [i].pending))
2537 ev_feed_signal_event (EV_A_ i + 1);
2538 }
2539#endif
2540
2541#if EV_ASYNC_ENABLE
2542 if (async_pending)
2543 {
2544 async_pending = 0;
2545
2546 ECB_MEMORY_FENCE;
2547
2548 for (i = asynccnt; i--; )
2549 if (asyncs [i]->sent)
2550 {
2551 asyncs [i]->sent = 0;
2552 ECB_MEMORY_FENCE_RELEASE;
2553 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2554 }
2555 }
2556#endif
2557}
2558
2559/*****************************************************************************/
2560
2561void
2562ev_feed_signal (int signum) EV_THROW
2563{
2564#if EV_MULTIPLICITY
2565 EV_P;
2566 ECB_MEMORY_FENCE_ACQUIRE;
2567 EV_A = signals [signum - 1].loop;
2568
2569 if (!EV_A)
2570 return;
2571#endif
2572
2573 signals [signum - 1].pending = 1;
2574 evpipe_write (EV_A_ &sig_pending);
2575}
2576
2577static void
2578ev_sighandler (int signum)
2579{
2580#ifdef _WIN32
2581 signal (signum, ev_sighandler);
2582#endif
2583
2584 ev_feed_signal (signum);
2585}
2586
747void noinline 2587noinline
2588void
748ev_feed_signal_event (EV_P_ int signum) 2589ev_feed_signal_event (EV_P_ int signum) EV_THROW
749{ 2590{
750 WL w; 2591 WL w;
751 2592
2593 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2594 return;
2595
2596 --signum;
2597
752#if EV_MULTIPLICITY 2598#if EV_MULTIPLICITY
753 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 2599 /* it is permissible to try to feed a signal to the wrong loop */
754#endif 2600 /* or, likely more useful, feeding a signal nobody is waiting for */
755 2601
756 --signum; 2602 if (expect_false (signals [signum].loop != EV_A))
757
758 if (signum < 0 || signum >= signalmax)
759 return; 2603 return;
2604#endif
760 2605
761 signals [signum].gotsig = 0; 2606 signals [signum].pending = 0;
2607 ECB_MEMORY_FENCE_RELEASE;
762 2608
763 for (w = signals [signum].head; w; w = w->next) 2609 for (w = signals [signum].head; w; w = w->next)
764 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2610 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
765} 2611}
766 2612
2613#if EV_USE_SIGNALFD
767static void 2614static void
768sigcb (EV_P_ ev_io *iow, int revents) 2615sigfdcb (EV_P_ ev_io *iow, int revents)
769{ 2616{
770 int signum; 2617 struct signalfd_siginfo si[2], *sip; /* these structs are big */
771 2618
772 read (sigpipe [0], &revents, 1); 2619 for (;;)
773 gotsig = 0; 2620 {
2621 ssize_t res = read (sigfd, si, sizeof (si));
774 2622
775 for (signum = signalmax; signum--; ) 2623 /* not ISO-C, as res might be -1, but works with SuS */
776 if (signals [signum].gotsig) 2624 for (sip = si; (char *)sip < (char *)si + res; ++sip)
777 ev_feed_signal_event (EV_A_ signum + 1); 2625 ev_feed_signal_event (EV_A_ sip->ssi_signo);
778}
779 2626
780void inline_speed 2627 if (res < (ssize_t)sizeof (si))
781fd_intern (int fd) 2628 break;
782{ 2629 }
783#ifdef _WIN32
784 int arg = 1;
785 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
786#else
787 fcntl (fd, F_SETFD, FD_CLOEXEC);
788 fcntl (fd, F_SETFL, O_NONBLOCK);
789#endif
790} 2630}
2631#endif
791 2632
792static void noinline 2633#endif
793siginit (EV_P)
794{
795 fd_intern (sigpipe [0]);
796 fd_intern (sigpipe [1]);
797
798 ev_io_set (&sigev, sigpipe [0], EV_READ);
799 ev_io_start (EV_A_ &sigev);
800 ev_unref (EV_A); /* child watcher should not keep loop alive */
801}
802 2634
803/*****************************************************************************/ 2635/*****************************************************************************/
804 2636
2637#if EV_CHILD_ENABLE
805static WL childs [EV_PID_HASHSIZE]; 2638static WL childs [EV_PID_HASHSIZE];
806 2639
807#ifndef _WIN32
808
809static ev_signal childev; 2640static ev_signal childev;
810 2641
811void inline_speed 2642#ifndef WIFCONTINUED
2643# define WIFCONTINUED(status) 0
2644#endif
2645
2646/* handle a single child status event */
2647inline_speed void
812child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 2648child_reap (EV_P_ int chain, int pid, int status)
813{ 2649{
814 ev_child *w; 2650 ev_child *w;
2651 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
815 2652
816 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2653 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2654 {
817 if (w->pid == pid || !w->pid) 2655 if ((w->pid == pid || !w->pid)
2656 && (!traced || (w->flags & 1)))
818 { 2657 {
819 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 2658 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
820 w->rpid = pid; 2659 w->rpid = pid;
821 w->rstatus = status; 2660 w->rstatus = status;
822 ev_feed_event (EV_A_ (W)w, EV_CHILD); 2661 ev_feed_event (EV_A_ (W)w, EV_CHILD);
823 } 2662 }
2663 }
824} 2664}
825 2665
826#ifndef WCONTINUED 2666#ifndef WCONTINUED
827# define WCONTINUED 0 2667# define WCONTINUED 0
828#endif 2668#endif
829 2669
2670/* called on sigchld etc., calls waitpid */
830static void 2671static void
831childcb (EV_P_ ev_signal *sw, int revents) 2672childcb (EV_P_ ev_signal *sw, int revents)
832{ 2673{
833 int pid, status; 2674 int pid, status;
834 2675
837 if (!WCONTINUED 2678 if (!WCONTINUED
838 || errno != EINVAL 2679 || errno != EINVAL
839 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 2680 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
840 return; 2681 return;
841 2682
842 /* make sure we are called again until all childs have been reaped */ 2683 /* make sure we are called again until all children have been reaped */
843 /* we need to do it this way so that the callback gets called before we continue */ 2684 /* we need to do it this way so that the callback gets called before we continue */
844 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2685 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
845 2686
846 child_reap (EV_A_ sw, pid, pid, status); 2687 child_reap (EV_A_ pid, pid, status);
847 if (EV_PID_HASHSIZE > 1) 2688 if ((EV_PID_HASHSIZE) > 1)
848 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2689 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
849} 2690}
850 2691
851#endif 2692#endif
852 2693
853/*****************************************************************************/ 2694/*****************************************************************************/
854 2695
2696#if EV_USE_IOCP
2697# include "ev_iocp.c"
2698#endif
855#if EV_USE_PORT 2699#if EV_USE_PORT
856# include "ev_port.c" 2700# include "ev_port.c"
857#endif 2701#endif
858#if EV_USE_KQUEUE 2702#if EV_USE_KQUEUE
859# include "ev_kqueue.c" 2703# include "ev_kqueue.c"
866#endif 2710#endif
867#if EV_USE_SELECT 2711#if EV_USE_SELECT
868# include "ev_select.c" 2712# include "ev_select.c"
869#endif 2713#endif
870 2714
871int 2715ecb_cold int
872ev_version_major (void) 2716ev_version_major (void) EV_THROW
873{ 2717{
874 return EV_VERSION_MAJOR; 2718 return EV_VERSION_MAJOR;
875} 2719}
876 2720
877int 2721ecb_cold int
878ev_version_minor (void) 2722ev_version_minor (void) EV_THROW
879{ 2723{
880 return EV_VERSION_MINOR; 2724 return EV_VERSION_MINOR;
881} 2725}
882 2726
883/* return true if we are running with elevated privileges and should ignore env variables */ 2727/* return true if we are running with elevated privileges and should ignore env variables */
884int inline_size 2728inline_size ecb_cold int
885enable_secure (void) 2729enable_secure (void)
886{ 2730{
887#ifdef _WIN32 2731#ifdef _WIN32
888 return 0; 2732 return 0;
889#else 2733#else
890 return getuid () != geteuid () 2734 return getuid () != geteuid ()
891 || getgid () != getegid (); 2735 || getgid () != getegid ();
892#endif 2736#endif
893} 2737}
894 2738
2739ecb_cold
895unsigned int 2740unsigned int
896ev_supported_backends (void) 2741ev_supported_backends (void) EV_THROW
897{ 2742{
898 unsigned int flags = 0; 2743 unsigned int flags = 0;
899 2744
900 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2745 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
901 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2746 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
904 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2749 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
905 2750
906 return flags; 2751 return flags;
907} 2752}
908 2753
2754ecb_cold
909unsigned int 2755unsigned int
910ev_recommended_backends (void) 2756ev_recommended_backends (void) EV_THROW
911{ 2757{
912 unsigned int flags = ev_supported_backends (); 2758 unsigned int flags = ev_supported_backends ();
913 2759
914#ifndef __NetBSD__ 2760#ifndef __NetBSD__
915 /* kqueue is borked on everything but netbsd apparently */ 2761 /* kqueue is borked on everything but netbsd apparently */
916 /* it usually doesn't work correctly on anything but sockets and pipes */ 2762 /* it usually doesn't work correctly on anything but sockets and pipes */
917 flags &= ~EVBACKEND_KQUEUE; 2763 flags &= ~EVBACKEND_KQUEUE;
918#endif 2764#endif
919#ifdef __APPLE__ 2765#ifdef __APPLE__
920 // flags &= ~EVBACKEND_KQUEUE; for documentation 2766 /* only select works correctly on that "unix-certified" platform */
921 flags &= ~EVBACKEND_POLL; 2767 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2768 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2769#endif
2770#ifdef __FreeBSD__
2771 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
922#endif 2772#endif
923 2773
924 return flags; 2774 return flags;
925} 2775}
926 2776
2777ecb_cold
927unsigned int 2778unsigned int
928ev_embeddable_backends (void) 2779ev_embeddable_backends (void) EV_THROW
929{ 2780{
930 return EVBACKEND_EPOLL 2781 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
931 | EVBACKEND_KQUEUE 2782
932 | EVBACKEND_PORT; 2783 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2784 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2785 flags &= ~EVBACKEND_EPOLL;
2786
2787 return flags;
933} 2788}
934 2789
935unsigned int 2790unsigned int
936ev_backend (EV_P) 2791ev_backend (EV_P) EV_THROW
937{ 2792{
938 return backend; 2793 return backend;
939} 2794}
940 2795
2796#if EV_FEATURE_API
941unsigned int 2797unsigned int
942ev_loop_count (EV_P) 2798ev_iteration (EV_P) EV_THROW
943{ 2799{
944 return loop_count; 2800 return loop_count;
945} 2801}
946 2802
947static void noinline 2803unsigned int
2804ev_depth (EV_P) EV_THROW
2805{
2806 return loop_depth;
2807}
2808
2809void
2810ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2811{
2812 io_blocktime = interval;
2813}
2814
2815void
2816ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2817{
2818 timeout_blocktime = interval;
2819}
2820
2821void
2822ev_set_userdata (EV_P_ void *data) EV_THROW
2823{
2824 userdata = data;
2825}
2826
2827void *
2828ev_userdata (EV_P) EV_THROW
2829{
2830 return userdata;
2831}
2832
2833void
2834ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2835{
2836 invoke_cb = invoke_pending_cb;
2837}
2838
2839void
2840ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2841{
2842 release_cb = release;
2843 acquire_cb = acquire;
2844}
2845#endif
2846
2847/* initialise a loop structure, must be zero-initialised */
2848noinline ecb_cold
2849static void
948loop_init (EV_P_ unsigned int flags) 2850loop_init (EV_P_ unsigned int flags) EV_THROW
949{ 2851{
950 if (!backend) 2852 if (!backend)
951 { 2853 {
2854 origflags = flags;
2855
2856#if EV_USE_REALTIME
2857 if (!have_realtime)
2858 {
2859 struct timespec ts;
2860
2861 if (!clock_gettime (CLOCK_REALTIME, &ts))
2862 have_realtime = 1;
2863 }
2864#endif
2865
952#if EV_USE_MONOTONIC 2866#if EV_USE_MONOTONIC
2867 if (!have_monotonic)
953 { 2868 {
954 struct timespec ts; 2869 struct timespec ts;
2870
955 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2871 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
956 have_monotonic = 1; 2872 have_monotonic = 1;
957 } 2873 }
958#endif 2874#endif
959
960 ev_rt_now = ev_time ();
961 mn_now = get_clock ();
962 now_floor = mn_now;
963 rtmn_diff = ev_rt_now - mn_now;
964 2875
965 /* pid check not overridable via env */ 2876 /* pid check not overridable via env */
966#ifndef _WIN32 2877#ifndef _WIN32
967 if (flags & EVFLAG_FORKCHECK) 2878 if (flags & EVFLAG_FORKCHECK)
968 curpid = getpid (); 2879 curpid = getpid ();
971 if (!(flags & EVFLAG_NOENV) 2882 if (!(flags & EVFLAG_NOENV)
972 && !enable_secure () 2883 && !enable_secure ()
973 && getenv ("LIBEV_FLAGS")) 2884 && getenv ("LIBEV_FLAGS"))
974 flags = atoi (getenv ("LIBEV_FLAGS")); 2885 flags = atoi (getenv ("LIBEV_FLAGS"));
975 2886
976 if (!(flags & 0x0000ffffUL)) 2887 ev_rt_now = ev_time ();
2888 mn_now = get_clock ();
2889 now_floor = mn_now;
2890 rtmn_diff = ev_rt_now - mn_now;
2891#if EV_FEATURE_API
2892 invoke_cb = ev_invoke_pending;
2893#endif
2894
2895 io_blocktime = 0.;
2896 timeout_blocktime = 0.;
2897 backend = 0;
2898 backend_fd = -1;
2899 sig_pending = 0;
2900#if EV_ASYNC_ENABLE
2901 async_pending = 0;
2902#endif
2903 pipe_write_skipped = 0;
2904 pipe_write_wanted = 0;
2905 evpipe [0] = -1;
2906 evpipe [1] = -1;
2907#if EV_USE_INOTIFY
2908 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2909#endif
2910#if EV_USE_SIGNALFD
2911 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2912#endif
2913
2914 if (!(flags & EVBACKEND_MASK))
977 flags |= ev_recommended_backends (); 2915 flags |= ev_recommended_backends ();
978 2916
979 backend = 0;
980 backend_fd = -1;
981#if EV_USE_INOTIFY 2917#if EV_USE_IOCP
982 fs_fd = -2; 2918 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
983#endif 2919#endif
984
985#if EV_USE_PORT 2920#if EV_USE_PORT
986 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2921 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
987#endif 2922#endif
988#if EV_USE_KQUEUE 2923#if EV_USE_KQUEUE
989 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2924 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
996#endif 2931#endif
997#if EV_USE_SELECT 2932#if EV_USE_SELECT
998 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2933 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
999#endif 2934#endif
1000 2935
2936 ev_prepare_init (&pending_w, pendingcb);
2937
2938#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1001 ev_init (&sigev, sigcb); 2939 ev_init (&pipe_w, pipecb);
1002 ev_set_priority (&sigev, EV_MAXPRI); 2940 ev_set_priority (&pipe_w, EV_MAXPRI);
2941#endif
1003 } 2942 }
1004} 2943}
1005 2944
1006static void noinline 2945/* free up a loop structure */
2946ecb_cold
2947void
1007loop_destroy (EV_P) 2948ev_loop_destroy (EV_P)
1008{ 2949{
1009 int i; 2950 int i;
2951
2952#if EV_MULTIPLICITY
2953 /* mimic free (0) */
2954 if (!EV_A)
2955 return;
2956#endif
2957
2958#if EV_CLEANUP_ENABLE
2959 /* queue cleanup watchers (and execute them) */
2960 if (expect_false (cleanupcnt))
2961 {
2962 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2963 EV_INVOKE_PENDING;
2964 }
2965#endif
2966
2967#if EV_CHILD_ENABLE
2968 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2969 {
2970 ev_ref (EV_A); /* child watcher */
2971 ev_signal_stop (EV_A_ &childev);
2972 }
2973#endif
2974
2975 if (ev_is_active (&pipe_w))
2976 {
2977 /*ev_ref (EV_A);*/
2978 /*ev_io_stop (EV_A_ &pipe_w);*/
2979
2980 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2981 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2982 }
2983
2984#if EV_USE_SIGNALFD
2985 if (ev_is_active (&sigfd_w))
2986 close (sigfd);
2987#endif
1010 2988
1011#if EV_USE_INOTIFY 2989#if EV_USE_INOTIFY
1012 if (fs_fd >= 0) 2990 if (fs_fd >= 0)
1013 close (fs_fd); 2991 close (fs_fd);
1014#endif 2992#endif
1015 2993
1016 if (backend_fd >= 0) 2994 if (backend_fd >= 0)
1017 close (backend_fd); 2995 close (backend_fd);
1018 2996
2997#if EV_USE_IOCP
2998 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2999#endif
1019#if EV_USE_PORT 3000#if EV_USE_PORT
1020 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 3001 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1021#endif 3002#endif
1022#if EV_USE_KQUEUE 3003#if EV_USE_KQUEUE
1023 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 3004 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1038#if EV_IDLE_ENABLE 3019#if EV_IDLE_ENABLE
1039 array_free (idle, [i]); 3020 array_free (idle, [i]);
1040#endif 3021#endif
1041 } 3022 }
1042 3023
1043 ev_free (anfds); anfdmax = 0; 3024 ev_free (anfds); anfds = 0; anfdmax = 0;
1044 3025
1045 /* have to use the microsoft-never-gets-it-right macro */ 3026 /* have to use the microsoft-never-gets-it-right macro */
3027 array_free (rfeed, EMPTY);
1046 array_free (fdchange, EMPTY); 3028 array_free (fdchange, EMPTY);
1047 array_free (timer, EMPTY); 3029 array_free (timer, EMPTY);
1048#if EV_PERIODIC_ENABLE 3030#if EV_PERIODIC_ENABLE
1049 array_free (periodic, EMPTY); 3031 array_free (periodic, EMPTY);
1050#endif 3032#endif
3033#if EV_FORK_ENABLE
3034 array_free (fork, EMPTY);
3035#endif
3036#if EV_CLEANUP_ENABLE
3037 array_free (cleanup, EMPTY);
3038#endif
1051 array_free (prepare, EMPTY); 3039 array_free (prepare, EMPTY);
1052 array_free (check, EMPTY); 3040 array_free (check, EMPTY);
3041#if EV_ASYNC_ENABLE
1053 array_free (fork, EMPTY); 3042 array_free (async, EMPTY);
3043#endif
1054 3044
1055 backend = 0; 3045 backend = 0;
1056}
1057 3046
3047#if EV_MULTIPLICITY
3048 if (ev_is_default_loop (EV_A))
3049#endif
3050 ev_default_loop_ptr = 0;
3051#if EV_MULTIPLICITY
3052 else
3053 ev_free (EV_A);
3054#endif
3055}
3056
3057#if EV_USE_INOTIFY
1058void inline_size infy_fork (EV_P); 3058inline_size void infy_fork (EV_P);
3059#endif
1059 3060
1060void inline_size 3061inline_size void
1061loop_fork (EV_P) 3062loop_fork (EV_P)
1062{ 3063{
1063#if EV_USE_PORT 3064#if EV_USE_PORT
1064 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 3065 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1065#endif 3066#endif
1071#endif 3072#endif
1072#if EV_USE_INOTIFY 3073#if EV_USE_INOTIFY
1073 infy_fork (EV_A); 3074 infy_fork (EV_A);
1074#endif 3075#endif
1075 3076
1076 if (ev_is_active (&sigev)) 3077#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3078 if (ev_is_active (&pipe_w) && postfork != 2)
1077 { 3079 {
1078 /* default loop */ 3080 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1079 3081
1080 ev_ref (EV_A); 3082 ev_ref (EV_A);
1081 ev_io_stop (EV_A_ &sigev); 3083 ev_io_stop (EV_A_ &pipe_w);
1082 close (sigpipe [0]);
1083 close (sigpipe [1]);
1084 3084
1085 while (pipe (sigpipe)) 3085 if (evpipe [0] >= 0)
1086 syserr ("(libev) error creating pipe"); 3086 EV_WIN32_CLOSE_FD (evpipe [0]);
1087 3087
1088 siginit (EV_A); 3088 evpipe_init (EV_A);
3089 /* iterate over everything, in case we missed something before */
3090 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1089 } 3091 }
3092#endif
1090 3093
1091 postfork = 0; 3094 postfork = 0;
1092} 3095}
1093 3096
1094#if EV_MULTIPLICITY 3097#if EV_MULTIPLICITY
3098
3099ecb_cold
1095struct ev_loop * 3100struct ev_loop *
1096ev_loop_new (unsigned int flags) 3101ev_loop_new (unsigned int flags) EV_THROW
1097{ 3102{
1098 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 3103 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1099 3104
1100 memset (loop, 0, sizeof (struct ev_loop)); 3105 memset (EV_A, 0, sizeof (struct ev_loop));
1101
1102 loop_init (EV_A_ flags); 3106 loop_init (EV_A_ flags);
1103 3107
1104 if (ev_backend (EV_A)) 3108 if (ev_backend (EV_A))
1105 return loop; 3109 return EV_A;
1106 3110
3111 ev_free (EV_A);
1107 return 0; 3112 return 0;
1108} 3113}
1109 3114
1110void 3115#endif /* multiplicity */
1111ev_loop_destroy (EV_P)
1112{
1113 loop_destroy (EV_A);
1114 ev_free (loop);
1115}
1116 3116
1117void 3117#if EV_VERIFY
1118ev_loop_fork (EV_P) 3118noinline ecb_cold
3119static void
3120verify_watcher (EV_P_ W w)
1119{ 3121{
1120 postfork = 1; 3122 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1121}
1122 3123
3124 if (w->pending)
3125 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3126}
3127
3128noinline ecb_cold
3129static void
3130verify_heap (EV_P_ ANHE *heap, int N)
3131{
3132 int i;
3133
3134 for (i = HEAP0; i < N + HEAP0; ++i)
3135 {
3136 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3137 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3138 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3139
3140 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3141 }
3142}
3143
3144noinline ecb_cold
3145static void
3146array_verify (EV_P_ W *ws, int cnt)
3147{
3148 while (cnt--)
3149 {
3150 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3151 verify_watcher (EV_A_ ws [cnt]);
3152 }
3153}
3154#endif
3155
3156#if EV_FEATURE_API
3157void ecb_cold
3158ev_verify (EV_P) EV_THROW
3159{
3160#if EV_VERIFY
3161 int i;
3162 WL w, w2;
3163
3164 assert (activecnt >= -1);
3165
3166 assert (fdchangemax >= fdchangecnt);
3167 for (i = 0; i < fdchangecnt; ++i)
3168 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3169
3170 assert (anfdmax >= 0);
3171 for (i = 0; i < anfdmax; ++i)
3172 {
3173 int j = 0;
3174
3175 for (w = w2 = anfds [i].head; w; w = w->next)
3176 {
3177 verify_watcher (EV_A_ (W)w);
3178
3179 if (j++ & 1)
3180 {
3181 assert (("libev: io watcher list contains a loop", w != w2));
3182 w2 = w2->next;
3183 }
3184
3185 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3186 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3187 }
3188 }
3189
3190 assert (timermax >= timercnt);
3191 verify_heap (EV_A_ timers, timercnt);
3192
3193#if EV_PERIODIC_ENABLE
3194 assert (periodicmax >= periodiccnt);
3195 verify_heap (EV_A_ periodics, periodiccnt);
3196#endif
3197
3198 for (i = NUMPRI; i--; )
3199 {
3200 assert (pendingmax [i] >= pendingcnt [i]);
3201#if EV_IDLE_ENABLE
3202 assert (idleall >= 0);
3203 assert (idlemax [i] >= idlecnt [i]);
3204 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3205#endif
3206 }
3207
3208#if EV_FORK_ENABLE
3209 assert (forkmax >= forkcnt);
3210 array_verify (EV_A_ (W *)forks, forkcnt);
3211#endif
3212
3213#if EV_CLEANUP_ENABLE
3214 assert (cleanupmax >= cleanupcnt);
3215 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3216#endif
3217
3218#if EV_ASYNC_ENABLE
3219 assert (asyncmax >= asynccnt);
3220 array_verify (EV_A_ (W *)asyncs, asynccnt);
3221#endif
3222
3223#if EV_PREPARE_ENABLE
3224 assert (preparemax >= preparecnt);
3225 array_verify (EV_A_ (W *)prepares, preparecnt);
3226#endif
3227
3228#if EV_CHECK_ENABLE
3229 assert (checkmax >= checkcnt);
3230 array_verify (EV_A_ (W *)checks, checkcnt);
3231#endif
3232
3233# if 0
3234#if EV_CHILD_ENABLE
3235 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3236 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3237#endif
3238# endif
3239#endif
3240}
1123#endif 3241#endif
1124 3242
1125#if EV_MULTIPLICITY 3243#if EV_MULTIPLICITY
3244ecb_cold
1126struct ev_loop * 3245struct ev_loop *
1127ev_default_loop_init (unsigned int flags)
1128#else 3246#else
1129int 3247int
3248#endif
1130ev_default_loop (unsigned int flags) 3249ev_default_loop (unsigned int flags) EV_THROW
1131#endif
1132{ 3250{
1133 if (sigpipe [0] == sigpipe [1])
1134 if (pipe (sigpipe))
1135 return 0;
1136
1137 if (!ev_default_loop_ptr) 3251 if (!ev_default_loop_ptr)
1138 { 3252 {
1139#if EV_MULTIPLICITY 3253#if EV_MULTIPLICITY
1140 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3254 EV_P = ev_default_loop_ptr = &default_loop_struct;
1141#else 3255#else
1142 ev_default_loop_ptr = 1; 3256 ev_default_loop_ptr = 1;
1143#endif 3257#endif
1144 3258
1145 loop_init (EV_A_ flags); 3259 loop_init (EV_A_ flags);
1146 3260
1147 if (ev_backend (EV_A)) 3261 if (ev_backend (EV_A))
1148 { 3262 {
1149 siginit (EV_A); 3263#if EV_CHILD_ENABLE
1150
1151#ifndef _WIN32
1152 ev_signal_init (&childev, childcb, SIGCHLD); 3264 ev_signal_init (&childev, childcb, SIGCHLD);
1153 ev_set_priority (&childev, EV_MAXPRI); 3265 ev_set_priority (&childev, EV_MAXPRI);
1154 ev_signal_start (EV_A_ &childev); 3266 ev_signal_start (EV_A_ &childev);
1155 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3267 ev_unref (EV_A); /* child watcher should not keep loop alive */
1156#endif 3268#endif
1161 3273
1162 return ev_default_loop_ptr; 3274 return ev_default_loop_ptr;
1163} 3275}
1164 3276
1165void 3277void
1166ev_default_destroy (void) 3278ev_loop_fork (EV_P) EV_THROW
1167{ 3279{
1168#if EV_MULTIPLICITY
1169 struct ev_loop *loop = ev_default_loop_ptr;
1170#endif
1171
1172#ifndef _WIN32
1173 ev_ref (EV_A); /* child watcher */
1174 ev_signal_stop (EV_A_ &childev);
1175#endif
1176
1177 ev_ref (EV_A); /* signal watcher */
1178 ev_io_stop (EV_A_ &sigev);
1179
1180 close (sigpipe [0]); sigpipe [0] = 0;
1181 close (sigpipe [1]); sigpipe [1] = 0;
1182
1183 loop_destroy (EV_A);
1184}
1185
1186void
1187ev_default_fork (void)
1188{
1189#if EV_MULTIPLICITY
1190 struct ev_loop *loop = ev_default_loop_ptr;
1191#endif
1192
1193 if (backend)
1194 postfork = 1; 3280 postfork = 1;
1195} 3281}
1196 3282
1197/*****************************************************************************/ 3283/*****************************************************************************/
1198 3284
1199void 3285void
1200ev_invoke (EV_P_ void *w, int revents) 3286ev_invoke (EV_P_ void *w, int revents)
1201{ 3287{
1202 EV_CB_INVOKE ((W)w, revents); 3288 EV_CB_INVOKE ((W)w, revents);
1203} 3289}
1204 3290
1205void inline_speed 3291unsigned int
1206call_pending (EV_P) 3292ev_pending_count (EV_P) EV_THROW
1207{ 3293{
1208 int pri; 3294 int pri;
3295 unsigned int count = 0;
1209 3296
1210 for (pri = NUMPRI; pri--; ) 3297 for (pri = NUMPRI; pri--; )
3298 count += pendingcnt [pri];
3299
3300 return count;
3301}
3302
3303noinline
3304void
3305ev_invoke_pending (EV_P)
3306{
3307 pendingpri = NUMPRI;
3308
3309 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3310 {
3311 --pendingpri;
3312
1211 while (pendingcnt [pri]) 3313 while (pendingcnt [pendingpri])
1212 {
1213 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1214
1215 if (expect_true (p->w))
1216 {
1217 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1218
1219 p->w->pending = 0;
1220 EV_CB_INVOKE (p->w, p->events);
1221 }
1222 }
1223}
1224
1225void inline_size
1226timers_reify (EV_P)
1227{
1228 while (timercnt && ((WT)timers [0])->at <= mn_now)
1229 {
1230 ev_timer *w = (ev_timer *)timers [0];
1231
1232 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1233
1234 /* first reschedule or stop timer */
1235 if (w->repeat)
1236 { 3314 {
1237 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3315 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1238 3316
1239 ((WT)w)->at += w->repeat; 3317 p->w->pending = 0;
1240 if (((WT)w)->at < mn_now) 3318 EV_CB_INVOKE (p->w, p->events);
1241 ((WT)w)->at = mn_now; 3319 EV_FREQUENT_CHECK;
1242
1243 downheap (timers, timercnt, 0);
1244 } 3320 }
1245 else
1246 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1247
1248 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1249 }
1250}
1251
1252#if EV_PERIODIC_ENABLE
1253void inline_size
1254periodics_reify (EV_P)
1255{
1256 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1257 { 3321 }
1258 ev_periodic *w = (ev_periodic *)periodics [0];
1259
1260 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1261
1262 /* first reschedule or stop timer */
1263 if (w->reschedule_cb)
1264 {
1265 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1266 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1267 downheap (periodics, periodiccnt, 0);
1268 }
1269 else if (w->interval)
1270 {
1271 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1272 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1273 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1274 downheap (periodics, periodiccnt, 0);
1275 }
1276 else
1277 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1278
1279 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1280 }
1281} 3322}
1282
1283static void noinline
1284periodics_reschedule (EV_P)
1285{
1286 int i;
1287
1288 /* adjust periodics after time jump */
1289 for (i = 0; i < periodiccnt; ++i)
1290 {
1291 ev_periodic *w = (ev_periodic *)periodics [i];
1292
1293 if (w->reschedule_cb)
1294 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1295 else if (w->interval)
1296 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1297 }
1298
1299 /* now rebuild the heap */
1300 for (i = periodiccnt >> 1; i--; )
1301 downheap (periodics, periodiccnt, i);
1302}
1303#endif
1304 3323
1305#if EV_IDLE_ENABLE 3324#if EV_IDLE_ENABLE
1306void inline_size 3325/* make idle watchers pending. this handles the "call-idle */
3326/* only when higher priorities are idle" logic */
3327inline_size void
1307idle_reify (EV_P) 3328idle_reify (EV_P)
1308{ 3329{
1309 if (expect_false (idleall)) 3330 if (expect_false (idleall))
1310 { 3331 {
1311 int pri; 3332 int pri;
1323 } 3344 }
1324 } 3345 }
1325} 3346}
1326#endif 3347#endif
1327 3348
1328void inline_speed 3349/* make timers pending */
3350inline_size void
3351timers_reify (EV_P)
3352{
3353 EV_FREQUENT_CHECK;
3354
3355 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3356 {
3357 do
3358 {
3359 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3360
3361 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3362
3363 /* first reschedule or stop timer */
3364 if (w->repeat)
3365 {
3366 ev_at (w) += w->repeat;
3367 if (ev_at (w) < mn_now)
3368 ev_at (w) = mn_now;
3369
3370 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3371
3372 ANHE_at_cache (timers [HEAP0]);
3373 downheap (timers, timercnt, HEAP0);
3374 }
3375 else
3376 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3377
3378 EV_FREQUENT_CHECK;
3379 feed_reverse (EV_A_ (W)w);
3380 }
3381 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3382
3383 feed_reverse_done (EV_A_ EV_TIMER);
3384 }
3385}
3386
3387#if EV_PERIODIC_ENABLE
3388
3389noinline
3390static void
3391periodic_recalc (EV_P_ ev_periodic *w)
3392{
3393 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3394 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3395
3396 /* the above almost always errs on the low side */
3397 while (at <= ev_rt_now)
3398 {
3399 ev_tstamp nat = at + w->interval;
3400
3401 /* when resolution fails us, we use ev_rt_now */
3402 if (expect_false (nat == at))
3403 {
3404 at = ev_rt_now;
3405 break;
3406 }
3407
3408 at = nat;
3409 }
3410
3411 ev_at (w) = at;
3412}
3413
3414/* make periodics pending */
3415inline_size void
3416periodics_reify (EV_P)
3417{
3418 EV_FREQUENT_CHECK;
3419
3420 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3421 {
3422 do
3423 {
3424 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3425
3426 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3427
3428 /* first reschedule or stop timer */
3429 if (w->reschedule_cb)
3430 {
3431 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3432
3433 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3434
3435 ANHE_at_cache (periodics [HEAP0]);
3436 downheap (periodics, periodiccnt, HEAP0);
3437 }
3438 else if (w->interval)
3439 {
3440 periodic_recalc (EV_A_ w);
3441 ANHE_at_cache (periodics [HEAP0]);
3442 downheap (periodics, periodiccnt, HEAP0);
3443 }
3444 else
3445 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3446
3447 EV_FREQUENT_CHECK;
3448 feed_reverse (EV_A_ (W)w);
3449 }
3450 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3451
3452 feed_reverse_done (EV_A_ EV_PERIODIC);
3453 }
3454}
3455
3456/* simply recalculate all periodics */
3457/* TODO: maybe ensure that at least one event happens when jumping forward? */
3458noinline ecb_cold
3459static void
3460periodics_reschedule (EV_P)
3461{
3462 int i;
3463
3464 /* adjust periodics after time jump */
3465 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3466 {
3467 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3468
3469 if (w->reschedule_cb)
3470 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3471 else if (w->interval)
3472 periodic_recalc (EV_A_ w);
3473
3474 ANHE_at_cache (periodics [i]);
3475 }
3476
3477 reheap (periodics, periodiccnt);
3478}
3479#endif
3480
3481/* adjust all timers by a given offset */
3482noinline ecb_cold
3483static void
3484timers_reschedule (EV_P_ ev_tstamp adjust)
3485{
3486 int i;
3487
3488 for (i = 0; i < timercnt; ++i)
3489 {
3490 ANHE *he = timers + i + HEAP0;
3491 ANHE_w (*he)->at += adjust;
3492 ANHE_at_cache (*he);
3493 }
3494}
3495
3496/* fetch new monotonic and realtime times from the kernel */
3497/* also detect if there was a timejump, and act accordingly */
3498inline_speed void
1329time_update (EV_P_ ev_tstamp max_block) 3499time_update (EV_P_ ev_tstamp max_block)
1330{ 3500{
1331 int i;
1332
1333#if EV_USE_MONOTONIC 3501#if EV_USE_MONOTONIC
1334 if (expect_true (have_monotonic)) 3502 if (expect_true (have_monotonic))
1335 { 3503 {
3504 int i;
1336 ev_tstamp odiff = rtmn_diff; 3505 ev_tstamp odiff = rtmn_diff;
1337 3506
1338 mn_now = get_clock (); 3507 mn_now = get_clock ();
1339 3508
1340 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3509 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1356 * doesn't hurt either as we only do this on time-jumps or 3525 * doesn't hurt either as we only do this on time-jumps or
1357 * in the unlikely event of having been preempted here. 3526 * in the unlikely event of having been preempted here.
1358 */ 3527 */
1359 for (i = 4; --i; ) 3528 for (i = 4; --i; )
1360 { 3529 {
3530 ev_tstamp diff;
1361 rtmn_diff = ev_rt_now - mn_now; 3531 rtmn_diff = ev_rt_now - mn_now;
1362 3532
1363 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 3533 diff = odiff - rtmn_diff;
3534
3535 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1364 return; /* all is well */ 3536 return; /* all is well */
1365 3537
1366 ev_rt_now = ev_time (); 3538 ev_rt_now = ev_time ();
1367 mn_now = get_clock (); 3539 mn_now = get_clock ();
1368 now_floor = mn_now; 3540 now_floor = mn_now;
1369 } 3541 }
1370 3542
3543 /* no timer adjustment, as the monotonic clock doesn't jump */
3544 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1371# if EV_PERIODIC_ENABLE 3545# if EV_PERIODIC_ENABLE
1372 periodics_reschedule (EV_A); 3546 periodics_reschedule (EV_A);
1373# endif 3547# endif
1374 /* no timer adjustment, as the monotonic clock doesn't jump */
1375 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1376 } 3548 }
1377 else 3549 else
1378#endif 3550#endif
1379 { 3551 {
1380 ev_rt_now = ev_time (); 3552 ev_rt_now = ev_time ();
1381 3553
1382 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3554 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1383 { 3555 {
3556 /* adjust timers. this is easy, as the offset is the same for all of them */
3557 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1384#if EV_PERIODIC_ENABLE 3558#if EV_PERIODIC_ENABLE
1385 periodics_reschedule (EV_A); 3559 periodics_reschedule (EV_A);
1386#endif 3560#endif
1387 /* adjust timers. this is easy, as the offset is the same for all of them */
1388 for (i = 0; i < timercnt; ++i)
1389 ((WT)timers [i])->at += ev_rt_now - mn_now;
1390 } 3561 }
1391 3562
1392 mn_now = ev_rt_now; 3563 mn_now = ev_rt_now;
1393 } 3564 }
1394} 3565}
1395 3566
1396void 3567int
1397ev_ref (EV_P)
1398{
1399 ++activecnt;
1400}
1401
1402void
1403ev_unref (EV_P)
1404{
1405 --activecnt;
1406}
1407
1408static int loop_done;
1409
1410void
1411ev_loop (EV_P_ int flags) 3568ev_run (EV_P_ int flags)
1412{ 3569{
1413 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 3570#if EV_FEATURE_API
1414 ? EVUNLOOP_ONE 3571 ++loop_depth;
1415 : EVUNLOOP_CANCEL; 3572#endif
1416 3573
3574 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3575
3576 loop_done = EVBREAK_CANCEL;
3577
1417 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3578 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1418 3579
1419 do 3580 do
1420 { 3581 {
3582#if EV_VERIFY >= 2
3583 ev_verify (EV_A);
3584#endif
3585
1421#ifndef _WIN32 3586#ifndef _WIN32
1422 if (expect_false (curpid)) /* penalise the forking check even more */ 3587 if (expect_false (curpid)) /* penalise the forking check even more */
1423 if (expect_false (getpid () != curpid)) 3588 if (expect_false (getpid () != curpid))
1424 { 3589 {
1425 curpid = getpid (); 3590 curpid = getpid ();
1431 /* we might have forked, so queue fork handlers */ 3596 /* we might have forked, so queue fork handlers */
1432 if (expect_false (postfork)) 3597 if (expect_false (postfork))
1433 if (forkcnt) 3598 if (forkcnt)
1434 { 3599 {
1435 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3600 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1436 call_pending (EV_A); 3601 EV_INVOKE_PENDING;
1437 } 3602 }
1438#endif 3603#endif
1439 3604
3605#if EV_PREPARE_ENABLE
1440 /* queue prepare watchers (and execute them) */ 3606 /* queue prepare watchers (and execute them) */
1441 if (expect_false (preparecnt)) 3607 if (expect_false (preparecnt))
1442 { 3608 {
1443 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3609 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1444 call_pending (EV_A); 3610 EV_INVOKE_PENDING;
1445 } 3611 }
3612#endif
1446 3613
1447 if (expect_false (!activecnt)) 3614 if (expect_false (loop_done))
1448 break; 3615 break;
1449 3616
1450 /* we might have forked, so reify kernel state if necessary */ 3617 /* we might have forked, so reify kernel state if necessary */
1451 if (expect_false (postfork)) 3618 if (expect_false (postfork))
1452 loop_fork (EV_A); 3619 loop_fork (EV_A);
1454 /* update fd-related kernel structures */ 3621 /* update fd-related kernel structures */
1455 fd_reify (EV_A); 3622 fd_reify (EV_A);
1456 3623
1457 /* calculate blocking time */ 3624 /* calculate blocking time */
1458 { 3625 {
1459 ev_tstamp block; 3626 ev_tstamp waittime = 0.;
3627 ev_tstamp sleeptime = 0.;
1460 3628
1461 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 3629 /* remember old timestamp for io_blocktime calculation */
1462 block = 0.; /* do not block at all */ 3630 ev_tstamp prev_mn_now = mn_now;
1463 else 3631
3632 /* update time to cancel out callback processing overhead */
3633 time_update (EV_A_ 1e100);
3634
3635 /* from now on, we want a pipe-wake-up */
3636 pipe_write_wanted = 1;
3637
3638 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3639
3640 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1464 { 3641 {
1465 /* update time to cancel out callback processing overhead */
1466 time_update (EV_A_ 1e100);
1467
1468 block = MAX_BLOCKTIME; 3642 waittime = MAX_BLOCKTIME;
1469 3643
1470 if (timercnt) 3644 if (timercnt)
1471 { 3645 {
1472 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 3646 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1473 if (block > to) block = to; 3647 if (waittime > to) waittime = to;
1474 } 3648 }
1475 3649
1476#if EV_PERIODIC_ENABLE 3650#if EV_PERIODIC_ENABLE
1477 if (periodiccnt) 3651 if (periodiccnt)
1478 { 3652 {
1479 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 3653 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1480 if (block > to) block = to; 3654 if (waittime > to) waittime = to;
1481 } 3655 }
1482#endif 3656#endif
1483 3657
3658 /* don't let timeouts decrease the waittime below timeout_blocktime */
3659 if (expect_false (waittime < timeout_blocktime))
3660 waittime = timeout_blocktime;
3661
3662 /* at this point, we NEED to wait, so we have to ensure */
3663 /* to pass a minimum nonzero value to the backend */
3664 if (expect_false (waittime < backend_mintime))
3665 waittime = backend_mintime;
3666
3667 /* extra check because io_blocktime is commonly 0 */
1484 if (expect_false (block < 0.)) block = 0.; 3668 if (expect_false (io_blocktime))
3669 {
3670 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3671
3672 if (sleeptime > waittime - backend_mintime)
3673 sleeptime = waittime - backend_mintime;
3674
3675 if (expect_true (sleeptime > 0.))
3676 {
3677 ev_sleep (sleeptime);
3678 waittime -= sleeptime;
3679 }
3680 }
1485 } 3681 }
1486 3682
3683#if EV_FEATURE_API
1487 ++loop_count; 3684 ++loop_count;
3685#endif
3686 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1488 backend_poll (EV_A_ block); 3687 backend_poll (EV_A_ waittime);
3688 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3689
3690 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3691
3692 ECB_MEMORY_FENCE_ACQUIRE;
3693 if (pipe_write_skipped)
3694 {
3695 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3696 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3697 }
3698
1489 3699
1490 /* update ev_rt_now, do magic */ 3700 /* update ev_rt_now, do magic */
1491 time_update (EV_A_ block); 3701 time_update (EV_A_ waittime + sleeptime);
1492 } 3702 }
1493 3703
1494 /* queue pending timers and reschedule them */ 3704 /* queue pending timers and reschedule them */
1495 timers_reify (EV_A); /* relative timers called last */ 3705 timers_reify (EV_A); /* relative timers called last */
1496#if EV_PERIODIC_ENABLE 3706#if EV_PERIODIC_ENABLE
1500#if EV_IDLE_ENABLE 3710#if EV_IDLE_ENABLE
1501 /* queue idle watchers unless other events are pending */ 3711 /* queue idle watchers unless other events are pending */
1502 idle_reify (EV_A); 3712 idle_reify (EV_A);
1503#endif 3713#endif
1504 3714
3715#if EV_CHECK_ENABLE
1505 /* queue check watchers, to be executed first */ 3716 /* queue check watchers, to be executed first */
1506 if (expect_false (checkcnt)) 3717 if (expect_false (checkcnt))
1507 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3718 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3719#endif
1508 3720
1509 call_pending (EV_A); 3721 EV_INVOKE_PENDING;
1510
1511 } 3722 }
1512 while (expect_true (activecnt && !loop_done)); 3723 while (expect_true (
3724 activecnt
3725 && !loop_done
3726 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3727 ));
1513 3728
1514 if (loop_done == EVUNLOOP_ONE) 3729 if (loop_done == EVBREAK_ONE)
1515 loop_done = EVUNLOOP_CANCEL; 3730 loop_done = EVBREAK_CANCEL;
1516}
1517 3731
3732#if EV_FEATURE_API
3733 --loop_depth;
3734#endif
3735
3736 return activecnt;
3737}
3738
1518void 3739void
1519ev_unloop (EV_P_ int how) 3740ev_break (EV_P_ int how) EV_THROW
1520{ 3741{
1521 loop_done = how; 3742 loop_done = how;
1522} 3743}
1523 3744
3745void
3746ev_ref (EV_P) EV_THROW
3747{
3748 ++activecnt;
3749}
3750
3751void
3752ev_unref (EV_P) EV_THROW
3753{
3754 --activecnt;
3755}
3756
3757void
3758ev_now_update (EV_P) EV_THROW
3759{
3760 time_update (EV_A_ 1e100);
3761}
3762
3763void
3764ev_suspend (EV_P) EV_THROW
3765{
3766 ev_now_update (EV_A);
3767}
3768
3769void
3770ev_resume (EV_P) EV_THROW
3771{
3772 ev_tstamp mn_prev = mn_now;
3773
3774 ev_now_update (EV_A);
3775 timers_reschedule (EV_A_ mn_now - mn_prev);
3776#if EV_PERIODIC_ENABLE
3777 /* TODO: really do this? */
3778 periodics_reschedule (EV_A);
3779#endif
3780}
3781
1524/*****************************************************************************/ 3782/*****************************************************************************/
3783/* singly-linked list management, used when the expected list length is short */
1525 3784
1526void inline_size 3785inline_size void
1527wlist_add (WL *head, WL elem) 3786wlist_add (WL *head, WL elem)
1528{ 3787{
1529 elem->next = *head; 3788 elem->next = *head;
1530 *head = elem; 3789 *head = elem;
1531} 3790}
1532 3791
1533void inline_size 3792inline_size void
1534wlist_del (WL *head, WL elem) 3793wlist_del (WL *head, WL elem)
1535{ 3794{
1536 while (*head) 3795 while (*head)
1537 { 3796 {
1538 if (*head == elem) 3797 if (expect_true (*head == elem))
1539 { 3798 {
1540 *head = elem->next; 3799 *head = elem->next;
1541 return; 3800 break;
1542 } 3801 }
1543 3802
1544 head = &(*head)->next; 3803 head = &(*head)->next;
1545 } 3804 }
1546} 3805}
1547 3806
1548void inline_speed 3807/* internal, faster, version of ev_clear_pending */
3808inline_speed void
1549clear_pending (EV_P_ W w) 3809clear_pending (EV_P_ W w)
1550{ 3810{
1551 if (w->pending) 3811 if (w->pending)
1552 { 3812 {
1553 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3813 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1554 w->pending = 0; 3814 w->pending = 0;
1555 } 3815 }
1556} 3816}
1557 3817
1558int 3818int
1559ev_clear_pending (EV_P_ void *w) 3819ev_clear_pending (EV_P_ void *w) EV_THROW
1560{ 3820{
1561 W w_ = (W)w; 3821 W w_ = (W)w;
1562 int pending = w_->pending; 3822 int pending = w_->pending;
1563 3823
1564 if (expect_true (pending)) 3824 if (expect_true (pending))
1565 { 3825 {
1566 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3826 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3827 p->w = (W)&pending_w;
1567 w_->pending = 0; 3828 w_->pending = 0;
1568 p->w = 0;
1569 return p->events; 3829 return p->events;
1570 } 3830 }
1571 else 3831 else
1572 return 0; 3832 return 0;
1573} 3833}
1574 3834
1575void inline_size 3835inline_size void
1576pri_adjust (EV_P_ W w) 3836pri_adjust (EV_P_ W w)
1577{ 3837{
1578 int pri = w->priority; 3838 int pri = ev_priority (w);
1579 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3839 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1580 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3840 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1581 w->priority = pri; 3841 ev_set_priority (w, pri);
1582} 3842}
1583 3843
1584void inline_speed 3844inline_speed void
1585ev_start (EV_P_ W w, int active) 3845ev_start (EV_P_ W w, int active)
1586{ 3846{
1587 pri_adjust (EV_A_ w); 3847 pri_adjust (EV_A_ w);
1588 w->active = active; 3848 w->active = active;
1589 ev_ref (EV_A); 3849 ev_ref (EV_A);
1590} 3850}
1591 3851
1592void inline_size 3852inline_size void
1593ev_stop (EV_P_ W w) 3853ev_stop (EV_P_ W w)
1594{ 3854{
1595 ev_unref (EV_A); 3855 ev_unref (EV_A);
1596 w->active = 0; 3856 w->active = 0;
1597} 3857}
1598 3858
1599/*****************************************************************************/ 3859/*****************************************************************************/
1600 3860
1601void noinline 3861noinline
3862void
1602ev_io_start (EV_P_ ev_io *w) 3863ev_io_start (EV_P_ ev_io *w) EV_THROW
1603{ 3864{
1604 int fd = w->fd; 3865 int fd = w->fd;
1605 3866
1606 if (expect_false (ev_is_active (w))) 3867 if (expect_false (ev_is_active (w)))
1607 return; 3868 return;
1608 3869
1609 assert (("ev_io_start called with negative fd", fd >= 0)); 3870 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3871 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3872
3873 EV_FREQUENT_CHECK;
1610 3874
1611 ev_start (EV_A_ (W)w, 1); 3875 ev_start (EV_A_ (W)w, 1);
1612 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3876 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1613 wlist_add (&anfds[fd].head, (WL)w); 3877 wlist_add (&anfds[fd].head, (WL)w);
1614 3878
3879 /* common bug, apparently */
3880 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3881
1615 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3882 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1616 w->events &= ~EV_IOFDSET; 3883 w->events &= ~EV__IOFDSET;
1617}
1618 3884
3885 EV_FREQUENT_CHECK;
3886}
3887
1619void noinline 3888noinline
3889void
1620ev_io_stop (EV_P_ ev_io *w) 3890ev_io_stop (EV_P_ ev_io *w) EV_THROW
1621{ 3891{
1622 clear_pending (EV_A_ (W)w); 3892 clear_pending (EV_A_ (W)w);
1623 if (expect_false (!ev_is_active (w))) 3893 if (expect_false (!ev_is_active (w)))
1624 return; 3894 return;
1625 3895
1626 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3896 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3897
3898 EV_FREQUENT_CHECK;
1627 3899
1628 wlist_del (&anfds[w->fd].head, (WL)w); 3900 wlist_del (&anfds[w->fd].head, (WL)w);
1629 ev_stop (EV_A_ (W)w); 3901 ev_stop (EV_A_ (W)w);
1630 3902
1631 fd_change (EV_A_ w->fd, 1); 3903 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1632}
1633 3904
3905 EV_FREQUENT_CHECK;
3906}
3907
1634void noinline 3908noinline
3909void
1635ev_timer_start (EV_P_ ev_timer *w) 3910ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1636{ 3911{
1637 if (expect_false (ev_is_active (w))) 3912 if (expect_false (ev_is_active (w)))
1638 return; 3913 return;
1639 3914
1640 ((WT)w)->at += mn_now; 3915 ev_at (w) += mn_now;
1641 3916
1642 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3917 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1643 3918
3919 EV_FREQUENT_CHECK;
3920
3921 ++timercnt;
1644 ev_start (EV_A_ (W)w, ++timercnt); 3922 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1645 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 3923 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1646 timers [timercnt - 1] = (WT)w; 3924 ANHE_w (timers [ev_active (w)]) = (WT)w;
1647 upheap (timers, timercnt - 1); 3925 ANHE_at_cache (timers [ev_active (w)]);
3926 upheap (timers, ev_active (w));
1648 3927
3928 EV_FREQUENT_CHECK;
3929
1649 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 3930 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1650} 3931}
1651 3932
1652void noinline 3933noinline
3934void
1653ev_timer_stop (EV_P_ ev_timer *w) 3935ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1654{ 3936{
1655 clear_pending (EV_A_ (W)w); 3937 clear_pending (EV_A_ (W)w);
1656 if (expect_false (!ev_is_active (w))) 3938 if (expect_false (!ev_is_active (w)))
1657 return; 3939 return;
1658 3940
1659 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 3941 EV_FREQUENT_CHECK;
1660 3942
1661 { 3943 {
1662 int active = ((W)w)->active; 3944 int active = ev_active (w);
1663 3945
3946 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3947
3948 --timercnt;
3949
1664 if (expect_true (--active < --timercnt)) 3950 if (expect_true (active < timercnt + HEAP0))
1665 { 3951 {
1666 timers [active] = timers [timercnt]; 3952 timers [active] = timers [timercnt + HEAP0];
1667 adjustheap (timers, timercnt, active); 3953 adjustheap (timers, timercnt, active);
1668 } 3954 }
1669 } 3955 }
1670 3956
1671 ((WT)w)->at -= mn_now; 3957 ev_at (w) -= mn_now;
1672 3958
1673 ev_stop (EV_A_ (W)w); 3959 ev_stop (EV_A_ (W)w);
1674}
1675 3960
3961 EV_FREQUENT_CHECK;
3962}
3963
1676void noinline 3964noinline
3965void
1677ev_timer_again (EV_P_ ev_timer *w) 3966ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1678{ 3967{
3968 EV_FREQUENT_CHECK;
3969
3970 clear_pending (EV_A_ (W)w);
3971
1679 if (ev_is_active (w)) 3972 if (ev_is_active (w))
1680 { 3973 {
1681 if (w->repeat) 3974 if (w->repeat)
1682 { 3975 {
1683 ((WT)w)->at = mn_now + w->repeat; 3976 ev_at (w) = mn_now + w->repeat;
3977 ANHE_at_cache (timers [ev_active (w)]);
1684 adjustheap (timers, timercnt, ((W)w)->active - 1); 3978 adjustheap (timers, timercnt, ev_active (w));
1685 } 3979 }
1686 else 3980 else
1687 ev_timer_stop (EV_A_ w); 3981 ev_timer_stop (EV_A_ w);
1688 } 3982 }
1689 else if (w->repeat) 3983 else if (w->repeat)
1690 { 3984 {
1691 w->at = w->repeat; 3985 ev_at (w) = w->repeat;
1692 ev_timer_start (EV_A_ w); 3986 ev_timer_start (EV_A_ w);
1693 } 3987 }
3988
3989 EV_FREQUENT_CHECK;
3990}
3991
3992ev_tstamp
3993ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3994{
3995 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1694} 3996}
1695 3997
1696#if EV_PERIODIC_ENABLE 3998#if EV_PERIODIC_ENABLE
1697void noinline 3999noinline
4000void
1698ev_periodic_start (EV_P_ ev_periodic *w) 4001ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1699{ 4002{
1700 if (expect_false (ev_is_active (w))) 4003 if (expect_false (ev_is_active (w)))
1701 return; 4004 return;
1702 4005
1703 if (w->reschedule_cb) 4006 if (w->reschedule_cb)
1704 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 4007 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1705 else if (w->interval) 4008 else if (w->interval)
1706 { 4009 {
1707 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 4010 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1708 /* this formula differs from the one in periodic_reify because we do not always round up */ 4011 periodic_recalc (EV_A_ w);
1709 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1710 } 4012 }
1711 else 4013 else
1712 ((WT)w)->at = w->offset; 4014 ev_at (w) = w->offset;
1713 4015
4016 EV_FREQUENT_CHECK;
4017
4018 ++periodiccnt;
1714 ev_start (EV_A_ (W)w, ++periodiccnt); 4019 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1715 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 4020 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1716 periodics [periodiccnt - 1] = (WT)w; 4021 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1717 upheap (periodics, periodiccnt - 1); 4022 ANHE_at_cache (periodics [ev_active (w)]);
4023 upheap (periodics, ev_active (w));
1718 4024
4025 EV_FREQUENT_CHECK;
4026
1719 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 4027 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1720} 4028}
1721 4029
1722void noinline 4030noinline
4031void
1723ev_periodic_stop (EV_P_ ev_periodic *w) 4032ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1724{ 4033{
1725 clear_pending (EV_A_ (W)w); 4034 clear_pending (EV_A_ (W)w);
1726 if (expect_false (!ev_is_active (w))) 4035 if (expect_false (!ev_is_active (w)))
1727 return; 4036 return;
1728 4037
1729 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 4038 EV_FREQUENT_CHECK;
1730 4039
1731 { 4040 {
1732 int active = ((W)w)->active; 4041 int active = ev_active (w);
1733 4042
4043 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
4044
4045 --periodiccnt;
4046
1734 if (expect_true (--active < --periodiccnt)) 4047 if (expect_true (active < periodiccnt + HEAP0))
1735 { 4048 {
1736 periodics [active] = periodics [periodiccnt]; 4049 periodics [active] = periodics [periodiccnt + HEAP0];
1737 adjustheap (periodics, periodiccnt, active); 4050 adjustheap (periodics, periodiccnt, active);
1738 } 4051 }
1739 } 4052 }
1740 4053
1741 ev_stop (EV_A_ (W)w); 4054 ev_stop (EV_A_ (W)w);
1742}
1743 4055
4056 EV_FREQUENT_CHECK;
4057}
4058
1744void noinline 4059noinline
4060void
1745ev_periodic_again (EV_P_ ev_periodic *w) 4061ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1746{ 4062{
1747 /* TODO: use adjustheap and recalculation */ 4063 /* TODO: use adjustheap and recalculation */
1748 ev_periodic_stop (EV_A_ w); 4064 ev_periodic_stop (EV_A_ w);
1749 ev_periodic_start (EV_A_ w); 4065 ev_periodic_start (EV_A_ w);
1750} 4066}
1752 4068
1753#ifndef SA_RESTART 4069#ifndef SA_RESTART
1754# define SA_RESTART 0 4070# define SA_RESTART 0
1755#endif 4071#endif
1756 4072
4073#if EV_SIGNAL_ENABLE
4074
1757void noinline 4075noinline
4076void
1758ev_signal_start (EV_P_ ev_signal *w) 4077ev_signal_start (EV_P_ ev_signal *w) EV_THROW
1759{ 4078{
1760#if EV_MULTIPLICITY
1761 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1762#endif
1763 if (expect_false (ev_is_active (w))) 4079 if (expect_false (ev_is_active (w)))
1764 return; 4080 return;
1765 4081
1766 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 4082 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1767 4083
4084#if EV_MULTIPLICITY
4085 assert (("libev: a signal must not be attached to two different loops",
4086 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4087
4088 signals [w->signum - 1].loop = EV_A;
4089 ECB_MEMORY_FENCE_RELEASE;
4090#endif
4091
4092 EV_FREQUENT_CHECK;
4093
4094#if EV_USE_SIGNALFD
4095 if (sigfd == -2)
1768 { 4096 {
1769#ifndef _WIN32 4097 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1770 sigset_t full, prev; 4098 if (sigfd < 0 && errno == EINVAL)
1771 sigfillset (&full); 4099 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1772 sigprocmask (SIG_SETMASK, &full, &prev);
1773#endif
1774 4100
1775 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 4101 if (sigfd >= 0)
4102 {
4103 fd_intern (sigfd); /* doing it twice will not hurt */
1776 4104
1777#ifndef _WIN32 4105 sigemptyset (&sigfd_set);
1778 sigprocmask (SIG_SETMASK, &prev, 0); 4106
1779#endif 4107 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4108 ev_set_priority (&sigfd_w, EV_MAXPRI);
4109 ev_io_start (EV_A_ &sigfd_w);
4110 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4111 }
1780 } 4112 }
4113
4114 if (sigfd >= 0)
4115 {
4116 /* TODO: check .head */
4117 sigaddset (&sigfd_set, w->signum);
4118 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4119
4120 signalfd (sigfd, &sigfd_set, 0);
4121 }
4122#endif
1781 4123
1782 ev_start (EV_A_ (W)w, 1); 4124 ev_start (EV_A_ (W)w, 1);
1783 wlist_add (&signals [w->signum - 1].head, (WL)w); 4125 wlist_add (&signals [w->signum - 1].head, (WL)w);
1784 4126
1785 if (!((WL)w)->next) 4127 if (!((WL)w)->next)
4128# if EV_USE_SIGNALFD
4129 if (sigfd < 0) /*TODO*/
4130# endif
1786 { 4131 {
1787#if _WIN32 4132# ifdef _WIN32
4133 evpipe_init (EV_A);
4134
1788 signal (w->signum, sighandler); 4135 signal (w->signum, ev_sighandler);
1789#else 4136# else
1790 struct sigaction sa; 4137 struct sigaction sa;
4138
4139 evpipe_init (EV_A);
4140
1791 sa.sa_handler = sighandler; 4141 sa.sa_handler = ev_sighandler;
1792 sigfillset (&sa.sa_mask); 4142 sigfillset (&sa.sa_mask);
1793 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 4143 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1794 sigaction (w->signum, &sa, 0); 4144 sigaction (w->signum, &sa, 0);
4145
4146 if (origflags & EVFLAG_NOSIGMASK)
4147 {
4148 sigemptyset (&sa.sa_mask);
4149 sigaddset (&sa.sa_mask, w->signum);
4150 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4151 }
1795#endif 4152#endif
1796 } 4153 }
1797}
1798 4154
4155 EV_FREQUENT_CHECK;
4156}
4157
1799void noinline 4158noinline
4159void
1800ev_signal_stop (EV_P_ ev_signal *w) 4160ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
1801{ 4161{
1802 clear_pending (EV_A_ (W)w); 4162 clear_pending (EV_A_ (W)w);
1803 if (expect_false (!ev_is_active (w))) 4163 if (expect_false (!ev_is_active (w)))
1804 return; 4164 return;
1805 4165
4166 EV_FREQUENT_CHECK;
4167
1806 wlist_del (&signals [w->signum - 1].head, (WL)w); 4168 wlist_del (&signals [w->signum - 1].head, (WL)w);
1807 ev_stop (EV_A_ (W)w); 4169 ev_stop (EV_A_ (W)w);
1808 4170
1809 if (!signals [w->signum - 1].head) 4171 if (!signals [w->signum - 1].head)
1810 signal (w->signum, SIG_DFL); 4172 {
1811}
1812
1813void
1814ev_child_start (EV_P_ ev_child *w)
1815{
1816#if EV_MULTIPLICITY 4173#if EV_MULTIPLICITY
4174 signals [w->signum - 1].loop = 0; /* unattach from signal */
4175#endif
4176#if EV_USE_SIGNALFD
4177 if (sigfd >= 0)
4178 {
4179 sigset_t ss;
4180
4181 sigemptyset (&ss);
4182 sigaddset (&ss, w->signum);
4183 sigdelset (&sigfd_set, w->signum);
4184
4185 signalfd (sigfd, &sigfd_set, 0);
4186 sigprocmask (SIG_UNBLOCK, &ss, 0);
4187 }
4188 else
4189#endif
4190 signal (w->signum, SIG_DFL);
4191 }
4192
4193 EV_FREQUENT_CHECK;
4194}
4195
4196#endif
4197
4198#if EV_CHILD_ENABLE
4199
4200void
4201ev_child_start (EV_P_ ev_child *w) EV_THROW
4202{
4203#if EV_MULTIPLICITY
1817 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4204 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1818#endif 4205#endif
1819 if (expect_false (ev_is_active (w))) 4206 if (expect_false (ev_is_active (w)))
1820 return; 4207 return;
1821 4208
4209 EV_FREQUENT_CHECK;
4210
1822 ev_start (EV_A_ (W)w, 1); 4211 ev_start (EV_A_ (W)w, 1);
1823 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4212 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1824}
1825 4213
4214 EV_FREQUENT_CHECK;
4215}
4216
1826void 4217void
1827ev_child_stop (EV_P_ ev_child *w) 4218ev_child_stop (EV_P_ ev_child *w) EV_THROW
1828{ 4219{
1829 clear_pending (EV_A_ (W)w); 4220 clear_pending (EV_A_ (W)w);
1830 if (expect_false (!ev_is_active (w))) 4221 if (expect_false (!ev_is_active (w)))
1831 return; 4222 return;
1832 4223
4224 EV_FREQUENT_CHECK;
4225
1833 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4226 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1834 ev_stop (EV_A_ (W)w); 4227 ev_stop (EV_A_ (W)w);
4228
4229 EV_FREQUENT_CHECK;
1835} 4230}
4231
4232#endif
1836 4233
1837#if EV_STAT_ENABLE 4234#if EV_STAT_ENABLE
1838 4235
1839# ifdef _WIN32 4236# ifdef _WIN32
1840# undef lstat 4237# undef lstat
1841# define lstat(a,b) _stati64 (a,b) 4238# define lstat(a,b) _stati64 (a,b)
1842# endif 4239# endif
1843 4240
1844#define DEF_STAT_INTERVAL 5.0074891 4241#define DEF_STAT_INTERVAL 5.0074891
4242#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1845#define MIN_STAT_INTERVAL 0.1074891 4243#define MIN_STAT_INTERVAL 0.1074891
1846 4244
1847static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 4245noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1848 4246
1849#if EV_USE_INOTIFY 4247#if EV_USE_INOTIFY
1850# define EV_INOTIFY_BUFSIZE 8192
1851 4248
1852static void noinline 4249/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4250# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4251
4252noinline
4253static void
1853infy_add (EV_P_ ev_stat *w) 4254infy_add (EV_P_ ev_stat *w)
1854{ 4255{
1855 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 4256 w->wd = inotify_add_watch (fs_fd, w->path,
4257 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4258 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4259 | IN_DONT_FOLLOW | IN_MASK_ADD);
1856 4260
1857 if (w->wd < 0) 4261 if (w->wd >= 0)
4262 {
4263 struct statfs sfs;
4264
4265 /* now local changes will be tracked by inotify, but remote changes won't */
4266 /* unless the filesystem is known to be local, we therefore still poll */
4267 /* also do poll on <2.6.25, but with normal frequency */
4268
4269 if (!fs_2625)
4270 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4271 else if (!statfs (w->path, &sfs)
4272 && (sfs.f_type == 0x1373 /* devfs */
4273 || sfs.f_type == 0x4006 /* fat */
4274 || sfs.f_type == 0x4d44 /* msdos */
4275 || sfs.f_type == 0xEF53 /* ext2/3 */
4276 || sfs.f_type == 0x72b6 /* jffs2 */
4277 || sfs.f_type == 0x858458f6 /* ramfs */
4278 || sfs.f_type == 0x5346544e /* ntfs */
4279 || sfs.f_type == 0x3153464a /* jfs */
4280 || sfs.f_type == 0x9123683e /* btrfs */
4281 || sfs.f_type == 0x52654973 /* reiser3 */
4282 || sfs.f_type == 0x01021994 /* tmpfs */
4283 || sfs.f_type == 0x58465342 /* xfs */))
4284 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4285 else
4286 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1858 { 4287 }
1859 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 4288 else
4289 {
4290 /* can't use inotify, continue to stat */
4291 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1860 4292
1861 /* monitor some parent directory for speedup hints */ 4293 /* if path is not there, monitor some parent directory for speedup hints */
4294 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4295 /* but an efficiency issue only */
1862 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4296 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1863 { 4297 {
1864 char path [4096]; 4298 char path [4096];
1865 strcpy (path, w->path); 4299 strcpy (path, w->path);
1866 4300
1869 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 4303 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1870 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 4304 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1871 4305
1872 char *pend = strrchr (path, '/'); 4306 char *pend = strrchr (path, '/');
1873 4307
1874 if (!pend) 4308 if (!pend || pend == path)
1875 break; /* whoops, no '/', complain to your admin */ 4309 break;
1876 4310
1877 *pend = 0; 4311 *pend = 0;
1878 w->wd = inotify_add_watch (fs_fd, path, mask); 4312 w->wd = inotify_add_watch (fs_fd, path, mask);
1879 } 4313 }
1880 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4314 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1881 } 4315 }
1882 } 4316 }
1883 else
1884 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1885 4317
1886 if (w->wd >= 0) 4318 if (w->wd >= 0)
1887 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4319 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
1888}
1889 4320
1890static void noinline 4321 /* now re-arm timer, if required */
4322 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4323 ev_timer_again (EV_A_ &w->timer);
4324 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4325}
4326
4327noinline
4328static void
1891infy_del (EV_P_ ev_stat *w) 4329infy_del (EV_P_ ev_stat *w)
1892{ 4330{
1893 int slot; 4331 int slot;
1894 int wd = w->wd; 4332 int wd = w->wd;
1895 4333
1896 if (wd < 0) 4334 if (wd < 0)
1897 return; 4335 return;
1898 4336
1899 w->wd = -2; 4337 w->wd = -2;
1900 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4338 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1901 wlist_del (&fs_hash [slot].head, (WL)w); 4339 wlist_del (&fs_hash [slot].head, (WL)w);
1902 4340
1903 /* remove this watcher, if others are watching it, they will rearm */ 4341 /* remove this watcher, if others are watching it, they will rearm */
1904 inotify_rm_watch (fs_fd, wd); 4342 inotify_rm_watch (fs_fd, wd);
1905} 4343}
1906 4344
1907static void noinline 4345noinline
4346static void
1908infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4347infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1909{ 4348{
1910 if (slot < 0) 4349 if (slot < 0)
1911 /* overflow, need to check for all hahs slots */ 4350 /* overflow, need to check for all hash slots */
1912 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4351 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1913 infy_wd (EV_A_ slot, wd, ev); 4352 infy_wd (EV_A_ slot, wd, ev);
1914 else 4353 else
1915 { 4354 {
1916 WL w_; 4355 WL w_;
1917 4356
1918 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4357 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
1919 { 4358 {
1920 ev_stat *w = (ev_stat *)w_; 4359 ev_stat *w = (ev_stat *)w_;
1921 w_ = w_->next; /* lets us remove this watcher and all before it */ 4360 w_ = w_->next; /* lets us remove this watcher and all before it */
1922 4361
1923 if (w->wd == wd || wd == -1) 4362 if (w->wd == wd || wd == -1)
1924 { 4363 {
1925 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4364 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1926 { 4365 {
4366 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
1927 w->wd = -1; 4367 w->wd = -1;
1928 infy_add (EV_A_ w); /* re-add, no matter what */ 4368 infy_add (EV_A_ w); /* re-add, no matter what */
1929 } 4369 }
1930 4370
1931 stat_timer_cb (EV_A_ &w->timer, 0); 4371 stat_timer_cb (EV_A_ &w->timer, 0);
1936 4376
1937static void 4377static void
1938infy_cb (EV_P_ ev_io *w, int revents) 4378infy_cb (EV_P_ ev_io *w, int revents)
1939{ 4379{
1940 char buf [EV_INOTIFY_BUFSIZE]; 4380 char buf [EV_INOTIFY_BUFSIZE];
1941 struct inotify_event *ev = (struct inotify_event *)buf;
1942 int ofs; 4381 int ofs;
1943 int len = read (fs_fd, buf, sizeof (buf)); 4382 int len = read (fs_fd, buf, sizeof (buf));
1944 4383
1945 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4384 for (ofs = 0; ofs < len; )
4385 {
4386 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
1946 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4387 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4388 ofs += sizeof (struct inotify_event) + ev->len;
4389 }
1947} 4390}
1948 4391
1949void inline_size 4392inline_size ecb_cold
4393void
4394ev_check_2625 (EV_P)
4395{
4396 /* kernels < 2.6.25 are borked
4397 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4398 */
4399 if (ev_linux_version () < 0x020619)
4400 return;
4401
4402 fs_2625 = 1;
4403}
4404
4405inline_size int
4406infy_newfd (void)
4407{
4408#if defined IN_CLOEXEC && defined IN_NONBLOCK
4409 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4410 if (fd >= 0)
4411 return fd;
4412#endif
4413 return inotify_init ();
4414}
4415
4416inline_size void
1950infy_init (EV_P) 4417infy_init (EV_P)
1951{ 4418{
1952 if (fs_fd != -2) 4419 if (fs_fd != -2)
1953 return; 4420 return;
1954 4421
4422 fs_fd = -1;
4423
4424 ev_check_2625 (EV_A);
4425
1955 fs_fd = inotify_init (); 4426 fs_fd = infy_newfd ();
1956 4427
1957 if (fs_fd >= 0) 4428 if (fs_fd >= 0)
1958 { 4429 {
4430 fd_intern (fs_fd);
1959 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4431 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1960 ev_set_priority (&fs_w, EV_MAXPRI); 4432 ev_set_priority (&fs_w, EV_MAXPRI);
1961 ev_io_start (EV_A_ &fs_w); 4433 ev_io_start (EV_A_ &fs_w);
4434 ev_unref (EV_A);
1962 } 4435 }
1963} 4436}
1964 4437
1965void inline_size 4438inline_size void
1966infy_fork (EV_P) 4439infy_fork (EV_P)
1967{ 4440{
1968 int slot; 4441 int slot;
1969 4442
1970 if (fs_fd < 0) 4443 if (fs_fd < 0)
1971 return; 4444 return;
1972 4445
4446 ev_ref (EV_A);
4447 ev_io_stop (EV_A_ &fs_w);
1973 close (fs_fd); 4448 close (fs_fd);
1974 fs_fd = inotify_init (); 4449 fs_fd = infy_newfd ();
1975 4450
4451 if (fs_fd >= 0)
4452 {
4453 fd_intern (fs_fd);
4454 ev_io_set (&fs_w, fs_fd, EV_READ);
4455 ev_io_start (EV_A_ &fs_w);
4456 ev_unref (EV_A);
4457 }
4458
1976 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4459 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1977 { 4460 {
1978 WL w_ = fs_hash [slot].head; 4461 WL w_ = fs_hash [slot].head;
1979 fs_hash [slot].head = 0; 4462 fs_hash [slot].head = 0;
1980 4463
1981 while (w_) 4464 while (w_)
1986 w->wd = -1; 4469 w->wd = -1;
1987 4470
1988 if (fs_fd >= 0) 4471 if (fs_fd >= 0)
1989 infy_add (EV_A_ w); /* re-add, no matter what */ 4472 infy_add (EV_A_ w); /* re-add, no matter what */
1990 else 4473 else
4474 {
4475 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4476 if (ev_is_active (&w->timer)) ev_ref (EV_A);
1991 ev_timer_start (EV_A_ &w->timer); 4477 ev_timer_again (EV_A_ &w->timer);
4478 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4479 }
1992 } 4480 }
1993
1994 } 4481 }
1995} 4482}
1996 4483
1997#endif 4484#endif
1998 4485
4486#ifdef _WIN32
4487# define EV_LSTAT(p,b) _stati64 (p, b)
4488#else
4489# define EV_LSTAT(p,b) lstat (p, b)
4490#endif
4491
1999void 4492void
2000ev_stat_stat (EV_P_ ev_stat *w) 4493ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2001{ 4494{
2002 if (lstat (w->path, &w->attr) < 0) 4495 if (lstat (w->path, &w->attr) < 0)
2003 w->attr.st_nlink = 0; 4496 w->attr.st_nlink = 0;
2004 else if (!w->attr.st_nlink) 4497 else if (!w->attr.st_nlink)
2005 w->attr.st_nlink = 1; 4498 w->attr.st_nlink = 1;
2006} 4499}
2007 4500
2008static void noinline 4501noinline
4502static void
2009stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4503stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2010{ 4504{
2011 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4505 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2012 4506
2013 /* we copy this here each the time so that */ 4507 ev_statdata prev = w->attr;
2014 /* prev has the old value when the callback gets invoked */
2015 w->prev = w->attr;
2016 ev_stat_stat (EV_A_ w); 4508 ev_stat_stat (EV_A_ w);
2017 4509
2018 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4510 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2019 if ( 4511 if (
2020 w->prev.st_dev != w->attr.st_dev 4512 prev.st_dev != w->attr.st_dev
2021 || w->prev.st_ino != w->attr.st_ino 4513 || prev.st_ino != w->attr.st_ino
2022 || w->prev.st_mode != w->attr.st_mode 4514 || prev.st_mode != w->attr.st_mode
2023 || w->prev.st_nlink != w->attr.st_nlink 4515 || prev.st_nlink != w->attr.st_nlink
2024 || w->prev.st_uid != w->attr.st_uid 4516 || prev.st_uid != w->attr.st_uid
2025 || w->prev.st_gid != w->attr.st_gid 4517 || prev.st_gid != w->attr.st_gid
2026 || w->prev.st_rdev != w->attr.st_rdev 4518 || prev.st_rdev != w->attr.st_rdev
2027 || w->prev.st_size != w->attr.st_size 4519 || prev.st_size != w->attr.st_size
2028 || w->prev.st_atime != w->attr.st_atime 4520 || prev.st_atime != w->attr.st_atime
2029 || w->prev.st_mtime != w->attr.st_mtime 4521 || prev.st_mtime != w->attr.st_mtime
2030 || w->prev.st_ctime != w->attr.st_ctime 4522 || prev.st_ctime != w->attr.st_ctime
2031 ) { 4523 ) {
4524 /* we only update w->prev on actual differences */
4525 /* in case we test more often than invoke the callback, */
4526 /* to ensure that prev is always different to attr */
4527 w->prev = prev;
4528
2032 #if EV_USE_INOTIFY 4529 #if EV_USE_INOTIFY
4530 if (fs_fd >= 0)
4531 {
2033 infy_del (EV_A_ w); 4532 infy_del (EV_A_ w);
2034 infy_add (EV_A_ w); 4533 infy_add (EV_A_ w);
2035 ev_stat_stat (EV_A_ w); /* avoid race... */ 4534 ev_stat_stat (EV_A_ w); /* avoid race... */
4535 }
2036 #endif 4536 #endif
2037 4537
2038 ev_feed_event (EV_A_ w, EV_STAT); 4538 ev_feed_event (EV_A_ w, EV_STAT);
2039 } 4539 }
2040} 4540}
2041 4541
2042void 4542void
2043ev_stat_start (EV_P_ ev_stat *w) 4543ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2044{ 4544{
2045 if (expect_false (ev_is_active (w))) 4545 if (expect_false (ev_is_active (w)))
2046 return; 4546 return;
2047 4547
2048 /* since we use memcmp, we need to clear any padding data etc. */
2049 memset (&w->prev, 0, sizeof (ev_statdata));
2050 memset (&w->attr, 0, sizeof (ev_statdata));
2051
2052 ev_stat_stat (EV_A_ w); 4548 ev_stat_stat (EV_A_ w);
2053 4549
4550 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2054 if (w->interval < MIN_STAT_INTERVAL) 4551 w->interval = MIN_STAT_INTERVAL;
2055 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2056 4552
2057 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4553 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2058 ev_set_priority (&w->timer, ev_priority (w)); 4554 ev_set_priority (&w->timer, ev_priority (w));
2059 4555
2060#if EV_USE_INOTIFY 4556#if EV_USE_INOTIFY
2061 infy_init (EV_A); 4557 infy_init (EV_A);
2062 4558
2063 if (fs_fd >= 0) 4559 if (fs_fd >= 0)
2064 infy_add (EV_A_ w); 4560 infy_add (EV_A_ w);
2065 else 4561 else
2066#endif 4562#endif
4563 {
2067 ev_timer_start (EV_A_ &w->timer); 4564 ev_timer_again (EV_A_ &w->timer);
4565 ev_unref (EV_A);
4566 }
2068 4567
2069 ev_start (EV_A_ (W)w, 1); 4568 ev_start (EV_A_ (W)w, 1);
2070}
2071 4569
4570 EV_FREQUENT_CHECK;
4571}
4572
2072void 4573void
2073ev_stat_stop (EV_P_ ev_stat *w) 4574ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2074{ 4575{
2075 clear_pending (EV_A_ (W)w); 4576 clear_pending (EV_A_ (W)w);
2076 if (expect_false (!ev_is_active (w))) 4577 if (expect_false (!ev_is_active (w)))
2077 return; 4578 return;
2078 4579
4580 EV_FREQUENT_CHECK;
4581
2079#if EV_USE_INOTIFY 4582#if EV_USE_INOTIFY
2080 infy_del (EV_A_ w); 4583 infy_del (EV_A_ w);
2081#endif 4584#endif
4585
4586 if (ev_is_active (&w->timer))
4587 {
4588 ev_ref (EV_A);
2082 ev_timer_stop (EV_A_ &w->timer); 4589 ev_timer_stop (EV_A_ &w->timer);
4590 }
2083 4591
2084 ev_stop (EV_A_ (W)w); 4592 ev_stop (EV_A_ (W)w);
4593
4594 EV_FREQUENT_CHECK;
2085} 4595}
2086#endif 4596#endif
2087 4597
2088#if EV_IDLE_ENABLE 4598#if EV_IDLE_ENABLE
2089void 4599void
2090ev_idle_start (EV_P_ ev_idle *w) 4600ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2091{ 4601{
2092 if (expect_false (ev_is_active (w))) 4602 if (expect_false (ev_is_active (w)))
2093 return; 4603 return;
2094 4604
2095 pri_adjust (EV_A_ (W)w); 4605 pri_adjust (EV_A_ (W)w);
4606
4607 EV_FREQUENT_CHECK;
2096 4608
2097 { 4609 {
2098 int active = ++idlecnt [ABSPRI (w)]; 4610 int active = ++idlecnt [ABSPRI (w)];
2099 4611
2100 ++idleall; 4612 ++idleall;
2101 ev_start (EV_A_ (W)w, active); 4613 ev_start (EV_A_ (W)w, active);
2102 4614
2103 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 4615 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2104 idles [ABSPRI (w)][active - 1] = w; 4616 idles [ABSPRI (w)][active - 1] = w;
2105 } 4617 }
2106}
2107 4618
4619 EV_FREQUENT_CHECK;
4620}
4621
2108void 4622void
2109ev_idle_stop (EV_P_ ev_idle *w) 4623ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2110{ 4624{
2111 clear_pending (EV_A_ (W)w); 4625 clear_pending (EV_A_ (W)w);
2112 if (expect_false (!ev_is_active (w))) 4626 if (expect_false (!ev_is_active (w)))
2113 return; 4627 return;
2114 4628
4629 EV_FREQUENT_CHECK;
4630
2115 { 4631 {
2116 int active = ((W)w)->active; 4632 int active = ev_active (w);
2117 4633
2118 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 4634 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2119 ((W)idles [ABSPRI (w)][active - 1])->active = active; 4635 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2120 4636
2121 ev_stop (EV_A_ (W)w); 4637 ev_stop (EV_A_ (W)w);
2122 --idleall; 4638 --idleall;
2123 } 4639 }
2124}
2125#endif
2126 4640
4641 EV_FREQUENT_CHECK;
4642}
4643#endif
4644
4645#if EV_PREPARE_ENABLE
2127void 4646void
2128ev_prepare_start (EV_P_ ev_prepare *w) 4647ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2129{ 4648{
2130 if (expect_false (ev_is_active (w))) 4649 if (expect_false (ev_is_active (w)))
2131 return; 4650 return;
4651
4652 EV_FREQUENT_CHECK;
2132 4653
2133 ev_start (EV_A_ (W)w, ++preparecnt); 4654 ev_start (EV_A_ (W)w, ++preparecnt);
2134 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4655 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2135 prepares [preparecnt - 1] = w; 4656 prepares [preparecnt - 1] = w;
2136}
2137 4657
4658 EV_FREQUENT_CHECK;
4659}
4660
2138void 4661void
2139ev_prepare_stop (EV_P_ ev_prepare *w) 4662ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2140{ 4663{
2141 clear_pending (EV_A_ (W)w); 4664 clear_pending (EV_A_ (W)w);
2142 if (expect_false (!ev_is_active (w))) 4665 if (expect_false (!ev_is_active (w)))
2143 return; 4666 return;
2144 4667
4668 EV_FREQUENT_CHECK;
4669
2145 { 4670 {
2146 int active = ((W)w)->active; 4671 int active = ev_active (w);
4672
2147 prepares [active - 1] = prepares [--preparecnt]; 4673 prepares [active - 1] = prepares [--preparecnt];
2148 ((W)prepares [active - 1])->active = active; 4674 ev_active (prepares [active - 1]) = active;
2149 } 4675 }
2150 4676
2151 ev_stop (EV_A_ (W)w); 4677 ev_stop (EV_A_ (W)w);
2152}
2153 4678
4679 EV_FREQUENT_CHECK;
4680}
4681#endif
4682
4683#if EV_CHECK_ENABLE
2154void 4684void
2155ev_check_start (EV_P_ ev_check *w) 4685ev_check_start (EV_P_ ev_check *w) EV_THROW
2156{ 4686{
2157 if (expect_false (ev_is_active (w))) 4687 if (expect_false (ev_is_active (w)))
2158 return; 4688 return;
4689
4690 EV_FREQUENT_CHECK;
2159 4691
2160 ev_start (EV_A_ (W)w, ++checkcnt); 4692 ev_start (EV_A_ (W)w, ++checkcnt);
2161 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4693 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2162 checks [checkcnt - 1] = w; 4694 checks [checkcnt - 1] = w;
2163}
2164 4695
4696 EV_FREQUENT_CHECK;
4697}
4698
2165void 4699void
2166ev_check_stop (EV_P_ ev_check *w) 4700ev_check_stop (EV_P_ ev_check *w) EV_THROW
2167{ 4701{
2168 clear_pending (EV_A_ (W)w); 4702 clear_pending (EV_A_ (W)w);
2169 if (expect_false (!ev_is_active (w))) 4703 if (expect_false (!ev_is_active (w)))
2170 return; 4704 return;
2171 4705
4706 EV_FREQUENT_CHECK;
4707
2172 { 4708 {
2173 int active = ((W)w)->active; 4709 int active = ev_active (w);
4710
2174 checks [active - 1] = checks [--checkcnt]; 4711 checks [active - 1] = checks [--checkcnt];
2175 ((W)checks [active - 1])->active = active; 4712 ev_active (checks [active - 1]) = active;
2176 } 4713 }
2177 4714
2178 ev_stop (EV_A_ (W)w); 4715 ev_stop (EV_A_ (W)w);
4716
4717 EV_FREQUENT_CHECK;
2179} 4718}
4719#endif
2180 4720
2181#if EV_EMBED_ENABLE 4721#if EV_EMBED_ENABLE
2182void noinline 4722noinline
4723void
2183ev_embed_sweep (EV_P_ ev_embed *w) 4724ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2184{ 4725{
2185 ev_loop (w->loop, EVLOOP_NONBLOCK); 4726 ev_run (w->other, EVRUN_NOWAIT);
2186} 4727}
2187 4728
2188static void 4729static void
2189embed_cb (EV_P_ ev_io *io, int revents) 4730embed_io_cb (EV_P_ ev_io *io, int revents)
2190{ 4731{
2191 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4732 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2192 4733
2193 if (ev_cb (w)) 4734 if (ev_cb (w))
2194 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4735 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2195 else 4736 else
2196 ev_embed_sweep (loop, w); 4737 ev_run (w->other, EVRUN_NOWAIT);
2197} 4738}
2198 4739
4740static void
4741embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4742{
4743 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4744
4745 {
4746 EV_P = w->other;
4747
4748 while (fdchangecnt)
4749 {
4750 fd_reify (EV_A);
4751 ev_run (EV_A_ EVRUN_NOWAIT);
4752 }
4753 }
4754}
4755
4756static void
4757embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4758{
4759 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4760
4761 ev_embed_stop (EV_A_ w);
4762
4763 {
4764 EV_P = w->other;
4765
4766 ev_loop_fork (EV_A);
4767 ev_run (EV_A_ EVRUN_NOWAIT);
4768 }
4769
4770 ev_embed_start (EV_A_ w);
4771}
4772
4773#if 0
4774static void
4775embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4776{
4777 ev_idle_stop (EV_A_ idle);
4778}
4779#endif
4780
2199void 4781void
2200ev_embed_start (EV_P_ ev_embed *w) 4782ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2201{ 4783{
2202 if (expect_false (ev_is_active (w))) 4784 if (expect_false (ev_is_active (w)))
2203 return; 4785 return;
2204 4786
2205 { 4787 {
2206 struct ev_loop *loop = w->loop; 4788 EV_P = w->other;
2207 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4789 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2208 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 4790 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2209 } 4791 }
4792
4793 EV_FREQUENT_CHECK;
2210 4794
2211 ev_set_priority (&w->io, ev_priority (w)); 4795 ev_set_priority (&w->io, ev_priority (w));
2212 ev_io_start (EV_A_ &w->io); 4796 ev_io_start (EV_A_ &w->io);
2213 4797
4798 ev_prepare_init (&w->prepare, embed_prepare_cb);
4799 ev_set_priority (&w->prepare, EV_MINPRI);
4800 ev_prepare_start (EV_A_ &w->prepare);
4801
4802 ev_fork_init (&w->fork, embed_fork_cb);
4803 ev_fork_start (EV_A_ &w->fork);
4804
4805 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4806
2214 ev_start (EV_A_ (W)w, 1); 4807 ev_start (EV_A_ (W)w, 1);
2215}
2216 4808
4809 EV_FREQUENT_CHECK;
4810}
4811
2217void 4812void
2218ev_embed_stop (EV_P_ ev_embed *w) 4813ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2219{ 4814{
2220 clear_pending (EV_A_ (W)w); 4815 clear_pending (EV_A_ (W)w);
2221 if (expect_false (!ev_is_active (w))) 4816 if (expect_false (!ev_is_active (w)))
2222 return; 4817 return;
2223 4818
4819 EV_FREQUENT_CHECK;
4820
2224 ev_io_stop (EV_A_ &w->io); 4821 ev_io_stop (EV_A_ &w->io);
4822 ev_prepare_stop (EV_A_ &w->prepare);
4823 ev_fork_stop (EV_A_ &w->fork);
2225 4824
2226 ev_stop (EV_A_ (W)w); 4825 ev_stop (EV_A_ (W)w);
4826
4827 EV_FREQUENT_CHECK;
2227} 4828}
2228#endif 4829#endif
2229 4830
2230#if EV_FORK_ENABLE 4831#if EV_FORK_ENABLE
2231void 4832void
2232ev_fork_start (EV_P_ ev_fork *w) 4833ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2233{ 4834{
2234 if (expect_false (ev_is_active (w))) 4835 if (expect_false (ev_is_active (w)))
2235 return; 4836 return;
4837
4838 EV_FREQUENT_CHECK;
2236 4839
2237 ev_start (EV_A_ (W)w, ++forkcnt); 4840 ev_start (EV_A_ (W)w, ++forkcnt);
2238 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4841 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2239 forks [forkcnt - 1] = w; 4842 forks [forkcnt - 1] = w;
2240}
2241 4843
4844 EV_FREQUENT_CHECK;
4845}
4846
2242void 4847void
2243ev_fork_stop (EV_P_ ev_fork *w) 4848ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2244{ 4849{
2245 clear_pending (EV_A_ (W)w); 4850 clear_pending (EV_A_ (W)w);
2246 if (expect_false (!ev_is_active (w))) 4851 if (expect_false (!ev_is_active (w)))
2247 return; 4852 return;
2248 4853
4854 EV_FREQUENT_CHECK;
4855
2249 { 4856 {
2250 int active = ((W)w)->active; 4857 int active = ev_active (w);
4858
2251 forks [active - 1] = forks [--forkcnt]; 4859 forks [active - 1] = forks [--forkcnt];
2252 ((W)forks [active - 1])->active = active; 4860 ev_active (forks [active - 1]) = active;
2253 } 4861 }
2254 4862
2255 ev_stop (EV_A_ (W)w); 4863 ev_stop (EV_A_ (W)w);
4864
4865 EV_FREQUENT_CHECK;
4866}
4867#endif
4868
4869#if EV_CLEANUP_ENABLE
4870void
4871ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4872{
4873 if (expect_false (ev_is_active (w)))
4874 return;
4875
4876 EV_FREQUENT_CHECK;
4877
4878 ev_start (EV_A_ (W)w, ++cleanupcnt);
4879 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4880 cleanups [cleanupcnt - 1] = w;
4881
4882 /* cleanup watchers should never keep a refcount on the loop */
4883 ev_unref (EV_A);
4884 EV_FREQUENT_CHECK;
4885}
4886
4887void
4888ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4889{
4890 clear_pending (EV_A_ (W)w);
4891 if (expect_false (!ev_is_active (w)))
4892 return;
4893
4894 EV_FREQUENT_CHECK;
4895 ev_ref (EV_A);
4896
4897 {
4898 int active = ev_active (w);
4899
4900 cleanups [active - 1] = cleanups [--cleanupcnt];
4901 ev_active (cleanups [active - 1]) = active;
4902 }
4903
4904 ev_stop (EV_A_ (W)w);
4905
4906 EV_FREQUENT_CHECK;
4907}
4908#endif
4909
4910#if EV_ASYNC_ENABLE
4911void
4912ev_async_start (EV_P_ ev_async *w) EV_THROW
4913{
4914 if (expect_false (ev_is_active (w)))
4915 return;
4916
4917 w->sent = 0;
4918
4919 evpipe_init (EV_A);
4920
4921 EV_FREQUENT_CHECK;
4922
4923 ev_start (EV_A_ (W)w, ++asynccnt);
4924 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4925 asyncs [asynccnt - 1] = w;
4926
4927 EV_FREQUENT_CHECK;
4928}
4929
4930void
4931ev_async_stop (EV_P_ ev_async *w) EV_THROW
4932{
4933 clear_pending (EV_A_ (W)w);
4934 if (expect_false (!ev_is_active (w)))
4935 return;
4936
4937 EV_FREQUENT_CHECK;
4938
4939 {
4940 int active = ev_active (w);
4941
4942 asyncs [active - 1] = asyncs [--asynccnt];
4943 ev_active (asyncs [active - 1]) = active;
4944 }
4945
4946 ev_stop (EV_A_ (W)w);
4947
4948 EV_FREQUENT_CHECK;
4949}
4950
4951void
4952ev_async_send (EV_P_ ev_async *w) EV_THROW
4953{
4954 w->sent = 1;
4955 evpipe_write (EV_A_ &async_pending);
2256} 4956}
2257#endif 4957#endif
2258 4958
2259/*****************************************************************************/ 4959/*****************************************************************************/
2260 4960
2270once_cb (EV_P_ struct ev_once *once, int revents) 4970once_cb (EV_P_ struct ev_once *once, int revents)
2271{ 4971{
2272 void (*cb)(int revents, void *arg) = once->cb; 4972 void (*cb)(int revents, void *arg) = once->cb;
2273 void *arg = once->arg; 4973 void *arg = once->arg;
2274 4974
2275 ev_io_stop (EV_A_ &once->io); 4975 ev_io_stop (EV_A_ &once->io);
2276 ev_timer_stop (EV_A_ &once->to); 4976 ev_timer_stop (EV_A_ &once->to);
2277 ev_free (once); 4977 ev_free (once);
2278 4978
2279 cb (revents, arg); 4979 cb (revents, arg);
2280} 4980}
2281 4981
2282static void 4982static void
2283once_cb_io (EV_P_ ev_io *w, int revents) 4983once_cb_io (EV_P_ ev_io *w, int revents)
2284{ 4984{
2285 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4985 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4986
4987 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2286} 4988}
2287 4989
2288static void 4990static void
2289once_cb_to (EV_P_ ev_timer *w, int revents) 4991once_cb_to (EV_P_ ev_timer *w, int revents)
2290{ 4992{
2291 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4993 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
2292}
2293 4994
4995 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4996}
4997
2294void 4998void
2295ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4999ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
2296{ 5000{
2297 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 5001 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2298 5002
2299 if (expect_false (!once)) 5003 if (expect_false (!once))
2300 { 5004 {
2301 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 5005 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2302 return; 5006 return;
2303 } 5007 }
2304 5008
2305 once->cb = cb; 5009 once->cb = cb;
2306 once->arg = arg; 5010 once->arg = arg;
2318 ev_timer_set (&once->to, timeout, 0.); 5022 ev_timer_set (&once->to, timeout, 0.);
2319 ev_timer_start (EV_A_ &once->to); 5023 ev_timer_start (EV_A_ &once->to);
2320 } 5024 }
2321} 5025}
2322 5026
2323#ifdef __cplusplus 5027/*****************************************************************************/
2324} 5028
5029#if EV_WALK_ENABLE
5030ecb_cold
5031void
5032ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
5033{
5034 int i, j;
5035 ev_watcher_list *wl, *wn;
5036
5037 if (types & (EV_IO | EV_EMBED))
5038 for (i = 0; i < anfdmax; ++i)
5039 for (wl = anfds [i].head; wl; )
5040 {
5041 wn = wl->next;
5042
5043#if EV_EMBED_ENABLE
5044 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5045 {
5046 if (types & EV_EMBED)
5047 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5048 }
5049 else
5050#endif
5051#if EV_USE_INOTIFY
5052 if (ev_cb ((ev_io *)wl) == infy_cb)
5053 ;
5054 else
5055#endif
5056 if ((ev_io *)wl != &pipe_w)
5057 if (types & EV_IO)
5058 cb (EV_A_ EV_IO, wl);
5059
5060 wl = wn;
5061 }
5062
5063 if (types & (EV_TIMER | EV_STAT))
5064 for (i = timercnt + HEAP0; i-- > HEAP0; )
5065#if EV_STAT_ENABLE
5066 /*TODO: timer is not always active*/
5067 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5068 {
5069 if (types & EV_STAT)
5070 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5071 }
5072 else
5073#endif
5074 if (types & EV_TIMER)
5075 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5076
5077#if EV_PERIODIC_ENABLE
5078 if (types & EV_PERIODIC)
5079 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5080 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5081#endif
5082
5083#if EV_IDLE_ENABLE
5084 if (types & EV_IDLE)
5085 for (j = NUMPRI; j--; )
5086 for (i = idlecnt [j]; i--; )
5087 cb (EV_A_ EV_IDLE, idles [j][i]);
5088#endif
5089
5090#if EV_FORK_ENABLE
5091 if (types & EV_FORK)
5092 for (i = forkcnt; i--; )
5093 if (ev_cb (forks [i]) != embed_fork_cb)
5094 cb (EV_A_ EV_FORK, forks [i]);
5095#endif
5096
5097#if EV_ASYNC_ENABLE
5098 if (types & EV_ASYNC)
5099 for (i = asynccnt; i--; )
5100 cb (EV_A_ EV_ASYNC, asyncs [i]);
5101#endif
5102
5103#if EV_PREPARE_ENABLE
5104 if (types & EV_PREPARE)
5105 for (i = preparecnt; i--; )
5106# if EV_EMBED_ENABLE
5107 if (ev_cb (prepares [i]) != embed_prepare_cb)
2325#endif 5108# endif
5109 cb (EV_A_ EV_PREPARE, prepares [i]);
5110#endif
2326 5111
5112#if EV_CHECK_ENABLE
5113 if (types & EV_CHECK)
5114 for (i = checkcnt; i--; )
5115 cb (EV_A_ EV_CHECK, checks [i]);
5116#endif
5117
5118#if EV_SIGNAL_ENABLE
5119 if (types & EV_SIGNAL)
5120 for (i = 0; i < EV_NSIG - 1; ++i)
5121 for (wl = signals [i].head; wl; )
5122 {
5123 wn = wl->next;
5124 cb (EV_A_ EV_SIGNAL, wl);
5125 wl = wn;
5126 }
5127#endif
5128
5129#if EV_CHILD_ENABLE
5130 if (types & EV_CHILD)
5131 for (i = (EV_PID_HASHSIZE); i--; )
5132 for (wl = childs [i]; wl; )
5133 {
5134 wn = wl->next;
5135 cb (EV_A_ EV_CHILD, wl);
5136 wl = wn;
5137 }
5138#endif
5139/* EV_STAT 0x00001000 /* stat data changed */
5140/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5141}
5142#endif
5143
5144#if EV_MULTIPLICITY
5145 #include "ev_wrap.h"
5146#endif
5147

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines