ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.158 by root, Thu Nov 29 17:28:13 2007 UTC vs.
Revision 1.489 by root, Sat Dec 29 14:23:20 2018 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007-2018 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
43# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
46# endif 71# endif
47# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
49# endif 74# endif
50# else 75# else
51# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
53# endif 78# endif
54# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
56# endif 81# endif
57# endif 82# endif
58 83
84# if HAVE_NANOSLEEP
59# ifndef EV_USE_SELECT 85# ifndef EV_USE_NANOSLEEP
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif 87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
65# endif 91# endif
66 92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
67# ifndef EV_USE_POLL 94# ifndef EV_USE_SELECT
68# if HAVE_POLL && HAVE_POLL_H 95# define EV_USE_SELECT EV_FEATURE_BACKENDS
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
73# endif 109# endif
74 110
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
78# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
79# define EV_USE_EPOLL 0
80# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
81# endif 118# endif
82 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
83# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
89# endif 127# endif
90 128
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
94# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
95# define EV_USE_PORT 0
96# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
97# endif 136# endif
98 137
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
102# else
103# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
104# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
105# endif 145# endif
106 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
107#endif 154# endif
108 155
109#include <math.h> 156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
167/* OS X, in its infinite idiocy, actually HARDCODES
168 * a limit of 1024 into their select. Where people have brains,
169 * OS X engineers apparently have a vacuum. Or maybe they were
170 * ordered to have a vacuum, or they do anything for money.
171 * This might help. Or not.
172 * Note that this must be defined early, as other include files
173 * will rely on this define as well.
174 */
175#define _DARWIN_UNLIMITED_SELECT 1
176
110#include <stdlib.h> 177#include <stdlib.h>
178#include <string.h>
111#include <fcntl.h> 179#include <fcntl.h>
112#include <stddef.h> 180#include <stddef.h>
113 181
114#include <stdio.h> 182#include <stdio.h>
115 183
116#include <assert.h> 184#include <assert.h>
117#include <errno.h> 185#include <errno.h>
118#include <sys/types.h> 186#include <sys/types.h>
119#include <time.h> 187#include <time.h>
188#include <limits.h>
120 189
121#include <signal.h> 190#include <signal.h>
122 191
123#ifdef EV_H 192#ifdef EV_H
124# include EV_H 193# include EV_H
125#else 194#else
126# include "ev.h" 195# include "ev.h"
196#endif
197
198#if EV_NO_THREADS
199# undef EV_NO_SMP
200# define EV_NO_SMP 1
201# undef ECB_NO_THREADS
202# define ECB_NO_THREADS 1
203#endif
204#if EV_NO_SMP
205# undef EV_NO_SMP
206# define ECB_NO_SMP 1
127#endif 207#endif
128 208
129#ifndef _WIN32 209#ifndef _WIN32
130# include <sys/time.h> 210# include <sys/time.h>
131# include <sys/wait.h> 211# include <sys/wait.h>
132# include <unistd.h> 212# include <unistd.h>
133#else 213#else
214# include <io.h>
134# define WIN32_LEAN_AND_MEAN 215# define WIN32_LEAN_AND_MEAN
216# include <winsock2.h>
135# include <windows.h> 217# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 218# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 219# define EV_SELECT_IS_WINSOCKET 1
138# endif 220# endif
221# undef EV_AVOID_STDIO
222#endif
223
224/* this block tries to deduce configuration from header-defined symbols and defaults */
225
226/* try to deduce the maximum number of signals on this platform */
227#if defined EV_NSIG
228/* use what's provided */
229#elif defined NSIG
230# define EV_NSIG (NSIG)
231#elif defined _NSIG
232# define EV_NSIG (_NSIG)
233#elif defined SIGMAX
234# define EV_NSIG (SIGMAX+1)
235#elif defined SIG_MAX
236# define EV_NSIG (SIG_MAX+1)
237#elif defined _SIG_MAX
238# define EV_NSIG (_SIG_MAX+1)
239#elif defined MAXSIG
240# define EV_NSIG (MAXSIG+1)
241#elif defined MAX_SIG
242# define EV_NSIG (MAX_SIG+1)
243#elif defined SIGARRAYSIZE
244# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
245#elif defined _sys_nsig
246# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
247#else
248# define EV_NSIG (8 * sizeof (sigset_t) + 1)
249#endif
250
251#ifndef EV_USE_FLOOR
252# define EV_USE_FLOOR 0
253#endif
254
255#ifndef EV_USE_CLOCK_SYSCALL
256# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
257# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
258# else
259# define EV_USE_CLOCK_SYSCALL 0
139#endif 260# endif
261#endif
140 262
141/**/ 263#if !(_POSIX_TIMERS > 0)
264# ifndef EV_USE_MONOTONIC
265# define EV_USE_MONOTONIC 0
266# endif
267# ifndef EV_USE_REALTIME
268# define EV_USE_REALTIME 0
269# endif
270#endif
142 271
143#ifndef EV_USE_MONOTONIC 272#ifndef EV_USE_MONOTONIC
273# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
274# define EV_USE_MONOTONIC EV_FEATURE_OS
275# else
144# define EV_USE_MONOTONIC 0 276# define EV_USE_MONOTONIC 0
277# endif
145#endif 278#endif
146 279
147#ifndef EV_USE_REALTIME 280#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 281# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
282#endif
283
284#ifndef EV_USE_NANOSLEEP
285# if _POSIX_C_SOURCE >= 199309L
286# define EV_USE_NANOSLEEP EV_FEATURE_OS
287# else
288# define EV_USE_NANOSLEEP 0
289# endif
149#endif 290#endif
150 291
151#ifndef EV_USE_SELECT 292#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 293# define EV_USE_SELECT EV_FEATURE_BACKENDS
153#endif 294#endif
154 295
155#ifndef EV_USE_POLL 296#ifndef EV_USE_POLL
156# ifdef _WIN32 297# ifdef _WIN32
157# define EV_USE_POLL 0 298# define EV_USE_POLL 0
158# else 299# else
159# define EV_USE_POLL 1 300# define EV_USE_POLL EV_FEATURE_BACKENDS
160# endif 301# endif
161#endif 302#endif
162 303
163#ifndef EV_USE_EPOLL 304#ifndef EV_USE_EPOLL
305# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
306# define EV_USE_EPOLL EV_FEATURE_BACKENDS
307# else
164# define EV_USE_EPOLL 0 308# define EV_USE_EPOLL 0
309# endif
165#endif 310#endif
166 311
167#ifndef EV_USE_KQUEUE 312#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 313# define EV_USE_KQUEUE 0
169#endif 314#endif
171#ifndef EV_USE_PORT 316#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 317# define EV_USE_PORT 0
173#endif 318#endif
174 319
175#ifndef EV_USE_INOTIFY 320#ifndef EV_USE_INOTIFY
321# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
322# define EV_USE_INOTIFY EV_FEATURE_OS
323# else
176# define EV_USE_INOTIFY 0 324# define EV_USE_INOTIFY 0
325# endif
177#endif 326#endif
178 327
179#ifndef EV_PID_HASHSIZE 328#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 329# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
181# define EV_PID_HASHSIZE 1 330#endif
331
332#ifndef EV_INOTIFY_HASHSIZE
333# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
334#endif
335
336#ifndef EV_USE_EVENTFD
337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338# define EV_USE_EVENTFD EV_FEATURE_OS
182# else 339# else
183# define EV_PID_HASHSIZE 16 340# define EV_USE_EVENTFD 0
184# endif 341# endif
185#endif 342#endif
186 343
187#ifndef EV_INOTIFY_HASHSIZE 344#ifndef EV_USE_SIGNALFD
188# if EV_MINIMAL 345# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
189# define EV_INOTIFY_HASHSIZE 1 346# define EV_USE_SIGNALFD EV_FEATURE_OS
190# else 347# else
191# define EV_INOTIFY_HASHSIZE 16 348# define EV_USE_SIGNALFD 0
192# endif 349# endif
193#endif 350#endif
194 351
195/**/ 352#if 0 /* debugging */
353# define EV_VERIFY 3
354# define EV_USE_4HEAP 1
355# define EV_HEAP_CACHE_AT 1
356#endif
357
358#ifndef EV_VERIFY
359# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
360#endif
361
362#ifndef EV_USE_4HEAP
363# define EV_USE_4HEAP EV_FEATURE_DATA
364#endif
365
366#ifndef EV_HEAP_CACHE_AT
367# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
368#endif
369
370#ifdef __ANDROID__
371/* supposedly, android doesn't typedef fd_mask */
372# undef EV_USE_SELECT
373# define EV_USE_SELECT 0
374/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
375# undef EV_USE_CLOCK_SYSCALL
376# define EV_USE_CLOCK_SYSCALL 0
377#endif
378
379/* aix's poll.h seems to cause lots of trouble */
380#ifdef _AIX
381/* AIX has a completely broken poll.h header */
382# undef EV_USE_POLL
383# define EV_USE_POLL 0
384#endif
385
386/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
387/* which makes programs even slower. might work on other unices, too. */
388#if EV_USE_CLOCK_SYSCALL
389# include <sys/syscall.h>
390# ifdef SYS_clock_gettime
391# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
392# undef EV_USE_MONOTONIC
393# define EV_USE_MONOTONIC 1
394# else
395# undef EV_USE_CLOCK_SYSCALL
396# define EV_USE_CLOCK_SYSCALL 0
397# endif
398#endif
399
400/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 401
197#ifndef CLOCK_MONOTONIC 402#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 403# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 404# define EV_USE_MONOTONIC 0
200#endif 405#endif
202#ifndef CLOCK_REALTIME 407#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 408# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 409# define EV_USE_REALTIME 0
205#endif 410#endif
206 411
207#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h>
209#endif
210
211#if !EV_STAT_ENABLE 412#if !EV_STAT_ENABLE
413# undef EV_USE_INOTIFY
212# define EV_USE_INOTIFY 0 414# define EV_USE_INOTIFY 0
213#endif 415#endif
214 416
417#if !EV_USE_NANOSLEEP
418/* hp-ux has it in sys/time.h, which we unconditionally include above */
419# if !defined _WIN32 && !defined __hpux
420# include <sys/select.h>
421# endif
422#endif
423
215#if EV_USE_INOTIFY 424#if EV_USE_INOTIFY
425# include <sys/statfs.h>
216# include <sys/inotify.h> 426# include <sys/inotify.h>
427/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
428# ifndef IN_DONT_FOLLOW
429# undef EV_USE_INOTIFY
430# define EV_USE_INOTIFY 0
431# endif
432#endif
433
434#if EV_USE_EVENTFD
435/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
436# include <stdint.h>
437# ifndef EFD_NONBLOCK
438# define EFD_NONBLOCK O_NONBLOCK
439# endif
440# ifndef EFD_CLOEXEC
441# ifdef O_CLOEXEC
442# define EFD_CLOEXEC O_CLOEXEC
443# else
444# define EFD_CLOEXEC 02000000
445# endif
446# endif
447EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
448#endif
449
450#if EV_USE_SIGNALFD
451/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
452# include <stdint.h>
453# ifndef SFD_NONBLOCK
454# define SFD_NONBLOCK O_NONBLOCK
455# endif
456# ifndef SFD_CLOEXEC
457# ifdef O_CLOEXEC
458# define SFD_CLOEXEC O_CLOEXEC
459# else
460# define SFD_CLOEXEC 02000000
461# endif
462# endif
463EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
464
465struct signalfd_siginfo
466{
467 uint32_t ssi_signo;
468 char pad[128 - sizeof (uint32_t)];
469};
217#endif 470#endif
218 471
219/**/ 472/**/
473
474#if EV_VERIFY >= 3
475# define EV_FREQUENT_CHECK ev_verify (EV_A)
476#else
477# define EV_FREQUENT_CHECK do { } while (0)
478#endif
479
480/*
481 * This is used to work around floating point rounding problems.
482 * This value is good at least till the year 4000.
483 */
484#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
485/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
220 486
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 487#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 488#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
224 489
490#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
491#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
492
493/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
494/* ECB.H BEGIN */
495/*
496 * libecb - http://software.schmorp.de/pkg/libecb
497 *
498 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
499 * Copyright (©) 2011 Emanuele Giaquinta
500 * All rights reserved.
501 *
502 * Redistribution and use in source and binary forms, with or without modifica-
503 * tion, are permitted provided that the following conditions are met:
504 *
505 * 1. Redistributions of source code must retain the above copyright notice,
506 * this list of conditions and the following disclaimer.
507 *
508 * 2. Redistributions in binary form must reproduce the above copyright
509 * notice, this list of conditions and the following disclaimer in the
510 * documentation and/or other materials provided with the distribution.
511 *
512 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
513 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
514 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
515 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
516 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
517 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
518 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
519 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
520 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
521 * OF THE POSSIBILITY OF SUCH DAMAGE.
522 *
523 * Alternatively, the contents of this file may be used under the terms of
524 * the GNU General Public License ("GPL") version 2 or any later version,
525 * in which case the provisions of the GPL are applicable instead of
526 * the above. If you wish to allow the use of your version of this file
527 * only under the terms of the GPL and not to allow others to use your
528 * version of this file under the BSD license, indicate your decision
529 * by deleting the provisions above and replace them with the notice
530 * and other provisions required by the GPL. If you do not delete the
531 * provisions above, a recipient may use your version of this file under
532 * either the BSD or the GPL.
533 */
534
535#ifndef ECB_H
536#define ECB_H
537
538/* 16 bits major, 16 bits minor */
539#define ECB_VERSION 0x00010005
540
541#ifdef _WIN32
542 typedef signed char int8_t;
543 typedef unsigned char uint8_t;
544 typedef signed short int16_t;
545 typedef unsigned short uint16_t;
546 typedef signed int int32_t;
547 typedef unsigned int uint32_t;
225#if __GNUC__ >= 3 548 #if __GNUC__
549 typedef signed long long int64_t;
550 typedef unsigned long long uint64_t;
551 #else /* _MSC_VER || __BORLANDC__ */
552 typedef signed __int64 int64_t;
553 typedef unsigned __int64 uint64_t;
554 #endif
555 #ifdef _WIN64
556 #define ECB_PTRSIZE 8
557 typedef uint64_t uintptr_t;
558 typedef int64_t intptr_t;
559 #else
560 #define ECB_PTRSIZE 4
561 typedef uint32_t uintptr_t;
562 typedef int32_t intptr_t;
563 #endif
564#else
565 #include <inttypes.h>
566 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
567 #define ECB_PTRSIZE 8
568 #else
569 #define ECB_PTRSIZE 4
570 #endif
571#endif
572
573#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
574#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
575
576/* work around x32 idiocy by defining proper macros */
577#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
578 #if _ILP32
579 #define ECB_AMD64_X32 1
580 #else
581 #define ECB_AMD64 1
582 #endif
583#endif
584
585/* many compilers define _GNUC_ to some versions but then only implement
586 * what their idiot authors think are the "more important" extensions,
587 * causing enormous grief in return for some better fake benchmark numbers.
588 * or so.
589 * we try to detect these and simply assume they are not gcc - if they have
590 * an issue with that they should have done it right in the first place.
591 */
592#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
593 #define ECB_GCC_VERSION(major,minor) 0
594#else
595 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
596#endif
597
598#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
599
600#if __clang__ && defined __has_builtin
601 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
602#else
603 #define ECB_CLANG_BUILTIN(x) 0
604#endif
605
606#if __clang__ && defined __has_extension
607 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
608#else
609 #define ECB_CLANG_EXTENSION(x) 0
610#endif
611
612#define ECB_CPP (__cplusplus+0)
613#define ECB_CPP11 (__cplusplus >= 201103L)
614#define ECB_CPP14 (__cplusplus >= 201402L)
615#define ECB_CPP17 (__cplusplus >= 201703L)
616
617#if ECB_CPP
618 #define ECB_C 0
619 #define ECB_STDC_VERSION 0
620#else
621 #define ECB_C 1
622 #define ECB_STDC_VERSION __STDC_VERSION__
623#endif
624
625#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
626#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
627#define ECB_C17 (ECB_STDC_VERSION >= 201710L)
628
629#if ECB_CPP
630 #define ECB_EXTERN_C extern "C"
631 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
632 #define ECB_EXTERN_C_END }
633#else
634 #define ECB_EXTERN_C extern
635 #define ECB_EXTERN_C_BEG
636 #define ECB_EXTERN_C_END
637#endif
638
639/*****************************************************************************/
640
641/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
642/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
643
644#if ECB_NO_THREADS
645 #define ECB_NO_SMP 1
646#endif
647
648#if ECB_NO_SMP
649 #define ECB_MEMORY_FENCE do { } while (0)
650#endif
651
652/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
653#if __xlC__ && ECB_CPP
654 #include <builtins.h>
655#endif
656
657#if 1400 <= _MSC_VER
658 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
659#endif
660
661#ifndef ECB_MEMORY_FENCE
662 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
663 #if __i386 || __i386__
664 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
665 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
666 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
667 #elif ECB_GCC_AMD64
668 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
669 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
670 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
671 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
672 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
673 #elif defined __ARM_ARCH_2__ \
674 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
675 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
676 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
677 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
678 || defined __ARM_ARCH_5TEJ__
679 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
680 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
681 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
682 || defined __ARM_ARCH_6T2__
683 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
684 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
685 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
686 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
687 #elif __aarch64__
688 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
689 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
690 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
691 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
692 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
693 #elif defined __s390__ || defined __s390x__
694 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
695 #elif defined __mips__
696 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
697 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
698 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
699 #elif defined __alpha__
700 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
701 #elif defined __hppa__
702 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
703 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
704 #elif defined __ia64__
705 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
706 #elif defined __m68k__
707 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
708 #elif defined __m88k__
709 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
710 #elif defined __sh__
711 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
712 #endif
713 #endif
714#endif
715
716#ifndef ECB_MEMORY_FENCE
717 #if ECB_GCC_VERSION(4,7)
718 /* see comment below (stdatomic.h) about the C11 memory model. */
719 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
720 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
721 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
722
723 #elif ECB_CLANG_EXTENSION(c_atomic)
724 /* see comment below (stdatomic.h) about the C11 memory model. */
725 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
726 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
727 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
728
729 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
730 #define ECB_MEMORY_FENCE __sync_synchronize ()
731 #elif _MSC_VER >= 1500 /* VC++ 2008 */
732 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
733 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
734 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
735 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
736 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
737 #elif _MSC_VER >= 1400 /* VC++ 2005 */
738 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
739 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
740 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
741 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
742 #elif defined _WIN32
743 #include <WinNT.h>
744 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
745 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
746 #include <mbarrier.h>
747 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
748 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
749 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
750 #elif __xlC__
751 #define ECB_MEMORY_FENCE __sync ()
752 #endif
753#endif
754
755#ifndef ECB_MEMORY_FENCE
756 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
757 /* we assume that these memory fences work on all variables/all memory accesses, */
758 /* not just C11 atomics and atomic accesses */
759 #include <stdatomic.h>
760 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
761 /* any fence other than seq_cst, which isn't very efficient for us. */
762 /* Why that is, we don't know - either the C11 memory model is quite useless */
763 /* for most usages, or gcc and clang have a bug */
764 /* I *currently* lean towards the latter, and inefficiently implement */
765 /* all three of ecb's fences as a seq_cst fence */
766 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
767 /* for all __atomic_thread_fence's except seq_cst */
768 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
769 #endif
770#endif
771
772#ifndef ECB_MEMORY_FENCE
773 #if !ECB_AVOID_PTHREADS
774 /*
775 * if you get undefined symbol references to pthread_mutex_lock,
776 * or failure to find pthread.h, then you should implement
777 * the ECB_MEMORY_FENCE operations for your cpu/compiler
778 * OR provide pthread.h and link against the posix thread library
779 * of your system.
780 */
781 #include <pthread.h>
782 #define ECB_NEEDS_PTHREADS 1
783 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
784
785 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
786 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
787 #endif
788#endif
789
790#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
791 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
792#endif
793
794#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
795 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
796#endif
797
798/*****************************************************************************/
799
800#if ECB_CPP
801 #define ecb_inline static inline
802#elif ECB_GCC_VERSION(2,5)
803 #define ecb_inline static __inline__
804#elif ECB_C99
805 #define ecb_inline static inline
806#else
807 #define ecb_inline static
808#endif
809
810#if ECB_GCC_VERSION(3,3)
811 #define ecb_restrict __restrict__
812#elif ECB_C99
813 #define ecb_restrict restrict
814#else
815 #define ecb_restrict
816#endif
817
818typedef int ecb_bool;
819
820#define ECB_CONCAT_(a, b) a ## b
821#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
822#define ECB_STRINGIFY_(a) # a
823#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
824#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
825
826#define ecb_function_ ecb_inline
827
828#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
829 #define ecb_attribute(attrlist) __attribute__ (attrlist)
830#else
831 #define ecb_attribute(attrlist)
832#endif
833
834#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
835 #define ecb_is_constant(expr) __builtin_constant_p (expr)
836#else
837 /* possible C11 impl for integral types
838 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
839 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
840
841 #define ecb_is_constant(expr) 0
842#endif
843
844#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
226# define expect(expr,value) __builtin_expect ((expr),(value)) 845 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else 846#else
232# define noinline 847 #define ecb_expect(expr,value) (expr)
233# define inline_speed static inline
234# endif 848#endif
235#else
236# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline
240#endif
241 849
850#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
851 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
852#else
853 #define ecb_prefetch(addr,rw,locality)
854#endif
855
856/* no emulation for ecb_decltype */
857#if ECB_CPP11
858 // older implementations might have problems with decltype(x)::type, work around it
859 template<class T> struct ecb_decltype_t { typedef T type; };
860 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
861#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
862 #define ecb_decltype(x) __typeof__ (x)
863#endif
864
865#if _MSC_VER >= 1300
866 #define ecb_deprecated __declspec (deprecated)
867#else
868 #define ecb_deprecated ecb_attribute ((__deprecated__))
869#endif
870
871#if _MSC_VER >= 1500
872 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
873#elif ECB_GCC_VERSION(4,5)
874 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
875#else
876 #define ecb_deprecated_message(msg) ecb_deprecated
877#endif
878
879#if _MSC_VER >= 1400
880 #define ecb_noinline __declspec (noinline)
881#else
882 #define ecb_noinline ecb_attribute ((__noinline__))
883#endif
884
885#define ecb_unused ecb_attribute ((__unused__))
886#define ecb_const ecb_attribute ((__const__))
887#define ecb_pure ecb_attribute ((__pure__))
888
889#if ECB_C11 || __IBMC_NORETURN
890 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
891 #define ecb_noreturn _Noreturn
892#elif ECB_CPP11
893 #define ecb_noreturn [[noreturn]]
894#elif _MSC_VER >= 1200
895 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
896 #define ecb_noreturn __declspec (noreturn)
897#else
898 #define ecb_noreturn ecb_attribute ((__noreturn__))
899#endif
900
901#if ECB_GCC_VERSION(4,3)
902 #define ecb_artificial ecb_attribute ((__artificial__))
903 #define ecb_hot ecb_attribute ((__hot__))
904 #define ecb_cold ecb_attribute ((__cold__))
905#else
906 #define ecb_artificial
907 #define ecb_hot
908 #define ecb_cold
909#endif
910
911/* put around conditional expressions if you are very sure that the */
912/* expression is mostly true or mostly false. note that these return */
913/* booleans, not the expression. */
242#define expect_false(expr) expect ((expr) != 0, 0) 914#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 915#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
916/* for compatibility to the rest of the world */
917#define ecb_likely(expr) ecb_expect_true (expr)
918#define ecb_unlikely(expr) ecb_expect_false (expr)
244 919
920/* count trailing zero bits and count # of one bits */
921#if ECB_GCC_VERSION(3,4) \
922 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
923 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
924 && ECB_CLANG_BUILTIN(__builtin_popcount))
925 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
926 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
927 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
928 #define ecb_ctz32(x) __builtin_ctz (x)
929 #define ecb_ctz64(x) __builtin_ctzll (x)
930 #define ecb_popcount32(x) __builtin_popcount (x)
931 /* no popcountll */
932#else
933 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
934 ecb_function_ ecb_const int
935 ecb_ctz32 (uint32_t x)
936 {
937#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
938 unsigned long r;
939 _BitScanForward (&r, x);
940 return (int)r;
941#else
942 int r = 0;
943
944 x &= ~x + 1; /* this isolates the lowest bit */
945
946#if ECB_branchless_on_i386
947 r += !!(x & 0xaaaaaaaa) << 0;
948 r += !!(x & 0xcccccccc) << 1;
949 r += !!(x & 0xf0f0f0f0) << 2;
950 r += !!(x & 0xff00ff00) << 3;
951 r += !!(x & 0xffff0000) << 4;
952#else
953 if (x & 0xaaaaaaaa) r += 1;
954 if (x & 0xcccccccc) r += 2;
955 if (x & 0xf0f0f0f0) r += 4;
956 if (x & 0xff00ff00) r += 8;
957 if (x & 0xffff0000) r += 16;
958#endif
959
960 return r;
961#endif
962 }
963
964 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
965 ecb_function_ ecb_const int
966 ecb_ctz64 (uint64_t x)
967 {
968#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
969 unsigned long r;
970 _BitScanForward64 (&r, x);
971 return (int)r;
972#else
973 int shift = x & 0xffffffff ? 0 : 32;
974 return ecb_ctz32 (x >> shift) + shift;
975#endif
976 }
977
978 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
979 ecb_function_ ecb_const int
980 ecb_popcount32 (uint32_t x)
981 {
982 x -= (x >> 1) & 0x55555555;
983 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
984 x = ((x >> 4) + x) & 0x0f0f0f0f;
985 x *= 0x01010101;
986
987 return x >> 24;
988 }
989
990 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
991 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
992 {
993#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
994 unsigned long r;
995 _BitScanReverse (&r, x);
996 return (int)r;
997#else
998 int r = 0;
999
1000 if (x >> 16) { x >>= 16; r += 16; }
1001 if (x >> 8) { x >>= 8; r += 8; }
1002 if (x >> 4) { x >>= 4; r += 4; }
1003 if (x >> 2) { x >>= 2; r += 2; }
1004 if (x >> 1) { r += 1; }
1005
1006 return r;
1007#endif
1008 }
1009
1010 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1011 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1012 {
1013#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1014 unsigned long r;
1015 _BitScanReverse64 (&r, x);
1016 return (int)r;
1017#else
1018 int r = 0;
1019
1020 if (x >> 32) { x >>= 32; r += 32; }
1021
1022 return r + ecb_ld32 (x);
1023#endif
1024 }
1025#endif
1026
1027ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1028ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1029ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1030ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1031
1032ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1033ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1034{
1035 return ( (x * 0x0802U & 0x22110U)
1036 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1037}
1038
1039ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1040ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1041{
1042 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1043 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1044 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1045 x = ( x >> 8 ) | ( x << 8);
1046
1047 return x;
1048}
1049
1050ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1051ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1052{
1053 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1054 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1055 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1056 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1057 x = ( x >> 16 ) | ( x << 16);
1058
1059 return x;
1060}
1061
1062/* popcount64 is only available on 64 bit cpus as gcc builtin */
1063/* so for this version we are lazy */
1064ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1065ecb_function_ ecb_const int
1066ecb_popcount64 (uint64_t x)
1067{
1068 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1069}
1070
1071ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1072ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1073ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1074ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1075ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1076ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1077ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1078ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1079
1080ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1081ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1082ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1083ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1084ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1085ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1086ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1087ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1088
1089#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1090 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1091 #define ecb_bswap16(x) __builtin_bswap16 (x)
1092 #else
1093 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1094 #endif
1095 #define ecb_bswap32(x) __builtin_bswap32 (x)
1096 #define ecb_bswap64(x) __builtin_bswap64 (x)
1097#elif _MSC_VER
1098 #include <stdlib.h>
1099 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1100 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1101 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1102#else
1103 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1104 ecb_function_ ecb_const uint16_t
1105 ecb_bswap16 (uint16_t x)
1106 {
1107 return ecb_rotl16 (x, 8);
1108 }
1109
1110 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1111 ecb_function_ ecb_const uint32_t
1112 ecb_bswap32 (uint32_t x)
1113 {
1114 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1115 }
1116
1117 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1118 ecb_function_ ecb_const uint64_t
1119 ecb_bswap64 (uint64_t x)
1120 {
1121 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1122 }
1123#endif
1124
1125#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1126 #define ecb_unreachable() __builtin_unreachable ()
1127#else
1128 /* this seems to work fine, but gcc always emits a warning for it :/ */
1129 ecb_inline ecb_noreturn void ecb_unreachable (void);
1130 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1131#endif
1132
1133/* try to tell the compiler that some condition is definitely true */
1134#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1135
1136ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1137ecb_inline ecb_const uint32_t
1138ecb_byteorder_helper (void)
1139{
1140 /* the union code still generates code under pressure in gcc, */
1141 /* but less than using pointers, and always seems to */
1142 /* successfully return a constant. */
1143 /* the reason why we have this horrible preprocessor mess */
1144 /* is to avoid it in all cases, at least on common architectures */
1145 /* or when using a recent enough gcc version (>= 4.6) */
1146#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1147 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1148 #define ECB_LITTLE_ENDIAN 1
1149 return 0x44332211;
1150#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1151 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1152 #define ECB_BIG_ENDIAN 1
1153 return 0x11223344;
1154#else
1155 union
1156 {
1157 uint8_t c[4];
1158 uint32_t u;
1159 } u = { 0x11, 0x22, 0x33, 0x44 };
1160 return u.u;
1161#endif
1162}
1163
1164ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1165ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1166ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1167ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1168
1169#if ECB_GCC_VERSION(3,0) || ECB_C99
1170 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1171#else
1172 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1173#endif
1174
1175#if ECB_CPP
1176 template<typename T>
1177 static inline T ecb_div_rd (T val, T div)
1178 {
1179 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1180 }
1181 template<typename T>
1182 static inline T ecb_div_ru (T val, T div)
1183 {
1184 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1185 }
1186#else
1187 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1188 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1189#endif
1190
1191#if ecb_cplusplus_does_not_suck
1192 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1193 template<typename T, int N>
1194 static inline int ecb_array_length (const T (&arr)[N])
1195 {
1196 return N;
1197 }
1198#else
1199 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1200#endif
1201
1202ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1203ecb_function_ ecb_const uint32_t
1204ecb_binary16_to_binary32 (uint32_t x)
1205{
1206 unsigned int s = (x & 0x8000) << (31 - 15);
1207 int e = (x >> 10) & 0x001f;
1208 unsigned int m = x & 0x03ff;
1209
1210 if (ecb_expect_false (e == 31))
1211 /* infinity or NaN */
1212 e = 255 - (127 - 15);
1213 else if (ecb_expect_false (!e))
1214 {
1215 if (ecb_expect_true (!m))
1216 /* zero, handled by code below by forcing e to 0 */
1217 e = 0 - (127 - 15);
1218 else
1219 {
1220 /* subnormal, renormalise */
1221 unsigned int s = 10 - ecb_ld32 (m);
1222
1223 m = (m << s) & 0x3ff; /* mask implicit bit */
1224 e -= s - 1;
1225 }
1226 }
1227
1228 /* e and m now are normalised, or zero, (or inf or nan) */
1229 e += 127 - 15;
1230
1231 return s | (e << 23) | (m << (23 - 10));
1232}
1233
1234ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1235ecb_function_ ecb_const uint16_t
1236ecb_binary32_to_binary16 (uint32_t x)
1237{
1238 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1239 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1240 unsigned int m = x & 0x007fffff;
1241
1242 x &= 0x7fffffff;
1243
1244 /* if it's within range of binary16 normals, use fast path */
1245 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1246 {
1247 /* mantissa round-to-even */
1248 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1249
1250 /* handle overflow */
1251 if (ecb_expect_false (m >= 0x00800000))
1252 {
1253 m >>= 1;
1254 e += 1;
1255 }
1256
1257 return s | (e << 10) | (m >> (23 - 10));
1258 }
1259
1260 /* handle large numbers and infinity */
1261 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1262 return s | 0x7c00;
1263
1264 /* handle zero, subnormals and small numbers */
1265 if (ecb_expect_true (x < 0x38800000))
1266 {
1267 /* zero */
1268 if (ecb_expect_true (!x))
1269 return s;
1270
1271 /* handle subnormals */
1272
1273 /* too small, will be zero */
1274 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1275 return s;
1276
1277 m |= 0x00800000; /* make implicit bit explicit */
1278
1279 /* very tricky - we need to round to the nearest e (+10) bit value */
1280 {
1281 unsigned int bits = 14 - e;
1282 unsigned int half = (1 << (bits - 1)) - 1;
1283 unsigned int even = (m >> bits) & 1;
1284
1285 /* if this overflows, we will end up with a normalised number */
1286 m = (m + half + even) >> bits;
1287 }
1288
1289 return s | m;
1290 }
1291
1292 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1293 m >>= 13;
1294
1295 return s | 0x7c00 | m | !m;
1296}
1297
1298/*******************************************************************************/
1299/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1300
1301/* basically, everything uses "ieee pure-endian" floating point numbers */
1302/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1303#if 0 \
1304 || __i386 || __i386__ \
1305 || ECB_GCC_AMD64 \
1306 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1307 || defined __s390__ || defined __s390x__ \
1308 || defined __mips__ \
1309 || defined __alpha__ \
1310 || defined __hppa__ \
1311 || defined __ia64__ \
1312 || defined __m68k__ \
1313 || defined __m88k__ \
1314 || defined __sh__ \
1315 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1316 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1317 || defined __aarch64__
1318 #define ECB_STDFP 1
1319 #include <string.h> /* for memcpy */
1320#else
1321 #define ECB_STDFP 0
1322#endif
1323
1324#ifndef ECB_NO_LIBM
1325
1326 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1327
1328 /* only the oldest of old doesn't have this one. solaris. */
1329 #ifdef INFINITY
1330 #define ECB_INFINITY INFINITY
1331 #else
1332 #define ECB_INFINITY HUGE_VAL
1333 #endif
1334
1335 #ifdef NAN
1336 #define ECB_NAN NAN
1337 #else
1338 #define ECB_NAN ECB_INFINITY
1339 #endif
1340
1341 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1342 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1343 #define ecb_frexpf(x,e) frexpf ((x), (e))
1344 #else
1345 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1346 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1347 #endif
1348
1349 /* convert a float to ieee single/binary32 */
1350 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1351 ecb_function_ ecb_const uint32_t
1352 ecb_float_to_binary32 (float x)
1353 {
1354 uint32_t r;
1355
1356 #if ECB_STDFP
1357 memcpy (&r, &x, 4);
1358 #else
1359 /* slow emulation, works for anything but -0 */
1360 uint32_t m;
1361 int e;
1362
1363 if (x == 0e0f ) return 0x00000000U;
1364 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1365 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1366 if (x != x ) return 0x7fbfffffU;
1367
1368 m = ecb_frexpf (x, &e) * 0x1000000U;
1369
1370 r = m & 0x80000000U;
1371
1372 if (r)
1373 m = -m;
1374
1375 if (e <= -126)
1376 {
1377 m &= 0xffffffU;
1378 m >>= (-125 - e);
1379 e = -126;
1380 }
1381
1382 r |= (e + 126) << 23;
1383 r |= m & 0x7fffffU;
1384 #endif
1385
1386 return r;
1387 }
1388
1389 /* converts an ieee single/binary32 to a float */
1390 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1391 ecb_function_ ecb_const float
1392 ecb_binary32_to_float (uint32_t x)
1393 {
1394 float r;
1395
1396 #if ECB_STDFP
1397 memcpy (&r, &x, 4);
1398 #else
1399 /* emulation, only works for normals and subnormals and +0 */
1400 int neg = x >> 31;
1401 int e = (x >> 23) & 0xffU;
1402
1403 x &= 0x7fffffU;
1404
1405 if (e)
1406 x |= 0x800000U;
1407 else
1408 e = 1;
1409
1410 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1411 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1412
1413 r = neg ? -r : r;
1414 #endif
1415
1416 return r;
1417 }
1418
1419 /* convert a double to ieee double/binary64 */
1420 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1421 ecb_function_ ecb_const uint64_t
1422 ecb_double_to_binary64 (double x)
1423 {
1424 uint64_t r;
1425
1426 #if ECB_STDFP
1427 memcpy (&r, &x, 8);
1428 #else
1429 /* slow emulation, works for anything but -0 */
1430 uint64_t m;
1431 int e;
1432
1433 if (x == 0e0 ) return 0x0000000000000000U;
1434 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1435 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1436 if (x != x ) return 0X7ff7ffffffffffffU;
1437
1438 m = frexp (x, &e) * 0x20000000000000U;
1439
1440 r = m & 0x8000000000000000;;
1441
1442 if (r)
1443 m = -m;
1444
1445 if (e <= -1022)
1446 {
1447 m &= 0x1fffffffffffffU;
1448 m >>= (-1021 - e);
1449 e = -1022;
1450 }
1451
1452 r |= ((uint64_t)(e + 1022)) << 52;
1453 r |= m & 0xfffffffffffffU;
1454 #endif
1455
1456 return r;
1457 }
1458
1459 /* converts an ieee double/binary64 to a double */
1460 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1461 ecb_function_ ecb_const double
1462 ecb_binary64_to_double (uint64_t x)
1463 {
1464 double r;
1465
1466 #if ECB_STDFP
1467 memcpy (&r, &x, 8);
1468 #else
1469 /* emulation, only works for normals and subnormals and +0 */
1470 int neg = x >> 63;
1471 int e = (x >> 52) & 0x7ffU;
1472
1473 x &= 0xfffffffffffffU;
1474
1475 if (e)
1476 x |= 0x10000000000000U;
1477 else
1478 e = 1;
1479
1480 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1481 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1482
1483 r = neg ? -r : r;
1484 #endif
1485
1486 return r;
1487 }
1488
1489 /* convert a float to ieee half/binary16 */
1490 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1491 ecb_function_ ecb_const uint16_t
1492 ecb_float_to_binary16 (float x)
1493 {
1494 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1495 }
1496
1497 /* convert an ieee half/binary16 to float */
1498 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1499 ecb_function_ ecb_const float
1500 ecb_binary16_to_float (uint16_t x)
1501 {
1502 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1503 }
1504
1505#endif
1506
1507#endif
1508
1509/* ECB.H END */
1510
1511#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1512/* if your architecture doesn't need memory fences, e.g. because it is
1513 * single-cpu/core, or if you use libev in a project that doesn't use libev
1514 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1515 * libev, in which cases the memory fences become nops.
1516 * alternatively, you can remove this #error and link against libpthread,
1517 * which will then provide the memory fences.
1518 */
1519# error "memory fences not defined for your architecture, please report"
1520#endif
1521
1522#ifndef ECB_MEMORY_FENCE
1523# define ECB_MEMORY_FENCE do { } while (0)
1524# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1525# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1526#endif
1527
1528#define expect_false(cond) ecb_expect_false (cond)
1529#define expect_true(cond) ecb_expect_true (cond)
1530#define noinline ecb_noinline
1531
1532#define inline_size ecb_inline
1533
1534#if EV_FEATURE_CODE
1535# define inline_speed ecb_inline
1536#else
1537# define inline_speed noinline static
1538#endif
1539
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1540#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1541
1542#if EV_MINPRI == EV_MAXPRI
1543# define ABSPRI(w) (((W)w), 0)
1544#else
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 1545# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1546#endif
247 1547
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 1548#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 1549#define EMPTY2(a,b) /* used to suppress some warnings */
250 1550
251typedef ev_watcher *W; 1551typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 1552typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 1553typedef ev_watcher_time *WT;
254 1554
1555#define ev_active(w) ((W)(w))->active
1556#define ev_at(w) ((WT)(w))->at
1557
1558#if EV_USE_REALTIME
1559/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1560/* giving it a reasonably high chance of working on typical architectures */
1561static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1562#endif
1563
1564#if EV_USE_MONOTONIC
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1565static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1566#endif
1567
1568#ifndef EV_FD_TO_WIN32_HANDLE
1569# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1570#endif
1571#ifndef EV_WIN32_HANDLE_TO_FD
1572# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1573#endif
1574#ifndef EV_WIN32_CLOSE_FD
1575# define EV_WIN32_CLOSE_FD(fd) close (fd)
1576#endif
256 1577
257#ifdef _WIN32 1578#ifdef _WIN32
258# include "ev_win32.c" 1579# include "ev_win32.c"
259#endif 1580#endif
260 1581
261/*****************************************************************************/ 1582/*****************************************************************************/
262 1583
1584/* define a suitable floor function (only used by periodics atm) */
1585
1586#if EV_USE_FLOOR
1587# include <math.h>
1588# define ev_floor(v) floor (v)
1589#else
1590
1591#include <float.h>
1592
1593/* a floor() replacement function, should be independent of ev_tstamp type */
1594noinline
1595static ev_tstamp
1596ev_floor (ev_tstamp v)
1597{
1598 /* the choice of shift factor is not terribly important */
1599#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1600 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1601#else
1602 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1603#endif
1604
1605 /* argument too large for an unsigned long? */
1606 if (expect_false (v >= shift))
1607 {
1608 ev_tstamp f;
1609
1610 if (v == v - 1.)
1611 return v; /* very large number */
1612
1613 f = shift * ev_floor (v * (1. / shift));
1614 return f + ev_floor (v - f);
1615 }
1616
1617 /* special treatment for negative args? */
1618 if (expect_false (v < 0.))
1619 {
1620 ev_tstamp f = -ev_floor (-v);
1621
1622 return f - (f == v ? 0 : 1);
1623 }
1624
1625 /* fits into an unsigned long */
1626 return (unsigned long)v;
1627}
1628
1629#endif
1630
1631/*****************************************************************************/
1632
1633#ifdef __linux
1634# include <sys/utsname.h>
1635#endif
1636
1637noinline ecb_cold
1638static unsigned int
1639ev_linux_version (void)
1640{
1641#ifdef __linux
1642 unsigned int v = 0;
1643 struct utsname buf;
1644 int i;
1645 char *p = buf.release;
1646
1647 if (uname (&buf))
1648 return 0;
1649
1650 for (i = 3+1; --i; )
1651 {
1652 unsigned int c = 0;
1653
1654 for (;;)
1655 {
1656 if (*p >= '0' && *p <= '9')
1657 c = c * 10 + *p++ - '0';
1658 else
1659 {
1660 p += *p == '.';
1661 break;
1662 }
1663 }
1664
1665 v = (v << 8) | c;
1666 }
1667
1668 return v;
1669#else
1670 return 0;
1671#endif
1672}
1673
1674/*****************************************************************************/
1675
1676#if EV_AVOID_STDIO
1677noinline ecb_cold
1678static void
1679ev_printerr (const char *msg)
1680{
1681 write (STDERR_FILENO, msg, strlen (msg));
1682}
1683#endif
1684
263static void (*syserr_cb)(const char *msg); 1685static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
264 1686
1687ecb_cold
265void 1688void
266ev_set_syserr_cb (void (*cb)(const char *msg)) 1689ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
267{ 1690{
268 syserr_cb = cb; 1691 syserr_cb = cb;
269} 1692}
270 1693
271static void noinline 1694noinline ecb_cold
1695static void
272syserr (const char *msg) 1696ev_syserr (const char *msg)
273{ 1697{
274 if (!msg) 1698 if (!msg)
275 msg = "(libev) system error"; 1699 msg = "(libev) system error";
276 1700
277 if (syserr_cb) 1701 if (syserr_cb)
278 syserr_cb (msg); 1702 syserr_cb (msg);
279 else 1703 else
280 { 1704 {
1705#if EV_AVOID_STDIO
1706 ev_printerr (msg);
1707 ev_printerr (": ");
1708 ev_printerr (strerror (errno));
1709 ev_printerr ("\n");
1710#else
281 perror (msg); 1711 perror (msg);
1712#endif
282 abort (); 1713 abort ();
283 } 1714 }
284} 1715}
285 1716
286static void *(*alloc)(void *ptr, long size); 1717static void *
1718ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
1719{
1720 /* some systems, notably openbsd and darwin, fail to properly
1721 * implement realloc (x, 0) (as required by both ansi c-89 and
1722 * the single unix specification, so work around them here.
1723 * recently, also (at least) fedora and debian started breaking it,
1724 * despite documenting it otherwise.
1725 */
287 1726
1727 if (size)
1728 return realloc (ptr, size);
1729
1730 free (ptr);
1731 return 0;
1732}
1733
1734static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
1735
1736ecb_cold
288void 1737void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 1738ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
290{ 1739{
291 alloc = cb; 1740 alloc = cb;
292} 1741}
293 1742
294inline_speed void * 1743inline_speed void *
295ev_realloc (void *ptr, long size) 1744ev_realloc (void *ptr, long size)
296{ 1745{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1746 ptr = alloc (ptr, size);
298 1747
299 if (!ptr && size) 1748 if (!ptr && size)
300 { 1749 {
1750#if EV_AVOID_STDIO
1751 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1752#else
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1753 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1754#endif
302 abort (); 1755 abort ();
303 } 1756 }
304 1757
305 return ptr; 1758 return ptr;
306} 1759}
308#define ev_malloc(size) ev_realloc (0, (size)) 1761#define ev_malloc(size) ev_realloc (0, (size))
309#define ev_free(ptr) ev_realloc ((ptr), 0) 1762#define ev_free(ptr) ev_realloc ((ptr), 0)
310 1763
311/*****************************************************************************/ 1764/*****************************************************************************/
312 1765
1766/* set in reify when reification needed */
1767#define EV_ANFD_REIFY 1
1768
1769/* file descriptor info structure */
313typedef struct 1770typedef struct
314{ 1771{
315 WL head; 1772 WL head;
316 unsigned char events; 1773 unsigned char events; /* the events watched for */
1774 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1775 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
317 unsigned char reify; 1776 unsigned char unused;
1777#if EV_USE_EPOLL
1778 unsigned int egen; /* generation counter to counter epoll bugs */
1779#endif
318#if EV_SELECT_IS_WINSOCKET 1780#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
319 SOCKET handle; 1781 SOCKET handle;
320#endif 1782#endif
1783#if EV_USE_IOCP
1784 OVERLAPPED or, ow;
1785#endif
321} ANFD; 1786} ANFD;
322 1787
1788/* stores the pending event set for a given watcher */
323typedef struct 1789typedef struct
324{ 1790{
325 W w; 1791 W w;
326 int events; 1792 int events; /* the pending event set for the given watcher */
327} ANPENDING; 1793} ANPENDING;
328 1794
329#if EV_USE_INOTIFY 1795#if EV_USE_INOTIFY
1796/* hash table entry per inotify-id */
330typedef struct 1797typedef struct
331{ 1798{
332 WL head; 1799 WL head;
333} ANFS; 1800} ANFS;
1801#endif
1802
1803/* Heap Entry */
1804#if EV_HEAP_CACHE_AT
1805 /* a heap element */
1806 typedef struct {
1807 ev_tstamp at;
1808 WT w;
1809 } ANHE;
1810
1811 #define ANHE_w(he) (he).w /* access watcher, read-write */
1812 #define ANHE_at(he) (he).at /* access cached at, read-only */
1813 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1814#else
1815 /* a heap element */
1816 typedef WT ANHE;
1817
1818 #define ANHE_w(he) (he)
1819 #define ANHE_at(he) (he)->at
1820 #define ANHE_at_cache(he)
334#endif 1821#endif
335 1822
336#if EV_MULTIPLICITY 1823#if EV_MULTIPLICITY
337 1824
338 struct ev_loop 1825 struct ev_loop
344 #undef VAR 1831 #undef VAR
345 }; 1832 };
346 #include "ev_wrap.h" 1833 #include "ev_wrap.h"
347 1834
348 static struct ev_loop default_loop_struct; 1835 static struct ev_loop default_loop_struct;
349 struct ev_loop *ev_default_loop_ptr; 1836 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
350 1837
351#else 1838#else
352 1839
353 ev_tstamp ev_rt_now; 1840 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
354 #define VAR(name,decl) static decl; 1841 #define VAR(name,decl) static decl;
355 #include "ev_vars.h" 1842 #include "ev_vars.h"
356 #undef VAR 1843 #undef VAR
357 1844
358 static int ev_default_loop_ptr; 1845 static int ev_default_loop_ptr;
359 1846
360#endif 1847#endif
361 1848
1849#if EV_FEATURE_API
1850# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1851# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1852# define EV_INVOKE_PENDING invoke_cb (EV_A)
1853#else
1854# define EV_RELEASE_CB (void)0
1855# define EV_ACQUIRE_CB (void)0
1856# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1857#endif
1858
1859#define EVBREAK_RECURSE 0x80
1860
362/*****************************************************************************/ 1861/*****************************************************************************/
363 1862
1863#ifndef EV_HAVE_EV_TIME
364ev_tstamp 1864ev_tstamp
365ev_time (void) 1865ev_time (void) EV_NOEXCEPT
366{ 1866{
367#if EV_USE_REALTIME 1867#if EV_USE_REALTIME
1868 if (expect_true (have_realtime))
1869 {
368 struct timespec ts; 1870 struct timespec ts;
369 clock_gettime (CLOCK_REALTIME, &ts); 1871 clock_gettime (CLOCK_REALTIME, &ts);
370 return ts.tv_sec + ts.tv_nsec * 1e-9; 1872 return ts.tv_sec + ts.tv_nsec * 1e-9;
371#else 1873 }
1874#endif
1875
372 struct timeval tv; 1876 struct timeval tv;
373 gettimeofday (&tv, 0); 1877 gettimeofday (&tv, 0);
374 return tv.tv_sec + tv.tv_usec * 1e-6; 1878 return tv.tv_sec + tv.tv_usec * 1e-6;
375#endif
376} 1879}
1880#endif
377 1881
378ev_tstamp inline_size 1882inline_size ev_tstamp
379get_clock (void) 1883get_clock (void)
380{ 1884{
381#if EV_USE_MONOTONIC 1885#if EV_USE_MONOTONIC
382 if (expect_true (have_monotonic)) 1886 if (expect_true (have_monotonic))
383 { 1887 {
390 return ev_time (); 1894 return ev_time ();
391} 1895}
392 1896
393#if EV_MULTIPLICITY 1897#if EV_MULTIPLICITY
394ev_tstamp 1898ev_tstamp
395ev_now (EV_P) 1899ev_now (EV_P) EV_NOEXCEPT
396{ 1900{
397 return ev_rt_now; 1901 return ev_rt_now;
398} 1902}
399#endif 1903#endif
400 1904
401#define array_roundsize(type,n) (((n) | 4) & ~3) 1905void
1906ev_sleep (ev_tstamp delay) EV_NOEXCEPT
1907{
1908 if (delay > 0.)
1909 {
1910#if EV_USE_NANOSLEEP
1911 struct timespec ts;
1912
1913 EV_TS_SET (ts, delay);
1914 nanosleep (&ts, 0);
1915#elif defined _WIN32
1916 /* maybe this should round up, as ms is very low resolution */
1917 /* compared to select (µs) or nanosleep (ns) */
1918 Sleep ((unsigned long)(delay * 1e3));
1919#else
1920 struct timeval tv;
1921
1922 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1923 /* something not guaranteed by newer posix versions, but guaranteed */
1924 /* by older ones */
1925 EV_TV_SET (tv, delay);
1926 select (0, 0, 0, 0, &tv);
1927#endif
1928 }
1929}
1930
1931/*****************************************************************************/
1932
1933#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1934
1935/* find a suitable new size for the given array, */
1936/* hopefully by rounding to a nice-to-malloc size */
1937inline_size int
1938array_nextsize (int elem, int cur, int cnt)
1939{
1940 int ncur = cur + 1;
1941
1942 do
1943 ncur <<= 1;
1944 while (cnt > ncur);
1945
1946 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1947 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1948 {
1949 ncur *= elem;
1950 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1951 ncur = ncur - sizeof (void *) * 4;
1952 ncur /= elem;
1953 }
1954
1955 return ncur;
1956}
1957
1958noinline ecb_cold
1959static void *
1960array_realloc (int elem, void *base, int *cur, int cnt)
1961{
1962 *cur = array_nextsize (elem, *cur, cnt);
1963 return ev_realloc (base, elem * *cur);
1964}
1965
1966#define array_init_zero(base,count) \
1967 memset ((void *)(base), 0, sizeof (*(base)) * (count))
402 1968
403#define array_needsize(type,base,cur,cnt,init) \ 1969#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 1970 if (expect_false ((cnt) > (cur))) \
405 { \ 1971 { \
406 int newcnt = cur; \ 1972 ecb_unused int ocur_ = (cur); \
407 do \ 1973 (base) = (type *)array_realloc \
408 { \ 1974 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 1975 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 1976 }
417 1977
1978#if 0
418#define array_slim(type,stem) \ 1979#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 1980 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 1981 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 1982 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 1983 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1984 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 1985 }
1986#endif
425 1987
426#define array_free(stem, idx) \ 1988#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1989 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
428 1990
429/*****************************************************************************/ 1991/*****************************************************************************/
430 1992
1993/* dummy callback for pending events */
431void noinline 1994noinline
1995static void
1996pendingcb (EV_P_ ev_prepare *w, int revents)
1997{
1998}
1999
2000noinline
2001void
432ev_feed_event (EV_P_ void *w, int revents) 2002ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
433{ 2003{
434 W w_ = (W)w; 2004 W w_ = (W)w;
2005 int pri = ABSPRI (w_);
435 2006
436 if (expect_false (w_->pending)) 2007 if (expect_false (w_->pending))
2008 pendings [pri][w_->pending - 1].events |= revents;
2009 else
437 { 2010 {
2011 w_->pending = ++pendingcnt [pri];
2012 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
2013 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 2014 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 2015 }
441 2016
442 w_->pending = ++pendingcnt [ABSPRI (w_)]; 2017 pendingpri = NUMPRI - 1;
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 2018}
447 2019
448void inline_size 2020inline_speed void
2021feed_reverse (EV_P_ W w)
2022{
2023 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
2024 rfeeds [rfeedcnt++] = w;
2025}
2026
2027inline_size void
2028feed_reverse_done (EV_P_ int revents)
2029{
2030 do
2031 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2032 while (rfeedcnt);
2033}
2034
2035inline_speed void
449queue_events (EV_P_ W *events, int eventcnt, int type) 2036queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 2037{
451 int i; 2038 int i;
452 2039
453 for (i = 0; i < eventcnt; ++i) 2040 for (i = 0; i < eventcnt; ++i)
454 ev_feed_event (EV_A_ events [i], type); 2041 ev_feed_event (EV_A_ events [i], type);
455} 2042}
456 2043
457/*****************************************************************************/ 2044/*****************************************************************************/
458 2045
459void inline_size 2046inline_speed void
460anfds_init (ANFD *base, int count)
461{
462 while (count--)
463 {
464 base->head = 0;
465 base->events = EV_NONE;
466 base->reify = 0;
467
468 ++base;
469 }
470}
471
472void inline_speed
473fd_event (EV_P_ int fd, int revents) 2047fd_event_nocheck (EV_P_ int fd, int revents)
474{ 2048{
475 ANFD *anfd = anfds + fd; 2049 ANFD *anfd = anfds + fd;
476 ev_io *w; 2050 ev_io *w;
477 2051
478 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2052 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
482 if (ev) 2056 if (ev)
483 ev_feed_event (EV_A_ (W)w, ev); 2057 ev_feed_event (EV_A_ (W)w, ev);
484 } 2058 }
485} 2059}
486 2060
487void 2061/* do not submit kernel events for fds that have reify set */
2062/* because that means they changed while we were polling for new events */
2063inline_speed void
488ev_feed_fd_event (EV_P_ int fd, int revents) 2064fd_event (EV_P_ int fd, int revents)
489{ 2065{
2066 ANFD *anfd = anfds + fd;
2067
2068 if (expect_true (!anfd->reify))
490 fd_event (EV_A_ fd, revents); 2069 fd_event_nocheck (EV_A_ fd, revents);
491} 2070}
492 2071
493void inline_size 2072void
2073ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
2074{
2075 if (fd >= 0 && fd < anfdmax)
2076 fd_event_nocheck (EV_A_ fd, revents);
2077}
2078
2079/* make sure the external fd watch events are in-sync */
2080/* with the kernel/libev internal state */
2081inline_size void
494fd_reify (EV_P) 2082fd_reify (EV_P)
495{ 2083{
496 int i; 2084 int i;
2085
2086#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2087 for (i = 0; i < fdchangecnt; ++i)
2088 {
2089 int fd = fdchanges [i];
2090 ANFD *anfd = anfds + fd;
2091
2092 if (anfd->reify & EV__IOFDSET && anfd->head)
2093 {
2094 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2095
2096 if (handle != anfd->handle)
2097 {
2098 unsigned long arg;
2099
2100 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2101
2102 /* handle changed, but fd didn't - we need to do it in two steps */
2103 backend_modify (EV_A_ fd, anfd->events, 0);
2104 anfd->events = 0;
2105 anfd->handle = handle;
2106 }
2107 }
2108 }
2109#endif
497 2110
498 for (i = 0; i < fdchangecnt; ++i) 2111 for (i = 0; i < fdchangecnt; ++i)
499 { 2112 {
500 int fd = fdchanges [i]; 2113 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 2114 ANFD *anfd = anfds + fd;
502 ev_io *w; 2115 ev_io *w;
503 2116
504 int events = 0; 2117 unsigned char o_events = anfd->events;
2118 unsigned char o_reify = anfd->reify;
505 2119
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2120 anfd->reify = 0;
507 events |= w->events;
508 2121
509#if EV_SELECT_IS_WINSOCKET 2122 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
510 if (events)
511 { 2123 {
512 unsigned long argp; 2124 anfd->events = 0;
513 anfd->handle = _get_osfhandle (fd); 2125
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 2126 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2127 anfd->events |= (unsigned char)w->events;
2128
2129 if (o_events != anfd->events)
2130 o_reify = EV__IOFDSET; /* actually |= */
515 } 2131 }
516#endif
517 2132
518 anfd->reify = 0; 2133 if (o_reify & EV__IOFDSET)
519
520 backend_modify (EV_A_ fd, anfd->events, events); 2134 backend_modify (EV_A_ fd, o_events, anfd->events);
521 anfd->events = events;
522 } 2135 }
523 2136
524 fdchangecnt = 0; 2137 fdchangecnt = 0;
525} 2138}
526 2139
2140/* something about the given fd changed */
527void inline_size 2141inline_size
2142void
528fd_change (EV_P_ int fd) 2143fd_change (EV_P_ int fd, int flags)
529{ 2144{
530 if (expect_false (anfds [fd].reify)) 2145 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 2146 anfds [fd].reify |= flags;
534 2147
2148 if (expect_true (!reify))
2149 {
535 ++fdchangecnt; 2150 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 2151 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 2152 fdchanges [fdchangecnt - 1] = fd;
2153 }
538} 2154}
539 2155
540void inline_speed 2156/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2157inline_speed ecb_cold void
541fd_kill (EV_P_ int fd) 2158fd_kill (EV_P_ int fd)
542{ 2159{
543 ev_io *w; 2160 ev_io *w;
544 2161
545 while ((w = (ev_io *)anfds [fd].head)) 2162 while ((w = (ev_io *)anfds [fd].head))
547 ev_io_stop (EV_A_ w); 2164 ev_io_stop (EV_A_ w);
548 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2165 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
549 } 2166 }
550} 2167}
551 2168
552int inline_size 2169/* check whether the given fd is actually valid, for error recovery */
2170inline_size ecb_cold int
553fd_valid (int fd) 2171fd_valid (int fd)
554{ 2172{
555#ifdef _WIN32 2173#ifdef _WIN32
556 return _get_osfhandle (fd) != -1; 2174 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
557#else 2175#else
558 return fcntl (fd, F_GETFD) != -1; 2176 return fcntl (fd, F_GETFD) != -1;
559#endif 2177#endif
560} 2178}
561 2179
562/* called on EBADF to verify fds */ 2180/* called on EBADF to verify fds */
563static void noinline 2181noinline ecb_cold
2182static void
564fd_ebadf (EV_P) 2183fd_ebadf (EV_P)
565{ 2184{
566 int fd; 2185 int fd;
567 2186
568 for (fd = 0; fd < anfdmax; ++fd) 2187 for (fd = 0; fd < anfdmax; ++fd)
569 if (anfds [fd].events) 2188 if (anfds [fd].events)
570 if (!fd_valid (fd) == -1 && errno == EBADF) 2189 if (!fd_valid (fd) && errno == EBADF)
571 fd_kill (EV_A_ fd); 2190 fd_kill (EV_A_ fd);
572} 2191}
573 2192
574/* called on ENOMEM in select/poll to kill some fds and retry */ 2193/* called on ENOMEM in select/poll to kill some fds and retry */
575static void noinline 2194noinline ecb_cold
2195static void
576fd_enomem (EV_P) 2196fd_enomem (EV_P)
577{ 2197{
578 int fd; 2198 int fd;
579 2199
580 for (fd = anfdmax; fd--; ) 2200 for (fd = anfdmax; fd--; )
581 if (anfds [fd].events) 2201 if (anfds [fd].events)
582 { 2202 {
583 fd_kill (EV_A_ fd); 2203 fd_kill (EV_A_ fd);
584 return; 2204 break;
585 } 2205 }
586} 2206}
587 2207
588/* usually called after fork if backend needs to re-arm all fds from scratch */ 2208/* usually called after fork if backend needs to re-arm all fds from scratch */
589static void noinline 2209noinline
2210static void
590fd_rearm_all (EV_P) 2211fd_rearm_all (EV_P)
591{ 2212{
592 int fd; 2213 int fd;
593 2214
594 for (fd = 0; fd < anfdmax; ++fd) 2215 for (fd = 0; fd < anfdmax; ++fd)
595 if (anfds [fd].events) 2216 if (anfds [fd].events)
596 { 2217 {
597 anfds [fd].events = 0; 2218 anfds [fd].events = 0;
598 fd_change (EV_A_ fd); 2219 anfds [fd].emask = 0;
2220 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
599 } 2221 }
600} 2222}
601 2223
2224/* used to prepare libev internal fd's */
2225/* this is not fork-safe */
2226inline_speed void
2227fd_intern (int fd)
2228{
2229#ifdef _WIN32
2230 unsigned long arg = 1;
2231 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2232#else
2233 fcntl (fd, F_SETFD, FD_CLOEXEC);
2234 fcntl (fd, F_SETFL, O_NONBLOCK);
2235#endif
2236}
2237
602/*****************************************************************************/ 2238/*****************************************************************************/
603 2239
604void inline_speed 2240/*
605upheap (WT *heap, int k) 2241 * the heap functions want a real array index. array index 0 is guaranteed to not
606{ 2242 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
607 WT w = heap [k]; 2243 * the branching factor of the d-tree.
2244 */
608 2245
609 while (k && heap [k >> 1]->at > w->at) 2246/*
610 { 2247 * at the moment we allow libev the luxury of two heaps,
611 heap [k] = heap [k >> 1]; 2248 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
612 ((W)heap [k])->active = k + 1; 2249 * which is more cache-efficient.
613 k >>= 1; 2250 * the difference is about 5% with 50000+ watchers.
614 } 2251 */
2252#if EV_USE_4HEAP
615 2253
616 heap [k] = w; 2254#define DHEAP 4
617 ((W)heap [k])->active = k + 1; 2255#define HEAP0 (DHEAP - 1) /* index of first element in heap */
2256#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2257#define UPHEAP_DONE(p,k) ((p) == (k))
618 2258
619} 2259/* away from the root */
620 2260inline_speed void
621void inline_speed
622downheap (WT *heap, int N, int k) 2261downheap (ANHE *heap, int N, int k)
623{ 2262{
624 WT w = heap [k]; 2263 ANHE he = heap [k];
2264 ANHE *E = heap + N + HEAP0;
625 2265
626 while (k < (N >> 1)) 2266 for (;;)
627 { 2267 {
628 int j = k << 1; 2268 ev_tstamp minat;
2269 ANHE *minpos;
2270 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
629 2271
630 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 2272 /* find minimum child */
2273 if (expect_true (pos + DHEAP - 1 < E))
631 ++j; 2274 {
632 2275 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
633 if (w->at <= heap [j]->at) 2276 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2277 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2278 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2279 }
2280 else if (pos < E)
2281 {
2282 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2283 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2284 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2285 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2286 }
2287 else
634 break; 2288 break;
635 2289
2290 if (ANHE_at (he) <= minat)
2291 break;
2292
2293 heap [k] = *minpos;
2294 ev_active (ANHE_w (*minpos)) = k;
2295
2296 k = minpos - heap;
2297 }
2298
2299 heap [k] = he;
2300 ev_active (ANHE_w (he)) = k;
2301}
2302
2303#else /* 4HEAP */
2304
2305#define HEAP0 1
2306#define HPARENT(k) ((k) >> 1)
2307#define UPHEAP_DONE(p,k) (!(p))
2308
2309/* away from the root */
2310inline_speed void
2311downheap (ANHE *heap, int N, int k)
2312{
2313 ANHE he = heap [k];
2314
2315 for (;;)
2316 {
2317 int c = k << 1;
2318
2319 if (c >= N + HEAP0)
2320 break;
2321
2322 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2323 ? 1 : 0;
2324
2325 if (ANHE_at (he) <= ANHE_at (heap [c]))
2326 break;
2327
636 heap [k] = heap [j]; 2328 heap [k] = heap [c];
637 ((W)heap [k])->active = k + 1; 2329 ev_active (ANHE_w (heap [k])) = k;
2330
638 k = j; 2331 k = c;
639 } 2332 }
640 2333
641 heap [k] = w; 2334 heap [k] = he;
642 ((W)heap [k])->active = k + 1; 2335 ev_active (ANHE_w (he)) = k;
643} 2336}
2337#endif
644 2338
645void inline_size 2339/* towards the root */
2340inline_speed void
2341upheap (ANHE *heap, int k)
2342{
2343 ANHE he = heap [k];
2344
2345 for (;;)
2346 {
2347 int p = HPARENT (k);
2348
2349 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2350 break;
2351
2352 heap [k] = heap [p];
2353 ev_active (ANHE_w (heap [k])) = k;
2354 k = p;
2355 }
2356
2357 heap [k] = he;
2358 ev_active (ANHE_w (he)) = k;
2359}
2360
2361/* move an element suitably so it is in a correct place */
2362inline_size void
646adjustheap (WT *heap, int N, int k) 2363adjustheap (ANHE *heap, int N, int k)
647{ 2364{
2365 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
648 upheap (heap, k); 2366 upheap (heap, k);
2367 else
649 downheap (heap, N, k); 2368 downheap (heap, N, k);
2369}
2370
2371/* rebuild the heap: this function is used only once and executed rarely */
2372inline_size void
2373reheap (ANHE *heap, int N)
2374{
2375 int i;
2376
2377 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2378 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2379 for (i = 0; i < N; ++i)
2380 upheap (heap, i + HEAP0);
650} 2381}
651 2382
652/*****************************************************************************/ 2383/*****************************************************************************/
653 2384
2385/* associate signal watchers to a signal signal */
654typedef struct 2386typedef struct
655{ 2387{
2388 EV_ATOMIC_T pending;
2389#if EV_MULTIPLICITY
2390 EV_P;
2391#endif
656 WL head; 2392 WL head;
657 sig_atomic_t volatile gotsig;
658} ANSIG; 2393} ANSIG;
659 2394
660static ANSIG *signals; 2395static ANSIG signals [EV_NSIG - 1];
661static int signalmax;
662 2396
663static int sigpipe [2]; 2397/*****************************************************************************/
664static sig_atomic_t volatile gotsig;
665static ev_io sigev;
666 2398
667void inline_size 2399#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
668signals_init (ANSIG *base, int count)
669{
670 while (count--)
671 {
672 base->head = 0;
673 base->gotsig = 0;
674 2400
675 ++base; 2401noinline ecb_cold
676 }
677}
678
679static void 2402static void
680sighandler (int signum) 2403evpipe_init (EV_P)
681{ 2404{
682#if _WIN32 2405 if (!ev_is_active (&pipe_w))
683 signal (signum, sighandler); 2406 {
2407 int fds [2];
2408
2409# if EV_USE_EVENTFD
2410 fds [0] = -1;
2411 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2412 if (fds [1] < 0 && errno == EINVAL)
2413 fds [1] = eventfd (0, 0);
2414
2415 if (fds [1] < 0)
684#endif 2416# endif
2417 {
2418 while (pipe (fds))
2419 ev_syserr ("(libev) error creating signal/async pipe");
685 2420
686 signals [signum - 1].gotsig = 1; 2421 fd_intern (fds [0]);
2422 }
687 2423
688 if (!gotsig) 2424 evpipe [0] = fds [0];
2425
2426 if (evpipe [1] < 0)
2427 evpipe [1] = fds [1]; /* first call, set write fd */
2428 else
2429 {
2430 /* on subsequent calls, do not change evpipe [1] */
2431 /* so that evpipe_write can always rely on its value. */
2432 /* this branch does not do anything sensible on windows, */
2433 /* so must not be executed on windows */
2434
2435 dup2 (fds [1], evpipe [1]);
2436 close (fds [1]);
2437 }
2438
2439 fd_intern (evpipe [1]);
2440
2441 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2442 ev_io_start (EV_A_ &pipe_w);
2443 ev_unref (EV_A); /* watcher should not keep loop alive */
689 { 2444 }
2445}
2446
2447inline_speed void
2448evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2449{
2450 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2451
2452 if (expect_true (*flag))
2453 return;
2454
2455 *flag = 1;
2456 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2457
2458 pipe_write_skipped = 1;
2459
2460 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2461
2462 if (pipe_write_wanted)
2463 {
690 int old_errno = errno; 2464 int old_errno;
691 gotsig = 1; 2465
692 write (sigpipe [1], &signum, 1); 2466 pipe_write_skipped = 0;
2467 ECB_MEMORY_FENCE_RELEASE;
2468
2469 old_errno = errno; /* save errno because write will clobber it */
2470
2471#if EV_USE_EVENTFD
2472 if (evpipe [0] < 0)
2473 {
2474 uint64_t counter = 1;
2475 write (evpipe [1], &counter, sizeof (uint64_t));
2476 }
2477 else
2478#endif
2479 {
2480#ifdef _WIN32
2481 WSABUF buf;
2482 DWORD sent;
2483 buf.buf = (char *)&buf;
2484 buf.len = 1;
2485 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2486#else
2487 write (evpipe [1], &(evpipe [1]), 1);
2488#endif
2489 }
2490
693 errno = old_errno; 2491 errno = old_errno;
694 } 2492 }
695} 2493}
696 2494
2495/* called whenever the libev signal pipe */
2496/* got some events (signal, async) */
2497static void
2498pipecb (EV_P_ ev_io *iow, int revents)
2499{
2500 int i;
2501
2502 if (revents & EV_READ)
2503 {
2504#if EV_USE_EVENTFD
2505 if (evpipe [0] < 0)
2506 {
2507 uint64_t counter;
2508 read (evpipe [1], &counter, sizeof (uint64_t));
2509 }
2510 else
2511#endif
2512 {
2513 char dummy[4];
2514#ifdef _WIN32
2515 WSABUF buf;
2516 DWORD recvd;
2517 DWORD flags = 0;
2518 buf.buf = dummy;
2519 buf.len = sizeof (dummy);
2520 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2521#else
2522 read (evpipe [0], &dummy, sizeof (dummy));
2523#endif
2524 }
2525 }
2526
2527 pipe_write_skipped = 0;
2528
2529 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2530
2531#if EV_SIGNAL_ENABLE
2532 if (sig_pending)
2533 {
2534 sig_pending = 0;
2535
2536 ECB_MEMORY_FENCE;
2537
2538 for (i = EV_NSIG - 1; i--; )
2539 if (expect_false (signals [i].pending))
2540 ev_feed_signal_event (EV_A_ i + 1);
2541 }
2542#endif
2543
2544#if EV_ASYNC_ENABLE
2545 if (async_pending)
2546 {
2547 async_pending = 0;
2548
2549 ECB_MEMORY_FENCE;
2550
2551 for (i = asynccnt; i--; )
2552 if (asyncs [i]->sent)
2553 {
2554 asyncs [i]->sent = 0;
2555 ECB_MEMORY_FENCE_RELEASE;
2556 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2557 }
2558 }
2559#endif
2560}
2561
2562/*****************************************************************************/
2563
2564void
2565ev_feed_signal (int signum) EV_NOEXCEPT
2566{
2567#if EV_MULTIPLICITY
2568 EV_P;
2569 ECB_MEMORY_FENCE_ACQUIRE;
2570 EV_A = signals [signum - 1].loop;
2571
2572 if (!EV_A)
2573 return;
2574#endif
2575
2576 signals [signum - 1].pending = 1;
2577 evpipe_write (EV_A_ &sig_pending);
2578}
2579
2580static void
2581ev_sighandler (int signum)
2582{
2583#ifdef _WIN32
2584 signal (signum, ev_sighandler);
2585#endif
2586
2587 ev_feed_signal (signum);
2588}
2589
697void noinline 2590noinline
2591void
698ev_feed_signal_event (EV_P_ int signum) 2592ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
699{ 2593{
700 WL w; 2594 WL w;
701 2595
2596 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2597 return;
2598
2599 --signum;
2600
702#if EV_MULTIPLICITY 2601#if EV_MULTIPLICITY
703 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 2602 /* it is permissible to try to feed a signal to the wrong loop */
704#endif 2603 /* or, likely more useful, feeding a signal nobody is waiting for */
705 2604
706 --signum; 2605 if (expect_false (signals [signum].loop != EV_A))
707
708 if (signum < 0 || signum >= signalmax)
709 return; 2606 return;
2607#endif
710 2608
711 signals [signum].gotsig = 0; 2609 signals [signum].pending = 0;
2610 ECB_MEMORY_FENCE_RELEASE;
712 2611
713 for (w = signals [signum].head; w; w = w->next) 2612 for (w = signals [signum].head; w; w = w->next)
714 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2613 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
715} 2614}
716 2615
2616#if EV_USE_SIGNALFD
717static void 2617static void
718sigcb (EV_P_ ev_io *iow, int revents) 2618sigfdcb (EV_P_ ev_io *iow, int revents)
719{ 2619{
720 int signum; 2620 struct signalfd_siginfo si[2], *sip; /* these structs are big */
721 2621
722 read (sigpipe [0], &revents, 1); 2622 for (;;)
723 gotsig = 0; 2623 {
2624 ssize_t res = read (sigfd, si, sizeof (si));
724 2625
725 for (signum = signalmax; signum--; ) 2626 /* not ISO-C, as res might be -1, but works with SuS */
726 if (signals [signum].gotsig) 2627 for (sip = si; (char *)sip < (char *)si + res; ++sip)
727 ev_feed_signal_event (EV_A_ signum + 1); 2628 ev_feed_signal_event (EV_A_ sip->ssi_signo);
728}
729 2629
730void inline_size 2630 if (res < (ssize_t)sizeof (si))
731fd_intern (int fd) 2631 break;
732{ 2632 }
733#ifdef _WIN32
734 int arg = 1;
735 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
736#else
737 fcntl (fd, F_SETFD, FD_CLOEXEC);
738 fcntl (fd, F_SETFL, O_NONBLOCK);
739#endif
740} 2633}
2634#endif
741 2635
742static void noinline 2636#endif
743siginit (EV_P)
744{
745 fd_intern (sigpipe [0]);
746 fd_intern (sigpipe [1]);
747
748 ev_io_set (&sigev, sigpipe [0], EV_READ);
749 ev_io_start (EV_A_ &sigev);
750 ev_unref (EV_A); /* child watcher should not keep loop alive */
751}
752 2637
753/*****************************************************************************/ 2638/*****************************************************************************/
754 2639
2640#if EV_CHILD_ENABLE
755static ev_child *childs [EV_PID_HASHSIZE]; 2641static WL childs [EV_PID_HASHSIZE];
756
757#ifndef _WIN32
758 2642
759static ev_signal childev; 2643static ev_signal childev;
760 2644
761void inline_speed 2645#ifndef WIFCONTINUED
2646# define WIFCONTINUED(status) 0
2647#endif
2648
2649/* handle a single child status event */
2650inline_speed void
762child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 2651child_reap (EV_P_ int chain, int pid, int status)
763{ 2652{
764 ev_child *w; 2653 ev_child *w;
2654 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
765 2655
766 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2656 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2657 {
767 if (w->pid == pid || !w->pid) 2658 if ((w->pid == pid || !w->pid)
2659 && (!traced || (w->flags & 1)))
768 { 2660 {
769 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 2661 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
770 w->rpid = pid; 2662 w->rpid = pid;
771 w->rstatus = status; 2663 w->rstatus = status;
772 ev_feed_event (EV_A_ (W)w, EV_CHILD); 2664 ev_feed_event (EV_A_ (W)w, EV_CHILD);
773 } 2665 }
2666 }
774} 2667}
775 2668
776#ifndef WCONTINUED 2669#ifndef WCONTINUED
777# define WCONTINUED 0 2670# define WCONTINUED 0
778#endif 2671#endif
779 2672
2673/* called on sigchld etc., calls waitpid */
780static void 2674static void
781childcb (EV_P_ ev_signal *sw, int revents) 2675childcb (EV_P_ ev_signal *sw, int revents)
782{ 2676{
783 int pid, status; 2677 int pid, status;
784 2678
787 if (!WCONTINUED 2681 if (!WCONTINUED
788 || errno != EINVAL 2682 || errno != EINVAL
789 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 2683 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
790 return; 2684 return;
791 2685
792 /* make sure we are called again until all childs have been reaped */ 2686 /* make sure we are called again until all children have been reaped */
793 /* we need to do it this way so that the callback gets called before we continue */ 2687 /* we need to do it this way so that the callback gets called before we continue */
794 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2688 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
795 2689
796 child_reap (EV_A_ sw, pid, pid, status); 2690 child_reap (EV_A_ pid, pid, status);
797 if (EV_PID_HASHSIZE > 1) 2691 if ((EV_PID_HASHSIZE) > 1)
798 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2692 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
799} 2693}
800 2694
801#endif 2695#endif
802 2696
803/*****************************************************************************/ 2697/*****************************************************************************/
804 2698
2699#if EV_USE_IOCP
2700# include "ev_iocp.c"
2701#endif
805#if EV_USE_PORT 2702#if EV_USE_PORT
806# include "ev_port.c" 2703# include "ev_port.c"
807#endif 2704#endif
808#if EV_USE_KQUEUE 2705#if EV_USE_KQUEUE
809# include "ev_kqueue.c" 2706# include "ev_kqueue.c"
816#endif 2713#endif
817#if EV_USE_SELECT 2714#if EV_USE_SELECT
818# include "ev_select.c" 2715# include "ev_select.c"
819#endif 2716#endif
820 2717
821int 2718ecb_cold int
822ev_version_major (void) 2719ev_version_major (void) EV_NOEXCEPT
823{ 2720{
824 return EV_VERSION_MAJOR; 2721 return EV_VERSION_MAJOR;
825} 2722}
826 2723
827int 2724ecb_cold int
828ev_version_minor (void) 2725ev_version_minor (void) EV_NOEXCEPT
829{ 2726{
830 return EV_VERSION_MINOR; 2727 return EV_VERSION_MINOR;
831} 2728}
832 2729
833/* return true if we are running with elevated privileges and should ignore env variables */ 2730/* return true if we are running with elevated privileges and should ignore env variables */
834int inline_size 2731inline_size ecb_cold int
835enable_secure (void) 2732enable_secure (void)
836{ 2733{
837#ifdef _WIN32 2734#ifdef _WIN32
838 return 0; 2735 return 0;
839#else 2736#else
840 return getuid () != geteuid () 2737 return getuid () != geteuid ()
841 || getgid () != getegid (); 2738 || getgid () != getegid ();
842#endif 2739#endif
843} 2740}
844 2741
2742ecb_cold
845unsigned int 2743unsigned int
846ev_supported_backends (void) 2744ev_supported_backends (void) EV_NOEXCEPT
847{ 2745{
848 unsigned int flags = 0; 2746 unsigned int flags = 0;
849 2747
850 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2748 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
851 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2749 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
854 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2752 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
855 2753
856 return flags; 2754 return flags;
857} 2755}
858 2756
2757ecb_cold
859unsigned int 2758unsigned int
860ev_recommended_backends (void) 2759ev_recommended_backends (void) EV_NOEXCEPT
861{ 2760{
862 unsigned int flags = ev_supported_backends (); 2761 unsigned int flags = ev_supported_backends ();
863 2762
864#ifndef __NetBSD__ 2763#ifndef __NetBSD__
865 /* kqueue is borked on everything but netbsd apparently */ 2764 /* kqueue is borked on everything but netbsd apparently */
866 /* it usually doesn't work correctly on anything but sockets and pipes */ 2765 /* it usually doesn't work correctly on anything but sockets and pipes */
867 flags &= ~EVBACKEND_KQUEUE; 2766 flags &= ~EVBACKEND_KQUEUE;
868#endif 2767#endif
869#ifdef __APPLE__ 2768#ifdef __APPLE__
870 // flags &= ~EVBACKEND_KQUEUE; for documentation 2769 /* only select works correctly on that "unix-certified" platform */
871 flags &= ~EVBACKEND_POLL; 2770 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2771 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2772#endif
2773#ifdef __FreeBSD__
2774 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
872#endif 2775#endif
873 2776
874 return flags; 2777 return flags;
875} 2778}
876 2779
2780ecb_cold
877unsigned int 2781unsigned int
878ev_embeddable_backends (void) 2782ev_embeddable_backends (void) EV_NOEXCEPT
879{ 2783{
880 return EVBACKEND_EPOLL 2784 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
881 | EVBACKEND_KQUEUE 2785
882 | EVBACKEND_PORT; 2786 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2787 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2788 flags &= ~EVBACKEND_EPOLL;
2789
2790 return flags;
883} 2791}
884 2792
885unsigned int 2793unsigned int
886ev_backend (EV_P) 2794ev_backend (EV_P) EV_NOEXCEPT
887{ 2795{
888 return backend; 2796 return backend;
889} 2797}
890 2798
891static void noinline 2799#if EV_FEATURE_API
2800unsigned int
2801ev_iteration (EV_P) EV_NOEXCEPT
2802{
2803 return loop_count;
2804}
2805
2806unsigned int
2807ev_depth (EV_P) EV_NOEXCEPT
2808{
2809 return loop_depth;
2810}
2811
2812void
2813ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2814{
2815 io_blocktime = interval;
2816}
2817
2818void
2819ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2820{
2821 timeout_blocktime = interval;
2822}
2823
2824void
2825ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
2826{
2827 userdata = data;
2828}
2829
2830void *
2831ev_userdata (EV_P) EV_NOEXCEPT
2832{
2833 return userdata;
2834}
2835
2836void
2837ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
2838{
2839 invoke_cb = invoke_pending_cb;
2840}
2841
2842void
2843ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
2844{
2845 release_cb = release;
2846 acquire_cb = acquire;
2847}
2848#endif
2849
2850/* initialise a loop structure, must be zero-initialised */
2851noinline ecb_cold
2852static void
892loop_init (EV_P_ unsigned int flags) 2853loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
893{ 2854{
894 if (!backend) 2855 if (!backend)
895 { 2856 {
2857 origflags = flags;
2858
2859#if EV_USE_REALTIME
2860 if (!have_realtime)
2861 {
2862 struct timespec ts;
2863
2864 if (!clock_gettime (CLOCK_REALTIME, &ts))
2865 have_realtime = 1;
2866 }
2867#endif
2868
896#if EV_USE_MONOTONIC 2869#if EV_USE_MONOTONIC
2870 if (!have_monotonic)
897 { 2871 {
898 struct timespec ts; 2872 struct timespec ts;
2873
899 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2874 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
900 have_monotonic = 1; 2875 have_monotonic = 1;
901 } 2876 }
902#endif 2877#endif
903
904 ev_rt_now = ev_time ();
905 mn_now = get_clock ();
906 now_floor = mn_now;
907 rtmn_diff = ev_rt_now - mn_now;
908 2878
909 /* pid check not overridable via env */ 2879 /* pid check not overridable via env */
910#ifndef _WIN32 2880#ifndef _WIN32
911 if (flags & EVFLAG_FORKCHECK) 2881 if (flags & EVFLAG_FORKCHECK)
912 curpid = getpid (); 2882 curpid = getpid ();
915 if (!(flags & EVFLAG_NOENV) 2885 if (!(flags & EVFLAG_NOENV)
916 && !enable_secure () 2886 && !enable_secure ()
917 && getenv ("LIBEV_FLAGS")) 2887 && getenv ("LIBEV_FLAGS"))
918 flags = atoi (getenv ("LIBEV_FLAGS")); 2888 flags = atoi (getenv ("LIBEV_FLAGS"));
919 2889
920 if (!(flags & 0x0000ffffUL)) 2890 ev_rt_now = ev_time ();
2891 mn_now = get_clock ();
2892 now_floor = mn_now;
2893 rtmn_diff = ev_rt_now - mn_now;
2894#if EV_FEATURE_API
2895 invoke_cb = ev_invoke_pending;
2896#endif
2897
2898 io_blocktime = 0.;
2899 timeout_blocktime = 0.;
2900 backend = 0;
2901 backend_fd = -1;
2902 sig_pending = 0;
2903#if EV_ASYNC_ENABLE
2904 async_pending = 0;
2905#endif
2906 pipe_write_skipped = 0;
2907 pipe_write_wanted = 0;
2908 evpipe [0] = -1;
2909 evpipe [1] = -1;
2910#if EV_USE_INOTIFY
2911 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2912#endif
2913#if EV_USE_SIGNALFD
2914 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2915#endif
2916
2917 if (!(flags & EVBACKEND_MASK))
921 flags |= ev_recommended_backends (); 2918 flags |= ev_recommended_backends ();
922 2919
923 backend = 0;
924 backend_fd = -1;
925#if EV_USE_INOTIFY 2920#if EV_USE_IOCP
926 fs_fd = -2; 2921 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
927#endif 2922#endif
928
929#if EV_USE_PORT 2923#if EV_USE_PORT
930 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2924 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
931#endif 2925#endif
932#if EV_USE_KQUEUE 2926#if EV_USE_KQUEUE
933 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2927 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
940#endif 2934#endif
941#if EV_USE_SELECT 2935#if EV_USE_SELECT
942 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2936 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
943#endif 2937#endif
944 2938
2939 ev_prepare_init (&pending_w, pendingcb);
2940
2941#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
945 ev_init (&sigev, sigcb); 2942 ev_init (&pipe_w, pipecb);
946 ev_set_priority (&sigev, EV_MAXPRI); 2943 ev_set_priority (&pipe_w, EV_MAXPRI);
2944#endif
947 } 2945 }
948} 2946}
949 2947
950static void noinline 2948/* free up a loop structure */
2949ecb_cold
2950void
951loop_destroy (EV_P) 2951ev_loop_destroy (EV_P)
952{ 2952{
953 int i; 2953 int i;
2954
2955#if EV_MULTIPLICITY
2956 /* mimic free (0) */
2957 if (!EV_A)
2958 return;
2959#endif
2960
2961#if EV_CLEANUP_ENABLE
2962 /* queue cleanup watchers (and execute them) */
2963 if (expect_false (cleanupcnt))
2964 {
2965 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2966 EV_INVOKE_PENDING;
2967 }
2968#endif
2969
2970#if EV_CHILD_ENABLE
2971 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2972 {
2973 ev_ref (EV_A); /* child watcher */
2974 ev_signal_stop (EV_A_ &childev);
2975 }
2976#endif
2977
2978 if (ev_is_active (&pipe_w))
2979 {
2980 /*ev_ref (EV_A);*/
2981 /*ev_io_stop (EV_A_ &pipe_w);*/
2982
2983 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2984 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2985 }
2986
2987#if EV_USE_SIGNALFD
2988 if (ev_is_active (&sigfd_w))
2989 close (sigfd);
2990#endif
954 2991
955#if EV_USE_INOTIFY 2992#if EV_USE_INOTIFY
956 if (fs_fd >= 0) 2993 if (fs_fd >= 0)
957 close (fs_fd); 2994 close (fs_fd);
958#endif 2995#endif
959 2996
960 if (backend_fd >= 0) 2997 if (backend_fd >= 0)
961 close (backend_fd); 2998 close (backend_fd);
962 2999
3000#if EV_USE_IOCP
3001 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3002#endif
963#if EV_USE_PORT 3003#if EV_USE_PORT
964 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 3004 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
965#endif 3005#endif
966#if EV_USE_KQUEUE 3006#if EV_USE_KQUEUE
967 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 3007 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
975#if EV_USE_SELECT 3015#if EV_USE_SELECT
976 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 3016 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
977#endif 3017#endif
978 3018
979 for (i = NUMPRI; i--; ) 3019 for (i = NUMPRI; i--; )
3020 {
980 array_free (pending, [i]); 3021 array_free (pending, [i]);
3022#if EV_IDLE_ENABLE
3023 array_free (idle, [i]);
3024#endif
3025 }
3026
3027 ev_free (anfds); anfds = 0; anfdmax = 0;
981 3028
982 /* have to use the microsoft-never-gets-it-right macro */ 3029 /* have to use the microsoft-never-gets-it-right macro */
3030 array_free (rfeed, EMPTY);
983 array_free (fdchange, EMPTY0); 3031 array_free (fdchange, EMPTY);
984 array_free (timer, EMPTY0); 3032 array_free (timer, EMPTY);
985#if EV_PERIODIC_ENABLE 3033#if EV_PERIODIC_ENABLE
986 array_free (periodic, EMPTY0); 3034 array_free (periodic, EMPTY);
987#endif 3035#endif
3036#if EV_FORK_ENABLE
3037 array_free (fork, EMPTY);
3038#endif
3039#if EV_CLEANUP_ENABLE
988 array_free (idle, EMPTY0); 3040 array_free (cleanup, EMPTY);
3041#endif
989 array_free (prepare, EMPTY0); 3042 array_free (prepare, EMPTY);
990 array_free (check, EMPTY0); 3043 array_free (check, EMPTY);
3044#if EV_ASYNC_ENABLE
3045 array_free (async, EMPTY);
3046#endif
991 3047
992 backend = 0; 3048 backend = 0;
993}
994 3049
3050#if EV_MULTIPLICITY
3051 if (ev_is_default_loop (EV_A))
3052#endif
3053 ev_default_loop_ptr = 0;
3054#if EV_MULTIPLICITY
3055 else
3056 ev_free (EV_A);
3057#endif
3058}
3059
3060#if EV_USE_INOTIFY
995void inline_size infy_fork (EV_P); 3061inline_size void infy_fork (EV_P);
3062#endif
996 3063
997void inline_size 3064inline_size void
998loop_fork (EV_P) 3065loop_fork (EV_P)
999{ 3066{
1000#if EV_USE_PORT 3067#if EV_USE_PORT
1001 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 3068 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1002#endif 3069#endif
1008#endif 3075#endif
1009#if EV_USE_INOTIFY 3076#if EV_USE_INOTIFY
1010 infy_fork (EV_A); 3077 infy_fork (EV_A);
1011#endif 3078#endif
1012 3079
1013 if (ev_is_active (&sigev)) 3080#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3081 if (ev_is_active (&pipe_w) && postfork != 2)
1014 { 3082 {
1015 /* default loop */ 3083 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1016 3084
1017 ev_ref (EV_A); 3085 ev_ref (EV_A);
1018 ev_io_stop (EV_A_ &sigev); 3086 ev_io_stop (EV_A_ &pipe_w);
1019 close (sigpipe [0]);
1020 close (sigpipe [1]);
1021 3087
1022 while (pipe (sigpipe)) 3088 if (evpipe [0] >= 0)
1023 syserr ("(libev) error creating pipe"); 3089 EV_WIN32_CLOSE_FD (evpipe [0]);
1024 3090
1025 siginit (EV_A); 3091 evpipe_init (EV_A);
3092 /* iterate over everything, in case we missed something before */
3093 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1026 } 3094 }
3095#endif
1027 3096
1028 postfork = 0; 3097 postfork = 0;
1029} 3098}
1030 3099
1031#if EV_MULTIPLICITY 3100#if EV_MULTIPLICITY
3101
3102ecb_cold
1032struct ev_loop * 3103struct ev_loop *
1033ev_loop_new (unsigned int flags) 3104ev_loop_new (unsigned int flags) EV_NOEXCEPT
1034{ 3105{
1035 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 3106 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1036 3107
1037 memset (loop, 0, sizeof (struct ev_loop)); 3108 memset (EV_A, 0, sizeof (struct ev_loop));
1038
1039 loop_init (EV_A_ flags); 3109 loop_init (EV_A_ flags);
1040 3110
1041 if (ev_backend (EV_A)) 3111 if (ev_backend (EV_A))
1042 return loop; 3112 return EV_A;
1043 3113
3114 ev_free (EV_A);
1044 return 0; 3115 return 0;
1045} 3116}
1046 3117
1047void 3118#endif /* multiplicity */
1048ev_loop_destroy (EV_P)
1049{
1050 loop_destroy (EV_A);
1051 ev_free (loop);
1052}
1053 3119
1054void 3120#if EV_VERIFY
1055ev_loop_fork (EV_P) 3121noinline ecb_cold
3122static void
3123verify_watcher (EV_P_ W w)
1056{ 3124{
1057 postfork = 1; 3125 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1058}
1059 3126
3127 if (w->pending)
3128 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3129}
3130
3131noinline ecb_cold
3132static void
3133verify_heap (EV_P_ ANHE *heap, int N)
3134{
3135 int i;
3136
3137 for (i = HEAP0; i < N + HEAP0; ++i)
3138 {
3139 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3140 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3141 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3142
3143 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3144 }
3145}
3146
3147noinline ecb_cold
3148static void
3149array_verify (EV_P_ W *ws, int cnt)
3150{
3151 while (cnt--)
3152 {
3153 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3154 verify_watcher (EV_A_ ws [cnt]);
3155 }
3156}
3157#endif
3158
3159#if EV_FEATURE_API
3160void ecb_cold
3161ev_verify (EV_P) EV_NOEXCEPT
3162{
3163#if EV_VERIFY
3164 int i;
3165 WL w, w2;
3166
3167 assert (activecnt >= -1);
3168
3169 assert (fdchangemax >= fdchangecnt);
3170 for (i = 0; i < fdchangecnt; ++i)
3171 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3172
3173 assert (anfdmax >= 0);
3174 for (i = 0; i < anfdmax; ++i)
3175 {
3176 int j = 0;
3177
3178 for (w = w2 = anfds [i].head; w; w = w->next)
3179 {
3180 verify_watcher (EV_A_ (W)w);
3181
3182 if (j++ & 1)
3183 {
3184 assert (("libev: io watcher list contains a loop", w != w2));
3185 w2 = w2->next;
3186 }
3187
3188 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3189 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3190 }
3191 }
3192
3193 assert (timermax >= timercnt);
3194 verify_heap (EV_A_ timers, timercnt);
3195
3196#if EV_PERIODIC_ENABLE
3197 assert (periodicmax >= periodiccnt);
3198 verify_heap (EV_A_ periodics, periodiccnt);
3199#endif
3200
3201 for (i = NUMPRI; i--; )
3202 {
3203 assert (pendingmax [i] >= pendingcnt [i]);
3204#if EV_IDLE_ENABLE
3205 assert (idleall >= 0);
3206 assert (idlemax [i] >= idlecnt [i]);
3207 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3208#endif
3209 }
3210
3211#if EV_FORK_ENABLE
3212 assert (forkmax >= forkcnt);
3213 array_verify (EV_A_ (W *)forks, forkcnt);
3214#endif
3215
3216#if EV_CLEANUP_ENABLE
3217 assert (cleanupmax >= cleanupcnt);
3218 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3219#endif
3220
3221#if EV_ASYNC_ENABLE
3222 assert (asyncmax >= asynccnt);
3223 array_verify (EV_A_ (W *)asyncs, asynccnt);
3224#endif
3225
3226#if EV_PREPARE_ENABLE
3227 assert (preparemax >= preparecnt);
3228 array_verify (EV_A_ (W *)prepares, preparecnt);
3229#endif
3230
3231#if EV_CHECK_ENABLE
3232 assert (checkmax >= checkcnt);
3233 array_verify (EV_A_ (W *)checks, checkcnt);
3234#endif
3235
3236# if 0
3237#if EV_CHILD_ENABLE
3238 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3239 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3240#endif
3241# endif
3242#endif
3243}
1060#endif 3244#endif
1061 3245
1062#if EV_MULTIPLICITY 3246#if EV_MULTIPLICITY
3247ecb_cold
1063struct ev_loop * 3248struct ev_loop *
1064ev_default_loop_init (unsigned int flags)
1065#else 3249#else
1066int 3250int
3251#endif
1067ev_default_loop (unsigned int flags) 3252ev_default_loop (unsigned int flags) EV_NOEXCEPT
1068#endif
1069{ 3253{
1070 if (sigpipe [0] == sigpipe [1])
1071 if (pipe (sigpipe))
1072 return 0;
1073
1074 if (!ev_default_loop_ptr) 3254 if (!ev_default_loop_ptr)
1075 { 3255 {
1076#if EV_MULTIPLICITY 3256#if EV_MULTIPLICITY
1077 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3257 EV_P = ev_default_loop_ptr = &default_loop_struct;
1078#else 3258#else
1079 ev_default_loop_ptr = 1; 3259 ev_default_loop_ptr = 1;
1080#endif 3260#endif
1081 3261
1082 loop_init (EV_A_ flags); 3262 loop_init (EV_A_ flags);
1083 3263
1084 if (ev_backend (EV_A)) 3264 if (ev_backend (EV_A))
1085 { 3265 {
1086 siginit (EV_A); 3266#if EV_CHILD_ENABLE
1087
1088#ifndef _WIN32
1089 ev_signal_init (&childev, childcb, SIGCHLD); 3267 ev_signal_init (&childev, childcb, SIGCHLD);
1090 ev_set_priority (&childev, EV_MAXPRI); 3268 ev_set_priority (&childev, EV_MAXPRI);
1091 ev_signal_start (EV_A_ &childev); 3269 ev_signal_start (EV_A_ &childev);
1092 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3270 ev_unref (EV_A); /* child watcher should not keep loop alive */
1093#endif 3271#endif
1098 3276
1099 return ev_default_loop_ptr; 3277 return ev_default_loop_ptr;
1100} 3278}
1101 3279
1102void 3280void
1103ev_default_destroy (void) 3281ev_loop_fork (EV_P) EV_NOEXCEPT
1104{ 3282{
1105#if EV_MULTIPLICITY
1106 struct ev_loop *loop = ev_default_loop_ptr;
1107#endif
1108
1109#ifndef _WIN32
1110 ev_ref (EV_A); /* child watcher */
1111 ev_signal_stop (EV_A_ &childev);
1112#endif
1113
1114 ev_ref (EV_A); /* signal watcher */
1115 ev_io_stop (EV_A_ &sigev);
1116
1117 close (sigpipe [0]); sigpipe [0] = 0;
1118 close (sigpipe [1]); sigpipe [1] = 0;
1119
1120 loop_destroy (EV_A);
1121}
1122
1123void
1124ev_default_fork (void)
1125{
1126#if EV_MULTIPLICITY
1127 struct ev_loop *loop = ev_default_loop_ptr;
1128#endif
1129
1130 if (backend)
1131 postfork = 1; 3283 postfork = 1;
1132} 3284}
1133 3285
1134/*****************************************************************************/ 3286/*****************************************************************************/
1135 3287
1136int inline_size 3288void
1137any_pending (EV_P) 3289ev_invoke (EV_P_ void *w, int revents)
3290{
3291 EV_CB_INVOKE ((W)w, revents);
3292}
3293
3294unsigned int
3295ev_pending_count (EV_P) EV_NOEXCEPT
1138{ 3296{
1139 int pri; 3297 int pri;
3298 unsigned int count = 0;
1140 3299
1141 for (pri = NUMPRI; pri--; ) 3300 for (pri = NUMPRI; pri--; )
1142 if (pendingcnt [pri]) 3301 count += pendingcnt [pri];
1143 return 1;
1144 3302
1145 return 0; 3303 return count;
1146} 3304}
1147 3305
1148void inline_speed 3306noinline
1149call_pending (EV_P) 3307void
3308ev_invoke_pending (EV_P)
1150{ 3309{
1151 int pri; 3310 pendingpri = NUMPRI;
1152 3311
1153 for (pri = NUMPRI; pri--; ) 3312 do
3313 {
3314 --pendingpri;
3315
3316 /* pendingpri possibly gets modified in the inner loop */
1154 while (pendingcnt [pri]) 3317 while (pendingcnt [pendingpri])
1155 {
1156 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1157
1158 if (expect_true (p->w))
1159 { 3318 {
1160 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 3319 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1161 3320
1162 p->w->pending = 0; 3321 p->w->pending = 0;
1163 EV_CB_INVOKE (p->w, p->events); 3322 EV_CB_INVOKE (p->w, p->events);
3323 EV_FREQUENT_CHECK;
3324 }
3325 }
3326 while (pendingpri);
3327}
3328
3329#if EV_IDLE_ENABLE
3330/* make idle watchers pending. this handles the "call-idle */
3331/* only when higher priorities are idle" logic */
3332inline_size void
3333idle_reify (EV_P)
3334{
3335 if (expect_false (idleall))
3336 {
3337 int pri;
3338
3339 for (pri = NUMPRI; pri--; )
3340 {
3341 if (pendingcnt [pri])
3342 break;
3343
3344 if (idlecnt [pri])
3345 {
3346 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3347 break;
1164 } 3348 }
1165 } 3349 }
3350 }
1166} 3351}
3352#endif
1167 3353
1168void inline_size 3354/* make timers pending */
3355inline_size void
1169timers_reify (EV_P) 3356timers_reify (EV_P)
1170{ 3357{
3358 EV_FREQUENT_CHECK;
3359
1171 while (timercnt && ((WT)timers [0])->at <= mn_now) 3360 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1172 { 3361 {
1173 ev_timer *w = timers [0]; 3362 do
1174
1175 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1176
1177 /* first reschedule or stop timer */
1178 if (w->repeat)
1179 { 3363 {
3364 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3365
3366 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3367
3368 /* first reschedule or stop timer */
3369 if (w->repeat)
3370 {
3371 ev_at (w) += w->repeat;
3372 if (ev_at (w) < mn_now)
3373 ev_at (w) = mn_now;
3374
1180 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3375 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1181 3376
1182 ((WT)w)->at += w->repeat; 3377 ANHE_at_cache (timers [HEAP0]);
1183 if (((WT)w)->at < mn_now)
1184 ((WT)w)->at = mn_now;
1185
1186 downheap ((WT *)timers, timercnt, 0); 3378 downheap (timers, timercnt, HEAP0);
3379 }
3380 else
3381 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3382
3383 EV_FREQUENT_CHECK;
3384 feed_reverse (EV_A_ (W)w);
1187 } 3385 }
1188 else 3386 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1189 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1190 3387
1191 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 3388 feed_reverse_done (EV_A_ EV_TIMER);
1192 } 3389 }
1193} 3390}
1194 3391
1195#if EV_PERIODIC_ENABLE 3392#if EV_PERIODIC_ENABLE
1196void inline_size 3393
3394noinline
3395static void
3396periodic_recalc (EV_P_ ev_periodic *w)
3397{
3398 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3399 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3400
3401 /* the above almost always errs on the low side */
3402 while (at <= ev_rt_now)
3403 {
3404 ev_tstamp nat = at + w->interval;
3405
3406 /* when resolution fails us, we use ev_rt_now */
3407 if (expect_false (nat == at))
3408 {
3409 at = ev_rt_now;
3410 break;
3411 }
3412
3413 at = nat;
3414 }
3415
3416 ev_at (w) = at;
3417}
3418
3419/* make periodics pending */
3420inline_size void
1197periodics_reify (EV_P) 3421periodics_reify (EV_P)
1198{ 3422{
3423 EV_FREQUENT_CHECK;
3424
1199 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 3425 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1200 { 3426 {
1201 ev_periodic *w = periodics [0]; 3427 do
3428 {
3429 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1202 3430
1203 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 3431 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1204 3432
1205 /* first reschedule or stop timer */ 3433 /* first reschedule or stop timer */
3434 if (w->reschedule_cb)
3435 {
3436 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3437
3438 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3439
3440 ANHE_at_cache (periodics [HEAP0]);
3441 downheap (periodics, periodiccnt, HEAP0);
3442 }
3443 else if (w->interval)
3444 {
3445 periodic_recalc (EV_A_ w);
3446 ANHE_at_cache (periodics [HEAP0]);
3447 downheap (periodics, periodiccnt, HEAP0);
3448 }
3449 else
3450 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3451
3452 EV_FREQUENT_CHECK;
3453 feed_reverse (EV_A_ (W)w);
3454 }
3455 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3456
3457 feed_reverse_done (EV_A_ EV_PERIODIC);
3458 }
3459}
3460
3461/* simply recalculate all periodics */
3462/* TODO: maybe ensure that at least one event happens when jumping forward? */
3463noinline ecb_cold
3464static void
3465periodics_reschedule (EV_P)
3466{
3467 int i;
3468
3469 /* adjust periodics after time jump */
3470 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3471 {
3472 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3473
1206 if (w->reschedule_cb) 3474 if (w->reschedule_cb)
3475 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3476 else if (w->interval)
3477 periodic_recalc (EV_A_ w);
3478
3479 ANHE_at_cache (periodics [i]);
3480 }
3481
3482 reheap (periodics, periodiccnt);
3483}
3484#endif
3485
3486/* adjust all timers by a given offset */
3487noinline ecb_cold
3488static void
3489timers_reschedule (EV_P_ ev_tstamp adjust)
3490{
3491 int i;
3492
3493 for (i = 0; i < timercnt; ++i)
3494 {
3495 ANHE *he = timers + i + HEAP0;
3496 ANHE_w (*he)->at += adjust;
3497 ANHE_at_cache (*he);
3498 }
3499}
3500
3501/* fetch new monotonic and realtime times from the kernel */
3502/* also detect if there was a timejump, and act accordingly */
3503inline_speed void
3504time_update (EV_P_ ev_tstamp max_block)
3505{
3506#if EV_USE_MONOTONIC
3507 if (expect_true (have_monotonic))
3508 {
3509 int i;
3510 ev_tstamp odiff = rtmn_diff;
3511
3512 mn_now = get_clock ();
3513
3514 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3515 /* interpolate in the meantime */
3516 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1207 { 3517 {
1208 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 3518 ev_rt_now = rtmn_diff + mn_now;
1209 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 3519 return;
1210 downheap ((WT *)periodics, periodiccnt, 0);
1211 } 3520 }
1212 else if (w->interval)
1213 {
1214 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1215 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1216 downheap ((WT *)periodics, periodiccnt, 0);
1217 }
1218 else
1219 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1220 3521
1221 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1222 }
1223}
1224
1225static void noinline
1226periodics_reschedule (EV_P)
1227{
1228 int i;
1229
1230 /* adjust periodics after time jump */
1231 for (i = 0; i < periodiccnt; ++i)
1232 {
1233 ev_periodic *w = periodics [i];
1234
1235 if (w->reschedule_cb)
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1237 else if (w->interval)
1238 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1239 }
1240
1241 /* now rebuild the heap */
1242 for (i = periodiccnt >> 1; i--; )
1243 downheap ((WT *)periodics, periodiccnt, i);
1244}
1245#endif
1246
1247int inline_size
1248time_update_monotonic (EV_P)
1249{
1250 mn_now = get_clock ();
1251
1252 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1253 {
1254 ev_rt_now = rtmn_diff + mn_now;
1255 return 0;
1256 }
1257 else
1258 {
1259 now_floor = mn_now; 3522 now_floor = mn_now;
1260 ev_rt_now = ev_time (); 3523 ev_rt_now = ev_time ();
1261 return 1;
1262 }
1263}
1264 3524
1265void inline_size 3525 /* loop a few times, before making important decisions.
1266time_update (EV_P) 3526 * on the choice of "4": one iteration isn't enough,
1267{ 3527 * in case we get preempted during the calls to
1268 int i; 3528 * ev_time and get_clock. a second call is almost guaranteed
1269 3529 * to succeed in that case, though. and looping a few more times
1270#if EV_USE_MONOTONIC 3530 * doesn't hurt either as we only do this on time-jumps or
1271 if (expect_true (have_monotonic)) 3531 * in the unlikely event of having been preempted here.
1272 { 3532 */
1273 if (time_update_monotonic (EV_A)) 3533 for (i = 4; --i; )
1274 { 3534 {
1275 ev_tstamp odiff = rtmn_diff; 3535 ev_tstamp diff;
1276
1277 /* loop a few times, before making important decisions.
1278 * on the choice of "4": one iteration isn't enough,
1279 * in case we get preempted during the calls to
1280 * ev_time and get_clock. a second call is almost guaranteed
1281 * to succeed in that case, though. and looping a few more times
1282 * doesn't hurt either as we only do this on time-jumps or
1283 * in the unlikely event of having been preempted here.
1284 */
1285 for (i = 4; --i; )
1286 {
1287 rtmn_diff = ev_rt_now - mn_now; 3536 rtmn_diff = ev_rt_now - mn_now;
1288 3537
1289 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 3538 diff = odiff - rtmn_diff;
3539
3540 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1290 return; /* all is well */ 3541 return; /* all is well */
1291 3542
1292 ev_rt_now = ev_time (); 3543 ev_rt_now = ev_time ();
1293 mn_now = get_clock (); 3544 mn_now = get_clock ();
1294 now_floor = mn_now; 3545 now_floor = mn_now;
1295 } 3546 }
1296 3547
3548 /* no timer adjustment, as the monotonic clock doesn't jump */
3549 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1297# if EV_PERIODIC_ENABLE 3550# if EV_PERIODIC_ENABLE
1298 periodics_reschedule (EV_A); 3551 periodics_reschedule (EV_A);
1299# endif 3552# endif
1300 /* no timer adjustment, as the monotonic clock doesn't jump */
1301 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1302 }
1303 } 3553 }
1304 else 3554 else
1305#endif 3555#endif
1306 { 3556 {
1307 ev_rt_now = ev_time (); 3557 ev_rt_now = ev_time ();
1308 3558
1309 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 3559 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1310 { 3560 {
3561 /* adjust timers. this is easy, as the offset is the same for all of them */
3562 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1311#if EV_PERIODIC_ENABLE 3563#if EV_PERIODIC_ENABLE
1312 periodics_reschedule (EV_A); 3564 periodics_reschedule (EV_A);
1313#endif 3565#endif
1314
1315 /* adjust timers. this is easy, as the offset is the same for all of them */
1316 for (i = 0; i < timercnt; ++i)
1317 ((WT)timers [i])->at += ev_rt_now - mn_now;
1318 } 3566 }
1319 3567
1320 mn_now = ev_rt_now; 3568 mn_now = ev_rt_now;
1321 } 3569 }
1322} 3570}
1323 3571
1324void 3572int
1325ev_ref (EV_P)
1326{
1327 ++activecnt;
1328}
1329
1330void
1331ev_unref (EV_P)
1332{
1333 --activecnt;
1334}
1335
1336static int loop_done;
1337
1338void
1339ev_loop (EV_P_ int flags) 3573ev_run (EV_P_ int flags)
1340{ 3574{
1341 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 3575#if EV_FEATURE_API
1342 ? EVUNLOOP_ONE 3576 ++loop_depth;
1343 : EVUNLOOP_CANCEL; 3577#endif
1344 3578
3579 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3580
3581 loop_done = EVBREAK_CANCEL;
3582
1345 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3583 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1346 3584
1347 while (activecnt) 3585 do
1348 { 3586 {
3587#if EV_VERIFY >= 2
3588 ev_verify (EV_A);
3589#endif
3590
1349#ifndef _WIN32 3591#ifndef _WIN32
1350 if (expect_false (curpid)) /* penalise the forking check even more */ 3592 if (expect_false (curpid)) /* penalise the forking check even more */
1351 if (expect_false (getpid () != curpid)) 3593 if (expect_false (getpid () != curpid))
1352 { 3594 {
1353 curpid = getpid (); 3595 curpid = getpid ();
1359 /* we might have forked, so queue fork handlers */ 3601 /* we might have forked, so queue fork handlers */
1360 if (expect_false (postfork)) 3602 if (expect_false (postfork))
1361 if (forkcnt) 3603 if (forkcnt)
1362 { 3604 {
1363 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3605 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1364 call_pending (EV_A); 3606 EV_INVOKE_PENDING;
1365 } 3607 }
1366#endif 3608#endif
1367 3609
3610#if EV_PREPARE_ENABLE
1368 /* queue check watchers (and execute them) */ 3611 /* queue prepare watchers (and execute them) */
1369 if (expect_false (preparecnt)) 3612 if (expect_false (preparecnt))
1370 { 3613 {
1371 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3614 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1372 call_pending (EV_A); 3615 EV_INVOKE_PENDING;
1373 } 3616 }
3617#endif
3618
3619 if (expect_false (loop_done))
3620 break;
1374 3621
1375 /* we might have forked, so reify kernel state if necessary */ 3622 /* we might have forked, so reify kernel state if necessary */
1376 if (expect_false (postfork)) 3623 if (expect_false (postfork))
1377 loop_fork (EV_A); 3624 loop_fork (EV_A);
1378 3625
1379 /* update fd-related kernel structures */ 3626 /* update fd-related kernel structures */
1380 fd_reify (EV_A); 3627 fd_reify (EV_A);
1381 3628
1382 /* calculate blocking time */ 3629 /* calculate blocking time */
1383 { 3630 {
1384 ev_tstamp block; 3631 ev_tstamp waittime = 0.;
3632 ev_tstamp sleeptime = 0.;
1385 3633
1386 if (flags & EVLOOP_NONBLOCK || idlecnt) 3634 /* remember old timestamp for io_blocktime calculation */
1387 block = 0.; /* do not block at all */ 3635 ev_tstamp prev_mn_now = mn_now;
1388 else 3636
3637 /* update time to cancel out callback processing overhead */
3638 time_update (EV_A_ 1e100);
3639
3640 /* from now on, we want a pipe-wake-up */
3641 pipe_write_wanted = 1;
3642
3643 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3644
3645 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1389 { 3646 {
1390 /* update time to cancel out callback processing overhead */
1391#if EV_USE_MONOTONIC
1392 if (expect_true (have_monotonic))
1393 time_update_monotonic (EV_A);
1394 else
1395#endif
1396 {
1397 ev_rt_now = ev_time ();
1398 mn_now = ev_rt_now;
1399 }
1400
1401 block = MAX_BLOCKTIME; 3647 waittime = MAX_BLOCKTIME;
1402 3648
1403 if (timercnt) 3649 if (timercnt)
1404 { 3650 {
1405 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 3651 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1406 if (block > to) block = to; 3652 if (waittime > to) waittime = to;
1407 } 3653 }
1408 3654
1409#if EV_PERIODIC_ENABLE 3655#if EV_PERIODIC_ENABLE
1410 if (periodiccnt) 3656 if (periodiccnt)
1411 { 3657 {
1412 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 3658 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1413 if (block > to) block = to; 3659 if (waittime > to) waittime = to;
1414 } 3660 }
1415#endif 3661#endif
1416 3662
3663 /* don't let timeouts decrease the waittime below timeout_blocktime */
3664 if (expect_false (waittime < timeout_blocktime))
3665 waittime = timeout_blocktime;
3666
3667 /* at this point, we NEED to wait, so we have to ensure */
3668 /* to pass a minimum nonzero value to the backend */
3669 if (expect_false (waittime < backend_mintime))
3670 waittime = backend_mintime;
3671
3672 /* extra check because io_blocktime is commonly 0 */
1417 if (expect_false (block < 0.)) block = 0.; 3673 if (expect_false (io_blocktime))
3674 {
3675 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3676
3677 if (sleeptime > waittime - backend_mintime)
3678 sleeptime = waittime - backend_mintime;
3679
3680 if (expect_true (sleeptime > 0.))
3681 {
3682 ev_sleep (sleeptime);
3683 waittime -= sleeptime;
3684 }
3685 }
1418 } 3686 }
1419 3687
3688#if EV_FEATURE_API
3689 ++loop_count;
3690#endif
3691 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1420 backend_poll (EV_A_ block); 3692 backend_poll (EV_A_ waittime);
3693 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3694
3695 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3696
3697 ECB_MEMORY_FENCE_ACQUIRE;
3698 if (pipe_write_skipped)
3699 {
3700 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3701 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3702 }
3703
3704
3705 /* update ev_rt_now, do magic */
3706 time_update (EV_A_ waittime + sleeptime);
1421 } 3707 }
1422
1423 /* update ev_rt_now, do magic */
1424 time_update (EV_A);
1425 3708
1426 /* queue pending timers and reschedule them */ 3709 /* queue pending timers and reschedule them */
1427 timers_reify (EV_A); /* relative timers called last */ 3710 timers_reify (EV_A); /* relative timers called last */
1428#if EV_PERIODIC_ENABLE 3711#if EV_PERIODIC_ENABLE
1429 periodics_reify (EV_A); /* absolute timers called first */ 3712 periodics_reify (EV_A); /* absolute timers called first */
1430#endif 3713#endif
1431 3714
3715#if EV_IDLE_ENABLE
1432 /* queue idle watchers unless other events are pending */ 3716 /* queue idle watchers unless other events are pending */
1433 if (idlecnt && !any_pending (EV_A)) 3717 idle_reify (EV_A);
1434 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 3718#endif
1435 3719
3720#if EV_CHECK_ENABLE
1436 /* queue check watchers, to be executed first */ 3721 /* queue check watchers, to be executed first */
1437 if (expect_false (checkcnt)) 3722 if (expect_false (checkcnt))
1438 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3723 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3724#endif
1439 3725
1440 call_pending (EV_A); 3726 EV_INVOKE_PENDING;
1441
1442 if (expect_false (loop_done))
1443 break;
1444 } 3727 }
3728 while (expect_true (
3729 activecnt
3730 && !loop_done
3731 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3732 ));
1445 3733
1446 if (loop_done == EVUNLOOP_ONE) 3734 if (loop_done == EVBREAK_ONE)
1447 loop_done = EVUNLOOP_CANCEL; 3735 loop_done = EVBREAK_CANCEL;
1448}
1449 3736
3737#if EV_FEATURE_API
3738 --loop_depth;
3739#endif
3740
3741 return activecnt;
3742}
3743
1450void 3744void
1451ev_unloop (EV_P_ int how) 3745ev_break (EV_P_ int how) EV_NOEXCEPT
1452{ 3746{
1453 loop_done = how; 3747 loop_done = how;
1454} 3748}
1455 3749
3750void
3751ev_ref (EV_P) EV_NOEXCEPT
3752{
3753 ++activecnt;
3754}
3755
3756void
3757ev_unref (EV_P) EV_NOEXCEPT
3758{
3759 --activecnt;
3760}
3761
3762void
3763ev_now_update (EV_P) EV_NOEXCEPT
3764{
3765 time_update (EV_A_ 1e100);
3766}
3767
3768void
3769ev_suspend (EV_P) EV_NOEXCEPT
3770{
3771 ev_now_update (EV_A);
3772}
3773
3774void
3775ev_resume (EV_P) EV_NOEXCEPT
3776{
3777 ev_tstamp mn_prev = mn_now;
3778
3779 ev_now_update (EV_A);
3780 timers_reschedule (EV_A_ mn_now - mn_prev);
3781#if EV_PERIODIC_ENABLE
3782 /* TODO: really do this? */
3783 periodics_reschedule (EV_A);
3784#endif
3785}
3786
1456/*****************************************************************************/ 3787/*****************************************************************************/
3788/* singly-linked list management, used when the expected list length is short */
1457 3789
1458void inline_size 3790inline_size void
1459wlist_add (WL *head, WL elem) 3791wlist_add (WL *head, WL elem)
1460{ 3792{
1461 elem->next = *head; 3793 elem->next = *head;
1462 *head = elem; 3794 *head = elem;
1463} 3795}
1464 3796
1465void inline_size 3797inline_size void
1466wlist_del (WL *head, WL elem) 3798wlist_del (WL *head, WL elem)
1467{ 3799{
1468 while (*head) 3800 while (*head)
1469 { 3801 {
1470 if (*head == elem) 3802 if (expect_true (*head == elem))
1471 { 3803 {
1472 *head = elem->next; 3804 *head = elem->next;
1473 return; 3805 break;
1474 } 3806 }
1475 3807
1476 head = &(*head)->next; 3808 head = &(*head)->next;
1477 } 3809 }
1478} 3810}
1479 3811
1480void inline_speed 3812/* internal, faster, version of ev_clear_pending */
3813inline_speed void
1481ev_clear_pending (EV_P_ W w) 3814clear_pending (EV_P_ W w)
1482{ 3815{
1483 if (w->pending) 3816 if (w->pending)
1484 { 3817 {
1485 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3818 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1486 w->pending = 0; 3819 w->pending = 0;
1487 } 3820 }
1488} 3821}
1489 3822
1490void inline_speed 3823int
3824ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
3825{
3826 W w_ = (W)w;
3827 int pending = w_->pending;
3828
3829 if (expect_true (pending))
3830 {
3831 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3832 p->w = (W)&pending_w;
3833 w_->pending = 0;
3834 return p->events;
3835 }
3836 else
3837 return 0;
3838}
3839
3840inline_size void
3841pri_adjust (EV_P_ W w)
3842{
3843 int pri = ev_priority (w);
3844 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3845 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3846 ev_set_priority (w, pri);
3847}
3848
3849inline_speed void
1491ev_start (EV_P_ W w, int active) 3850ev_start (EV_P_ W w, int active)
1492{ 3851{
1493 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 3852 pri_adjust (EV_A_ w);
1494 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1495
1496 w->active = active; 3853 w->active = active;
1497 ev_ref (EV_A); 3854 ev_ref (EV_A);
1498} 3855}
1499 3856
1500void inline_size 3857inline_size void
1501ev_stop (EV_P_ W w) 3858ev_stop (EV_P_ W w)
1502{ 3859{
1503 ev_unref (EV_A); 3860 ev_unref (EV_A);
1504 w->active = 0; 3861 w->active = 0;
1505} 3862}
1506 3863
1507/*****************************************************************************/ 3864/*****************************************************************************/
1508 3865
3866noinline
1509void 3867void
1510ev_io_start (EV_P_ ev_io *w) 3868ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
1511{ 3869{
1512 int fd = w->fd; 3870 int fd = w->fd;
1513 3871
1514 if (expect_false (ev_is_active (w))) 3872 if (expect_false (ev_is_active (w)))
1515 return; 3873 return;
1516 3874
1517 assert (("ev_io_start called with negative fd", fd >= 0)); 3875 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3876 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3877
3878 EV_FREQUENT_CHECK;
1518 3879
1519 ev_start (EV_A_ (W)w, 1); 3880 ev_start (EV_A_ (W)w, 1);
1520 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3881 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1521 wlist_add ((WL *)&anfds[fd].head, (WL)w); 3882 wlist_add (&anfds[fd].head, (WL)w);
1522 3883
1523 fd_change (EV_A_ fd); 3884 /* common bug, apparently */
1524} 3885 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
1525 3886
3887 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3888 w->events &= ~EV__IOFDSET;
3889
3890 EV_FREQUENT_CHECK;
3891}
3892
3893noinline
1526void 3894void
1527ev_io_stop (EV_P_ ev_io *w) 3895ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
1528{ 3896{
1529 ev_clear_pending (EV_A_ (W)w); 3897 clear_pending (EV_A_ (W)w);
1530 if (expect_false (!ev_is_active (w))) 3898 if (expect_false (!ev_is_active (w)))
1531 return; 3899 return;
1532 3900
1533 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3901 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1534 3902
3903 EV_FREQUENT_CHECK;
3904
1535 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 3905 wlist_del (&anfds[w->fd].head, (WL)w);
1536 ev_stop (EV_A_ (W)w); 3906 ev_stop (EV_A_ (W)w);
1537 3907
1538 fd_change (EV_A_ w->fd); 3908 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1539}
1540 3909
3910 EV_FREQUENT_CHECK;
3911}
3912
3913noinline
1541void 3914void
1542ev_timer_start (EV_P_ ev_timer *w) 3915ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
1543{ 3916{
1544 if (expect_false (ev_is_active (w))) 3917 if (expect_false (ev_is_active (w)))
1545 return; 3918 return;
1546 3919
1547 ((WT)w)->at += mn_now; 3920 ev_at (w) += mn_now;
1548 3921
1549 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3922 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1550 3923
3924 EV_FREQUENT_CHECK;
3925
3926 ++timercnt;
1551 ev_start (EV_A_ (W)w, ++timercnt); 3927 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1552 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 3928 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1553 timers [timercnt - 1] = w; 3929 ANHE_w (timers [ev_active (w)]) = (WT)w;
1554 upheap ((WT *)timers, timercnt - 1); 3930 ANHE_at_cache (timers [ev_active (w)]);
3931 upheap (timers, ev_active (w));
1555 3932
3933 EV_FREQUENT_CHECK;
3934
1556 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 3935 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1557} 3936}
1558 3937
3938noinline
1559void 3939void
1560ev_timer_stop (EV_P_ ev_timer *w) 3940ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
1561{ 3941{
1562 ev_clear_pending (EV_A_ (W)w); 3942 clear_pending (EV_A_ (W)w);
1563 if (expect_false (!ev_is_active (w))) 3943 if (expect_false (!ev_is_active (w)))
1564 return; 3944 return;
1565 3945
1566 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3946 EV_FREQUENT_CHECK;
1567 3947
1568 { 3948 {
1569 int active = ((W)w)->active; 3949 int active = ev_active (w);
1570 3950
3951 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3952
3953 --timercnt;
3954
1571 if (expect_true (--active < --timercnt)) 3955 if (expect_true (active < timercnt + HEAP0))
1572 { 3956 {
1573 timers [active] = timers [timercnt]; 3957 timers [active] = timers [timercnt + HEAP0];
1574 adjustheap ((WT *)timers, timercnt, active); 3958 adjustheap (timers, timercnt, active);
1575 } 3959 }
1576 } 3960 }
1577 3961
1578 ((WT)w)->at -= mn_now; 3962 ev_at (w) -= mn_now;
1579 3963
1580 ev_stop (EV_A_ (W)w); 3964 ev_stop (EV_A_ (W)w);
1581}
1582 3965
3966 EV_FREQUENT_CHECK;
3967}
3968
3969noinline
1583void 3970void
1584ev_timer_again (EV_P_ ev_timer *w) 3971ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
1585{ 3972{
3973 EV_FREQUENT_CHECK;
3974
3975 clear_pending (EV_A_ (W)w);
3976
1586 if (ev_is_active (w)) 3977 if (ev_is_active (w))
1587 { 3978 {
1588 if (w->repeat) 3979 if (w->repeat)
1589 { 3980 {
1590 ((WT)w)->at = mn_now + w->repeat; 3981 ev_at (w) = mn_now + w->repeat;
3982 ANHE_at_cache (timers [ev_active (w)]);
1591 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3983 adjustheap (timers, timercnt, ev_active (w));
1592 } 3984 }
1593 else 3985 else
1594 ev_timer_stop (EV_A_ w); 3986 ev_timer_stop (EV_A_ w);
1595 } 3987 }
1596 else if (w->repeat) 3988 else if (w->repeat)
1597 { 3989 {
1598 w->at = w->repeat; 3990 ev_at (w) = w->repeat;
1599 ev_timer_start (EV_A_ w); 3991 ev_timer_start (EV_A_ w);
1600 } 3992 }
3993
3994 EV_FREQUENT_CHECK;
3995}
3996
3997ev_tstamp
3998ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
3999{
4000 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1601} 4001}
1602 4002
1603#if EV_PERIODIC_ENABLE 4003#if EV_PERIODIC_ENABLE
4004noinline
1604void 4005void
1605ev_periodic_start (EV_P_ ev_periodic *w) 4006ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
1606{ 4007{
1607 if (expect_false (ev_is_active (w))) 4008 if (expect_false (ev_is_active (w)))
1608 return; 4009 return;
1609 4010
1610 if (w->reschedule_cb) 4011 if (w->reschedule_cb)
1611 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 4012 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1612 else if (w->interval) 4013 else if (w->interval)
1613 { 4014 {
1614 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 4015 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1615 /* this formula differs from the one in periodic_reify because we do not always round up */ 4016 periodic_recalc (EV_A_ w);
1616 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1617 } 4017 }
4018 else
4019 ev_at (w) = w->offset;
1618 4020
4021 EV_FREQUENT_CHECK;
4022
4023 ++periodiccnt;
1619 ev_start (EV_A_ (W)w, ++periodiccnt); 4024 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1620 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 4025 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1621 periodics [periodiccnt - 1] = w; 4026 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1622 upheap ((WT *)periodics, periodiccnt - 1); 4027 ANHE_at_cache (periodics [ev_active (w)]);
4028 upheap (periodics, ev_active (w));
1623 4029
4030 EV_FREQUENT_CHECK;
4031
1624 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 4032 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1625} 4033}
1626 4034
4035noinline
1627void 4036void
1628ev_periodic_stop (EV_P_ ev_periodic *w) 4037ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
1629{ 4038{
1630 ev_clear_pending (EV_A_ (W)w); 4039 clear_pending (EV_A_ (W)w);
1631 if (expect_false (!ev_is_active (w))) 4040 if (expect_false (!ev_is_active (w)))
1632 return; 4041 return;
1633 4042
1634 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 4043 EV_FREQUENT_CHECK;
1635 4044
1636 { 4045 {
1637 int active = ((W)w)->active; 4046 int active = ev_active (w);
1638 4047
4048 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
4049
4050 --periodiccnt;
4051
1639 if (expect_true (--active < --periodiccnt)) 4052 if (expect_true (active < periodiccnt + HEAP0))
1640 { 4053 {
1641 periodics [active] = periodics [periodiccnt]; 4054 periodics [active] = periodics [periodiccnt + HEAP0];
1642 adjustheap ((WT *)periodics, periodiccnt, active); 4055 adjustheap (periodics, periodiccnt, active);
1643 } 4056 }
1644 } 4057 }
1645 4058
1646 ev_stop (EV_A_ (W)w); 4059 ev_stop (EV_A_ (W)w);
1647}
1648 4060
4061 EV_FREQUENT_CHECK;
4062}
4063
4064noinline
1649void 4065void
1650ev_periodic_again (EV_P_ ev_periodic *w) 4066ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
1651{ 4067{
1652 /* TODO: use adjustheap and recalculation */ 4068 /* TODO: use adjustheap and recalculation */
1653 ev_periodic_stop (EV_A_ w); 4069 ev_periodic_stop (EV_A_ w);
1654 ev_periodic_start (EV_A_ w); 4070 ev_periodic_start (EV_A_ w);
1655} 4071}
1657 4073
1658#ifndef SA_RESTART 4074#ifndef SA_RESTART
1659# define SA_RESTART 0 4075# define SA_RESTART 0
1660#endif 4076#endif
1661 4077
4078#if EV_SIGNAL_ENABLE
4079
4080noinline
1662void 4081void
1663ev_signal_start (EV_P_ ev_signal *w) 4082ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
1664{ 4083{
1665#if EV_MULTIPLICITY
1666 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1667#endif
1668 if (expect_false (ev_is_active (w))) 4084 if (expect_false (ev_is_active (w)))
1669 return; 4085 return;
1670 4086
1671 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 4087 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4088
4089#if EV_MULTIPLICITY
4090 assert (("libev: a signal must not be attached to two different loops",
4091 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4092
4093 signals [w->signum - 1].loop = EV_A;
4094 ECB_MEMORY_FENCE_RELEASE;
4095#endif
4096
4097 EV_FREQUENT_CHECK;
4098
4099#if EV_USE_SIGNALFD
4100 if (sigfd == -2)
4101 {
4102 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
4103 if (sigfd < 0 && errno == EINVAL)
4104 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
4105
4106 if (sigfd >= 0)
4107 {
4108 fd_intern (sigfd); /* doing it twice will not hurt */
4109
4110 sigemptyset (&sigfd_set);
4111
4112 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4113 ev_set_priority (&sigfd_w, EV_MAXPRI);
4114 ev_io_start (EV_A_ &sigfd_w);
4115 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4116 }
4117 }
4118
4119 if (sigfd >= 0)
4120 {
4121 /* TODO: check .head */
4122 sigaddset (&sigfd_set, w->signum);
4123 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4124
4125 signalfd (sigfd, &sigfd_set, 0);
4126 }
4127#endif
1672 4128
1673 ev_start (EV_A_ (W)w, 1); 4129 ev_start (EV_A_ (W)w, 1);
1674 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1675 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 4130 wlist_add (&signals [w->signum - 1].head, (WL)w);
1676 4131
1677 if (!((WL)w)->next) 4132 if (!((WL)w)->next)
4133# if EV_USE_SIGNALFD
4134 if (sigfd < 0) /*TODO*/
4135# endif
1678 { 4136 {
1679#if _WIN32 4137# ifdef _WIN32
4138 evpipe_init (EV_A);
4139
1680 signal (w->signum, sighandler); 4140 signal (w->signum, ev_sighandler);
1681#else 4141# else
1682 struct sigaction sa; 4142 struct sigaction sa;
4143
4144 evpipe_init (EV_A);
4145
1683 sa.sa_handler = sighandler; 4146 sa.sa_handler = ev_sighandler;
1684 sigfillset (&sa.sa_mask); 4147 sigfillset (&sa.sa_mask);
1685 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 4148 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1686 sigaction (w->signum, &sa, 0); 4149 sigaction (w->signum, &sa, 0);
4150
4151 if (origflags & EVFLAG_NOSIGMASK)
4152 {
4153 sigemptyset (&sa.sa_mask);
4154 sigaddset (&sa.sa_mask, w->signum);
4155 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4156 }
1687#endif 4157#endif
1688 } 4158 }
1689}
1690 4159
4160 EV_FREQUENT_CHECK;
4161}
4162
4163noinline
1691void 4164void
1692ev_signal_stop (EV_P_ ev_signal *w) 4165ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
1693{ 4166{
1694 ev_clear_pending (EV_A_ (W)w); 4167 clear_pending (EV_A_ (W)w);
1695 if (expect_false (!ev_is_active (w))) 4168 if (expect_false (!ev_is_active (w)))
1696 return; 4169 return;
1697 4170
4171 EV_FREQUENT_CHECK;
4172
1698 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 4173 wlist_del (&signals [w->signum - 1].head, (WL)w);
1699 ev_stop (EV_A_ (W)w); 4174 ev_stop (EV_A_ (W)w);
1700 4175
1701 if (!signals [w->signum - 1].head) 4176 if (!signals [w->signum - 1].head)
1702 signal (w->signum, SIG_DFL); 4177 {
1703}
1704
1705void
1706ev_child_start (EV_P_ ev_child *w)
1707{
1708#if EV_MULTIPLICITY 4178#if EV_MULTIPLICITY
4179 signals [w->signum - 1].loop = 0; /* unattach from signal */
4180#endif
4181#if EV_USE_SIGNALFD
4182 if (sigfd >= 0)
4183 {
4184 sigset_t ss;
4185
4186 sigemptyset (&ss);
4187 sigaddset (&ss, w->signum);
4188 sigdelset (&sigfd_set, w->signum);
4189
4190 signalfd (sigfd, &sigfd_set, 0);
4191 sigprocmask (SIG_UNBLOCK, &ss, 0);
4192 }
4193 else
4194#endif
4195 signal (w->signum, SIG_DFL);
4196 }
4197
4198 EV_FREQUENT_CHECK;
4199}
4200
4201#endif
4202
4203#if EV_CHILD_ENABLE
4204
4205void
4206ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4207{
4208#if EV_MULTIPLICITY
1709 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4209 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1710#endif 4210#endif
1711 if (expect_false (ev_is_active (w))) 4211 if (expect_false (ev_is_active (w)))
1712 return; 4212 return;
1713 4213
4214 EV_FREQUENT_CHECK;
4215
1714 ev_start (EV_A_ (W)w, 1); 4216 ev_start (EV_A_ (W)w, 1);
1715 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4217 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1716}
1717 4218
4219 EV_FREQUENT_CHECK;
4220}
4221
1718void 4222void
1719ev_child_stop (EV_P_ ev_child *w) 4223ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
1720{ 4224{
1721 ev_clear_pending (EV_A_ (W)w); 4225 clear_pending (EV_A_ (W)w);
1722 if (expect_false (!ev_is_active (w))) 4226 if (expect_false (!ev_is_active (w)))
1723 return; 4227 return;
1724 4228
4229 EV_FREQUENT_CHECK;
4230
1725 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4231 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1726 ev_stop (EV_A_ (W)w); 4232 ev_stop (EV_A_ (W)w);
4233
4234 EV_FREQUENT_CHECK;
1727} 4235}
4236
4237#endif
1728 4238
1729#if EV_STAT_ENABLE 4239#if EV_STAT_ENABLE
1730 4240
1731# ifdef _WIN32 4241# ifdef _WIN32
1732# undef lstat 4242# undef lstat
1733# define lstat(a,b) _stati64 (a,b) 4243# define lstat(a,b) _stati64 (a,b)
1734# endif 4244# endif
1735 4245
1736#define DEF_STAT_INTERVAL 5.0074891 4246#define DEF_STAT_INTERVAL 5.0074891
4247#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1737#define MIN_STAT_INTERVAL 0.1074891 4248#define MIN_STAT_INTERVAL 0.1074891
1738 4249
1739static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 4250noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1740 4251
1741#if EV_USE_INOTIFY 4252#if EV_USE_INOTIFY
1742# define EV_INOTIFY_BUFSIZE 8192
1743 4253
1744static void noinline 4254/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4255# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4256
4257noinline
4258static void
1745infy_add (EV_P_ ev_stat *w) 4259infy_add (EV_P_ ev_stat *w)
1746{ 4260{
1747 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 4261 w->wd = inotify_add_watch (fs_fd, w->path,
4262 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4263 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4264 | IN_DONT_FOLLOW | IN_MASK_ADD);
1748 4265
1749 if (w->wd < 0) 4266 if (w->wd >= 0)
4267 {
4268 struct statfs sfs;
4269
4270 /* now local changes will be tracked by inotify, but remote changes won't */
4271 /* unless the filesystem is known to be local, we therefore still poll */
4272 /* also do poll on <2.6.25, but with normal frequency */
4273
4274 if (!fs_2625)
4275 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4276 else if (!statfs (w->path, &sfs)
4277 && (sfs.f_type == 0x1373 /* devfs */
4278 || sfs.f_type == 0x4006 /* fat */
4279 || sfs.f_type == 0x4d44 /* msdos */
4280 || sfs.f_type == 0xEF53 /* ext2/3 */
4281 || sfs.f_type == 0x72b6 /* jffs2 */
4282 || sfs.f_type == 0x858458f6 /* ramfs */
4283 || sfs.f_type == 0x5346544e /* ntfs */
4284 || sfs.f_type == 0x3153464a /* jfs */
4285 || sfs.f_type == 0x9123683e /* btrfs */
4286 || sfs.f_type == 0x52654973 /* reiser3 */
4287 || sfs.f_type == 0x01021994 /* tmpfs */
4288 || sfs.f_type == 0x58465342 /* xfs */))
4289 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4290 else
4291 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1750 { 4292 }
1751 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 4293 else
4294 {
4295 /* can't use inotify, continue to stat */
4296 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1752 4297
1753 /* monitor some parent directory for speedup hints */ 4298 /* if path is not there, monitor some parent directory for speedup hints */
4299 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4300 /* but an efficiency issue only */
1754 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4301 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1755 { 4302 {
1756 char path [4096]; 4303 char path [4096];
1757 strcpy (path, w->path); 4304 strcpy (path, w->path);
1758 4305
1761 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 4308 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1762 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 4309 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1763 4310
1764 char *pend = strrchr (path, '/'); 4311 char *pend = strrchr (path, '/');
1765 4312
1766 if (!pend) 4313 if (!pend || pend == path)
1767 break; /* whoops, no '/', complain to your admin */ 4314 break;
1768 4315
1769 *pend = 0; 4316 *pend = 0;
1770 w->wd = inotify_add_watch (fs_fd, path, mask); 4317 w->wd = inotify_add_watch (fs_fd, path, mask);
1771 } 4318 }
1772 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4319 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1773 } 4320 }
1774 } 4321 }
1775 else
1776 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1777 4322
1778 if (w->wd >= 0) 4323 if (w->wd >= 0)
1779 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4324 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
1780}
1781 4325
1782static void noinline 4326 /* now re-arm timer, if required */
4327 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4328 ev_timer_again (EV_A_ &w->timer);
4329 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4330}
4331
4332noinline
4333static void
1783infy_del (EV_P_ ev_stat *w) 4334infy_del (EV_P_ ev_stat *w)
1784{ 4335{
1785 int slot; 4336 int slot;
1786 int wd = w->wd; 4337 int wd = w->wd;
1787 4338
1788 if (wd < 0) 4339 if (wd < 0)
1789 return; 4340 return;
1790 4341
1791 w->wd = -2; 4342 w->wd = -2;
1792 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4343 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1793 wlist_del (&fs_hash [slot].head, (WL)w); 4344 wlist_del (&fs_hash [slot].head, (WL)w);
1794 4345
1795 /* remove this watcher, if others are watching it, they will rearm */ 4346 /* remove this watcher, if others are watching it, they will rearm */
1796 inotify_rm_watch (fs_fd, wd); 4347 inotify_rm_watch (fs_fd, wd);
1797} 4348}
1798 4349
1799static void noinline 4350noinline
4351static void
1800infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4352infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1801{ 4353{
1802 if (slot < 0) 4354 if (slot < 0)
1803 /* overflow, need to check for all hahs slots */ 4355 /* overflow, need to check for all hash slots */
1804 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4356 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1805 infy_wd (EV_A_ slot, wd, ev); 4357 infy_wd (EV_A_ slot, wd, ev);
1806 else 4358 else
1807 { 4359 {
1808 WL w_; 4360 WL w_;
1809 4361
1810 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4362 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
1811 { 4363 {
1812 ev_stat *w = (ev_stat *)w_; 4364 ev_stat *w = (ev_stat *)w_;
1813 w_ = w_->next; /* lets us remove this watcher and all before it */ 4365 w_ = w_->next; /* lets us remove this watcher and all before it */
1814 4366
1815 if (w->wd == wd || wd == -1) 4367 if (w->wd == wd || wd == -1)
1816 { 4368 {
1817 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4369 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1818 { 4370 {
4371 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
1819 w->wd = -1; 4372 w->wd = -1;
1820 infy_add (EV_A_ w); /* re-add, no matter what */ 4373 infy_add (EV_A_ w); /* re-add, no matter what */
1821 } 4374 }
1822 4375
1823 stat_timer_cb (EV_A_ &w->timer, 0); 4376 stat_timer_cb (EV_A_ &w->timer, 0);
1828 4381
1829static void 4382static void
1830infy_cb (EV_P_ ev_io *w, int revents) 4383infy_cb (EV_P_ ev_io *w, int revents)
1831{ 4384{
1832 char buf [EV_INOTIFY_BUFSIZE]; 4385 char buf [EV_INOTIFY_BUFSIZE];
1833 struct inotify_event *ev = (struct inotify_event *)buf;
1834 int ofs; 4386 int ofs;
1835 int len = read (fs_fd, buf, sizeof (buf)); 4387 int len = read (fs_fd, buf, sizeof (buf));
1836 4388
1837 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4389 for (ofs = 0; ofs < len; )
4390 {
4391 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
1838 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4392 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4393 ofs += sizeof (struct inotify_event) + ev->len;
4394 }
1839} 4395}
1840 4396
1841void inline_size 4397inline_size ecb_cold
4398void
4399ev_check_2625 (EV_P)
4400{
4401 /* kernels < 2.6.25 are borked
4402 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4403 */
4404 if (ev_linux_version () < 0x020619)
4405 return;
4406
4407 fs_2625 = 1;
4408}
4409
4410inline_size int
4411infy_newfd (void)
4412{
4413#if defined IN_CLOEXEC && defined IN_NONBLOCK
4414 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4415 if (fd >= 0)
4416 return fd;
4417#endif
4418 return inotify_init ();
4419}
4420
4421inline_size void
1842infy_init (EV_P) 4422infy_init (EV_P)
1843{ 4423{
1844 if (fs_fd != -2) 4424 if (fs_fd != -2)
1845 return; 4425 return;
1846 4426
4427 fs_fd = -1;
4428
4429 ev_check_2625 (EV_A);
4430
1847 fs_fd = inotify_init (); 4431 fs_fd = infy_newfd ();
1848 4432
1849 if (fs_fd >= 0) 4433 if (fs_fd >= 0)
1850 { 4434 {
4435 fd_intern (fs_fd);
1851 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4436 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1852 ev_set_priority (&fs_w, EV_MAXPRI); 4437 ev_set_priority (&fs_w, EV_MAXPRI);
1853 ev_io_start (EV_A_ &fs_w); 4438 ev_io_start (EV_A_ &fs_w);
4439 ev_unref (EV_A);
1854 } 4440 }
1855} 4441}
1856 4442
1857void inline_size 4443inline_size void
1858infy_fork (EV_P) 4444infy_fork (EV_P)
1859{ 4445{
1860 int slot; 4446 int slot;
1861 4447
1862 if (fs_fd < 0) 4448 if (fs_fd < 0)
1863 return; 4449 return;
1864 4450
4451 ev_ref (EV_A);
4452 ev_io_stop (EV_A_ &fs_w);
1865 close (fs_fd); 4453 close (fs_fd);
1866 fs_fd = inotify_init (); 4454 fs_fd = infy_newfd ();
1867 4455
4456 if (fs_fd >= 0)
4457 {
4458 fd_intern (fs_fd);
4459 ev_io_set (&fs_w, fs_fd, EV_READ);
4460 ev_io_start (EV_A_ &fs_w);
4461 ev_unref (EV_A);
4462 }
4463
1868 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4464 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1869 { 4465 {
1870 WL w_ = fs_hash [slot].head; 4466 WL w_ = fs_hash [slot].head;
1871 fs_hash [slot].head = 0; 4467 fs_hash [slot].head = 0;
1872 4468
1873 while (w_) 4469 while (w_)
1878 w->wd = -1; 4474 w->wd = -1;
1879 4475
1880 if (fs_fd >= 0) 4476 if (fs_fd >= 0)
1881 infy_add (EV_A_ w); /* re-add, no matter what */ 4477 infy_add (EV_A_ w); /* re-add, no matter what */
1882 else 4478 else
4479 {
4480 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4481 if (ev_is_active (&w->timer)) ev_ref (EV_A);
1883 ev_timer_start (EV_A_ &w->timer); 4482 ev_timer_again (EV_A_ &w->timer);
4483 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4484 }
1884 } 4485 }
1885
1886 } 4486 }
1887} 4487}
1888 4488
1889#endif 4489#endif
1890 4490
4491#ifdef _WIN32
4492# define EV_LSTAT(p,b) _stati64 (p, b)
4493#else
4494# define EV_LSTAT(p,b) lstat (p, b)
4495#endif
4496
1891void 4497void
1892ev_stat_stat (EV_P_ ev_stat *w) 4498ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
1893{ 4499{
1894 if (lstat (w->path, &w->attr) < 0) 4500 if (lstat (w->path, &w->attr) < 0)
1895 w->attr.st_nlink = 0; 4501 w->attr.st_nlink = 0;
1896 else if (!w->attr.st_nlink) 4502 else if (!w->attr.st_nlink)
1897 w->attr.st_nlink = 1; 4503 w->attr.st_nlink = 1;
1898} 4504}
1899 4505
1900static void noinline 4506noinline
4507static void
1901stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4508stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1902{ 4509{
1903 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4510 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1904 4511
1905 /* we copy this here each the time so that */ 4512 ev_statdata prev = w->attr;
1906 /* prev has the old value when the callback gets invoked */
1907 w->prev = w->attr;
1908 ev_stat_stat (EV_A_ w); 4513 ev_stat_stat (EV_A_ w);
1909 4514
1910 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4515 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
1911 if ( 4516 if (
1912 w->prev.st_dev != w->attr.st_dev 4517 prev.st_dev != w->attr.st_dev
1913 || w->prev.st_ino != w->attr.st_ino 4518 || prev.st_ino != w->attr.st_ino
1914 || w->prev.st_mode != w->attr.st_mode 4519 || prev.st_mode != w->attr.st_mode
1915 || w->prev.st_nlink != w->attr.st_nlink 4520 || prev.st_nlink != w->attr.st_nlink
1916 || w->prev.st_uid != w->attr.st_uid 4521 || prev.st_uid != w->attr.st_uid
1917 || w->prev.st_gid != w->attr.st_gid 4522 || prev.st_gid != w->attr.st_gid
1918 || w->prev.st_rdev != w->attr.st_rdev 4523 || prev.st_rdev != w->attr.st_rdev
1919 || w->prev.st_size != w->attr.st_size 4524 || prev.st_size != w->attr.st_size
1920 || w->prev.st_atime != w->attr.st_atime 4525 || prev.st_atime != w->attr.st_atime
1921 || w->prev.st_mtime != w->attr.st_mtime 4526 || prev.st_mtime != w->attr.st_mtime
1922 || w->prev.st_ctime != w->attr.st_ctime 4527 || prev.st_ctime != w->attr.st_ctime
1923 ) { 4528 ) {
4529 /* we only update w->prev on actual differences */
4530 /* in case we test more often than invoke the callback, */
4531 /* to ensure that prev is always different to attr */
4532 w->prev = prev;
4533
1924 #if EV_USE_INOTIFY 4534 #if EV_USE_INOTIFY
4535 if (fs_fd >= 0)
4536 {
1925 infy_del (EV_A_ w); 4537 infy_del (EV_A_ w);
1926 infy_add (EV_A_ w); 4538 infy_add (EV_A_ w);
1927 ev_stat_stat (EV_A_ w); /* avoid race... */ 4539 ev_stat_stat (EV_A_ w); /* avoid race... */
4540 }
1928 #endif 4541 #endif
1929 4542
1930 ev_feed_event (EV_A_ w, EV_STAT); 4543 ev_feed_event (EV_A_ w, EV_STAT);
1931 } 4544 }
1932} 4545}
1933 4546
1934void 4547void
1935ev_stat_start (EV_P_ ev_stat *w) 4548ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
1936{ 4549{
1937 if (expect_false (ev_is_active (w))) 4550 if (expect_false (ev_is_active (w)))
1938 return; 4551 return;
1939 4552
1940 /* since we use memcmp, we need to clear any padding data etc. */
1941 memset (&w->prev, 0, sizeof (ev_statdata));
1942 memset (&w->attr, 0, sizeof (ev_statdata));
1943
1944 ev_stat_stat (EV_A_ w); 4553 ev_stat_stat (EV_A_ w);
1945 4554
4555 if (w->interval < MIN_STAT_INTERVAL && w->interval)
1946 if (w->interval < MIN_STAT_INTERVAL) 4556 w->interval = MIN_STAT_INTERVAL;
1947 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1948 4557
1949 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4558 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
1950 ev_set_priority (&w->timer, ev_priority (w)); 4559 ev_set_priority (&w->timer, ev_priority (w));
1951 4560
1952#if EV_USE_INOTIFY 4561#if EV_USE_INOTIFY
1953 infy_init (EV_A); 4562 infy_init (EV_A);
1954 4563
1955 if (fs_fd >= 0) 4564 if (fs_fd >= 0)
1956 infy_add (EV_A_ w); 4565 infy_add (EV_A_ w);
1957 else 4566 else
1958#endif 4567#endif
4568 {
1959 ev_timer_start (EV_A_ &w->timer); 4569 ev_timer_again (EV_A_ &w->timer);
4570 ev_unref (EV_A);
4571 }
1960 4572
1961 ev_start (EV_A_ (W)w, 1); 4573 ev_start (EV_A_ (W)w, 1);
1962}
1963 4574
4575 EV_FREQUENT_CHECK;
4576}
4577
1964void 4578void
1965ev_stat_stop (EV_P_ ev_stat *w) 4579ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
1966{ 4580{
1967 ev_clear_pending (EV_A_ (W)w); 4581 clear_pending (EV_A_ (W)w);
1968 if (expect_false (!ev_is_active (w))) 4582 if (expect_false (!ev_is_active (w)))
1969 return; 4583 return;
1970 4584
4585 EV_FREQUENT_CHECK;
4586
1971#if EV_USE_INOTIFY 4587#if EV_USE_INOTIFY
1972 infy_del (EV_A_ w); 4588 infy_del (EV_A_ w);
1973#endif 4589#endif
4590
4591 if (ev_is_active (&w->timer))
4592 {
4593 ev_ref (EV_A);
1974 ev_timer_stop (EV_A_ &w->timer); 4594 ev_timer_stop (EV_A_ &w->timer);
4595 }
1975 4596
1976 ev_stop (EV_A_ (W)w); 4597 ev_stop (EV_A_ (W)w);
1977}
1978#endif
1979 4598
4599 EV_FREQUENT_CHECK;
4600}
4601#endif
4602
4603#if EV_IDLE_ENABLE
1980void 4604void
1981ev_idle_start (EV_P_ ev_idle *w) 4605ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
1982{ 4606{
1983 if (expect_false (ev_is_active (w))) 4607 if (expect_false (ev_is_active (w)))
1984 return; 4608 return;
1985 4609
4610 pri_adjust (EV_A_ (W)w);
4611
4612 EV_FREQUENT_CHECK;
4613
4614 {
4615 int active = ++idlecnt [ABSPRI (w)];
4616
4617 ++idleall;
1986 ev_start (EV_A_ (W)w, ++idlecnt); 4618 ev_start (EV_A_ (W)w, active);
4619
1987 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 4620 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1988 idles [idlecnt - 1] = w; 4621 idles [ABSPRI (w)][active - 1] = w;
1989} 4622 }
1990 4623
4624 EV_FREQUENT_CHECK;
4625}
4626
1991void 4627void
1992ev_idle_stop (EV_P_ ev_idle *w) 4628ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
1993{ 4629{
1994 ev_clear_pending (EV_A_ (W)w); 4630 clear_pending (EV_A_ (W)w);
1995 if (expect_false (!ev_is_active (w))) 4631 if (expect_false (!ev_is_active (w)))
1996 return; 4632 return;
1997 4633
4634 EV_FREQUENT_CHECK;
4635
1998 { 4636 {
1999 int active = ((W)w)->active; 4637 int active = ev_active (w);
2000 idles [active - 1] = idles [--idlecnt]; 4638
2001 ((W)idles [active - 1])->active = active; 4639 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4640 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4641
4642 ev_stop (EV_A_ (W)w);
4643 --idleall;
2002 } 4644 }
2003 4645
2004 ev_stop (EV_A_ (W)w); 4646 EV_FREQUENT_CHECK;
2005} 4647}
4648#endif
2006 4649
4650#if EV_PREPARE_ENABLE
2007void 4651void
2008ev_prepare_start (EV_P_ ev_prepare *w) 4652ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
2009{ 4653{
2010 if (expect_false (ev_is_active (w))) 4654 if (expect_false (ev_is_active (w)))
2011 return; 4655 return;
4656
4657 EV_FREQUENT_CHECK;
2012 4658
2013 ev_start (EV_A_ (W)w, ++preparecnt); 4659 ev_start (EV_A_ (W)w, ++preparecnt);
2014 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4660 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2015 prepares [preparecnt - 1] = w; 4661 prepares [preparecnt - 1] = w;
2016}
2017 4662
4663 EV_FREQUENT_CHECK;
4664}
4665
2018void 4666void
2019ev_prepare_stop (EV_P_ ev_prepare *w) 4667ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
2020{ 4668{
2021 ev_clear_pending (EV_A_ (W)w); 4669 clear_pending (EV_A_ (W)w);
2022 if (expect_false (!ev_is_active (w))) 4670 if (expect_false (!ev_is_active (w)))
2023 return; 4671 return;
2024 4672
4673 EV_FREQUENT_CHECK;
4674
2025 { 4675 {
2026 int active = ((W)w)->active; 4676 int active = ev_active (w);
4677
2027 prepares [active - 1] = prepares [--preparecnt]; 4678 prepares [active - 1] = prepares [--preparecnt];
2028 ((W)prepares [active - 1])->active = active; 4679 ev_active (prepares [active - 1]) = active;
2029 } 4680 }
2030 4681
2031 ev_stop (EV_A_ (W)w); 4682 ev_stop (EV_A_ (W)w);
2032}
2033 4683
4684 EV_FREQUENT_CHECK;
4685}
4686#endif
4687
4688#if EV_CHECK_ENABLE
2034void 4689void
2035ev_check_start (EV_P_ ev_check *w) 4690ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
2036{ 4691{
2037 if (expect_false (ev_is_active (w))) 4692 if (expect_false (ev_is_active (w)))
2038 return; 4693 return;
4694
4695 EV_FREQUENT_CHECK;
2039 4696
2040 ev_start (EV_A_ (W)w, ++checkcnt); 4697 ev_start (EV_A_ (W)w, ++checkcnt);
2041 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4698 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2042 checks [checkcnt - 1] = w; 4699 checks [checkcnt - 1] = w;
2043}
2044 4700
4701 EV_FREQUENT_CHECK;
4702}
4703
2045void 4704void
2046ev_check_stop (EV_P_ ev_check *w) 4705ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
2047{ 4706{
2048 ev_clear_pending (EV_A_ (W)w); 4707 clear_pending (EV_A_ (W)w);
2049 if (expect_false (!ev_is_active (w))) 4708 if (expect_false (!ev_is_active (w)))
2050 return; 4709 return;
2051 4710
4711 EV_FREQUENT_CHECK;
4712
2052 { 4713 {
2053 int active = ((W)w)->active; 4714 int active = ev_active (w);
4715
2054 checks [active - 1] = checks [--checkcnt]; 4716 checks [active - 1] = checks [--checkcnt];
2055 ((W)checks [active - 1])->active = active; 4717 ev_active (checks [active - 1]) = active;
2056 } 4718 }
2057 4719
2058 ev_stop (EV_A_ (W)w); 4720 ev_stop (EV_A_ (W)w);
4721
4722 EV_FREQUENT_CHECK;
2059} 4723}
4724#endif
2060 4725
2061#if EV_EMBED_ENABLE 4726#if EV_EMBED_ENABLE
2062void noinline 4727noinline
4728void
2063ev_embed_sweep (EV_P_ ev_embed *w) 4729ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
2064{ 4730{
2065 ev_loop (w->loop, EVLOOP_NONBLOCK); 4731 ev_run (w->other, EVRUN_NOWAIT);
2066} 4732}
2067 4733
2068static void 4734static void
2069embed_cb (EV_P_ ev_io *io, int revents) 4735embed_io_cb (EV_P_ ev_io *io, int revents)
2070{ 4736{
2071 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4737 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2072 4738
2073 if (ev_cb (w)) 4739 if (ev_cb (w))
2074 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4740 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2075 else 4741 else
2076 ev_embed_sweep (loop, w); 4742 ev_run (w->other, EVRUN_NOWAIT);
2077} 4743}
2078 4744
4745static void
4746embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4747{
4748 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4749
4750 {
4751 EV_P = w->other;
4752
4753 while (fdchangecnt)
4754 {
4755 fd_reify (EV_A);
4756 ev_run (EV_A_ EVRUN_NOWAIT);
4757 }
4758 }
4759}
4760
4761static void
4762embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4763{
4764 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4765
4766 ev_embed_stop (EV_A_ w);
4767
4768 {
4769 EV_P = w->other;
4770
4771 ev_loop_fork (EV_A);
4772 ev_run (EV_A_ EVRUN_NOWAIT);
4773 }
4774
4775 ev_embed_start (EV_A_ w);
4776}
4777
4778#if 0
4779static void
4780embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4781{
4782 ev_idle_stop (EV_A_ idle);
4783}
4784#endif
4785
2079void 4786void
2080ev_embed_start (EV_P_ ev_embed *w) 4787ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
2081{ 4788{
2082 if (expect_false (ev_is_active (w))) 4789 if (expect_false (ev_is_active (w)))
2083 return; 4790 return;
2084 4791
2085 { 4792 {
2086 struct ev_loop *loop = w->loop; 4793 EV_P = w->other;
2087 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4794 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2088 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 4795 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2089 } 4796 }
4797
4798 EV_FREQUENT_CHECK;
2090 4799
2091 ev_set_priority (&w->io, ev_priority (w)); 4800 ev_set_priority (&w->io, ev_priority (w));
2092 ev_io_start (EV_A_ &w->io); 4801 ev_io_start (EV_A_ &w->io);
2093 4802
4803 ev_prepare_init (&w->prepare, embed_prepare_cb);
4804 ev_set_priority (&w->prepare, EV_MINPRI);
4805 ev_prepare_start (EV_A_ &w->prepare);
4806
4807 ev_fork_init (&w->fork, embed_fork_cb);
4808 ev_fork_start (EV_A_ &w->fork);
4809
4810 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4811
2094 ev_start (EV_A_ (W)w, 1); 4812 ev_start (EV_A_ (W)w, 1);
2095}
2096 4813
4814 EV_FREQUENT_CHECK;
4815}
4816
2097void 4817void
2098ev_embed_stop (EV_P_ ev_embed *w) 4818ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
2099{ 4819{
2100 ev_clear_pending (EV_A_ (W)w); 4820 clear_pending (EV_A_ (W)w);
2101 if (expect_false (!ev_is_active (w))) 4821 if (expect_false (!ev_is_active (w)))
2102 return; 4822 return;
2103 4823
4824 EV_FREQUENT_CHECK;
4825
2104 ev_io_stop (EV_A_ &w->io); 4826 ev_io_stop (EV_A_ &w->io);
4827 ev_prepare_stop (EV_A_ &w->prepare);
4828 ev_fork_stop (EV_A_ &w->fork);
2105 4829
2106 ev_stop (EV_A_ (W)w); 4830 ev_stop (EV_A_ (W)w);
4831
4832 EV_FREQUENT_CHECK;
2107} 4833}
2108#endif 4834#endif
2109 4835
2110#if EV_FORK_ENABLE 4836#if EV_FORK_ENABLE
2111void 4837void
2112ev_fork_start (EV_P_ ev_fork *w) 4838ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
2113{ 4839{
2114 if (expect_false (ev_is_active (w))) 4840 if (expect_false (ev_is_active (w)))
2115 return; 4841 return;
4842
4843 EV_FREQUENT_CHECK;
2116 4844
2117 ev_start (EV_A_ (W)w, ++forkcnt); 4845 ev_start (EV_A_ (W)w, ++forkcnt);
2118 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4846 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2119 forks [forkcnt - 1] = w; 4847 forks [forkcnt - 1] = w;
2120}
2121 4848
4849 EV_FREQUENT_CHECK;
4850}
4851
2122void 4852void
2123ev_fork_stop (EV_P_ ev_fork *w) 4853ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
2124{ 4854{
2125 ev_clear_pending (EV_A_ (W)w); 4855 clear_pending (EV_A_ (W)w);
2126 if (expect_false (!ev_is_active (w))) 4856 if (expect_false (!ev_is_active (w)))
2127 return; 4857 return;
2128 4858
4859 EV_FREQUENT_CHECK;
4860
2129 { 4861 {
2130 int active = ((W)w)->active; 4862 int active = ev_active (w);
4863
2131 forks [active - 1] = forks [--forkcnt]; 4864 forks [active - 1] = forks [--forkcnt];
2132 ((W)forks [active - 1])->active = active; 4865 ev_active (forks [active - 1]) = active;
2133 } 4866 }
2134 4867
2135 ev_stop (EV_A_ (W)w); 4868 ev_stop (EV_A_ (W)w);
4869
4870 EV_FREQUENT_CHECK;
4871}
4872#endif
4873
4874#if EV_CLEANUP_ENABLE
4875void
4876ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
4877{
4878 if (expect_false (ev_is_active (w)))
4879 return;
4880
4881 EV_FREQUENT_CHECK;
4882
4883 ev_start (EV_A_ (W)w, ++cleanupcnt);
4884 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4885 cleanups [cleanupcnt - 1] = w;
4886
4887 /* cleanup watchers should never keep a refcount on the loop */
4888 ev_unref (EV_A);
4889 EV_FREQUENT_CHECK;
4890}
4891
4892void
4893ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
4894{
4895 clear_pending (EV_A_ (W)w);
4896 if (expect_false (!ev_is_active (w)))
4897 return;
4898
4899 EV_FREQUENT_CHECK;
4900 ev_ref (EV_A);
4901
4902 {
4903 int active = ev_active (w);
4904
4905 cleanups [active - 1] = cleanups [--cleanupcnt];
4906 ev_active (cleanups [active - 1]) = active;
4907 }
4908
4909 ev_stop (EV_A_ (W)w);
4910
4911 EV_FREQUENT_CHECK;
4912}
4913#endif
4914
4915#if EV_ASYNC_ENABLE
4916void
4917ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
4918{
4919 if (expect_false (ev_is_active (w)))
4920 return;
4921
4922 w->sent = 0;
4923
4924 evpipe_init (EV_A);
4925
4926 EV_FREQUENT_CHECK;
4927
4928 ev_start (EV_A_ (W)w, ++asynccnt);
4929 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4930 asyncs [asynccnt - 1] = w;
4931
4932 EV_FREQUENT_CHECK;
4933}
4934
4935void
4936ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
4937{
4938 clear_pending (EV_A_ (W)w);
4939 if (expect_false (!ev_is_active (w)))
4940 return;
4941
4942 EV_FREQUENT_CHECK;
4943
4944 {
4945 int active = ev_active (w);
4946
4947 asyncs [active - 1] = asyncs [--asynccnt];
4948 ev_active (asyncs [active - 1]) = active;
4949 }
4950
4951 ev_stop (EV_A_ (W)w);
4952
4953 EV_FREQUENT_CHECK;
4954}
4955
4956void
4957ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
4958{
4959 w->sent = 1;
4960 evpipe_write (EV_A_ &async_pending);
2136} 4961}
2137#endif 4962#endif
2138 4963
2139/*****************************************************************************/ 4964/*****************************************************************************/
2140 4965
2150once_cb (EV_P_ struct ev_once *once, int revents) 4975once_cb (EV_P_ struct ev_once *once, int revents)
2151{ 4976{
2152 void (*cb)(int revents, void *arg) = once->cb; 4977 void (*cb)(int revents, void *arg) = once->cb;
2153 void *arg = once->arg; 4978 void *arg = once->arg;
2154 4979
2155 ev_io_stop (EV_A_ &once->io); 4980 ev_io_stop (EV_A_ &once->io);
2156 ev_timer_stop (EV_A_ &once->to); 4981 ev_timer_stop (EV_A_ &once->to);
2157 ev_free (once); 4982 ev_free (once);
2158 4983
2159 cb (revents, arg); 4984 cb (revents, arg);
2160} 4985}
2161 4986
2162static void 4987static void
2163once_cb_io (EV_P_ ev_io *w, int revents) 4988once_cb_io (EV_P_ ev_io *w, int revents)
2164{ 4989{
2165 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4990 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4991
4992 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2166} 4993}
2167 4994
2168static void 4995static void
2169once_cb_to (EV_P_ ev_timer *w, int revents) 4996once_cb_to (EV_P_ ev_timer *w, int revents)
2170{ 4997{
2171 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4998 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
2172}
2173 4999
5000 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
5001}
5002
2174void 5003void
2175ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 5004ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
2176{ 5005{
2177 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 5006 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2178
2179 if (expect_false (!once))
2180 {
2181 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
2182 return;
2183 }
2184 5007
2185 once->cb = cb; 5008 once->cb = cb;
2186 once->arg = arg; 5009 once->arg = arg;
2187 5010
2188 ev_init (&once->io, once_cb_io); 5011 ev_init (&once->io, once_cb_io);
2198 ev_timer_set (&once->to, timeout, 0.); 5021 ev_timer_set (&once->to, timeout, 0.);
2199 ev_timer_start (EV_A_ &once->to); 5022 ev_timer_start (EV_A_ &once->to);
2200 } 5023 }
2201} 5024}
2202 5025
2203#ifdef __cplusplus 5026/*****************************************************************************/
2204} 5027
5028#if EV_WALK_ENABLE
5029ecb_cold
5030void
5031ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5032{
5033 int i, j;
5034 ev_watcher_list *wl, *wn;
5035
5036 if (types & (EV_IO | EV_EMBED))
5037 for (i = 0; i < anfdmax; ++i)
5038 for (wl = anfds [i].head; wl; )
5039 {
5040 wn = wl->next;
5041
5042#if EV_EMBED_ENABLE
5043 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5044 {
5045 if (types & EV_EMBED)
5046 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5047 }
5048 else
5049#endif
5050#if EV_USE_INOTIFY
5051 if (ev_cb ((ev_io *)wl) == infy_cb)
5052 ;
5053 else
5054#endif
5055 if ((ev_io *)wl != &pipe_w)
5056 if (types & EV_IO)
5057 cb (EV_A_ EV_IO, wl);
5058
5059 wl = wn;
5060 }
5061
5062 if (types & (EV_TIMER | EV_STAT))
5063 for (i = timercnt + HEAP0; i-- > HEAP0; )
5064#if EV_STAT_ENABLE
5065 /*TODO: timer is not always active*/
5066 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5067 {
5068 if (types & EV_STAT)
5069 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5070 }
5071 else
5072#endif
5073 if (types & EV_TIMER)
5074 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5075
5076#if EV_PERIODIC_ENABLE
5077 if (types & EV_PERIODIC)
5078 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5079 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5080#endif
5081
5082#if EV_IDLE_ENABLE
5083 if (types & EV_IDLE)
5084 for (j = NUMPRI; j--; )
5085 for (i = idlecnt [j]; i--; )
5086 cb (EV_A_ EV_IDLE, idles [j][i]);
5087#endif
5088
5089#if EV_FORK_ENABLE
5090 if (types & EV_FORK)
5091 for (i = forkcnt; i--; )
5092 if (ev_cb (forks [i]) != embed_fork_cb)
5093 cb (EV_A_ EV_FORK, forks [i]);
5094#endif
5095
5096#if EV_ASYNC_ENABLE
5097 if (types & EV_ASYNC)
5098 for (i = asynccnt; i--; )
5099 cb (EV_A_ EV_ASYNC, asyncs [i]);
5100#endif
5101
5102#if EV_PREPARE_ENABLE
5103 if (types & EV_PREPARE)
5104 for (i = preparecnt; i--; )
5105# if EV_EMBED_ENABLE
5106 if (ev_cb (prepares [i]) != embed_prepare_cb)
2205#endif 5107# endif
5108 cb (EV_A_ EV_PREPARE, prepares [i]);
5109#endif
2206 5110
5111#if EV_CHECK_ENABLE
5112 if (types & EV_CHECK)
5113 for (i = checkcnt; i--; )
5114 cb (EV_A_ EV_CHECK, checks [i]);
5115#endif
5116
5117#if EV_SIGNAL_ENABLE
5118 if (types & EV_SIGNAL)
5119 for (i = 0; i < EV_NSIG - 1; ++i)
5120 for (wl = signals [i].head; wl; )
5121 {
5122 wn = wl->next;
5123 cb (EV_A_ EV_SIGNAL, wl);
5124 wl = wn;
5125 }
5126#endif
5127
5128#if EV_CHILD_ENABLE
5129 if (types & EV_CHILD)
5130 for (i = (EV_PID_HASHSIZE); i--; )
5131 for (wl = childs [i]; wl; )
5132 {
5133 wn = wl->next;
5134 cb (EV_A_ EV_CHILD, wl);
5135 wl = wn;
5136 }
5137#endif
5138/* EV_STAT 0x00001000 /* stat data changed */
5139/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5140}
5141#endif
5142
5143#if EV_MULTIPLICITY
5144 #include "ev_wrap.h"
5145#endif
5146

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines