ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.210 by root, Sat Feb 9 00:34:11 2008 UTC vs.
Revision 1.483 by root, Tue Jul 31 04:45:58 2018 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
41extern "C" {
42#endif
43
44#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 43# include EV_CONFIG_H
47# else 44# else
48# include "config.h" 45# include "config.h"
49# endif 46# endif
50 47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
51# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
52# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
53# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
54# endif 71# endif
55# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
57# endif 74# endif
58# else 75# else
59# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
61# endif 78# endif
62# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
63# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
64# endif 81# endif
65# endif 82# endif
66 83
84# if HAVE_NANOSLEEP
67# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
69# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
70# else 88# else
89# undef EV_USE_NANOSLEEP
71# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
72# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
73# endif 100# endif
74 101
102# if HAVE_POLL && HAVE_POLL_H
75# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
76# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
77# define EV_USE_SELECT 1
78# else
79# define EV_USE_SELECT 0
80# endif 105# endif
81# endif
82
83# ifndef EV_USE_POLL
84# if HAVE_POLL && HAVE_POLL_H
85# define EV_USE_POLL 1
86# else 106# else
107# undef EV_USE_POLL
87# define EV_USE_POLL 0 108# define EV_USE_POLL 0
88# endif
89# endif 109# endif
90 110
91# ifndef EV_USE_EPOLL
92# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
93# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
94# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
95# define EV_USE_EPOLL 0
96# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
97# endif 118# endif
98 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
99# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
100# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
101# define EV_USE_KQUEUE 1
102# else
103# define EV_USE_KQUEUE 0
104# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
105# endif 127# endif
106 128
107# ifndef EV_USE_PORT
108# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
109# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
110# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
111# define EV_USE_PORT 0
112# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
113# endif 136# endif
114 137
115# ifndef EV_USE_INOTIFY
116# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
117# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
118# else
119# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
120# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
121# endif 145# endif
122 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
123#endif 154# endif
124 155
125#include <math.h> 156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
167/* OS X, in its infinite idiocy, actually HARDCODES
168 * a limit of 1024 into their select. Where people have brains,
169 * OS X engineers apparently have a vacuum. Or maybe they were
170 * ordered to have a vacuum, or they do anything for money.
171 * This might help. Or not.
172 * Note that this must be defined early, as other include files
173 * will rely on this define as well.
174 */
175#define _DARWIN_UNLIMITED_SELECT 1
176
126#include <stdlib.h> 177#include <stdlib.h>
178#include <string.h>
127#include <fcntl.h> 179#include <fcntl.h>
128#include <stddef.h> 180#include <stddef.h>
129 181
130#include <stdio.h> 182#include <stdio.h>
131 183
132#include <assert.h> 184#include <assert.h>
133#include <errno.h> 185#include <errno.h>
134#include <sys/types.h> 186#include <sys/types.h>
135#include <time.h> 187#include <time.h>
188#include <limits.h>
136 189
137#include <signal.h> 190#include <signal.h>
138 191
139#ifdef EV_H 192#ifdef EV_H
140# include EV_H 193# include EV_H
141#else 194#else
142# include "ev.h" 195# include "ev.h"
196#endif
197
198#if EV_NO_THREADS
199# undef EV_NO_SMP
200# define EV_NO_SMP 1
201# undef ECB_NO_THREADS
202# define ECB_NO_THREADS 1
203#endif
204#if EV_NO_SMP
205# undef EV_NO_SMP
206# define ECB_NO_SMP 1
143#endif 207#endif
144 208
145#ifndef _WIN32 209#ifndef _WIN32
146# include <sys/time.h> 210# include <sys/time.h>
147# include <sys/wait.h> 211# include <sys/wait.h>
148# include <unistd.h> 212# include <unistd.h>
149#else 213#else
214# include <io.h>
150# define WIN32_LEAN_AND_MEAN 215# define WIN32_LEAN_AND_MEAN
216# include <winsock2.h>
151# include <windows.h> 217# include <windows.h>
152# ifndef EV_SELECT_IS_WINSOCKET 218# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 219# define EV_SELECT_IS_WINSOCKET 1
154# endif 220# endif
221# undef EV_AVOID_STDIO
222#endif
223
224/* this block tries to deduce configuration from header-defined symbols and defaults */
225
226/* try to deduce the maximum number of signals on this platform */
227#if defined EV_NSIG
228/* use what's provided */
229#elif defined NSIG
230# define EV_NSIG (NSIG)
231#elif defined _NSIG
232# define EV_NSIG (_NSIG)
233#elif defined SIGMAX
234# define EV_NSIG (SIGMAX+1)
235#elif defined SIG_MAX
236# define EV_NSIG (SIG_MAX+1)
237#elif defined _SIG_MAX
238# define EV_NSIG (_SIG_MAX+1)
239#elif defined MAXSIG
240# define EV_NSIG (MAXSIG+1)
241#elif defined MAX_SIG
242# define EV_NSIG (MAX_SIG+1)
243#elif defined SIGARRAYSIZE
244# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
245#elif defined _sys_nsig
246# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
247#else
248# define EV_NSIG (8 * sizeof (sigset_t) + 1)
249#endif
250
251#ifndef EV_USE_FLOOR
252# define EV_USE_FLOOR 0
253#endif
254
255#ifndef EV_USE_CLOCK_SYSCALL
256# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
257# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
258# else
259# define EV_USE_CLOCK_SYSCALL 0
155#endif 260# endif
261#endif
156 262
157/**/ 263#if !(_POSIX_TIMERS > 0)
264# ifndef EV_USE_MONOTONIC
265# define EV_USE_MONOTONIC 0
266# endif
267# ifndef EV_USE_REALTIME
268# define EV_USE_REALTIME 0
269# endif
270#endif
158 271
159#ifndef EV_USE_MONOTONIC 272#ifndef EV_USE_MONOTONIC
273# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
274# define EV_USE_MONOTONIC EV_FEATURE_OS
275# else
160# define EV_USE_MONOTONIC 0 276# define EV_USE_MONOTONIC 0
277# endif
161#endif 278#endif
162 279
163#ifndef EV_USE_REALTIME 280#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0 281# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
165#endif 282#endif
166 283
167#ifndef EV_USE_NANOSLEEP 284#ifndef EV_USE_NANOSLEEP
285# if _POSIX_C_SOURCE >= 199309L
286# define EV_USE_NANOSLEEP EV_FEATURE_OS
287# else
168# define EV_USE_NANOSLEEP 0 288# define EV_USE_NANOSLEEP 0
289# endif
169#endif 290#endif
170 291
171#ifndef EV_USE_SELECT 292#ifndef EV_USE_SELECT
172# define EV_USE_SELECT 1 293# define EV_USE_SELECT EV_FEATURE_BACKENDS
173#endif 294#endif
174 295
175#ifndef EV_USE_POLL 296#ifndef EV_USE_POLL
176# ifdef _WIN32 297# ifdef _WIN32
177# define EV_USE_POLL 0 298# define EV_USE_POLL 0
178# else 299# else
179# define EV_USE_POLL 1 300# define EV_USE_POLL EV_FEATURE_BACKENDS
180# endif 301# endif
181#endif 302#endif
182 303
183#ifndef EV_USE_EPOLL 304#ifndef EV_USE_EPOLL
305# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
306# define EV_USE_EPOLL EV_FEATURE_BACKENDS
307# else
184# define EV_USE_EPOLL 0 308# define EV_USE_EPOLL 0
309# endif
185#endif 310#endif
186 311
187#ifndef EV_USE_KQUEUE 312#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 313# define EV_USE_KQUEUE 0
189#endif 314#endif
191#ifndef EV_USE_PORT 316#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 317# define EV_USE_PORT 0
193#endif 318#endif
194 319
195#ifndef EV_USE_INOTIFY 320#ifndef EV_USE_INOTIFY
321# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
322# define EV_USE_INOTIFY EV_FEATURE_OS
323# else
196# define EV_USE_INOTIFY 0 324# define EV_USE_INOTIFY 0
325# endif
197#endif 326#endif
198 327
199#ifndef EV_PID_HASHSIZE 328#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 329# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
201# define EV_PID_HASHSIZE 1 330#endif
331
332#ifndef EV_INOTIFY_HASHSIZE
333# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
334#endif
335
336#ifndef EV_USE_EVENTFD
337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338# define EV_USE_EVENTFD EV_FEATURE_OS
202# else 339# else
203# define EV_PID_HASHSIZE 16 340# define EV_USE_EVENTFD 0
204# endif 341# endif
205#endif 342#endif
206 343
207#ifndef EV_INOTIFY_HASHSIZE 344#ifndef EV_USE_SIGNALFD
208# if EV_MINIMAL 345# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
209# define EV_INOTIFY_HASHSIZE 1 346# define EV_USE_SIGNALFD EV_FEATURE_OS
210# else 347# else
211# define EV_INOTIFY_HASHSIZE 16 348# define EV_USE_SIGNALFD 0
212# endif 349# endif
213#endif 350#endif
214 351
215/**/ 352#if 0 /* debugging */
353# define EV_VERIFY 3
354# define EV_USE_4HEAP 1
355# define EV_HEAP_CACHE_AT 1
356#endif
357
358#ifndef EV_VERIFY
359# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
360#endif
361
362#ifndef EV_USE_4HEAP
363# define EV_USE_4HEAP EV_FEATURE_DATA
364#endif
365
366#ifndef EV_HEAP_CACHE_AT
367# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
368#endif
369
370#ifdef __ANDROID__
371/* supposedly, android doesn't typedef fd_mask */
372# undef EV_USE_SELECT
373# define EV_USE_SELECT 0
374/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
375# undef EV_USE_CLOCK_SYSCALL
376# define EV_USE_CLOCK_SYSCALL 0
377#endif
378
379/* aix's poll.h seems to cause lots of trouble */
380#ifdef _AIX
381/* AIX has a completely broken poll.h header */
382# undef EV_USE_POLL
383# define EV_USE_POLL 0
384#endif
385
386/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
387/* which makes programs even slower. might work on other unices, too. */
388#if EV_USE_CLOCK_SYSCALL
389# include <sys/syscall.h>
390# ifdef SYS_clock_gettime
391# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
392# undef EV_USE_MONOTONIC
393# define EV_USE_MONOTONIC 1
394# else
395# undef EV_USE_CLOCK_SYSCALL
396# define EV_USE_CLOCK_SYSCALL 0
397# endif
398#endif
399
400/* this block fixes any misconfiguration where we know we run into trouble otherwise */
216 401
217#ifndef CLOCK_MONOTONIC 402#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 403# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 404# define EV_USE_MONOTONIC 0
220#endif 405#endif
228# undef EV_USE_INOTIFY 413# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0 414# define EV_USE_INOTIFY 0
230#endif 415#endif
231 416
232#if !EV_USE_NANOSLEEP 417#if !EV_USE_NANOSLEEP
233# ifndef _WIN32 418/* hp-ux has it in sys/time.h, which we unconditionally include above */
419# if !defined _WIN32 && !defined __hpux
234# include <sys/select.h> 420# include <sys/select.h>
235# endif 421# endif
236#endif 422#endif
237 423
238#if EV_USE_INOTIFY 424#if EV_USE_INOTIFY
425# include <sys/statfs.h>
239# include <sys/inotify.h> 426# include <sys/inotify.h>
427/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
428# ifndef IN_DONT_FOLLOW
429# undef EV_USE_INOTIFY
430# define EV_USE_INOTIFY 0
240#endif 431# endif
432#endif
241 433
242#if EV_SELECT_IS_WINSOCKET 434#if EV_USE_EVENTFD
435/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
243# include <winsock.h> 436# include <stdint.h>
437# ifndef EFD_NONBLOCK
438# define EFD_NONBLOCK O_NONBLOCK
439# endif
440# ifndef EFD_CLOEXEC
441# ifdef O_CLOEXEC
442# define EFD_CLOEXEC O_CLOEXEC
443# else
444# define EFD_CLOEXEC 02000000
445# endif
446# endif
447EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
448#endif
449
450#if EV_USE_SIGNALFD
451/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
452# include <stdint.h>
453# ifndef SFD_NONBLOCK
454# define SFD_NONBLOCK O_NONBLOCK
455# endif
456# ifndef SFD_CLOEXEC
457# ifdef O_CLOEXEC
458# define SFD_CLOEXEC O_CLOEXEC
459# else
460# define SFD_CLOEXEC 02000000
461# endif
462# endif
463EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
464
465struct signalfd_siginfo
466{
467 uint32_t ssi_signo;
468 char pad[128 - sizeof (uint32_t)];
469};
244#endif 470#endif
245 471
246/**/ 472/**/
247 473
474#if EV_VERIFY >= 3
475# define EV_FREQUENT_CHECK ev_verify (EV_A)
476#else
477# define EV_FREQUENT_CHECK do { } while (0)
478#endif
479
248/* 480/*
249 * This is used to avoid floating point rounding problems. 481 * This is used to work around floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding
252 * errors are against us.
253 * This value is good at least till the year 4000. 482 * This value is good at least till the year 4000.
254 * Better solutions welcome.
255 */ 483 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 484#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
485/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
257 486
258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 487#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 488#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
261 489
490#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
491#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
492
493/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
494/* ECB.H BEGIN */
495/*
496 * libecb - http://software.schmorp.de/pkg/libecb
497 *
498 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
499 * Copyright (©) 2011 Emanuele Giaquinta
500 * All rights reserved.
501 *
502 * Redistribution and use in source and binary forms, with or without modifica-
503 * tion, are permitted provided that the following conditions are met:
504 *
505 * 1. Redistributions of source code must retain the above copyright notice,
506 * this list of conditions and the following disclaimer.
507 *
508 * 2. Redistributions in binary form must reproduce the above copyright
509 * notice, this list of conditions and the following disclaimer in the
510 * documentation and/or other materials provided with the distribution.
511 *
512 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
513 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
514 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
515 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
516 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
517 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
518 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
519 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
520 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
521 * OF THE POSSIBILITY OF SUCH DAMAGE.
522 *
523 * Alternatively, the contents of this file may be used under the terms of
524 * the GNU General Public License ("GPL") version 2 or any later version,
525 * in which case the provisions of the GPL are applicable instead of
526 * the above. If you wish to allow the use of your version of this file
527 * only under the terms of the GPL and not to allow others to use your
528 * version of this file under the BSD license, indicate your decision
529 * by deleting the provisions above and replace them with the notice
530 * and other provisions required by the GPL. If you do not delete the
531 * provisions above, a recipient may use your version of this file under
532 * either the BSD or the GPL.
533 */
534
535#ifndef ECB_H
536#define ECB_H
537
538/* 16 bits major, 16 bits minor */
539#define ECB_VERSION 0x00010005
540
541#ifdef _WIN32
542 typedef signed char int8_t;
543 typedef unsigned char uint8_t;
544 typedef signed short int16_t;
545 typedef unsigned short uint16_t;
546 typedef signed int int32_t;
547 typedef unsigned int uint32_t;
262#if __GNUC__ >= 4 548 #if __GNUC__
549 typedef signed long long int64_t;
550 typedef unsigned long long uint64_t;
551 #else /* _MSC_VER || __BORLANDC__ */
552 typedef signed __int64 int64_t;
553 typedef unsigned __int64 uint64_t;
554 #endif
555 #ifdef _WIN64
556 #define ECB_PTRSIZE 8
557 typedef uint64_t uintptr_t;
558 typedef int64_t intptr_t;
559 #else
560 #define ECB_PTRSIZE 4
561 typedef uint32_t uintptr_t;
562 typedef int32_t intptr_t;
563 #endif
564#else
565 #include <inttypes.h>
566 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
567 #define ECB_PTRSIZE 8
568 #else
569 #define ECB_PTRSIZE 4
570 #endif
571#endif
572
573#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
574#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
575
576/* work around x32 idiocy by defining proper macros */
577#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
578 #if _ILP32
579 #define ECB_AMD64_X32 1
580 #else
581 #define ECB_AMD64 1
582 #endif
583#endif
584
585/* many compilers define _GNUC_ to some versions but then only implement
586 * what their idiot authors think are the "more important" extensions,
587 * causing enormous grief in return for some better fake benchmark numbers.
588 * or so.
589 * we try to detect these and simply assume they are not gcc - if they have
590 * an issue with that they should have done it right in the first place.
591 */
592#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
593 #define ECB_GCC_VERSION(major,minor) 0
594#else
595 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
596#endif
597
598#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
599
600#if __clang__ && defined __has_builtin
601 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
602#else
603 #define ECB_CLANG_BUILTIN(x) 0
604#endif
605
606#if __clang__ && defined __has_extension
607 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
608#else
609 #define ECB_CLANG_EXTENSION(x) 0
610#endif
611
612#define ECB_CPP (__cplusplus+0)
613#define ECB_CPP11 (__cplusplus >= 201103L)
614
615#if ECB_CPP
616 #define ECB_C 0
617 #define ECB_STDC_VERSION 0
618#else
619 #define ECB_C 1
620 #define ECB_STDC_VERSION __STDC_VERSION__
621#endif
622
623#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
624#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
625
626#if ECB_CPP
627 #define ECB_EXTERN_C extern "C"
628 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
629 #define ECB_EXTERN_C_END }
630#else
631 #define ECB_EXTERN_C extern
632 #define ECB_EXTERN_C_BEG
633 #define ECB_EXTERN_C_END
634#endif
635
636/*****************************************************************************/
637
638/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
639/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
640
641#if ECB_NO_THREADS
642 #define ECB_NO_SMP 1
643#endif
644
645#if ECB_NO_SMP
646 #define ECB_MEMORY_FENCE do { } while (0)
647#endif
648
649/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
650#if __xlC__ && ECB_CPP
651 #include <builtins.h>
652#endif
653
654#if 1400 <= _MSC_VER
655 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
656#endif
657
658#ifndef ECB_MEMORY_FENCE
659 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
660 #if __i386 || __i386__
661 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
662 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
663 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
664 #elif ECB_GCC_AMD64
665 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
666 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
667 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
668 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
669 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
670 #elif defined __ARM_ARCH_2__ \
671 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
672 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
673 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
674 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
675 || defined __ARM_ARCH_5TEJ__
676 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
677 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
678 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
679 || defined __ARM_ARCH_6T2__
680 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
681 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
682 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
683 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
684 #elif __aarch64__
685 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
686 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
687 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
688 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
689 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
690 #elif defined __s390__ || defined __s390x__
691 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
692 #elif defined __mips__
693 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
694 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
695 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
696 #elif defined __alpha__
697 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
698 #elif defined __hppa__
699 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
700 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
701 #elif defined __ia64__
702 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
703 #elif defined __m68k__
704 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
705 #elif defined __m88k__
706 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
707 #elif defined __sh__
708 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
709 #endif
710 #endif
711#endif
712
713#ifndef ECB_MEMORY_FENCE
714 #if ECB_GCC_VERSION(4,7)
715 /* see comment below (stdatomic.h) about the C11 memory model. */
716 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
717 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
718 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
719
720 #elif ECB_CLANG_EXTENSION(c_atomic)
721 /* see comment below (stdatomic.h) about the C11 memory model. */
722 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
723 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
724 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
725
726 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
727 #define ECB_MEMORY_FENCE __sync_synchronize ()
728 #elif _MSC_VER >= 1500 /* VC++ 2008 */
729 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
730 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
731 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
732 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
733 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
734 #elif _MSC_VER >= 1400 /* VC++ 2005 */
735 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
736 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
737 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
738 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
739 #elif defined _WIN32
740 #include <WinNT.h>
741 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
742 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
743 #include <mbarrier.h>
744 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
745 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
746 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
747 #elif __xlC__
748 #define ECB_MEMORY_FENCE __sync ()
749 #endif
750#endif
751
752#ifndef ECB_MEMORY_FENCE
753 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
754 /* we assume that these memory fences work on all variables/all memory accesses, */
755 /* not just C11 atomics and atomic accesses */
756 #include <stdatomic.h>
757 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
758 /* any fence other than seq_cst, which isn't very efficient for us. */
759 /* Why that is, we don't know - either the C11 memory model is quite useless */
760 /* for most usages, or gcc and clang have a bug */
761 /* I *currently* lean towards the latter, and inefficiently implement */
762 /* all three of ecb's fences as a seq_cst fence */
763 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
764 /* for all __atomic_thread_fence's except seq_cst */
765 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
766 #endif
767#endif
768
769#ifndef ECB_MEMORY_FENCE
770 #if !ECB_AVOID_PTHREADS
771 /*
772 * if you get undefined symbol references to pthread_mutex_lock,
773 * or failure to find pthread.h, then you should implement
774 * the ECB_MEMORY_FENCE operations for your cpu/compiler
775 * OR provide pthread.h and link against the posix thread library
776 * of your system.
777 */
778 #include <pthread.h>
779 #define ECB_NEEDS_PTHREADS 1
780 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
781
782 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
783 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
784 #endif
785#endif
786
787#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
788 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
789#endif
790
791#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
792 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
793#endif
794
795/*****************************************************************************/
796
797#if ECB_CPP
798 #define ecb_inline static inline
799#elif ECB_GCC_VERSION(2,5)
800 #define ecb_inline static __inline__
801#elif ECB_C99
802 #define ecb_inline static inline
803#else
804 #define ecb_inline static
805#endif
806
807#if ECB_GCC_VERSION(3,3)
808 #define ecb_restrict __restrict__
809#elif ECB_C99
810 #define ecb_restrict restrict
811#else
812 #define ecb_restrict
813#endif
814
815typedef int ecb_bool;
816
817#define ECB_CONCAT_(a, b) a ## b
818#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
819#define ECB_STRINGIFY_(a) # a
820#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
821#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
822
823#define ecb_function_ ecb_inline
824
825#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
826 #define ecb_attribute(attrlist) __attribute__ (attrlist)
827#else
828 #define ecb_attribute(attrlist)
829#endif
830
831#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
832 #define ecb_is_constant(expr) __builtin_constant_p (expr)
833#else
834 /* possible C11 impl for integral types
835 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
836 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
837
838 #define ecb_is_constant(expr) 0
839#endif
840
841#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
263# define expect(expr,value) __builtin_expect ((expr),(value)) 842 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
264# define noinline __attribute__ ((noinline))
265#else 843#else
266# define expect(expr,value) (expr) 844 #define ecb_expect(expr,value) (expr)
267# define noinline
268# if __STDC_VERSION__ < 199901L
269# define inline
270# endif 845#endif
271#endif
272 846
847#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
848 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
849#else
850 #define ecb_prefetch(addr,rw,locality)
851#endif
852
853/* no emulation for ecb_decltype */
854#if ECB_CPP11
855 // older implementations might have problems with decltype(x)::type, work around it
856 template<class T> struct ecb_decltype_t { typedef T type; };
857 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
858#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
859 #define ecb_decltype(x) __typeof__ (x)
860#endif
861
862#if _MSC_VER >= 1300
863 #define ecb_deprecated __declspec (deprecated)
864#else
865 #define ecb_deprecated ecb_attribute ((__deprecated__))
866#endif
867
868#if _MSC_VER >= 1500
869 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
870#elif ECB_GCC_VERSION(4,5)
871 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
872#else
873 #define ecb_deprecated_message(msg) ecb_deprecated
874#endif
875
876#if _MSC_VER >= 1400
877 #define ecb_noinline __declspec (noinline)
878#else
879 #define ecb_noinline ecb_attribute ((__noinline__))
880#endif
881
882#define ecb_unused ecb_attribute ((__unused__))
883#define ecb_const ecb_attribute ((__const__))
884#define ecb_pure ecb_attribute ((__pure__))
885
886#if ECB_C11 || __IBMC_NORETURN
887 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
888 #define ecb_noreturn _Noreturn
889#elif ECB_CPP11
890 #define ecb_noreturn [[noreturn]]
891#elif _MSC_VER >= 1200
892 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
893 #define ecb_noreturn __declspec (noreturn)
894#else
895 #define ecb_noreturn ecb_attribute ((__noreturn__))
896#endif
897
898#if ECB_GCC_VERSION(4,3)
899 #define ecb_artificial ecb_attribute ((__artificial__))
900 #define ecb_hot ecb_attribute ((__hot__))
901 #define ecb_cold ecb_attribute ((__cold__))
902#else
903 #define ecb_artificial
904 #define ecb_hot
905 #define ecb_cold
906#endif
907
908/* put around conditional expressions if you are very sure that the */
909/* expression is mostly true or mostly false. note that these return */
910/* booleans, not the expression. */
273#define expect_false(expr) expect ((expr) != 0, 0) 911#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
274#define expect_true(expr) expect ((expr) != 0, 1) 912#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
913/* for compatibility to the rest of the world */
914#define ecb_likely(expr) ecb_expect_true (expr)
915#define ecb_unlikely(expr) ecb_expect_false (expr)
916
917/* count trailing zero bits and count # of one bits */
918#if ECB_GCC_VERSION(3,4) \
919 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
920 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
921 && ECB_CLANG_BUILTIN(__builtin_popcount))
922 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
923 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
924 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
925 #define ecb_ctz32(x) __builtin_ctz (x)
926 #define ecb_ctz64(x) __builtin_ctzll (x)
927 #define ecb_popcount32(x) __builtin_popcount (x)
928 /* no popcountll */
929#else
930 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
931 ecb_function_ ecb_const int
932 ecb_ctz32 (uint32_t x)
933 {
934#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
935 unsigned long r;
936 _BitScanForward (&r, x);
937 return (int)r;
938#else
939 int r = 0;
940
941 x &= ~x + 1; /* this isolates the lowest bit */
942
943#if ECB_branchless_on_i386
944 r += !!(x & 0xaaaaaaaa) << 0;
945 r += !!(x & 0xcccccccc) << 1;
946 r += !!(x & 0xf0f0f0f0) << 2;
947 r += !!(x & 0xff00ff00) << 3;
948 r += !!(x & 0xffff0000) << 4;
949#else
950 if (x & 0xaaaaaaaa) r += 1;
951 if (x & 0xcccccccc) r += 2;
952 if (x & 0xf0f0f0f0) r += 4;
953 if (x & 0xff00ff00) r += 8;
954 if (x & 0xffff0000) r += 16;
955#endif
956
957 return r;
958#endif
959 }
960
961 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
962 ecb_function_ ecb_const int
963 ecb_ctz64 (uint64_t x)
964 {
965#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
966 unsigned long r;
967 _BitScanForward64 (&r, x);
968 return (int)r;
969#else
970 int shift = x & 0xffffffff ? 0 : 32;
971 return ecb_ctz32 (x >> shift) + shift;
972#endif
973 }
974
975 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
976 ecb_function_ ecb_const int
977 ecb_popcount32 (uint32_t x)
978 {
979 x -= (x >> 1) & 0x55555555;
980 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
981 x = ((x >> 4) + x) & 0x0f0f0f0f;
982 x *= 0x01010101;
983
984 return x >> 24;
985 }
986
987 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
988 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
989 {
990#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
991 unsigned long r;
992 _BitScanReverse (&r, x);
993 return (int)r;
994#else
995 int r = 0;
996
997 if (x >> 16) { x >>= 16; r += 16; }
998 if (x >> 8) { x >>= 8; r += 8; }
999 if (x >> 4) { x >>= 4; r += 4; }
1000 if (x >> 2) { x >>= 2; r += 2; }
1001 if (x >> 1) { r += 1; }
1002
1003 return r;
1004#endif
1005 }
1006
1007 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1008 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1009 {
1010#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1011 unsigned long r;
1012 _BitScanReverse64 (&r, x);
1013 return (int)r;
1014#else
1015 int r = 0;
1016
1017 if (x >> 32) { x >>= 32; r += 32; }
1018
1019 return r + ecb_ld32 (x);
1020#endif
1021 }
1022#endif
1023
1024ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1025ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1026ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1027ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1028
1029ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1030ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1031{
1032 return ( (x * 0x0802U & 0x22110U)
1033 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1034}
1035
1036ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1037ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1038{
1039 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1040 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1041 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1042 x = ( x >> 8 ) | ( x << 8);
1043
1044 return x;
1045}
1046
1047ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1048ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1049{
1050 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1051 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1052 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1053 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1054 x = ( x >> 16 ) | ( x << 16);
1055
1056 return x;
1057}
1058
1059/* popcount64 is only available on 64 bit cpus as gcc builtin */
1060/* so for this version we are lazy */
1061ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1062ecb_function_ ecb_const int
1063ecb_popcount64 (uint64_t x)
1064{
1065 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1066}
1067
1068ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1069ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1070ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1071ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1072ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1073ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1074ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1075ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1076
1077ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1078ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1079ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1080ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1081ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1082ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1083ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1084ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1085
1086#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1087 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1088 #define ecb_bswap16(x) __builtin_bswap16 (x)
1089 #else
1090 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1091 #endif
1092 #define ecb_bswap32(x) __builtin_bswap32 (x)
1093 #define ecb_bswap64(x) __builtin_bswap64 (x)
1094#elif _MSC_VER
1095 #include <stdlib.h>
1096 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1097 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1098 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1099#else
1100 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1101 ecb_function_ ecb_const uint16_t
1102 ecb_bswap16 (uint16_t x)
1103 {
1104 return ecb_rotl16 (x, 8);
1105 }
1106
1107 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1108 ecb_function_ ecb_const uint32_t
1109 ecb_bswap32 (uint32_t x)
1110 {
1111 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1112 }
1113
1114 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1115 ecb_function_ ecb_const uint64_t
1116 ecb_bswap64 (uint64_t x)
1117 {
1118 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1119 }
1120#endif
1121
1122#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1123 #define ecb_unreachable() __builtin_unreachable ()
1124#else
1125 /* this seems to work fine, but gcc always emits a warning for it :/ */
1126 ecb_inline ecb_noreturn void ecb_unreachable (void);
1127 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1128#endif
1129
1130/* try to tell the compiler that some condition is definitely true */
1131#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1132
1133ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1134ecb_inline ecb_const uint32_t
1135ecb_byteorder_helper (void)
1136{
1137 /* the union code still generates code under pressure in gcc, */
1138 /* but less than using pointers, and always seems to */
1139 /* successfully return a constant. */
1140 /* the reason why we have this horrible preprocessor mess */
1141 /* is to avoid it in all cases, at least on common architectures */
1142 /* or when using a recent enough gcc version (>= 4.6) */
1143#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1144 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1145 #define ECB_LITTLE_ENDIAN 1
1146 return 0x44332211;
1147#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1148 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1149 #define ECB_BIG_ENDIAN 1
1150 return 0x11223344;
1151#else
1152 union
1153 {
1154 uint8_t c[4];
1155 uint32_t u;
1156 } u = { 0x11, 0x22, 0x33, 0x44 };
1157 return u.u;
1158#endif
1159}
1160
1161ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1162ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1163ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1164ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1165
1166#if ECB_GCC_VERSION(3,0) || ECB_C99
1167 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1168#else
1169 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1170#endif
1171
1172#if ECB_CPP
1173 template<typename T>
1174 static inline T ecb_div_rd (T val, T div)
1175 {
1176 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1177 }
1178 template<typename T>
1179 static inline T ecb_div_ru (T val, T div)
1180 {
1181 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1182 }
1183#else
1184 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1185 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1186#endif
1187
1188#if ecb_cplusplus_does_not_suck
1189 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1190 template<typename T, int N>
1191 static inline int ecb_array_length (const T (&arr)[N])
1192 {
1193 return N;
1194 }
1195#else
1196 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1197#endif
1198
1199ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1200ecb_function_ ecb_const uint32_t
1201ecb_binary16_to_binary32 (uint32_t x)
1202{
1203 unsigned int s = (x & 0x8000) << (31 - 15);
1204 int e = (x >> 10) & 0x001f;
1205 unsigned int m = x & 0x03ff;
1206
1207 if (ecb_expect_false (e == 31))
1208 /* infinity or NaN */
1209 e = 255 - (127 - 15);
1210 else if (ecb_expect_false (!e))
1211 {
1212 if (ecb_expect_true (!m))
1213 /* zero, handled by code below by forcing e to 0 */
1214 e = 0 - (127 - 15);
1215 else
1216 {
1217 /* subnormal, renormalise */
1218 unsigned int s = 10 - ecb_ld32 (m);
1219
1220 m = (m << s) & 0x3ff; /* mask implicit bit */
1221 e -= s - 1;
1222 }
1223 }
1224
1225 /* e and m now are normalised, or zero, (or inf or nan) */
1226 e += 127 - 15;
1227
1228 return s | (e << 23) | (m << (23 - 10));
1229}
1230
1231ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1232ecb_function_ ecb_const uint16_t
1233ecb_binary32_to_binary16 (uint32_t x)
1234{
1235 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1236 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1237 unsigned int m = x & 0x007fffff;
1238
1239 x &= 0x7fffffff;
1240
1241 /* if it's within range of binary16 normals, use fast path */
1242 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1243 {
1244 /* mantissa round-to-even */
1245 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1246
1247 /* handle overflow */
1248 if (ecb_expect_false (m >= 0x00800000))
1249 {
1250 m >>= 1;
1251 e += 1;
1252 }
1253
1254 return s | (e << 10) | (m >> (23 - 10));
1255 }
1256
1257 /* handle large numbers and infinity */
1258 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1259 return s | 0x7c00;
1260
1261 /* handle zero, subnormals and small numbers */
1262 if (ecb_expect_true (x < 0x38800000))
1263 {
1264 /* zero */
1265 if (ecb_expect_true (!x))
1266 return s;
1267
1268 /* handle subnormals */
1269
1270 /* too small, will be zero */
1271 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1272 return s;
1273
1274 m |= 0x00800000; /* make implicit bit explicit */
1275
1276 /* very tricky - we need to round to the nearest e (+10) bit value */
1277 {
1278 unsigned int bits = 14 - e;
1279 unsigned int half = (1 << (bits - 1)) - 1;
1280 unsigned int even = (m >> bits) & 1;
1281
1282 /* if this overflows, we will end up with a normalised number */
1283 m = (m + half + even) >> bits;
1284 }
1285
1286 return s | m;
1287 }
1288
1289 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1290 m >>= 13;
1291
1292 return s | 0x7c00 | m | !m;
1293}
1294
1295/*******************************************************************************/
1296/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1297
1298/* basically, everything uses "ieee pure-endian" floating point numbers */
1299/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1300#if 0 \
1301 || __i386 || __i386__ \
1302 || ECB_GCC_AMD64 \
1303 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1304 || defined __s390__ || defined __s390x__ \
1305 || defined __mips__ \
1306 || defined __alpha__ \
1307 || defined __hppa__ \
1308 || defined __ia64__ \
1309 || defined __m68k__ \
1310 || defined __m88k__ \
1311 || defined __sh__ \
1312 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1313 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1314 || defined __aarch64__
1315 #define ECB_STDFP 1
1316 #include <string.h> /* for memcpy */
1317#else
1318 #define ECB_STDFP 0
1319#endif
1320
1321#ifndef ECB_NO_LIBM
1322
1323 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1324
1325 /* only the oldest of old doesn't have this one. solaris. */
1326 #ifdef INFINITY
1327 #define ECB_INFINITY INFINITY
1328 #else
1329 #define ECB_INFINITY HUGE_VAL
1330 #endif
1331
1332 #ifdef NAN
1333 #define ECB_NAN NAN
1334 #else
1335 #define ECB_NAN ECB_INFINITY
1336 #endif
1337
1338 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1339 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1340 #define ecb_frexpf(x,e) frexpf ((x), (e))
1341 #else
1342 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1343 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1344 #endif
1345
1346 /* convert a float to ieee single/binary32 */
1347 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1348 ecb_function_ ecb_const uint32_t
1349 ecb_float_to_binary32 (float x)
1350 {
1351 uint32_t r;
1352
1353 #if ECB_STDFP
1354 memcpy (&r, &x, 4);
1355 #else
1356 /* slow emulation, works for anything but -0 */
1357 uint32_t m;
1358 int e;
1359
1360 if (x == 0e0f ) return 0x00000000U;
1361 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1362 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1363 if (x != x ) return 0x7fbfffffU;
1364
1365 m = ecb_frexpf (x, &e) * 0x1000000U;
1366
1367 r = m & 0x80000000U;
1368
1369 if (r)
1370 m = -m;
1371
1372 if (e <= -126)
1373 {
1374 m &= 0xffffffU;
1375 m >>= (-125 - e);
1376 e = -126;
1377 }
1378
1379 r |= (e + 126) << 23;
1380 r |= m & 0x7fffffU;
1381 #endif
1382
1383 return r;
1384 }
1385
1386 /* converts an ieee single/binary32 to a float */
1387 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1388 ecb_function_ ecb_const float
1389 ecb_binary32_to_float (uint32_t x)
1390 {
1391 float r;
1392
1393 #if ECB_STDFP
1394 memcpy (&r, &x, 4);
1395 #else
1396 /* emulation, only works for normals and subnormals and +0 */
1397 int neg = x >> 31;
1398 int e = (x >> 23) & 0xffU;
1399
1400 x &= 0x7fffffU;
1401
1402 if (e)
1403 x |= 0x800000U;
1404 else
1405 e = 1;
1406
1407 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1408 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1409
1410 r = neg ? -r : r;
1411 #endif
1412
1413 return r;
1414 }
1415
1416 /* convert a double to ieee double/binary64 */
1417 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1418 ecb_function_ ecb_const uint64_t
1419 ecb_double_to_binary64 (double x)
1420 {
1421 uint64_t r;
1422
1423 #if ECB_STDFP
1424 memcpy (&r, &x, 8);
1425 #else
1426 /* slow emulation, works for anything but -0 */
1427 uint64_t m;
1428 int e;
1429
1430 if (x == 0e0 ) return 0x0000000000000000U;
1431 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1432 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1433 if (x != x ) return 0X7ff7ffffffffffffU;
1434
1435 m = frexp (x, &e) * 0x20000000000000U;
1436
1437 r = m & 0x8000000000000000;;
1438
1439 if (r)
1440 m = -m;
1441
1442 if (e <= -1022)
1443 {
1444 m &= 0x1fffffffffffffU;
1445 m >>= (-1021 - e);
1446 e = -1022;
1447 }
1448
1449 r |= ((uint64_t)(e + 1022)) << 52;
1450 r |= m & 0xfffffffffffffU;
1451 #endif
1452
1453 return r;
1454 }
1455
1456 /* converts an ieee double/binary64 to a double */
1457 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1458 ecb_function_ ecb_const double
1459 ecb_binary64_to_double (uint64_t x)
1460 {
1461 double r;
1462
1463 #if ECB_STDFP
1464 memcpy (&r, &x, 8);
1465 #else
1466 /* emulation, only works for normals and subnormals and +0 */
1467 int neg = x >> 63;
1468 int e = (x >> 52) & 0x7ffU;
1469
1470 x &= 0xfffffffffffffU;
1471
1472 if (e)
1473 x |= 0x10000000000000U;
1474 else
1475 e = 1;
1476
1477 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1478 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1479
1480 r = neg ? -r : r;
1481 #endif
1482
1483 return r;
1484 }
1485
1486 /* convert a float to ieee half/binary16 */
1487 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1488 ecb_function_ ecb_const uint16_t
1489 ecb_float_to_binary16 (float x)
1490 {
1491 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1492 }
1493
1494 /* convert an ieee half/binary16 to float */
1495 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1496 ecb_function_ ecb_const float
1497 ecb_binary16_to_float (uint16_t x)
1498 {
1499 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1500 }
1501
1502#endif
1503
1504#endif
1505
1506/* ECB.H END */
1507
1508#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1509/* if your architecture doesn't need memory fences, e.g. because it is
1510 * single-cpu/core, or if you use libev in a project that doesn't use libev
1511 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1512 * libev, in which cases the memory fences become nops.
1513 * alternatively, you can remove this #error and link against libpthread,
1514 * which will then provide the memory fences.
1515 */
1516# error "memory fences not defined for your architecture, please report"
1517#endif
1518
1519#ifndef ECB_MEMORY_FENCE
1520# define ECB_MEMORY_FENCE do { } while (0)
1521# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1522# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1523#endif
1524
1525#define expect_false(cond) ecb_expect_false (cond)
1526#define expect_true(cond) ecb_expect_true (cond)
1527#define noinline ecb_noinline
1528
275#define inline_size static inline 1529#define inline_size ecb_inline
276 1530
277#if EV_MINIMAL 1531#if EV_FEATURE_CODE
278# define inline_speed static noinline
279#else
280# define inline_speed static inline 1532# define inline_speed ecb_inline
1533#else
1534# define inline_speed noinline static
281#endif 1535#endif
282 1536
283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1537#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1538
1539#if EV_MINPRI == EV_MAXPRI
1540# define ABSPRI(w) (((W)w), 0)
1541#else
284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1542# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1543#endif
285 1544
286#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1545#define EMPTY /* required for microsofts broken pseudo-c compiler */
287#define EMPTY2(a,b) /* used to suppress some warnings */ 1546#define EMPTY2(a,b) /* used to suppress some warnings */
288 1547
289typedef ev_watcher *W; 1548typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 1549typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 1550typedef ev_watcher_time *WT;
292 1551
1552#define ev_active(w) ((W)(w))->active
1553#define ev_at(w) ((WT)(w))->at
1554
1555#if EV_USE_REALTIME
1556/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1557/* giving it a reasonably high chance of working on typical architectures */
1558static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1559#endif
1560
293#if EV_USE_MONOTONIC 1561#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1562static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1563#endif
1564
1565#ifndef EV_FD_TO_WIN32_HANDLE
1566# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1567#endif
1568#ifndef EV_WIN32_HANDLE_TO_FD
1569# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1570#endif
1571#ifndef EV_WIN32_CLOSE_FD
1572# define EV_WIN32_CLOSE_FD(fd) close (fd)
297#endif 1573#endif
298 1574
299#ifdef _WIN32 1575#ifdef _WIN32
300# include "ev_win32.c" 1576# include "ev_win32.c"
301#endif 1577#endif
302 1578
303/*****************************************************************************/ 1579/*****************************************************************************/
304 1580
1581/* define a suitable floor function (only used by periodics atm) */
1582
1583#if EV_USE_FLOOR
1584# include <math.h>
1585# define ev_floor(v) floor (v)
1586#else
1587
1588#include <float.h>
1589
1590/* a floor() replacement function, should be independent of ev_tstamp type */
1591noinline
1592static ev_tstamp
1593ev_floor (ev_tstamp v)
1594{
1595 /* the choice of shift factor is not terribly important */
1596#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1597 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1598#else
1599 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1600#endif
1601
1602 /* argument too large for an unsigned long? */
1603 if (expect_false (v >= shift))
1604 {
1605 ev_tstamp f;
1606
1607 if (v == v - 1.)
1608 return v; /* very large number */
1609
1610 f = shift * ev_floor (v * (1. / shift));
1611 return f + ev_floor (v - f);
1612 }
1613
1614 /* special treatment for negative args? */
1615 if (expect_false (v < 0.))
1616 {
1617 ev_tstamp f = -ev_floor (-v);
1618
1619 return f - (f == v ? 0 : 1);
1620 }
1621
1622 /* fits into an unsigned long */
1623 return (unsigned long)v;
1624}
1625
1626#endif
1627
1628/*****************************************************************************/
1629
1630#ifdef __linux
1631# include <sys/utsname.h>
1632#endif
1633
1634noinline ecb_cold
1635static unsigned int
1636ev_linux_version (void)
1637{
1638#ifdef __linux
1639 unsigned int v = 0;
1640 struct utsname buf;
1641 int i;
1642 char *p = buf.release;
1643
1644 if (uname (&buf))
1645 return 0;
1646
1647 for (i = 3+1; --i; )
1648 {
1649 unsigned int c = 0;
1650
1651 for (;;)
1652 {
1653 if (*p >= '0' && *p <= '9')
1654 c = c * 10 + *p++ - '0';
1655 else
1656 {
1657 p += *p == '.';
1658 break;
1659 }
1660 }
1661
1662 v = (v << 8) | c;
1663 }
1664
1665 return v;
1666#else
1667 return 0;
1668#endif
1669}
1670
1671/*****************************************************************************/
1672
1673#if EV_AVOID_STDIO
1674noinline ecb_cold
1675static void
1676ev_printerr (const char *msg)
1677{
1678 write (STDERR_FILENO, msg, strlen (msg));
1679}
1680#endif
1681
305static void (*syserr_cb)(const char *msg); 1682static void (*syserr_cb)(const char *msg) EV_THROW;
306 1683
1684ecb_cold
307void 1685void
308ev_set_syserr_cb (void (*cb)(const char *msg)) 1686ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
309{ 1687{
310 syserr_cb = cb; 1688 syserr_cb = cb;
311} 1689}
312 1690
313static void noinline 1691noinline ecb_cold
1692static void
314syserr (const char *msg) 1693ev_syserr (const char *msg)
315{ 1694{
316 if (!msg) 1695 if (!msg)
317 msg = "(libev) system error"; 1696 msg = "(libev) system error";
318 1697
319 if (syserr_cb) 1698 if (syserr_cb)
320 syserr_cb (msg); 1699 syserr_cb (msg);
321 else 1700 else
322 { 1701 {
1702#if EV_AVOID_STDIO
1703 ev_printerr (msg);
1704 ev_printerr (": ");
1705 ev_printerr (strerror (errno));
1706 ev_printerr ("\n");
1707#else
323 perror (msg); 1708 perror (msg);
1709#endif
324 abort (); 1710 abort ();
325 } 1711 }
326} 1712}
327 1713
1714static void *
1715ev_realloc_emul (void *ptr, long size) EV_THROW
1716{
1717 /* some systems, notably openbsd and darwin, fail to properly
1718 * implement realloc (x, 0) (as required by both ansi c-89 and
1719 * the single unix specification, so work around them here.
1720 * recently, also (at least) fedora and debian started breaking it,
1721 * despite documenting it otherwise.
1722 */
1723
1724 if (size)
1725 return realloc (ptr, size);
1726
1727 free (ptr);
1728 return 0;
1729}
1730
328static void *(*alloc)(void *ptr, long size); 1731static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
329 1732
1733ecb_cold
330void 1734void
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 1735ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
332{ 1736{
333 alloc = cb; 1737 alloc = cb;
334} 1738}
335 1739
336inline_speed void * 1740inline_speed void *
337ev_realloc (void *ptr, long size) 1741ev_realloc (void *ptr, long size)
338{ 1742{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1743 ptr = alloc (ptr, size);
340 1744
341 if (!ptr && size) 1745 if (!ptr && size)
342 { 1746 {
1747#if EV_AVOID_STDIO
1748 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1749#else
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1750 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1751#endif
344 abort (); 1752 abort ();
345 } 1753 }
346 1754
347 return ptr; 1755 return ptr;
348} 1756}
350#define ev_malloc(size) ev_realloc (0, (size)) 1758#define ev_malloc(size) ev_realloc (0, (size))
351#define ev_free(ptr) ev_realloc ((ptr), 0) 1759#define ev_free(ptr) ev_realloc ((ptr), 0)
352 1760
353/*****************************************************************************/ 1761/*****************************************************************************/
354 1762
1763/* set in reify when reification needed */
1764#define EV_ANFD_REIFY 1
1765
1766/* file descriptor info structure */
355typedef struct 1767typedef struct
356{ 1768{
357 WL head; 1769 WL head;
358 unsigned char events; 1770 unsigned char events; /* the events watched for */
1771 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1772 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
359 unsigned char reify; 1773 unsigned char unused;
1774#if EV_USE_EPOLL
1775 unsigned int egen; /* generation counter to counter epoll bugs */
1776#endif
360#if EV_SELECT_IS_WINSOCKET 1777#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
361 SOCKET handle; 1778 SOCKET handle;
362#endif 1779#endif
1780#if EV_USE_IOCP
1781 OVERLAPPED or, ow;
1782#endif
363} ANFD; 1783} ANFD;
364 1784
1785/* stores the pending event set for a given watcher */
365typedef struct 1786typedef struct
366{ 1787{
367 W w; 1788 W w;
368 int events; 1789 int events; /* the pending event set for the given watcher */
369} ANPENDING; 1790} ANPENDING;
370 1791
371#if EV_USE_INOTIFY 1792#if EV_USE_INOTIFY
1793/* hash table entry per inotify-id */
372typedef struct 1794typedef struct
373{ 1795{
374 WL head; 1796 WL head;
375} ANFS; 1797} ANFS;
1798#endif
1799
1800/* Heap Entry */
1801#if EV_HEAP_CACHE_AT
1802 /* a heap element */
1803 typedef struct {
1804 ev_tstamp at;
1805 WT w;
1806 } ANHE;
1807
1808 #define ANHE_w(he) (he).w /* access watcher, read-write */
1809 #define ANHE_at(he) (he).at /* access cached at, read-only */
1810 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1811#else
1812 /* a heap element */
1813 typedef WT ANHE;
1814
1815 #define ANHE_w(he) (he)
1816 #define ANHE_at(he) (he)->at
1817 #define ANHE_at_cache(he)
376#endif 1818#endif
377 1819
378#if EV_MULTIPLICITY 1820#if EV_MULTIPLICITY
379 1821
380 struct ev_loop 1822 struct ev_loop
386 #undef VAR 1828 #undef VAR
387 }; 1829 };
388 #include "ev_wrap.h" 1830 #include "ev_wrap.h"
389 1831
390 static struct ev_loop default_loop_struct; 1832 static struct ev_loop default_loop_struct;
391 struct ev_loop *ev_default_loop_ptr; 1833 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
392 1834
393#else 1835#else
394 1836
395 ev_tstamp ev_rt_now; 1837 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
396 #define VAR(name,decl) static decl; 1838 #define VAR(name,decl) static decl;
397 #include "ev_vars.h" 1839 #include "ev_vars.h"
398 #undef VAR 1840 #undef VAR
399 1841
400 static int ev_default_loop_ptr; 1842 static int ev_default_loop_ptr;
401 1843
402#endif 1844#endif
403 1845
1846#if EV_FEATURE_API
1847# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1848# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1849# define EV_INVOKE_PENDING invoke_cb (EV_A)
1850#else
1851# define EV_RELEASE_CB (void)0
1852# define EV_ACQUIRE_CB (void)0
1853# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1854#endif
1855
1856#define EVBREAK_RECURSE 0x80
1857
404/*****************************************************************************/ 1858/*****************************************************************************/
405 1859
1860#ifndef EV_HAVE_EV_TIME
406ev_tstamp 1861ev_tstamp
407ev_time (void) 1862ev_time (void) EV_THROW
408{ 1863{
409#if EV_USE_REALTIME 1864#if EV_USE_REALTIME
1865 if (expect_true (have_realtime))
1866 {
410 struct timespec ts; 1867 struct timespec ts;
411 clock_gettime (CLOCK_REALTIME, &ts); 1868 clock_gettime (CLOCK_REALTIME, &ts);
412 return ts.tv_sec + ts.tv_nsec * 1e-9; 1869 return ts.tv_sec + ts.tv_nsec * 1e-9;
413#else 1870 }
1871#endif
1872
414 struct timeval tv; 1873 struct timeval tv;
415 gettimeofday (&tv, 0); 1874 gettimeofday (&tv, 0);
416 return tv.tv_sec + tv.tv_usec * 1e-6; 1875 return tv.tv_sec + tv.tv_usec * 1e-6;
417#endif
418} 1876}
1877#endif
419 1878
420ev_tstamp inline_size 1879inline_size ev_tstamp
421get_clock (void) 1880get_clock (void)
422{ 1881{
423#if EV_USE_MONOTONIC 1882#if EV_USE_MONOTONIC
424 if (expect_true (have_monotonic)) 1883 if (expect_true (have_monotonic))
425 { 1884 {
432 return ev_time (); 1891 return ev_time ();
433} 1892}
434 1893
435#if EV_MULTIPLICITY 1894#if EV_MULTIPLICITY
436ev_tstamp 1895ev_tstamp
437ev_now (EV_P) 1896ev_now (EV_P) EV_THROW
438{ 1897{
439 return ev_rt_now; 1898 return ev_rt_now;
440} 1899}
441#endif 1900#endif
442 1901
443void 1902void
444ev_sleep (ev_tstamp delay) 1903ev_sleep (ev_tstamp delay) EV_THROW
445{ 1904{
446 if (delay > 0.) 1905 if (delay > 0.)
447 { 1906 {
448#if EV_USE_NANOSLEEP 1907#if EV_USE_NANOSLEEP
449 struct timespec ts; 1908 struct timespec ts;
450 1909
451 ts.tv_sec = (time_t)delay; 1910 EV_TS_SET (ts, delay);
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0); 1911 nanosleep (&ts, 0);
455#elif defined(_WIN32) 1912#elif defined _WIN32
1913 /* maybe this should round up, as ms is very low resolution */
1914 /* compared to select (µs) or nanosleep (ns) */
456 Sleep (delay * 1e3); 1915 Sleep ((unsigned long)(delay * 1e3));
457#else 1916#else
458 struct timeval tv; 1917 struct timeval tv;
459 1918
460 tv.tv_sec = (time_t)delay; 1919 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1920 /* something not guaranteed by newer posix versions, but guaranteed */
462 1921 /* by older ones */
1922 EV_TV_SET (tv, delay);
463 select (0, 0, 0, 0, &tv); 1923 select (0, 0, 0, 0, &tv);
464#endif 1924#endif
465 } 1925 }
466} 1926}
467 1927
468/*****************************************************************************/ 1928/*****************************************************************************/
469 1929
470int inline_size 1930#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1931
1932/* find a suitable new size for the given array, */
1933/* hopefully by rounding to a nice-to-malloc size */
1934inline_size int
471array_nextsize (int elem, int cur, int cnt) 1935array_nextsize (int elem, int cur, int cnt)
472{ 1936{
473 int ncur = cur + 1; 1937 int ncur = cur + 1;
474 1938
475 do 1939 do
476 ncur <<= 1; 1940 ncur <<= 1;
477 while (cnt > ncur); 1941 while (cnt > ncur);
478 1942
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 1943 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
480 if (elem * ncur > 4096) 1944 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 1945 {
482 ncur *= elem; 1946 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 1947 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 1948 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 1949 ncur /= elem;
486 } 1950 }
487 1951
488 return ncur; 1952 return ncur;
489} 1953}
490 1954
491static noinline void * 1955noinline ecb_cold
1956static void *
492array_realloc (int elem, void *base, int *cur, int cnt) 1957array_realloc (int elem, void *base, int *cur, int cnt)
493{ 1958{
494 *cur = array_nextsize (elem, *cur, cnt); 1959 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur); 1960 return ev_realloc (base, elem * *cur);
496} 1961}
1962
1963#define array_init_zero(base,count) \
1964 memset ((void *)(base), 0, sizeof (*(base)) * (count))
497 1965
498#define array_needsize(type,base,cur,cnt,init) \ 1966#define array_needsize(type,base,cur,cnt,init) \
499 if (expect_false ((cnt) > (cur))) \ 1967 if (expect_false ((cnt) > (cur))) \
500 { \ 1968 { \
501 int ocur_ = (cur); \ 1969 ecb_unused int ocur_ = (cur); \
502 (base) = (type *)array_realloc \ 1970 (base) = (type *)array_realloc \
503 (sizeof (type), (base), &(cur), (cnt)); \ 1971 (sizeof (type), (base), &(cur), (cnt)); \
504 init ((base) + (ocur_), (cur) - ocur_); \ 1972 init ((base) + (ocur_), (cur) - ocur_); \
505 } 1973 }
506 1974
513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1981 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
514 } 1982 }
515#endif 1983#endif
516 1984
517#define array_free(stem, idx) \ 1985#define array_free(stem, idx) \
518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1986 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
519 1987
520/*****************************************************************************/ 1988/*****************************************************************************/
521 1989
1990/* dummy callback for pending events */
522void noinline 1991noinline
1992static void
1993pendingcb (EV_P_ ev_prepare *w, int revents)
1994{
1995}
1996
1997noinline
1998void
523ev_feed_event (EV_P_ void *w, int revents) 1999ev_feed_event (EV_P_ void *w, int revents) EV_THROW
524{ 2000{
525 W w_ = (W)w; 2001 W w_ = (W)w;
526 int pri = ABSPRI (w_); 2002 int pri = ABSPRI (w_);
527 2003
528 if (expect_false (w_->pending)) 2004 if (expect_false (w_->pending))
532 w_->pending = ++pendingcnt [pri]; 2008 w_->pending = ++pendingcnt [pri];
533 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 2009 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
534 pendings [pri][w_->pending - 1].w = w_; 2010 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents; 2011 pendings [pri][w_->pending - 1].events = revents;
536 } 2012 }
537}
538 2013
539void inline_speed 2014 pendingpri = NUMPRI - 1;
2015}
2016
2017inline_speed void
2018feed_reverse (EV_P_ W w)
2019{
2020 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
2021 rfeeds [rfeedcnt++] = w;
2022}
2023
2024inline_size void
2025feed_reverse_done (EV_P_ int revents)
2026{
2027 do
2028 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2029 while (rfeedcnt);
2030}
2031
2032inline_speed void
540queue_events (EV_P_ W *events, int eventcnt, int type) 2033queue_events (EV_P_ W *events, int eventcnt, int type)
541{ 2034{
542 int i; 2035 int i;
543 2036
544 for (i = 0; i < eventcnt; ++i) 2037 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type); 2038 ev_feed_event (EV_A_ events [i], type);
546} 2039}
547 2040
548/*****************************************************************************/ 2041/*****************************************************************************/
549 2042
550void inline_size 2043inline_speed void
551anfds_init (ANFD *base, int count)
552{
553 while (count--)
554 {
555 base->head = 0;
556 base->events = EV_NONE;
557 base->reify = 0;
558
559 ++base;
560 }
561}
562
563void inline_speed
564fd_event (EV_P_ int fd, int revents) 2044fd_event_nocheck (EV_P_ int fd, int revents)
565{ 2045{
566 ANFD *anfd = anfds + fd; 2046 ANFD *anfd = anfds + fd;
567 ev_io *w; 2047 ev_io *w;
568 2048
569 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2049 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
573 if (ev) 2053 if (ev)
574 ev_feed_event (EV_A_ (W)w, ev); 2054 ev_feed_event (EV_A_ (W)w, ev);
575 } 2055 }
576} 2056}
577 2057
2058/* do not submit kernel events for fds that have reify set */
2059/* because that means they changed while we were polling for new events */
2060inline_speed void
2061fd_event (EV_P_ int fd, int revents)
2062{
2063 ANFD *anfd = anfds + fd;
2064
2065 if (expect_true (!anfd->reify))
2066 fd_event_nocheck (EV_A_ fd, revents);
2067}
2068
578void 2069void
579ev_feed_fd_event (EV_P_ int fd, int revents) 2070ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
580{ 2071{
581 if (fd >= 0 && fd < anfdmax) 2072 if (fd >= 0 && fd < anfdmax)
582 fd_event (EV_A_ fd, revents); 2073 fd_event_nocheck (EV_A_ fd, revents);
583} 2074}
584 2075
585void inline_size 2076/* make sure the external fd watch events are in-sync */
2077/* with the kernel/libev internal state */
2078inline_size void
586fd_reify (EV_P) 2079fd_reify (EV_P)
587{ 2080{
588 int i; 2081 int i;
2082
2083#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2084 for (i = 0; i < fdchangecnt; ++i)
2085 {
2086 int fd = fdchanges [i];
2087 ANFD *anfd = anfds + fd;
2088
2089 if (anfd->reify & EV__IOFDSET && anfd->head)
2090 {
2091 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2092
2093 if (handle != anfd->handle)
2094 {
2095 unsigned long arg;
2096
2097 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2098
2099 /* handle changed, but fd didn't - we need to do it in two steps */
2100 backend_modify (EV_A_ fd, anfd->events, 0);
2101 anfd->events = 0;
2102 anfd->handle = handle;
2103 }
2104 }
2105 }
2106#endif
589 2107
590 for (i = 0; i < fdchangecnt; ++i) 2108 for (i = 0; i < fdchangecnt; ++i)
591 { 2109 {
592 int fd = fdchanges [i]; 2110 int fd = fdchanges [i];
593 ANFD *anfd = anfds + fd; 2111 ANFD *anfd = anfds + fd;
594 ev_io *w; 2112 ev_io *w;
595 2113
596 unsigned char events = 0; 2114 unsigned char o_events = anfd->events;
2115 unsigned char o_reify = anfd->reify;
597 2116
598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2117 anfd->reify = 0;
599 events |= (unsigned char)w->events;
600 2118
601#if EV_SELECT_IS_WINSOCKET 2119 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
602 if (events)
603 { 2120 {
604 unsigned long argp; 2121 anfd->events = 0;
605 #ifdef EV_FD_TO_WIN32_HANDLE 2122
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 2123 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
607 #else 2124 anfd->events |= (unsigned char)w->events;
608 anfd->handle = _get_osfhandle (fd); 2125
609 #endif 2126 if (o_events != anfd->events)
610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 2127 o_reify = EV__IOFDSET; /* actually |= */
611 } 2128 }
612#endif
613 2129
614 { 2130 if (o_reify & EV__IOFDSET)
615 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify;
617
618 anfd->reify = 0;
619 anfd->events = events;
620
621 if (o_events != events || o_reify & EV_IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events); 2131 backend_modify (EV_A_ fd, o_events, anfd->events);
623 }
624 } 2132 }
625 2133
626 fdchangecnt = 0; 2134 fdchangecnt = 0;
627} 2135}
628 2136
2137/* something about the given fd changed */
629void inline_size 2138inline_size
2139void
630fd_change (EV_P_ int fd, int flags) 2140fd_change (EV_P_ int fd, int flags)
631{ 2141{
632 unsigned char reify = anfds [fd].reify; 2142 unsigned char reify = anfds [fd].reify;
633 anfds [fd].reify |= flags; 2143 anfds [fd].reify |= flags;
634 2144
638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 2148 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
639 fdchanges [fdchangecnt - 1] = fd; 2149 fdchanges [fdchangecnt - 1] = fd;
640 } 2150 }
641} 2151}
642 2152
643void inline_speed 2153/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2154inline_speed ecb_cold void
644fd_kill (EV_P_ int fd) 2155fd_kill (EV_P_ int fd)
645{ 2156{
646 ev_io *w; 2157 ev_io *w;
647 2158
648 while ((w = (ev_io *)anfds [fd].head)) 2159 while ((w = (ev_io *)anfds [fd].head))
650 ev_io_stop (EV_A_ w); 2161 ev_io_stop (EV_A_ w);
651 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2162 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
652 } 2163 }
653} 2164}
654 2165
655int inline_size 2166/* check whether the given fd is actually valid, for error recovery */
2167inline_size ecb_cold int
656fd_valid (int fd) 2168fd_valid (int fd)
657{ 2169{
658#ifdef _WIN32 2170#ifdef _WIN32
659 return _get_osfhandle (fd) != -1; 2171 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
660#else 2172#else
661 return fcntl (fd, F_GETFD) != -1; 2173 return fcntl (fd, F_GETFD) != -1;
662#endif 2174#endif
663} 2175}
664 2176
665/* called on EBADF to verify fds */ 2177/* called on EBADF to verify fds */
666static void noinline 2178noinline ecb_cold
2179static void
667fd_ebadf (EV_P) 2180fd_ebadf (EV_P)
668{ 2181{
669 int fd; 2182 int fd;
670 2183
671 for (fd = 0; fd < anfdmax; ++fd) 2184 for (fd = 0; fd < anfdmax; ++fd)
672 if (anfds [fd].events) 2185 if (anfds [fd].events)
673 if (!fd_valid (fd) == -1 && errno == EBADF) 2186 if (!fd_valid (fd) && errno == EBADF)
674 fd_kill (EV_A_ fd); 2187 fd_kill (EV_A_ fd);
675} 2188}
676 2189
677/* called on ENOMEM in select/poll to kill some fds and retry */ 2190/* called on ENOMEM in select/poll to kill some fds and retry */
678static void noinline 2191noinline ecb_cold
2192static void
679fd_enomem (EV_P) 2193fd_enomem (EV_P)
680{ 2194{
681 int fd; 2195 int fd;
682 2196
683 for (fd = anfdmax; fd--; ) 2197 for (fd = anfdmax; fd--; )
684 if (anfds [fd].events) 2198 if (anfds [fd].events)
685 { 2199 {
686 fd_kill (EV_A_ fd); 2200 fd_kill (EV_A_ fd);
687 return; 2201 break;
688 } 2202 }
689} 2203}
690 2204
691/* usually called after fork if backend needs to re-arm all fds from scratch */ 2205/* usually called after fork if backend needs to re-arm all fds from scratch */
692static void noinline 2206noinline
2207static void
693fd_rearm_all (EV_P) 2208fd_rearm_all (EV_P)
694{ 2209{
695 int fd; 2210 int fd;
696 2211
697 for (fd = 0; fd < anfdmax; ++fd) 2212 for (fd = 0; fd < anfdmax; ++fd)
698 if (anfds [fd].events) 2213 if (anfds [fd].events)
699 { 2214 {
700 anfds [fd].events = 0; 2215 anfds [fd].events = 0;
2216 anfds [fd].emask = 0;
701 fd_change (EV_A_ fd, EV_IOFDSET | 1); 2217 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
702 } 2218 }
703} 2219}
704 2220
705/*****************************************************************************/ 2221/* used to prepare libev internal fd's */
706 2222/* this is not fork-safe */
707void inline_speed 2223inline_speed void
708upheap (WT *heap, int k)
709{
710 WT w = heap [k];
711
712 while (k)
713 {
714 int p = (k - 1) >> 1;
715
716 if (heap [p]->at <= w->at)
717 break;
718
719 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1;
721 k = p;
722 }
723
724 heap [k] = w;
725 ((W)heap [k])->active = k + 1;
726}
727
728void inline_speed
729downheap (WT *heap, int N, int k)
730{
731 WT w = heap [k];
732
733 for (;;)
734 {
735 int c = (k << 1) + 1;
736
737 if (c >= N)
738 break;
739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
746 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1;
748
749 k = c;
750 }
751
752 heap [k] = w;
753 ((W)heap [k])->active = k + 1;
754}
755
756void inline_size
757adjustheap (WT *heap, int N, int k)
758{
759 upheap (heap, k);
760 downheap (heap, N, k);
761}
762
763/*****************************************************************************/
764
765typedef struct
766{
767 WL head;
768 EV_ATOMIC_T gotsig;
769} ANSIG;
770
771static ANSIG *signals;
772static int signalmax;
773
774static EV_ATOMIC_T gotsig;
775
776void inline_size
777signals_init (ANSIG *base, int count)
778{
779 while (count--)
780 {
781 base->head = 0;
782 base->gotsig = 0;
783
784 ++base;
785 }
786}
787
788/*****************************************************************************/
789
790void inline_speed
791fd_intern (int fd) 2224fd_intern (int fd)
792{ 2225{
793#ifdef _WIN32 2226#ifdef _WIN32
794 int arg = 1; 2227 unsigned long arg = 1;
795 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 2228 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
796#else 2229#else
797 fcntl (fd, F_SETFD, FD_CLOEXEC); 2230 fcntl (fd, F_SETFD, FD_CLOEXEC);
798 fcntl (fd, F_SETFL, O_NONBLOCK); 2231 fcntl (fd, F_SETFL, O_NONBLOCK);
799#endif 2232#endif
800} 2233}
801 2234
802static void noinline 2235/*****************************************************************************/
2236
2237/*
2238 * the heap functions want a real array index. array index 0 is guaranteed to not
2239 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2240 * the branching factor of the d-tree.
2241 */
2242
2243/*
2244 * at the moment we allow libev the luxury of two heaps,
2245 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2246 * which is more cache-efficient.
2247 * the difference is about 5% with 50000+ watchers.
2248 */
2249#if EV_USE_4HEAP
2250
2251#define DHEAP 4
2252#define HEAP0 (DHEAP - 1) /* index of first element in heap */
2253#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2254#define UPHEAP_DONE(p,k) ((p) == (k))
2255
2256/* away from the root */
2257inline_speed void
2258downheap (ANHE *heap, int N, int k)
2259{
2260 ANHE he = heap [k];
2261 ANHE *E = heap + N + HEAP0;
2262
2263 for (;;)
2264 {
2265 ev_tstamp minat;
2266 ANHE *minpos;
2267 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2268
2269 /* find minimum child */
2270 if (expect_true (pos + DHEAP - 1 < E))
2271 {
2272 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2273 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2274 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2275 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2276 }
2277 else if (pos < E)
2278 {
2279 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2280 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2281 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2282 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2283 }
2284 else
2285 break;
2286
2287 if (ANHE_at (he) <= minat)
2288 break;
2289
2290 heap [k] = *minpos;
2291 ev_active (ANHE_w (*minpos)) = k;
2292
2293 k = minpos - heap;
2294 }
2295
2296 heap [k] = he;
2297 ev_active (ANHE_w (he)) = k;
2298}
2299
2300#else /* 4HEAP */
2301
2302#define HEAP0 1
2303#define HPARENT(k) ((k) >> 1)
2304#define UPHEAP_DONE(p,k) (!(p))
2305
2306/* away from the root */
2307inline_speed void
2308downheap (ANHE *heap, int N, int k)
2309{
2310 ANHE he = heap [k];
2311
2312 for (;;)
2313 {
2314 int c = k << 1;
2315
2316 if (c >= N + HEAP0)
2317 break;
2318
2319 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2320 ? 1 : 0;
2321
2322 if (ANHE_at (he) <= ANHE_at (heap [c]))
2323 break;
2324
2325 heap [k] = heap [c];
2326 ev_active (ANHE_w (heap [k])) = k;
2327
2328 k = c;
2329 }
2330
2331 heap [k] = he;
2332 ev_active (ANHE_w (he)) = k;
2333}
2334#endif
2335
2336/* towards the root */
2337inline_speed void
2338upheap (ANHE *heap, int k)
2339{
2340 ANHE he = heap [k];
2341
2342 for (;;)
2343 {
2344 int p = HPARENT (k);
2345
2346 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2347 break;
2348
2349 heap [k] = heap [p];
2350 ev_active (ANHE_w (heap [k])) = k;
2351 k = p;
2352 }
2353
2354 heap [k] = he;
2355 ev_active (ANHE_w (he)) = k;
2356}
2357
2358/* move an element suitably so it is in a correct place */
2359inline_size void
2360adjustheap (ANHE *heap, int N, int k)
2361{
2362 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2363 upheap (heap, k);
2364 else
2365 downheap (heap, N, k);
2366}
2367
2368/* rebuild the heap: this function is used only once and executed rarely */
2369inline_size void
2370reheap (ANHE *heap, int N)
2371{
2372 int i;
2373
2374 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2375 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2376 for (i = 0; i < N; ++i)
2377 upheap (heap, i + HEAP0);
2378}
2379
2380/*****************************************************************************/
2381
2382/* associate signal watchers to a signal signal */
2383typedef struct
2384{
2385 EV_ATOMIC_T pending;
2386#if EV_MULTIPLICITY
2387 EV_P;
2388#endif
2389 WL head;
2390} ANSIG;
2391
2392static ANSIG signals [EV_NSIG - 1];
2393
2394/*****************************************************************************/
2395
2396#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2397
2398noinline ecb_cold
2399static void
803evpipe_init (EV_P) 2400evpipe_init (EV_P)
804{ 2401{
805 if (!ev_is_active (&pipeev)) 2402 if (!ev_is_active (&pipe_w))
806 { 2403 {
2404 int fds [2];
2405
2406# if EV_USE_EVENTFD
2407 fds [0] = -1;
2408 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2409 if (fds [1] < 0 && errno == EINVAL)
2410 fds [1] = eventfd (0, 0);
2411
2412 if (fds [1] < 0)
2413# endif
2414 {
807 while (pipe (evpipe)) 2415 while (pipe (fds))
808 syserr ("(libev) error creating signal/async pipe"); 2416 ev_syserr ("(libev) error creating signal/async pipe");
809 2417
810 fd_intern (evpipe [0]); 2418 fd_intern (fds [0]);
2419 }
2420
2421 evpipe [0] = fds [0];
2422
2423 if (evpipe [1] < 0)
2424 evpipe [1] = fds [1]; /* first call, set write fd */
2425 else
2426 {
2427 /* on subsequent calls, do not change evpipe [1] */
2428 /* so that evpipe_write can always rely on its value. */
2429 /* this branch does not do anything sensible on windows, */
2430 /* so must not be executed on windows */
2431
2432 dup2 (fds [1], evpipe [1]);
2433 close (fds [1]);
2434 }
2435
811 fd_intern (evpipe [1]); 2436 fd_intern (evpipe [1]);
812 2437
813 ev_io_set (&pipeev, evpipe [0], EV_READ); 2438 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
814 ev_io_start (EV_A_ &pipeev); 2439 ev_io_start (EV_A_ &pipe_w);
815 ev_unref (EV_A); /* watcher should not keep loop alive */ 2440 ev_unref (EV_A); /* watcher should not keep loop alive */
816 } 2441 }
817} 2442}
818 2443
819void inline_size 2444inline_speed void
820evpipe_write (EV_P_ int sig, int async) 2445evpipe_write (EV_P_ EV_ATOMIC_T *flag)
821{ 2446{
822 if (!(gotasync || gotsig)) 2447 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2448
2449 if (expect_true (*flag))
2450 return;
2451
2452 *flag = 1;
2453 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2454
2455 pipe_write_skipped = 1;
2456
2457 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2458
2459 if (pipe_write_wanted)
823 { 2460 {
2461 int old_errno;
2462
2463 pipe_write_skipped = 0;
2464 ECB_MEMORY_FENCE_RELEASE;
2465
824 int old_errno = errno; /* save errno becaue write might clobber it */ 2466 old_errno = errno; /* save errno because write will clobber it */
825 2467
826 if (sig) gotsig = 1; 2468#if EV_USE_EVENTFD
827 if (async) gotasync = 1; 2469 if (evpipe [0] < 0)
828 2470 {
829 write (evpipe [1], &old_errno, 1); 2471 uint64_t counter = 1;
2472 write (evpipe [1], &counter, sizeof (uint64_t));
2473 }
2474 else
2475#endif
2476 {
2477#ifdef _WIN32
2478 WSABUF buf;
2479 DWORD sent;
2480 buf.buf = &buf;
2481 buf.len = 1;
2482 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2483#else
2484 write (evpipe [1], &(evpipe [1]), 1);
2485#endif
2486 }
830 2487
831 errno = old_errno; 2488 errno = old_errno;
832 } 2489 }
833} 2490}
834 2491
2492/* called whenever the libev signal pipe */
2493/* got some events (signal, async) */
835static void 2494static void
836pipecb (EV_P_ ev_io *iow, int revents) 2495pipecb (EV_P_ ev_io *iow, int revents)
837{ 2496{
2497 int i;
2498
2499 if (revents & EV_READ)
838 { 2500 {
839 int dummy; 2501#if EV_USE_EVENTFD
2502 if (evpipe [0] < 0)
2503 {
2504 uint64_t counter;
2505 read (evpipe [1], &counter, sizeof (uint64_t));
2506 }
2507 else
2508#endif
2509 {
2510 char dummy[4];
2511#ifdef _WIN32
2512 WSABUF buf;
2513 DWORD recvd;
2514 DWORD flags = 0;
2515 buf.buf = dummy;
2516 buf.len = sizeof (dummy);
2517 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2518#else
840 read (evpipe [0], &dummy, 1); 2519 read (evpipe [0], &dummy, sizeof (dummy));
2520#endif
2521 }
841 } 2522 }
842 2523
843 if (gotsig) 2524 pipe_write_skipped = 0;
844 {
845 int signum;
846 gotsig = 0;
847 2525
848 for (signum = signalmax; signum--; ) 2526 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
849 if (signals [signum].gotsig) 2527
2528#if EV_SIGNAL_ENABLE
2529 if (sig_pending)
2530 {
2531 sig_pending = 0;
2532
2533 ECB_MEMORY_FENCE;
2534
2535 for (i = EV_NSIG - 1; i--; )
2536 if (expect_false (signals [i].pending))
850 ev_feed_signal_event (EV_A_ signum + 1); 2537 ev_feed_signal_event (EV_A_ i + 1);
851 } 2538 }
2539#endif
852 2540
853#if EV_ASYNC_ENABLE 2541#if EV_ASYNC_ENABLE
854 if (gotasync) 2542 if (async_pending)
855 { 2543 {
856 int i; 2544 async_pending = 0;
857 gotasync = 0; 2545
2546 ECB_MEMORY_FENCE;
858 2547
859 for (i = asynccnt; i--; ) 2548 for (i = asynccnt; i--; )
860 if (asyncs [i]->sent) 2549 if (asyncs [i]->sent)
861 { 2550 {
862 asyncs [i]->sent = 0; 2551 asyncs [i]->sent = 0;
2552 ECB_MEMORY_FENCE_RELEASE;
863 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2553 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
864 } 2554 }
865 } 2555 }
866#endif 2556#endif
867} 2557}
868 2558
869/*****************************************************************************/ 2559/*****************************************************************************/
870 2560
2561void
2562ev_feed_signal (int signum) EV_THROW
2563{
2564#if EV_MULTIPLICITY
2565 EV_P;
2566 ECB_MEMORY_FENCE_ACQUIRE;
2567 EV_A = signals [signum - 1].loop;
2568
2569 if (!EV_A)
2570 return;
2571#endif
2572
2573 signals [signum - 1].pending = 1;
2574 evpipe_write (EV_A_ &sig_pending);
2575}
2576
871static void 2577static void
872sighandler (int signum) 2578ev_sighandler (int signum)
873{ 2579{
2580#ifdef _WIN32
2581 signal (signum, ev_sighandler);
2582#endif
2583
2584 ev_feed_signal (signum);
2585}
2586
2587noinline
2588void
2589ev_feed_signal_event (EV_P_ int signum) EV_THROW
2590{
2591 WL w;
2592
2593 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2594 return;
2595
2596 --signum;
2597
874#if EV_MULTIPLICITY 2598#if EV_MULTIPLICITY
875 struct ev_loop *loop = &default_loop_struct; 2599 /* it is permissible to try to feed a signal to the wrong loop */
876#endif 2600 /* or, likely more useful, feeding a signal nobody is waiting for */
877 2601
878#if _WIN32 2602 if (expect_false (signals [signum].loop != EV_A))
879 signal (signum, sighandler);
880#endif
881
882 signals [signum - 1].gotsig = 1;
883 evpipe_write (EV_A_ 1, 0);
884}
885
886void noinline
887ev_feed_signal_event (EV_P_ int signum)
888{
889 WL w;
890
891#if EV_MULTIPLICITY
892 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
893#endif
894
895 --signum;
896
897 if (signum < 0 || signum >= signalmax)
898 return; 2603 return;
2604#endif
899 2605
900 signals [signum].gotsig = 0; 2606 signals [signum].pending = 0;
2607 ECB_MEMORY_FENCE_RELEASE;
901 2608
902 for (w = signals [signum].head; w; w = w->next) 2609 for (w = signals [signum].head; w; w = w->next)
903 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2610 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
904} 2611}
905 2612
2613#if EV_USE_SIGNALFD
2614static void
2615sigfdcb (EV_P_ ev_io *iow, int revents)
2616{
2617 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2618
2619 for (;;)
2620 {
2621 ssize_t res = read (sigfd, si, sizeof (si));
2622
2623 /* not ISO-C, as res might be -1, but works with SuS */
2624 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2625 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2626
2627 if (res < (ssize_t)sizeof (si))
2628 break;
2629 }
2630}
2631#endif
2632
2633#endif
2634
906/*****************************************************************************/ 2635/*****************************************************************************/
907 2636
2637#if EV_CHILD_ENABLE
908static WL childs [EV_PID_HASHSIZE]; 2638static WL childs [EV_PID_HASHSIZE];
909
910#ifndef _WIN32
911 2639
912static ev_signal childev; 2640static ev_signal childev;
913 2641
914#ifndef WIFCONTINUED 2642#ifndef WIFCONTINUED
915# define WIFCONTINUED(status) 0 2643# define WIFCONTINUED(status) 0
916#endif 2644#endif
917 2645
918void inline_speed 2646/* handle a single child status event */
2647inline_speed void
919child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 2648child_reap (EV_P_ int chain, int pid, int status)
920{ 2649{
921 ev_child *w; 2650 ev_child *w;
922 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2651 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
923 2652
924 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2653 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
925 { 2654 {
926 if ((w->pid == pid || !w->pid) 2655 if ((w->pid == pid || !w->pid)
927 && (!traced || (w->flags & 1))) 2656 && (!traced || (w->flags & 1)))
928 { 2657 {
929 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 2658 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
930 w->rpid = pid; 2659 w->rpid = pid;
931 w->rstatus = status; 2660 w->rstatus = status;
932 ev_feed_event (EV_A_ (W)w, EV_CHILD); 2661 ev_feed_event (EV_A_ (W)w, EV_CHILD);
933 } 2662 }
934 } 2663 }
936 2665
937#ifndef WCONTINUED 2666#ifndef WCONTINUED
938# define WCONTINUED 0 2667# define WCONTINUED 0
939#endif 2668#endif
940 2669
2670/* called on sigchld etc., calls waitpid */
941static void 2671static void
942childcb (EV_P_ ev_signal *sw, int revents) 2672childcb (EV_P_ ev_signal *sw, int revents)
943{ 2673{
944 int pid, status; 2674 int pid, status;
945 2675
948 if (!WCONTINUED 2678 if (!WCONTINUED
949 || errno != EINVAL 2679 || errno != EINVAL
950 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 2680 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
951 return; 2681 return;
952 2682
953 /* make sure we are called again until all childs have been reaped */ 2683 /* make sure we are called again until all children have been reaped */
954 /* we need to do it this way so that the callback gets called before we continue */ 2684 /* we need to do it this way so that the callback gets called before we continue */
955 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2685 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
956 2686
957 child_reap (EV_A_ sw, pid, pid, status); 2687 child_reap (EV_A_ pid, pid, status);
958 if (EV_PID_HASHSIZE > 1) 2688 if ((EV_PID_HASHSIZE) > 1)
959 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2689 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
960} 2690}
961 2691
962#endif 2692#endif
963 2693
964/*****************************************************************************/ 2694/*****************************************************************************/
965 2695
2696#if EV_USE_IOCP
2697# include "ev_iocp.c"
2698#endif
966#if EV_USE_PORT 2699#if EV_USE_PORT
967# include "ev_port.c" 2700# include "ev_port.c"
968#endif 2701#endif
969#if EV_USE_KQUEUE 2702#if EV_USE_KQUEUE
970# include "ev_kqueue.c" 2703# include "ev_kqueue.c"
977#endif 2710#endif
978#if EV_USE_SELECT 2711#if EV_USE_SELECT
979# include "ev_select.c" 2712# include "ev_select.c"
980#endif 2713#endif
981 2714
982int 2715ecb_cold int
983ev_version_major (void) 2716ev_version_major (void) EV_THROW
984{ 2717{
985 return EV_VERSION_MAJOR; 2718 return EV_VERSION_MAJOR;
986} 2719}
987 2720
988int 2721ecb_cold int
989ev_version_minor (void) 2722ev_version_minor (void) EV_THROW
990{ 2723{
991 return EV_VERSION_MINOR; 2724 return EV_VERSION_MINOR;
992} 2725}
993 2726
994/* return true if we are running with elevated privileges and should ignore env variables */ 2727/* return true if we are running with elevated privileges and should ignore env variables */
995int inline_size 2728inline_size ecb_cold int
996enable_secure (void) 2729enable_secure (void)
997{ 2730{
998#ifdef _WIN32 2731#ifdef _WIN32
999 return 0; 2732 return 0;
1000#else 2733#else
1001 return getuid () != geteuid () 2734 return getuid () != geteuid ()
1002 || getgid () != getegid (); 2735 || getgid () != getegid ();
1003#endif 2736#endif
1004} 2737}
1005 2738
2739ecb_cold
1006unsigned int 2740unsigned int
1007ev_supported_backends (void) 2741ev_supported_backends (void) EV_THROW
1008{ 2742{
1009 unsigned int flags = 0; 2743 unsigned int flags = 0;
1010 2744
1011 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2745 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1012 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2746 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1015 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2749 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1016 2750
1017 return flags; 2751 return flags;
1018} 2752}
1019 2753
2754ecb_cold
1020unsigned int 2755unsigned int
1021ev_recommended_backends (void) 2756ev_recommended_backends (void) EV_THROW
1022{ 2757{
1023 unsigned int flags = ev_supported_backends (); 2758 unsigned int flags = ev_supported_backends ();
1024 2759
1025#ifndef __NetBSD__ 2760#ifndef __NetBSD__
1026 /* kqueue is borked on everything but netbsd apparently */ 2761 /* kqueue is borked on everything but netbsd apparently */
1027 /* it usually doesn't work correctly on anything but sockets and pipes */ 2762 /* it usually doesn't work correctly on anything but sockets and pipes */
1028 flags &= ~EVBACKEND_KQUEUE; 2763 flags &= ~EVBACKEND_KQUEUE;
1029#endif 2764#endif
1030#ifdef __APPLE__ 2765#ifdef __APPLE__
1031 // flags &= ~EVBACKEND_KQUEUE; for documentation 2766 /* only select works correctly on that "unix-certified" platform */
1032 flags &= ~EVBACKEND_POLL; 2767 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2768 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2769#endif
2770#ifdef __FreeBSD__
2771 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1033#endif 2772#endif
1034 2773
1035 return flags; 2774 return flags;
1036} 2775}
1037 2776
2777ecb_cold
1038unsigned int 2778unsigned int
1039ev_embeddable_backends (void) 2779ev_embeddable_backends (void) EV_THROW
1040{ 2780{
1041 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2781 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1042 2782
1043 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 2783 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1044 /* please fix it and tell me how to detect the fix */ 2784 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1045 flags &= ~EVBACKEND_EPOLL; 2785 flags &= ~EVBACKEND_EPOLL;
1046 2786
1047 return flags; 2787 return flags;
1048} 2788}
1049 2789
1050unsigned int 2790unsigned int
1051ev_backend (EV_P) 2791ev_backend (EV_P) EV_THROW
1052{ 2792{
1053 return backend; 2793 return backend;
1054} 2794}
1055 2795
2796#if EV_FEATURE_API
1056unsigned int 2797unsigned int
1057ev_loop_count (EV_P) 2798ev_iteration (EV_P) EV_THROW
1058{ 2799{
1059 return loop_count; 2800 return loop_count;
1060} 2801}
1061 2802
2803unsigned int
2804ev_depth (EV_P) EV_THROW
2805{
2806 return loop_depth;
2807}
2808
1062void 2809void
1063ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2810ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1064{ 2811{
1065 io_blocktime = interval; 2812 io_blocktime = interval;
1066} 2813}
1067 2814
1068void 2815void
1069ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2816ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1070{ 2817{
1071 timeout_blocktime = interval; 2818 timeout_blocktime = interval;
1072} 2819}
1073 2820
1074static void noinline 2821void
2822ev_set_userdata (EV_P_ void *data) EV_THROW
2823{
2824 userdata = data;
2825}
2826
2827void *
2828ev_userdata (EV_P) EV_THROW
2829{
2830 return userdata;
2831}
2832
2833void
2834ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2835{
2836 invoke_cb = invoke_pending_cb;
2837}
2838
2839void
2840ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2841{
2842 release_cb = release;
2843 acquire_cb = acquire;
2844}
2845#endif
2846
2847/* initialise a loop structure, must be zero-initialised */
2848noinline ecb_cold
2849static void
1075loop_init (EV_P_ unsigned int flags) 2850loop_init (EV_P_ unsigned int flags) EV_THROW
1076{ 2851{
1077 if (!backend) 2852 if (!backend)
1078 { 2853 {
2854 origflags = flags;
2855
2856#if EV_USE_REALTIME
2857 if (!have_realtime)
2858 {
2859 struct timespec ts;
2860
2861 if (!clock_gettime (CLOCK_REALTIME, &ts))
2862 have_realtime = 1;
2863 }
2864#endif
2865
1079#if EV_USE_MONOTONIC 2866#if EV_USE_MONOTONIC
2867 if (!have_monotonic)
1080 { 2868 {
1081 struct timespec ts; 2869 struct timespec ts;
2870
1082 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2871 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1083 have_monotonic = 1; 2872 have_monotonic = 1;
1084 } 2873 }
1085#endif
1086
1087 ev_rt_now = ev_time ();
1088 mn_now = get_clock ();
1089 now_floor = mn_now;
1090 rtmn_diff = ev_rt_now - mn_now;
1091
1092 io_blocktime = 0.;
1093 timeout_blocktime = 0.;
1094 backend = 0;
1095 backend_fd = -1;
1096 gotasync = 0;
1097#if EV_USE_INOTIFY
1098 fs_fd = -2;
1099#endif 2874#endif
1100 2875
1101 /* pid check not overridable via env */ 2876 /* pid check not overridable via env */
1102#ifndef _WIN32 2877#ifndef _WIN32
1103 if (flags & EVFLAG_FORKCHECK) 2878 if (flags & EVFLAG_FORKCHECK)
1107 if (!(flags & EVFLAG_NOENV) 2882 if (!(flags & EVFLAG_NOENV)
1108 && !enable_secure () 2883 && !enable_secure ()
1109 && getenv ("LIBEV_FLAGS")) 2884 && getenv ("LIBEV_FLAGS"))
1110 flags = atoi (getenv ("LIBEV_FLAGS")); 2885 flags = atoi (getenv ("LIBEV_FLAGS"));
1111 2886
1112 if (!(flags & 0x0000ffffUL)) 2887 ev_rt_now = ev_time ();
2888 mn_now = get_clock ();
2889 now_floor = mn_now;
2890 rtmn_diff = ev_rt_now - mn_now;
2891#if EV_FEATURE_API
2892 invoke_cb = ev_invoke_pending;
2893#endif
2894
2895 io_blocktime = 0.;
2896 timeout_blocktime = 0.;
2897 backend = 0;
2898 backend_fd = -1;
2899 sig_pending = 0;
2900#if EV_ASYNC_ENABLE
2901 async_pending = 0;
2902#endif
2903 pipe_write_skipped = 0;
2904 pipe_write_wanted = 0;
2905 evpipe [0] = -1;
2906 evpipe [1] = -1;
2907#if EV_USE_INOTIFY
2908 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2909#endif
2910#if EV_USE_SIGNALFD
2911 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2912#endif
2913
2914 if (!(flags & EVBACKEND_MASK))
1113 flags |= ev_recommended_backends (); 2915 flags |= ev_recommended_backends ();
1114 2916
2917#if EV_USE_IOCP
2918 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2919#endif
1115#if EV_USE_PORT 2920#if EV_USE_PORT
1116 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2921 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1117#endif 2922#endif
1118#if EV_USE_KQUEUE 2923#if EV_USE_KQUEUE
1119 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2924 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1126#endif 2931#endif
1127#if EV_USE_SELECT 2932#if EV_USE_SELECT
1128 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2933 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1129#endif 2934#endif
1130 2935
2936 ev_prepare_init (&pending_w, pendingcb);
2937
2938#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1131 ev_init (&pipeev, pipecb); 2939 ev_init (&pipe_w, pipecb);
1132 ev_set_priority (&pipeev, EV_MAXPRI); 2940 ev_set_priority (&pipe_w, EV_MAXPRI);
2941#endif
1133 } 2942 }
1134} 2943}
1135 2944
1136static void noinline 2945/* free up a loop structure */
2946ecb_cold
2947void
1137loop_destroy (EV_P) 2948ev_loop_destroy (EV_P)
1138{ 2949{
1139 int i; 2950 int i;
1140 2951
2952#if EV_MULTIPLICITY
2953 /* mimic free (0) */
2954 if (!EV_A)
2955 return;
2956#endif
2957
2958#if EV_CLEANUP_ENABLE
2959 /* queue cleanup watchers (and execute them) */
2960 if (expect_false (cleanupcnt))
2961 {
2962 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2963 EV_INVOKE_PENDING;
2964 }
2965#endif
2966
2967#if EV_CHILD_ENABLE
2968 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2969 {
2970 ev_ref (EV_A); /* child watcher */
2971 ev_signal_stop (EV_A_ &childev);
2972 }
2973#endif
2974
1141 if (ev_is_active (&pipeev)) 2975 if (ev_is_active (&pipe_w))
1142 { 2976 {
1143 ev_ref (EV_A); /* signal watcher */ 2977 /*ev_ref (EV_A);*/
1144 ev_io_stop (EV_A_ &pipeev); 2978 /*ev_io_stop (EV_A_ &pipe_w);*/
1145 2979
1146 close (evpipe [0]); evpipe [0] = 0; 2980 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
1147 close (evpipe [1]); evpipe [1] = 0; 2981 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
1148 } 2982 }
2983
2984#if EV_USE_SIGNALFD
2985 if (ev_is_active (&sigfd_w))
2986 close (sigfd);
2987#endif
1149 2988
1150#if EV_USE_INOTIFY 2989#if EV_USE_INOTIFY
1151 if (fs_fd >= 0) 2990 if (fs_fd >= 0)
1152 close (fs_fd); 2991 close (fs_fd);
1153#endif 2992#endif
1154 2993
1155 if (backend_fd >= 0) 2994 if (backend_fd >= 0)
1156 close (backend_fd); 2995 close (backend_fd);
1157 2996
2997#if EV_USE_IOCP
2998 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2999#endif
1158#if EV_USE_PORT 3000#if EV_USE_PORT
1159 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 3001 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1160#endif 3002#endif
1161#if EV_USE_KQUEUE 3003#if EV_USE_KQUEUE
1162 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 3004 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1177#if EV_IDLE_ENABLE 3019#if EV_IDLE_ENABLE
1178 array_free (idle, [i]); 3020 array_free (idle, [i]);
1179#endif 3021#endif
1180 } 3022 }
1181 3023
1182 ev_free (anfds); anfdmax = 0; 3024 ev_free (anfds); anfds = 0; anfdmax = 0;
1183 3025
1184 /* have to use the microsoft-never-gets-it-right macro */ 3026 /* have to use the microsoft-never-gets-it-right macro */
3027 array_free (rfeed, EMPTY);
1185 array_free (fdchange, EMPTY); 3028 array_free (fdchange, EMPTY);
1186 array_free (timer, EMPTY); 3029 array_free (timer, EMPTY);
1187#if EV_PERIODIC_ENABLE 3030#if EV_PERIODIC_ENABLE
1188 array_free (periodic, EMPTY); 3031 array_free (periodic, EMPTY);
1189#endif 3032#endif
1190#if EV_FORK_ENABLE 3033#if EV_FORK_ENABLE
1191 array_free (fork, EMPTY); 3034 array_free (fork, EMPTY);
1192#endif 3035#endif
3036#if EV_CLEANUP_ENABLE
3037 array_free (cleanup, EMPTY);
3038#endif
1193 array_free (prepare, EMPTY); 3039 array_free (prepare, EMPTY);
1194 array_free (check, EMPTY); 3040 array_free (check, EMPTY);
1195#if EV_ASYNC_ENABLE 3041#if EV_ASYNC_ENABLE
1196 array_free (async, EMPTY); 3042 array_free (async, EMPTY);
1197#endif 3043#endif
1198 3044
1199 backend = 0; 3045 backend = 0;
1200}
1201 3046
3047#if EV_MULTIPLICITY
3048 if (ev_is_default_loop (EV_A))
3049#endif
3050 ev_default_loop_ptr = 0;
3051#if EV_MULTIPLICITY
3052 else
3053 ev_free (EV_A);
3054#endif
3055}
3056
3057#if EV_USE_INOTIFY
1202void inline_size infy_fork (EV_P); 3058inline_size void infy_fork (EV_P);
3059#endif
1203 3060
1204void inline_size 3061inline_size void
1205loop_fork (EV_P) 3062loop_fork (EV_P)
1206{ 3063{
1207#if EV_USE_PORT 3064#if EV_USE_PORT
1208 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 3065 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1209#endif 3066#endif
1215#endif 3072#endif
1216#if EV_USE_INOTIFY 3073#if EV_USE_INOTIFY
1217 infy_fork (EV_A); 3074 infy_fork (EV_A);
1218#endif 3075#endif
1219 3076
1220 if (ev_is_active (&pipeev)) 3077#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3078 if (ev_is_active (&pipe_w) && postfork != 2)
1221 { 3079 {
1222 /* this "locks" the handlers against writing to the pipe */ 3080 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1223 gotsig = gotasync = 1;
1224 3081
1225 ev_ref (EV_A); 3082 ev_ref (EV_A);
1226 ev_io_stop (EV_A_ &pipeev); 3083 ev_io_stop (EV_A_ &pipe_w);
1227 close (evpipe [0]); 3084
1228 close (evpipe [1]); 3085 if (evpipe [0] >= 0)
3086 EV_WIN32_CLOSE_FD (evpipe [0]);
1229 3087
1230 evpipe_init (EV_A); 3088 evpipe_init (EV_A);
1231 /* now iterate over everything, in case we missed something */ 3089 /* iterate over everything, in case we missed something before */
1232 pipecb (EV_A_ &pipeev, EV_READ); 3090 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1233 } 3091 }
3092#endif
1234 3093
1235 postfork = 0; 3094 postfork = 0;
1236} 3095}
1237 3096
1238#if EV_MULTIPLICITY 3097#if EV_MULTIPLICITY
3098
3099ecb_cold
1239struct ev_loop * 3100struct ev_loop *
1240ev_loop_new (unsigned int flags) 3101ev_loop_new (unsigned int flags) EV_THROW
1241{ 3102{
1242 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 3103 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1243 3104
1244 memset (loop, 0, sizeof (struct ev_loop)); 3105 memset (EV_A, 0, sizeof (struct ev_loop));
1245
1246 loop_init (EV_A_ flags); 3106 loop_init (EV_A_ flags);
1247 3107
1248 if (ev_backend (EV_A)) 3108 if (ev_backend (EV_A))
1249 return loop; 3109 return EV_A;
1250 3110
3111 ev_free (EV_A);
1251 return 0; 3112 return 0;
1252} 3113}
1253 3114
1254void 3115#endif /* multiplicity */
1255ev_loop_destroy (EV_P)
1256{
1257 loop_destroy (EV_A);
1258 ev_free (loop);
1259}
1260 3116
1261void 3117#if EV_VERIFY
1262ev_loop_fork (EV_P) 3118noinline ecb_cold
3119static void
3120verify_watcher (EV_P_ W w)
1263{ 3121{
1264 postfork = 1; /* must be in line with ev_default_fork */ 3122 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1265}
1266 3123
3124 if (w->pending)
3125 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3126}
3127
3128noinline ecb_cold
3129static void
3130verify_heap (EV_P_ ANHE *heap, int N)
3131{
3132 int i;
3133
3134 for (i = HEAP0; i < N + HEAP0; ++i)
3135 {
3136 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3137 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3138 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3139
3140 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3141 }
3142}
3143
3144noinline ecb_cold
3145static void
3146array_verify (EV_P_ W *ws, int cnt)
3147{
3148 while (cnt--)
3149 {
3150 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3151 verify_watcher (EV_A_ ws [cnt]);
3152 }
3153}
3154#endif
3155
3156#if EV_FEATURE_API
3157void ecb_cold
3158ev_verify (EV_P) EV_THROW
3159{
3160#if EV_VERIFY
3161 int i;
3162 WL w, w2;
3163
3164 assert (activecnt >= -1);
3165
3166 assert (fdchangemax >= fdchangecnt);
3167 for (i = 0; i < fdchangecnt; ++i)
3168 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3169
3170 assert (anfdmax >= 0);
3171 for (i = 0; i < anfdmax; ++i)
3172 {
3173 int j = 0;
3174
3175 for (w = w2 = anfds [i].head; w; w = w->next)
3176 {
3177 verify_watcher (EV_A_ (W)w);
3178
3179 if (j++ & 1)
3180 {
3181 assert (("libev: io watcher list contains a loop", w != w2));
3182 w2 = w2->next;
3183 }
3184
3185 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3186 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3187 }
3188 }
3189
3190 assert (timermax >= timercnt);
3191 verify_heap (EV_A_ timers, timercnt);
3192
3193#if EV_PERIODIC_ENABLE
3194 assert (periodicmax >= periodiccnt);
3195 verify_heap (EV_A_ periodics, periodiccnt);
3196#endif
3197
3198 for (i = NUMPRI; i--; )
3199 {
3200 assert (pendingmax [i] >= pendingcnt [i]);
3201#if EV_IDLE_ENABLE
3202 assert (idleall >= 0);
3203 assert (idlemax [i] >= idlecnt [i]);
3204 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3205#endif
3206 }
3207
3208#if EV_FORK_ENABLE
3209 assert (forkmax >= forkcnt);
3210 array_verify (EV_A_ (W *)forks, forkcnt);
3211#endif
3212
3213#if EV_CLEANUP_ENABLE
3214 assert (cleanupmax >= cleanupcnt);
3215 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3216#endif
3217
3218#if EV_ASYNC_ENABLE
3219 assert (asyncmax >= asynccnt);
3220 array_verify (EV_A_ (W *)asyncs, asynccnt);
3221#endif
3222
3223#if EV_PREPARE_ENABLE
3224 assert (preparemax >= preparecnt);
3225 array_verify (EV_A_ (W *)prepares, preparecnt);
3226#endif
3227
3228#if EV_CHECK_ENABLE
3229 assert (checkmax >= checkcnt);
3230 array_verify (EV_A_ (W *)checks, checkcnt);
3231#endif
3232
3233# if 0
3234#if EV_CHILD_ENABLE
3235 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3236 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3237#endif
3238# endif
3239#endif
3240}
1267#endif 3241#endif
1268 3242
1269#if EV_MULTIPLICITY 3243#if EV_MULTIPLICITY
3244ecb_cold
1270struct ev_loop * 3245struct ev_loop *
1271ev_default_loop_init (unsigned int flags)
1272#else 3246#else
1273int 3247int
3248#endif
1274ev_default_loop (unsigned int flags) 3249ev_default_loop (unsigned int flags) EV_THROW
1275#endif
1276{ 3250{
1277 if (!ev_default_loop_ptr) 3251 if (!ev_default_loop_ptr)
1278 { 3252 {
1279#if EV_MULTIPLICITY 3253#if EV_MULTIPLICITY
1280 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3254 EV_P = ev_default_loop_ptr = &default_loop_struct;
1281#else 3255#else
1282 ev_default_loop_ptr = 1; 3256 ev_default_loop_ptr = 1;
1283#endif 3257#endif
1284 3258
1285 loop_init (EV_A_ flags); 3259 loop_init (EV_A_ flags);
1286 3260
1287 if (ev_backend (EV_A)) 3261 if (ev_backend (EV_A))
1288 { 3262 {
1289#ifndef _WIN32 3263#if EV_CHILD_ENABLE
1290 ev_signal_init (&childev, childcb, SIGCHLD); 3264 ev_signal_init (&childev, childcb, SIGCHLD);
1291 ev_set_priority (&childev, EV_MAXPRI); 3265 ev_set_priority (&childev, EV_MAXPRI);
1292 ev_signal_start (EV_A_ &childev); 3266 ev_signal_start (EV_A_ &childev);
1293 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3267 ev_unref (EV_A); /* child watcher should not keep loop alive */
1294#endif 3268#endif
1299 3273
1300 return ev_default_loop_ptr; 3274 return ev_default_loop_ptr;
1301} 3275}
1302 3276
1303void 3277void
1304ev_default_destroy (void) 3278ev_loop_fork (EV_P) EV_THROW
1305{ 3279{
1306#if EV_MULTIPLICITY 3280 postfork = 1;
1307 struct ev_loop *loop = ev_default_loop_ptr;
1308#endif
1309
1310#ifndef _WIN32
1311 ev_ref (EV_A); /* child watcher */
1312 ev_signal_stop (EV_A_ &childev);
1313#endif
1314
1315 loop_destroy (EV_A);
1316}
1317
1318void
1319ev_default_fork (void)
1320{
1321#if EV_MULTIPLICITY
1322 struct ev_loop *loop = ev_default_loop_ptr;
1323#endif
1324
1325 if (backend)
1326 postfork = 1; /* must be in line with ev_loop_fork */
1327} 3281}
1328 3282
1329/*****************************************************************************/ 3283/*****************************************************************************/
1330 3284
1331void 3285void
1332ev_invoke (EV_P_ void *w, int revents) 3286ev_invoke (EV_P_ void *w, int revents)
1333{ 3287{
1334 EV_CB_INVOKE ((W)w, revents); 3288 EV_CB_INVOKE ((W)w, revents);
1335} 3289}
1336 3290
1337void inline_speed 3291unsigned int
1338call_pending (EV_P) 3292ev_pending_count (EV_P) EV_THROW
1339{ 3293{
1340 int pri; 3294 int pri;
3295 unsigned int count = 0;
1341 3296
1342 for (pri = NUMPRI; pri--; ) 3297 for (pri = NUMPRI; pri--; )
3298 count += pendingcnt [pri];
3299
3300 return count;
3301}
3302
3303noinline
3304void
3305ev_invoke_pending (EV_P)
3306{
3307 pendingpri = NUMPRI;
3308
3309 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3310 {
3311 --pendingpri;
3312
1343 while (pendingcnt [pri]) 3313 while (pendingcnt [pendingpri])
1344 {
1345 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1346
1347 if (expect_true (p->w))
1348 {
1349 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1350
1351 p->w->pending = 0;
1352 EV_CB_INVOKE (p->w, p->events);
1353 }
1354 }
1355}
1356
1357void inline_size
1358timers_reify (EV_P)
1359{
1360 while (timercnt && ((WT)timers [0])->at <= mn_now)
1361 {
1362 ev_timer *w = (ev_timer *)timers [0];
1363
1364 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1365
1366 /* first reschedule or stop timer */
1367 if (w->repeat)
1368 { 3314 {
1369 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3315 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1370 3316
1371 ((WT)w)->at += w->repeat; 3317 p->w->pending = 0;
1372 if (((WT)w)->at < mn_now) 3318 EV_CB_INVOKE (p->w, p->events);
1373 ((WT)w)->at = mn_now; 3319 EV_FREQUENT_CHECK;
1374
1375 downheap (timers, timercnt, 0);
1376 } 3320 }
1377 else
1378 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1379
1380 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1381 }
1382}
1383
1384#if EV_PERIODIC_ENABLE
1385void inline_size
1386periodics_reify (EV_P)
1387{
1388 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1389 { 3321 }
1390 ev_periodic *w = (ev_periodic *)periodics [0];
1391
1392 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1393
1394 /* first reschedule or stop timer */
1395 if (w->reschedule_cb)
1396 {
1397 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1398 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1399 downheap (periodics, periodiccnt, 0);
1400 }
1401 else if (w->interval)
1402 {
1403 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1404 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1405 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1406 downheap (periodics, periodiccnt, 0);
1407 }
1408 else
1409 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1410
1411 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1412 }
1413} 3322}
1414
1415static void noinline
1416periodics_reschedule (EV_P)
1417{
1418 int i;
1419
1420 /* adjust periodics after time jump */
1421 for (i = 0; i < periodiccnt; ++i)
1422 {
1423 ev_periodic *w = (ev_periodic *)periodics [i];
1424
1425 if (w->reschedule_cb)
1426 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1427 else if (w->interval)
1428 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1429 }
1430
1431 /* now rebuild the heap */
1432 for (i = periodiccnt >> 1; i--; )
1433 downheap (periodics, periodiccnt, i);
1434}
1435#endif
1436 3323
1437#if EV_IDLE_ENABLE 3324#if EV_IDLE_ENABLE
1438void inline_size 3325/* make idle watchers pending. this handles the "call-idle */
3326/* only when higher priorities are idle" logic */
3327inline_size void
1439idle_reify (EV_P) 3328idle_reify (EV_P)
1440{ 3329{
1441 if (expect_false (idleall)) 3330 if (expect_false (idleall))
1442 { 3331 {
1443 int pri; 3332 int pri;
1455 } 3344 }
1456 } 3345 }
1457} 3346}
1458#endif 3347#endif
1459 3348
1460void inline_speed 3349/* make timers pending */
3350inline_size void
3351timers_reify (EV_P)
3352{
3353 EV_FREQUENT_CHECK;
3354
3355 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3356 {
3357 do
3358 {
3359 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3360
3361 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3362
3363 /* first reschedule or stop timer */
3364 if (w->repeat)
3365 {
3366 ev_at (w) += w->repeat;
3367 if (ev_at (w) < mn_now)
3368 ev_at (w) = mn_now;
3369
3370 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3371
3372 ANHE_at_cache (timers [HEAP0]);
3373 downheap (timers, timercnt, HEAP0);
3374 }
3375 else
3376 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3377
3378 EV_FREQUENT_CHECK;
3379 feed_reverse (EV_A_ (W)w);
3380 }
3381 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3382
3383 feed_reverse_done (EV_A_ EV_TIMER);
3384 }
3385}
3386
3387#if EV_PERIODIC_ENABLE
3388
3389noinline
3390static void
3391periodic_recalc (EV_P_ ev_periodic *w)
3392{
3393 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3394 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3395
3396 /* the above almost always errs on the low side */
3397 while (at <= ev_rt_now)
3398 {
3399 ev_tstamp nat = at + w->interval;
3400
3401 /* when resolution fails us, we use ev_rt_now */
3402 if (expect_false (nat == at))
3403 {
3404 at = ev_rt_now;
3405 break;
3406 }
3407
3408 at = nat;
3409 }
3410
3411 ev_at (w) = at;
3412}
3413
3414/* make periodics pending */
3415inline_size void
3416periodics_reify (EV_P)
3417{
3418 EV_FREQUENT_CHECK;
3419
3420 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3421 {
3422 do
3423 {
3424 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3425
3426 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3427
3428 /* first reschedule or stop timer */
3429 if (w->reschedule_cb)
3430 {
3431 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3432
3433 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3434
3435 ANHE_at_cache (periodics [HEAP0]);
3436 downheap (periodics, periodiccnt, HEAP0);
3437 }
3438 else if (w->interval)
3439 {
3440 periodic_recalc (EV_A_ w);
3441 ANHE_at_cache (periodics [HEAP0]);
3442 downheap (periodics, periodiccnt, HEAP0);
3443 }
3444 else
3445 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3446
3447 EV_FREQUENT_CHECK;
3448 feed_reverse (EV_A_ (W)w);
3449 }
3450 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3451
3452 feed_reverse_done (EV_A_ EV_PERIODIC);
3453 }
3454}
3455
3456/* simply recalculate all periodics */
3457/* TODO: maybe ensure that at least one event happens when jumping forward? */
3458noinline ecb_cold
3459static void
3460periodics_reschedule (EV_P)
3461{
3462 int i;
3463
3464 /* adjust periodics after time jump */
3465 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3466 {
3467 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3468
3469 if (w->reschedule_cb)
3470 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3471 else if (w->interval)
3472 periodic_recalc (EV_A_ w);
3473
3474 ANHE_at_cache (periodics [i]);
3475 }
3476
3477 reheap (periodics, periodiccnt);
3478}
3479#endif
3480
3481/* adjust all timers by a given offset */
3482noinline ecb_cold
3483static void
3484timers_reschedule (EV_P_ ev_tstamp adjust)
3485{
3486 int i;
3487
3488 for (i = 0; i < timercnt; ++i)
3489 {
3490 ANHE *he = timers + i + HEAP0;
3491 ANHE_w (*he)->at += adjust;
3492 ANHE_at_cache (*he);
3493 }
3494}
3495
3496/* fetch new monotonic and realtime times from the kernel */
3497/* also detect if there was a timejump, and act accordingly */
3498inline_speed void
1461time_update (EV_P_ ev_tstamp max_block) 3499time_update (EV_P_ ev_tstamp max_block)
1462{ 3500{
1463 int i;
1464
1465#if EV_USE_MONOTONIC 3501#if EV_USE_MONOTONIC
1466 if (expect_true (have_monotonic)) 3502 if (expect_true (have_monotonic))
1467 { 3503 {
3504 int i;
1468 ev_tstamp odiff = rtmn_diff; 3505 ev_tstamp odiff = rtmn_diff;
1469 3506
1470 mn_now = get_clock (); 3507 mn_now = get_clock ();
1471 3508
1472 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3509 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1488 * doesn't hurt either as we only do this on time-jumps or 3525 * doesn't hurt either as we only do this on time-jumps or
1489 * in the unlikely event of having been preempted here. 3526 * in the unlikely event of having been preempted here.
1490 */ 3527 */
1491 for (i = 4; --i; ) 3528 for (i = 4; --i; )
1492 { 3529 {
3530 ev_tstamp diff;
1493 rtmn_diff = ev_rt_now - mn_now; 3531 rtmn_diff = ev_rt_now - mn_now;
1494 3532
1495 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 3533 diff = odiff - rtmn_diff;
3534
3535 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1496 return; /* all is well */ 3536 return; /* all is well */
1497 3537
1498 ev_rt_now = ev_time (); 3538 ev_rt_now = ev_time ();
1499 mn_now = get_clock (); 3539 mn_now = get_clock ();
1500 now_floor = mn_now; 3540 now_floor = mn_now;
1501 } 3541 }
1502 3542
3543 /* no timer adjustment, as the monotonic clock doesn't jump */
3544 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1503# if EV_PERIODIC_ENABLE 3545# if EV_PERIODIC_ENABLE
1504 periodics_reschedule (EV_A); 3546 periodics_reschedule (EV_A);
1505# endif 3547# endif
1506 /* no timer adjustment, as the monotonic clock doesn't jump */
1507 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1508 } 3548 }
1509 else 3549 else
1510#endif 3550#endif
1511 { 3551 {
1512 ev_rt_now = ev_time (); 3552 ev_rt_now = ev_time ();
1513 3553
1514 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3554 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1515 { 3555 {
3556 /* adjust timers. this is easy, as the offset is the same for all of them */
3557 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1516#if EV_PERIODIC_ENABLE 3558#if EV_PERIODIC_ENABLE
1517 periodics_reschedule (EV_A); 3559 periodics_reschedule (EV_A);
1518#endif 3560#endif
1519 /* adjust timers. this is easy, as the offset is the same for all of them */
1520 for (i = 0; i < timercnt; ++i)
1521 ((WT)timers [i])->at += ev_rt_now - mn_now;
1522 } 3561 }
1523 3562
1524 mn_now = ev_rt_now; 3563 mn_now = ev_rt_now;
1525 } 3564 }
1526} 3565}
1527 3566
1528void 3567int
1529ev_ref (EV_P)
1530{
1531 ++activecnt;
1532}
1533
1534void
1535ev_unref (EV_P)
1536{
1537 --activecnt;
1538}
1539
1540static int loop_done;
1541
1542void
1543ev_loop (EV_P_ int flags) 3568ev_run (EV_P_ int flags)
1544{ 3569{
1545 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 3570#if EV_FEATURE_API
1546 ? EVUNLOOP_ONE 3571 ++loop_depth;
1547 : EVUNLOOP_CANCEL; 3572#endif
1548 3573
3574 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3575
3576 loop_done = EVBREAK_CANCEL;
3577
1549 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3578 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1550 3579
1551 do 3580 do
1552 { 3581 {
3582#if EV_VERIFY >= 2
3583 ev_verify (EV_A);
3584#endif
3585
1553#ifndef _WIN32 3586#ifndef _WIN32
1554 if (expect_false (curpid)) /* penalise the forking check even more */ 3587 if (expect_false (curpid)) /* penalise the forking check even more */
1555 if (expect_false (getpid () != curpid)) 3588 if (expect_false (getpid () != curpid))
1556 { 3589 {
1557 curpid = getpid (); 3590 curpid = getpid ();
1563 /* we might have forked, so queue fork handlers */ 3596 /* we might have forked, so queue fork handlers */
1564 if (expect_false (postfork)) 3597 if (expect_false (postfork))
1565 if (forkcnt) 3598 if (forkcnt)
1566 { 3599 {
1567 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3600 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1568 call_pending (EV_A); 3601 EV_INVOKE_PENDING;
1569 } 3602 }
1570#endif 3603#endif
1571 3604
3605#if EV_PREPARE_ENABLE
1572 /* queue prepare watchers (and execute them) */ 3606 /* queue prepare watchers (and execute them) */
1573 if (expect_false (preparecnt)) 3607 if (expect_false (preparecnt))
1574 { 3608 {
1575 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3609 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1576 call_pending (EV_A); 3610 EV_INVOKE_PENDING;
1577 } 3611 }
3612#endif
1578 3613
1579 if (expect_false (!activecnt)) 3614 if (expect_false (loop_done))
1580 break; 3615 break;
1581 3616
1582 /* we might have forked, so reify kernel state if necessary */ 3617 /* we might have forked, so reify kernel state if necessary */
1583 if (expect_false (postfork)) 3618 if (expect_false (postfork))
1584 loop_fork (EV_A); 3619 loop_fork (EV_A);
1589 /* calculate blocking time */ 3624 /* calculate blocking time */
1590 { 3625 {
1591 ev_tstamp waittime = 0.; 3626 ev_tstamp waittime = 0.;
1592 ev_tstamp sleeptime = 0.; 3627 ev_tstamp sleeptime = 0.;
1593 3628
3629 /* remember old timestamp for io_blocktime calculation */
3630 ev_tstamp prev_mn_now = mn_now;
3631
3632 /* update time to cancel out callback processing overhead */
3633 time_update (EV_A_ 1e100);
3634
3635 /* from now on, we want a pipe-wake-up */
3636 pipe_write_wanted = 1;
3637
3638 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3639
1594 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3640 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1595 { 3641 {
1596 /* update time to cancel out callback processing overhead */
1597 time_update (EV_A_ 1e100);
1598
1599 waittime = MAX_BLOCKTIME; 3642 waittime = MAX_BLOCKTIME;
1600 3643
1601 if (timercnt) 3644 if (timercnt)
1602 { 3645 {
1603 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 3646 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1604 if (waittime > to) waittime = to; 3647 if (waittime > to) waittime = to;
1605 } 3648 }
1606 3649
1607#if EV_PERIODIC_ENABLE 3650#if EV_PERIODIC_ENABLE
1608 if (periodiccnt) 3651 if (periodiccnt)
1609 { 3652 {
1610 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 3653 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1611 if (waittime > to) waittime = to; 3654 if (waittime > to) waittime = to;
1612 } 3655 }
1613#endif 3656#endif
1614 3657
3658 /* don't let timeouts decrease the waittime below timeout_blocktime */
1615 if (expect_false (waittime < timeout_blocktime)) 3659 if (expect_false (waittime < timeout_blocktime))
1616 waittime = timeout_blocktime; 3660 waittime = timeout_blocktime;
1617 3661
1618 sleeptime = waittime - backend_fudge; 3662 /* at this point, we NEED to wait, so we have to ensure */
3663 /* to pass a minimum nonzero value to the backend */
3664 if (expect_false (waittime < backend_mintime))
3665 waittime = backend_mintime;
1619 3666
3667 /* extra check because io_blocktime is commonly 0 */
1620 if (expect_true (sleeptime > io_blocktime)) 3668 if (expect_false (io_blocktime))
1621 sleeptime = io_blocktime;
1622
1623 if (sleeptime)
1624 { 3669 {
3670 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3671
3672 if (sleeptime > waittime - backend_mintime)
3673 sleeptime = waittime - backend_mintime;
3674
3675 if (expect_true (sleeptime > 0.))
3676 {
1625 ev_sleep (sleeptime); 3677 ev_sleep (sleeptime);
1626 waittime -= sleeptime; 3678 waittime -= sleeptime;
3679 }
1627 } 3680 }
1628 } 3681 }
1629 3682
3683#if EV_FEATURE_API
1630 ++loop_count; 3684 ++loop_count;
3685#endif
3686 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1631 backend_poll (EV_A_ waittime); 3687 backend_poll (EV_A_ waittime);
3688 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3689
3690 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3691
3692 ECB_MEMORY_FENCE_ACQUIRE;
3693 if (pipe_write_skipped)
3694 {
3695 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3696 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3697 }
3698
1632 3699
1633 /* update ev_rt_now, do magic */ 3700 /* update ev_rt_now, do magic */
1634 time_update (EV_A_ waittime + sleeptime); 3701 time_update (EV_A_ waittime + sleeptime);
1635 } 3702 }
1636 3703
1643#if EV_IDLE_ENABLE 3710#if EV_IDLE_ENABLE
1644 /* queue idle watchers unless other events are pending */ 3711 /* queue idle watchers unless other events are pending */
1645 idle_reify (EV_A); 3712 idle_reify (EV_A);
1646#endif 3713#endif
1647 3714
3715#if EV_CHECK_ENABLE
1648 /* queue check watchers, to be executed first */ 3716 /* queue check watchers, to be executed first */
1649 if (expect_false (checkcnt)) 3717 if (expect_false (checkcnt))
1650 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3718 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3719#endif
1651 3720
1652 call_pending (EV_A); 3721 EV_INVOKE_PENDING;
1653
1654 } 3722 }
1655 while (expect_true (activecnt && !loop_done)); 3723 while (expect_true (
3724 activecnt
3725 && !loop_done
3726 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3727 ));
1656 3728
1657 if (loop_done == EVUNLOOP_ONE) 3729 if (loop_done == EVBREAK_ONE)
1658 loop_done = EVUNLOOP_CANCEL; 3730 loop_done = EVBREAK_CANCEL;
1659}
1660 3731
3732#if EV_FEATURE_API
3733 --loop_depth;
3734#endif
3735
3736 return activecnt;
3737}
3738
1661void 3739void
1662ev_unloop (EV_P_ int how) 3740ev_break (EV_P_ int how) EV_THROW
1663{ 3741{
1664 loop_done = how; 3742 loop_done = how;
1665} 3743}
1666 3744
3745void
3746ev_ref (EV_P) EV_THROW
3747{
3748 ++activecnt;
3749}
3750
3751void
3752ev_unref (EV_P) EV_THROW
3753{
3754 --activecnt;
3755}
3756
3757void
3758ev_now_update (EV_P) EV_THROW
3759{
3760 time_update (EV_A_ 1e100);
3761}
3762
3763void
3764ev_suspend (EV_P) EV_THROW
3765{
3766 ev_now_update (EV_A);
3767}
3768
3769void
3770ev_resume (EV_P) EV_THROW
3771{
3772 ev_tstamp mn_prev = mn_now;
3773
3774 ev_now_update (EV_A);
3775 timers_reschedule (EV_A_ mn_now - mn_prev);
3776#if EV_PERIODIC_ENABLE
3777 /* TODO: really do this? */
3778 periodics_reschedule (EV_A);
3779#endif
3780}
3781
1667/*****************************************************************************/ 3782/*****************************************************************************/
3783/* singly-linked list management, used when the expected list length is short */
1668 3784
1669void inline_size 3785inline_size void
1670wlist_add (WL *head, WL elem) 3786wlist_add (WL *head, WL elem)
1671{ 3787{
1672 elem->next = *head; 3788 elem->next = *head;
1673 *head = elem; 3789 *head = elem;
1674} 3790}
1675 3791
1676void inline_size 3792inline_size void
1677wlist_del (WL *head, WL elem) 3793wlist_del (WL *head, WL elem)
1678{ 3794{
1679 while (*head) 3795 while (*head)
1680 { 3796 {
1681 if (*head == elem) 3797 if (expect_true (*head == elem))
1682 { 3798 {
1683 *head = elem->next; 3799 *head = elem->next;
1684 return; 3800 break;
1685 } 3801 }
1686 3802
1687 head = &(*head)->next; 3803 head = &(*head)->next;
1688 } 3804 }
1689} 3805}
1690 3806
1691void inline_speed 3807/* internal, faster, version of ev_clear_pending */
3808inline_speed void
1692clear_pending (EV_P_ W w) 3809clear_pending (EV_P_ W w)
1693{ 3810{
1694 if (w->pending) 3811 if (w->pending)
1695 { 3812 {
1696 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3813 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1697 w->pending = 0; 3814 w->pending = 0;
1698 } 3815 }
1699} 3816}
1700 3817
1701int 3818int
1702ev_clear_pending (EV_P_ void *w) 3819ev_clear_pending (EV_P_ void *w) EV_THROW
1703{ 3820{
1704 W w_ = (W)w; 3821 W w_ = (W)w;
1705 int pending = w_->pending; 3822 int pending = w_->pending;
1706 3823
1707 if (expect_true (pending)) 3824 if (expect_true (pending))
1708 { 3825 {
1709 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3826 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3827 p->w = (W)&pending_w;
1710 w_->pending = 0; 3828 w_->pending = 0;
1711 p->w = 0;
1712 return p->events; 3829 return p->events;
1713 } 3830 }
1714 else 3831 else
1715 return 0; 3832 return 0;
1716} 3833}
1717 3834
1718void inline_size 3835inline_size void
1719pri_adjust (EV_P_ W w) 3836pri_adjust (EV_P_ W w)
1720{ 3837{
1721 int pri = w->priority; 3838 int pri = ev_priority (w);
1722 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3839 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1723 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3840 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1724 w->priority = pri; 3841 ev_set_priority (w, pri);
1725} 3842}
1726 3843
1727void inline_speed 3844inline_speed void
1728ev_start (EV_P_ W w, int active) 3845ev_start (EV_P_ W w, int active)
1729{ 3846{
1730 pri_adjust (EV_A_ w); 3847 pri_adjust (EV_A_ w);
1731 w->active = active; 3848 w->active = active;
1732 ev_ref (EV_A); 3849 ev_ref (EV_A);
1733} 3850}
1734 3851
1735void inline_size 3852inline_size void
1736ev_stop (EV_P_ W w) 3853ev_stop (EV_P_ W w)
1737{ 3854{
1738 ev_unref (EV_A); 3855 ev_unref (EV_A);
1739 w->active = 0; 3856 w->active = 0;
1740} 3857}
1741 3858
1742/*****************************************************************************/ 3859/*****************************************************************************/
1743 3860
1744void noinline 3861noinline
3862void
1745ev_io_start (EV_P_ ev_io *w) 3863ev_io_start (EV_P_ ev_io *w) EV_THROW
1746{ 3864{
1747 int fd = w->fd; 3865 int fd = w->fd;
1748 3866
1749 if (expect_false (ev_is_active (w))) 3867 if (expect_false (ev_is_active (w)))
1750 return; 3868 return;
1751 3869
1752 assert (("ev_io_start called with negative fd", fd >= 0)); 3870 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3871 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3872
3873 EV_FREQUENT_CHECK;
1753 3874
1754 ev_start (EV_A_ (W)w, 1); 3875 ev_start (EV_A_ (W)w, 1);
1755 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3876 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1756 wlist_add (&anfds[fd].head, (WL)w); 3877 wlist_add (&anfds[fd].head, (WL)w);
1757 3878
3879 /* common bug, apparently */
3880 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3881
1758 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3882 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1759 w->events &= ~EV_IOFDSET; 3883 w->events &= ~EV__IOFDSET;
1760}
1761 3884
3885 EV_FREQUENT_CHECK;
3886}
3887
1762void noinline 3888noinline
3889void
1763ev_io_stop (EV_P_ ev_io *w) 3890ev_io_stop (EV_P_ ev_io *w) EV_THROW
1764{ 3891{
1765 clear_pending (EV_A_ (W)w); 3892 clear_pending (EV_A_ (W)w);
1766 if (expect_false (!ev_is_active (w))) 3893 if (expect_false (!ev_is_active (w)))
1767 return; 3894 return;
1768 3895
1769 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3896 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3897
3898 EV_FREQUENT_CHECK;
1770 3899
1771 wlist_del (&anfds[w->fd].head, (WL)w); 3900 wlist_del (&anfds[w->fd].head, (WL)w);
1772 ev_stop (EV_A_ (W)w); 3901 ev_stop (EV_A_ (W)w);
1773 3902
1774 fd_change (EV_A_ w->fd, 1); 3903 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1775}
1776 3904
3905 EV_FREQUENT_CHECK;
3906}
3907
1777void noinline 3908noinline
3909void
1778ev_timer_start (EV_P_ ev_timer *w) 3910ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1779{ 3911{
1780 if (expect_false (ev_is_active (w))) 3912 if (expect_false (ev_is_active (w)))
1781 return; 3913 return;
1782 3914
1783 ((WT)w)->at += mn_now; 3915 ev_at (w) += mn_now;
1784 3916
1785 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3917 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1786 3918
3919 EV_FREQUENT_CHECK;
3920
3921 ++timercnt;
1787 ev_start (EV_A_ (W)w, ++timercnt); 3922 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1788 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 3923 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1789 timers [timercnt - 1] = (WT)w; 3924 ANHE_w (timers [ev_active (w)]) = (WT)w;
1790 upheap (timers, timercnt - 1); 3925 ANHE_at_cache (timers [ev_active (w)]);
3926 upheap (timers, ev_active (w));
1791 3927
3928 EV_FREQUENT_CHECK;
3929
1792 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 3930 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1793} 3931}
1794 3932
1795void noinline 3933noinline
3934void
1796ev_timer_stop (EV_P_ ev_timer *w) 3935ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1797{ 3936{
1798 clear_pending (EV_A_ (W)w); 3937 clear_pending (EV_A_ (W)w);
1799 if (expect_false (!ev_is_active (w))) 3938 if (expect_false (!ev_is_active (w)))
1800 return; 3939 return;
1801 3940
1802 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 3941 EV_FREQUENT_CHECK;
1803 3942
1804 { 3943 {
1805 int active = ((W)w)->active; 3944 int active = ev_active (w);
1806 3945
3946 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3947
3948 --timercnt;
3949
1807 if (expect_true (--active < --timercnt)) 3950 if (expect_true (active < timercnt + HEAP0))
1808 { 3951 {
1809 timers [active] = timers [timercnt]; 3952 timers [active] = timers [timercnt + HEAP0];
1810 adjustheap (timers, timercnt, active); 3953 adjustheap (timers, timercnt, active);
1811 } 3954 }
1812 } 3955 }
1813 3956
1814 ((WT)w)->at -= mn_now; 3957 ev_at (w) -= mn_now;
1815 3958
1816 ev_stop (EV_A_ (W)w); 3959 ev_stop (EV_A_ (W)w);
1817}
1818 3960
3961 EV_FREQUENT_CHECK;
3962}
3963
1819void noinline 3964noinline
3965void
1820ev_timer_again (EV_P_ ev_timer *w) 3966ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1821{ 3967{
3968 EV_FREQUENT_CHECK;
3969
3970 clear_pending (EV_A_ (W)w);
3971
1822 if (ev_is_active (w)) 3972 if (ev_is_active (w))
1823 { 3973 {
1824 if (w->repeat) 3974 if (w->repeat)
1825 { 3975 {
1826 ((WT)w)->at = mn_now + w->repeat; 3976 ev_at (w) = mn_now + w->repeat;
3977 ANHE_at_cache (timers [ev_active (w)]);
1827 adjustheap (timers, timercnt, ((W)w)->active - 1); 3978 adjustheap (timers, timercnt, ev_active (w));
1828 } 3979 }
1829 else 3980 else
1830 ev_timer_stop (EV_A_ w); 3981 ev_timer_stop (EV_A_ w);
1831 } 3982 }
1832 else if (w->repeat) 3983 else if (w->repeat)
1833 { 3984 {
1834 w->at = w->repeat; 3985 ev_at (w) = w->repeat;
1835 ev_timer_start (EV_A_ w); 3986 ev_timer_start (EV_A_ w);
1836 } 3987 }
3988
3989 EV_FREQUENT_CHECK;
3990}
3991
3992ev_tstamp
3993ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3994{
3995 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1837} 3996}
1838 3997
1839#if EV_PERIODIC_ENABLE 3998#if EV_PERIODIC_ENABLE
1840void noinline 3999noinline
4000void
1841ev_periodic_start (EV_P_ ev_periodic *w) 4001ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1842{ 4002{
1843 if (expect_false (ev_is_active (w))) 4003 if (expect_false (ev_is_active (w)))
1844 return; 4004 return;
1845 4005
1846 if (w->reschedule_cb) 4006 if (w->reschedule_cb)
1847 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 4007 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1848 else if (w->interval) 4008 else if (w->interval)
1849 { 4009 {
1850 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 4010 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1851 /* this formula differs from the one in periodic_reify because we do not always round up */ 4011 periodic_recalc (EV_A_ w);
1852 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1853 } 4012 }
1854 else 4013 else
1855 ((WT)w)->at = w->offset; 4014 ev_at (w) = w->offset;
1856 4015
4016 EV_FREQUENT_CHECK;
4017
4018 ++periodiccnt;
1857 ev_start (EV_A_ (W)w, ++periodiccnt); 4019 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1858 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 4020 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1859 periodics [periodiccnt - 1] = (WT)w; 4021 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1860 upheap (periodics, periodiccnt - 1); 4022 ANHE_at_cache (periodics [ev_active (w)]);
4023 upheap (periodics, ev_active (w));
1861 4024
4025 EV_FREQUENT_CHECK;
4026
1862 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 4027 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1863} 4028}
1864 4029
1865void noinline 4030noinline
4031void
1866ev_periodic_stop (EV_P_ ev_periodic *w) 4032ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1867{ 4033{
1868 clear_pending (EV_A_ (W)w); 4034 clear_pending (EV_A_ (W)w);
1869 if (expect_false (!ev_is_active (w))) 4035 if (expect_false (!ev_is_active (w)))
1870 return; 4036 return;
1871 4037
1872 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 4038 EV_FREQUENT_CHECK;
1873 4039
1874 { 4040 {
1875 int active = ((W)w)->active; 4041 int active = ev_active (w);
1876 4042
4043 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
4044
4045 --periodiccnt;
4046
1877 if (expect_true (--active < --periodiccnt)) 4047 if (expect_true (active < periodiccnt + HEAP0))
1878 { 4048 {
1879 periodics [active] = periodics [periodiccnt]; 4049 periodics [active] = periodics [periodiccnt + HEAP0];
1880 adjustheap (periodics, periodiccnt, active); 4050 adjustheap (periodics, periodiccnt, active);
1881 } 4051 }
1882 } 4052 }
1883 4053
1884 ev_stop (EV_A_ (W)w); 4054 ev_stop (EV_A_ (W)w);
1885}
1886 4055
4056 EV_FREQUENT_CHECK;
4057}
4058
1887void noinline 4059noinline
4060void
1888ev_periodic_again (EV_P_ ev_periodic *w) 4061ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1889{ 4062{
1890 /* TODO: use adjustheap and recalculation */ 4063 /* TODO: use adjustheap and recalculation */
1891 ev_periodic_stop (EV_A_ w); 4064 ev_periodic_stop (EV_A_ w);
1892 ev_periodic_start (EV_A_ w); 4065 ev_periodic_start (EV_A_ w);
1893} 4066}
1895 4068
1896#ifndef SA_RESTART 4069#ifndef SA_RESTART
1897# define SA_RESTART 0 4070# define SA_RESTART 0
1898#endif 4071#endif
1899 4072
4073#if EV_SIGNAL_ENABLE
4074
1900void noinline 4075noinline
4076void
1901ev_signal_start (EV_P_ ev_signal *w) 4077ev_signal_start (EV_P_ ev_signal *w) EV_THROW
1902{ 4078{
1903#if EV_MULTIPLICITY
1904 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1905#endif
1906 if (expect_false (ev_is_active (w))) 4079 if (expect_false (ev_is_active (w)))
1907 return; 4080 return;
1908 4081
1909 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 4082 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1910 4083
1911 evpipe_init (EV_A); 4084#if EV_MULTIPLICITY
4085 assert (("libev: a signal must not be attached to two different loops",
4086 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
1912 4087
4088 signals [w->signum - 1].loop = EV_A;
4089 ECB_MEMORY_FENCE_RELEASE;
4090#endif
4091
4092 EV_FREQUENT_CHECK;
4093
4094#if EV_USE_SIGNALFD
4095 if (sigfd == -2)
1913 { 4096 {
1914#ifndef _WIN32 4097 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1915 sigset_t full, prev; 4098 if (sigfd < 0 && errno == EINVAL)
1916 sigfillset (&full); 4099 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1917 sigprocmask (SIG_SETMASK, &full, &prev);
1918#endif
1919 4100
1920 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 4101 if (sigfd >= 0)
4102 {
4103 fd_intern (sigfd); /* doing it twice will not hurt */
1921 4104
1922#ifndef _WIN32 4105 sigemptyset (&sigfd_set);
1923 sigprocmask (SIG_SETMASK, &prev, 0); 4106
1924#endif 4107 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4108 ev_set_priority (&sigfd_w, EV_MAXPRI);
4109 ev_io_start (EV_A_ &sigfd_w);
4110 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4111 }
1925 } 4112 }
4113
4114 if (sigfd >= 0)
4115 {
4116 /* TODO: check .head */
4117 sigaddset (&sigfd_set, w->signum);
4118 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4119
4120 signalfd (sigfd, &sigfd_set, 0);
4121 }
4122#endif
1926 4123
1927 ev_start (EV_A_ (W)w, 1); 4124 ev_start (EV_A_ (W)w, 1);
1928 wlist_add (&signals [w->signum - 1].head, (WL)w); 4125 wlist_add (&signals [w->signum - 1].head, (WL)w);
1929 4126
1930 if (!((WL)w)->next) 4127 if (!((WL)w)->next)
4128# if EV_USE_SIGNALFD
4129 if (sigfd < 0) /*TODO*/
4130# endif
1931 { 4131 {
1932#if _WIN32 4132# ifdef _WIN32
4133 evpipe_init (EV_A);
4134
1933 signal (w->signum, sighandler); 4135 signal (w->signum, ev_sighandler);
1934#else 4136# else
1935 struct sigaction sa; 4137 struct sigaction sa;
4138
4139 evpipe_init (EV_A);
4140
1936 sa.sa_handler = sighandler; 4141 sa.sa_handler = ev_sighandler;
1937 sigfillset (&sa.sa_mask); 4142 sigfillset (&sa.sa_mask);
1938 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 4143 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1939 sigaction (w->signum, &sa, 0); 4144 sigaction (w->signum, &sa, 0);
4145
4146 if (origflags & EVFLAG_NOSIGMASK)
4147 {
4148 sigemptyset (&sa.sa_mask);
4149 sigaddset (&sa.sa_mask, w->signum);
4150 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4151 }
1940#endif 4152#endif
1941 } 4153 }
1942}
1943 4154
4155 EV_FREQUENT_CHECK;
4156}
4157
1944void noinline 4158noinline
4159void
1945ev_signal_stop (EV_P_ ev_signal *w) 4160ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
1946{ 4161{
1947 clear_pending (EV_A_ (W)w); 4162 clear_pending (EV_A_ (W)w);
1948 if (expect_false (!ev_is_active (w))) 4163 if (expect_false (!ev_is_active (w)))
1949 return; 4164 return;
1950 4165
4166 EV_FREQUENT_CHECK;
4167
1951 wlist_del (&signals [w->signum - 1].head, (WL)w); 4168 wlist_del (&signals [w->signum - 1].head, (WL)w);
1952 ev_stop (EV_A_ (W)w); 4169 ev_stop (EV_A_ (W)w);
1953 4170
1954 if (!signals [w->signum - 1].head) 4171 if (!signals [w->signum - 1].head)
1955 signal (w->signum, SIG_DFL); 4172 {
1956}
1957
1958void
1959ev_child_start (EV_P_ ev_child *w)
1960{
1961#if EV_MULTIPLICITY 4173#if EV_MULTIPLICITY
4174 signals [w->signum - 1].loop = 0; /* unattach from signal */
4175#endif
4176#if EV_USE_SIGNALFD
4177 if (sigfd >= 0)
4178 {
4179 sigset_t ss;
4180
4181 sigemptyset (&ss);
4182 sigaddset (&ss, w->signum);
4183 sigdelset (&sigfd_set, w->signum);
4184
4185 signalfd (sigfd, &sigfd_set, 0);
4186 sigprocmask (SIG_UNBLOCK, &ss, 0);
4187 }
4188 else
4189#endif
4190 signal (w->signum, SIG_DFL);
4191 }
4192
4193 EV_FREQUENT_CHECK;
4194}
4195
4196#endif
4197
4198#if EV_CHILD_ENABLE
4199
4200void
4201ev_child_start (EV_P_ ev_child *w) EV_THROW
4202{
4203#if EV_MULTIPLICITY
1962 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4204 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1963#endif 4205#endif
1964 if (expect_false (ev_is_active (w))) 4206 if (expect_false (ev_is_active (w)))
1965 return; 4207 return;
1966 4208
4209 EV_FREQUENT_CHECK;
4210
1967 ev_start (EV_A_ (W)w, 1); 4211 ev_start (EV_A_ (W)w, 1);
1968 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4212 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1969}
1970 4213
4214 EV_FREQUENT_CHECK;
4215}
4216
1971void 4217void
1972ev_child_stop (EV_P_ ev_child *w) 4218ev_child_stop (EV_P_ ev_child *w) EV_THROW
1973{ 4219{
1974 clear_pending (EV_A_ (W)w); 4220 clear_pending (EV_A_ (W)w);
1975 if (expect_false (!ev_is_active (w))) 4221 if (expect_false (!ev_is_active (w)))
1976 return; 4222 return;
1977 4223
4224 EV_FREQUENT_CHECK;
4225
1978 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4226 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1979 ev_stop (EV_A_ (W)w); 4227 ev_stop (EV_A_ (W)w);
4228
4229 EV_FREQUENT_CHECK;
1980} 4230}
4231
4232#endif
1981 4233
1982#if EV_STAT_ENABLE 4234#if EV_STAT_ENABLE
1983 4235
1984# ifdef _WIN32 4236# ifdef _WIN32
1985# undef lstat 4237# undef lstat
1986# define lstat(a,b) _stati64 (a,b) 4238# define lstat(a,b) _stati64 (a,b)
1987# endif 4239# endif
1988 4240
1989#define DEF_STAT_INTERVAL 5.0074891 4241#define DEF_STAT_INTERVAL 5.0074891
4242#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1990#define MIN_STAT_INTERVAL 0.1074891 4243#define MIN_STAT_INTERVAL 0.1074891
1991 4244
1992static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 4245noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1993 4246
1994#if EV_USE_INOTIFY 4247#if EV_USE_INOTIFY
1995# define EV_INOTIFY_BUFSIZE 8192
1996 4248
1997static void noinline 4249/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4250# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4251
4252noinline
4253static void
1998infy_add (EV_P_ ev_stat *w) 4254infy_add (EV_P_ ev_stat *w)
1999{ 4255{
2000 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 4256 w->wd = inotify_add_watch (fs_fd, w->path,
4257 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4258 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4259 | IN_DONT_FOLLOW | IN_MASK_ADD);
2001 4260
2002 if (w->wd < 0) 4261 if (w->wd >= 0)
4262 {
4263 struct statfs sfs;
4264
4265 /* now local changes will be tracked by inotify, but remote changes won't */
4266 /* unless the filesystem is known to be local, we therefore still poll */
4267 /* also do poll on <2.6.25, but with normal frequency */
4268
4269 if (!fs_2625)
4270 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4271 else if (!statfs (w->path, &sfs)
4272 && (sfs.f_type == 0x1373 /* devfs */
4273 || sfs.f_type == 0x4006 /* fat */
4274 || sfs.f_type == 0x4d44 /* msdos */
4275 || sfs.f_type == 0xEF53 /* ext2/3 */
4276 || sfs.f_type == 0x72b6 /* jffs2 */
4277 || sfs.f_type == 0x858458f6 /* ramfs */
4278 || sfs.f_type == 0x5346544e /* ntfs */
4279 || sfs.f_type == 0x3153464a /* jfs */
4280 || sfs.f_type == 0x9123683e /* btrfs */
4281 || sfs.f_type == 0x52654973 /* reiser3 */
4282 || sfs.f_type == 0x01021994 /* tmpfs */
4283 || sfs.f_type == 0x58465342 /* xfs */))
4284 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4285 else
4286 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2003 { 4287 }
2004 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 4288 else
4289 {
4290 /* can't use inotify, continue to stat */
4291 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2005 4292
2006 /* monitor some parent directory for speedup hints */ 4293 /* if path is not there, monitor some parent directory for speedup hints */
4294 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4295 /* but an efficiency issue only */
2007 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4296 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2008 { 4297 {
2009 char path [4096]; 4298 char path [4096];
2010 strcpy (path, w->path); 4299 strcpy (path, w->path);
2011 4300
2014 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 4303 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2015 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 4304 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2016 4305
2017 char *pend = strrchr (path, '/'); 4306 char *pend = strrchr (path, '/');
2018 4307
2019 if (!pend) 4308 if (!pend || pend == path)
2020 break; /* whoops, no '/', complain to your admin */ 4309 break;
2021 4310
2022 *pend = 0; 4311 *pend = 0;
2023 w->wd = inotify_add_watch (fs_fd, path, mask); 4312 w->wd = inotify_add_watch (fs_fd, path, mask);
2024 } 4313 }
2025 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4314 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2026 } 4315 }
2027 } 4316 }
2028 else
2029 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2030 4317
2031 if (w->wd >= 0) 4318 if (w->wd >= 0)
2032 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4319 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2033}
2034 4320
2035static void noinline 4321 /* now re-arm timer, if required */
4322 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4323 ev_timer_again (EV_A_ &w->timer);
4324 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4325}
4326
4327noinline
4328static void
2036infy_del (EV_P_ ev_stat *w) 4329infy_del (EV_P_ ev_stat *w)
2037{ 4330{
2038 int slot; 4331 int slot;
2039 int wd = w->wd; 4332 int wd = w->wd;
2040 4333
2041 if (wd < 0) 4334 if (wd < 0)
2042 return; 4335 return;
2043 4336
2044 w->wd = -2; 4337 w->wd = -2;
2045 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4338 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2046 wlist_del (&fs_hash [slot].head, (WL)w); 4339 wlist_del (&fs_hash [slot].head, (WL)w);
2047 4340
2048 /* remove this watcher, if others are watching it, they will rearm */ 4341 /* remove this watcher, if others are watching it, they will rearm */
2049 inotify_rm_watch (fs_fd, wd); 4342 inotify_rm_watch (fs_fd, wd);
2050} 4343}
2051 4344
2052static void noinline 4345noinline
4346static void
2053infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4347infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2054{ 4348{
2055 if (slot < 0) 4349 if (slot < 0)
2056 /* overflow, need to check for all hahs slots */ 4350 /* overflow, need to check for all hash slots */
2057 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4351 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2058 infy_wd (EV_A_ slot, wd, ev); 4352 infy_wd (EV_A_ slot, wd, ev);
2059 else 4353 else
2060 { 4354 {
2061 WL w_; 4355 WL w_;
2062 4356
2063 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4357 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2064 { 4358 {
2065 ev_stat *w = (ev_stat *)w_; 4359 ev_stat *w = (ev_stat *)w_;
2066 w_ = w_->next; /* lets us remove this watcher and all before it */ 4360 w_ = w_->next; /* lets us remove this watcher and all before it */
2067 4361
2068 if (w->wd == wd || wd == -1) 4362 if (w->wd == wd || wd == -1)
2069 { 4363 {
2070 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4364 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2071 { 4365 {
4366 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2072 w->wd = -1; 4367 w->wd = -1;
2073 infy_add (EV_A_ w); /* re-add, no matter what */ 4368 infy_add (EV_A_ w); /* re-add, no matter what */
2074 } 4369 }
2075 4370
2076 stat_timer_cb (EV_A_ &w->timer, 0); 4371 stat_timer_cb (EV_A_ &w->timer, 0);
2081 4376
2082static void 4377static void
2083infy_cb (EV_P_ ev_io *w, int revents) 4378infy_cb (EV_P_ ev_io *w, int revents)
2084{ 4379{
2085 char buf [EV_INOTIFY_BUFSIZE]; 4380 char buf [EV_INOTIFY_BUFSIZE];
2086 struct inotify_event *ev = (struct inotify_event *)buf;
2087 int ofs; 4381 int ofs;
2088 int len = read (fs_fd, buf, sizeof (buf)); 4382 int len = read (fs_fd, buf, sizeof (buf));
2089 4383
2090 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4384 for (ofs = 0; ofs < len; )
4385 {
4386 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2091 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4387 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4388 ofs += sizeof (struct inotify_event) + ev->len;
4389 }
2092} 4390}
2093 4391
2094void inline_size 4392inline_size ecb_cold
4393void
4394ev_check_2625 (EV_P)
4395{
4396 /* kernels < 2.6.25 are borked
4397 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4398 */
4399 if (ev_linux_version () < 0x020619)
4400 return;
4401
4402 fs_2625 = 1;
4403}
4404
4405inline_size int
4406infy_newfd (void)
4407{
4408#if defined IN_CLOEXEC && defined IN_NONBLOCK
4409 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4410 if (fd >= 0)
4411 return fd;
4412#endif
4413 return inotify_init ();
4414}
4415
4416inline_size void
2095infy_init (EV_P) 4417infy_init (EV_P)
2096{ 4418{
2097 if (fs_fd != -2) 4419 if (fs_fd != -2)
2098 return; 4420 return;
2099 4421
4422 fs_fd = -1;
4423
4424 ev_check_2625 (EV_A);
4425
2100 fs_fd = inotify_init (); 4426 fs_fd = infy_newfd ();
2101 4427
2102 if (fs_fd >= 0) 4428 if (fs_fd >= 0)
2103 { 4429 {
4430 fd_intern (fs_fd);
2104 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4431 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2105 ev_set_priority (&fs_w, EV_MAXPRI); 4432 ev_set_priority (&fs_w, EV_MAXPRI);
2106 ev_io_start (EV_A_ &fs_w); 4433 ev_io_start (EV_A_ &fs_w);
4434 ev_unref (EV_A);
2107 } 4435 }
2108} 4436}
2109 4437
2110void inline_size 4438inline_size void
2111infy_fork (EV_P) 4439infy_fork (EV_P)
2112{ 4440{
2113 int slot; 4441 int slot;
2114 4442
2115 if (fs_fd < 0) 4443 if (fs_fd < 0)
2116 return; 4444 return;
2117 4445
4446 ev_ref (EV_A);
4447 ev_io_stop (EV_A_ &fs_w);
2118 close (fs_fd); 4448 close (fs_fd);
2119 fs_fd = inotify_init (); 4449 fs_fd = infy_newfd ();
2120 4450
4451 if (fs_fd >= 0)
4452 {
4453 fd_intern (fs_fd);
4454 ev_io_set (&fs_w, fs_fd, EV_READ);
4455 ev_io_start (EV_A_ &fs_w);
4456 ev_unref (EV_A);
4457 }
4458
2121 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4459 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2122 { 4460 {
2123 WL w_ = fs_hash [slot].head; 4461 WL w_ = fs_hash [slot].head;
2124 fs_hash [slot].head = 0; 4462 fs_hash [slot].head = 0;
2125 4463
2126 while (w_) 4464 while (w_)
2131 w->wd = -1; 4469 w->wd = -1;
2132 4470
2133 if (fs_fd >= 0) 4471 if (fs_fd >= 0)
2134 infy_add (EV_A_ w); /* re-add, no matter what */ 4472 infy_add (EV_A_ w); /* re-add, no matter what */
2135 else 4473 else
4474 {
4475 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4476 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2136 ev_timer_start (EV_A_ &w->timer); 4477 ev_timer_again (EV_A_ &w->timer);
4478 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4479 }
2137 } 4480 }
2138
2139 } 4481 }
2140} 4482}
2141 4483
2142#endif 4484#endif
2143 4485
4486#ifdef _WIN32
4487# define EV_LSTAT(p,b) _stati64 (p, b)
4488#else
4489# define EV_LSTAT(p,b) lstat (p, b)
4490#endif
4491
2144void 4492void
2145ev_stat_stat (EV_P_ ev_stat *w) 4493ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2146{ 4494{
2147 if (lstat (w->path, &w->attr) < 0) 4495 if (lstat (w->path, &w->attr) < 0)
2148 w->attr.st_nlink = 0; 4496 w->attr.st_nlink = 0;
2149 else if (!w->attr.st_nlink) 4497 else if (!w->attr.st_nlink)
2150 w->attr.st_nlink = 1; 4498 w->attr.st_nlink = 1;
2151} 4499}
2152 4500
2153static void noinline 4501noinline
4502static void
2154stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4503stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2155{ 4504{
2156 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4505 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2157 4506
2158 /* we copy this here each the time so that */ 4507 ev_statdata prev = w->attr;
2159 /* prev has the old value when the callback gets invoked */
2160 w->prev = w->attr;
2161 ev_stat_stat (EV_A_ w); 4508 ev_stat_stat (EV_A_ w);
2162 4509
2163 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4510 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2164 if ( 4511 if (
2165 w->prev.st_dev != w->attr.st_dev 4512 prev.st_dev != w->attr.st_dev
2166 || w->prev.st_ino != w->attr.st_ino 4513 || prev.st_ino != w->attr.st_ino
2167 || w->prev.st_mode != w->attr.st_mode 4514 || prev.st_mode != w->attr.st_mode
2168 || w->prev.st_nlink != w->attr.st_nlink 4515 || prev.st_nlink != w->attr.st_nlink
2169 || w->prev.st_uid != w->attr.st_uid 4516 || prev.st_uid != w->attr.st_uid
2170 || w->prev.st_gid != w->attr.st_gid 4517 || prev.st_gid != w->attr.st_gid
2171 || w->prev.st_rdev != w->attr.st_rdev 4518 || prev.st_rdev != w->attr.st_rdev
2172 || w->prev.st_size != w->attr.st_size 4519 || prev.st_size != w->attr.st_size
2173 || w->prev.st_atime != w->attr.st_atime 4520 || prev.st_atime != w->attr.st_atime
2174 || w->prev.st_mtime != w->attr.st_mtime 4521 || prev.st_mtime != w->attr.st_mtime
2175 || w->prev.st_ctime != w->attr.st_ctime 4522 || prev.st_ctime != w->attr.st_ctime
2176 ) { 4523 ) {
4524 /* we only update w->prev on actual differences */
4525 /* in case we test more often than invoke the callback, */
4526 /* to ensure that prev is always different to attr */
4527 w->prev = prev;
4528
2177 #if EV_USE_INOTIFY 4529 #if EV_USE_INOTIFY
4530 if (fs_fd >= 0)
4531 {
2178 infy_del (EV_A_ w); 4532 infy_del (EV_A_ w);
2179 infy_add (EV_A_ w); 4533 infy_add (EV_A_ w);
2180 ev_stat_stat (EV_A_ w); /* avoid race... */ 4534 ev_stat_stat (EV_A_ w); /* avoid race... */
4535 }
2181 #endif 4536 #endif
2182 4537
2183 ev_feed_event (EV_A_ w, EV_STAT); 4538 ev_feed_event (EV_A_ w, EV_STAT);
2184 } 4539 }
2185} 4540}
2186 4541
2187void 4542void
2188ev_stat_start (EV_P_ ev_stat *w) 4543ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2189{ 4544{
2190 if (expect_false (ev_is_active (w))) 4545 if (expect_false (ev_is_active (w)))
2191 return; 4546 return;
2192 4547
2193 /* since we use memcmp, we need to clear any padding data etc. */
2194 memset (&w->prev, 0, sizeof (ev_statdata));
2195 memset (&w->attr, 0, sizeof (ev_statdata));
2196
2197 ev_stat_stat (EV_A_ w); 4548 ev_stat_stat (EV_A_ w);
2198 4549
4550 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2199 if (w->interval < MIN_STAT_INTERVAL) 4551 w->interval = MIN_STAT_INTERVAL;
2200 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2201 4552
2202 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4553 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2203 ev_set_priority (&w->timer, ev_priority (w)); 4554 ev_set_priority (&w->timer, ev_priority (w));
2204 4555
2205#if EV_USE_INOTIFY 4556#if EV_USE_INOTIFY
2206 infy_init (EV_A); 4557 infy_init (EV_A);
2207 4558
2208 if (fs_fd >= 0) 4559 if (fs_fd >= 0)
2209 infy_add (EV_A_ w); 4560 infy_add (EV_A_ w);
2210 else 4561 else
2211#endif 4562#endif
4563 {
2212 ev_timer_start (EV_A_ &w->timer); 4564 ev_timer_again (EV_A_ &w->timer);
4565 ev_unref (EV_A);
4566 }
2213 4567
2214 ev_start (EV_A_ (W)w, 1); 4568 ev_start (EV_A_ (W)w, 1);
2215}
2216 4569
4570 EV_FREQUENT_CHECK;
4571}
4572
2217void 4573void
2218ev_stat_stop (EV_P_ ev_stat *w) 4574ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2219{ 4575{
2220 clear_pending (EV_A_ (W)w); 4576 clear_pending (EV_A_ (W)w);
2221 if (expect_false (!ev_is_active (w))) 4577 if (expect_false (!ev_is_active (w)))
2222 return; 4578 return;
2223 4579
4580 EV_FREQUENT_CHECK;
4581
2224#if EV_USE_INOTIFY 4582#if EV_USE_INOTIFY
2225 infy_del (EV_A_ w); 4583 infy_del (EV_A_ w);
2226#endif 4584#endif
4585
4586 if (ev_is_active (&w->timer))
4587 {
4588 ev_ref (EV_A);
2227 ev_timer_stop (EV_A_ &w->timer); 4589 ev_timer_stop (EV_A_ &w->timer);
4590 }
2228 4591
2229 ev_stop (EV_A_ (W)w); 4592 ev_stop (EV_A_ (W)w);
4593
4594 EV_FREQUENT_CHECK;
2230} 4595}
2231#endif 4596#endif
2232 4597
2233#if EV_IDLE_ENABLE 4598#if EV_IDLE_ENABLE
2234void 4599void
2235ev_idle_start (EV_P_ ev_idle *w) 4600ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2236{ 4601{
2237 if (expect_false (ev_is_active (w))) 4602 if (expect_false (ev_is_active (w)))
2238 return; 4603 return;
2239 4604
2240 pri_adjust (EV_A_ (W)w); 4605 pri_adjust (EV_A_ (W)w);
4606
4607 EV_FREQUENT_CHECK;
2241 4608
2242 { 4609 {
2243 int active = ++idlecnt [ABSPRI (w)]; 4610 int active = ++idlecnt [ABSPRI (w)];
2244 4611
2245 ++idleall; 4612 ++idleall;
2246 ev_start (EV_A_ (W)w, active); 4613 ev_start (EV_A_ (W)w, active);
2247 4614
2248 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 4615 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2249 idles [ABSPRI (w)][active - 1] = w; 4616 idles [ABSPRI (w)][active - 1] = w;
2250 } 4617 }
2251}
2252 4618
4619 EV_FREQUENT_CHECK;
4620}
4621
2253void 4622void
2254ev_idle_stop (EV_P_ ev_idle *w) 4623ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2255{ 4624{
2256 clear_pending (EV_A_ (W)w); 4625 clear_pending (EV_A_ (W)w);
2257 if (expect_false (!ev_is_active (w))) 4626 if (expect_false (!ev_is_active (w)))
2258 return; 4627 return;
2259 4628
4629 EV_FREQUENT_CHECK;
4630
2260 { 4631 {
2261 int active = ((W)w)->active; 4632 int active = ev_active (w);
2262 4633
2263 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 4634 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2264 ((W)idles [ABSPRI (w)][active - 1])->active = active; 4635 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2265 4636
2266 ev_stop (EV_A_ (W)w); 4637 ev_stop (EV_A_ (W)w);
2267 --idleall; 4638 --idleall;
2268 } 4639 }
2269}
2270#endif
2271 4640
4641 EV_FREQUENT_CHECK;
4642}
4643#endif
4644
4645#if EV_PREPARE_ENABLE
2272void 4646void
2273ev_prepare_start (EV_P_ ev_prepare *w) 4647ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2274{ 4648{
2275 if (expect_false (ev_is_active (w))) 4649 if (expect_false (ev_is_active (w)))
2276 return; 4650 return;
4651
4652 EV_FREQUENT_CHECK;
2277 4653
2278 ev_start (EV_A_ (W)w, ++preparecnt); 4654 ev_start (EV_A_ (W)w, ++preparecnt);
2279 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4655 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2280 prepares [preparecnt - 1] = w; 4656 prepares [preparecnt - 1] = w;
2281}
2282 4657
4658 EV_FREQUENT_CHECK;
4659}
4660
2283void 4661void
2284ev_prepare_stop (EV_P_ ev_prepare *w) 4662ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2285{ 4663{
2286 clear_pending (EV_A_ (W)w); 4664 clear_pending (EV_A_ (W)w);
2287 if (expect_false (!ev_is_active (w))) 4665 if (expect_false (!ev_is_active (w)))
2288 return; 4666 return;
2289 4667
4668 EV_FREQUENT_CHECK;
4669
2290 { 4670 {
2291 int active = ((W)w)->active; 4671 int active = ev_active (w);
4672
2292 prepares [active - 1] = prepares [--preparecnt]; 4673 prepares [active - 1] = prepares [--preparecnt];
2293 ((W)prepares [active - 1])->active = active; 4674 ev_active (prepares [active - 1]) = active;
2294 } 4675 }
2295 4676
2296 ev_stop (EV_A_ (W)w); 4677 ev_stop (EV_A_ (W)w);
2297}
2298 4678
4679 EV_FREQUENT_CHECK;
4680}
4681#endif
4682
4683#if EV_CHECK_ENABLE
2299void 4684void
2300ev_check_start (EV_P_ ev_check *w) 4685ev_check_start (EV_P_ ev_check *w) EV_THROW
2301{ 4686{
2302 if (expect_false (ev_is_active (w))) 4687 if (expect_false (ev_is_active (w)))
2303 return; 4688 return;
4689
4690 EV_FREQUENT_CHECK;
2304 4691
2305 ev_start (EV_A_ (W)w, ++checkcnt); 4692 ev_start (EV_A_ (W)w, ++checkcnt);
2306 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4693 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2307 checks [checkcnt - 1] = w; 4694 checks [checkcnt - 1] = w;
2308}
2309 4695
4696 EV_FREQUENT_CHECK;
4697}
4698
2310void 4699void
2311ev_check_stop (EV_P_ ev_check *w) 4700ev_check_stop (EV_P_ ev_check *w) EV_THROW
2312{ 4701{
2313 clear_pending (EV_A_ (W)w); 4702 clear_pending (EV_A_ (W)w);
2314 if (expect_false (!ev_is_active (w))) 4703 if (expect_false (!ev_is_active (w)))
2315 return; 4704 return;
2316 4705
4706 EV_FREQUENT_CHECK;
4707
2317 { 4708 {
2318 int active = ((W)w)->active; 4709 int active = ev_active (w);
4710
2319 checks [active - 1] = checks [--checkcnt]; 4711 checks [active - 1] = checks [--checkcnt];
2320 ((W)checks [active - 1])->active = active; 4712 ev_active (checks [active - 1]) = active;
2321 } 4713 }
2322 4714
2323 ev_stop (EV_A_ (W)w); 4715 ev_stop (EV_A_ (W)w);
4716
4717 EV_FREQUENT_CHECK;
2324} 4718}
4719#endif
2325 4720
2326#if EV_EMBED_ENABLE 4721#if EV_EMBED_ENABLE
2327void noinline 4722noinline
4723void
2328ev_embed_sweep (EV_P_ ev_embed *w) 4724ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2329{ 4725{
2330 ev_loop (w->other, EVLOOP_NONBLOCK); 4726 ev_run (w->other, EVRUN_NOWAIT);
2331} 4727}
2332 4728
2333static void 4729static void
2334embed_io_cb (EV_P_ ev_io *io, int revents) 4730embed_io_cb (EV_P_ ev_io *io, int revents)
2335{ 4731{
2336 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4732 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2337 4733
2338 if (ev_cb (w)) 4734 if (ev_cb (w))
2339 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4735 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2340 else 4736 else
2341 ev_loop (w->other, EVLOOP_NONBLOCK); 4737 ev_run (w->other, EVRUN_NOWAIT);
2342} 4738}
2343 4739
2344static void 4740static void
2345embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4741embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2346{ 4742{
2347 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4743 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2348 4744
2349 { 4745 {
2350 struct ev_loop *loop = w->other; 4746 EV_P = w->other;
2351 4747
2352 while (fdchangecnt) 4748 while (fdchangecnt)
2353 { 4749 {
2354 fd_reify (EV_A); 4750 fd_reify (EV_A);
2355 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4751 ev_run (EV_A_ EVRUN_NOWAIT);
2356 } 4752 }
2357 } 4753 }
4754}
4755
4756static void
4757embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4758{
4759 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4760
4761 ev_embed_stop (EV_A_ w);
4762
4763 {
4764 EV_P = w->other;
4765
4766 ev_loop_fork (EV_A);
4767 ev_run (EV_A_ EVRUN_NOWAIT);
4768 }
4769
4770 ev_embed_start (EV_A_ w);
2358} 4771}
2359 4772
2360#if 0 4773#if 0
2361static void 4774static void
2362embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4775embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2364 ev_idle_stop (EV_A_ idle); 4777 ev_idle_stop (EV_A_ idle);
2365} 4778}
2366#endif 4779#endif
2367 4780
2368void 4781void
2369ev_embed_start (EV_P_ ev_embed *w) 4782ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2370{ 4783{
2371 if (expect_false (ev_is_active (w))) 4784 if (expect_false (ev_is_active (w)))
2372 return; 4785 return;
2373 4786
2374 { 4787 {
2375 struct ev_loop *loop = w->other; 4788 EV_P = w->other;
2376 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4789 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2377 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4790 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2378 } 4791 }
4792
4793 EV_FREQUENT_CHECK;
2379 4794
2380 ev_set_priority (&w->io, ev_priority (w)); 4795 ev_set_priority (&w->io, ev_priority (w));
2381 ev_io_start (EV_A_ &w->io); 4796 ev_io_start (EV_A_ &w->io);
2382 4797
2383 ev_prepare_init (&w->prepare, embed_prepare_cb); 4798 ev_prepare_init (&w->prepare, embed_prepare_cb);
2384 ev_set_priority (&w->prepare, EV_MINPRI); 4799 ev_set_priority (&w->prepare, EV_MINPRI);
2385 ev_prepare_start (EV_A_ &w->prepare); 4800 ev_prepare_start (EV_A_ &w->prepare);
2386 4801
4802 ev_fork_init (&w->fork, embed_fork_cb);
4803 ev_fork_start (EV_A_ &w->fork);
4804
2387 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4805 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2388 4806
2389 ev_start (EV_A_ (W)w, 1); 4807 ev_start (EV_A_ (W)w, 1);
2390}
2391 4808
4809 EV_FREQUENT_CHECK;
4810}
4811
2392void 4812void
2393ev_embed_stop (EV_P_ ev_embed *w) 4813ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2394{ 4814{
2395 clear_pending (EV_A_ (W)w); 4815 clear_pending (EV_A_ (W)w);
2396 if (expect_false (!ev_is_active (w))) 4816 if (expect_false (!ev_is_active (w)))
2397 return; 4817 return;
2398 4818
4819 EV_FREQUENT_CHECK;
4820
2399 ev_io_stop (EV_A_ &w->io); 4821 ev_io_stop (EV_A_ &w->io);
2400 ev_prepare_stop (EV_A_ &w->prepare); 4822 ev_prepare_stop (EV_A_ &w->prepare);
4823 ev_fork_stop (EV_A_ &w->fork);
2401 4824
2402 ev_stop (EV_A_ (W)w); 4825 ev_stop (EV_A_ (W)w);
4826
4827 EV_FREQUENT_CHECK;
2403} 4828}
2404#endif 4829#endif
2405 4830
2406#if EV_FORK_ENABLE 4831#if EV_FORK_ENABLE
2407void 4832void
2408ev_fork_start (EV_P_ ev_fork *w) 4833ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2409{ 4834{
2410 if (expect_false (ev_is_active (w))) 4835 if (expect_false (ev_is_active (w)))
2411 return; 4836 return;
4837
4838 EV_FREQUENT_CHECK;
2412 4839
2413 ev_start (EV_A_ (W)w, ++forkcnt); 4840 ev_start (EV_A_ (W)w, ++forkcnt);
2414 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4841 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2415 forks [forkcnt - 1] = w; 4842 forks [forkcnt - 1] = w;
2416}
2417 4843
4844 EV_FREQUENT_CHECK;
4845}
4846
2418void 4847void
2419ev_fork_stop (EV_P_ ev_fork *w) 4848ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2420{ 4849{
2421 clear_pending (EV_A_ (W)w); 4850 clear_pending (EV_A_ (W)w);
2422 if (expect_false (!ev_is_active (w))) 4851 if (expect_false (!ev_is_active (w)))
2423 return; 4852 return;
2424 4853
4854 EV_FREQUENT_CHECK;
4855
2425 { 4856 {
2426 int active = ((W)w)->active; 4857 int active = ev_active (w);
4858
2427 forks [active - 1] = forks [--forkcnt]; 4859 forks [active - 1] = forks [--forkcnt];
2428 ((W)forks [active - 1])->active = active; 4860 ev_active (forks [active - 1]) = active;
2429 } 4861 }
2430 4862
2431 ev_stop (EV_A_ (W)w); 4863 ev_stop (EV_A_ (W)w);
2432}
2433#endif
2434 4864
4865 EV_FREQUENT_CHECK;
4866}
4867#endif
4868
2435#if EV_ASYNC_ENABLE 4869#if EV_CLEANUP_ENABLE
2436void 4870void
2437ev_async_start (EV_P_ ev_async *w) 4871ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
2438{ 4872{
2439 if (expect_false (ev_is_active (w))) 4873 if (expect_false (ev_is_active (w)))
2440 return; 4874 return;
2441 4875
4876 EV_FREQUENT_CHECK;
4877
4878 ev_start (EV_A_ (W)w, ++cleanupcnt);
4879 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4880 cleanups [cleanupcnt - 1] = w;
4881
4882 /* cleanup watchers should never keep a refcount on the loop */
4883 ev_unref (EV_A);
4884 EV_FREQUENT_CHECK;
4885}
4886
4887void
4888ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4889{
4890 clear_pending (EV_A_ (W)w);
4891 if (expect_false (!ev_is_active (w)))
4892 return;
4893
4894 EV_FREQUENT_CHECK;
4895 ev_ref (EV_A);
4896
4897 {
4898 int active = ev_active (w);
4899
4900 cleanups [active - 1] = cleanups [--cleanupcnt];
4901 ev_active (cleanups [active - 1]) = active;
4902 }
4903
4904 ev_stop (EV_A_ (W)w);
4905
4906 EV_FREQUENT_CHECK;
4907}
4908#endif
4909
4910#if EV_ASYNC_ENABLE
4911void
4912ev_async_start (EV_P_ ev_async *w) EV_THROW
4913{
4914 if (expect_false (ev_is_active (w)))
4915 return;
4916
4917 w->sent = 0;
4918
2442 evpipe_init (EV_A); 4919 evpipe_init (EV_A);
4920
4921 EV_FREQUENT_CHECK;
2443 4922
2444 ev_start (EV_A_ (W)w, ++asynccnt); 4923 ev_start (EV_A_ (W)w, ++asynccnt);
2445 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 4924 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2446 asyncs [asynccnt - 1] = w; 4925 asyncs [asynccnt - 1] = w;
2447}
2448 4926
4927 EV_FREQUENT_CHECK;
4928}
4929
2449void 4930void
2450ev_async_stop (EV_P_ ev_async *w) 4931ev_async_stop (EV_P_ ev_async *w) EV_THROW
2451{ 4932{
2452 clear_pending (EV_A_ (W)w); 4933 clear_pending (EV_A_ (W)w);
2453 if (expect_false (!ev_is_active (w))) 4934 if (expect_false (!ev_is_active (w)))
2454 return; 4935 return;
2455 4936
4937 EV_FREQUENT_CHECK;
4938
2456 { 4939 {
2457 int active = ((W)w)->active; 4940 int active = ev_active (w);
4941
2458 asyncs [active - 1] = asyncs [--asynccnt]; 4942 asyncs [active - 1] = asyncs [--asynccnt];
2459 ((W)asyncs [active - 1])->active = active; 4943 ev_active (asyncs [active - 1]) = active;
2460 } 4944 }
2461 4945
2462 ev_stop (EV_A_ (W)w); 4946 ev_stop (EV_A_ (W)w);
2463}
2464 4947
4948 EV_FREQUENT_CHECK;
4949}
4950
2465void 4951void
2466ev_async_send (EV_P_ ev_async *w) 4952ev_async_send (EV_P_ ev_async *w) EV_THROW
2467{ 4953{
2468 w->sent = 1; 4954 w->sent = 1;
2469 evpipe_write (EV_A_ 0, 1); 4955 evpipe_write (EV_A_ &async_pending);
2470} 4956}
2471#endif 4957#endif
2472 4958
2473/*****************************************************************************/ 4959/*****************************************************************************/
2474 4960
2484once_cb (EV_P_ struct ev_once *once, int revents) 4970once_cb (EV_P_ struct ev_once *once, int revents)
2485{ 4971{
2486 void (*cb)(int revents, void *arg) = once->cb; 4972 void (*cb)(int revents, void *arg) = once->cb;
2487 void *arg = once->arg; 4973 void *arg = once->arg;
2488 4974
2489 ev_io_stop (EV_A_ &once->io); 4975 ev_io_stop (EV_A_ &once->io);
2490 ev_timer_stop (EV_A_ &once->to); 4976 ev_timer_stop (EV_A_ &once->to);
2491 ev_free (once); 4977 ev_free (once);
2492 4978
2493 cb (revents, arg); 4979 cb (revents, arg);
2494} 4980}
2495 4981
2496static void 4982static void
2497once_cb_io (EV_P_ ev_io *w, int revents) 4983once_cb_io (EV_P_ ev_io *w, int revents)
2498{ 4984{
2499 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4985 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4986
4987 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2500} 4988}
2501 4989
2502static void 4990static void
2503once_cb_to (EV_P_ ev_timer *w, int revents) 4991once_cb_to (EV_P_ ev_timer *w, int revents)
2504{ 4992{
2505 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4993 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
2506}
2507 4994
4995 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4996}
4997
2508void 4998void
2509ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4999ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
2510{ 5000{
2511 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 5001 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2512 5002
2513 if (expect_false (!once)) 5003 if (expect_false (!once))
2514 { 5004 {
2515 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 5005 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2516 return; 5006 return;
2517 } 5007 }
2518 5008
2519 once->cb = cb; 5009 once->cb = cb;
2520 once->arg = arg; 5010 once->arg = arg;
2532 ev_timer_set (&once->to, timeout, 0.); 5022 ev_timer_set (&once->to, timeout, 0.);
2533 ev_timer_start (EV_A_ &once->to); 5023 ev_timer_start (EV_A_ &once->to);
2534 } 5024 }
2535} 5025}
2536 5026
5027/*****************************************************************************/
5028
5029#if EV_WALK_ENABLE
5030ecb_cold
5031void
5032ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
5033{
5034 int i, j;
5035 ev_watcher_list *wl, *wn;
5036
5037 if (types & (EV_IO | EV_EMBED))
5038 for (i = 0; i < anfdmax; ++i)
5039 for (wl = anfds [i].head; wl; )
5040 {
5041 wn = wl->next;
5042
5043#if EV_EMBED_ENABLE
5044 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5045 {
5046 if (types & EV_EMBED)
5047 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5048 }
5049 else
5050#endif
5051#if EV_USE_INOTIFY
5052 if (ev_cb ((ev_io *)wl) == infy_cb)
5053 ;
5054 else
5055#endif
5056 if ((ev_io *)wl != &pipe_w)
5057 if (types & EV_IO)
5058 cb (EV_A_ EV_IO, wl);
5059
5060 wl = wn;
5061 }
5062
5063 if (types & (EV_TIMER | EV_STAT))
5064 for (i = timercnt + HEAP0; i-- > HEAP0; )
5065#if EV_STAT_ENABLE
5066 /*TODO: timer is not always active*/
5067 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5068 {
5069 if (types & EV_STAT)
5070 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5071 }
5072 else
5073#endif
5074 if (types & EV_TIMER)
5075 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5076
5077#if EV_PERIODIC_ENABLE
5078 if (types & EV_PERIODIC)
5079 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5080 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5081#endif
5082
5083#if EV_IDLE_ENABLE
5084 if (types & EV_IDLE)
5085 for (j = NUMPRI; j--; )
5086 for (i = idlecnt [j]; i--; )
5087 cb (EV_A_ EV_IDLE, idles [j][i]);
5088#endif
5089
5090#if EV_FORK_ENABLE
5091 if (types & EV_FORK)
5092 for (i = forkcnt; i--; )
5093 if (ev_cb (forks [i]) != embed_fork_cb)
5094 cb (EV_A_ EV_FORK, forks [i]);
5095#endif
5096
5097#if EV_ASYNC_ENABLE
5098 if (types & EV_ASYNC)
5099 for (i = asynccnt; i--; )
5100 cb (EV_A_ EV_ASYNC, asyncs [i]);
5101#endif
5102
5103#if EV_PREPARE_ENABLE
5104 if (types & EV_PREPARE)
5105 for (i = preparecnt; i--; )
5106# if EV_EMBED_ENABLE
5107 if (ev_cb (prepares [i]) != embed_prepare_cb)
5108# endif
5109 cb (EV_A_ EV_PREPARE, prepares [i]);
5110#endif
5111
5112#if EV_CHECK_ENABLE
5113 if (types & EV_CHECK)
5114 for (i = checkcnt; i--; )
5115 cb (EV_A_ EV_CHECK, checks [i]);
5116#endif
5117
5118#if EV_SIGNAL_ENABLE
5119 if (types & EV_SIGNAL)
5120 for (i = 0; i < EV_NSIG - 1; ++i)
5121 for (wl = signals [i].head; wl; )
5122 {
5123 wn = wl->next;
5124 cb (EV_A_ EV_SIGNAL, wl);
5125 wl = wn;
5126 }
5127#endif
5128
5129#if EV_CHILD_ENABLE
5130 if (types & EV_CHILD)
5131 for (i = (EV_PID_HASHSIZE); i--; )
5132 for (wl = childs [i]; wl; )
5133 {
5134 wn = wl->next;
5135 cb (EV_A_ EV_CHILD, wl);
5136 wl = wn;
5137 }
5138#endif
5139/* EV_STAT 0x00001000 /* stat data changed */
5140/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5141}
5142#endif
5143
2537#if EV_MULTIPLICITY 5144#if EV_MULTIPLICITY
2538 #include "ev_wrap.h" 5145 #include "ev_wrap.h"
2539#endif 5146#endif
2540 5147
2541#ifdef __cplusplus
2542}
2543#endif
2544

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines