ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.175 by root, Tue Dec 11 04:08:54 2007 UTC vs.
Revision 1.487 by root, Mon Oct 29 00:00:21 2018 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007-2018 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
43# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
46# endif 71# endif
47# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
49# endif 74# endif
50# else 75# else
51# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
53# endif 78# endif
54# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
56# endif 81# endif
57# endif 82# endif
58 83
84# if HAVE_NANOSLEEP
59# ifndef EV_USE_SELECT 85# ifndef EV_USE_NANOSLEEP
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif 87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
65# endif 91# endif
66 92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
67# ifndef EV_USE_POLL 94# ifndef EV_USE_SELECT
68# if HAVE_POLL && HAVE_POLL_H 95# define EV_USE_SELECT EV_FEATURE_BACKENDS
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
73# endif 109# endif
74 110
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
78# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
79# define EV_USE_EPOLL 0
80# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
81# endif 118# endif
82 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
83# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
89# endif 127# endif
90 128
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
94# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
95# define EV_USE_PORT 0
96# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
97# endif 136# endif
98 137
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
102# else
103# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
104# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
105# endif 145# endif
106 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
107#endif 154# endif
108 155
109#include <math.h> 156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
167/* OS X, in its infinite idiocy, actually HARDCODES
168 * a limit of 1024 into their select. Where people have brains,
169 * OS X engineers apparently have a vacuum. Or maybe they were
170 * ordered to have a vacuum, or they do anything for money.
171 * This might help. Or not.
172 * Note that this must be defined early, as other include files
173 * will rely on this define as well.
174 */
175#define _DARWIN_UNLIMITED_SELECT 1
176
110#include <stdlib.h> 177#include <stdlib.h>
178#include <string.h>
111#include <fcntl.h> 179#include <fcntl.h>
112#include <stddef.h> 180#include <stddef.h>
113 181
114#include <stdio.h> 182#include <stdio.h>
115 183
116#include <assert.h> 184#include <assert.h>
117#include <errno.h> 185#include <errno.h>
118#include <sys/types.h> 186#include <sys/types.h>
119#include <time.h> 187#include <time.h>
188#include <limits.h>
120 189
121#include <signal.h> 190#include <signal.h>
122 191
123#ifdef EV_H 192#ifdef EV_H
124# include EV_H 193# include EV_H
125#else 194#else
126# include "ev.h" 195# include "ev.h"
196#endif
197
198#if EV_NO_THREADS
199# undef EV_NO_SMP
200# define EV_NO_SMP 1
201# undef ECB_NO_THREADS
202# define ECB_NO_THREADS 1
203#endif
204#if EV_NO_SMP
205# undef EV_NO_SMP
206# define ECB_NO_SMP 1
127#endif 207#endif
128 208
129#ifndef _WIN32 209#ifndef _WIN32
130# include <sys/time.h> 210# include <sys/time.h>
131# include <sys/wait.h> 211# include <sys/wait.h>
132# include <unistd.h> 212# include <unistd.h>
133#else 213#else
214# include <io.h>
134# define WIN32_LEAN_AND_MEAN 215# define WIN32_LEAN_AND_MEAN
216# include <winsock2.h>
135# include <windows.h> 217# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 218# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 219# define EV_SELECT_IS_WINSOCKET 1
138# endif 220# endif
221# undef EV_AVOID_STDIO
222#endif
223
224/* this block tries to deduce configuration from header-defined symbols and defaults */
225
226/* try to deduce the maximum number of signals on this platform */
227#if defined EV_NSIG
228/* use what's provided */
229#elif defined NSIG
230# define EV_NSIG (NSIG)
231#elif defined _NSIG
232# define EV_NSIG (_NSIG)
233#elif defined SIGMAX
234# define EV_NSIG (SIGMAX+1)
235#elif defined SIG_MAX
236# define EV_NSIG (SIG_MAX+1)
237#elif defined _SIG_MAX
238# define EV_NSIG (_SIG_MAX+1)
239#elif defined MAXSIG
240# define EV_NSIG (MAXSIG+1)
241#elif defined MAX_SIG
242# define EV_NSIG (MAX_SIG+1)
243#elif defined SIGARRAYSIZE
244# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
245#elif defined _sys_nsig
246# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
247#else
248# define EV_NSIG (8 * sizeof (sigset_t) + 1)
249#endif
250
251#ifndef EV_USE_FLOOR
252# define EV_USE_FLOOR 0
253#endif
254
255#ifndef EV_USE_CLOCK_SYSCALL
256# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
257# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
258# else
259# define EV_USE_CLOCK_SYSCALL 0
139#endif 260# endif
261#endif
140 262
141/**/ 263#if !(_POSIX_TIMERS > 0)
264# ifndef EV_USE_MONOTONIC
265# define EV_USE_MONOTONIC 0
266# endif
267# ifndef EV_USE_REALTIME
268# define EV_USE_REALTIME 0
269# endif
270#endif
142 271
143#ifndef EV_USE_MONOTONIC 272#ifndef EV_USE_MONOTONIC
273# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
274# define EV_USE_MONOTONIC EV_FEATURE_OS
275# else
144# define EV_USE_MONOTONIC 0 276# define EV_USE_MONOTONIC 0
277# endif
145#endif 278#endif
146 279
147#ifndef EV_USE_REALTIME 280#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 281# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
282#endif
283
284#ifndef EV_USE_NANOSLEEP
285# if _POSIX_C_SOURCE >= 199309L
286# define EV_USE_NANOSLEEP EV_FEATURE_OS
287# else
288# define EV_USE_NANOSLEEP 0
289# endif
149#endif 290#endif
150 291
151#ifndef EV_USE_SELECT 292#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 293# define EV_USE_SELECT EV_FEATURE_BACKENDS
153#endif 294#endif
154 295
155#ifndef EV_USE_POLL 296#ifndef EV_USE_POLL
156# ifdef _WIN32 297# ifdef _WIN32
157# define EV_USE_POLL 0 298# define EV_USE_POLL 0
158# else 299# else
159# define EV_USE_POLL 1 300# define EV_USE_POLL EV_FEATURE_BACKENDS
160# endif 301# endif
161#endif 302#endif
162 303
163#ifndef EV_USE_EPOLL 304#ifndef EV_USE_EPOLL
305# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
306# define EV_USE_EPOLL EV_FEATURE_BACKENDS
307# else
164# define EV_USE_EPOLL 0 308# define EV_USE_EPOLL 0
309# endif
165#endif 310#endif
166 311
167#ifndef EV_USE_KQUEUE 312#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 313# define EV_USE_KQUEUE 0
169#endif 314#endif
171#ifndef EV_USE_PORT 316#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 317# define EV_USE_PORT 0
173#endif 318#endif
174 319
175#ifndef EV_USE_INOTIFY 320#ifndef EV_USE_INOTIFY
321# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
322# define EV_USE_INOTIFY EV_FEATURE_OS
323# else
176# define EV_USE_INOTIFY 0 324# define EV_USE_INOTIFY 0
325# endif
177#endif 326#endif
178 327
179#ifndef EV_PID_HASHSIZE 328#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 329# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
181# define EV_PID_HASHSIZE 1 330#endif
331
332#ifndef EV_INOTIFY_HASHSIZE
333# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
334#endif
335
336#ifndef EV_USE_EVENTFD
337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338# define EV_USE_EVENTFD EV_FEATURE_OS
182# else 339# else
183# define EV_PID_HASHSIZE 16 340# define EV_USE_EVENTFD 0
184# endif 341# endif
185#endif 342#endif
186 343
187#ifndef EV_INOTIFY_HASHSIZE 344#ifndef EV_USE_SIGNALFD
188# if EV_MINIMAL 345# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
189# define EV_INOTIFY_HASHSIZE 1 346# define EV_USE_SIGNALFD EV_FEATURE_OS
190# else 347# else
191# define EV_INOTIFY_HASHSIZE 16 348# define EV_USE_SIGNALFD 0
192# endif 349# endif
193#endif 350#endif
194 351
195/**/ 352#if 0 /* debugging */
353# define EV_VERIFY 3
354# define EV_USE_4HEAP 1
355# define EV_HEAP_CACHE_AT 1
356#endif
357
358#ifndef EV_VERIFY
359# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
360#endif
361
362#ifndef EV_USE_4HEAP
363# define EV_USE_4HEAP EV_FEATURE_DATA
364#endif
365
366#ifndef EV_HEAP_CACHE_AT
367# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
368#endif
369
370#ifdef __ANDROID__
371/* supposedly, android doesn't typedef fd_mask */
372# undef EV_USE_SELECT
373# define EV_USE_SELECT 0
374/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
375# undef EV_USE_CLOCK_SYSCALL
376# define EV_USE_CLOCK_SYSCALL 0
377#endif
378
379/* aix's poll.h seems to cause lots of trouble */
380#ifdef _AIX
381/* AIX has a completely broken poll.h header */
382# undef EV_USE_POLL
383# define EV_USE_POLL 0
384#endif
385
386/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
387/* which makes programs even slower. might work on other unices, too. */
388#if EV_USE_CLOCK_SYSCALL
389# include <sys/syscall.h>
390# ifdef SYS_clock_gettime
391# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
392# undef EV_USE_MONOTONIC
393# define EV_USE_MONOTONIC 1
394# else
395# undef EV_USE_CLOCK_SYSCALL
396# define EV_USE_CLOCK_SYSCALL 0
397# endif
398#endif
399
400/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 401
197#ifndef CLOCK_MONOTONIC 402#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 403# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 404# define EV_USE_MONOTONIC 0
200#endif 405#endif
202#ifndef CLOCK_REALTIME 407#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 408# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 409# define EV_USE_REALTIME 0
205#endif 410#endif
206 411
207#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h>
209#endif
210
211#if !EV_STAT_ENABLE 412#if !EV_STAT_ENABLE
413# undef EV_USE_INOTIFY
212# define EV_USE_INOTIFY 0 414# define EV_USE_INOTIFY 0
213#endif 415#endif
214 416
417#if !EV_USE_NANOSLEEP
418/* hp-ux has it in sys/time.h, which we unconditionally include above */
419# if !defined _WIN32 && !defined __hpux
420# include <sys/select.h>
421# endif
422#endif
423
215#if EV_USE_INOTIFY 424#if EV_USE_INOTIFY
425# include <sys/statfs.h>
216# include <sys/inotify.h> 426# include <sys/inotify.h>
427/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
428# ifndef IN_DONT_FOLLOW
429# undef EV_USE_INOTIFY
430# define EV_USE_INOTIFY 0
431# endif
432#endif
433
434#if EV_USE_EVENTFD
435/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
436# include <stdint.h>
437# ifndef EFD_NONBLOCK
438# define EFD_NONBLOCK O_NONBLOCK
439# endif
440# ifndef EFD_CLOEXEC
441# ifdef O_CLOEXEC
442# define EFD_CLOEXEC O_CLOEXEC
443# else
444# define EFD_CLOEXEC 02000000
445# endif
446# endif
447EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
448#endif
449
450#if EV_USE_SIGNALFD
451/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
452# include <stdint.h>
453# ifndef SFD_NONBLOCK
454# define SFD_NONBLOCK O_NONBLOCK
455# endif
456# ifndef SFD_CLOEXEC
457# ifdef O_CLOEXEC
458# define SFD_CLOEXEC O_CLOEXEC
459# else
460# define SFD_CLOEXEC 02000000
461# endif
462# endif
463EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
464
465struct signalfd_siginfo
466{
467 uint32_t ssi_signo;
468 char pad[128 - sizeof (uint32_t)];
469};
217#endif 470#endif
218 471
219/**/ 472/**/
473
474#if EV_VERIFY >= 3
475# define EV_FREQUENT_CHECK ev_verify (EV_A)
476#else
477# define EV_FREQUENT_CHECK do { } while (0)
478#endif
479
480/*
481 * This is used to work around floating point rounding problems.
482 * This value is good at least till the year 4000.
483 */
484#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
485/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
220 486
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 487#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 488#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
224 489
490#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
491#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
492
493/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
494/* ECB.H BEGIN */
495/*
496 * libecb - http://software.schmorp.de/pkg/libecb
497 *
498 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
499 * Copyright (©) 2011 Emanuele Giaquinta
500 * All rights reserved.
501 *
502 * Redistribution and use in source and binary forms, with or without modifica-
503 * tion, are permitted provided that the following conditions are met:
504 *
505 * 1. Redistributions of source code must retain the above copyright notice,
506 * this list of conditions and the following disclaimer.
507 *
508 * 2. Redistributions in binary form must reproduce the above copyright
509 * notice, this list of conditions and the following disclaimer in the
510 * documentation and/or other materials provided with the distribution.
511 *
512 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
513 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
514 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
515 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
516 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
517 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
518 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
519 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
520 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
521 * OF THE POSSIBILITY OF SUCH DAMAGE.
522 *
523 * Alternatively, the contents of this file may be used under the terms of
524 * the GNU General Public License ("GPL") version 2 or any later version,
525 * in which case the provisions of the GPL are applicable instead of
526 * the above. If you wish to allow the use of your version of this file
527 * only under the terms of the GPL and not to allow others to use your
528 * version of this file under the BSD license, indicate your decision
529 * by deleting the provisions above and replace them with the notice
530 * and other provisions required by the GPL. If you do not delete the
531 * provisions above, a recipient may use your version of this file under
532 * either the BSD or the GPL.
533 */
534
535#ifndef ECB_H
536#define ECB_H
537
538/* 16 bits major, 16 bits minor */
539#define ECB_VERSION 0x00010005
540
541#ifdef _WIN32
542 typedef signed char int8_t;
543 typedef unsigned char uint8_t;
544 typedef signed short int16_t;
545 typedef unsigned short uint16_t;
546 typedef signed int int32_t;
547 typedef unsigned int uint32_t;
225#if __GNUC__ >= 3 548 #if __GNUC__
549 typedef signed long long int64_t;
550 typedef unsigned long long uint64_t;
551 #else /* _MSC_VER || __BORLANDC__ */
552 typedef signed __int64 int64_t;
553 typedef unsigned __int64 uint64_t;
554 #endif
555 #ifdef _WIN64
556 #define ECB_PTRSIZE 8
557 typedef uint64_t uintptr_t;
558 typedef int64_t intptr_t;
559 #else
560 #define ECB_PTRSIZE 4
561 typedef uint32_t uintptr_t;
562 typedef int32_t intptr_t;
563 #endif
564#else
565 #include <inttypes.h>
566 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
567 #define ECB_PTRSIZE 8
568 #else
569 #define ECB_PTRSIZE 4
570 #endif
571#endif
572
573#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
574#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
575
576/* work around x32 idiocy by defining proper macros */
577#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
578 #if _ILP32
579 #define ECB_AMD64_X32 1
580 #else
581 #define ECB_AMD64 1
582 #endif
583#endif
584
585/* many compilers define _GNUC_ to some versions but then only implement
586 * what their idiot authors think are the "more important" extensions,
587 * causing enormous grief in return for some better fake benchmark numbers.
588 * or so.
589 * we try to detect these and simply assume they are not gcc - if they have
590 * an issue with that they should have done it right in the first place.
591 */
592#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
593 #define ECB_GCC_VERSION(major,minor) 0
594#else
595 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
596#endif
597
598#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
599
600#if __clang__ && defined __has_builtin
601 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
602#else
603 #define ECB_CLANG_BUILTIN(x) 0
604#endif
605
606#if __clang__ && defined __has_extension
607 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
608#else
609 #define ECB_CLANG_EXTENSION(x) 0
610#endif
611
612#define ECB_CPP (__cplusplus+0)
613#define ECB_CPP11 (__cplusplus >= 201103L)
614
615#if ECB_CPP
616 #define ECB_C 0
617 #define ECB_STDC_VERSION 0
618#else
619 #define ECB_C 1
620 #define ECB_STDC_VERSION __STDC_VERSION__
621#endif
622
623#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
624#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
625
626#if ECB_CPP
627 #define ECB_EXTERN_C extern "C"
628 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
629 #define ECB_EXTERN_C_END }
630#else
631 #define ECB_EXTERN_C extern
632 #define ECB_EXTERN_C_BEG
633 #define ECB_EXTERN_C_END
634#endif
635
636/*****************************************************************************/
637
638/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
639/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
640
641#if ECB_NO_THREADS
642 #define ECB_NO_SMP 1
643#endif
644
645#if ECB_NO_SMP
646 #define ECB_MEMORY_FENCE do { } while (0)
647#endif
648
649/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
650#if __xlC__ && ECB_CPP
651 #include <builtins.h>
652#endif
653
654#if 1400 <= _MSC_VER
655 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
656#endif
657
658#ifndef ECB_MEMORY_FENCE
659 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
660 #if __i386 || __i386__
661 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
662 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
663 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
664 #elif ECB_GCC_AMD64
665 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
666 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
667 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
668 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
669 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
670 #elif defined __ARM_ARCH_2__ \
671 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
672 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
673 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
674 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
675 || defined __ARM_ARCH_5TEJ__
676 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
677 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
678 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
679 || defined __ARM_ARCH_6T2__
680 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
681 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
682 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
683 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
684 #elif __aarch64__
685 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
686 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
687 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
688 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
689 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
690 #elif defined __s390__ || defined __s390x__
691 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
692 #elif defined __mips__
693 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
694 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
695 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
696 #elif defined __alpha__
697 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
698 #elif defined __hppa__
699 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
700 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
701 #elif defined __ia64__
702 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
703 #elif defined __m68k__
704 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
705 #elif defined __m88k__
706 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
707 #elif defined __sh__
708 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
709 #endif
710 #endif
711#endif
712
713#ifndef ECB_MEMORY_FENCE
714 #if ECB_GCC_VERSION(4,7)
715 /* see comment below (stdatomic.h) about the C11 memory model. */
716 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
717 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
718 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
719
720 #elif ECB_CLANG_EXTENSION(c_atomic)
721 /* see comment below (stdatomic.h) about the C11 memory model. */
722 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
723 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
724 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
725
726 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
727 #define ECB_MEMORY_FENCE __sync_synchronize ()
728 #elif _MSC_VER >= 1500 /* VC++ 2008 */
729 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
730 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
731 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
732 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
733 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
734 #elif _MSC_VER >= 1400 /* VC++ 2005 */
735 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
736 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
737 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
738 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
739 #elif defined _WIN32
740 #include <WinNT.h>
741 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
742 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
743 #include <mbarrier.h>
744 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
745 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
746 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
747 #elif __xlC__
748 #define ECB_MEMORY_FENCE __sync ()
749 #endif
750#endif
751
752#ifndef ECB_MEMORY_FENCE
753 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
754 /* we assume that these memory fences work on all variables/all memory accesses, */
755 /* not just C11 atomics and atomic accesses */
756 #include <stdatomic.h>
757 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
758 /* any fence other than seq_cst, which isn't very efficient for us. */
759 /* Why that is, we don't know - either the C11 memory model is quite useless */
760 /* for most usages, or gcc and clang have a bug */
761 /* I *currently* lean towards the latter, and inefficiently implement */
762 /* all three of ecb's fences as a seq_cst fence */
763 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
764 /* for all __atomic_thread_fence's except seq_cst */
765 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
766 #endif
767#endif
768
769#ifndef ECB_MEMORY_FENCE
770 #if !ECB_AVOID_PTHREADS
771 /*
772 * if you get undefined symbol references to pthread_mutex_lock,
773 * or failure to find pthread.h, then you should implement
774 * the ECB_MEMORY_FENCE operations for your cpu/compiler
775 * OR provide pthread.h and link against the posix thread library
776 * of your system.
777 */
778 #include <pthread.h>
779 #define ECB_NEEDS_PTHREADS 1
780 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
781
782 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
783 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
784 #endif
785#endif
786
787#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
788 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
789#endif
790
791#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
792 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
793#endif
794
795/*****************************************************************************/
796
797#if ECB_CPP
798 #define ecb_inline static inline
799#elif ECB_GCC_VERSION(2,5)
800 #define ecb_inline static __inline__
801#elif ECB_C99
802 #define ecb_inline static inline
803#else
804 #define ecb_inline static
805#endif
806
807#if ECB_GCC_VERSION(3,3)
808 #define ecb_restrict __restrict__
809#elif ECB_C99
810 #define ecb_restrict restrict
811#else
812 #define ecb_restrict
813#endif
814
815typedef int ecb_bool;
816
817#define ECB_CONCAT_(a, b) a ## b
818#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
819#define ECB_STRINGIFY_(a) # a
820#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
821#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
822
823#define ecb_function_ ecb_inline
824
825#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
826 #define ecb_attribute(attrlist) __attribute__ (attrlist)
827#else
828 #define ecb_attribute(attrlist)
829#endif
830
831#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
832 #define ecb_is_constant(expr) __builtin_constant_p (expr)
833#else
834 /* possible C11 impl for integral types
835 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
836 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
837
838 #define ecb_is_constant(expr) 0
839#endif
840
841#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
226# define expect(expr,value) __builtin_expect ((expr),(value)) 842 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
227# define noinline __attribute__ ((noinline))
228#else 843#else
229# define expect(expr,value) (expr) 844 #define ecb_expect(expr,value) (expr)
230# define noinline
231# if __STDC_VERSION__ < 199901L
232# define inline
233# endif 845#endif
234#endif
235 846
847#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
848 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
849#else
850 #define ecb_prefetch(addr,rw,locality)
851#endif
852
853/* no emulation for ecb_decltype */
854#if ECB_CPP11
855 // older implementations might have problems with decltype(x)::type, work around it
856 template<class T> struct ecb_decltype_t { typedef T type; };
857 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
858#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
859 #define ecb_decltype(x) __typeof__ (x)
860#endif
861
862#if _MSC_VER >= 1300
863 #define ecb_deprecated __declspec (deprecated)
864#else
865 #define ecb_deprecated ecb_attribute ((__deprecated__))
866#endif
867
868#if _MSC_VER >= 1500
869 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
870#elif ECB_GCC_VERSION(4,5)
871 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
872#else
873 #define ecb_deprecated_message(msg) ecb_deprecated
874#endif
875
876#if _MSC_VER >= 1400
877 #define ecb_noinline __declspec (noinline)
878#else
879 #define ecb_noinline ecb_attribute ((__noinline__))
880#endif
881
882#define ecb_unused ecb_attribute ((__unused__))
883#define ecb_const ecb_attribute ((__const__))
884#define ecb_pure ecb_attribute ((__pure__))
885
886#if ECB_C11 || __IBMC_NORETURN
887 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
888 #define ecb_noreturn _Noreturn
889#elif ECB_CPP11
890 #define ecb_noreturn [[noreturn]]
891#elif _MSC_VER >= 1200
892 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
893 #define ecb_noreturn __declspec (noreturn)
894#else
895 #define ecb_noreturn ecb_attribute ((__noreturn__))
896#endif
897
898#if ECB_GCC_VERSION(4,3)
899 #define ecb_artificial ecb_attribute ((__artificial__))
900 #define ecb_hot ecb_attribute ((__hot__))
901 #define ecb_cold ecb_attribute ((__cold__))
902#else
903 #define ecb_artificial
904 #define ecb_hot
905 #define ecb_cold
906#endif
907
908/* put around conditional expressions if you are very sure that the */
909/* expression is mostly true or mostly false. note that these return */
910/* booleans, not the expression. */
236#define expect_false(expr) expect ((expr) != 0, 0) 911#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
237#define expect_true(expr) expect ((expr) != 0, 1) 912#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
913/* for compatibility to the rest of the world */
914#define ecb_likely(expr) ecb_expect_true (expr)
915#define ecb_unlikely(expr) ecb_expect_false (expr)
916
917/* count trailing zero bits and count # of one bits */
918#if ECB_GCC_VERSION(3,4) \
919 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
920 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
921 && ECB_CLANG_BUILTIN(__builtin_popcount))
922 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
923 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
924 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
925 #define ecb_ctz32(x) __builtin_ctz (x)
926 #define ecb_ctz64(x) __builtin_ctzll (x)
927 #define ecb_popcount32(x) __builtin_popcount (x)
928 /* no popcountll */
929#else
930 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
931 ecb_function_ ecb_const int
932 ecb_ctz32 (uint32_t x)
933 {
934#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
935 unsigned long r;
936 _BitScanForward (&r, x);
937 return (int)r;
938#else
939 int r = 0;
940
941 x &= ~x + 1; /* this isolates the lowest bit */
942
943#if ECB_branchless_on_i386
944 r += !!(x & 0xaaaaaaaa) << 0;
945 r += !!(x & 0xcccccccc) << 1;
946 r += !!(x & 0xf0f0f0f0) << 2;
947 r += !!(x & 0xff00ff00) << 3;
948 r += !!(x & 0xffff0000) << 4;
949#else
950 if (x & 0xaaaaaaaa) r += 1;
951 if (x & 0xcccccccc) r += 2;
952 if (x & 0xf0f0f0f0) r += 4;
953 if (x & 0xff00ff00) r += 8;
954 if (x & 0xffff0000) r += 16;
955#endif
956
957 return r;
958#endif
959 }
960
961 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
962 ecb_function_ ecb_const int
963 ecb_ctz64 (uint64_t x)
964 {
965#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
966 unsigned long r;
967 _BitScanForward64 (&r, x);
968 return (int)r;
969#else
970 int shift = x & 0xffffffff ? 0 : 32;
971 return ecb_ctz32 (x >> shift) + shift;
972#endif
973 }
974
975 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
976 ecb_function_ ecb_const int
977 ecb_popcount32 (uint32_t x)
978 {
979 x -= (x >> 1) & 0x55555555;
980 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
981 x = ((x >> 4) + x) & 0x0f0f0f0f;
982 x *= 0x01010101;
983
984 return x >> 24;
985 }
986
987 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
988 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
989 {
990#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
991 unsigned long r;
992 _BitScanReverse (&r, x);
993 return (int)r;
994#else
995 int r = 0;
996
997 if (x >> 16) { x >>= 16; r += 16; }
998 if (x >> 8) { x >>= 8; r += 8; }
999 if (x >> 4) { x >>= 4; r += 4; }
1000 if (x >> 2) { x >>= 2; r += 2; }
1001 if (x >> 1) { r += 1; }
1002
1003 return r;
1004#endif
1005 }
1006
1007 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1008 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1009 {
1010#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1011 unsigned long r;
1012 _BitScanReverse64 (&r, x);
1013 return (int)r;
1014#else
1015 int r = 0;
1016
1017 if (x >> 32) { x >>= 32; r += 32; }
1018
1019 return r + ecb_ld32 (x);
1020#endif
1021 }
1022#endif
1023
1024ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1025ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1026ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1027ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1028
1029ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1030ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1031{
1032 return ( (x * 0x0802U & 0x22110U)
1033 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1034}
1035
1036ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1037ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1038{
1039 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1040 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1041 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1042 x = ( x >> 8 ) | ( x << 8);
1043
1044 return x;
1045}
1046
1047ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1048ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1049{
1050 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1051 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1052 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1053 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1054 x = ( x >> 16 ) | ( x << 16);
1055
1056 return x;
1057}
1058
1059/* popcount64 is only available on 64 bit cpus as gcc builtin */
1060/* so for this version we are lazy */
1061ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1062ecb_function_ ecb_const int
1063ecb_popcount64 (uint64_t x)
1064{
1065 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1066}
1067
1068ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1069ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1070ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1071ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1072ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1073ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1074ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1075ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1076
1077ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1078ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1079ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1080ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1081ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1082ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1083ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1084ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1085
1086#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1087 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1088 #define ecb_bswap16(x) __builtin_bswap16 (x)
1089 #else
1090 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1091 #endif
1092 #define ecb_bswap32(x) __builtin_bswap32 (x)
1093 #define ecb_bswap64(x) __builtin_bswap64 (x)
1094#elif _MSC_VER
1095 #include <stdlib.h>
1096 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1097 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1098 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1099#else
1100 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1101 ecb_function_ ecb_const uint16_t
1102 ecb_bswap16 (uint16_t x)
1103 {
1104 return ecb_rotl16 (x, 8);
1105 }
1106
1107 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1108 ecb_function_ ecb_const uint32_t
1109 ecb_bswap32 (uint32_t x)
1110 {
1111 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1112 }
1113
1114 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1115 ecb_function_ ecb_const uint64_t
1116 ecb_bswap64 (uint64_t x)
1117 {
1118 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1119 }
1120#endif
1121
1122#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1123 #define ecb_unreachable() __builtin_unreachable ()
1124#else
1125 /* this seems to work fine, but gcc always emits a warning for it :/ */
1126 ecb_inline ecb_noreturn void ecb_unreachable (void);
1127 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1128#endif
1129
1130/* try to tell the compiler that some condition is definitely true */
1131#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1132
1133ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1134ecb_inline ecb_const uint32_t
1135ecb_byteorder_helper (void)
1136{
1137 /* the union code still generates code under pressure in gcc, */
1138 /* but less than using pointers, and always seems to */
1139 /* successfully return a constant. */
1140 /* the reason why we have this horrible preprocessor mess */
1141 /* is to avoid it in all cases, at least on common architectures */
1142 /* or when using a recent enough gcc version (>= 4.6) */
1143#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1144 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1145 #define ECB_LITTLE_ENDIAN 1
1146 return 0x44332211;
1147#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1148 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1149 #define ECB_BIG_ENDIAN 1
1150 return 0x11223344;
1151#else
1152 union
1153 {
1154 uint8_t c[4];
1155 uint32_t u;
1156 } u = { 0x11, 0x22, 0x33, 0x44 };
1157 return u.u;
1158#endif
1159}
1160
1161ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1162ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1163ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1164ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1165
1166#if ECB_GCC_VERSION(3,0) || ECB_C99
1167 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1168#else
1169 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1170#endif
1171
1172#if ECB_CPP
1173 template<typename T>
1174 static inline T ecb_div_rd (T val, T div)
1175 {
1176 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1177 }
1178 template<typename T>
1179 static inline T ecb_div_ru (T val, T div)
1180 {
1181 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1182 }
1183#else
1184 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1185 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1186#endif
1187
1188#if ecb_cplusplus_does_not_suck
1189 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1190 template<typename T, int N>
1191 static inline int ecb_array_length (const T (&arr)[N])
1192 {
1193 return N;
1194 }
1195#else
1196 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1197#endif
1198
1199ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1200ecb_function_ ecb_const uint32_t
1201ecb_binary16_to_binary32 (uint32_t x)
1202{
1203 unsigned int s = (x & 0x8000) << (31 - 15);
1204 int e = (x >> 10) & 0x001f;
1205 unsigned int m = x & 0x03ff;
1206
1207 if (ecb_expect_false (e == 31))
1208 /* infinity or NaN */
1209 e = 255 - (127 - 15);
1210 else if (ecb_expect_false (!e))
1211 {
1212 if (ecb_expect_true (!m))
1213 /* zero, handled by code below by forcing e to 0 */
1214 e = 0 - (127 - 15);
1215 else
1216 {
1217 /* subnormal, renormalise */
1218 unsigned int s = 10 - ecb_ld32 (m);
1219
1220 m = (m << s) & 0x3ff; /* mask implicit bit */
1221 e -= s - 1;
1222 }
1223 }
1224
1225 /* e and m now are normalised, or zero, (or inf or nan) */
1226 e += 127 - 15;
1227
1228 return s | (e << 23) | (m << (23 - 10));
1229}
1230
1231ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1232ecb_function_ ecb_const uint16_t
1233ecb_binary32_to_binary16 (uint32_t x)
1234{
1235 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1236 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1237 unsigned int m = x & 0x007fffff;
1238
1239 x &= 0x7fffffff;
1240
1241 /* if it's within range of binary16 normals, use fast path */
1242 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1243 {
1244 /* mantissa round-to-even */
1245 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1246
1247 /* handle overflow */
1248 if (ecb_expect_false (m >= 0x00800000))
1249 {
1250 m >>= 1;
1251 e += 1;
1252 }
1253
1254 return s | (e << 10) | (m >> (23 - 10));
1255 }
1256
1257 /* handle large numbers and infinity */
1258 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1259 return s | 0x7c00;
1260
1261 /* handle zero, subnormals and small numbers */
1262 if (ecb_expect_true (x < 0x38800000))
1263 {
1264 /* zero */
1265 if (ecb_expect_true (!x))
1266 return s;
1267
1268 /* handle subnormals */
1269
1270 /* too small, will be zero */
1271 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1272 return s;
1273
1274 m |= 0x00800000; /* make implicit bit explicit */
1275
1276 /* very tricky - we need to round to the nearest e (+10) bit value */
1277 {
1278 unsigned int bits = 14 - e;
1279 unsigned int half = (1 << (bits - 1)) - 1;
1280 unsigned int even = (m >> bits) & 1;
1281
1282 /* if this overflows, we will end up with a normalised number */
1283 m = (m + half + even) >> bits;
1284 }
1285
1286 return s | m;
1287 }
1288
1289 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1290 m >>= 13;
1291
1292 return s | 0x7c00 | m | !m;
1293}
1294
1295/*******************************************************************************/
1296/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1297
1298/* basically, everything uses "ieee pure-endian" floating point numbers */
1299/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1300#if 0 \
1301 || __i386 || __i386__ \
1302 || ECB_GCC_AMD64 \
1303 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1304 || defined __s390__ || defined __s390x__ \
1305 || defined __mips__ \
1306 || defined __alpha__ \
1307 || defined __hppa__ \
1308 || defined __ia64__ \
1309 || defined __m68k__ \
1310 || defined __m88k__ \
1311 || defined __sh__ \
1312 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1313 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1314 || defined __aarch64__
1315 #define ECB_STDFP 1
1316 #include <string.h> /* for memcpy */
1317#else
1318 #define ECB_STDFP 0
1319#endif
1320
1321#ifndef ECB_NO_LIBM
1322
1323 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1324
1325 /* only the oldest of old doesn't have this one. solaris. */
1326 #ifdef INFINITY
1327 #define ECB_INFINITY INFINITY
1328 #else
1329 #define ECB_INFINITY HUGE_VAL
1330 #endif
1331
1332 #ifdef NAN
1333 #define ECB_NAN NAN
1334 #else
1335 #define ECB_NAN ECB_INFINITY
1336 #endif
1337
1338 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1339 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1340 #define ecb_frexpf(x,e) frexpf ((x), (e))
1341 #else
1342 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1343 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1344 #endif
1345
1346 /* convert a float to ieee single/binary32 */
1347 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1348 ecb_function_ ecb_const uint32_t
1349 ecb_float_to_binary32 (float x)
1350 {
1351 uint32_t r;
1352
1353 #if ECB_STDFP
1354 memcpy (&r, &x, 4);
1355 #else
1356 /* slow emulation, works for anything but -0 */
1357 uint32_t m;
1358 int e;
1359
1360 if (x == 0e0f ) return 0x00000000U;
1361 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1362 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1363 if (x != x ) return 0x7fbfffffU;
1364
1365 m = ecb_frexpf (x, &e) * 0x1000000U;
1366
1367 r = m & 0x80000000U;
1368
1369 if (r)
1370 m = -m;
1371
1372 if (e <= -126)
1373 {
1374 m &= 0xffffffU;
1375 m >>= (-125 - e);
1376 e = -126;
1377 }
1378
1379 r |= (e + 126) << 23;
1380 r |= m & 0x7fffffU;
1381 #endif
1382
1383 return r;
1384 }
1385
1386 /* converts an ieee single/binary32 to a float */
1387 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1388 ecb_function_ ecb_const float
1389 ecb_binary32_to_float (uint32_t x)
1390 {
1391 float r;
1392
1393 #if ECB_STDFP
1394 memcpy (&r, &x, 4);
1395 #else
1396 /* emulation, only works for normals and subnormals and +0 */
1397 int neg = x >> 31;
1398 int e = (x >> 23) & 0xffU;
1399
1400 x &= 0x7fffffU;
1401
1402 if (e)
1403 x |= 0x800000U;
1404 else
1405 e = 1;
1406
1407 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1408 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1409
1410 r = neg ? -r : r;
1411 #endif
1412
1413 return r;
1414 }
1415
1416 /* convert a double to ieee double/binary64 */
1417 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1418 ecb_function_ ecb_const uint64_t
1419 ecb_double_to_binary64 (double x)
1420 {
1421 uint64_t r;
1422
1423 #if ECB_STDFP
1424 memcpy (&r, &x, 8);
1425 #else
1426 /* slow emulation, works for anything but -0 */
1427 uint64_t m;
1428 int e;
1429
1430 if (x == 0e0 ) return 0x0000000000000000U;
1431 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1432 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1433 if (x != x ) return 0X7ff7ffffffffffffU;
1434
1435 m = frexp (x, &e) * 0x20000000000000U;
1436
1437 r = m & 0x8000000000000000;;
1438
1439 if (r)
1440 m = -m;
1441
1442 if (e <= -1022)
1443 {
1444 m &= 0x1fffffffffffffU;
1445 m >>= (-1021 - e);
1446 e = -1022;
1447 }
1448
1449 r |= ((uint64_t)(e + 1022)) << 52;
1450 r |= m & 0xfffffffffffffU;
1451 #endif
1452
1453 return r;
1454 }
1455
1456 /* converts an ieee double/binary64 to a double */
1457 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1458 ecb_function_ ecb_const double
1459 ecb_binary64_to_double (uint64_t x)
1460 {
1461 double r;
1462
1463 #if ECB_STDFP
1464 memcpy (&r, &x, 8);
1465 #else
1466 /* emulation, only works for normals and subnormals and +0 */
1467 int neg = x >> 63;
1468 int e = (x >> 52) & 0x7ffU;
1469
1470 x &= 0xfffffffffffffU;
1471
1472 if (e)
1473 x |= 0x10000000000000U;
1474 else
1475 e = 1;
1476
1477 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1478 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1479
1480 r = neg ? -r : r;
1481 #endif
1482
1483 return r;
1484 }
1485
1486 /* convert a float to ieee half/binary16 */
1487 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1488 ecb_function_ ecb_const uint16_t
1489 ecb_float_to_binary16 (float x)
1490 {
1491 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1492 }
1493
1494 /* convert an ieee half/binary16 to float */
1495 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1496 ecb_function_ ecb_const float
1497 ecb_binary16_to_float (uint16_t x)
1498 {
1499 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1500 }
1501
1502#endif
1503
1504#endif
1505
1506/* ECB.H END */
1507
1508#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1509/* if your architecture doesn't need memory fences, e.g. because it is
1510 * single-cpu/core, or if you use libev in a project that doesn't use libev
1511 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1512 * libev, in which cases the memory fences become nops.
1513 * alternatively, you can remove this #error and link against libpthread,
1514 * which will then provide the memory fences.
1515 */
1516# error "memory fences not defined for your architecture, please report"
1517#endif
1518
1519#ifndef ECB_MEMORY_FENCE
1520# define ECB_MEMORY_FENCE do { } while (0)
1521# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1522# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1523#endif
1524
1525#define expect_false(cond) ecb_expect_false (cond)
1526#define expect_true(cond) ecb_expect_true (cond)
1527#define noinline ecb_noinline
1528
238#define inline_size static inline 1529#define inline_size ecb_inline
239 1530
240#if EV_MINIMAL 1531#if EV_FEATURE_CODE
241# define inline_speed static noinline
242#else
243# define inline_speed static inline 1532# define inline_speed ecb_inline
1533#else
1534# define inline_speed noinline static
244#endif 1535#endif
245 1536
246#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1537#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1538
1539#if EV_MINPRI == EV_MAXPRI
1540# define ABSPRI(w) (((W)w), 0)
1541#else
247#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1542# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1543#endif
248 1544
249#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1545#define EMPTY /* required for microsofts broken pseudo-c compiler */
250#define EMPTY2(a,b) /* used to suppress some warnings */ 1546#define EMPTY2(a,b) /* used to suppress some warnings */
251 1547
252typedef ev_watcher *W; 1548typedef ev_watcher *W;
253typedef ev_watcher_list *WL; 1549typedef ev_watcher_list *WL;
254typedef ev_watcher_time *WT; 1550typedef ev_watcher_time *WT;
255 1551
1552#define ev_active(w) ((W)(w))->active
1553#define ev_at(w) ((WT)(w))->at
1554
1555#if EV_USE_REALTIME
1556/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1557/* giving it a reasonably high chance of working on typical architectures */
1558static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1559#endif
1560
1561#if EV_USE_MONOTONIC
256static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1562static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1563#endif
1564
1565#ifndef EV_FD_TO_WIN32_HANDLE
1566# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1567#endif
1568#ifndef EV_WIN32_HANDLE_TO_FD
1569# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1570#endif
1571#ifndef EV_WIN32_CLOSE_FD
1572# define EV_WIN32_CLOSE_FD(fd) close (fd)
1573#endif
257 1574
258#ifdef _WIN32 1575#ifdef _WIN32
259# include "ev_win32.c" 1576# include "ev_win32.c"
260#endif 1577#endif
261 1578
262/*****************************************************************************/ 1579/*****************************************************************************/
263 1580
1581/* define a suitable floor function (only used by periodics atm) */
1582
1583#if EV_USE_FLOOR
1584# include <math.h>
1585# define ev_floor(v) floor (v)
1586#else
1587
1588#include <float.h>
1589
1590/* a floor() replacement function, should be independent of ev_tstamp type */
1591noinline
1592static ev_tstamp
1593ev_floor (ev_tstamp v)
1594{
1595 /* the choice of shift factor is not terribly important */
1596#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1597 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1598#else
1599 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1600#endif
1601
1602 /* argument too large for an unsigned long? */
1603 if (expect_false (v >= shift))
1604 {
1605 ev_tstamp f;
1606
1607 if (v == v - 1.)
1608 return v; /* very large number */
1609
1610 f = shift * ev_floor (v * (1. / shift));
1611 return f + ev_floor (v - f);
1612 }
1613
1614 /* special treatment for negative args? */
1615 if (expect_false (v < 0.))
1616 {
1617 ev_tstamp f = -ev_floor (-v);
1618
1619 return f - (f == v ? 0 : 1);
1620 }
1621
1622 /* fits into an unsigned long */
1623 return (unsigned long)v;
1624}
1625
1626#endif
1627
1628/*****************************************************************************/
1629
1630#ifdef __linux
1631# include <sys/utsname.h>
1632#endif
1633
1634noinline ecb_cold
1635static unsigned int
1636ev_linux_version (void)
1637{
1638#ifdef __linux
1639 unsigned int v = 0;
1640 struct utsname buf;
1641 int i;
1642 char *p = buf.release;
1643
1644 if (uname (&buf))
1645 return 0;
1646
1647 for (i = 3+1; --i; )
1648 {
1649 unsigned int c = 0;
1650
1651 for (;;)
1652 {
1653 if (*p >= '0' && *p <= '9')
1654 c = c * 10 + *p++ - '0';
1655 else
1656 {
1657 p += *p == '.';
1658 break;
1659 }
1660 }
1661
1662 v = (v << 8) | c;
1663 }
1664
1665 return v;
1666#else
1667 return 0;
1668#endif
1669}
1670
1671/*****************************************************************************/
1672
1673#if EV_AVOID_STDIO
1674noinline ecb_cold
1675static void
1676ev_printerr (const char *msg)
1677{
1678 write (STDERR_FILENO, msg, strlen (msg));
1679}
1680#endif
1681
264static void (*syserr_cb)(const char *msg); 1682static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
265 1683
1684ecb_cold
266void 1685void
267ev_set_syserr_cb (void (*cb)(const char *msg)) 1686ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
268{ 1687{
269 syserr_cb = cb; 1688 syserr_cb = cb;
270} 1689}
271 1690
272static void noinline 1691noinline ecb_cold
1692static void
273syserr (const char *msg) 1693ev_syserr (const char *msg)
274{ 1694{
275 if (!msg) 1695 if (!msg)
276 msg = "(libev) system error"; 1696 msg = "(libev) system error";
277 1697
278 if (syserr_cb) 1698 if (syserr_cb)
279 syserr_cb (msg); 1699 syserr_cb (msg);
280 else 1700 else
281 { 1701 {
1702#if EV_AVOID_STDIO
1703 ev_printerr (msg);
1704 ev_printerr (": ");
1705 ev_printerr (strerror (errno));
1706 ev_printerr ("\n");
1707#else
282 perror (msg); 1708 perror (msg);
1709#endif
283 abort (); 1710 abort ();
284 } 1711 }
285} 1712}
286 1713
287static void *(*alloc)(void *ptr, long size); 1714static void *
1715ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
1716{
1717 /* some systems, notably openbsd and darwin, fail to properly
1718 * implement realloc (x, 0) (as required by both ansi c-89 and
1719 * the single unix specification, so work around them here.
1720 * recently, also (at least) fedora and debian started breaking it,
1721 * despite documenting it otherwise.
1722 */
288 1723
1724 if (size)
1725 return realloc (ptr, size);
1726
1727 free (ptr);
1728 return 0;
1729}
1730
1731static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
1732
1733ecb_cold
289void 1734void
290ev_set_allocator (void *(*cb)(void *ptr, long size)) 1735ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
291{ 1736{
292 alloc = cb; 1737 alloc = cb;
293} 1738}
294 1739
295inline_speed void * 1740inline_speed void *
296ev_realloc (void *ptr, long size) 1741ev_realloc (void *ptr, long size)
297{ 1742{
298 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1743 ptr = alloc (ptr, size);
299 1744
300 if (!ptr && size) 1745 if (!ptr && size)
301 { 1746 {
1747#if EV_AVOID_STDIO
1748 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1749#else
302 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1750 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1751#endif
303 abort (); 1752 abort ();
304 } 1753 }
305 1754
306 return ptr; 1755 return ptr;
307} 1756}
309#define ev_malloc(size) ev_realloc (0, (size)) 1758#define ev_malloc(size) ev_realloc (0, (size))
310#define ev_free(ptr) ev_realloc ((ptr), 0) 1759#define ev_free(ptr) ev_realloc ((ptr), 0)
311 1760
312/*****************************************************************************/ 1761/*****************************************************************************/
313 1762
1763/* set in reify when reification needed */
1764#define EV_ANFD_REIFY 1
1765
1766/* file descriptor info structure */
314typedef struct 1767typedef struct
315{ 1768{
316 WL head; 1769 WL head;
317 unsigned char events; 1770 unsigned char events; /* the events watched for */
1771 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1772 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
318 unsigned char reify; 1773 unsigned char unused;
1774#if EV_USE_EPOLL
1775 unsigned int egen; /* generation counter to counter epoll bugs */
1776#endif
319#if EV_SELECT_IS_WINSOCKET 1777#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
320 SOCKET handle; 1778 SOCKET handle;
321#endif 1779#endif
1780#if EV_USE_IOCP
1781 OVERLAPPED or, ow;
1782#endif
322} ANFD; 1783} ANFD;
323 1784
1785/* stores the pending event set for a given watcher */
324typedef struct 1786typedef struct
325{ 1787{
326 W w; 1788 W w;
327 int events; 1789 int events; /* the pending event set for the given watcher */
328} ANPENDING; 1790} ANPENDING;
329 1791
330#if EV_USE_INOTIFY 1792#if EV_USE_INOTIFY
1793/* hash table entry per inotify-id */
331typedef struct 1794typedef struct
332{ 1795{
333 WL head; 1796 WL head;
334} ANFS; 1797} ANFS;
1798#endif
1799
1800/* Heap Entry */
1801#if EV_HEAP_CACHE_AT
1802 /* a heap element */
1803 typedef struct {
1804 ev_tstamp at;
1805 WT w;
1806 } ANHE;
1807
1808 #define ANHE_w(he) (he).w /* access watcher, read-write */
1809 #define ANHE_at(he) (he).at /* access cached at, read-only */
1810 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1811#else
1812 /* a heap element */
1813 typedef WT ANHE;
1814
1815 #define ANHE_w(he) (he)
1816 #define ANHE_at(he) (he)->at
1817 #define ANHE_at_cache(he)
335#endif 1818#endif
336 1819
337#if EV_MULTIPLICITY 1820#if EV_MULTIPLICITY
338 1821
339 struct ev_loop 1822 struct ev_loop
345 #undef VAR 1828 #undef VAR
346 }; 1829 };
347 #include "ev_wrap.h" 1830 #include "ev_wrap.h"
348 1831
349 static struct ev_loop default_loop_struct; 1832 static struct ev_loop default_loop_struct;
350 struct ev_loop *ev_default_loop_ptr; 1833 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
351 1834
352#else 1835#else
353 1836
354 ev_tstamp ev_rt_now; 1837 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
355 #define VAR(name,decl) static decl; 1838 #define VAR(name,decl) static decl;
356 #include "ev_vars.h" 1839 #include "ev_vars.h"
357 #undef VAR 1840 #undef VAR
358 1841
359 static int ev_default_loop_ptr; 1842 static int ev_default_loop_ptr;
360 1843
361#endif 1844#endif
362 1845
1846#if EV_FEATURE_API
1847# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1848# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1849# define EV_INVOKE_PENDING invoke_cb (EV_A)
1850#else
1851# define EV_RELEASE_CB (void)0
1852# define EV_ACQUIRE_CB (void)0
1853# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1854#endif
1855
1856#define EVBREAK_RECURSE 0x80
1857
363/*****************************************************************************/ 1858/*****************************************************************************/
364 1859
1860#ifndef EV_HAVE_EV_TIME
365ev_tstamp 1861ev_tstamp
366ev_time (void) 1862ev_time (void) EV_NOEXCEPT
367{ 1863{
368#if EV_USE_REALTIME 1864#if EV_USE_REALTIME
1865 if (expect_true (have_realtime))
1866 {
369 struct timespec ts; 1867 struct timespec ts;
370 clock_gettime (CLOCK_REALTIME, &ts); 1868 clock_gettime (CLOCK_REALTIME, &ts);
371 return ts.tv_sec + ts.tv_nsec * 1e-9; 1869 return ts.tv_sec + ts.tv_nsec * 1e-9;
372#else 1870 }
1871#endif
1872
373 struct timeval tv; 1873 struct timeval tv;
374 gettimeofday (&tv, 0); 1874 gettimeofday (&tv, 0);
375 return tv.tv_sec + tv.tv_usec * 1e-6; 1875 return tv.tv_sec + tv.tv_usec * 1e-6;
376#endif
377} 1876}
1877#endif
378 1878
379ev_tstamp inline_size 1879inline_size ev_tstamp
380get_clock (void) 1880get_clock (void)
381{ 1881{
382#if EV_USE_MONOTONIC 1882#if EV_USE_MONOTONIC
383 if (expect_true (have_monotonic)) 1883 if (expect_true (have_monotonic))
384 { 1884 {
391 return ev_time (); 1891 return ev_time ();
392} 1892}
393 1893
394#if EV_MULTIPLICITY 1894#if EV_MULTIPLICITY
395ev_tstamp 1895ev_tstamp
396ev_now (EV_P) 1896ev_now (EV_P) EV_NOEXCEPT
397{ 1897{
398 return ev_rt_now; 1898 return ev_rt_now;
399} 1899}
400#endif 1900#endif
401 1901
402int inline_size 1902void
1903ev_sleep (ev_tstamp delay) EV_NOEXCEPT
1904{
1905 if (delay > 0.)
1906 {
1907#if EV_USE_NANOSLEEP
1908 struct timespec ts;
1909
1910 EV_TS_SET (ts, delay);
1911 nanosleep (&ts, 0);
1912#elif defined _WIN32
1913 /* maybe this should round up, as ms is very low resolution */
1914 /* compared to select (µs) or nanosleep (ns) */
1915 Sleep ((unsigned long)(delay * 1e3));
1916#else
1917 struct timeval tv;
1918
1919 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1920 /* something not guaranteed by newer posix versions, but guaranteed */
1921 /* by older ones */
1922 EV_TV_SET (tv, delay);
1923 select (0, 0, 0, 0, &tv);
1924#endif
1925 }
1926}
1927
1928/*****************************************************************************/
1929
1930#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1931
1932/* find a suitable new size for the given array, */
1933/* hopefully by rounding to a nice-to-malloc size */
1934inline_size int
403array_nextsize (int elem, int cur, int cnt) 1935array_nextsize (int elem, int cur, int cnt)
404{ 1936{
405 int ncur = cur + 1; 1937 int ncur = cur + 1;
406 1938
407 do 1939 do
408 ncur <<= 1; 1940 ncur <<= 1;
409 while (cnt > ncur); 1941 while (cnt > ncur);
410 1942
411 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 1943 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
412 if (elem * ncur > 4096) 1944 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
413 { 1945 {
414 ncur *= elem; 1946 ncur *= elem;
415 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 1947 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
416 ncur = ncur - sizeof (void *) * 4; 1948 ncur = ncur - sizeof (void *) * 4;
417 ncur /= elem; 1949 ncur /= elem;
418 } 1950 }
419 1951
420 return ncur; 1952 return ncur;
421} 1953}
422 1954
423static noinline void * 1955noinline ecb_cold
1956static void *
424array_realloc (int elem, void *base, int *cur, int cnt) 1957array_realloc (int elem, void *base, int *cur, int cnt)
425{ 1958{
426 *cur = array_nextsize (elem, *cur, cnt); 1959 *cur = array_nextsize (elem, *cur, cnt);
427 return ev_realloc (base, elem * *cur); 1960 return ev_realloc (base, elem * *cur);
428} 1961}
1962
1963#define array_init_zero(base,count) \
1964 memset ((void *)(base), 0, sizeof (*(base)) * (count))
429 1965
430#define array_needsize(type,base,cur,cnt,init) \ 1966#define array_needsize(type,base,cur,cnt,init) \
431 if (expect_false ((cnt) > (cur))) \ 1967 if (expect_false ((cnt) > (cur))) \
432 { \ 1968 { \
433 int ocur_ = (cur); \ 1969 ecb_unused int ocur_ = (cur); \
434 (base) = (type *)array_realloc \ 1970 (base) = (type *)array_realloc \
435 (sizeof (type), (base), &(cur), (cnt)); \ 1971 (sizeof (type), (base), &(cur), (cnt)); \
436 init ((base) + (ocur_), (cur) - ocur_); \ 1972 init ((base) + (ocur_), (cur) - ocur_); \
437 } 1973 }
438 1974
445 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1981 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
446 } 1982 }
447#endif 1983#endif
448 1984
449#define array_free(stem, idx) \ 1985#define array_free(stem, idx) \
450 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1986 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
451 1987
452/*****************************************************************************/ 1988/*****************************************************************************/
453 1989
1990/* dummy callback for pending events */
454void noinline 1991noinline
1992static void
1993pendingcb (EV_P_ ev_prepare *w, int revents)
1994{
1995}
1996
1997noinline
1998void
455ev_feed_event (EV_P_ void *w, int revents) 1999ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
456{ 2000{
457 W w_ = (W)w; 2001 W w_ = (W)w;
458 int pri = ABSPRI (w_); 2002 int pri = ABSPRI (w_);
459 2003
460 if (expect_false (w_->pending)) 2004 if (expect_false (w_->pending))
464 w_->pending = ++pendingcnt [pri]; 2008 w_->pending = ++pendingcnt [pri];
465 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 2009 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
466 pendings [pri][w_->pending - 1].w = w_; 2010 pendings [pri][w_->pending - 1].w = w_;
467 pendings [pri][w_->pending - 1].events = revents; 2011 pendings [pri][w_->pending - 1].events = revents;
468 } 2012 }
469}
470 2013
471void inline_size 2014 pendingpri = NUMPRI - 1;
2015}
2016
2017inline_speed void
2018feed_reverse (EV_P_ W w)
2019{
2020 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
2021 rfeeds [rfeedcnt++] = w;
2022}
2023
2024inline_size void
2025feed_reverse_done (EV_P_ int revents)
2026{
2027 do
2028 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2029 while (rfeedcnt);
2030}
2031
2032inline_speed void
472queue_events (EV_P_ W *events, int eventcnt, int type) 2033queue_events (EV_P_ W *events, int eventcnt, int type)
473{ 2034{
474 int i; 2035 int i;
475 2036
476 for (i = 0; i < eventcnt; ++i) 2037 for (i = 0; i < eventcnt; ++i)
477 ev_feed_event (EV_A_ events [i], type); 2038 ev_feed_event (EV_A_ events [i], type);
478} 2039}
479 2040
480/*****************************************************************************/ 2041/*****************************************************************************/
481 2042
482void inline_size 2043inline_speed void
483anfds_init (ANFD *base, int count)
484{
485 while (count--)
486 {
487 base->head = 0;
488 base->events = EV_NONE;
489 base->reify = 0;
490
491 ++base;
492 }
493}
494
495void inline_speed
496fd_event (EV_P_ int fd, int revents) 2044fd_event_nocheck (EV_P_ int fd, int revents)
497{ 2045{
498 ANFD *anfd = anfds + fd; 2046 ANFD *anfd = anfds + fd;
499 ev_io *w; 2047 ev_io *w;
500 2048
501 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2049 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
505 if (ev) 2053 if (ev)
506 ev_feed_event (EV_A_ (W)w, ev); 2054 ev_feed_event (EV_A_ (W)w, ev);
507 } 2055 }
508} 2056}
509 2057
510void 2058/* do not submit kernel events for fds that have reify set */
2059/* because that means they changed while we were polling for new events */
2060inline_speed void
511ev_feed_fd_event (EV_P_ int fd, int revents) 2061fd_event (EV_P_ int fd, int revents)
2062{
2063 ANFD *anfd = anfds + fd;
2064
2065 if (expect_true (!anfd->reify))
2066 fd_event_nocheck (EV_A_ fd, revents);
2067}
2068
2069void
2070ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
512{ 2071{
513 if (fd >= 0 && fd < anfdmax) 2072 if (fd >= 0 && fd < anfdmax)
514 fd_event (EV_A_ fd, revents); 2073 fd_event_nocheck (EV_A_ fd, revents);
515} 2074}
516 2075
517void inline_size 2076/* make sure the external fd watch events are in-sync */
2077/* with the kernel/libev internal state */
2078inline_size void
518fd_reify (EV_P) 2079fd_reify (EV_P)
519{ 2080{
520 int i; 2081 int i;
2082
2083#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2084 for (i = 0; i < fdchangecnt; ++i)
2085 {
2086 int fd = fdchanges [i];
2087 ANFD *anfd = anfds + fd;
2088
2089 if (anfd->reify & EV__IOFDSET && anfd->head)
2090 {
2091 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2092
2093 if (handle != anfd->handle)
2094 {
2095 unsigned long arg;
2096
2097 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2098
2099 /* handle changed, but fd didn't - we need to do it in two steps */
2100 backend_modify (EV_A_ fd, anfd->events, 0);
2101 anfd->events = 0;
2102 anfd->handle = handle;
2103 }
2104 }
2105 }
2106#endif
521 2107
522 for (i = 0; i < fdchangecnt; ++i) 2108 for (i = 0; i < fdchangecnt; ++i)
523 { 2109 {
524 int fd = fdchanges [i]; 2110 int fd = fdchanges [i];
525 ANFD *anfd = anfds + fd; 2111 ANFD *anfd = anfds + fd;
526 ev_io *w; 2112 ev_io *w;
527 2113
528 int events = 0; 2114 unsigned char o_events = anfd->events;
2115 unsigned char o_reify = anfd->reify;
529 2116
530 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2117 anfd->reify = 0;
531 events |= w->events;
532 2118
533#if EV_SELECT_IS_WINSOCKET 2119 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
534 if (events)
535 { 2120 {
536 unsigned long argp; 2121 anfd->events = 0;
537 anfd->handle = _get_osfhandle (fd); 2122
538 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 2123 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2124 anfd->events |= (unsigned char)w->events;
2125
2126 if (o_events != anfd->events)
2127 o_reify = EV__IOFDSET; /* actually |= */
539 } 2128 }
540#endif
541 2129
542 anfd->reify = 0; 2130 if (o_reify & EV__IOFDSET)
543
544 backend_modify (EV_A_ fd, anfd->events, events); 2131 backend_modify (EV_A_ fd, o_events, anfd->events);
545 anfd->events = events;
546 } 2132 }
547 2133
548 fdchangecnt = 0; 2134 fdchangecnt = 0;
549} 2135}
550 2136
2137/* something about the given fd changed */
551void inline_size 2138inline_size
2139void
552fd_change (EV_P_ int fd) 2140fd_change (EV_P_ int fd, int flags)
553{ 2141{
554 if (expect_false (anfds [fd].reify)) 2142 unsigned char reify = anfds [fd].reify;
555 return;
556
557 anfds [fd].reify = 1; 2143 anfds [fd].reify |= flags;
558 2144
2145 if (expect_true (!reify))
2146 {
559 ++fdchangecnt; 2147 ++fdchangecnt;
560 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 2148 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
561 fdchanges [fdchangecnt - 1] = fd; 2149 fdchanges [fdchangecnt - 1] = fd;
2150 }
562} 2151}
563 2152
564void inline_speed 2153/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2154inline_speed ecb_cold void
565fd_kill (EV_P_ int fd) 2155fd_kill (EV_P_ int fd)
566{ 2156{
567 ev_io *w; 2157 ev_io *w;
568 2158
569 while ((w = (ev_io *)anfds [fd].head)) 2159 while ((w = (ev_io *)anfds [fd].head))
571 ev_io_stop (EV_A_ w); 2161 ev_io_stop (EV_A_ w);
572 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2162 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
573 } 2163 }
574} 2164}
575 2165
576int inline_size 2166/* check whether the given fd is actually valid, for error recovery */
2167inline_size ecb_cold int
577fd_valid (int fd) 2168fd_valid (int fd)
578{ 2169{
579#ifdef _WIN32 2170#ifdef _WIN32
580 return _get_osfhandle (fd) != -1; 2171 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
581#else 2172#else
582 return fcntl (fd, F_GETFD) != -1; 2173 return fcntl (fd, F_GETFD) != -1;
583#endif 2174#endif
584} 2175}
585 2176
586/* called on EBADF to verify fds */ 2177/* called on EBADF to verify fds */
587static void noinline 2178noinline ecb_cold
2179static void
588fd_ebadf (EV_P) 2180fd_ebadf (EV_P)
589{ 2181{
590 int fd; 2182 int fd;
591 2183
592 for (fd = 0; fd < anfdmax; ++fd) 2184 for (fd = 0; fd < anfdmax; ++fd)
593 if (anfds [fd].events) 2185 if (anfds [fd].events)
594 if (!fd_valid (fd) == -1 && errno == EBADF) 2186 if (!fd_valid (fd) && errno == EBADF)
595 fd_kill (EV_A_ fd); 2187 fd_kill (EV_A_ fd);
596} 2188}
597 2189
598/* called on ENOMEM in select/poll to kill some fds and retry */ 2190/* called on ENOMEM in select/poll to kill some fds and retry */
599static void noinline 2191noinline ecb_cold
2192static void
600fd_enomem (EV_P) 2193fd_enomem (EV_P)
601{ 2194{
602 int fd; 2195 int fd;
603 2196
604 for (fd = anfdmax; fd--; ) 2197 for (fd = anfdmax; fd--; )
605 if (anfds [fd].events) 2198 if (anfds [fd].events)
606 { 2199 {
607 fd_kill (EV_A_ fd); 2200 fd_kill (EV_A_ fd);
608 return; 2201 break;
609 } 2202 }
610} 2203}
611 2204
612/* usually called after fork if backend needs to re-arm all fds from scratch */ 2205/* usually called after fork if backend needs to re-arm all fds from scratch */
613static void noinline 2206noinline
2207static void
614fd_rearm_all (EV_P) 2208fd_rearm_all (EV_P)
615{ 2209{
616 int fd; 2210 int fd;
617 2211
618 for (fd = 0; fd < anfdmax; ++fd) 2212 for (fd = 0; fd < anfdmax; ++fd)
619 if (anfds [fd].events) 2213 if (anfds [fd].events)
620 { 2214 {
621 anfds [fd].events = 0; 2215 anfds [fd].events = 0;
622 fd_change (EV_A_ fd); 2216 anfds [fd].emask = 0;
2217 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
623 } 2218 }
624} 2219}
625 2220
2221/* used to prepare libev internal fd's */
2222/* this is not fork-safe */
2223inline_speed void
2224fd_intern (int fd)
2225{
2226#ifdef _WIN32
2227 unsigned long arg = 1;
2228 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2229#else
2230 fcntl (fd, F_SETFD, FD_CLOEXEC);
2231 fcntl (fd, F_SETFL, O_NONBLOCK);
2232#endif
2233}
2234
626/*****************************************************************************/ 2235/*****************************************************************************/
627 2236
628void inline_speed 2237/*
629upheap (WT *heap, int k) 2238 * the heap functions want a real array index. array index 0 is guaranteed to not
630{ 2239 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
631 WT w = heap [k]; 2240 * the branching factor of the d-tree.
2241 */
632 2242
633 while (k && heap [k >> 1]->at > w->at) 2243/*
634 { 2244 * at the moment we allow libev the luxury of two heaps,
635 heap [k] = heap [k >> 1]; 2245 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
636 ((W)heap [k])->active = k + 1; 2246 * which is more cache-efficient.
637 k >>= 1; 2247 * the difference is about 5% with 50000+ watchers.
638 } 2248 */
2249#if EV_USE_4HEAP
639 2250
640 heap [k] = w; 2251#define DHEAP 4
641 ((W)heap [k])->active = k + 1; 2252#define HEAP0 (DHEAP - 1) /* index of first element in heap */
2253#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2254#define UPHEAP_DONE(p,k) ((p) == (k))
642 2255
643} 2256/* away from the root */
644 2257inline_speed void
645void inline_speed
646downheap (WT *heap, int N, int k) 2258downheap (ANHE *heap, int N, int k)
647{ 2259{
648 WT w = heap [k]; 2260 ANHE he = heap [k];
2261 ANHE *E = heap + N + HEAP0;
649 2262
650 while (k < (N >> 1)) 2263 for (;;)
651 { 2264 {
652 int j = k << 1; 2265 ev_tstamp minat;
2266 ANHE *minpos;
2267 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
653 2268
654 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 2269 /* find minimum child */
2270 if (expect_true (pos + DHEAP - 1 < E))
655 ++j; 2271 {
656 2272 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
657 if (w->at <= heap [j]->at) 2273 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2274 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2275 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2276 }
2277 else if (pos < E)
2278 {
2279 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2280 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2281 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2282 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2283 }
2284 else
658 break; 2285 break;
659 2286
2287 if (ANHE_at (he) <= minat)
2288 break;
2289
2290 heap [k] = *minpos;
2291 ev_active (ANHE_w (*minpos)) = k;
2292
2293 k = minpos - heap;
2294 }
2295
2296 heap [k] = he;
2297 ev_active (ANHE_w (he)) = k;
2298}
2299
2300#else /* 4HEAP */
2301
2302#define HEAP0 1
2303#define HPARENT(k) ((k) >> 1)
2304#define UPHEAP_DONE(p,k) (!(p))
2305
2306/* away from the root */
2307inline_speed void
2308downheap (ANHE *heap, int N, int k)
2309{
2310 ANHE he = heap [k];
2311
2312 for (;;)
2313 {
2314 int c = k << 1;
2315
2316 if (c >= N + HEAP0)
2317 break;
2318
2319 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2320 ? 1 : 0;
2321
2322 if (ANHE_at (he) <= ANHE_at (heap [c]))
2323 break;
2324
660 heap [k] = heap [j]; 2325 heap [k] = heap [c];
661 ((W)heap [k])->active = k + 1; 2326 ev_active (ANHE_w (heap [k])) = k;
2327
662 k = j; 2328 k = c;
663 } 2329 }
664 2330
665 heap [k] = w; 2331 heap [k] = he;
666 ((W)heap [k])->active = k + 1; 2332 ev_active (ANHE_w (he)) = k;
667} 2333}
2334#endif
668 2335
669void inline_size 2336/* towards the root */
2337inline_speed void
2338upheap (ANHE *heap, int k)
2339{
2340 ANHE he = heap [k];
2341
2342 for (;;)
2343 {
2344 int p = HPARENT (k);
2345
2346 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2347 break;
2348
2349 heap [k] = heap [p];
2350 ev_active (ANHE_w (heap [k])) = k;
2351 k = p;
2352 }
2353
2354 heap [k] = he;
2355 ev_active (ANHE_w (he)) = k;
2356}
2357
2358/* move an element suitably so it is in a correct place */
2359inline_size void
670adjustheap (WT *heap, int N, int k) 2360adjustheap (ANHE *heap, int N, int k)
671{ 2361{
2362 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
672 upheap (heap, k); 2363 upheap (heap, k);
2364 else
673 downheap (heap, N, k); 2365 downheap (heap, N, k);
2366}
2367
2368/* rebuild the heap: this function is used only once and executed rarely */
2369inline_size void
2370reheap (ANHE *heap, int N)
2371{
2372 int i;
2373
2374 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2375 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2376 for (i = 0; i < N; ++i)
2377 upheap (heap, i + HEAP0);
674} 2378}
675 2379
676/*****************************************************************************/ 2380/*****************************************************************************/
677 2381
2382/* associate signal watchers to a signal signal */
678typedef struct 2383typedef struct
679{ 2384{
2385 EV_ATOMIC_T pending;
2386#if EV_MULTIPLICITY
2387 EV_P;
2388#endif
680 WL head; 2389 WL head;
681 sig_atomic_t volatile gotsig;
682} ANSIG; 2390} ANSIG;
683 2391
684static ANSIG *signals; 2392static ANSIG signals [EV_NSIG - 1];
685static int signalmax;
686 2393
687static int sigpipe [2]; 2394/*****************************************************************************/
688static sig_atomic_t volatile gotsig;
689static ev_io sigev;
690 2395
691void inline_size 2396#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
692signals_init (ANSIG *base, int count)
693{
694 while (count--)
695 {
696 base->head = 0;
697 base->gotsig = 0;
698 2397
699 ++base; 2398noinline ecb_cold
700 }
701}
702
703static void 2399static void
704sighandler (int signum) 2400evpipe_init (EV_P)
705{ 2401{
706#if _WIN32 2402 if (!ev_is_active (&pipe_w))
707 signal (signum, sighandler); 2403 {
2404 int fds [2];
2405
2406# if EV_USE_EVENTFD
2407 fds [0] = -1;
2408 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2409 if (fds [1] < 0 && errno == EINVAL)
2410 fds [1] = eventfd (0, 0);
2411
2412 if (fds [1] < 0)
708#endif 2413# endif
2414 {
2415 while (pipe (fds))
2416 ev_syserr ("(libev) error creating signal/async pipe");
709 2417
710 signals [signum - 1].gotsig = 1; 2418 fd_intern (fds [0]);
2419 }
711 2420
712 if (!gotsig) 2421 evpipe [0] = fds [0];
2422
2423 if (evpipe [1] < 0)
2424 evpipe [1] = fds [1]; /* first call, set write fd */
2425 else
2426 {
2427 /* on subsequent calls, do not change evpipe [1] */
2428 /* so that evpipe_write can always rely on its value. */
2429 /* this branch does not do anything sensible on windows, */
2430 /* so must not be executed on windows */
2431
2432 dup2 (fds [1], evpipe [1]);
2433 close (fds [1]);
2434 }
2435
2436 fd_intern (evpipe [1]);
2437
2438 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2439 ev_io_start (EV_A_ &pipe_w);
2440 ev_unref (EV_A); /* watcher should not keep loop alive */
713 { 2441 }
2442}
2443
2444inline_speed void
2445evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2446{
2447 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2448
2449 if (expect_true (*flag))
2450 return;
2451
2452 *flag = 1;
2453 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2454
2455 pipe_write_skipped = 1;
2456
2457 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2458
2459 if (pipe_write_wanted)
2460 {
714 int old_errno = errno; 2461 int old_errno;
715 gotsig = 1; 2462
716 write (sigpipe [1], &signum, 1); 2463 pipe_write_skipped = 0;
2464 ECB_MEMORY_FENCE_RELEASE;
2465
2466 old_errno = errno; /* save errno because write will clobber it */
2467
2468#if EV_USE_EVENTFD
2469 if (evpipe [0] < 0)
2470 {
2471 uint64_t counter = 1;
2472 write (evpipe [1], &counter, sizeof (uint64_t));
2473 }
2474 else
2475#endif
2476 {
2477#ifdef _WIN32
2478 WSABUF buf;
2479 DWORD sent;
2480 buf.buf = (char *)&buf;
2481 buf.len = 1;
2482 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2483#else
2484 write (evpipe [1], &(evpipe [1]), 1);
2485#endif
2486 }
2487
717 errno = old_errno; 2488 errno = old_errno;
718 } 2489 }
719} 2490}
720 2491
2492/* called whenever the libev signal pipe */
2493/* got some events (signal, async) */
2494static void
2495pipecb (EV_P_ ev_io *iow, int revents)
2496{
2497 int i;
2498
2499 if (revents & EV_READ)
2500 {
2501#if EV_USE_EVENTFD
2502 if (evpipe [0] < 0)
2503 {
2504 uint64_t counter;
2505 read (evpipe [1], &counter, sizeof (uint64_t));
2506 }
2507 else
2508#endif
2509 {
2510 char dummy[4];
2511#ifdef _WIN32
2512 WSABUF buf;
2513 DWORD recvd;
2514 DWORD flags = 0;
2515 buf.buf = dummy;
2516 buf.len = sizeof (dummy);
2517 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2518#else
2519 read (evpipe [0], &dummy, sizeof (dummy));
2520#endif
2521 }
2522 }
2523
2524 pipe_write_skipped = 0;
2525
2526 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2527
2528#if EV_SIGNAL_ENABLE
2529 if (sig_pending)
2530 {
2531 sig_pending = 0;
2532
2533 ECB_MEMORY_FENCE;
2534
2535 for (i = EV_NSIG - 1; i--; )
2536 if (expect_false (signals [i].pending))
2537 ev_feed_signal_event (EV_A_ i + 1);
2538 }
2539#endif
2540
2541#if EV_ASYNC_ENABLE
2542 if (async_pending)
2543 {
2544 async_pending = 0;
2545
2546 ECB_MEMORY_FENCE;
2547
2548 for (i = asynccnt; i--; )
2549 if (asyncs [i]->sent)
2550 {
2551 asyncs [i]->sent = 0;
2552 ECB_MEMORY_FENCE_RELEASE;
2553 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2554 }
2555 }
2556#endif
2557}
2558
2559/*****************************************************************************/
2560
2561void
2562ev_feed_signal (int signum) EV_NOEXCEPT
2563{
2564#if EV_MULTIPLICITY
2565 EV_P;
2566 ECB_MEMORY_FENCE_ACQUIRE;
2567 EV_A = signals [signum - 1].loop;
2568
2569 if (!EV_A)
2570 return;
2571#endif
2572
2573 signals [signum - 1].pending = 1;
2574 evpipe_write (EV_A_ &sig_pending);
2575}
2576
2577static void
2578ev_sighandler (int signum)
2579{
2580#ifdef _WIN32
2581 signal (signum, ev_sighandler);
2582#endif
2583
2584 ev_feed_signal (signum);
2585}
2586
721void noinline 2587noinline
2588void
722ev_feed_signal_event (EV_P_ int signum) 2589ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
723{ 2590{
724 WL w; 2591 WL w;
725 2592
2593 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2594 return;
2595
2596 --signum;
2597
726#if EV_MULTIPLICITY 2598#if EV_MULTIPLICITY
727 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 2599 /* it is permissible to try to feed a signal to the wrong loop */
728#endif 2600 /* or, likely more useful, feeding a signal nobody is waiting for */
729 2601
730 --signum; 2602 if (expect_false (signals [signum].loop != EV_A))
731
732 if (signum < 0 || signum >= signalmax)
733 return; 2603 return;
2604#endif
734 2605
735 signals [signum].gotsig = 0; 2606 signals [signum].pending = 0;
2607 ECB_MEMORY_FENCE_RELEASE;
736 2608
737 for (w = signals [signum].head; w; w = w->next) 2609 for (w = signals [signum].head; w; w = w->next)
738 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2610 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
739} 2611}
740 2612
2613#if EV_USE_SIGNALFD
741static void 2614static void
742sigcb (EV_P_ ev_io *iow, int revents) 2615sigfdcb (EV_P_ ev_io *iow, int revents)
743{ 2616{
744 int signum; 2617 struct signalfd_siginfo si[2], *sip; /* these structs are big */
745 2618
746 read (sigpipe [0], &revents, 1); 2619 for (;;)
747 gotsig = 0; 2620 {
2621 ssize_t res = read (sigfd, si, sizeof (si));
748 2622
749 for (signum = signalmax; signum--; ) 2623 /* not ISO-C, as res might be -1, but works with SuS */
750 if (signals [signum].gotsig) 2624 for (sip = si; (char *)sip < (char *)si + res; ++sip)
751 ev_feed_signal_event (EV_A_ signum + 1); 2625 ev_feed_signal_event (EV_A_ sip->ssi_signo);
752}
753 2626
754void inline_speed 2627 if (res < (ssize_t)sizeof (si))
755fd_intern (int fd) 2628 break;
756{ 2629 }
757#ifdef _WIN32
758 int arg = 1;
759 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
760#else
761 fcntl (fd, F_SETFD, FD_CLOEXEC);
762 fcntl (fd, F_SETFL, O_NONBLOCK);
763#endif
764} 2630}
2631#endif
765 2632
766static void noinline 2633#endif
767siginit (EV_P)
768{
769 fd_intern (sigpipe [0]);
770 fd_intern (sigpipe [1]);
771
772 ev_io_set (&sigev, sigpipe [0], EV_READ);
773 ev_io_start (EV_A_ &sigev);
774 ev_unref (EV_A); /* child watcher should not keep loop alive */
775}
776 2634
777/*****************************************************************************/ 2635/*****************************************************************************/
778 2636
2637#if EV_CHILD_ENABLE
779static ev_child *childs [EV_PID_HASHSIZE]; 2638static WL childs [EV_PID_HASHSIZE];
780
781#ifndef _WIN32
782 2639
783static ev_signal childev; 2640static ev_signal childev;
784 2641
785void inline_speed 2642#ifndef WIFCONTINUED
2643# define WIFCONTINUED(status) 0
2644#endif
2645
2646/* handle a single child status event */
2647inline_speed void
786child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 2648child_reap (EV_P_ int chain, int pid, int status)
787{ 2649{
788 ev_child *w; 2650 ev_child *w;
2651 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
789 2652
790 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2653 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2654 {
791 if (w->pid == pid || !w->pid) 2655 if ((w->pid == pid || !w->pid)
2656 && (!traced || (w->flags & 1)))
792 { 2657 {
793 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 2658 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
794 w->rpid = pid; 2659 w->rpid = pid;
795 w->rstatus = status; 2660 w->rstatus = status;
796 ev_feed_event (EV_A_ (W)w, EV_CHILD); 2661 ev_feed_event (EV_A_ (W)w, EV_CHILD);
797 } 2662 }
2663 }
798} 2664}
799 2665
800#ifndef WCONTINUED 2666#ifndef WCONTINUED
801# define WCONTINUED 0 2667# define WCONTINUED 0
802#endif 2668#endif
803 2669
2670/* called on sigchld etc., calls waitpid */
804static void 2671static void
805childcb (EV_P_ ev_signal *sw, int revents) 2672childcb (EV_P_ ev_signal *sw, int revents)
806{ 2673{
807 int pid, status; 2674 int pid, status;
808 2675
811 if (!WCONTINUED 2678 if (!WCONTINUED
812 || errno != EINVAL 2679 || errno != EINVAL
813 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 2680 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
814 return; 2681 return;
815 2682
816 /* make sure we are called again until all childs have been reaped */ 2683 /* make sure we are called again until all children have been reaped */
817 /* we need to do it this way so that the callback gets called before we continue */ 2684 /* we need to do it this way so that the callback gets called before we continue */
818 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2685 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
819 2686
820 child_reap (EV_A_ sw, pid, pid, status); 2687 child_reap (EV_A_ pid, pid, status);
821 if (EV_PID_HASHSIZE > 1) 2688 if ((EV_PID_HASHSIZE) > 1)
822 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2689 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
823} 2690}
824 2691
825#endif 2692#endif
826 2693
827/*****************************************************************************/ 2694/*****************************************************************************/
828 2695
2696#if EV_USE_IOCP
2697# include "ev_iocp.c"
2698#endif
829#if EV_USE_PORT 2699#if EV_USE_PORT
830# include "ev_port.c" 2700# include "ev_port.c"
831#endif 2701#endif
832#if EV_USE_KQUEUE 2702#if EV_USE_KQUEUE
833# include "ev_kqueue.c" 2703# include "ev_kqueue.c"
840#endif 2710#endif
841#if EV_USE_SELECT 2711#if EV_USE_SELECT
842# include "ev_select.c" 2712# include "ev_select.c"
843#endif 2713#endif
844 2714
845int 2715ecb_cold int
846ev_version_major (void) 2716ev_version_major (void) EV_NOEXCEPT
847{ 2717{
848 return EV_VERSION_MAJOR; 2718 return EV_VERSION_MAJOR;
849} 2719}
850 2720
851int 2721ecb_cold int
852ev_version_minor (void) 2722ev_version_minor (void) EV_NOEXCEPT
853{ 2723{
854 return EV_VERSION_MINOR; 2724 return EV_VERSION_MINOR;
855} 2725}
856 2726
857/* return true if we are running with elevated privileges and should ignore env variables */ 2727/* return true if we are running with elevated privileges and should ignore env variables */
858int inline_size 2728inline_size ecb_cold int
859enable_secure (void) 2729enable_secure (void)
860{ 2730{
861#ifdef _WIN32 2731#ifdef _WIN32
862 return 0; 2732 return 0;
863#else 2733#else
864 return getuid () != geteuid () 2734 return getuid () != geteuid ()
865 || getgid () != getegid (); 2735 || getgid () != getegid ();
866#endif 2736#endif
867} 2737}
868 2738
2739ecb_cold
869unsigned int 2740unsigned int
870ev_supported_backends (void) 2741ev_supported_backends (void) EV_NOEXCEPT
871{ 2742{
872 unsigned int flags = 0; 2743 unsigned int flags = 0;
873 2744
874 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2745 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
875 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2746 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
878 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2749 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
879 2750
880 return flags; 2751 return flags;
881} 2752}
882 2753
2754ecb_cold
883unsigned int 2755unsigned int
884ev_recommended_backends (void) 2756ev_recommended_backends (void) EV_NOEXCEPT
885{ 2757{
886 unsigned int flags = ev_supported_backends (); 2758 unsigned int flags = ev_supported_backends ();
887 2759
888#ifndef __NetBSD__ 2760#ifndef __NetBSD__
889 /* kqueue is borked on everything but netbsd apparently */ 2761 /* kqueue is borked on everything but netbsd apparently */
890 /* it usually doesn't work correctly on anything but sockets and pipes */ 2762 /* it usually doesn't work correctly on anything but sockets and pipes */
891 flags &= ~EVBACKEND_KQUEUE; 2763 flags &= ~EVBACKEND_KQUEUE;
892#endif 2764#endif
893#ifdef __APPLE__ 2765#ifdef __APPLE__
894 // flags &= ~EVBACKEND_KQUEUE; for documentation 2766 /* only select works correctly on that "unix-certified" platform */
895 flags &= ~EVBACKEND_POLL; 2767 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2768 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2769#endif
2770#ifdef __FreeBSD__
2771 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
896#endif 2772#endif
897 2773
898 return flags; 2774 return flags;
899} 2775}
900 2776
2777ecb_cold
901unsigned int 2778unsigned int
902ev_embeddable_backends (void) 2779ev_embeddable_backends (void) EV_NOEXCEPT
903{ 2780{
904 return EVBACKEND_EPOLL 2781 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
905 | EVBACKEND_KQUEUE 2782
906 | EVBACKEND_PORT; 2783 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2784 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2785 flags &= ~EVBACKEND_EPOLL;
2786
2787 return flags;
907} 2788}
908 2789
909unsigned int 2790unsigned int
910ev_backend (EV_P) 2791ev_backend (EV_P) EV_NOEXCEPT
911{ 2792{
912 return backend; 2793 return backend;
913} 2794}
914 2795
2796#if EV_FEATURE_API
915unsigned int 2797unsigned int
916ev_loop_count (EV_P) 2798ev_iteration (EV_P) EV_NOEXCEPT
917{ 2799{
918 return loop_count; 2800 return loop_count;
919} 2801}
920 2802
921static void noinline 2803unsigned int
2804ev_depth (EV_P) EV_NOEXCEPT
2805{
2806 return loop_depth;
2807}
2808
2809void
2810ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2811{
2812 io_blocktime = interval;
2813}
2814
2815void
2816ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2817{
2818 timeout_blocktime = interval;
2819}
2820
2821void
2822ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
2823{
2824 userdata = data;
2825}
2826
2827void *
2828ev_userdata (EV_P) EV_NOEXCEPT
2829{
2830 return userdata;
2831}
2832
2833void
2834ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
2835{
2836 invoke_cb = invoke_pending_cb;
2837}
2838
2839void
2840ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
2841{
2842 release_cb = release;
2843 acquire_cb = acquire;
2844}
2845#endif
2846
2847/* initialise a loop structure, must be zero-initialised */
2848noinline ecb_cold
2849static void
922loop_init (EV_P_ unsigned int flags) 2850loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
923{ 2851{
924 if (!backend) 2852 if (!backend)
925 { 2853 {
2854 origflags = flags;
2855
2856#if EV_USE_REALTIME
2857 if (!have_realtime)
2858 {
2859 struct timespec ts;
2860
2861 if (!clock_gettime (CLOCK_REALTIME, &ts))
2862 have_realtime = 1;
2863 }
2864#endif
2865
926#if EV_USE_MONOTONIC 2866#if EV_USE_MONOTONIC
2867 if (!have_monotonic)
927 { 2868 {
928 struct timespec ts; 2869 struct timespec ts;
2870
929 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2871 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
930 have_monotonic = 1; 2872 have_monotonic = 1;
931 } 2873 }
932#endif 2874#endif
933
934 ev_rt_now = ev_time ();
935 mn_now = get_clock ();
936 now_floor = mn_now;
937 rtmn_diff = ev_rt_now - mn_now;
938 2875
939 /* pid check not overridable via env */ 2876 /* pid check not overridable via env */
940#ifndef _WIN32 2877#ifndef _WIN32
941 if (flags & EVFLAG_FORKCHECK) 2878 if (flags & EVFLAG_FORKCHECK)
942 curpid = getpid (); 2879 curpid = getpid ();
945 if (!(flags & EVFLAG_NOENV) 2882 if (!(flags & EVFLAG_NOENV)
946 && !enable_secure () 2883 && !enable_secure ()
947 && getenv ("LIBEV_FLAGS")) 2884 && getenv ("LIBEV_FLAGS"))
948 flags = atoi (getenv ("LIBEV_FLAGS")); 2885 flags = atoi (getenv ("LIBEV_FLAGS"));
949 2886
950 if (!(flags & 0x0000ffffUL)) 2887 ev_rt_now = ev_time ();
2888 mn_now = get_clock ();
2889 now_floor = mn_now;
2890 rtmn_diff = ev_rt_now - mn_now;
2891#if EV_FEATURE_API
2892 invoke_cb = ev_invoke_pending;
2893#endif
2894
2895 io_blocktime = 0.;
2896 timeout_blocktime = 0.;
2897 backend = 0;
2898 backend_fd = -1;
2899 sig_pending = 0;
2900#if EV_ASYNC_ENABLE
2901 async_pending = 0;
2902#endif
2903 pipe_write_skipped = 0;
2904 pipe_write_wanted = 0;
2905 evpipe [0] = -1;
2906 evpipe [1] = -1;
2907#if EV_USE_INOTIFY
2908 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2909#endif
2910#if EV_USE_SIGNALFD
2911 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2912#endif
2913
2914 if (!(flags & EVBACKEND_MASK))
951 flags |= ev_recommended_backends (); 2915 flags |= ev_recommended_backends ();
952 2916
953 backend = 0;
954 backend_fd = -1;
955#if EV_USE_INOTIFY 2917#if EV_USE_IOCP
956 fs_fd = -2; 2918 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
957#endif 2919#endif
958
959#if EV_USE_PORT 2920#if EV_USE_PORT
960 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2921 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
961#endif 2922#endif
962#if EV_USE_KQUEUE 2923#if EV_USE_KQUEUE
963 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2924 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
970#endif 2931#endif
971#if EV_USE_SELECT 2932#if EV_USE_SELECT
972 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2933 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
973#endif 2934#endif
974 2935
2936 ev_prepare_init (&pending_w, pendingcb);
2937
2938#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
975 ev_init (&sigev, sigcb); 2939 ev_init (&pipe_w, pipecb);
976 ev_set_priority (&sigev, EV_MAXPRI); 2940 ev_set_priority (&pipe_w, EV_MAXPRI);
2941#endif
977 } 2942 }
978} 2943}
979 2944
980static void noinline 2945/* free up a loop structure */
2946ecb_cold
2947void
981loop_destroy (EV_P) 2948ev_loop_destroy (EV_P)
982{ 2949{
983 int i; 2950 int i;
2951
2952#if EV_MULTIPLICITY
2953 /* mimic free (0) */
2954 if (!EV_A)
2955 return;
2956#endif
2957
2958#if EV_CLEANUP_ENABLE
2959 /* queue cleanup watchers (and execute them) */
2960 if (expect_false (cleanupcnt))
2961 {
2962 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2963 EV_INVOKE_PENDING;
2964 }
2965#endif
2966
2967#if EV_CHILD_ENABLE
2968 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2969 {
2970 ev_ref (EV_A); /* child watcher */
2971 ev_signal_stop (EV_A_ &childev);
2972 }
2973#endif
2974
2975 if (ev_is_active (&pipe_w))
2976 {
2977 /*ev_ref (EV_A);*/
2978 /*ev_io_stop (EV_A_ &pipe_w);*/
2979
2980 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2981 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2982 }
2983
2984#if EV_USE_SIGNALFD
2985 if (ev_is_active (&sigfd_w))
2986 close (sigfd);
2987#endif
984 2988
985#if EV_USE_INOTIFY 2989#if EV_USE_INOTIFY
986 if (fs_fd >= 0) 2990 if (fs_fd >= 0)
987 close (fs_fd); 2991 close (fs_fd);
988#endif 2992#endif
989 2993
990 if (backend_fd >= 0) 2994 if (backend_fd >= 0)
991 close (backend_fd); 2995 close (backend_fd);
992 2996
2997#if EV_USE_IOCP
2998 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2999#endif
993#if EV_USE_PORT 3000#if EV_USE_PORT
994 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 3001 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
995#endif 3002#endif
996#if EV_USE_KQUEUE 3003#if EV_USE_KQUEUE
997 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 3004 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1012#if EV_IDLE_ENABLE 3019#if EV_IDLE_ENABLE
1013 array_free (idle, [i]); 3020 array_free (idle, [i]);
1014#endif 3021#endif
1015 } 3022 }
1016 3023
3024 ev_free (anfds); anfds = 0; anfdmax = 0;
3025
1017 /* have to use the microsoft-never-gets-it-right macro */ 3026 /* have to use the microsoft-never-gets-it-right macro */
3027 array_free (rfeed, EMPTY);
1018 array_free (fdchange, EMPTY); 3028 array_free (fdchange, EMPTY);
1019 array_free (timer, EMPTY); 3029 array_free (timer, EMPTY);
1020#if EV_PERIODIC_ENABLE 3030#if EV_PERIODIC_ENABLE
1021 array_free (periodic, EMPTY); 3031 array_free (periodic, EMPTY);
1022#endif 3032#endif
3033#if EV_FORK_ENABLE
3034 array_free (fork, EMPTY);
3035#endif
3036#if EV_CLEANUP_ENABLE
3037 array_free (cleanup, EMPTY);
3038#endif
1023 array_free (prepare, EMPTY); 3039 array_free (prepare, EMPTY);
1024 array_free (check, EMPTY); 3040 array_free (check, EMPTY);
3041#if EV_ASYNC_ENABLE
3042 array_free (async, EMPTY);
3043#endif
1025 3044
1026 backend = 0; 3045 backend = 0;
1027}
1028 3046
3047#if EV_MULTIPLICITY
3048 if (ev_is_default_loop (EV_A))
3049#endif
3050 ev_default_loop_ptr = 0;
3051#if EV_MULTIPLICITY
3052 else
3053 ev_free (EV_A);
3054#endif
3055}
3056
3057#if EV_USE_INOTIFY
1029void inline_size infy_fork (EV_P); 3058inline_size void infy_fork (EV_P);
3059#endif
1030 3060
1031void inline_size 3061inline_size void
1032loop_fork (EV_P) 3062loop_fork (EV_P)
1033{ 3063{
1034#if EV_USE_PORT 3064#if EV_USE_PORT
1035 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 3065 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1036#endif 3066#endif
1042#endif 3072#endif
1043#if EV_USE_INOTIFY 3073#if EV_USE_INOTIFY
1044 infy_fork (EV_A); 3074 infy_fork (EV_A);
1045#endif 3075#endif
1046 3076
1047 if (ev_is_active (&sigev)) 3077#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3078 if (ev_is_active (&pipe_w) && postfork != 2)
1048 { 3079 {
1049 /* default loop */ 3080 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1050 3081
1051 ev_ref (EV_A); 3082 ev_ref (EV_A);
1052 ev_io_stop (EV_A_ &sigev); 3083 ev_io_stop (EV_A_ &pipe_w);
1053 close (sigpipe [0]);
1054 close (sigpipe [1]);
1055 3084
1056 while (pipe (sigpipe)) 3085 if (evpipe [0] >= 0)
1057 syserr ("(libev) error creating pipe"); 3086 EV_WIN32_CLOSE_FD (evpipe [0]);
1058 3087
1059 siginit (EV_A); 3088 evpipe_init (EV_A);
3089 /* iterate over everything, in case we missed something before */
3090 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1060 } 3091 }
3092#endif
1061 3093
1062 postfork = 0; 3094 postfork = 0;
1063} 3095}
1064 3096
1065#if EV_MULTIPLICITY 3097#if EV_MULTIPLICITY
3098
3099ecb_cold
1066struct ev_loop * 3100struct ev_loop *
1067ev_loop_new (unsigned int flags) 3101ev_loop_new (unsigned int flags) EV_NOEXCEPT
1068{ 3102{
1069 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 3103 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1070 3104
1071 memset (loop, 0, sizeof (struct ev_loop)); 3105 memset (EV_A, 0, sizeof (struct ev_loop));
1072
1073 loop_init (EV_A_ flags); 3106 loop_init (EV_A_ flags);
1074 3107
1075 if (ev_backend (EV_A)) 3108 if (ev_backend (EV_A))
1076 return loop; 3109 return EV_A;
1077 3110
3111 ev_free (EV_A);
1078 return 0; 3112 return 0;
1079} 3113}
1080 3114
1081void 3115#endif /* multiplicity */
1082ev_loop_destroy (EV_P)
1083{
1084 loop_destroy (EV_A);
1085 ev_free (loop);
1086}
1087 3116
1088void 3117#if EV_VERIFY
1089ev_loop_fork (EV_P) 3118noinline ecb_cold
3119static void
3120verify_watcher (EV_P_ W w)
1090{ 3121{
1091 postfork = 1; 3122 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1092}
1093 3123
3124 if (w->pending)
3125 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3126}
3127
3128noinline ecb_cold
3129static void
3130verify_heap (EV_P_ ANHE *heap, int N)
3131{
3132 int i;
3133
3134 for (i = HEAP0; i < N + HEAP0; ++i)
3135 {
3136 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3137 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3138 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3139
3140 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3141 }
3142}
3143
3144noinline ecb_cold
3145static void
3146array_verify (EV_P_ W *ws, int cnt)
3147{
3148 while (cnt--)
3149 {
3150 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3151 verify_watcher (EV_A_ ws [cnt]);
3152 }
3153}
3154#endif
3155
3156#if EV_FEATURE_API
3157void ecb_cold
3158ev_verify (EV_P) EV_NOEXCEPT
3159{
3160#if EV_VERIFY
3161 int i;
3162 WL w, w2;
3163
3164 assert (activecnt >= -1);
3165
3166 assert (fdchangemax >= fdchangecnt);
3167 for (i = 0; i < fdchangecnt; ++i)
3168 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3169
3170 assert (anfdmax >= 0);
3171 for (i = 0; i < anfdmax; ++i)
3172 {
3173 int j = 0;
3174
3175 for (w = w2 = anfds [i].head; w; w = w->next)
3176 {
3177 verify_watcher (EV_A_ (W)w);
3178
3179 if (j++ & 1)
3180 {
3181 assert (("libev: io watcher list contains a loop", w != w2));
3182 w2 = w2->next;
3183 }
3184
3185 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3186 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3187 }
3188 }
3189
3190 assert (timermax >= timercnt);
3191 verify_heap (EV_A_ timers, timercnt);
3192
3193#if EV_PERIODIC_ENABLE
3194 assert (periodicmax >= periodiccnt);
3195 verify_heap (EV_A_ periodics, periodiccnt);
3196#endif
3197
3198 for (i = NUMPRI; i--; )
3199 {
3200 assert (pendingmax [i] >= pendingcnt [i]);
3201#if EV_IDLE_ENABLE
3202 assert (idleall >= 0);
3203 assert (idlemax [i] >= idlecnt [i]);
3204 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3205#endif
3206 }
3207
3208#if EV_FORK_ENABLE
3209 assert (forkmax >= forkcnt);
3210 array_verify (EV_A_ (W *)forks, forkcnt);
3211#endif
3212
3213#if EV_CLEANUP_ENABLE
3214 assert (cleanupmax >= cleanupcnt);
3215 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3216#endif
3217
3218#if EV_ASYNC_ENABLE
3219 assert (asyncmax >= asynccnt);
3220 array_verify (EV_A_ (W *)asyncs, asynccnt);
3221#endif
3222
3223#if EV_PREPARE_ENABLE
3224 assert (preparemax >= preparecnt);
3225 array_verify (EV_A_ (W *)prepares, preparecnt);
3226#endif
3227
3228#if EV_CHECK_ENABLE
3229 assert (checkmax >= checkcnt);
3230 array_verify (EV_A_ (W *)checks, checkcnt);
3231#endif
3232
3233# if 0
3234#if EV_CHILD_ENABLE
3235 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3236 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3237#endif
3238# endif
3239#endif
3240}
1094#endif 3241#endif
1095 3242
1096#if EV_MULTIPLICITY 3243#if EV_MULTIPLICITY
3244ecb_cold
1097struct ev_loop * 3245struct ev_loop *
1098ev_default_loop_init (unsigned int flags)
1099#else 3246#else
1100int 3247int
3248#endif
1101ev_default_loop (unsigned int flags) 3249ev_default_loop (unsigned int flags) EV_NOEXCEPT
1102#endif
1103{ 3250{
1104 if (sigpipe [0] == sigpipe [1])
1105 if (pipe (sigpipe))
1106 return 0;
1107
1108 if (!ev_default_loop_ptr) 3251 if (!ev_default_loop_ptr)
1109 { 3252 {
1110#if EV_MULTIPLICITY 3253#if EV_MULTIPLICITY
1111 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3254 EV_P = ev_default_loop_ptr = &default_loop_struct;
1112#else 3255#else
1113 ev_default_loop_ptr = 1; 3256 ev_default_loop_ptr = 1;
1114#endif 3257#endif
1115 3258
1116 loop_init (EV_A_ flags); 3259 loop_init (EV_A_ flags);
1117 3260
1118 if (ev_backend (EV_A)) 3261 if (ev_backend (EV_A))
1119 { 3262 {
1120 siginit (EV_A); 3263#if EV_CHILD_ENABLE
1121
1122#ifndef _WIN32
1123 ev_signal_init (&childev, childcb, SIGCHLD); 3264 ev_signal_init (&childev, childcb, SIGCHLD);
1124 ev_set_priority (&childev, EV_MAXPRI); 3265 ev_set_priority (&childev, EV_MAXPRI);
1125 ev_signal_start (EV_A_ &childev); 3266 ev_signal_start (EV_A_ &childev);
1126 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3267 ev_unref (EV_A); /* child watcher should not keep loop alive */
1127#endif 3268#endif
1132 3273
1133 return ev_default_loop_ptr; 3274 return ev_default_loop_ptr;
1134} 3275}
1135 3276
1136void 3277void
1137ev_default_destroy (void) 3278ev_loop_fork (EV_P) EV_NOEXCEPT
1138{ 3279{
1139#if EV_MULTIPLICITY
1140 struct ev_loop *loop = ev_default_loop_ptr;
1141#endif
1142
1143#ifndef _WIN32
1144 ev_ref (EV_A); /* child watcher */
1145 ev_signal_stop (EV_A_ &childev);
1146#endif
1147
1148 ev_ref (EV_A); /* signal watcher */
1149 ev_io_stop (EV_A_ &sigev);
1150
1151 close (sigpipe [0]); sigpipe [0] = 0;
1152 close (sigpipe [1]); sigpipe [1] = 0;
1153
1154 loop_destroy (EV_A);
1155}
1156
1157void
1158ev_default_fork (void)
1159{
1160#if EV_MULTIPLICITY
1161 struct ev_loop *loop = ev_default_loop_ptr;
1162#endif
1163
1164 if (backend)
1165 postfork = 1; 3280 postfork = 1;
1166} 3281}
1167 3282
1168/*****************************************************************************/ 3283/*****************************************************************************/
1169 3284
1170void 3285void
1171ev_invoke (EV_P_ void *w, int revents) 3286ev_invoke (EV_P_ void *w, int revents)
1172{ 3287{
1173 EV_CB_INVOKE ((W)w, revents); 3288 EV_CB_INVOKE ((W)w, revents);
1174} 3289}
1175 3290
1176void inline_speed 3291unsigned int
1177call_pending (EV_P) 3292ev_pending_count (EV_P) EV_NOEXCEPT
1178{ 3293{
1179 int pri; 3294 int pri;
3295 unsigned int count = 0;
1180 3296
1181 for (pri = NUMPRI; pri--; ) 3297 for (pri = NUMPRI; pri--; )
3298 count += pendingcnt [pri];
3299
3300 return count;
3301}
3302
3303noinline
3304void
3305ev_invoke_pending (EV_P)
3306{
3307 pendingpri = NUMPRI;
3308
3309 do
3310 {
3311 --pendingpri;
3312
3313 /* pendingpri possibly gets modified in the inner loop */
1182 while (pendingcnt [pri]) 3314 while (pendingcnt [pendingpri])
1183 {
1184 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1185
1186 if (expect_true (p->w))
1187 {
1188 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1189
1190 p->w->pending = 0;
1191 EV_CB_INVOKE (p->w, p->events);
1192 }
1193 }
1194}
1195
1196void inline_size
1197timers_reify (EV_P)
1198{
1199 while (timercnt && ((WT)timers [0])->at <= mn_now)
1200 {
1201 ev_timer *w = timers [0];
1202
1203 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1204
1205 /* first reschedule or stop timer */
1206 if (w->repeat)
1207 { 3315 {
1208 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3316 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1209 3317
1210 ((WT)w)->at += w->repeat; 3318 p->w->pending = 0;
1211 if (((WT)w)->at < mn_now) 3319 EV_CB_INVOKE (p->w, p->events);
1212 ((WT)w)->at = mn_now; 3320 EV_FREQUENT_CHECK;
1213
1214 downheap ((WT *)timers, timercnt, 0);
1215 } 3321 }
1216 else
1217 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1218
1219 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1220 }
1221}
1222
1223#if EV_PERIODIC_ENABLE
1224void inline_size
1225periodics_reify (EV_P)
1226{
1227 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1228 { 3322 }
1229 ev_periodic *w = periodics [0]; 3323 while (pendingpri);
1230
1231 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1232
1233 /* first reschedule or stop timer */
1234 if (w->reschedule_cb)
1235 {
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001220703125 /* 1/8192 */);
1237 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1238 downheap ((WT *)periodics, periodiccnt, 0);
1239 }
1240 else if (w->interval)
1241 {
1242 ((WT)w)->at = w->offset + (floor ((ev_rt_now - w->offset) / w->interval) + 1.) * w->interval;
1243 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1244 downheap ((WT *)periodics, periodiccnt, 0);
1245 }
1246 else
1247 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1248
1249 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1250 }
1251} 3324}
1252
1253static void noinline
1254periodics_reschedule (EV_P)
1255{
1256 int i;
1257
1258 /* adjust periodics after time jump */
1259 for (i = 0; i < periodiccnt; ++i)
1260 {
1261 ev_periodic *w = periodics [i];
1262
1263 if (w->reschedule_cb)
1264 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1265 else if (w->interval)
1266 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1267 }
1268
1269 /* now rebuild the heap */
1270 for (i = periodiccnt >> 1; i--; )
1271 downheap ((WT *)periodics, periodiccnt, i);
1272}
1273#endif
1274 3325
1275#if EV_IDLE_ENABLE 3326#if EV_IDLE_ENABLE
1276void inline_size 3327/* make idle watchers pending. this handles the "call-idle */
3328/* only when higher priorities are idle" logic */
3329inline_size void
1277idle_reify (EV_P) 3330idle_reify (EV_P)
1278{ 3331{
1279 if (expect_false (idleall)) 3332 if (expect_false (idleall))
1280 { 3333 {
1281 int pri; 3334 int pri;
1293 } 3346 }
1294 } 3347 }
1295} 3348}
1296#endif 3349#endif
1297 3350
1298int inline_size 3351/* make timers pending */
1299time_update_monotonic (EV_P) 3352inline_size void
3353timers_reify (EV_P)
1300{ 3354{
3355 EV_FREQUENT_CHECK;
3356
3357 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3358 {
3359 do
3360 {
3361 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3362
3363 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3364
3365 /* first reschedule or stop timer */
3366 if (w->repeat)
3367 {
3368 ev_at (w) += w->repeat;
3369 if (ev_at (w) < mn_now)
3370 ev_at (w) = mn_now;
3371
3372 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3373
3374 ANHE_at_cache (timers [HEAP0]);
3375 downheap (timers, timercnt, HEAP0);
3376 }
3377 else
3378 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3379
3380 EV_FREQUENT_CHECK;
3381 feed_reverse (EV_A_ (W)w);
3382 }
3383 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3384
3385 feed_reverse_done (EV_A_ EV_TIMER);
3386 }
3387}
3388
3389#if EV_PERIODIC_ENABLE
3390
3391noinline
3392static void
3393periodic_recalc (EV_P_ ev_periodic *w)
3394{
3395 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3396 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3397
3398 /* the above almost always errs on the low side */
3399 while (at <= ev_rt_now)
3400 {
3401 ev_tstamp nat = at + w->interval;
3402
3403 /* when resolution fails us, we use ev_rt_now */
3404 if (expect_false (nat == at))
3405 {
3406 at = ev_rt_now;
3407 break;
3408 }
3409
3410 at = nat;
3411 }
3412
3413 ev_at (w) = at;
3414}
3415
3416/* make periodics pending */
3417inline_size void
3418periodics_reify (EV_P)
3419{
3420 EV_FREQUENT_CHECK;
3421
3422 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3423 {
3424 do
3425 {
3426 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3427
3428 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3429
3430 /* first reschedule or stop timer */
3431 if (w->reschedule_cb)
3432 {
3433 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3434
3435 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3436
3437 ANHE_at_cache (periodics [HEAP0]);
3438 downheap (periodics, periodiccnt, HEAP0);
3439 }
3440 else if (w->interval)
3441 {
3442 periodic_recalc (EV_A_ w);
3443 ANHE_at_cache (periodics [HEAP0]);
3444 downheap (periodics, periodiccnt, HEAP0);
3445 }
3446 else
3447 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3448
3449 EV_FREQUENT_CHECK;
3450 feed_reverse (EV_A_ (W)w);
3451 }
3452 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3453
3454 feed_reverse_done (EV_A_ EV_PERIODIC);
3455 }
3456}
3457
3458/* simply recalculate all periodics */
3459/* TODO: maybe ensure that at least one event happens when jumping forward? */
3460noinline ecb_cold
3461static void
3462periodics_reschedule (EV_P)
3463{
3464 int i;
3465
3466 /* adjust periodics after time jump */
3467 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3468 {
3469 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3470
3471 if (w->reschedule_cb)
3472 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3473 else if (w->interval)
3474 periodic_recalc (EV_A_ w);
3475
3476 ANHE_at_cache (periodics [i]);
3477 }
3478
3479 reheap (periodics, periodiccnt);
3480}
3481#endif
3482
3483/* adjust all timers by a given offset */
3484noinline ecb_cold
3485static void
3486timers_reschedule (EV_P_ ev_tstamp adjust)
3487{
3488 int i;
3489
3490 for (i = 0; i < timercnt; ++i)
3491 {
3492 ANHE *he = timers + i + HEAP0;
3493 ANHE_w (*he)->at += adjust;
3494 ANHE_at_cache (*he);
3495 }
3496}
3497
3498/* fetch new monotonic and realtime times from the kernel */
3499/* also detect if there was a timejump, and act accordingly */
3500inline_speed void
3501time_update (EV_P_ ev_tstamp max_block)
3502{
3503#if EV_USE_MONOTONIC
3504 if (expect_true (have_monotonic))
3505 {
3506 int i;
3507 ev_tstamp odiff = rtmn_diff;
3508
1301 mn_now = get_clock (); 3509 mn_now = get_clock ();
1302 3510
3511 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3512 /* interpolate in the meantime */
1303 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 3513 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1304 { 3514 {
1305 ev_rt_now = rtmn_diff + mn_now; 3515 ev_rt_now = rtmn_diff + mn_now;
1306 return 0; 3516 return;
1307 } 3517 }
1308 else 3518
1309 {
1310 now_floor = mn_now; 3519 now_floor = mn_now;
1311 ev_rt_now = ev_time (); 3520 ev_rt_now = ev_time ();
1312 return 1;
1313 }
1314}
1315 3521
1316void inline_size 3522 /* loop a few times, before making important decisions.
1317time_update (EV_P) 3523 * on the choice of "4": one iteration isn't enough,
1318{ 3524 * in case we get preempted during the calls to
1319 int i; 3525 * ev_time and get_clock. a second call is almost guaranteed
1320 3526 * to succeed in that case, though. and looping a few more times
1321#if EV_USE_MONOTONIC 3527 * doesn't hurt either as we only do this on time-jumps or
1322 if (expect_true (have_monotonic)) 3528 * in the unlikely event of having been preempted here.
1323 { 3529 */
1324 if (time_update_monotonic (EV_A)) 3530 for (i = 4; --i; )
1325 { 3531 {
1326 ev_tstamp odiff = rtmn_diff; 3532 ev_tstamp diff;
1327
1328 /* loop a few times, before making important decisions.
1329 * on the choice of "4": one iteration isn't enough,
1330 * in case we get preempted during the calls to
1331 * ev_time and get_clock. a second call is almost guaranteed
1332 * to succeed in that case, though. and looping a few more times
1333 * doesn't hurt either as we only do this on time-jumps or
1334 * in the unlikely event of having been preempted here.
1335 */
1336 for (i = 4; --i; )
1337 {
1338 rtmn_diff = ev_rt_now - mn_now; 3533 rtmn_diff = ev_rt_now - mn_now;
1339 3534
1340 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 3535 diff = odiff - rtmn_diff;
3536
3537 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1341 return; /* all is well */ 3538 return; /* all is well */
1342 3539
1343 ev_rt_now = ev_time (); 3540 ev_rt_now = ev_time ();
1344 mn_now = get_clock (); 3541 mn_now = get_clock ();
1345 now_floor = mn_now; 3542 now_floor = mn_now;
1346 } 3543 }
1347 3544
3545 /* no timer adjustment, as the monotonic clock doesn't jump */
3546 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1348# if EV_PERIODIC_ENABLE 3547# if EV_PERIODIC_ENABLE
1349 periodics_reschedule (EV_A); 3548 periodics_reschedule (EV_A);
1350# endif 3549# endif
1351 /* no timer adjustment, as the monotonic clock doesn't jump */
1352 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1353 }
1354 } 3550 }
1355 else 3551 else
1356#endif 3552#endif
1357 { 3553 {
1358 ev_rt_now = ev_time (); 3554 ev_rt_now = ev_time ();
1359 3555
1360 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 3556 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1361 { 3557 {
3558 /* adjust timers. this is easy, as the offset is the same for all of them */
3559 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1362#if EV_PERIODIC_ENABLE 3560#if EV_PERIODIC_ENABLE
1363 periodics_reschedule (EV_A); 3561 periodics_reschedule (EV_A);
1364#endif 3562#endif
1365
1366 /* adjust timers. this is easy, as the offset is the same for all of them */
1367 for (i = 0; i < timercnt; ++i)
1368 ((WT)timers [i])->at += ev_rt_now - mn_now;
1369 } 3563 }
1370 3564
1371 mn_now = ev_rt_now; 3565 mn_now = ev_rt_now;
1372 } 3566 }
1373} 3567}
1374 3568
1375void 3569int
1376ev_ref (EV_P)
1377{
1378 ++activecnt;
1379}
1380
1381void
1382ev_unref (EV_P)
1383{
1384 --activecnt;
1385}
1386
1387static int loop_done;
1388
1389void
1390ev_loop (EV_P_ int flags) 3570ev_run (EV_P_ int flags)
1391{ 3571{
1392 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 3572#if EV_FEATURE_API
1393 ? EVUNLOOP_ONE 3573 ++loop_depth;
1394 : EVUNLOOP_CANCEL; 3574#endif
1395 3575
3576 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3577
3578 loop_done = EVBREAK_CANCEL;
3579
1396 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3580 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1397 3581
1398 do 3582 do
1399 { 3583 {
3584#if EV_VERIFY >= 2
3585 ev_verify (EV_A);
3586#endif
3587
1400#ifndef _WIN32 3588#ifndef _WIN32
1401 if (expect_false (curpid)) /* penalise the forking check even more */ 3589 if (expect_false (curpid)) /* penalise the forking check even more */
1402 if (expect_false (getpid () != curpid)) 3590 if (expect_false (getpid () != curpid))
1403 { 3591 {
1404 curpid = getpid (); 3592 curpid = getpid ();
1410 /* we might have forked, so queue fork handlers */ 3598 /* we might have forked, so queue fork handlers */
1411 if (expect_false (postfork)) 3599 if (expect_false (postfork))
1412 if (forkcnt) 3600 if (forkcnt)
1413 { 3601 {
1414 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3602 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1415 call_pending (EV_A); 3603 EV_INVOKE_PENDING;
1416 } 3604 }
1417#endif 3605#endif
1418 3606
3607#if EV_PREPARE_ENABLE
1419 /* queue prepare watchers (and execute them) */ 3608 /* queue prepare watchers (and execute them) */
1420 if (expect_false (preparecnt)) 3609 if (expect_false (preparecnt))
1421 { 3610 {
1422 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3611 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1423 call_pending (EV_A); 3612 EV_INVOKE_PENDING;
1424 } 3613 }
3614#endif
1425 3615
1426 if (expect_false (!activecnt)) 3616 if (expect_false (loop_done))
1427 break; 3617 break;
1428 3618
1429 /* we might have forked, so reify kernel state if necessary */ 3619 /* we might have forked, so reify kernel state if necessary */
1430 if (expect_false (postfork)) 3620 if (expect_false (postfork))
1431 loop_fork (EV_A); 3621 loop_fork (EV_A);
1433 /* update fd-related kernel structures */ 3623 /* update fd-related kernel structures */
1434 fd_reify (EV_A); 3624 fd_reify (EV_A);
1435 3625
1436 /* calculate blocking time */ 3626 /* calculate blocking time */
1437 { 3627 {
1438 ev_tstamp block; 3628 ev_tstamp waittime = 0.;
3629 ev_tstamp sleeptime = 0.;
1439 3630
1440 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 3631 /* remember old timestamp for io_blocktime calculation */
1441 block = 0.; /* do not block at all */ 3632 ev_tstamp prev_mn_now = mn_now;
1442 else 3633
3634 /* update time to cancel out callback processing overhead */
3635 time_update (EV_A_ 1e100);
3636
3637 /* from now on, we want a pipe-wake-up */
3638 pipe_write_wanted = 1;
3639
3640 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3641
3642 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1443 { 3643 {
1444 /* update time to cancel out callback processing overhead */
1445#if EV_USE_MONOTONIC
1446 if (expect_true (have_monotonic))
1447 time_update_monotonic (EV_A);
1448 else
1449#endif
1450 {
1451 ev_rt_now = ev_time ();
1452 mn_now = ev_rt_now;
1453 }
1454
1455 block = MAX_BLOCKTIME; 3644 waittime = MAX_BLOCKTIME;
1456 3645
1457 if (timercnt) 3646 if (timercnt)
1458 { 3647 {
1459 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 3648 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1460 if (block > to) block = to; 3649 if (waittime > to) waittime = to;
1461 } 3650 }
1462 3651
1463#if EV_PERIODIC_ENABLE 3652#if EV_PERIODIC_ENABLE
1464 if (periodiccnt) 3653 if (periodiccnt)
1465 { 3654 {
1466 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 3655 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1467 if (block > to) block = to; 3656 if (waittime > to) waittime = to;
1468 } 3657 }
1469#endif 3658#endif
1470 3659
3660 /* don't let timeouts decrease the waittime below timeout_blocktime */
3661 if (expect_false (waittime < timeout_blocktime))
3662 waittime = timeout_blocktime;
3663
3664 /* at this point, we NEED to wait, so we have to ensure */
3665 /* to pass a minimum nonzero value to the backend */
3666 if (expect_false (waittime < backend_mintime))
3667 waittime = backend_mintime;
3668
3669 /* extra check because io_blocktime is commonly 0 */
1471 if (expect_false (block < 0.)) block = 0.; 3670 if (expect_false (io_blocktime))
3671 {
3672 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3673
3674 if (sleeptime > waittime - backend_mintime)
3675 sleeptime = waittime - backend_mintime;
3676
3677 if (expect_true (sleeptime > 0.))
3678 {
3679 ev_sleep (sleeptime);
3680 waittime -= sleeptime;
3681 }
3682 }
1472 } 3683 }
1473 3684
3685#if EV_FEATURE_API
1474 ++loop_count; 3686 ++loop_count;
3687#endif
3688 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1475 backend_poll (EV_A_ block); 3689 backend_poll (EV_A_ waittime);
3690 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3691
3692 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3693
3694 ECB_MEMORY_FENCE_ACQUIRE;
3695 if (pipe_write_skipped)
3696 {
3697 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3698 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3699 }
3700
3701
3702 /* update ev_rt_now, do magic */
3703 time_update (EV_A_ waittime + sleeptime);
1476 } 3704 }
1477
1478 /* update ev_rt_now, do magic */
1479 time_update (EV_A);
1480 3705
1481 /* queue pending timers and reschedule them */ 3706 /* queue pending timers and reschedule them */
1482 timers_reify (EV_A); /* relative timers called last */ 3707 timers_reify (EV_A); /* relative timers called last */
1483#if EV_PERIODIC_ENABLE 3708#if EV_PERIODIC_ENABLE
1484 periodics_reify (EV_A); /* absolute timers called first */ 3709 periodics_reify (EV_A); /* absolute timers called first */
1487#if EV_IDLE_ENABLE 3712#if EV_IDLE_ENABLE
1488 /* queue idle watchers unless other events are pending */ 3713 /* queue idle watchers unless other events are pending */
1489 idle_reify (EV_A); 3714 idle_reify (EV_A);
1490#endif 3715#endif
1491 3716
3717#if EV_CHECK_ENABLE
1492 /* queue check watchers, to be executed first */ 3718 /* queue check watchers, to be executed first */
1493 if (expect_false (checkcnt)) 3719 if (expect_false (checkcnt))
1494 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3720 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3721#endif
1495 3722
1496 call_pending (EV_A); 3723 EV_INVOKE_PENDING;
1497
1498 } 3724 }
1499 while (expect_true (activecnt && !loop_done)); 3725 while (expect_true (
3726 activecnt
3727 && !loop_done
3728 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3729 ));
1500 3730
1501 if (loop_done == EVUNLOOP_ONE) 3731 if (loop_done == EVBREAK_ONE)
1502 loop_done = EVUNLOOP_CANCEL; 3732 loop_done = EVBREAK_CANCEL;
1503}
1504 3733
3734#if EV_FEATURE_API
3735 --loop_depth;
3736#endif
3737
3738 return activecnt;
3739}
3740
1505void 3741void
1506ev_unloop (EV_P_ int how) 3742ev_break (EV_P_ int how) EV_NOEXCEPT
1507{ 3743{
1508 loop_done = how; 3744 loop_done = how;
1509} 3745}
1510 3746
3747void
3748ev_ref (EV_P) EV_NOEXCEPT
3749{
3750 ++activecnt;
3751}
3752
3753void
3754ev_unref (EV_P) EV_NOEXCEPT
3755{
3756 --activecnt;
3757}
3758
3759void
3760ev_now_update (EV_P) EV_NOEXCEPT
3761{
3762 time_update (EV_A_ 1e100);
3763}
3764
3765void
3766ev_suspend (EV_P) EV_NOEXCEPT
3767{
3768 ev_now_update (EV_A);
3769}
3770
3771void
3772ev_resume (EV_P) EV_NOEXCEPT
3773{
3774 ev_tstamp mn_prev = mn_now;
3775
3776 ev_now_update (EV_A);
3777 timers_reschedule (EV_A_ mn_now - mn_prev);
3778#if EV_PERIODIC_ENABLE
3779 /* TODO: really do this? */
3780 periodics_reschedule (EV_A);
3781#endif
3782}
3783
1511/*****************************************************************************/ 3784/*****************************************************************************/
3785/* singly-linked list management, used when the expected list length is short */
1512 3786
1513void inline_size 3787inline_size void
1514wlist_add (WL *head, WL elem) 3788wlist_add (WL *head, WL elem)
1515{ 3789{
1516 elem->next = *head; 3790 elem->next = *head;
1517 *head = elem; 3791 *head = elem;
1518} 3792}
1519 3793
1520void inline_size 3794inline_size void
1521wlist_del (WL *head, WL elem) 3795wlist_del (WL *head, WL elem)
1522{ 3796{
1523 while (*head) 3797 while (*head)
1524 { 3798 {
1525 if (*head == elem) 3799 if (expect_true (*head == elem))
1526 { 3800 {
1527 *head = elem->next; 3801 *head = elem->next;
1528 return; 3802 break;
1529 } 3803 }
1530 3804
1531 head = &(*head)->next; 3805 head = &(*head)->next;
1532 } 3806 }
1533} 3807}
1534 3808
1535void inline_speed 3809/* internal, faster, version of ev_clear_pending */
3810inline_speed void
1536clear_pending (EV_P_ W w) 3811clear_pending (EV_P_ W w)
1537{ 3812{
1538 if (w->pending) 3813 if (w->pending)
1539 { 3814 {
1540 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3815 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1541 w->pending = 0; 3816 w->pending = 0;
1542 } 3817 }
1543} 3818}
1544 3819
1545int 3820int
1546ev_clear_pending (EV_P_ void *w) 3821ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
1547{ 3822{
1548 W w_ = (W)w; 3823 W w_ = (W)w;
1549 int pending = w_->pending; 3824 int pending = w_->pending;
1550 3825
1551 if (expect_true (pending)) 3826 if (expect_true (pending))
1552 { 3827 {
1553 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3828 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3829 p->w = (W)&pending_w;
1554 w_->pending = 0; 3830 w_->pending = 0;
1555 p->w = 0;
1556 return p->events; 3831 return p->events;
1557 } 3832 }
1558 else 3833 else
1559 return 0; 3834 return 0;
1560} 3835}
1561 3836
1562void inline_size 3837inline_size void
1563pri_adjust (EV_P_ W w) 3838pri_adjust (EV_P_ W w)
1564{ 3839{
1565 int pri = w->priority; 3840 int pri = ev_priority (w);
1566 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3841 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1567 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3842 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1568 w->priority = pri; 3843 ev_set_priority (w, pri);
1569} 3844}
1570 3845
1571void inline_speed 3846inline_speed void
1572ev_start (EV_P_ W w, int active) 3847ev_start (EV_P_ W w, int active)
1573{ 3848{
1574 pri_adjust (EV_A_ w); 3849 pri_adjust (EV_A_ w);
1575 w->active = active; 3850 w->active = active;
1576 ev_ref (EV_A); 3851 ev_ref (EV_A);
1577} 3852}
1578 3853
1579void inline_size 3854inline_size void
1580ev_stop (EV_P_ W w) 3855ev_stop (EV_P_ W w)
1581{ 3856{
1582 ev_unref (EV_A); 3857 ev_unref (EV_A);
1583 w->active = 0; 3858 w->active = 0;
1584} 3859}
1585 3860
1586/*****************************************************************************/ 3861/*****************************************************************************/
1587 3862
1588void noinline 3863noinline
3864void
1589ev_io_start (EV_P_ ev_io *w) 3865ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
1590{ 3866{
1591 int fd = w->fd; 3867 int fd = w->fd;
1592 3868
1593 if (expect_false (ev_is_active (w))) 3869 if (expect_false (ev_is_active (w)))
1594 return; 3870 return;
1595 3871
1596 assert (("ev_io_start called with negative fd", fd >= 0)); 3872 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3873 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3874
3875 EV_FREQUENT_CHECK;
1597 3876
1598 ev_start (EV_A_ (W)w, 1); 3877 ev_start (EV_A_ (W)w, 1);
1599 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3878 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1600 wlist_add ((WL *)&anfds[fd].head, (WL)w); 3879 wlist_add (&anfds[fd].head, (WL)w);
1601 3880
1602 fd_change (EV_A_ fd); 3881 /* common bug, apparently */
1603} 3882 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
1604 3883
3884 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3885 w->events &= ~EV__IOFDSET;
3886
3887 EV_FREQUENT_CHECK;
3888}
3889
1605void noinline 3890noinline
3891void
1606ev_io_stop (EV_P_ ev_io *w) 3892ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
1607{ 3893{
1608 clear_pending (EV_A_ (W)w); 3894 clear_pending (EV_A_ (W)w);
1609 if (expect_false (!ev_is_active (w))) 3895 if (expect_false (!ev_is_active (w)))
1610 return; 3896 return;
1611 3897
1612 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3898 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1613 3899
3900 EV_FREQUENT_CHECK;
3901
1614 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 3902 wlist_del (&anfds[w->fd].head, (WL)w);
1615 ev_stop (EV_A_ (W)w); 3903 ev_stop (EV_A_ (W)w);
1616 3904
1617 fd_change (EV_A_ w->fd); 3905 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1618}
1619 3906
3907 EV_FREQUENT_CHECK;
3908}
3909
1620void noinline 3910noinline
3911void
1621ev_timer_start (EV_P_ ev_timer *w) 3912ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
1622{ 3913{
1623 if (expect_false (ev_is_active (w))) 3914 if (expect_false (ev_is_active (w)))
1624 return; 3915 return;
1625 3916
1626 ((WT)w)->at += mn_now; 3917 ev_at (w) += mn_now;
1627 3918
1628 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3919 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1629 3920
3921 EV_FREQUENT_CHECK;
3922
3923 ++timercnt;
1630 ev_start (EV_A_ (W)w, ++timercnt); 3924 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1631 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 3925 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1632 timers [timercnt - 1] = w; 3926 ANHE_w (timers [ev_active (w)]) = (WT)w;
1633 upheap ((WT *)timers, timercnt - 1); 3927 ANHE_at_cache (timers [ev_active (w)]);
3928 upheap (timers, ev_active (w));
1634 3929
3930 EV_FREQUENT_CHECK;
3931
1635 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 3932 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1636} 3933}
1637 3934
1638void noinline 3935noinline
3936void
1639ev_timer_stop (EV_P_ ev_timer *w) 3937ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
1640{ 3938{
1641 clear_pending (EV_A_ (W)w); 3939 clear_pending (EV_A_ (W)w);
1642 if (expect_false (!ev_is_active (w))) 3940 if (expect_false (!ev_is_active (w)))
1643 return; 3941 return;
1644 3942
1645 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3943 EV_FREQUENT_CHECK;
1646 3944
1647 { 3945 {
1648 int active = ((W)w)->active; 3946 int active = ev_active (w);
1649 3947
3948 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3949
3950 --timercnt;
3951
1650 if (expect_true (--active < --timercnt)) 3952 if (expect_true (active < timercnt + HEAP0))
1651 { 3953 {
1652 timers [active] = timers [timercnt]; 3954 timers [active] = timers [timercnt + HEAP0];
1653 adjustheap ((WT *)timers, timercnt, active); 3955 adjustheap (timers, timercnt, active);
1654 } 3956 }
1655 } 3957 }
1656 3958
1657 ((WT)w)->at -= mn_now; 3959 ev_at (w) -= mn_now;
1658 3960
1659 ev_stop (EV_A_ (W)w); 3961 ev_stop (EV_A_ (W)w);
1660}
1661 3962
3963 EV_FREQUENT_CHECK;
3964}
3965
1662void noinline 3966noinline
3967void
1663ev_timer_again (EV_P_ ev_timer *w) 3968ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
1664{ 3969{
3970 EV_FREQUENT_CHECK;
3971
3972 clear_pending (EV_A_ (W)w);
3973
1665 if (ev_is_active (w)) 3974 if (ev_is_active (w))
1666 { 3975 {
1667 if (w->repeat) 3976 if (w->repeat)
1668 { 3977 {
1669 ((WT)w)->at = mn_now + w->repeat; 3978 ev_at (w) = mn_now + w->repeat;
3979 ANHE_at_cache (timers [ev_active (w)]);
1670 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3980 adjustheap (timers, timercnt, ev_active (w));
1671 } 3981 }
1672 else 3982 else
1673 ev_timer_stop (EV_A_ w); 3983 ev_timer_stop (EV_A_ w);
1674 } 3984 }
1675 else if (w->repeat) 3985 else if (w->repeat)
1676 { 3986 {
1677 w->at = w->repeat; 3987 ev_at (w) = w->repeat;
1678 ev_timer_start (EV_A_ w); 3988 ev_timer_start (EV_A_ w);
1679 } 3989 }
3990
3991 EV_FREQUENT_CHECK;
3992}
3993
3994ev_tstamp
3995ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
3996{
3997 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1680} 3998}
1681 3999
1682#if EV_PERIODIC_ENABLE 4000#if EV_PERIODIC_ENABLE
1683void noinline 4001noinline
4002void
1684ev_periodic_start (EV_P_ ev_periodic *w) 4003ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
1685{ 4004{
1686 if (expect_false (ev_is_active (w))) 4005 if (expect_false (ev_is_active (w)))
1687 return; 4006 return;
1688 4007
1689 if (w->reschedule_cb) 4008 if (w->reschedule_cb)
1690 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 4009 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1691 else if (w->interval) 4010 else if (w->interval)
1692 { 4011 {
1693 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 4012 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1694 /* this formula differs from the one in periodic_reify because we do not always round up */ 4013 periodic_recalc (EV_A_ w);
1695 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1696 } 4014 }
1697 else 4015 else
1698 ((WT)w)->at = w->offset; 4016 ev_at (w) = w->offset;
1699 4017
4018 EV_FREQUENT_CHECK;
4019
4020 ++periodiccnt;
1700 ev_start (EV_A_ (W)w, ++periodiccnt); 4021 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1701 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 4022 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1702 periodics [periodiccnt - 1] = w; 4023 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1703 upheap ((WT *)periodics, periodiccnt - 1); 4024 ANHE_at_cache (periodics [ev_active (w)]);
4025 upheap (periodics, ev_active (w));
1704 4026
4027 EV_FREQUENT_CHECK;
4028
1705 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 4029 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1706} 4030}
1707 4031
1708void noinline 4032noinline
4033void
1709ev_periodic_stop (EV_P_ ev_periodic *w) 4034ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
1710{ 4035{
1711 clear_pending (EV_A_ (W)w); 4036 clear_pending (EV_A_ (W)w);
1712 if (expect_false (!ev_is_active (w))) 4037 if (expect_false (!ev_is_active (w)))
1713 return; 4038 return;
1714 4039
1715 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 4040 EV_FREQUENT_CHECK;
1716 4041
1717 { 4042 {
1718 int active = ((W)w)->active; 4043 int active = ev_active (w);
1719 4044
4045 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
4046
4047 --periodiccnt;
4048
1720 if (expect_true (--active < --periodiccnt)) 4049 if (expect_true (active < periodiccnt + HEAP0))
1721 { 4050 {
1722 periodics [active] = periodics [periodiccnt]; 4051 periodics [active] = periodics [periodiccnt + HEAP0];
1723 adjustheap ((WT *)periodics, periodiccnt, active); 4052 adjustheap (periodics, periodiccnt, active);
1724 } 4053 }
1725 } 4054 }
1726 4055
1727 ev_stop (EV_A_ (W)w); 4056 ev_stop (EV_A_ (W)w);
1728}
1729 4057
4058 EV_FREQUENT_CHECK;
4059}
4060
1730void noinline 4061noinline
4062void
1731ev_periodic_again (EV_P_ ev_periodic *w) 4063ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
1732{ 4064{
1733 /* TODO: use adjustheap and recalculation */ 4065 /* TODO: use adjustheap and recalculation */
1734 ev_periodic_stop (EV_A_ w); 4066 ev_periodic_stop (EV_A_ w);
1735 ev_periodic_start (EV_A_ w); 4067 ev_periodic_start (EV_A_ w);
1736} 4068}
1738 4070
1739#ifndef SA_RESTART 4071#ifndef SA_RESTART
1740# define SA_RESTART 0 4072# define SA_RESTART 0
1741#endif 4073#endif
1742 4074
4075#if EV_SIGNAL_ENABLE
4076
1743void noinline 4077noinline
4078void
1744ev_signal_start (EV_P_ ev_signal *w) 4079ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
1745{ 4080{
1746#if EV_MULTIPLICITY
1747 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1748#endif
1749 if (expect_false (ev_is_active (w))) 4081 if (expect_false (ev_is_active (w)))
1750 return; 4082 return;
1751 4083
1752 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 4084 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4085
4086#if EV_MULTIPLICITY
4087 assert (("libev: a signal must not be attached to two different loops",
4088 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4089
4090 signals [w->signum - 1].loop = EV_A;
4091 ECB_MEMORY_FENCE_RELEASE;
4092#endif
4093
4094 EV_FREQUENT_CHECK;
4095
4096#if EV_USE_SIGNALFD
4097 if (sigfd == -2)
4098 {
4099 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
4100 if (sigfd < 0 && errno == EINVAL)
4101 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
4102
4103 if (sigfd >= 0)
4104 {
4105 fd_intern (sigfd); /* doing it twice will not hurt */
4106
4107 sigemptyset (&sigfd_set);
4108
4109 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4110 ev_set_priority (&sigfd_w, EV_MAXPRI);
4111 ev_io_start (EV_A_ &sigfd_w);
4112 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4113 }
4114 }
4115
4116 if (sigfd >= 0)
4117 {
4118 /* TODO: check .head */
4119 sigaddset (&sigfd_set, w->signum);
4120 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4121
4122 signalfd (sigfd, &sigfd_set, 0);
4123 }
4124#endif
1753 4125
1754 ev_start (EV_A_ (W)w, 1); 4126 ev_start (EV_A_ (W)w, 1);
1755 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1756 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 4127 wlist_add (&signals [w->signum - 1].head, (WL)w);
1757 4128
1758 if (!((WL)w)->next) 4129 if (!((WL)w)->next)
4130# if EV_USE_SIGNALFD
4131 if (sigfd < 0) /*TODO*/
4132# endif
1759 { 4133 {
1760#if _WIN32 4134# ifdef _WIN32
4135 evpipe_init (EV_A);
4136
1761 signal (w->signum, sighandler); 4137 signal (w->signum, ev_sighandler);
1762#else 4138# else
1763 struct sigaction sa; 4139 struct sigaction sa;
4140
4141 evpipe_init (EV_A);
4142
1764 sa.sa_handler = sighandler; 4143 sa.sa_handler = ev_sighandler;
1765 sigfillset (&sa.sa_mask); 4144 sigfillset (&sa.sa_mask);
1766 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 4145 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1767 sigaction (w->signum, &sa, 0); 4146 sigaction (w->signum, &sa, 0);
4147
4148 if (origflags & EVFLAG_NOSIGMASK)
4149 {
4150 sigemptyset (&sa.sa_mask);
4151 sigaddset (&sa.sa_mask, w->signum);
4152 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4153 }
1768#endif 4154#endif
1769 } 4155 }
1770}
1771 4156
4157 EV_FREQUENT_CHECK;
4158}
4159
1772void noinline 4160noinline
4161void
1773ev_signal_stop (EV_P_ ev_signal *w) 4162ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
1774{ 4163{
1775 clear_pending (EV_A_ (W)w); 4164 clear_pending (EV_A_ (W)w);
1776 if (expect_false (!ev_is_active (w))) 4165 if (expect_false (!ev_is_active (w)))
1777 return; 4166 return;
1778 4167
4168 EV_FREQUENT_CHECK;
4169
1779 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 4170 wlist_del (&signals [w->signum - 1].head, (WL)w);
1780 ev_stop (EV_A_ (W)w); 4171 ev_stop (EV_A_ (W)w);
1781 4172
1782 if (!signals [w->signum - 1].head) 4173 if (!signals [w->signum - 1].head)
1783 signal (w->signum, SIG_DFL); 4174 {
1784}
1785
1786void
1787ev_child_start (EV_P_ ev_child *w)
1788{
1789#if EV_MULTIPLICITY 4175#if EV_MULTIPLICITY
4176 signals [w->signum - 1].loop = 0; /* unattach from signal */
4177#endif
4178#if EV_USE_SIGNALFD
4179 if (sigfd >= 0)
4180 {
4181 sigset_t ss;
4182
4183 sigemptyset (&ss);
4184 sigaddset (&ss, w->signum);
4185 sigdelset (&sigfd_set, w->signum);
4186
4187 signalfd (sigfd, &sigfd_set, 0);
4188 sigprocmask (SIG_UNBLOCK, &ss, 0);
4189 }
4190 else
4191#endif
4192 signal (w->signum, SIG_DFL);
4193 }
4194
4195 EV_FREQUENT_CHECK;
4196}
4197
4198#endif
4199
4200#if EV_CHILD_ENABLE
4201
4202void
4203ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4204{
4205#if EV_MULTIPLICITY
1790 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4206 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1791#endif 4207#endif
1792 if (expect_false (ev_is_active (w))) 4208 if (expect_false (ev_is_active (w)))
1793 return; 4209 return;
1794 4210
4211 EV_FREQUENT_CHECK;
4212
1795 ev_start (EV_A_ (W)w, 1); 4213 ev_start (EV_A_ (W)w, 1);
1796 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4214 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1797}
1798 4215
4216 EV_FREQUENT_CHECK;
4217}
4218
1799void 4219void
1800ev_child_stop (EV_P_ ev_child *w) 4220ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
1801{ 4221{
1802 clear_pending (EV_A_ (W)w); 4222 clear_pending (EV_A_ (W)w);
1803 if (expect_false (!ev_is_active (w))) 4223 if (expect_false (!ev_is_active (w)))
1804 return; 4224 return;
1805 4225
4226 EV_FREQUENT_CHECK;
4227
1806 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4228 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1807 ev_stop (EV_A_ (W)w); 4229 ev_stop (EV_A_ (W)w);
4230
4231 EV_FREQUENT_CHECK;
1808} 4232}
4233
4234#endif
1809 4235
1810#if EV_STAT_ENABLE 4236#if EV_STAT_ENABLE
1811 4237
1812# ifdef _WIN32 4238# ifdef _WIN32
1813# undef lstat 4239# undef lstat
1814# define lstat(a,b) _stati64 (a,b) 4240# define lstat(a,b) _stati64 (a,b)
1815# endif 4241# endif
1816 4242
1817#define DEF_STAT_INTERVAL 5.0074891 4243#define DEF_STAT_INTERVAL 5.0074891
4244#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1818#define MIN_STAT_INTERVAL 0.1074891 4245#define MIN_STAT_INTERVAL 0.1074891
1819 4246
1820static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 4247noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1821 4248
1822#if EV_USE_INOTIFY 4249#if EV_USE_INOTIFY
1823# define EV_INOTIFY_BUFSIZE 8192
1824 4250
1825static void noinline 4251/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4252# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4253
4254noinline
4255static void
1826infy_add (EV_P_ ev_stat *w) 4256infy_add (EV_P_ ev_stat *w)
1827{ 4257{
1828 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 4258 w->wd = inotify_add_watch (fs_fd, w->path,
4259 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4260 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4261 | IN_DONT_FOLLOW | IN_MASK_ADD);
1829 4262
1830 if (w->wd < 0) 4263 if (w->wd >= 0)
4264 {
4265 struct statfs sfs;
4266
4267 /* now local changes will be tracked by inotify, but remote changes won't */
4268 /* unless the filesystem is known to be local, we therefore still poll */
4269 /* also do poll on <2.6.25, but with normal frequency */
4270
4271 if (!fs_2625)
4272 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4273 else if (!statfs (w->path, &sfs)
4274 && (sfs.f_type == 0x1373 /* devfs */
4275 || sfs.f_type == 0x4006 /* fat */
4276 || sfs.f_type == 0x4d44 /* msdos */
4277 || sfs.f_type == 0xEF53 /* ext2/3 */
4278 || sfs.f_type == 0x72b6 /* jffs2 */
4279 || sfs.f_type == 0x858458f6 /* ramfs */
4280 || sfs.f_type == 0x5346544e /* ntfs */
4281 || sfs.f_type == 0x3153464a /* jfs */
4282 || sfs.f_type == 0x9123683e /* btrfs */
4283 || sfs.f_type == 0x52654973 /* reiser3 */
4284 || sfs.f_type == 0x01021994 /* tmpfs */
4285 || sfs.f_type == 0x58465342 /* xfs */))
4286 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4287 else
4288 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1831 { 4289 }
1832 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 4290 else
4291 {
4292 /* can't use inotify, continue to stat */
4293 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1833 4294
1834 /* monitor some parent directory for speedup hints */ 4295 /* if path is not there, monitor some parent directory for speedup hints */
4296 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4297 /* but an efficiency issue only */
1835 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4298 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1836 { 4299 {
1837 char path [4096]; 4300 char path [4096];
1838 strcpy (path, w->path); 4301 strcpy (path, w->path);
1839 4302
1842 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 4305 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1843 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 4306 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1844 4307
1845 char *pend = strrchr (path, '/'); 4308 char *pend = strrchr (path, '/');
1846 4309
1847 if (!pend) 4310 if (!pend || pend == path)
1848 break; /* whoops, no '/', complain to your admin */ 4311 break;
1849 4312
1850 *pend = 0; 4313 *pend = 0;
1851 w->wd = inotify_add_watch (fs_fd, path, mask); 4314 w->wd = inotify_add_watch (fs_fd, path, mask);
1852 } 4315 }
1853 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4316 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1854 } 4317 }
1855 } 4318 }
1856 else
1857 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1858 4319
1859 if (w->wd >= 0) 4320 if (w->wd >= 0)
1860 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4321 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
1861}
1862 4322
1863static void noinline 4323 /* now re-arm timer, if required */
4324 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4325 ev_timer_again (EV_A_ &w->timer);
4326 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4327}
4328
4329noinline
4330static void
1864infy_del (EV_P_ ev_stat *w) 4331infy_del (EV_P_ ev_stat *w)
1865{ 4332{
1866 int slot; 4333 int slot;
1867 int wd = w->wd; 4334 int wd = w->wd;
1868 4335
1869 if (wd < 0) 4336 if (wd < 0)
1870 return; 4337 return;
1871 4338
1872 w->wd = -2; 4339 w->wd = -2;
1873 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4340 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1874 wlist_del (&fs_hash [slot].head, (WL)w); 4341 wlist_del (&fs_hash [slot].head, (WL)w);
1875 4342
1876 /* remove this watcher, if others are watching it, they will rearm */ 4343 /* remove this watcher, if others are watching it, they will rearm */
1877 inotify_rm_watch (fs_fd, wd); 4344 inotify_rm_watch (fs_fd, wd);
1878} 4345}
1879 4346
1880static void noinline 4347noinline
4348static void
1881infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4349infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1882{ 4350{
1883 if (slot < 0) 4351 if (slot < 0)
1884 /* overflow, need to check for all hahs slots */ 4352 /* overflow, need to check for all hash slots */
1885 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4353 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1886 infy_wd (EV_A_ slot, wd, ev); 4354 infy_wd (EV_A_ slot, wd, ev);
1887 else 4355 else
1888 { 4356 {
1889 WL w_; 4357 WL w_;
1890 4358
1891 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4359 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
1892 { 4360 {
1893 ev_stat *w = (ev_stat *)w_; 4361 ev_stat *w = (ev_stat *)w_;
1894 w_ = w_->next; /* lets us remove this watcher and all before it */ 4362 w_ = w_->next; /* lets us remove this watcher and all before it */
1895 4363
1896 if (w->wd == wd || wd == -1) 4364 if (w->wd == wd || wd == -1)
1897 { 4365 {
1898 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4366 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1899 { 4367 {
4368 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
1900 w->wd = -1; 4369 w->wd = -1;
1901 infy_add (EV_A_ w); /* re-add, no matter what */ 4370 infy_add (EV_A_ w); /* re-add, no matter what */
1902 } 4371 }
1903 4372
1904 stat_timer_cb (EV_A_ &w->timer, 0); 4373 stat_timer_cb (EV_A_ &w->timer, 0);
1909 4378
1910static void 4379static void
1911infy_cb (EV_P_ ev_io *w, int revents) 4380infy_cb (EV_P_ ev_io *w, int revents)
1912{ 4381{
1913 char buf [EV_INOTIFY_BUFSIZE]; 4382 char buf [EV_INOTIFY_BUFSIZE];
1914 struct inotify_event *ev = (struct inotify_event *)buf;
1915 int ofs; 4383 int ofs;
1916 int len = read (fs_fd, buf, sizeof (buf)); 4384 int len = read (fs_fd, buf, sizeof (buf));
1917 4385
1918 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4386 for (ofs = 0; ofs < len; )
4387 {
4388 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
1919 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4389 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4390 ofs += sizeof (struct inotify_event) + ev->len;
4391 }
1920} 4392}
1921 4393
1922void inline_size 4394inline_size ecb_cold
4395void
4396ev_check_2625 (EV_P)
4397{
4398 /* kernels < 2.6.25 are borked
4399 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4400 */
4401 if (ev_linux_version () < 0x020619)
4402 return;
4403
4404 fs_2625 = 1;
4405}
4406
4407inline_size int
4408infy_newfd (void)
4409{
4410#if defined IN_CLOEXEC && defined IN_NONBLOCK
4411 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4412 if (fd >= 0)
4413 return fd;
4414#endif
4415 return inotify_init ();
4416}
4417
4418inline_size void
1923infy_init (EV_P) 4419infy_init (EV_P)
1924{ 4420{
1925 if (fs_fd != -2) 4421 if (fs_fd != -2)
1926 return; 4422 return;
1927 4423
4424 fs_fd = -1;
4425
4426 ev_check_2625 (EV_A);
4427
1928 fs_fd = inotify_init (); 4428 fs_fd = infy_newfd ();
1929 4429
1930 if (fs_fd >= 0) 4430 if (fs_fd >= 0)
1931 { 4431 {
4432 fd_intern (fs_fd);
1932 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4433 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1933 ev_set_priority (&fs_w, EV_MAXPRI); 4434 ev_set_priority (&fs_w, EV_MAXPRI);
1934 ev_io_start (EV_A_ &fs_w); 4435 ev_io_start (EV_A_ &fs_w);
4436 ev_unref (EV_A);
1935 } 4437 }
1936} 4438}
1937 4439
1938void inline_size 4440inline_size void
1939infy_fork (EV_P) 4441infy_fork (EV_P)
1940{ 4442{
1941 int slot; 4443 int slot;
1942 4444
1943 if (fs_fd < 0) 4445 if (fs_fd < 0)
1944 return; 4446 return;
1945 4447
4448 ev_ref (EV_A);
4449 ev_io_stop (EV_A_ &fs_w);
1946 close (fs_fd); 4450 close (fs_fd);
1947 fs_fd = inotify_init (); 4451 fs_fd = infy_newfd ();
1948 4452
4453 if (fs_fd >= 0)
4454 {
4455 fd_intern (fs_fd);
4456 ev_io_set (&fs_w, fs_fd, EV_READ);
4457 ev_io_start (EV_A_ &fs_w);
4458 ev_unref (EV_A);
4459 }
4460
1949 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4461 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1950 { 4462 {
1951 WL w_ = fs_hash [slot].head; 4463 WL w_ = fs_hash [slot].head;
1952 fs_hash [slot].head = 0; 4464 fs_hash [slot].head = 0;
1953 4465
1954 while (w_) 4466 while (w_)
1959 w->wd = -1; 4471 w->wd = -1;
1960 4472
1961 if (fs_fd >= 0) 4473 if (fs_fd >= 0)
1962 infy_add (EV_A_ w); /* re-add, no matter what */ 4474 infy_add (EV_A_ w); /* re-add, no matter what */
1963 else 4475 else
4476 {
4477 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4478 if (ev_is_active (&w->timer)) ev_ref (EV_A);
1964 ev_timer_start (EV_A_ &w->timer); 4479 ev_timer_again (EV_A_ &w->timer);
4480 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4481 }
1965 } 4482 }
1966
1967 } 4483 }
1968} 4484}
1969 4485
1970#endif 4486#endif
1971 4487
4488#ifdef _WIN32
4489# define EV_LSTAT(p,b) _stati64 (p, b)
4490#else
4491# define EV_LSTAT(p,b) lstat (p, b)
4492#endif
4493
1972void 4494void
1973ev_stat_stat (EV_P_ ev_stat *w) 4495ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
1974{ 4496{
1975 if (lstat (w->path, &w->attr) < 0) 4497 if (lstat (w->path, &w->attr) < 0)
1976 w->attr.st_nlink = 0; 4498 w->attr.st_nlink = 0;
1977 else if (!w->attr.st_nlink) 4499 else if (!w->attr.st_nlink)
1978 w->attr.st_nlink = 1; 4500 w->attr.st_nlink = 1;
1979} 4501}
1980 4502
1981static void noinline 4503noinline
4504static void
1982stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4505stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1983{ 4506{
1984 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4507 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1985 4508
1986 /* we copy this here each the time so that */ 4509 ev_statdata prev = w->attr;
1987 /* prev has the old value when the callback gets invoked */
1988 w->prev = w->attr;
1989 ev_stat_stat (EV_A_ w); 4510 ev_stat_stat (EV_A_ w);
1990 4511
1991 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4512 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
1992 if ( 4513 if (
1993 w->prev.st_dev != w->attr.st_dev 4514 prev.st_dev != w->attr.st_dev
1994 || w->prev.st_ino != w->attr.st_ino 4515 || prev.st_ino != w->attr.st_ino
1995 || w->prev.st_mode != w->attr.st_mode 4516 || prev.st_mode != w->attr.st_mode
1996 || w->prev.st_nlink != w->attr.st_nlink 4517 || prev.st_nlink != w->attr.st_nlink
1997 || w->prev.st_uid != w->attr.st_uid 4518 || prev.st_uid != w->attr.st_uid
1998 || w->prev.st_gid != w->attr.st_gid 4519 || prev.st_gid != w->attr.st_gid
1999 || w->prev.st_rdev != w->attr.st_rdev 4520 || prev.st_rdev != w->attr.st_rdev
2000 || w->prev.st_size != w->attr.st_size 4521 || prev.st_size != w->attr.st_size
2001 || w->prev.st_atime != w->attr.st_atime 4522 || prev.st_atime != w->attr.st_atime
2002 || w->prev.st_mtime != w->attr.st_mtime 4523 || prev.st_mtime != w->attr.st_mtime
2003 || w->prev.st_ctime != w->attr.st_ctime 4524 || prev.st_ctime != w->attr.st_ctime
2004 ) { 4525 ) {
4526 /* we only update w->prev on actual differences */
4527 /* in case we test more often than invoke the callback, */
4528 /* to ensure that prev is always different to attr */
4529 w->prev = prev;
4530
2005 #if EV_USE_INOTIFY 4531 #if EV_USE_INOTIFY
4532 if (fs_fd >= 0)
4533 {
2006 infy_del (EV_A_ w); 4534 infy_del (EV_A_ w);
2007 infy_add (EV_A_ w); 4535 infy_add (EV_A_ w);
2008 ev_stat_stat (EV_A_ w); /* avoid race... */ 4536 ev_stat_stat (EV_A_ w); /* avoid race... */
4537 }
2009 #endif 4538 #endif
2010 4539
2011 ev_feed_event (EV_A_ w, EV_STAT); 4540 ev_feed_event (EV_A_ w, EV_STAT);
2012 } 4541 }
2013} 4542}
2014 4543
2015void 4544void
2016ev_stat_start (EV_P_ ev_stat *w) 4545ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
2017{ 4546{
2018 if (expect_false (ev_is_active (w))) 4547 if (expect_false (ev_is_active (w)))
2019 return; 4548 return;
2020 4549
2021 /* since we use memcmp, we need to clear any padding data etc. */
2022 memset (&w->prev, 0, sizeof (ev_statdata));
2023 memset (&w->attr, 0, sizeof (ev_statdata));
2024
2025 ev_stat_stat (EV_A_ w); 4550 ev_stat_stat (EV_A_ w);
2026 4551
4552 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2027 if (w->interval < MIN_STAT_INTERVAL) 4553 w->interval = MIN_STAT_INTERVAL;
2028 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2029 4554
2030 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4555 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2031 ev_set_priority (&w->timer, ev_priority (w)); 4556 ev_set_priority (&w->timer, ev_priority (w));
2032 4557
2033#if EV_USE_INOTIFY 4558#if EV_USE_INOTIFY
2034 infy_init (EV_A); 4559 infy_init (EV_A);
2035 4560
2036 if (fs_fd >= 0) 4561 if (fs_fd >= 0)
2037 infy_add (EV_A_ w); 4562 infy_add (EV_A_ w);
2038 else 4563 else
2039#endif 4564#endif
4565 {
2040 ev_timer_start (EV_A_ &w->timer); 4566 ev_timer_again (EV_A_ &w->timer);
4567 ev_unref (EV_A);
4568 }
2041 4569
2042 ev_start (EV_A_ (W)w, 1); 4570 ev_start (EV_A_ (W)w, 1);
2043}
2044 4571
4572 EV_FREQUENT_CHECK;
4573}
4574
2045void 4575void
2046ev_stat_stop (EV_P_ ev_stat *w) 4576ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
2047{ 4577{
2048 clear_pending (EV_A_ (W)w); 4578 clear_pending (EV_A_ (W)w);
2049 if (expect_false (!ev_is_active (w))) 4579 if (expect_false (!ev_is_active (w)))
2050 return; 4580 return;
2051 4581
4582 EV_FREQUENT_CHECK;
4583
2052#if EV_USE_INOTIFY 4584#if EV_USE_INOTIFY
2053 infy_del (EV_A_ w); 4585 infy_del (EV_A_ w);
2054#endif 4586#endif
4587
4588 if (ev_is_active (&w->timer))
4589 {
4590 ev_ref (EV_A);
2055 ev_timer_stop (EV_A_ &w->timer); 4591 ev_timer_stop (EV_A_ &w->timer);
4592 }
2056 4593
2057 ev_stop (EV_A_ (W)w); 4594 ev_stop (EV_A_ (W)w);
4595
4596 EV_FREQUENT_CHECK;
2058} 4597}
2059#endif 4598#endif
2060 4599
2061#if EV_IDLE_ENABLE 4600#if EV_IDLE_ENABLE
2062void 4601void
2063ev_idle_start (EV_P_ ev_idle *w) 4602ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
2064{ 4603{
2065 if (expect_false (ev_is_active (w))) 4604 if (expect_false (ev_is_active (w)))
2066 return; 4605 return;
2067 4606
2068 pri_adjust (EV_A_ (W)w); 4607 pri_adjust (EV_A_ (W)w);
4608
4609 EV_FREQUENT_CHECK;
2069 4610
2070 { 4611 {
2071 int active = ++idlecnt [ABSPRI (w)]; 4612 int active = ++idlecnt [ABSPRI (w)];
2072 4613
2073 ++idleall; 4614 ++idleall;
2074 ev_start (EV_A_ (W)w, active); 4615 ev_start (EV_A_ (W)w, active);
2075 4616
2076 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 4617 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2077 idles [ABSPRI (w)][active - 1] = w; 4618 idles [ABSPRI (w)][active - 1] = w;
2078 } 4619 }
2079}
2080 4620
4621 EV_FREQUENT_CHECK;
4622}
4623
2081void 4624void
2082ev_idle_stop (EV_P_ ev_idle *w) 4625ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
2083{ 4626{
2084 clear_pending (EV_A_ (W)w); 4627 clear_pending (EV_A_ (W)w);
2085 if (expect_false (!ev_is_active (w))) 4628 if (expect_false (!ev_is_active (w)))
2086 return; 4629 return;
2087 4630
4631 EV_FREQUENT_CHECK;
4632
2088 { 4633 {
2089 int active = ((W)w)->active; 4634 int active = ev_active (w);
2090 4635
2091 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 4636 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2092 ((W)idles [ABSPRI (w)][active - 1])->active = active; 4637 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2093 4638
2094 ev_stop (EV_A_ (W)w); 4639 ev_stop (EV_A_ (W)w);
2095 --idleall; 4640 --idleall;
2096 } 4641 }
2097}
2098#endif
2099 4642
4643 EV_FREQUENT_CHECK;
4644}
4645#endif
4646
4647#if EV_PREPARE_ENABLE
2100void 4648void
2101ev_prepare_start (EV_P_ ev_prepare *w) 4649ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
2102{ 4650{
2103 if (expect_false (ev_is_active (w))) 4651 if (expect_false (ev_is_active (w)))
2104 return; 4652 return;
4653
4654 EV_FREQUENT_CHECK;
2105 4655
2106 ev_start (EV_A_ (W)w, ++preparecnt); 4656 ev_start (EV_A_ (W)w, ++preparecnt);
2107 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4657 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2108 prepares [preparecnt - 1] = w; 4658 prepares [preparecnt - 1] = w;
2109}
2110 4659
4660 EV_FREQUENT_CHECK;
4661}
4662
2111void 4663void
2112ev_prepare_stop (EV_P_ ev_prepare *w) 4664ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
2113{ 4665{
2114 clear_pending (EV_A_ (W)w); 4666 clear_pending (EV_A_ (W)w);
2115 if (expect_false (!ev_is_active (w))) 4667 if (expect_false (!ev_is_active (w)))
2116 return; 4668 return;
2117 4669
4670 EV_FREQUENT_CHECK;
4671
2118 { 4672 {
2119 int active = ((W)w)->active; 4673 int active = ev_active (w);
4674
2120 prepares [active - 1] = prepares [--preparecnt]; 4675 prepares [active - 1] = prepares [--preparecnt];
2121 ((W)prepares [active - 1])->active = active; 4676 ev_active (prepares [active - 1]) = active;
2122 } 4677 }
2123 4678
2124 ev_stop (EV_A_ (W)w); 4679 ev_stop (EV_A_ (W)w);
2125}
2126 4680
4681 EV_FREQUENT_CHECK;
4682}
4683#endif
4684
4685#if EV_CHECK_ENABLE
2127void 4686void
2128ev_check_start (EV_P_ ev_check *w) 4687ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
2129{ 4688{
2130 if (expect_false (ev_is_active (w))) 4689 if (expect_false (ev_is_active (w)))
2131 return; 4690 return;
4691
4692 EV_FREQUENT_CHECK;
2132 4693
2133 ev_start (EV_A_ (W)w, ++checkcnt); 4694 ev_start (EV_A_ (W)w, ++checkcnt);
2134 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4695 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2135 checks [checkcnt - 1] = w; 4696 checks [checkcnt - 1] = w;
2136}
2137 4697
4698 EV_FREQUENT_CHECK;
4699}
4700
2138void 4701void
2139ev_check_stop (EV_P_ ev_check *w) 4702ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
2140{ 4703{
2141 clear_pending (EV_A_ (W)w); 4704 clear_pending (EV_A_ (W)w);
2142 if (expect_false (!ev_is_active (w))) 4705 if (expect_false (!ev_is_active (w)))
2143 return; 4706 return;
2144 4707
4708 EV_FREQUENT_CHECK;
4709
2145 { 4710 {
2146 int active = ((W)w)->active; 4711 int active = ev_active (w);
4712
2147 checks [active - 1] = checks [--checkcnt]; 4713 checks [active - 1] = checks [--checkcnt];
2148 ((W)checks [active - 1])->active = active; 4714 ev_active (checks [active - 1]) = active;
2149 } 4715 }
2150 4716
2151 ev_stop (EV_A_ (W)w); 4717 ev_stop (EV_A_ (W)w);
4718
4719 EV_FREQUENT_CHECK;
2152} 4720}
4721#endif
2153 4722
2154#if EV_EMBED_ENABLE 4723#if EV_EMBED_ENABLE
2155void noinline 4724noinline
4725void
2156ev_embed_sweep (EV_P_ ev_embed *w) 4726ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
2157{ 4727{
2158 ev_loop (w->loop, EVLOOP_NONBLOCK); 4728 ev_run (w->other, EVRUN_NOWAIT);
2159} 4729}
2160 4730
2161static void 4731static void
2162embed_cb (EV_P_ ev_io *io, int revents) 4732embed_io_cb (EV_P_ ev_io *io, int revents)
2163{ 4733{
2164 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4734 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2165 4735
2166 if (ev_cb (w)) 4736 if (ev_cb (w))
2167 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4737 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2168 else 4738 else
2169 ev_embed_sweep (loop, w); 4739 ev_run (w->other, EVRUN_NOWAIT);
2170} 4740}
2171 4741
4742static void
4743embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4744{
4745 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4746
4747 {
4748 EV_P = w->other;
4749
4750 while (fdchangecnt)
4751 {
4752 fd_reify (EV_A);
4753 ev_run (EV_A_ EVRUN_NOWAIT);
4754 }
4755 }
4756}
4757
4758static void
4759embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4760{
4761 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4762
4763 ev_embed_stop (EV_A_ w);
4764
4765 {
4766 EV_P = w->other;
4767
4768 ev_loop_fork (EV_A);
4769 ev_run (EV_A_ EVRUN_NOWAIT);
4770 }
4771
4772 ev_embed_start (EV_A_ w);
4773}
4774
4775#if 0
4776static void
4777embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4778{
4779 ev_idle_stop (EV_A_ idle);
4780}
4781#endif
4782
2172void 4783void
2173ev_embed_start (EV_P_ ev_embed *w) 4784ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
2174{ 4785{
2175 if (expect_false (ev_is_active (w))) 4786 if (expect_false (ev_is_active (w)))
2176 return; 4787 return;
2177 4788
2178 { 4789 {
2179 struct ev_loop *loop = w->loop; 4790 EV_P = w->other;
2180 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4791 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2181 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 4792 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2182 } 4793 }
4794
4795 EV_FREQUENT_CHECK;
2183 4796
2184 ev_set_priority (&w->io, ev_priority (w)); 4797 ev_set_priority (&w->io, ev_priority (w));
2185 ev_io_start (EV_A_ &w->io); 4798 ev_io_start (EV_A_ &w->io);
2186 4799
4800 ev_prepare_init (&w->prepare, embed_prepare_cb);
4801 ev_set_priority (&w->prepare, EV_MINPRI);
4802 ev_prepare_start (EV_A_ &w->prepare);
4803
4804 ev_fork_init (&w->fork, embed_fork_cb);
4805 ev_fork_start (EV_A_ &w->fork);
4806
4807 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4808
2187 ev_start (EV_A_ (W)w, 1); 4809 ev_start (EV_A_ (W)w, 1);
2188}
2189 4810
4811 EV_FREQUENT_CHECK;
4812}
4813
2190void 4814void
2191ev_embed_stop (EV_P_ ev_embed *w) 4815ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
2192{ 4816{
2193 clear_pending (EV_A_ (W)w); 4817 clear_pending (EV_A_ (W)w);
2194 if (expect_false (!ev_is_active (w))) 4818 if (expect_false (!ev_is_active (w)))
2195 return; 4819 return;
2196 4820
4821 EV_FREQUENT_CHECK;
4822
2197 ev_io_stop (EV_A_ &w->io); 4823 ev_io_stop (EV_A_ &w->io);
4824 ev_prepare_stop (EV_A_ &w->prepare);
4825 ev_fork_stop (EV_A_ &w->fork);
2198 4826
2199 ev_stop (EV_A_ (W)w); 4827 ev_stop (EV_A_ (W)w);
4828
4829 EV_FREQUENT_CHECK;
2200} 4830}
2201#endif 4831#endif
2202 4832
2203#if EV_FORK_ENABLE 4833#if EV_FORK_ENABLE
2204void 4834void
2205ev_fork_start (EV_P_ ev_fork *w) 4835ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
2206{ 4836{
2207 if (expect_false (ev_is_active (w))) 4837 if (expect_false (ev_is_active (w)))
2208 return; 4838 return;
4839
4840 EV_FREQUENT_CHECK;
2209 4841
2210 ev_start (EV_A_ (W)w, ++forkcnt); 4842 ev_start (EV_A_ (W)w, ++forkcnt);
2211 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4843 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2212 forks [forkcnt - 1] = w; 4844 forks [forkcnt - 1] = w;
2213}
2214 4845
4846 EV_FREQUENT_CHECK;
4847}
4848
2215void 4849void
2216ev_fork_stop (EV_P_ ev_fork *w) 4850ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
2217{ 4851{
2218 clear_pending (EV_A_ (W)w); 4852 clear_pending (EV_A_ (W)w);
2219 if (expect_false (!ev_is_active (w))) 4853 if (expect_false (!ev_is_active (w)))
2220 return; 4854 return;
2221 4855
4856 EV_FREQUENT_CHECK;
4857
2222 { 4858 {
2223 int active = ((W)w)->active; 4859 int active = ev_active (w);
4860
2224 forks [active - 1] = forks [--forkcnt]; 4861 forks [active - 1] = forks [--forkcnt];
2225 ((W)forks [active - 1])->active = active; 4862 ev_active (forks [active - 1]) = active;
2226 } 4863 }
2227 4864
2228 ev_stop (EV_A_ (W)w); 4865 ev_stop (EV_A_ (W)w);
4866
4867 EV_FREQUENT_CHECK;
4868}
4869#endif
4870
4871#if EV_CLEANUP_ENABLE
4872void
4873ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
4874{
4875 if (expect_false (ev_is_active (w)))
4876 return;
4877
4878 EV_FREQUENT_CHECK;
4879
4880 ev_start (EV_A_ (W)w, ++cleanupcnt);
4881 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4882 cleanups [cleanupcnt - 1] = w;
4883
4884 /* cleanup watchers should never keep a refcount on the loop */
4885 ev_unref (EV_A);
4886 EV_FREQUENT_CHECK;
4887}
4888
4889void
4890ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
4891{
4892 clear_pending (EV_A_ (W)w);
4893 if (expect_false (!ev_is_active (w)))
4894 return;
4895
4896 EV_FREQUENT_CHECK;
4897 ev_ref (EV_A);
4898
4899 {
4900 int active = ev_active (w);
4901
4902 cleanups [active - 1] = cleanups [--cleanupcnt];
4903 ev_active (cleanups [active - 1]) = active;
4904 }
4905
4906 ev_stop (EV_A_ (W)w);
4907
4908 EV_FREQUENT_CHECK;
4909}
4910#endif
4911
4912#if EV_ASYNC_ENABLE
4913void
4914ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
4915{
4916 if (expect_false (ev_is_active (w)))
4917 return;
4918
4919 w->sent = 0;
4920
4921 evpipe_init (EV_A);
4922
4923 EV_FREQUENT_CHECK;
4924
4925 ev_start (EV_A_ (W)w, ++asynccnt);
4926 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4927 asyncs [asynccnt - 1] = w;
4928
4929 EV_FREQUENT_CHECK;
4930}
4931
4932void
4933ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
4934{
4935 clear_pending (EV_A_ (W)w);
4936 if (expect_false (!ev_is_active (w)))
4937 return;
4938
4939 EV_FREQUENT_CHECK;
4940
4941 {
4942 int active = ev_active (w);
4943
4944 asyncs [active - 1] = asyncs [--asynccnt];
4945 ev_active (asyncs [active - 1]) = active;
4946 }
4947
4948 ev_stop (EV_A_ (W)w);
4949
4950 EV_FREQUENT_CHECK;
4951}
4952
4953void
4954ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
4955{
4956 w->sent = 1;
4957 evpipe_write (EV_A_ &async_pending);
2229} 4958}
2230#endif 4959#endif
2231 4960
2232/*****************************************************************************/ 4961/*****************************************************************************/
2233 4962
2243once_cb (EV_P_ struct ev_once *once, int revents) 4972once_cb (EV_P_ struct ev_once *once, int revents)
2244{ 4973{
2245 void (*cb)(int revents, void *arg) = once->cb; 4974 void (*cb)(int revents, void *arg) = once->cb;
2246 void *arg = once->arg; 4975 void *arg = once->arg;
2247 4976
2248 ev_io_stop (EV_A_ &once->io); 4977 ev_io_stop (EV_A_ &once->io);
2249 ev_timer_stop (EV_A_ &once->to); 4978 ev_timer_stop (EV_A_ &once->to);
2250 ev_free (once); 4979 ev_free (once);
2251 4980
2252 cb (revents, arg); 4981 cb (revents, arg);
2253} 4982}
2254 4983
2255static void 4984static void
2256once_cb_io (EV_P_ ev_io *w, int revents) 4985once_cb_io (EV_P_ ev_io *w, int revents)
2257{ 4986{
2258 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4987 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4988
4989 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2259} 4990}
2260 4991
2261static void 4992static void
2262once_cb_to (EV_P_ ev_timer *w, int revents) 4993once_cb_to (EV_P_ ev_timer *w, int revents)
2263{ 4994{
2264 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4995 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
2265}
2266 4996
4997 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4998}
4999
2267void 5000void
2268ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 5001ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
2269{ 5002{
2270 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 5003 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2271 5004
2272 if (expect_false (!once)) 5005 if (expect_false (!once))
2273 { 5006 {
2274 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 5007 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2275 return; 5008 return;
2276 } 5009 }
2277 5010
2278 once->cb = cb; 5011 once->cb = cb;
2279 once->arg = arg; 5012 once->arg = arg;
2291 ev_timer_set (&once->to, timeout, 0.); 5024 ev_timer_set (&once->to, timeout, 0.);
2292 ev_timer_start (EV_A_ &once->to); 5025 ev_timer_start (EV_A_ &once->to);
2293 } 5026 }
2294} 5027}
2295 5028
2296#ifdef __cplusplus 5029/*****************************************************************************/
2297} 5030
5031#if EV_WALK_ENABLE
5032ecb_cold
5033void
5034ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5035{
5036 int i, j;
5037 ev_watcher_list *wl, *wn;
5038
5039 if (types & (EV_IO | EV_EMBED))
5040 for (i = 0; i < anfdmax; ++i)
5041 for (wl = anfds [i].head; wl; )
5042 {
5043 wn = wl->next;
5044
5045#if EV_EMBED_ENABLE
5046 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5047 {
5048 if (types & EV_EMBED)
5049 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5050 }
5051 else
5052#endif
5053#if EV_USE_INOTIFY
5054 if (ev_cb ((ev_io *)wl) == infy_cb)
5055 ;
5056 else
5057#endif
5058 if ((ev_io *)wl != &pipe_w)
5059 if (types & EV_IO)
5060 cb (EV_A_ EV_IO, wl);
5061
5062 wl = wn;
5063 }
5064
5065 if (types & (EV_TIMER | EV_STAT))
5066 for (i = timercnt + HEAP0; i-- > HEAP0; )
5067#if EV_STAT_ENABLE
5068 /*TODO: timer is not always active*/
5069 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5070 {
5071 if (types & EV_STAT)
5072 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5073 }
5074 else
5075#endif
5076 if (types & EV_TIMER)
5077 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5078
5079#if EV_PERIODIC_ENABLE
5080 if (types & EV_PERIODIC)
5081 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5082 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5083#endif
5084
5085#if EV_IDLE_ENABLE
5086 if (types & EV_IDLE)
5087 for (j = NUMPRI; j--; )
5088 for (i = idlecnt [j]; i--; )
5089 cb (EV_A_ EV_IDLE, idles [j][i]);
5090#endif
5091
5092#if EV_FORK_ENABLE
5093 if (types & EV_FORK)
5094 for (i = forkcnt; i--; )
5095 if (ev_cb (forks [i]) != embed_fork_cb)
5096 cb (EV_A_ EV_FORK, forks [i]);
5097#endif
5098
5099#if EV_ASYNC_ENABLE
5100 if (types & EV_ASYNC)
5101 for (i = asynccnt; i--; )
5102 cb (EV_A_ EV_ASYNC, asyncs [i]);
5103#endif
5104
5105#if EV_PREPARE_ENABLE
5106 if (types & EV_PREPARE)
5107 for (i = preparecnt; i--; )
5108# if EV_EMBED_ENABLE
5109 if (ev_cb (prepares [i]) != embed_prepare_cb)
2298#endif 5110# endif
5111 cb (EV_A_ EV_PREPARE, prepares [i]);
5112#endif
2299 5113
5114#if EV_CHECK_ENABLE
5115 if (types & EV_CHECK)
5116 for (i = checkcnt; i--; )
5117 cb (EV_A_ EV_CHECK, checks [i]);
5118#endif
5119
5120#if EV_SIGNAL_ENABLE
5121 if (types & EV_SIGNAL)
5122 for (i = 0; i < EV_NSIG - 1; ++i)
5123 for (wl = signals [i].head; wl; )
5124 {
5125 wn = wl->next;
5126 cb (EV_A_ EV_SIGNAL, wl);
5127 wl = wn;
5128 }
5129#endif
5130
5131#if EV_CHILD_ENABLE
5132 if (types & EV_CHILD)
5133 for (i = (EV_PID_HASHSIZE); i--; )
5134 for (wl = childs [i]; wl; )
5135 {
5136 wn = wl->next;
5137 cb (EV_A_ EV_CHILD, wl);
5138 wl = wn;
5139 }
5140#endif
5141/* EV_STAT 0x00001000 /* stat data changed */
5142/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5143}
5144#endif
5145
5146#if EV_MULTIPLICITY
5147 #include "ev_wrap.h"
5148#endif
5149

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines