ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.250 by root, Thu May 22 02:44:57 2008 UTC vs.
Revision 1.489 by root, Sat Dec 29 14:23:20 2018 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007-2018 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
130# endif 163# endif
131 164
132#endif 165#endif
133 166
134#include <math.h> 167/* OS X, in its infinite idiocy, actually HARDCODES
168 * a limit of 1024 into their select. Where people have brains,
169 * OS X engineers apparently have a vacuum. Or maybe they were
170 * ordered to have a vacuum, or they do anything for money.
171 * This might help. Or not.
172 * Note that this must be defined early, as other include files
173 * will rely on this define as well.
174 */
175#define _DARWIN_UNLIMITED_SELECT 1
176
135#include <stdlib.h> 177#include <stdlib.h>
178#include <string.h>
136#include <fcntl.h> 179#include <fcntl.h>
137#include <stddef.h> 180#include <stddef.h>
138 181
139#include <stdio.h> 182#include <stdio.h>
140 183
141#include <assert.h> 184#include <assert.h>
142#include <errno.h> 185#include <errno.h>
143#include <sys/types.h> 186#include <sys/types.h>
144#include <time.h> 187#include <time.h>
188#include <limits.h>
145 189
146#include <signal.h> 190#include <signal.h>
147 191
148#ifdef EV_H 192#ifdef EV_H
149# include EV_H 193# include EV_H
150#else 194#else
151# include "ev.h" 195# include "ev.h"
196#endif
197
198#if EV_NO_THREADS
199# undef EV_NO_SMP
200# define EV_NO_SMP 1
201# undef ECB_NO_THREADS
202# define ECB_NO_THREADS 1
203#endif
204#if EV_NO_SMP
205# undef EV_NO_SMP
206# define ECB_NO_SMP 1
152#endif 207#endif
153 208
154#ifndef _WIN32 209#ifndef _WIN32
155# include <sys/time.h> 210# include <sys/time.h>
156# include <sys/wait.h> 211# include <sys/wait.h>
157# include <unistd.h> 212# include <unistd.h>
158#else 213#else
214# include <io.h>
159# define WIN32_LEAN_AND_MEAN 215# define WIN32_LEAN_AND_MEAN
216# include <winsock2.h>
160# include <windows.h> 217# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 218# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 219# define EV_SELECT_IS_WINSOCKET 1
163# endif 220# endif
221# undef EV_AVOID_STDIO
164#endif 222#endif
165 223
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 224/* this block tries to deduce configuration from header-defined symbols and defaults */
167 225
226/* try to deduce the maximum number of signals on this platform */
227#if defined EV_NSIG
228/* use what's provided */
229#elif defined NSIG
230# define EV_NSIG (NSIG)
231#elif defined _NSIG
232# define EV_NSIG (_NSIG)
233#elif defined SIGMAX
234# define EV_NSIG (SIGMAX+1)
235#elif defined SIG_MAX
236# define EV_NSIG (SIG_MAX+1)
237#elif defined _SIG_MAX
238# define EV_NSIG (_SIG_MAX+1)
239#elif defined MAXSIG
240# define EV_NSIG (MAXSIG+1)
241#elif defined MAX_SIG
242# define EV_NSIG (MAX_SIG+1)
243#elif defined SIGARRAYSIZE
244# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
245#elif defined _sys_nsig
246# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
247#else
248# define EV_NSIG (8 * sizeof (sigset_t) + 1)
249#endif
250
251#ifndef EV_USE_FLOOR
252# define EV_USE_FLOOR 0
253#endif
254
255#ifndef EV_USE_CLOCK_SYSCALL
256# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
257# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
258# else
259# define EV_USE_CLOCK_SYSCALL 0
260# endif
261#endif
262
263#if !(_POSIX_TIMERS > 0)
264# ifndef EV_USE_MONOTONIC
265# define EV_USE_MONOTONIC 0
266# endif
267# ifndef EV_USE_REALTIME
268# define EV_USE_REALTIME 0
269# endif
270#endif
271
168#ifndef EV_USE_MONOTONIC 272#ifndef EV_USE_MONOTONIC
273# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
274# define EV_USE_MONOTONIC EV_FEATURE_OS
275# else
169# define EV_USE_MONOTONIC 0 276# define EV_USE_MONOTONIC 0
277# endif
170#endif 278#endif
171 279
172#ifndef EV_USE_REALTIME 280#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 281# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 282#endif
175 283
176#ifndef EV_USE_NANOSLEEP 284#ifndef EV_USE_NANOSLEEP
285# if _POSIX_C_SOURCE >= 199309L
286# define EV_USE_NANOSLEEP EV_FEATURE_OS
287# else
177# define EV_USE_NANOSLEEP 0 288# define EV_USE_NANOSLEEP 0
289# endif
178#endif 290#endif
179 291
180#ifndef EV_USE_SELECT 292#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 293# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 294#endif
183 295
184#ifndef EV_USE_POLL 296#ifndef EV_USE_POLL
185# ifdef _WIN32 297# ifdef _WIN32
186# define EV_USE_POLL 0 298# define EV_USE_POLL 0
187# else 299# else
188# define EV_USE_POLL 1 300# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 301# endif
190#endif 302#endif
191 303
192#ifndef EV_USE_EPOLL 304#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 305# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 306# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 307# else
196# define EV_USE_EPOLL 0 308# define EV_USE_EPOLL 0
197# endif 309# endif
198#endif 310#endif
199 311
205# define EV_USE_PORT 0 317# define EV_USE_PORT 0
206#endif 318#endif
207 319
208#ifndef EV_USE_INOTIFY 320#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 321# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 322# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 323# else
212# define EV_USE_INOTIFY 0 324# define EV_USE_INOTIFY 0
213# endif 325# endif
214#endif 326#endif
215 327
216#ifndef EV_PID_HASHSIZE 328#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 329# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 330#endif
223 331
224#ifndef EV_INOTIFY_HASHSIZE 332#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 333# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 334#endif
231 335
232#ifndef EV_USE_EVENTFD 336#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 338# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 339# else
236# define EV_USE_EVENTFD 0 340# define EV_USE_EVENTFD 0
341# endif
342#endif
343
344#ifndef EV_USE_SIGNALFD
345# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
346# define EV_USE_SIGNALFD EV_FEATURE_OS
347# else
348# define EV_USE_SIGNALFD 0
237# endif 349# endif
238#endif 350#endif
239 351
240#if 0 /* debugging */ 352#if 0 /* debugging */
241# define EV_VERIFY 3 353# define EV_VERIFY 3
242# define EV_USE_4HEAP 1 354# define EV_USE_4HEAP 1
243# define EV_HEAP_CACHE_AT 1 355# define EV_HEAP_CACHE_AT 1
244#endif 356#endif
245 357
246#ifndef EV_VERIFY 358#ifndef EV_VERIFY
247# define EV_VERIFY !EV_MINIMAL 359# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
248#endif 360#endif
249 361
250#ifndef EV_USE_4HEAP 362#ifndef EV_USE_4HEAP
251# define EV_USE_4HEAP !EV_MINIMAL 363# define EV_USE_4HEAP EV_FEATURE_DATA
252#endif 364#endif
253 365
254#ifndef EV_HEAP_CACHE_AT 366#ifndef EV_HEAP_CACHE_AT
255# define EV_HEAP_CACHE_AT !EV_MINIMAL 367# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
368#endif
369
370#ifdef __ANDROID__
371/* supposedly, android doesn't typedef fd_mask */
372# undef EV_USE_SELECT
373# define EV_USE_SELECT 0
374/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
375# undef EV_USE_CLOCK_SYSCALL
376# define EV_USE_CLOCK_SYSCALL 0
377#endif
378
379/* aix's poll.h seems to cause lots of trouble */
380#ifdef _AIX
381/* AIX has a completely broken poll.h header */
382# undef EV_USE_POLL
383# define EV_USE_POLL 0
384#endif
385
386/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
387/* which makes programs even slower. might work on other unices, too. */
388#if EV_USE_CLOCK_SYSCALL
389# include <sys/syscall.h>
390# ifdef SYS_clock_gettime
391# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
392# undef EV_USE_MONOTONIC
393# define EV_USE_MONOTONIC 1
394# else
395# undef EV_USE_CLOCK_SYSCALL
396# define EV_USE_CLOCK_SYSCALL 0
397# endif
256#endif 398#endif
257 399
258/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 400/* this block fixes any misconfiguration where we know we run into trouble otherwise */
259 401
260#ifndef CLOCK_MONOTONIC 402#ifndef CLOCK_MONOTONIC
271# undef EV_USE_INOTIFY 413# undef EV_USE_INOTIFY
272# define EV_USE_INOTIFY 0 414# define EV_USE_INOTIFY 0
273#endif 415#endif
274 416
275#if !EV_USE_NANOSLEEP 417#if !EV_USE_NANOSLEEP
276# ifndef _WIN32 418/* hp-ux has it in sys/time.h, which we unconditionally include above */
419# if !defined _WIN32 && !defined __hpux
277# include <sys/select.h> 420# include <sys/select.h>
278# endif 421# endif
279#endif 422#endif
280 423
281#if EV_USE_INOTIFY 424#if EV_USE_INOTIFY
425# include <sys/statfs.h>
282# include <sys/inotify.h> 426# include <sys/inotify.h>
427/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
428# ifndef IN_DONT_FOLLOW
429# undef EV_USE_INOTIFY
430# define EV_USE_INOTIFY 0
283#endif 431# endif
284
285#if EV_SELECT_IS_WINSOCKET
286# include <winsock.h>
287#endif 432#endif
288 433
289#if EV_USE_EVENTFD 434#if EV_USE_EVENTFD
290/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 435/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
291# include <stdint.h> 436# include <stdint.h>
292# ifdef __cplusplus 437# ifndef EFD_NONBLOCK
293extern "C" { 438# define EFD_NONBLOCK O_NONBLOCK
294# endif 439# endif
295int eventfd (unsigned int initval, int flags); 440# ifndef EFD_CLOEXEC
296# ifdef __cplusplus 441# ifdef O_CLOEXEC
297} 442# define EFD_CLOEXEC O_CLOEXEC
443# else
444# define EFD_CLOEXEC 02000000
445# endif
298# endif 446# endif
447EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
448#endif
449
450#if EV_USE_SIGNALFD
451/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
452# include <stdint.h>
453# ifndef SFD_NONBLOCK
454# define SFD_NONBLOCK O_NONBLOCK
455# endif
456# ifndef SFD_CLOEXEC
457# ifdef O_CLOEXEC
458# define SFD_CLOEXEC O_CLOEXEC
459# else
460# define SFD_CLOEXEC 02000000
461# endif
462# endif
463EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
464
465struct signalfd_siginfo
466{
467 uint32_t ssi_signo;
468 char pad[128 - sizeof (uint32_t)];
469};
299#endif 470#endif
300 471
301/**/ 472/**/
302 473
303#if EV_VERIFY >= 3 474#if EV_VERIFY >= 3
304# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 475# define EV_FREQUENT_CHECK ev_verify (EV_A)
305#else 476#else
306# define EV_FREQUENT_CHECK do { } while (0) 477# define EV_FREQUENT_CHECK do { } while (0)
307#endif 478#endif
308 479
309/* 480/*
310 * This is used to avoid floating point rounding problems. 481 * This is used to work around floating point rounding problems.
311 * It is added to ev_rt_now when scheduling periodics
312 * to ensure progress, time-wise, even when rounding
313 * errors are against us.
314 * This value is good at least till the year 4000. 482 * This value is good at least till the year 4000.
315 * Better solutions welcome.
316 */ 483 */
317#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 484#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
485/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
318 486
319#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 487#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
320#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 488#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
321/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
322 489
490#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
491#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
492
493/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
494/* ECB.H BEGIN */
495/*
496 * libecb - http://software.schmorp.de/pkg/libecb
497 *
498 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
499 * Copyright (©) 2011 Emanuele Giaquinta
500 * All rights reserved.
501 *
502 * Redistribution and use in source and binary forms, with or without modifica-
503 * tion, are permitted provided that the following conditions are met:
504 *
505 * 1. Redistributions of source code must retain the above copyright notice,
506 * this list of conditions and the following disclaimer.
507 *
508 * 2. Redistributions in binary form must reproduce the above copyright
509 * notice, this list of conditions and the following disclaimer in the
510 * documentation and/or other materials provided with the distribution.
511 *
512 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
513 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
514 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
515 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
516 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
517 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
518 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
519 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
520 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
521 * OF THE POSSIBILITY OF SUCH DAMAGE.
522 *
523 * Alternatively, the contents of this file may be used under the terms of
524 * the GNU General Public License ("GPL") version 2 or any later version,
525 * in which case the provisions of the GPL are applicable instead of
526 * the above. If you wish to allow the use of your version of this file
527 * only under the terms of the GPL and not to allow others to use your
528 * version of this file under the BSD license, indicate your decision
529 * by deleting the provisions above and replace them with the notice
530 * and other provisions required by the GPL. If you do not delete the
531 * provisions above, a recipient may use your version of this file under
532 * either the BSD or the GPL.
533 */
534
535#ifndef ECB_H
536#define ECB_H
537
538/* 16 bits major, 16 bits minor */
539#define ECB_VERSION 0x00010005
540
541#ifdef _WIN32
542 typedef signed char int8_t;
543 typedef unsigned char uint8_t;
544 typedef signed short int16_t;
545 typedef unsigned short uint16_t;
546 typedef signed int int32_t;
547 typedef unsigned int uint32_t;
323#if __GNUC__ >= 4 548 #if __GNUC__
549 typedef signed long long int64_t;
550 typedef unsigned long long uint64_t;
551 #else /* _MSC_VER || __BORLANDC__ */
552 typedef signed __int64 int64_t;
553 typedef unsigned __int64 uint64_t;
554 #endif
555 #ifdef _WIN64
556 #define ECB_PTRSIZE 8
557 typedef uint64_t uintptr_t;
558 typedef int64_t intptr_t;
559 #else
560 #define ECB_PTRSIZE 4
561 typedef uint32_t uintptr_t;
562 typedef int32_t intptr_t;
563 #endif
564#else
565 #include <inttypes.h>
566 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
567 #define ECB_PTRSIZE 8
568 #else
569 #define ECB_PTRSIZE 4
570 #endif
571#endif
572
573#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
574#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
575
576/* work around x32 idiocy by defining proper macros */
577#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
578 #if _ILP32
579 #define ECB_AMD64_X32 1
580 #else
581 #define ECB_AMD64 1
582 #endif
583#endif
584
585/* many compilers define _GNUC_ to some versions but then only implement
586 * what their idiot authors think are the "more important" extensions,
587 * causing enormous grief in return for some better fake benchmark numbers.
588 * or so.
589 * we try to detect these and simply assume they are not gcc - if they have
590 * an issue with that they should have done it right in the first place.
591 */
592#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
593 #define ECB_GCC_VERSION(major,minor) 0
594#else
595 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
596#endif
597
598#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
599
600#if __clang__ && defined __has_builtin
601 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
602#else
603 #define ECB_CLANG_BUILTIN(x) 0
604#endif
605
606#if __clang__ && defined __has_extension
607 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
608#else
609 #define ECB_CLANG_EXTENSION(x) 0
610#endif
611
612#define ECB_CPP (__cplusplus+0)
613#define ECB_CPP11 (__cplusplus >= 201103L)
614#define ECB_CPP14 (__cplusplus >= 201402L)
615#define ECB_CPP17 (__cplusplus >= 201703L)
616
617#if ECB_CPP
618 #define ECB_C 0
619 #define ECB_STDC_VERSION 0
620#else
621 #define ECB_C 1
622 #define ECB_STDC_VERSION __STDC_VERSION__
623#endif
624
625#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
626#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
627#define ECB_C17 (ECB_STDC_VERSION >= 201710L)
628
629#if ECB_CPP
630 #define ECB_EXTERN_C extern "C"
631 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
632 #define ECB_EXTERN_C_END }
633#else
634 #define ECB_EXTERN_C extern
635 #define ECB_EXTERN_C_BEG
636 #define ECB_EXTERN_C_END
637#endif
638
639/*****************************************************************************/
640
641/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
642/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
643
644#if ECB_NO_THREADS
645 #define ECB_NO_SMP 1
646#endif
647
648#if ECB_NO_SMP
649 #define ECB_MEMORY_FENCE do { } while (0)
650#endif
651
652/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
653#if __xlC__ && ECB_CPP
654 #include <builtins.h>
655#endif
656
657#if 1400 <= _MSC_VER
658 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
659#endif
660
661#ifndef ECB_MEMORY_FENCE
662 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
663 #if __i386 || __i386__
664 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
665 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
666 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
667 #elif ECB_GCC_AMD64
668 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
669 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
670 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
671 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
672 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
673 #elif defined __ARM_ARCH_2__ \
674 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
675 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
676 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
677 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
678 || defined __ARM_ARCH_5TEJ__
679 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
680 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
681 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
682 || defined __ARM_ARCH_6T2__
683 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
684 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
685 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
686 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
687 #elif __aarch64__
688 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
689 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
690 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
691 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
692 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
693 #elif defined __s390__ || defined __s390x__
694 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
695 #elif defined __mips__
696 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
697 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
698 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
699 #elif defined __alpha__
700 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
701 #elif defined __hppa__
702 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
703 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
704 #elif defined __ia64__
705 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
706 #elif defined __m68k__
707 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
708 #elif defined __m88k__
709 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
710 #elif defined __sh__
711 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
712 #endif
713 #endif
714#endif
715
716#ifndef ECB_MEMORY_FENCE
717 #if ECB_GCC_VERSION(4,7)
718 /* see comment below (stdatomic.h) about the C11 memory model. */
719 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
720 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
721 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
722
723 #elif ECB_CLANG_EXTENSION(c_atomic)
724 /* see comment below (stdatomic.h) about the C11 memory model. */
725 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
726 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
727 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
728
729 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
730 #define ECB_MEMORY_FENCE __sync_synchronize ()
731 #elif _MSC_VER >= 1500 /* VC++ 2008 */
732 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
733 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
734 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
735 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
736 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
737 #elif _MSC_VER >= 1400 /* VC++ 2005 */
738 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
739 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
740 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
741 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
742 #elif defined _WIN32
743 #include <WinNT.h>
744 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
745 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
746 #include <mbarrier.h>
747 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
748 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
749 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
750 #elif __xlC__
751 #define ECB_MEMORY_FENCE __sync ()
752 #endif
753#endif
754
755#ifndef ECB_MEMORY_FENCE
756 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
757 /* we assume that these memory fences work on all variables/all memory accesses, */
758 /* not just C11 atomics and atomic accesses */
759 #include <stdatomic.h>
760 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
761 /* any fence other than seq_cst, which isn't very efficient for us. */
762 /* Why that is, we don't know - either the C11 memory model is quite useless */
763 /* for most usages, or gcc and clang have a bug */
764 /* I *currently* lean towards the latter, and inefficiently implement */
765 /* all three of ecb's fences as a seq_cst fence */
766 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
767 /* for all __atomic_thread_fence's except seq_cst */
768 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
769 #endif
770#endif
771
772#ifndef ECB_MEMORY_FENCE
773 #if !ECB_AVOID_PTHREADS
774 /*
775 * if you get undefined symbol references to pthread_mutex_lock,
776 * or failure to find pthread.h, then you should implement
777 * the ECB_MEMORY_FENCE operations for your cpu/compiler
778 * OR provide pthread.h and link against the posix thread library
779 * of your system.
780 */
781 #include <pthread.h>
782 #define ECB_NEEDS_PTHREADS 1
783 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
784
785 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
786 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
787 #endif
788#endif
789
790#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
791 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
792#endif
793
794#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
795 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
796#endif
797
798/*****************************************************************************/
799
800#if ECB_CPP
801 #define ecb_inline static inline
802#elif ECB_GCC_VERSION(2,5)
803 #define ecb_inline static __inline__
804#elif ECB_C99
805 #define ecb_inline static inline
806#else
807 #define ecb_inline static
808#endif
809
810#if ECB_GCC_VERSION(3,3)
811 #define ecb_restrict __restrict__
812#elif ECB_C99
813 #define ecb_restrict restrict
814#else
815 #define ecb_restrict
816#endif
817
818typedef int ecb_bool;
819
820#define ECB_CONCAT_(a, b) a ## b
821#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
822#define ECB_STRINGIFY_(a) # a
823#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
824#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
825
826#define ecb_function_ ecb_inline
827
828#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
829 #define ecb_attribute(attrlist) __attribute__ (attrlist)
830#else
831 #define ecb_attribute(attrlist)
832#endif
833
834#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
835 #define ecb_is_constant(expr) __builtin_constant_p (expr)
836#else
837 /* possible C11 impl for integral types
838 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
839 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
840
841 #define ecb_is_constant(expr) 0
842#endif
843
844#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
324# define expect(expr,value) __builtin_expect ((expr),(value)) 845 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
325# define noinline __attribute__ ((noinline))
326#else 846#else
327# define expect(expr,value) (expr) 847 #define ecb_expect(expr,value) (expr)
328# define noinline
329# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
330# define inline
331# endif 848#endif
332#endif
333 849
850#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
851 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
852#else
853 #define ecb_prefetch(addr,rw,locality)
854#endif
855
856/* no emulation for ecb_decltype */
857#if ECB_CPP11
858 // older implementations might have problems with decltype(x)::type, work around it
859 template<class T> struct ecb_decltype_t { typedef T type; };
860 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
861#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
862 #define ecb_decltype(x) __typeof__ (x)
863#endif
864
865#if _MSC_VER >= 1300
866 #define ecb_deprecated __declspec (deprecated)
867#else
868 #define ecb_deprecated ecb_attribute ((__deprecated__))
869#endif
870
871#if _MSC_VER >= 1500
872 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
873#elif ECB_GCC_VERSION(4,5)
874 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
875#else
876 #define ecb_deprecated_message(msg) ecb_deprecated
877#endif
878
879#if _MSC_VER >= 1400
880 #define ecb_noinline __declspec (noinline)
881#else
882 #define ecb_noinline ecb_attribute ((__noinline__))
883#endif
884
885#define ecb_unused ecb_attribute ((__unused__))
886#define ecb_const ecb_attribute ((__const__))
887#define ecb_pure ecb_attribute ((__pure__))
888
889#if ECB_C11 || __IBMC_NORETURN
890 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
891 #define ecb_noreturn _Noreturn
892#elif ECB_CPP11
893 #define ecb_noreturn [[noreturn]]
894#elif _MSC_VER >= 1200
895 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
896 #define ecb_noreturn __declspec (noreturn)
897#else
898 #define ecb_noreturn ecb_attribute ((__noreturn__))
899#endif
900
901#if ECB_GCC_VERSION(4,3)
902 #define ecb_artificial ecb_attribute ((__artificial__))
903 #define ecb_hot ecb_attribute ((__hot__))
904 #define ecb_cold ecb_attribute ((__cold__))
905#else
906 #define ecb_artificial
907 #define ecb_hot
908 #define ecb_cold
909#endif
910
911/* put around conditional expressions if you are very sure that the */
912/* expression is mostly true or mostly false. note that these return */
913/* booleans, not the expression. */
334#define expect_false(expr) expect ((expr) != 0, 0) 914#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
335#define expect_true(expr) expect ((expr) != 0, 1) 915#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
916/* for compatibility to the rest of the world */
917#define ecb_likely(expr) ecb_expect_true (expr)
918#define ecb_unlikely(expr) ecb_expect_false (expr)
919
920/* count trailing zero bits and count # of one bits */
921#if ECB_GCC_VERSION(3,4) \
922 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
923 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
924 && ECB_CLANG_BUILTIN(__builtin_popcount))
925 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
926 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
927 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
928 #define ecb_ctz32(x) __builtin_ctz (x)
929 #define ecb_ctz64(x) __builtin_ctzll (x)
930 #define ecb_popcount32(x) __builtin_popcount (x)
931 /* no popcountll */
932#else
933 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
934 ecb_function_ ecb_const int
935 ecb_ctz32 (uint32_t x)
936 {
937#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
938 unsigned long r;
939 _BitScanForward (&r, x);
940 return (int)r;
941#else
942 int r = 0;
943
944 x &= ~x + 1; /* this isolates the lowest bit */
945
946#if ECB_branchless_on_i386
947 r += !!(x & 0xaaaaaaaa) << 0;
948 r += !!(x & 0xcccccccc) << 1;
949 r += !!(x & 0xf0f0f0f0) << 2;
950 r += !!(x & 0xff00ff00) << 3;
951 r += !!(x & 0xffff0000) << 4;
952#else
953 if (x & 0xaaaaaaaa) r += 1;
954 if (x & 0xcccccccc) r += 2;
955 if (x & 0xf0f0f0f0) r += 4;
956 if (x & 0xff00ff00) r += 8;
957 if (x & 0xffff0000) r += 16;
958#endif
959
960 return r;
961#endif
962 }
963
964 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
965 ecb_function_ ecb_const int
966 ecb_ctz64 (uint64_t x)
967 {
968#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
969 unsigned long r;
970 _BitScanForward64 (&r, x);
971 return (int)r;
972#else
973 int shift = x & 0xffffffff ? 0 : 32;
974 return ecb_ctz32 (x >> shift) + shift;
975#endif
976 }
977
978 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
979 ecb_function_ ecb_const int
980 ecb_popcount32 (uint32_t x)
981 {
982 x -= (x >> 1) & 0x55555555;
983 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
984 x = ((x >> 4) + x) & 0x0f0f0f0f;
985 x *= 0x01010101;
986
987 return x >> 24;
988 }
989
990 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
991 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
992 {
993#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
994 unsigned long r;
995 _BitScanReverse (&r, x);
996 return (int)r;
997#else
998 int r = 0;
999
1000 if (x >> 16) { x >>= 16; r += 16; }
1001 if (x >> 8) { x >>= 8; r += 8; }
1002 if (x >> 4) { x >>= 4; r += 4; }
1003 if (x >> 2) { x >>= 2; r += 2; }
1004 if (x >> 1) { r += 1; }
1005
1006 return r;
1007#endif
1008 }
1009
1010 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1011 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1012 {
1013#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1014 unsigned long r;
1015 _BitScanReverse64 (&r, x);
1016 return (int)r;
1017#else
1018 int r = 0;
1019
1020 if (x >> 32) { x >>= 32; r += 32; }
1021
1022 return r + ecb_ld32 (x);
1023#endif
1024 }
1025#endif
1026
1027ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1028ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1029ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1030ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1031
1032ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1033ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1034{
1035 return ( (x * 0x0802U & 0x22110U)
1036 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1037}
1038
1039ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1040ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1041{
1042 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1043 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1044 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1045 x = ( x >> 8 ) | ( x << 8);
1046
1047 return x;
1048}
1049
1050ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1051ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1052{
1053 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1054 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1055 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1056 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1057 x = ( x >> 16 ) | ( x << 16);
1058
1059 return x;
1060}
1061
1062/* popcount64 is only available on 64 bit cpus as gcc builtin */
1063/* so for this version we are lazy */
1064ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1065ecb_function_ ecb_const int
1066ecb_popcount64 (uint64_t x)
1067{
1068 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1069}
1070
1071ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1072ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1073ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1074ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1075ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1076ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1077ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1078ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1079
1080ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1081ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1082ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1083ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1084ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1085ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1086ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1087ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1088
1089#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1090 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1091 #define ecb_bswap16(x) __builtin_bswap16 (x)
1092 #else
1093 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1094 #endif
1095 #define ecb_bswap32(x) __builtin_bswap32 (x)
1096 #define ecb_bswap64(x) __builtin_bswap64 (x)
1097#elif _MSC_VER
1098 #include <stdlib.h>
1099 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1100 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1101 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1102#else
1103 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1104 ecb_function_ ecb_const uint16_t
1105 ecb_bswap16 (uint16_t x)
1106 {
1107 return ecb_rotl16 (x, 8);
1108 }
1109
1110 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1111 ecb_function_ ecb_const uint32_t
1112 ecb_bswap32 (uint32_t x)
1113 {
1114 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1115 }
1116
1117 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1118 ecb_function_ ecb_const uint64_t
1119 ecb_bswap64 (uint64_t x)
1120 {
1121 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1122 }
1123#endif
1124
1125#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1126 #define ecb_unreachable() __builtin_unreachable ()
1127#else
1128 /* this seems to work fine, but gcc always emits a warning for it :/ */
1129 ecb_inline ecb_noreturn void ecb_unreachable (void);
1130 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1131#endif
1132
1133/* try to tell the compiler that some condition is definitely true */
1134#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1135
1136ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1137ecb_inline ecb_const uint32_t
1138ecb_byteorder_helper (void)
1139{
1140 /* the union code still generates code under pressure in gcc, */
1141 /* but less than using pointers, and always seems to */
1142 /* successfully return a constant. */
1143 /* the reason why we have this horrible preprocessor mess */
1144 /* is to avoid it in all cases, at least on common architectures */
1145 /* or when using a recent enough gcc version (>= 4.6) */
1146#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1147 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1148 #define ECB_LITTLE_ENDIAN 1
1149 return 0x44332211;
1150#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1151 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1152 #define ECB_BIG_ENDIAN 1
1153 return 0x11223344;
1154#else
1155 union
1156 {
1157 uint8_t c[4];
1158 uint32_t u;
1159 } u = { 0x11, 0x22, 0x33, 0x44 };
1160 return u.u;
1161#endif
1162}
1163
1164ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1165ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1166ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1167ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1168
1169#if ECB_GCC_VERSION(3,0) || ECB_C99
1170 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1171#else
1172 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1173#endif
1174
1175#if ECB_CPP
1176 template<typename T>
1177 static inline T ecb_div_rd (T val, T div)
1178 {
1179 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1180 }
1181 template<typename T>
1182 static inline T ecb_div_ru (T val, T div)
1183 {
1184 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1185 }
1186#else
1187 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1188 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1189#endif
1190
1191#if ecb_cplusplus_does_not_suck
1192 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1193 template<typename T, int N>
1194 static inline int ecb_array_length (const T (&arr)[N])
1195 {
1196 return N;
1197 }
1198#else
1199 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1200#endif
1201
1202ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1203ecb_function_ ecb_const uint32_t
1204ecb_binary16_to_binary32 (uint32_t x)
1205{
1206 unsigned int s = (x & 0x8000) << (31 - 15);
1207 int e = (x >> 10) & 0x001f;
1208 unsigned int m = x & 0x03ff;
1209
1210 if (ecb_expect_false (e == 31))
1211 /* infinity or NaN */
1212 e = 255 - (127 - 15);
1213 else if (ecb_expect_false (!e))
1214 {
1215 if (ecb_expect_true (!m))
1216 /* zero, handled by code below by forcing e to 0 */
1217 e = 0 - (127 - 15);
1218 else
1219 {
1220 /* subnormal, renormalise */
1221 unsigned int s = 10 - ecb_ld32 (m);
1222
1223 m = (m << s) & 0x3ff; /* mask implicit bit */
1224 e -= s - 1;
1225 }
1226 }
1227
1228 /* e and m now are normalised, or zero, (or inf or nan) */
1229 e += 127 - 15;
1230
1231 return s | (e << 23) | (m << (23 - 10));
1232}
1233
1234ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1235ecb_function_ ecb_const uint16_t
1236ecb_binary32_to_binary16 (uint32_t x)
1237{
1238 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1239 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1240 unsigned int m = x & 0x007fffff;
1241
1242 x &= 0x7fffffff;
1243
1244 /* if it's within range of binary16 normals, use fast path */
1245 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1246 {
1247 /* mantissa round-to-even */
1248 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1249
1250 /* handle overflow */
1251 if (ecb_expect_false (m >= 0x00800000))
1252 {
1253 m >>= 1;
1254 e += 1;
1255 }
1256
1257 return s | (e << 10) | (m >> (23 - 10));
1258 }
1259
1260 /* handle large numbers and infinity */
1261 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1262 return s | 0x7c00;
1263
1264 /* handle zero, subnormals and small numbers */
1265 if (ecb_expect_true (x < 0x38800000))
1266 {
1267 /* zero */
1268 if (ecb_expect_true (!x))
1269 return s;
1270
1271 /* handle subnormals */
1272
1273 /* too small, will be zero */
1274 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1275 return s;
1276
1277 m |= 0x00800000; /* make implicit bit explicit */
1278
1279 /* very tricky - we need to round to the nearest e (+10) bit value */
1280 {
1281 unsigned int bits = 14 - e;
1282 unsigned int half = (1 << (bits - 1)) - 1;
1283 unsigned int even = (m >> bits) & 1;
1284
1285 /* if this overflows, we will end up with a normalised number */
1286 m = (m + half + even) >> bits;
1287 }
1288
1289 return s | m;
1290 }
1291
1292 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1293 m >>= 13;
1294
1295 return s | 0x7c00 | m | !m;
1296}
1297
1298/*******************************************************************************/
1299/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1300
1301/* basically, everything uses "ieee pure-endian" floating point numbers */
1302/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1303#if 0 \
1304 || __i386 || __i386__ \
1305 || ECB_GCC_AMD64 \
1306 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1307 || defined __s390__ || defined __s390x__ \
1308 || defined __mips__ \
1309 || defined __alpha__ \
1310 || defined __hppa__ \
1311 || defined __ia64__ \
1312 || defined __m68k__ \
1313 || defined __m88k__ \
1314 || defined __sh__ \
1315 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1316 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1317 || defined __aarch64__
1318 #define ECB_STDFP 1
1319 #include <string.h> /* for memcpy */
1320#else
1321 #define ECB_STDFP 0
1322#endif
1323
1324#ifndef ECB_NO_LIBM
1325
1326 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1327
1328 /* only the oldest of old doesn't have this one. solaris. */
1329 #ifdef INFINITY
1330 #define ECB_INFINITY INFINITY
1331 #else
1332 #define ECB_INFINITY HUGE_VAL
1333 #endif
1334
1335 #ifdef NAN
1336 #define ECB_NAN NAN
1337 #else
1338 #define ECB_NAN ECB_INFINITY
1339 #endif
1340
1341 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1342 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1343 #define ecb_frexpf(x,e) frexpf ((x), (e))
1344 #else
1345 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1346 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1347 #endif
1348
1349 /* convert a float to ieee single/binary32 */
1350 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1351 ecb_function_ ecb_const uint32_t
1352 ecb_float_to_binary32 (float x)
1353 {
1354 uint32_t r;
1355
1356 #if ECB_STDFP
1357 memcpy (&r, &x, 4);
1358 #else
1359 /* slow emulation, works for anything but -0 */
1360 uint32_t m;
1361 int e;
1362
1363 if (x == 0e0f ) return 0x00000000U;
1364 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1365 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1366 if (x != x ) return 0x7fbfffffU;
1367
1368 m = ecb_frexpf (x, &e) * 0x1000000U;
1369
1370 r = m & 0x80000000U;
1371
1372 if (r)
1373 m = -m;
1374
1375 if (e <= -126)
1376 {
1377 m &= 0xffffffU;
1378 m >>= (-125 - e);
1379 e = -126;
1380 }
1381
1382 r |= (e + 126) << 23;
1383 r |= m & 0x7fffffU;
1384 #endif
1385
1386 return r;
1387 }
1388
1389 /* converts an ieee single/binary32 to a float */
1390 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1391 ecb_function_ ecb_const float
1392 ecb_binary32_to_float (uint32_t x)
1393 {
1394 float r;
1395
1396 #if ECB_STDFP
1397 memcpy (&r, &x, 4);
1398 #else
1399 /* emulation, only works for normals and subnormals and +0 */
1400 int neg = x >> 31;
1401 int e = (x >> 23) & 0xffU;
1402
1403 x &= 0x7fffffU;
1404
1405 if (e)
1406 x |= 0x800000U;
1407 else
1408 e = 1;
1409
1410 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1411 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1412
1413 r = neg ? -r : r;
1414 #endif
1415
1416 return r;
1417 }
1418
1419 /* convert a double to ieee double/binary64 */
1420 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1421 ecb_function_ ecb_const uint64_t
1422 ecb_double_to_binary64 (double x)
1423 {
1424 uint64_t r;
1425
1426 #if ECB_STDFP
1427 memcpy (&r, &x, 8);
1428 #else
1429 /* slow emulation, works for anything but -0 */
1430 uint64_t m;
1431 int e;
1432
1433 if (x == 0e0 ) return 0x0000000000000000U;
1434 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1435 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1436 if (x != x ) return 0X7ff7ffffffffffffU;
1437
1438 m = frexp (x, &e) * 0x20000000000000U;
1439
1440 r = m & 0x8000000000000000;;
1441
1442 if (r)
1443 m = -m;
1444
1445 if (e <= -1022)
1446 {
1447 m &= 0x1fffffffffffffU;
1448 m >>= (-1021 - e);
1449 e = -1022;
1450 }
1451
1452 r |= ((uint64_t)(e + 1022)) << 52;
1453 r |= m & 0xfffffffffffffU;
1454 #endif
1455
1456 return r;
1457 }
1458
1459 /* converts an ieee double/binary64 to a double */
1460 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1461 ecb_function_ ecb_const double
1462 ecb_binary64_to_double (uint64_t x)
1463 {
1464 double r;
1465
1466 #if ECB_STDFP
1467 memcpy (&r, &x, 8);
1468 #else
1469 /* emulation, only works for normals and subnormals and +0 */
1470 int neg = x >> 63;
1471 int e = (x >> 52) & 0x7ffU;
1472
1473 x &= 0xfffffffffffffU;
1474
1475 if (e)
1476 x |= 0x10000000000000U;
1477 else
1478 e = 1;
1479
1480 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1481 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1482
1483 r = neg ? -r : r;
1484 #endif
1485
1486 return r;
1487 }
1488
1489 /* convert a float to ieee half/binary16 */
1490 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1491 ecb_function_ ecb_const uint16_t
1492 ecb_float_to_binary16 (float x)
1493 {
1494 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1495 }
1496
1497 /* convert an ieee half/binary16 to float */
1498 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1499 ecb_function_ ecb_const float
1500 ecb_binary16_to_float (uint16_t x)
1501 {
1502 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1503 }
1504
1505#endif
1506
1507#endif
1508
1509/* ECB.H END */
1510
1511#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1512/* if your architecture doesn't need memory fences, e.g. because it is
1513 * single-cpu/core, or if you use libev in a project that doesn't use libev
1514 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1515 * libev, in which cases the memory fences become nops.
1516 * alternatively, you can remove this #error and link against libpthread,
1517 * which will then provide the memory fences.
1518 */
1519# error "memory fences not defined for your architecture, please report"
1520#endif
1521
1522#ifndef ECB_MEMORY_FENCE
1523# define ECB_MEMORY_FENCE do { } while (0)
1524# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1525# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1526#endif
1527
1528#define expect_false(cond) ecb_expect_false (cond)
1529#define expect_true(cond) ecb_expect_true (cond)
1530#define noinline ecb_noinline
1531
336#define inline_size static inline 1532#define inline_size ecb_inline
337 1533
338#if EV_MINIMAL 1534#if EV_FEATURE_CODE
339# define inline_speed static noinline
340#else
341# define inline_speed static inline 1535# define inline_speed ecb_inline
1536#else
1537# define inline_speed noinline static
342#endif 1538#endif
343 1539
344#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1540#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1541
1542#if EV_MINPRI == EV_MAXPRI
1543# define ABSPRI(w) (((W)w), 0)
1544#else
345#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1545# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1546#endif
346 1547
347#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1548#define EMPTY /* required for microsofts broken pseudo-c compiler */
348#define EMPTY2(a,b) /* used to suppress some warnings */ 1549#define EMPTY2(a,b) /* used to suppress some warnings */
349 1550
350typedef ev_watcher *W; 1551typedef ev_watcher *W;
352typedef ev_watcher_time *WT; 1553typedef ev_watcher_time *WT;
353 1554
354#define ev_active(w) ((W)(w))->active 1555#define ev_active(w) ((W)(w))->active
355#define ev_at(w) ((WT)(w))->at 1556#define ev_at(w) ((WT)(w))->at
356 1557
1558#if EV_USE_REALTIME
1559/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1560/* giving it a reasonably high chance of working on typical architectures */
1561static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1562#endif
1563
357#if EV_USE_MONOTONIC 1564#if EV_USE_MONOTONIC
358/* sig_atomic_t is used to avoid per-thread variables or locking but still */
359/* giving it a reasonably high chance of working on typical architetcures */
360static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1565static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1566#endif
1567
1568#ifndef EV_FD_TO_WIN32_HANDLE
1569# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1570#endif
1571#ifndef EV_WIN32_HANDLE_TO_FD
1572# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1573#endif
1574#ifndef EV_WIN32_CLOSE_FD
1575# define EV_WIN32_CLOSE_FD(fd) close (fd)
361#endif 1576#endif
362 1577
363#ifdef _WIN32 1578#ifdef _WIN32
364# include "ev_win32.c" 1579# include "ev_win32.c"
365#endif 1580#endif
366 1581
367/*****************************************************************************/ 1582/*****************************************************************************/
368 1583
1584/* define a suitable floor function (only used by periodics atm) */
1585
1586#if EV_USE_FLOOR
1587# include <math.h>
1588# define ev_floor(v) floor (v)
1589#else
1590
1591#include <float.h>
1592
1593/* a floor() replacement function, should be independent of ev_tstamp type */
1594noinline
1595static ev_tstamp
1596ev_floor (ev_tstamp v)
1597{
1598 /* the choice of shift factor is not terribly important */
1599#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1600 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1601#else
1602 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1603#endif
1604
1605 /* argument too large for an unsigned long? */
1606 if (expect_false (v >= shift))
1607 {
1608 ev_tstamp f;
1609
1610 if (v == v - 1.)
1611 return v; /* very large number */
1612
1613 f = shift * ev_floor (v * (1. / shift));
1614 return f + ev_floor (v - f);
1615 }
1616
1617 /* special treatment for negative args? */
1618 if (expect_false (v < 0.))
1619 {
1620 ev_tstamp f = -ev_floor (-v);
1621
1622 return f - (f == v ? 0 : 1);
1623 }
1624
1625 /* fits into an unsigned long */
1626 return (unsigned long)v;
1627}
1628
1629#endif
1630
1631/*****************************************************************************/
1632
1633#ifdef __linux
1634# include <sys/utsname.h>
1635#endif
1636
1637noinline ecb_cold
1638static unsigned int
1639ev_linux_version (void)
1640{
1641#ifdef __linux
1642 unsigned int v = 0;
1643 struct utsname buf;
1644 int i;
1645 char *p = buf.release;
1646
1647 if (uname (&buf))
1648 return 0;
1649
1650 for (i = 3+1; --i; )
1651 {
1652 unsigned int c = 0;
1653
1654 for (;;)
1655 {
1656 if (*p >= '0' && *p <= '9')
1657 c = c * 10 + *p++ - '0';
1658 else
1659 {
1660 p += *p == '.';
1661 break;
1662 }
1663 }
1664
1665 v = (v << 8) | c;
1666 }
1667
1668 return v;
1669#else
1670 return 0;
1671#endif
1672}
1673
1674/*****************************************************************************/
1675
1676#if EV_AVOID_STDIO
1677noinline ecb_cold
1678static void
1679ev_printerr (const char *msg)
1680{
1681 write (STDERR_FILENO, msg, strlen (msg));
1682}
1683#endif
1684
369static void (*syserr_cb)(const char *msg); 1685static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
370 1686
1687ecb_cold
371void 1688void
372ev_set_syserr_cb (void (*cb)(const char *msg)) 1689ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
373{ 1690{
374 syserr_cb = cb; 1691 syserr_cb = cb;
375} 1692}
376 1693
377static void noinline 1694noinline ecb_cold
1695static void
378syserr (const char *msg) 1696ev_syserr (const char *msg)
379{ 1697{
380 if (!msg) 1698 if (!msg)
381 msg = "(libev) system error"; 1699 msg = "(libev) system error";
382 1700
383 if (syserr_cb) 1701 if (syserr_cb)
384 syserr_cb (msg); 1702 syserr_cb (msg);
385 else 1703 else
386 { 1704 {
1705#if EV_AVOID_STDIO
1706 ev_printerr (msg);
1707 ev_printerr (": ");
1708 ev_printerr (strerror (errno));
1709 ev_printerr ("\n");
1710#else
387 perror (msg); 1711 perror (msg);
1712#endif
388 abort (); 1713 abort ();
389 } 1714 }
390} 1715}
391 1716
392static void * 1717static void *
393ev_realloc_emul (void *ptr, long size) 1718ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
394{ 1719{
395 /* some systems, notably openbsd and darwin, fail to properly 1720 /* some systems, notably openbsd and darwin, fail to properly
396 * implement realloc (x, 0) (as required by both ansi c-98 and 1721 * implement realloc (x, 0) (as required by both ansi c-89 and
397 * the single unix specification, so work around them here. 1722 * the single unix specification, so work around them here.
1723 * recently, also (at least) fedora and debian started breaking it,
1724 * despite documenting it otherwise.
398 */ 1725 */
399 1726
400 if (size) 1727 if (size)
401 return realloc (ptr, size); 1728 return realloc (ptr, size);
402 1729
403 free (ptr); 1730 free (ptr);
404 return 0; 1731 return 0;
405} 1732}
406 1733
407static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1734static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
408 1735
1736ecb_cold
409void 1737void
410ev_set_allocator (void *(*cb)(void *ptr, long size)) 1738ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
411{ 1739{
412 alloc = cb; 1740 alloc = cb;
413} 1741}
414 1742
415inline_speed void * 1743inline_speed void *
417{ 1745{
418 ptr = alloc (ptr, size); 1746 ptr = alloc (ptr, size);
419 1747
420 if (!ptr && size) 1748 if (!ptr && size)
421 { 1749 {
1750#if EV_AVOID_STDIO
1751 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1752#else
422 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1753 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1754#endif
423 abort (); 1755 abort ();
424 } 1756 }
425 1757
426 return ptr; 1758 return ptr;
427} 1759}
429#define ev_malloc(size) ev_realloc (0, (size)) 1761#define ev_malloc(size) ev_realloc (0, (size))
430#define ev_free(ptr) ev_realloc ((ptr), 0) 1762#define ev_free(ptr) ev_realloc ((ptr), 0)
431 1763
432/*****************************************************************************/ 1764/*****************************************************************************/
433 1765
1766/* set in reify when reification needed */
1767#define EV_ANFD_REIFY 1
1768
1769/* file descriptor info structure */
434typedef struct 1770typedef struct
435{ 1771{
436 WL head; 1772 WL head;
437 unsigned char events; 1773 unsigned char events; /* the events watched for */
1774 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1775 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
438 unsigned char reify; 1776 unsigned char unused;
1777#if EV_USE_EPOLL
1778 unsigned int egen; /* generation counter to counter epoll bugs */
1779#endif
439#if EV_SELECT_IS_WINSOCKET 1780#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
440 SOCKET handle; 1781 SOCKET handle;
441#endif 1782#endif
1783#if EV_USE_IOCP
1784 OVERLAPPED or, ow;
1785#endif
442} ANFD; 1786} ANFD;
443 1787
1788/* stores the pending event set for a given watcher */
444typedef struct 1789typedef struct
445{ 1790{
446 W w; 1791 W w;
447 int events; 1792 int events; /* the pending event set for the given watcher */
448} ANPENDING; 1793} ANPENDING;
449 1794
450#if EV_USE_INOTIFY 1795#if EV_USE_INOTIFY
451/* hash table entry per inotify-id */ 1796/* hash table entry per inotify-id */
452typedef struct 1797typedef struct
455} ANFS; 1800} ANFS;
456#endif 1801#endif
457 1802
458/* Heap Entry */ 1803/* Heap Entry */
459#if EV_HEAP_CACHE_AT 1804#if EV_HEAP_CACHE_AT
1805 /* a heap element */
460 typedef struct { 1806 typedef struct {
461 ev_tstamp at; 1807 ev_tstamp at;
462 WT w; 1808 WT w;
463 } ANHE; 1809 } ANHE;
464 1810
465 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1811 #define ANHE_w(he) (he).w /* access watcher, read-write */
466 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1812 #define ANHE_at(he) (he).at /* access cached at, read-only */
467 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 1813 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
468#else 1814#else
1815 /* a heap element */
469 typedef WT ANHE; 1816 typedef WT ANHE;
470 1817
471 #define ANHE_w(he) (he) 1818 #define ANHE_w(he) (he)
472 #define ANHE_at(he) (he)->at 1819 #define ANHE_at(he) (he)->at
473 #define ANHE_at_cache(he) 1820 #define ANHE_at_cache(he)
484 #undef VAR 1831 #undef VAR
485 }; 1832 };
486 #include "ev_wrap.h" 1833 #include "ev_wrap.h"
487 1834
488 static struct ev_loop default_loop_struct; 1835 static struct ev_loop default_loop_struct;
489 struct ev_loop *ev_default_loop_ptr; 1836 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
490 1837
491#else 1838#else
492 1839
493 ev_tstamp ev_rt_now; 1840 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
494 #define VAR(name,decl) static decl; 1841 #define VAR(name,decl) static decl;
495 #include "ev_vars.h" 1842 #include "ev_vars.h"
496 #undef VAR 1843 #undef VAR
497 1844
498 static int ev_default_loop_ptr; 1845 static int ev_default_loop_ptr;
499 1846
500#endif 1847#endif
501 1848
1849#if EV_FEATURE_API
1850# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1851# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1852# define EV_INVOKE_PENDING invoke_cb (EV_A)
1853#else
1854# define EV_RELEASE_CB (void)0
1855# define EV_ACQUIRE_CB (void)0
1856# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1857#endif
1858
1859#define EVBREAK_RECURSE 0x80
1860
502/*****************************************************************************/ 1861/*****************************************************************************/
503 1862
1863#ifndef EV_HAVE_EV_TIME
504ev_tstamp 1864ev_tstamp
505ev_time (void) 1865ev_time (void) EV_NOEXCEPT
506{ 1866{
507#if EV_USE_REALTIME 1867#if EV_USE_REALTIME
1868 if (expect_true (have_realtime))
1869 {
508 struct timespec ts; 1870 struct timespec ts;
509 clock_gettime (CLOCK_REALTIME, &ts); 1871 clock_gettime (CLOCK_REALTIME, &ts);
510 return ts.tv_sec + ts.tv_nsec * 1e-9; 1872 return ts.tv_sec + ts.tv_nsec * 1e-9;
511#else 1873 }
1874#endif
1875
512 struct timeval tv; 1876 struct timeval tv;
513 gettimeofday (&tv, 0); 1877 gettimeofday (&tv, 0);
514 return tv.tv_sec + tv.tv_usec * 1e-6; 1878 return tv.tv_sec + tv.tv_usec * 1e-6;
515#endif
516} 1879}
1880#endif
517 1881
518ev_tstamp inline_size 1882inline_size ev_tstamp
519get_clock (void) 1883get_clock (void)
520{ 1884{
521#if EV_USE_MONOTONIC 1885#if EV_USE_MONOTONIC
522 if (expect_true (have_monotonic)) 1886 if (expect_true (have_monotonic))
523 { 1887 {
530 return ev_time (); 1894 return ev_time ();
531} 1895}
532 1896
533#if EV_MULTIPLICITY 1897#if EV_MULTIPLICITY
534ev_tstamp 1898ev_tstamp
535ev_now (EV_P) 1899ev_now (EV_P) EV_NOEXCEPT
536{ 1900{
537 return ev_rt_now; 1901 return ev_rt_now;
538} 1902}
539#endif 1903#endif
540 1904
541void 1905void
542ev_sleep (ev_tstamp delay) 1906ev_sleep (ev_tstamp delay) EV_NOEXCEPT
543{ 1907{
544 if (delay > 0.) 1908 if (delay > 0.)
545 { 1909 {
546#if EV_USE_NANOSLEEP 1910#if EV_USE_NANOSLEEP
547 struct timespec ts; 1911 struct timespec ts;
548 1912
549 ts.tv_sec = (time_t)delay; 1913 EV_TS_SET (ts, delay);
550 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
551
552 nanosleep (&ts, 0); 1914 nanosleep (&ts, 0);
553#elif defined(_WIN32) 1915#elif defined _WIN32
1916 /* maybe this should round up, as ms is very low resolution */
1917 /* compared to select (µs) or nanosleep (ns) */
554 Sleep ((unsigned long)(delay * 1e3)); 1918 Sleep ((unsigned long)(delay * 1e3));
555#else 1919#else
556 struct timeval tv; 1920 struct timeval tv;
557 1921
558 tv.tv_sec = (time_t)delay; 1922 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
559 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1923 /* something not guaranteed by newer posix versions, but guaranteed */
560 1924 /* by older ones */
1925 EV_TV_SET (tv, delay);
561 select (0, 0, 0, 0, &tv); 1926 select (0, 0, 0, 0, &tv);
562#endif 1927#endif
563 } 1928 }
564} 1929}
565 1930
566/*****************************************************************************/ 1931/*****************************************************************************/
567 1932
568#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1933#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
569 1934
570int inline_size 1935/* find a suitable new size for the given array, */
1936/* hopefully by rounding to a nice-to-malloc size */
1937inline_size int
571array_nextsize (int elem, int cur, int cnt) 1938array_nextsize (int elem, int cur, int cnt)
572{ 1939{
573 int ncur = cur + 1; 1940 int ncur = cur + 1;
574 1941
575 do 1942 do
576 ncur <<= 1; 1943 ncur <<= 1;
577 while (cnt > ncur); 1944 while (cnt > ncur);
578 1945
579 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 1946 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
580 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 1947 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
581 { 1948 {
582 ncur *= elem; 1949 ncur *= elem;
583 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 1950 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
584 ncur = ncur - sizeof (void *) * 4; 1951 ncur = ncur - sizeof (void *) * 4;
586 } 1953 }
587 1954
588 return ncur; 1955 return ncur;
589} 1956}
590 1957
591static noinline void * 1958noinline ecb_cold
1959static void *
592array_realloc (int elem, void *base, int *cur, int cnt) 1960array_realloc (int elem, void *base, int *cur, int cnt)
593{ 1961{
594 *cur = array_nextsize (elem, *cur, cnt); 1962 *cur = array_nextsize (elem, *cur, cnt);
595 return ev_realloc (base, elem * *cur); 1963 return ev_realloc (base, elem * *cur);
596} 1964}
1965
1966#define array_init_zero(base,count) \
1967 memset ((void *)(base), 0, sizeof (*(base)) * (count))
597 1968
598#define array_needsize(type,base,cur,cnt,init) \ 1969#define array_needsize(type,base,cur,cnt,init) \
599 if (expect_false ((cnt) > (cur))) \ 1970 if (expect_false ((cnt) > (cur))) \
600 { \ 1971 { \
601 int ocur_ = (cur); \ 1972 ecb_unused int ocur_ = (cur); \
602 (base) = (type *)array_realloc \ 1973 (base) = (type *)array_realloc \
603 (sizeof (type), (base), &(cur), (cnt)); \ 1974 (sizeof (type), (base), &(cur), (cnt)); \
604 init ((base) + (ocur_), (cur) - ocur_); \ 1975 init ((base) + (ocur_), (cur) - ocur_); \
605 } 1976 }
606 1977
613 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1984 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
614 } 1985 }
615#endif 1986#endif
616 1987
617#define array_free(stem, idx) \ 1988#define array_free(stem, idx) \
618 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1989 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
619 1990
620/*****************************************************************************/ 1991/*****************************************************************************/
621 1992
1993/* dummy callback for pending events */
622void noinline 1994noinline
1995static void
1996pendingcb (EV_P_ ev_prepare *w, int revents)
1997{
1998}
1999
2000noinline
2001void
623ev_feed_event (EV_P_ void *w, int revents) 2002ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
624{ 2003{
625 W w_ = (W)w; 2004 W w_ = (W)w;
626 int pri = ABSPRI (w_); 2005 int pri = ABSPRI (w_);
627 2006
628 if (expect_false (w_->pending)) 2007 if (expect_false (w_->pending))
632 w_->pending = ++pendingcnt [pri]; 2011 w_->pending = ++pendingcnt [pri];
633 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 2012 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
634 pendings [pri][w_->pending - 1].w = w_; 2013 pendings [pri][w_->pending - 1].w = w_;
635 pendings [pri][w_->pending - 1].events = revents; 2014 pendings [pri][w_->pending - 1].events = revents;
636 } 2015 }
637}
638 2016
639void inline_speed 2017 pendingpri = NUMPRI - 1;
2018}
2019
2020inline_speed void
2021feed_reverse (EV_P_ W w)
2022{
2023 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
2024 rfeeds [rfeedcnt++] = w;
2025}
2026
2027inline_size void
2028feed_reverse_done (EV_P_ int revents)
2029{
2030 do
2031 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2032 while (rfeedcnt);
2033}
2034
2035inline_speed void
640queue_events (EV_P_ W *events, int eventcnt, int type) 2036queue_events (EV_P_ W *events, int eventcnt, int type)
641{ 2037{
642 int i; 2038 int i;
643 2039
644 for (i = 0; i < eventcnt; ++i) 2040 for (i = 0; i < eventcnt; ++i)
645 ev_feed_event (EV_A_ events [i], type); 2041 ev_feed_event (EV_A_ events [i], type);
646} 2042}
647 2043
648/*****************************************************************************/ 2044/*****************************************************************************/
649 2045
650void inline_size 2046inline_speed void
651anfds_init (ANFD *base, int count)
652{
653 while (count--)
654 {
655 base->head = 0;
656 base->events = EV_NONE;
657 base->reify = 0;
658
659 ++base;
660 }
661}
662
663void inline_speed
664fd_event (EV_P_ int fd, int revents) 2047fd_event_nocheck (EV_P_ int fd, int revents)
665{ 2048{
666 ANFD *anfd = anfds + fd; 2049 ANFD *anfd = anfds + fd;
667 ev_io *w; 2050 ev_io *w;
668 2051
669 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2052 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
673 if (ev) 2056 if (ev)
674 ev_feed_event (EV_A_ (W)w, ev); 2057 ev_feed_event (EV_A_ (W)w, ev);
675 } 2058 }
676} 2059}
677 2060
678void 2061/* do not submit kernel events for fds that have reify set */
2062/* because that means they changed while we were polling for new events */
2063inline_speed void
679ev_feed_fd_event (EV_P_ int fd, int revents) 2064fd_event (EV_P_ int fd, int revents)
2065{
2066 ANFD *anfd = anfds + fd;
2067
2068 if (expect_true (!anfd->reify))
2069 fd_event_nocheck (EV_A_ fd, revents);
2070}
2071
2072void
2073ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
680{ 2074{
681 if (fd >= 0 && fd < anfdmax) 2075 if (fd >= 0 && fd < anfdmax)
682 fd_event (EV_A_ fd, revents); 2076 fd_event_nocheck (EV_A_ fd, revents);
683} 2077}
684 2078
685void inline_size 2079/* make sure the external fd watch events are in-sync */
2080/* with the kernel/libev internal state */
2081inline_size void
686fd_reify (EV_P) 2082fd_reify (EV_P)
687{ 2083{
688 int i; 2084 int i;
2085
2086#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2087 for (i = 0; i < fdchangecnt; ++i)
2088 {
2089 int fd = fdchanges [i];
2090 ANFD *anfd = anfds + fd;
2091
2092 if (anfd->reify & EV__IOFDSET && anfd->head)
2093 {
2094 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2095
2096 if (handle != anfd->handle)
2097 {
2098 unsigned long arg;
2099
2100 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2101
2102 /* handle changed, but fd didn't - we need to do it in two steps */
2103 backend_modify (EV_A_ fd, anfd->events, 0);
2104 anfd->events = 0;
2105 anfd->handle = handle;
2106 }
2107 }
2108 }
2109#endif
689 2110
690 for (i = 0; i < fdchangecnt; ++i) 2111 for (i = 0; i < fdchangecnt; ++i)
691 { 2112 {
692 int fd = fdchanges [i]; 2113 int fd = fdchanges [i];
693 ANFD *anfd = anfds + fd; 2114 ANFD *anfd = anfds + fd;
694 ev_io *w; 2115 ev_io *w;
695 2116
696 unsigned char events = 0; 2117 unsigned char o_events = anfd->events;
2118 unsigned char o_reify = anfd->reify;
697 2119
698 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2120 anfd->reify = 0;
699 events |= (unsigned char)w->events;
700 2121
701#if EV_SELECT_IS_WINSOCKET 2122 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
702 if (events)
703 { 2123 {
704 unsigned long argp; 2124 anfd->events = 0;
705 #ifdef EV_FD_TO_WIN32_HANDLE 2125
706 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 2126 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
707 #else 2127 anfd->events |= (unsigned char)w->events;
708 anfd->handle = _get_osfhandle (fd); 2128
709 #endif 2129 if (o_events != anfd->events)
710 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 2130 o_reify = EV__IOFDSET; /* actually |= */
711 } 2131 }
712#endif
713 2132
714 { 2133 if (o_reify & EV__IOFDSET)
715 unsigned char o_events = anfd->events;
716 unsigned char o_reify = anfd->reify;
717
718 anfd->reify = 0;
719 anfd->events = events;
720
721 if (o_events != events || o_reify & EV_IOFDSET)
722 backend_modify (EV_A_ fd, o_events, events); 2134 backend_modify (EV_A_ fd, o_events, anfd->events);
723 }
724 } 2135 }
725 2136
726 fdchangecnt = 0; 2137 fdchangecnt = 0;
727} 2138}
728 2139
2140/* something about the given fd changed */
729void inline_size 2141inline_size
2142void
730fd_change (EV_P_ int fd, int flags) 2143fd_change (EV_P_ int fd, int flags)
731{ 2144{
732 unsigned char reify = anfds [fd].reify; 2145 unsigned char reify = anfds [fd].reify;
733 anfds [fd].reify |= flags; 2146 anfds [fd].reify |= flags;
734 2147
738 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 2151 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
739 fdchanges [fdchangecnt - 1] = fd; 2152 fdchanges [fdchangecnt - 1] = fd;
740 } 2153 }
741} 2154}
742 2155
743void inline_speed 2156/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2157inline_speed ecb_cold void
744fd_kill (EV_P_ int fd) 2158fd_kill (EV_P_ int fd)
745{ 2159{
746 ev_io *w; 2160 ev_io *w;
747 2161
748 while ((w = (ev_io *)anfds [fd].head)) 2162 while ((w = (ev_io *)anfds [fd].head))
750 ev_io_stop (EV_A_ w); 2164 ev_io_stop (EV_A_ w);
751 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2165 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
752 } 2166 }
753} 2167}
754 2168
755int inline_size 2169/* check whether the given fd is actually valid, for error recovery */
2170inline_size ecb_cold int
756fd_valid (int fd) 2171fd_valid (int fd)
757{ 2172{
758#ifdef _WIN32 2173#ifdef _WIN32
759 return _get_osfhandle (fd) != -1; 2174 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
760#else 2175#else
761 return fcntl (fd, F_GETFD) != -1; 2176 return fcntl (fd, F_GETFD) != -1;
762#endif 2177#endif
763} 2178}
764 2179
765/* called on EBADF to verify fds */ 2180/* called on EBADF to verify fds */
766static void noinline 2181noinline ecb_cold
2182static void
767fd_ebadf (EV_P) 2183fd_ebadf (EV_P)
768{ 2184{
769 int fd; 2185 int fd;
770 2186
771 for (fd = 0; fd < anfdmax; ++fd) 2187 for (fd = 0; fd < anfdmax; ++fd)
772 if (anfds [fd].events) 2188 if (anfds [fd].events)
773 if (!fd_valid (fd) == -1 && errno == EBADF) 2189 if (!fd_valid (fd) && errno == EBADF)
774 fd_kill (EV_A_ fd); 2190 fd_kill (EV_A_ fd);
775} 2191}
776 2192
777/* called on ENOMEM in select/poll to kill some fds and retry */ 2193/* called on ENOMEM in select/poll to kill some fds and retry */
778static void noinline 2194noinline ecb_cold
2195static void
779fd_enomem (EV_P) 2196fd_enomem (EV_P)
780{ 2197{
781 int fd; 2198 int fd;
782 2199
783 for (fd = anfdmax; fd--; ) 2200 for (fd = anfdmax; fd--; )
784 if (anfds [fd].events) 2201 if (anfds [fd].events)
785 { 2202 {
786 fd_kill (EV_A_ fd); 2203 fd_kill (EV_A_ fd);
787 return; 2204 break;
788 } 2205 }
789} 2206}
790 2207
791/* usually called after fork if backend needs to re-arm all fds from scratch */ 2208/* usually called after fork if backend needs to re-arm all fds from scratch */
792static void noinline 2209noinline
2210static void
793fd_rearm_all (EV_P) 2211fd_rearm_all (EV_P)
794{ 2212{
795 int fd; 2213 int fd;
796 2214
797 for (fd = 0; fd < anfdmax; ++fd) 2215 for (fd = 0; fd < anfdmax; ++fd)
798 if (anfds [fd].events) 2216 if (anfds [fd].events)
799 { 2217 {
800 anfds [fd].events = 0; 2218 anfds [fd].events = 0;
2219 anfds [fd].emask = 0;
801 fd_change (EV_A_ fd, EV_IOFDSET | 1); 2220 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
802 } 2221 }
803} 2222}
804 2223
2224/* used to prepare libev internal fd's */
2225/* this is not fork-safe */
2226inline_speed void
2227fd_intern (int fd)
2228{
2229#ifdef _WIN32
2230 unsigned long arg = 1;
2231 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2232#else
2233 fcntl (fd, F_SETFD, FD_CLOEXEC);
2234 fcntl (fd, F_SETFL, O_NONBLOCK);
2235#endif
2236}
2237
805/*****************************************************************************/ 2238/*****************************************************************************/
806 2239
807/* 2240/*
808 * the heap functions want a real array index. array index 0 uis guaranteed to not 2241 * the heap functions want a real array index. array index 0 is guaranteed to not
809 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 2242 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
810 * the branching factor of the d-tree. 2243 * the branching factor of the d-tree.
811 */ 2244 */
812 2245
813/* 2246/*
822#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 2255#define HEAP0 (DHEAP - 1) /* index of first element in heap */
823#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 2256#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
824#define UPHEAP_DONE(p,k) ((p) == (k)) 2257#define UPHEAP_DONE(p,k) ((p) == (k))
825 2258
826/* away from the root */ 2259/* away from the root */
827void inline_speed 2260inline_speed void
828downheap (ANHE *heap, int N, int k) 2261downheap (ANHE *heap, int N, int k)
829{ 2262{
830 ANHE he = heap [k]; 2263 ANHE he = heap [k];
831 ANHE *E = heap + N + HEAP0; 2264 ANHE *E = heap + N + HEAP0;
832 2265
872#define HEAP0 1 2305#define HEAP0 1
873#define HPARENT(k) ((k) >> 1) 2306#define HPARENT(k) ((k) >> 1)
874#define UPHEAP_DONE(p,k) (!(p)) 2307#define UPHEAP_DONE(p,k) (!(p))
875 2308
876/* away from the root */ 2309/* away from the root */
877void inline_speed 2310inline_speed void
878downheap (ANHE *heap, int N, int k) 2311downheap (ANHE *heap, int N, int k)
879{ 2312{
880 ANHE he = heap [k]; 2313 ANHE he = heap [k];
881 2314
882 for (;;) 2315 for (;;)
883 { 2316 {
884 int c = k << 1; 2317 int c = k << 1;
885 2318
886 if (c > N + HEAP0 - 1) 2319 if (c >= N + HEAP0)
887 break; 2320 break;
888 2321
889 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 2322 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
890 ? 1 : 0; 2323 ? 1 : 0;
891 2324
902 ev_active (ANHE_w (he)) = k; 2335 ev_active (ANHE_w (he)) = k;
903} 2336}
904#endif 2337#endif
905 2338
906/* towards the root */ 2339/* towards the root */
907void inline_speed 2340inline_speed void
908upheap (ANHE *heap, int k) 2341upheap (ANHE *heap, int k)
909{ 2342{
910 ANHE he = heap [k]; 2343 ANHE he = heap [k];
911 2344
912 for (;;) 2345 for (;;)
923 2356
924 heap [k] = he; 2357 heap [k] = he;
925 ev_active (ANHE_w (he)) = k; 2358 ev_active (ANHE_w (he)) = k;
926} 2359}
927 2360
928void inline_size 2361/* move an element suitably so it is in a correct place */
2362inline_size void
929adjustheap (ANHE *heap, int N, int k) 2363adjustheap (ANHE *heap, int N, int k)
930{ 2364{
931 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 2365 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
932 upheap (heap, k); 2366 upheap (heap, k);
933 else 2367 else
934 downheap (heap, N, k); 2368 downheap (heap, N, k);
935} 2369}
936 2370
937/* rebuild the heap: this function is used only once and executed rarely */ 2371/* rebuild the heap: this function is used only once and executed rarely */
938void inline_size 2372inline_size void
939reheap (ANHE *heap, int N) 2373reheap (ANHE *heap, int N)
940{ 2374{
941 int i; 2375 int i;
2376
942 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 2377 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
943 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */ 2378 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
944 for (i = 0; i < N; ++i) 2379 for (i = 0; i < N; ++i)
945 upheap (heap, i + HEAP0); 2380 upheap (heap, i + HEAP0);
946} 2381}
947 2382
948#if EV_VERIFY 2383/*****************************************************************************/
2384
2385/* associate signal watchers to a signal signal */
2386typedef struct
2387{
2388 EV_ATOMIC_T pending;
2389#if EV_MULTIPLICITY
2390 EV_P;
2391#endif
2392 WL head;
2393} ANSIG;
2394
2395static ANSIG signals [EV_NSIG - 1];
2396
2397/*****************************************************************************/
2398
2399#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2400
2401noinline ecb_cold
949static void 2402static void
950checkheap (ANHE *heap, int N)
951{
952 int i;
953
954 for (i = HEAP0; i < N + HEAP0; ++i)
955 {
956 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
957 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
958 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
959 }
960}
961#endif
962
963/*****************************************************************************/
964
965typedef struct
966{
967 WL head;
968 EV_ATOMIC_T gotsig;
969} ANSIG;
970
971static ANSIG *signals;
972static int signalmax;
973
974static EV_ATOMIC_T gotsig;
975
976void inline_size
977signals_init (ANSIG *base, int count)
978{
979 while (count--)
980 {
981 base->head = 0;
982 base->gotsig = 0;
983
984 ++base;
985 }
986}
987
988/*****************************************************************************/
989
990void inline_speed
991fd_intern (int fd)
992{
993#ifdef _WIN32
994 int arg = 1;
995 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
996#else
997 fcntl (fd, F_SETFD, FD_CLOEXEC);
998 fcntl (fd, F_SETFL, O_NONBLOCK);
999#endif
1000}
1001
1002static void noinline
1003evpipe_init (EV_P) 2403evpipe_init (EV_P)
1004{ 2404{
1005 if (!ev_is_active (&pipeev)) 2405 if (!ev_is_active (&pipe_w))
2406 {
2407 int fds [2];
2408
2409# if EV_USE_EVENTFD
2410 fds [0] = -1;
2411 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2412 if (fds [1] < 0 && errno == EINVAL)
2413 fds [1] = eventfd (0, 0);
2414
2415 if (fds [1] < 0)
2416# endif
2417 {
2418 while (pipe (fds))
2419 ev_syserr ("(libev) error creating signal/async pipe");
2420
2421 fd_intern (fds [0]);
2422 }
2423
2424 evpipe [0] = fds [0];
2425
2426 if (evpipe [1] < 0)
2427 evpipe [1] = fds [1]; /* first call, set write fd */
2428 else
2429 {
2430 /* on subsequent calls, do not change evpipe [1] */
2431 /* so that evpipe_write can always rely on its value. */
2432 /* this branch does not do anything sensible on windows, */
2433 /* so must not be executed on windows */
2434
2435 dup2 (fds [1], evpipe [1]);
2436 close (fds [1]);
2437 }
2438
2439 fd_intern (evpipe [1]);
2440
2441 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2442 ev_io_start (EV_A_ &pipe_w);
2443 ev_unref (EV_A); /* watcher should not keep loop alive */
1006 { 2444 }
2445}
2446
2447inline_speed void
2448evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2449{
2450 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2451
2452 if (expect_true (*flag))
2453 return;
2454
2455 *flag = 1;
2456 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2457
2458 pipe_write_skipped = 1;
2459
2460 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2461
2462 if (pipe_write_wanted)
2463 {
2464 int old_errno;
2465
2466 pipe_write_skipped = 0;
2467 ECB_MEMORY_FENCE_RELEASE;
2468
2469 old_errno = errno; /* save errno because write will clobber it */
2470
1007#if EV_USE_EVENTFD 2471#if EV_USE_EVENTFD
1008 if ((evfd = eventfd (0, 0)) >= 0) 2472 if (evpipe [0] < 0)
1009 { 2473 {
1010 evpipe [0] = -1; 2474 uint64_t counter = 1;
1011 fd_intern (evfd); 2475 write (evpipe [1], &counter, sizeof (uint64_t));
1012 ev_io_set (&pipeev, evfd, EV_READ);
1013 } 2476 }
1014 else 2477 else
1015#endif 2478#endif
1016 { 2479 {
1017 while (pipe (evpipe)) 2480#ifdef _WIN32
1018 syserr ("(libev) error creating signal/async pipe"); 2481 WSABUF buf;
1019 2482 DWORD sent;
1020 fd_intern (evpipe [0]); 2483 buf.buf = (char *)&buf;
1021 fd_intern (evpipe [1]); 2484 buf.len = 1;
1022 ev_io_set (&pipeev, evpipe [0], EV_READ); 2485 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2486#else
2487 write (evpipe [1], &(evpipe [1]), 1);
2488#endif
1023 } 2489 }
1024 2490
1025 ev_io_start (EV_A_ &pipeev); 2491 errno = old_errno;
1026 ev_unref (EV_A); /* watcher should not keep loop alive */
1027 }
1028}
1029
1030void inline_size
1031evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1032{
1033 if (!*flag)
1034 { 2492 }
1035 int old_errno = errno; /* save errno because write might clobber it */ 2493}
1036 2494
1037 *flag = 1; 2495/* called whenever the libev signal pipe */
2496/* got some events (signal, async) */
2497static void
2498pipecb (EV_P_ ev_io *iow, int revents)
2499{
2500 int i;
1038 2501
2502 if (revents & EV_READ)
2503 {
1039#if EV_USE_EVENTFD 2504#if EV_USE_EVENTFD
1040 if (evfd >= 0) 2505 if (evpipe [0] < 0)
1041 { 2506 {
1042 uint64_t counter = 1; 2507 uint64_t counter;
1043 write (evfd, &counter, sizeof (uint64_t)); 2508 read (evpipe [1], &counter, sizeof (uint64_t));
1044 } 2509 }
1045 else 2510 else
1046#endif 2511#endif
1047 write (evpipe [1], &old_errno, 1); 2512 {
1048
1049 errno = old_errno;
1050 }
1051}
1052
1053static void
1054pipecb (EV_P_ ev_io *iow, int revents)
1055{
1056#if EV_USE_EVENTFD
1057 if (evfd >= 0)
1058 {
1059 uint64_t counter;
1060 read (evfd, &counter, sizeof (uint64_t));
1061 }
1062 else
1063#endif
1064 {
1065 char dummy; 2513 char dummy[4];
2514#ifdef _WIN32
2515 WSABUF buf;
2516 DWORD recvd;
2517 DWORD flags = 0;
2518 buf.buf = dummy;
2519 buf.len = sizeof (dummy);
2520 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2521#else
1066 read (evpipe [0], &dummy, 1); 2522 read (evpipe [0], &dummy, sizeof (dummy));
2523#endif
2524 }
2525 }
2526
2527 pipe_write_skipped = 0;
2528
2529 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2530
2531#if EV_SIGNAL_ENABLE
2532 if (sig_pending)
1067 } 2533 {
2534 sig_pending = 0;
1068 2535
1069 if (gotsig && ev_is_default_loop (EV_A)) 2536 ECB_MEMORY_FENCE;
1070 {
1071 int signum;
1072 gotsig = 0;
1073 2537
1074 for (signum = signalmax; signum--; ) 2538 for (i = EV_NSIG - 1; i--; )
1075 if (signals [signum].gotsig) 2539 if (expect_false (signals [i].pending))
1076 ev_feed_signal_event (EV_A_ signum + 1); 2540 ev_feed_signal_event (EV_A_ i + 1);
1077 } 2541 }
2542#endif
1078 2543
1079#if EV_ASYNC_ENABLE 2544#if EV_ASYNC_ENABLE
1080 if (gotasync) 2545 if (async_pending)
1081 { 2546 {
1082 int i; 2547 async_pending = 0;
1083 gotasync = 0; 2548
2549 ECB_MEMORY_FENCE;
1084 2550
1085 for (i = asynccnt; i--; ) 2551 for (i = asynccnt; i--; )
1086 if (asyncs [i]->sent) 2552 if (asyncs [i]->sent)
1087 { 2553 {
1088 asyncs [i]->sent = 0; 2554 asyncs [i]->sent = 0;
2555 ECB_MEMORY_FENCE_RELEASE;
1089 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2556 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1090 } 2557 }
1091 } 2558 }
1092#endif 2559#endif
1093} 2560}
1094 2561
1095/*****************************************************************************/ 2562/*****************************************************************************/
1096 2563
2564void
2565ev_feed_signal (int signum) EV_NOEXCEPT
2566{
2567#if EV_MULTIPLICITY
2568 EV_P;
2569 ECB_MEMORY_FENCE_ACQUIRE;
2570 EV_A = signals [signum - 1].loop;
2571
2572 if (!EV_A)
2573 return;
2574#endif
2575
2576 signals [signum - 1].pending = 1;
2577 evpipe_write (EV_A_ &sig_pending);
2578}
2579
1097static void 2580static void
1098ev_sighandler (int signum) 2581ev_sighandler (int signum)
1099{ 2582{
2583#ifdef _WIN32
2584 signal (signum, ev_sighandler);
2585#endif
2586
2587 ev_feed_signal (signum);
2588}
2589
2590noinline
2591void
2592ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2593{
2594 WL w;
2595
2596 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2597 return;
2598
2599 --signum;
2600
1100#if EV_MULTIPLICITY 2601#if EV_MULTIPLICITY
1101 struct ev_loop *loop = &default_loop_struct; 2602 /* it is permissible to try to feed a signal to the wrong loop */
1102#endif 2603 /* or, likely more useful, feeding a signal nobody is waiting for */
1103 2604
1104#if _WIN32 2605 if (expect_false (signals [signum].loop != EV_A))
1105 signal (signum, ev_sighandler);
1106#endif
1107
1108 signals [signum - 1].gotsig = 1;
1109 evpipe_write (EV_A_ &gotsig);
1110}
1111
1112void noinline
1113ev_feed_signal_event (EV_P_ int signum)
1114{
1115 WL w;
1116
1117#if EV_MULTIPLICITY
1118 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1119#endif
1120
1121 --signum;
1122
1123 if (signum < 0 || signum >= signalmax)
1124 return; 2606 return;
2607#endif
1125 2608
1126 signals [signum].gotsig = 0; 2609 signals [signum].pending = 0;
2610 ECB_MEMORY_FENCE_RELEASE;
1127 2611
1128 for (w = signals [signum].head; w; w = w->next) 2612 for (w = signals [signum].head; w; w = w->next)
1129 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2613 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1130} 2614}
1131 2615
2616#if EV_USE_SIGNALFD
2617static void
2618sigfdcb (EV_P_ ev_io *iow, int revents)
2619{
2620 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2621
2622 for (;;)
2623 {
2624 ssize_t res = read (sigfd, si, sizeof (si));
2625
2626 /* not ISO-C, as res might be -1, but works with SuS */
2627 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2628 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2629
2630 if (res < (ssize_t)sizeof (si))
2631 break;
2632 }
2633}
2634#endif
2635
2636#endif
2637
1132/*****************************************************************************/ 2638/*****************************************************************************/
1133 2639
2640#if EV_CHILD_ENABLE
1134static WL childs [EV_PID_HASHSIZE]; 2641static WL childs [EV_PID_HASHSIZE];
1135
1136#ifndef _WIN32
1137 2642
1138static ev_signal childev; 2643static ev_signal childev;
1139 2644
1140#ifndef WIFCONTINUED 2645#ifndef WIFCONTINUED
1141# define WIFCONTINUED(status) 0 2646# define WIFCONTINUED(status) 0
1142#endif 2647#endif
1143 2648
1144void inline_speed 2649/* handle a single child status event */
2650inline_speed void
1145child_reap (EV_P_ int chain, int pid, int status) 2651child_reap (EV_P_ int chain, int pid, int status)
1146{ 2652{
1147 ev_child *w; 2653 ev_child *w;
1148 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2654 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1149 2655
1150 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2656 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1151 { 2657 {
1152 if ((w->pid == pid || !w->pid) 2658 if ((w->pid == pid || !w->pid)
1153 && (!traced || (w->flags & 1))) 2659 && (!traced || (w->flags & 1)))
1154 { 2660 {
1155 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2661 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1162 2668
1163#ifndef WCONTINUED 2669#ifndef WCONTINUED
1164# define WCONTINUED 0 2670# define WCONTINUED 0
1165#endif 2671#endif
1166 2672
2673/* called on sigchld etc., calls waitpid */
1167static void 2674static void
1168childcb (EV_P_ ev_signal *sw, int revents) 2675childcb (EV_P_ ev_signal *sw, int revents)
1169{ 2676{
1170 int pid, status; 2677 int pid, status;
1171 2678
1179 /* make sure we are called again until all children have been reaped */ 2686 /* make sure we are called again until all children have been reaped */
1180 /* we need to do it this way so that the callback gets called before we continue */ 2687 /* we need to do it this way so that the callback gets called before we continue */
1181 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2688 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1182 2689
1183 child_reap (EV_A_ pid, pid, status); 2690 child_reap (EV_A_ pid, pid, status);
1184 if (EV_PID_HASHSIZE > 1) 2691 if ((EV_PID_HASHSIZE) > 1)
1185 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2692 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1186} 2693}
1187 2694
1188#endif 2695#endif
1189 2696
1190/*****************************************************************************/ 2697/*****************************************************************************/
1191 2698
2699#if EV_USE_IOCP
2700# include "ev_iocp.c"
2701#endif
1192#if EV_USE_PORT 2702#if EV_USE_PORT
1193# include "ev_port.c" 2703# include "ev_port.c"
1194#endif 2704#endif
1195#if EV_USE_KQUEUE 2705#if EV_USE_KQUEUE
1196# include "ev_kqueue.c" 2706# include "ev_kqueue.c"
1203#endif 2713#endif
1204#if EV_USE_SELECT 2714#if EV_USE_SELECT
1205# include "ev_select.c" 2715# include "ev_select.c"
1206#endif 2716#endif
1207 2717
1208int 2718ecb_cold int
1209ev_version_major (void) 2719ev_version_major (void) EV_NOEXCEPT
1210{ 2720{
1211 return EV_VERSION_MAJOR; 2721 return EV_VERSION_MAJOR;
1212} 2722}
1213 2723
1214int 2724ecb_cold int
1215ev_version_minor (void) 2725ev_version_minor (void) EV_NOEXCEPT
1216{ 2726{
1217 return EV_VERSION_MINOR; 2727 return EV_VERSION_MINOR;
1218} 2728}
1219 2729
1220/* return true if we are running with elevated privileges and should ignore env variables */ 2730/* return true if we are running with elevated privileges and should ignore env variables */
1221int inline_size 2731inline_size ecb_cold int
1222enable_secure (void) 2732enable_secure (void)
1223{ 2733{
1224#ifdef _WIN32 2734#ifdef _WIN32
1225 return 0; 2735 return 0;
1226#else 2736#else
1227 return getuid () != geteuid () 2737 return getuid () != geteuid ()
1228 || getgid () != getegid (); 2738 || getgid () != getegid ();
1229#endif 2739#endif
1230} 2740}
1231 2741
2742ecb_cold
1232unsigned int 2743unsigned int
1233ev_supported_backends (void) 2744ev_supported_backends (void) EV_NOEXCEPT
1234{ 2745{
1235 unsigned int flags = 0; 2746 unsigned int flags = 0;
1236 2747
1237 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2748 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1238 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2749 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1241 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2752 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1242 2753
1243 return flags; 2754 return flags;
1244} 2755}
1245 2756
2757ecb_cold
1246unsigned int 2758unsigned int
1247ev_recommended_backends (void) 2759ev_recommended_backends (void) EV_NOEXCEPT
1248{ 2760{
1249 unsigned int flags = ev_supported_backends (); 2761 unsigned int flags = ev_supported_backends ();
1250 2762
1251#ifndef __NetBSD__ 2763#ifndef __NetBSD__
1252 /* kqueue is borked on everything but netbsd apparently */ 2764 /* kqueue is borked on everything but netbsd apparently */
1253 /* it usually doesn't work correctly on anything but sockets and pipes */ 2765 /* it usually doesn't work correctly on anything but sockets and pipes */
1254 flags &= ~EVBACKEND_KQUEUE; 2766 flags &= ~EVBACKEND_KQUEUE;
1255#endif 2767#endif
1256#ifdef __APPLE__ 2768#ifdef __APPLE__
1257 // flags &= ~EVBACKEND_KQUEUE; for documentation 2769 /* only select works correctly on that "unix-certified" platform */
1258 flags &= ~EVBACKEND_POLL; 2770 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2771 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2772#endif
2773#ifdef __FreeBSD__
2774 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1259#endif 2775#endif
1260 2776
1261 return flags; 2777 return flags;
1262} 2778}
1263 2779
2780ecb_cold
1264unsigned int 2781unsigned int
1265ev_embeddable_backends (void) 2782ev_embeddable_backends (void) EV_NOEXCEPT
1266{ 2783{
1267 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2784 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1268 2785
1269 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 2786 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1270 /* please fix it and tell me how to detect the fix */ 2787 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1271 flags &= ~EVBACKEND_EPOLL; 2788 flags &= ~EVBACKEND_EPOLL;
1272 2789
1273 return flags; 2790 return flags;
1274} 2791}
1275 2792
1276unsigned int 2793unsigned int
1277ev_backend (EV_P) 2794ev_backend (EV_P) EV_NOEXCEPT
1278{ 2795{
1279 return backend; 2796 return backend;
1280} 2797}
1281 2798
2799#if EV_FEATURE_API
1282unsigned int 2800unsigned int
1283ev_loop_count (EV_P) 2801ev_iteration (EV_P) EV_NOEXCEPT
1284{ 2802{
1285 return loop_count; 2803 return loop_count;
1286} 2804}
1287 2805
2806unsigned int
2807ev_depth (EV_P) EV_NOEXCEPT
2808{
2809 return loop_depth;
2810}
2811
1288void 2812void
1289ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2813ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
1290{ 2814{
1291 io_blocktime = interval; 2815 io_blocktime = interval;
1292} 2816}
1293 2817
1294void 2818void
1295ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2819ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
1296{ 2820{
1297 timeout_blocktime = interval; 2821 timeout_blocktime = interval;
1298} 2822}
1299 2823
1300static void noinline 2824void
2825ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
2826{
2827 userdata = data;
2828}
2829
2830void *
2831ev_userdata (EV_P) EV_NOEXCEPT
2832{
2833 return userdata;
2834}
2835
2836void
2837ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
2838{
2839 invoke_cb = invoke_pending_cb;
2840}
2841
2842void
2843ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
2844{
2845 release_cb = release;
2846 acquire_cb = acquire;
2847}
2848#endif
2849
2850/* initialise a loop structure, must be zero-initialised */
2851noinline ecb_cold
2852static void
1301loop_init (EV_P_ unsigned int flags) 2853loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
1302{ 2854{
1303 if (!backend) 2855 if (!backend)
1304 { 2856 {
2857 origflags = flags;
2858
2859#if EV_USE_REALTIME
2860 if (!have_realtime)
2861 {
2862 struct timespec ts;
2863
2864 if (!clock_gettime (CLOCK_REALTIME, &ts))
2865 have_realtime = 1;
2866 }
2867#endif
2868
1305#if EV_USE_MONOTONIC 2869#if EV_USE_MONOTONIC
2870 if (!have_monotonic)
1306 { 2871 {
1307 struct timespec ts; 2872 struct timespec ts;
2873
1308 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2874 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1309 have_monotonic = 1; 2875 have_monotonic = 1;
1310 } 2876 }
1311#endif
1312
1313 ev_rt_now = ev_time ();
1314 mn_now = get_clock ();
1315 now_floor = mn_now;
1316 rtmn_diff = ev_rt_now - mn_now;
1317
1318 io_blocktime = 0.;
1319 timeout_blocktime = 0.;
1320 backend = 0;
1321 backend_fd = -1;
1322 gotasync = 0;
1323#if EV_USE_INOTIFY
1324 fs_fd = -2;
1325#endif 2877#endif
1326 2878
1327 /* pid check not overridable via env */ 2879 /* pid check not overridable via env */
1328#ifndef _WIN32 2880#ifndef _WIN32
1329 if (flags & EVFLAG_FORKCHECK) 2881 if (flags & EVFLAG_FORKCHECK)
1333 if (!(flags & EVFLAG_NOENV) 2885 if (!(flags & EVFLAG_NOENV)
1334 && !enable_secure () 2886 && !enable_secure ()
1335 && getenv ("LIBEV_FLAGS")) 2887 && getenv ("LIBEV_FLAGS"))
1336 flags = atoi (getenv ("LIBEV_FLAGS")); 2888 flags = atoi (getenv ("LIBEV_FLAGS"));
1337 2889
1338 if (!(flags & 0x0000ffffU)) 2890 ev_rt_now = ev_time ();
2891 mn_now = get_clock ();
2892 now_floor = mn_now;
2893 rtmn_diff = ev_rt_now - mn_now;
2894#if EV_FEATURE_API
2895 invoke_cb = ev_invoke_pending;
2896#endif
2897
2898 io_blocktime = 0.;
2899 timeout_blocktime = 0.;
2900 backend = 0;
2901 backend_fd = -1;
2902 sig_pending = 0;
2903#if EV_ASYNC_ENABLE
2904 async_pending = 0;
2905#endif
2906 pipe_write_skipped = 0;
2907 pipe_write_wanted = 0;
2908 evpipe [0] = -1;
2909 evpipe [1] = -1;
2910#if EV_USE_INOTIFY
2911 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2912#endif
2913#if EV_USE_SIGNALFD
2914 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2915#endif
2916
2917 if (!(flags & EVBACKEND_MASK))
1339 flags |= ev_recommended_backends (); 2918 flags |= ev_recommended_backends ();
1340 2919
2920#if EV_USE_IOCP
2921 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2922#endif
1341#if EV_USE_PORT 2923#if EV_USE_PORT
1342 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2924 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1343#endif 2925#endif
1344#if EV_USE_KQUEUE 2926#if EV_USE_KQUEUE
1345 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2927 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1352#endif 2934#endif
1353#if EV_USE_SELECT 2935#if EV_USE_SELECT
1354 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2936 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1355#endif 2937#endif
1356 2938
2939 ev_prepare_init (&pending_w, pendingcb);
2940
2941#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1357 ev_init (&pipeev, pipecb); 2942 ev_init (&pipe_w, pipecb);
1358 ev_set_priority (&pipeev, EV_MAXPRI); 2943 ev_set_priority (&pipe_w, EV_MAXPRI);
2944#endif
1359 } 2945 }
1360} 2946}
1361 2947
1362static void noinline 2948/* free up a loop structure */
2949ecb_cold
2950void
1363loop_destroy (EV_P) 2951ev_loop_destroy (EV_P)
1364{ 2952{
1365 int i; 2953 int i;
1366 2954
2955#if EV_MULTIPLICITY
2956 /* mimic free (0) */
2957 if (!EV_A)
2958 return;
2959#endif
2960
2961#if EV_CLEANUP_ENABLE
2962 /* queue cleanup watchers (and execute them) */
2963 if (expect_false (cleanupcnt))
2964 {
2965 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2966 EV_INVOKE_PENDING;
2967 }
2968#endif
2969
2970#if EV_CHILD_ENABLE
2971 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2972 {
2973 ev_ref (EV_A); /* child watcher */
2974 ev_signal_stop (EV_A_ &childev);
2975 }
2976#endif
2977
1367 if (ev_is_active (&pipeev)) 2978 if (ev_is_active (&pipe_w))
1368 { 2979 {
1369 ev_ref (EV_A); /* signal watcher */ 2980 /*ev_ref (EV_A);*/
1370 ev_io_stop (EV_A_ &pipeev); 2981 /*ev_io_stop (EV_A_ &pipe_w);*/
1371 2982
2983 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2984 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2985 }
2986
1372#if EV_USE_EVENTFD 2987#if EV_USE_SIGNALFD
1373 if (evfd >= 0) 2988 if (ev_is_active (&sigfd_w))
1374 close (evfd); 2989 close (sigfd);
1375#endif 2990#endif
1376
1377 if (evpipe [0] >= 0)
1378 {
1379 close (evpipe [0]);
1380 close (evpipe [1]);
1381 }
1382 }
1383 2991
1384#if EV_USE_INOTIFY 2992#if EV_USE_INOTIFY
1385 if (fs_fd >= 0) 2993 if (fs_fd >= 0)
1386 close (fs_fd); 2994 close (fs_fd);
1387#endif 2995#endif
1388 2996
1389 if (backend_fd >= 0) 2997 if (backend_fd >= 0)
1390 close (backend_fd); 2998 close (backend_fd);
1391 2999
3000#if EV_USE_IOCP
3001 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3002#endif
1392#if EV_USE_PORT 3003#if EV_USE_PORT
1393 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 3004 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1394#endif 3005#endif
1395#if EV_USE_KQUEUE 3006#if EV_USE_KQUEUE
1396 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 3007 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1411#if EV_IDLE_ENABLE 3022#if EV_IDLE_ENABLE
1412 array_free (idle, [i]); 3023 array_free (idle, [i]);
1413#endif 3024#endif
1414 } 3025 }
1415 3026
1416 ev_free (anfds); anfdmax = 0; 3027 ev_free (anfds); anfds = 0; anfdmax = 0;
1417 3028
1418 /* have to use the microsoft-never-gets-it-right macro */ 3029 /* have to use the microsoft-never-gets-it-right macro */
3030 array_free (rfeed, EMPTY);
1419 array_free (fdchange, EMPTY); 3031 array_free (fdchange, EMPTY);
1420 array_free (timer, EMPTY); 3032 array_free (timer, EMPTY);
1421#if EV_PERIODIC_ENABLE 3033#if EV_PERIODIC_ENABLE
1422 array_free (periodic, EMPTY); 3034 array_free (periodic, EMPTY);
1423#endif 3035#endif
1424#if EV_FORK_ENABLE 3036#if EV_FORK_ENABLE
1425 array_free (fork, EMPTY); 3037 array_free (fork, EMPTY);
1426#endif 3038#endif
3039#if EV_CLEANUP_ENABLE
3040 array_free (cleanup, EMPTY);
3041#endif
1427 array_free (prepare, EMPTY); 3042 array_free (prepare, EMPTY);
1428 array_free (check, EMPTY); 3043 array_free (check, EMPTY);
1429#if EV_ASYNC_ENABLE 3044#if EV_ASYNC_ENABLE
1430 array_free (async, EMPTY); 3045 array_free (async, EMPTY);
1431#endif 3046#endif
1432 3047
1433 backend = 0; 3048 backend = 0;
3049
3050#if EV_MULTIPLICITY
3051 if (ev_is_default_loop (EV_A))
3052#endif
3053 ev_default_loop_ptr = 0;
3054#if EV_MULTIPLICITY
3055 else
3056 ev_free (EV_A);
3057#endif
1434} 3058}
1435 3059
1436#if EV_USE_INOTIFY 3060#if EV_USE_INOTIFY
1437void inline_size infy_fork (EV_P); 3061inline_size void infy_fork (EV_P);
1438#endif 3062#endif
1439 3063
1440void inline_size 3064inline_size void
1441loop_fork (EV_P) 3065loop_fork (EV_P)
1442{ 3066{
1443#if EV_USE_PORT 3067#if EV_USE_PORT
1444 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 3068 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1445#endif 3069#endif
1451#endif 3075#endif
1452#if EV_USE_INOTIFY 3076#if EV_USE_INOTIFY
1453 infy_fork (EV_A); 3077 infy_fork (EV_A);
1454#endif 3078#endif
1455 3079
1456 if (ev_is_active (&pipeev)) 3080#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3081 if (ev_is_active (&pipe_w) && postfork != 2)
1457 { 3082 {
1458 /* this "locks" the handlers against writing to the pipe */ 3083 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1459 /* while we modify the fd vars */
1460 gotsig = 1;
1461#if EV_ASYNC_ENABLE
1462 gotasync = 1;
1463#endif
1464 3084
1465 ev_ref (EV_A); 3085 ev_ref (EV_A);
1466 ev_io_stop (EV_A_ &pipeev); 3086 ev_io_stop (EV_A_ &pipe_w);
1467
1468#if EV_USE_EVENTFD
1469 if (evfd >= 0)
1470 close (evfd);
1471#endif
1472 3087
1473 if (evpipe [0] >= 0) 3088 if (evpipe [0] >= 0)
1474 { 3089 EV_WIN32_CLOSE_FD (evpipe [0]);
1475 close (evpipe [0]);
1476 close (evpipe [1]);
1477 }
1478 3090
1479 evpipe_init (EV_A); 3091 evpipe_init (EV_A);
1480 /* now iterate over everything, in case we missed something */ 3092 /* iterate over everything, in case we missed something before */
1481 pipecb (EV_A_ &pipeev, EV_READ); 3093 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1482 } 3094 }
3095#endif
1483 3096
1484 postfork = 0; 3097 postfork = 0;
1485} 3098}
1486 3099
1487#if EV_MULTIPLICITY 3100#if EV_MULTIPLICITY
1488 3101
3102ecb_cold
1489struct ev_loop * 3103struct ev_loop *
1490ev_loop_new (unsigned int flags) 3104ev_loop_new (unsigned int flags) EV_NOEXCEPT
1491{ 3105{
1492 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 3106 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1493 3107
1494 memset (loop, 0, sizeof (struct ev_loop)); 3108 memset (EV_A, 0, sizeof (struct ev_loop));
1495
1496 loop_init (EV_A_ flags); 3109 loop_init (EV_A_ flags);
1497 3110
1498 if (ev_backend (EV_A)) 3111 if (ev_backend (EV_A))
1499 return loop; 3112 return EV_A;
1500 3113
3114 ev_free (EV_A);
1501 return 0; 3115 return 0;
1502} 3116}
1503 3117
1504void 3118#endif /* multiplicity */
1505ev_loop_destroy (EV_P)
1506{
1507 loop_destroy (EV_A);
1508 ev_free (loop);
1509}
1510
1511void
1512ev_loop_fork (EV_P)
1513{
1514 postfork = 1; /* must be in line with ev_default_fork */
1515}
1516 3119
1517#if EV_VERIFY 3120#if EV_VERIFY
3121noinline ecb_cold
1518static void 3122static void
3123verify_watcher (EV_P_ W w)
3124{
3125 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
3126
3127 if (w->pending)
3128 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3129}
3130
3131noinline ecb_cold
3132static void
3133verify_heap (EV_P_ ANHE *heap, int N)
3134{
3135 int i;
3136
3137 for (i = HEAP0; i < N + HEAP0; ++i)
3138 {
3139 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3140 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3141 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3142
3143 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3144 }
3145}
3146
3147noinline ecb_cold
3148static void
1519array_check (W **ws, int cnt) 3149array_verify (EV_P_ W *ws, int cnt)
1520{ 3150{
1521 while (cnt--) 3151 while (cnt--)
3152 {
1522 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 3153 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3154 verify_watcher (EV_A_ ws [cnt]);
3155 }
1523} 3156}
1524#endif 3157#endif
1525 3158
1526void 3159#if EV_FEATURE_API
1527ev_loop_verify (EV_P) 3160void ecb_cold
3161ev_verify (EV_P) EV_NOEXCEPT
1528{ 3162{
1529#if EV_VERIFY 3163#if EV_VERIFY
1530 int i; 3164 int i;
3165 WL w, w2;
1531 3166
3167 assert (activecnt >= -1);
3168
3169 assert (fdchangemax >= fdchangecnt);
3170 for (i = 0; i < fdchangecnt; ++i)
3171 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3172
3173 assert (anfdmax >= 0);
3174 for (i = 0; i < anfdmax; ++i)
3175 {
3176 int j = 0;
3177
3178 for (w = w2 = anfds [i].head; w; w = w->next)
3179 {
3180 verify_watcher (EV_A_ (W)w);
3181
3182 if (j++ & 1)
3183 {
3184 assert (("libev: io watcher list contains a loop", w != w2));
3185 w2 = w2->next;
3186 }
3187
3188 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3189 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3190 }
3191 }
3192
3193 assert (timermax >= timercnt);
1532 checkheap (timers, timercnt); 3194 verify_heap (EV_A_ timers, timercnt);
3195
1533#if EV_PERIODIC_ENABLE 3196#if EV_PERIODIC_ENABLE
3197 assert (periodicmax >= periodiccnt);
1534 checkheap (periodics, periodiccnt); 3198 verify_heap (EV_A_ periodics, periodiccnt);
1535#endif 3199#endif
1536 3200
3201 for (i = NUMPRI; i--; )
3202 {
3203 assert (pendingmax [i] >= pendingcnt [i]);
1537#if EV_IDLE_ENABLE 3204#if EV_IDLE_ENABLE
1538 for (i = NUMPRI; i--; ) 3205 assert (idleall >= 0);
3206 assert (idlemax [i] >= idlecnt [i]);
1539 array_check ((W **)idles [i], idlecnt [i]); 3207 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1540#endif 3208#endif
3209 }
3210
1541#if EV_FORK_ENABLE 3211#if EV_FORK_ENABLE
3212 assert (forkmax >= forkcnt);
1542 array_check ((W **)forks, forkcnt); 3213 array_verify (EV_A_ (W *)forks, forkcnt);
1543#endif 3214#endif
3215
3216#if EV_CLEANUP_ENABLE
3217 assert (cleanupmax >= cleanupcnt);
3218 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3219#endif
3220
1544#if EV_ASYNC_ENABLE 3221#if EV_ASYNC_ENABLE
3222 assert (asyncmax >= asynccnt);
1545 array_check ((W **)asyncs, asynccnt); 3223 array_verify (EV_A_ (W *)asyncs, asynccnt);
3224#endif
3225
3226#if EV_PREPARE_ENABLE
3227 assert (preparemax >= preparecnt);
3228 array_verify (EV_A_ (W *)prepares, preparecnt);
3229#endif
3230
3231#if EV_CHECK_ENABLE
3232 assert (checkmax >= checkcnt);
3233 array_verify (EV_A_ (W *)checks, checkcnt);
3234#endif
3235
3236# if 0
3237#if EV_CHILD_ENABLE
3238 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3239 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3240#endif
1546#endif 3241# endif
1547 array_check ((W **)prepares, preparecnt);
1548 array_check ((W **)checks, checkcnt);
1549#endif 3242#endif
1550} 3243}
1551 3244#endif
1552#endif /* multiplicity */
1553 3245
1554#if EV_MULTIPLICITY 3246#if EV_MULTIPLICITY
3247ecb_cold
1555struct ev_loop * 3248struct ev_loop *
1556ev_default_loop_init (unsigned int flags)
1557#else 3249#else
1558int 3250int
3251#endif
1559ev_default_loop (unsigned int flags) 3252ev_default_loop (unsigned int flags) EV_NOEXCEPT
1560#endif
1561{ 3253{
1562 if (!ev_default_loop_ptr) 3254 if (!ev_default_loop_ptr)
1563 { 3255 {
1564#if EV_MULTIPLICITY 3256#if EV_MULTIPLICITY
1565 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3257 EV_P = ev_default_loop_ptr = &default_loop_struct;
1566#else 3258#else
1567 ev_default_loop_ptr = 1; 3259 ev_default_loop_ptr = 1;
1568#endif 3260#endif
1569 3261
1570 loop_init (EV_A_ flags); 3262 loop_init (EV_A_ flags);
1571 3263
1572 if (ev_backend (EV_A)) 3264 if (ev_backend (EV_A))
1573 { 3265 {
1574#ifndef _WIN32 3266#if EV_CHILD_ENABLE
1575 ev_signal_init (&childev, childcb, SIGCHLD); 3267 ev_signal_init (&childev, childcb, SIGCHLD);
1576 ev_set_priority (&childev, EV_MAXPRI); 3268 ev_set_priority (&childev, EV_MAXPRI);
1577 ev_signal_start (EV_A_ &childev); 3269 ev_signal_start (EV_A_ &childev);
1578 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3270 ev_unref (EV_A); /* child watcher should not keep loop alive */
1579#endif 3271#endif
1584 3276
1585 return ev_default_loop_ptr; 3277 return ev_default_loop_ptr;
1586} 3278}
1587 3279
1588void 3280void
1589ev_default_destroy (void) 3281ev_loop_fork (EV_P) EV_NOEXCEPT
1590{ 3282{
1591#if EV_MULTIPLICITY 3283 postfork = 1;
1592 struct ev_loop *loop = ev_default_loop_ptr;
1593#endif
1594
1595#ifndef _WIN32
1596 ev_ref (EV_A); /* child watcher */
1597 ev_signal_stop (EV_A_ &childev);
1598#endif
1599
1600 loop_destroy (EV_A);
1601}
1602
1603void
1604ev_default_fork (void)
1605{
1606#if EV_MULTIPLICITY
1607 struct ev_loop *loop = ev_default_loop_ptr;
1608#endif
1609
1610 if (backend)
1611 postfork = 1; /* must be in line with ev_loop_fork */
1612} 3284}
1613 3285
1614/*****************************************************************************/ 3286/*****************************************************************************/
1615 3287
1616void 3288void
1617ev_invoke (EV_P_ void *w, int revents) 3289ev_invoke (EV_P_ void *w, int revents)
1618{ 3290{
1619 EV_CB_INVOKE ((W)w, revents); 3291 EV_CB_INVOKE ((W)w, revents);
1620} 3292}
1621 3293
1622void inline_speed 3294unsigned int
1623call_pending (EV_P) 3295ev_pending_count (EV_P) EV_NOEXCEPT
1624{ 3296{
1625 int pri; 3297 int pri;
3298 unsigned int count = 0;
1626 3299
1627 for (pri = NUMPRI; pri--; ) 3300 for (pri = NUMPRI; pri--; )
3301 count += pendingcnt [pri];
3302
3303 return count;
3304}
3305
3306noinline
3307void
3308ev_invoke_pending (EV_P)
3309{
3310 pendingpri = NUMPRI;
3311
3312 do
3313 {
3314 --pendingpri;
3315
3316 /* pendingpri possibly gets modified in the inner loop */
1628 while (pendingcnt [pri]) 3317 while (pendingcnt [pendingpri])
1629 {
1630 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1631
1632 if (expect_true (p->w))
1633 { 3318 {
1634 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 3319 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1635 3320
1636 p->w->pending = 0; 3321 p->w->pending = 0;
1637 EV_CB_INVOKE (p->w, p->events); 3322 EV_CB_INVOKE (p->w, p->events);
1638 EV_FREQUENT_CHECK; 3323 EV_FREQUENT_CHECK;
1639 } 3324 }
1640 } 3325 }
3326 while (pendingpri);
1641} 3327}
1642 3328
1643#if EV_IDLE_ENABLE 3329#if EV_IDLE_ENABLE
1644void inline_size 3330/* make idle watchers pending. this handles the "call-idle */
3331/* only when higher priorities are idle" logic */
3332inline_size void
1645idle_reify (EV_P) 3333idle_reify (EV_P)
1646{ 3334{
1647 if (expect_false (idleall)) 3335 if (expect_false (idleall))
1648 { 3336 {
1649 int pri; 3337 int pri;
1661 } 3349 }
1662 } 3350 }
1663} 3351}
1664#endif 3352#endif
1665 3353
1666void inline_size 3354/* make timers pending */
3355inline_size void
1667timers_reify (EV_P) 3356timers_reify (EV_P)
1668{ 3357{
1669 EV_FREQUENT_CHECK; 3358 EV_FREQUENT_CHECK;
1670 3359
1671 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 3360 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1672 { 3361 {
1673 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 3362 do
1674
1675 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1676
1677 /* first reschedule or stop timer */
1678 if (w->repeat)
1679 { 3363 {
3364 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3365
3366 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3367
3368 /* first reschedule or stop timer */
3369 if (w->repeat)
3370 {
1680 ev_at (w) += w->repeat; 3371 ev_at (w) += w->repeat;
1681 if (ev_at (w) < mn_now) 3372 if (ev_at (w) < mn_now)
1682 ev_at (w) = mn_now; 3373 ev_at (w) = mn_now;
1683 3374
1684 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3375 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1685 3376
1686 ANHE_at_cache (timers [HEAP0]); 3377 ANHE_at_cache (timers [HEAP0]);
1687 downheap (timers, timercnt, HEAP0); 3378 downheap (timers, timercnt, HEAP0);
3379 }
3380 else
3381 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3382
3383 EV_FREQUENT_CHECK;
3384 feed_reverse (EV_A_ (W)w);
1688 } 3385 }
1689 else 3386 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1690 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1691 3387
1692 EV_FREQUENT_CHECK; 3388 feed_reverse_done (EV_A_ EV_TIMER);
1693 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1694 } 3389 }
1695} 3390}
1696 3391
1697#if EV_PERIODIC_ENABLE 3392#if EV_PERIODIC_ENABLE
1698void inline_size 3393
3394noinline
3395static void
3396periodic_recalc (EV_P_ ev_periodic *w)
3397{
3398 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3399 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3400
3401 /* the above almost always errs on the low side */
3402 while (at <= ev_rt_now)
3403 {
3404 ev_tstamp nat = at + w->interval;
3405
3406 /* when resolution fails us, we use ev_rt_now */
3407 if (expect_false (nat == at))
3408 {
3409 at = ev_rt_now;
3410 break;
3411 }
3412
3413 at = nat;
3414 }
3415
3416 ev_at (w) = at;
3417}
3418
3419/* make periodics pending */
3420inline_size void
1699periodics_reify (EV_P) 3421periodics_reify (EV_P)
1700{ 3422{
1701 EV_FREQUENT_CHECK; 3423 EV_FREQUENT_CHECK;
1702 3424
1703 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 3425 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1704 { 3426 {
1705 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 3427 do
1706
1707 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1708
1709 /* first reschedule or stop timer */
1710 if (w->reschedule_cb)
1711 { 3428 {
3429 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3430
3431 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3432
3433 /* first reschedule or stop timer */
3434 if (w->reschedule_cb)
3435 {
1712 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3436 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1713 3437
1714 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 3438 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1715 3439
1716 ANHE_at_cache (periodics [HEAP0]); 3440 ANHE_at_cache (periodics [HEAP0]);
1717 downheap (periodics, periodiccnt, HEAP0); 3441 downheap (periodics, periodiccnt, HEAP0);
3442 }
3443 else if (w->interval)
3444 {
3445 periodic_recalc (EV_A_ w);
3446 ANHE_at_cache (periodics [HEAP0]);
3447 downheap (periodics, periodiccnt, HEAP0);
3448 }
3449 else
3450 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3451
3452 EV_FREQUENT_CHECK;
3453 feed_reverse (EV_A_ (W)w);
1718 } 3454 }
1719 else if (w->interval) 3455 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1720 {
1721 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1722 /* if next trigger time is not sufficiently in the future, put it there */
1723 /* this might happen because of floating point inexactness */
1724 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1725 {
1726 ev_at (w) += w->interval;
1727 3456
1728 /* if interval is unreasonably low we might still have a time in the past */
1729 /* so correct this. this will make the periodic very inexact, but the user */
1730 /* has effectively asked to get triggered more often than possible */
1731 if (ev_at (w) < ev_rt_now)
1732 ev_at (w) = ev_rt_now;
1733 }
1734
1735 ANHE_at_cache (periodics [HEAP0]);
1736 downheap (periodics, periodiccnt, HEAP0);
1737 }
1738 else
1739 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1740
1741 EV_FREQUENT_CHECK;
1742 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 3457 feed_reverse_done (EV_A_ EV_PERIODIC);
1743 } 3458 }
1744} 3459}
1745 3460
1746static void noinline 3461/* simply recalculate all periodics */
3462/* TODO: maybe ensure that at least one event happens when jumping forward? */
3463noinline ecb_cold
3464static void
1747periodics_reschedule (EV_P) 3465periodics_reschedule (EV_P)
1748{ 3466{
1749 int i; 3467 int i;
1750 3468
1751 /* adjust periodics after time jump */ 3469 /* adjust periodics after time jump */
1754 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 3472 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1755 3473
1756 if (w->reschedule_cb) 3474 if (w->reschedule_cb)
1757 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3475 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1758 else if (w->interval) 3476 else if (w->interval)
1759 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 3477 periodic_recalc (EV_A_ w);
1760 3478
1761 ANHE_at_cache (periodics [i]); 3479 ANHE_at_cache (periodics [i]);
1762 } 3480 }
1763 3481
1764 reheap (periodics, periodiccnt); 3482 reheap (periodics, periodiccnt);
1765} 3483}
1766#endif 3484#endif
1767 3485
1768void inline_speed 3486/* adjust all timers by a given offset */
3487noinline ecb_cold
3488static void
3489timers_reschedule (EV_P_ ev_tstamp adjust)
3490{
3491 int i;
3492
3493 for (i = 0; i < timercnt; ++i)
3494 {
3495 ANHE *he = timers + i + HEAP0;
3496 ANHE_w (*he)->at += adjust;
3497 ANHE_at_cache (*he);
3498 }
3499}
3500
3501/* fetch new monotonic and realtime times from the kernel */
3502/* also detect if there was a timejump, and act accordingly */
3503inline_speed void
1769time_update (EV_P_ ev_tstamp max_block) 3504time_update (EV_P_ ev_tstamp max_block)
1770{ 3505{
1771 int i;
1772
1773#if EV_USE_MONOTONIC 3506#if EV_USE_MONOTONIC
1774 if (expect_true (have_monotonic)) 3507 if (expect_true (have_monotonic))
1775 { 3508 {
3509 int i;
1776 ev_tstamp odiff = rtmn_diff; 3510 ev_tstamp odiff = rtmn_diff;
1777 3511
1778 mn_now = get_clock (); 3512 mn_now = get_clock ();
1779 3513
1780 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3514 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1796 * doesn't hurt either as we only do this on time-jumps or 3530 * doesn't hurt either as we only do this on time-jumps or
1797 * in the unlikely event of having been preempted here. 3531 * in the unlikely event of having been preempted here.
1798 */ 3532 */
1799 for (i = 4; --i; ) 3533 for (i = 4; --i; )
1800 { 3534 {
3535 ev_tstamp diff;
1801 rtmn_diff = ev_rt_now - mn_now; 3536 rtmn_diff = ev_rt_now - mn_now;
1802 3537
3538 diff = odiff - rtmn_diff;
3539
1803 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 3540 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1804 return; /* all is well */ 3541 return; /* all is well */
1805 3542
1806 ev_rt_now = ev_time (); 3543 ev_rt_now = ev_time ();
1807 mn_now = get_clock (); 3544 mn_now = get_clock ();
1808 now_floor = mn_now; 3545 now_floor = mn_now;
1809 } 3546 }
1810 3547
3548 /* no timer adjustment, as the monotonic clock doesn't jump */
3549 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1811# if EV_PERIODIC_ENABLE 3550# if EV_PERIODIC_ENABLE
1812 periodics_reschedule (EV_A); 3551 periodics_reschedule (EV_A);
1813# endif 3552# endif
1814 /* no timer adjustment, as the monotonic clock doesn't jump */
1815 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1816 } 3553 }
1817 else 3554 else
1818#endif 3555#endif
1819 { 3556 {
1820 ev_rt_now = ev_time (); 3557 ev_rt_now = ev_time ();
1821 3558
1822 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3559 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1823 { 3560 {
3561 /* adjust timers. this is easy, as the offset is the same for all of them */
3562 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1824#if EV_PERIODIC_ENABLE 3563#if EV_PERIODIC_ENABLE
1825 periodics_reschedule (EV_A); 3564 periodics_reschedule (EV_A);
1826#endif 3565#endif
1827 /* adjust timers. this is easy, as the offset is the same for all of them */
1828 for (i = 0; i < timercnt; ++i)
1829 {
1830 ANHE *he = timers + i + HEAP0;
1831 ANHE_w (*he)->at += ev_rt_now - mn_now;
1832 ANHE_at_cache (*he);
1833 }
1834 } 3566 }
1835 3567
1836 mn_now = ev_rt_now; 3568 mn_now = ev_rt_now;
1837 } 3569 }
1838} 3570}
1839 3571
1840void 3572int
1841ev_ref (EV_P)
1842{
1843 ++activecnt;
1844}
1845
1846void
1847ev_unref (EV_P)
1848{
1849 --activecnt;
1850}
1851
1852static int loop_done;
1853
1854void
1855ev_loop (EV_P_ int flags) 3573ev_run (EV_P_ int flags)
1856{ 3574{
3575#if EV_FEATURE_API
3576 ++loop_depth;
3577#endif
3578
3579 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3580
1857 loop_done = EVUNLOOP_CANCEL; 3581 loop_done = EVBREAK_CANCEL;
1858 3582
1859 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3583 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1860 3584
1861 do 3585 do
1862 { 3586 {
1863#if EV_VERIFY >= 2 3587#if EV_VERIFY >= 2
1864 ev_loop_verify (EV_A); 3588 ev_verify (EV_A);
1865#endif 3589#endif
1866 3590
1867#ifndef _WIN32 3591#ifndef _WIN32
1868 if (expect_false (curpid)) /* penalise the forking check even more */ 3592 if (expect_false (curpid)) /* penalise the forking check even more */
1869 if (expect_false (getpid () != curpid)) 3593 if (expect_false (getpid () != curpid))
1877 /* we might have forked, so queue fork handlers */ 3601 /* we might have forked, so queue fork handlers */
1878 if (expect_false (postfork)) 3602 if (expect_false (postfork))
1879 if (forkcnt) 3603 if (forkcnt)
1880 { 3604 {
1881 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3605 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1882 call_pending (EV_A); 3606 EV_INVOKE_PENDING;
1883 } 3607 }
1884#endif 3608#endif
1885 3609
3610#if EV_PREPARE_ENABLE
1886 /* queue prepare watchers (and execute them) */ 3611 /* queue prepare watchers (and execute them) */
1887 if (expect_false (preparecnt)) 3612 if (expect_false (preparecnt))
1888 { 3613 {
1889 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3614 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1890 call_pending (EV_A); 3615 EV_INVOKE_PENDING;
1891 } 3616 }
3617#endif
1892 3618
1893 if (expect_false (!activecnt)) 3619 if (expect_false (loop_done))
1894 break; 3620 break;
1895 3621
1896 /* we might have forked, so reify kernel state if necessary */ 3622 /* we might have forked, so reify kernel state if necessary */
1897 if (expect_false (postfork)) 3623 if (expect_false (postfork))
1898 loop_fork (EV_A); 3624 loop_fork (EV_A);
1903 /* calculate blocking time */ 3629 /* calculate blocking time */
1904 { 3630 {
1905 ev_tstamp waittime = 0.; 3631 ev_tstamp waittime = 0.;
1906 ev_tstamp sleeptime = 0.; 3632 ev_tstamp sleeptime = 0.;
1907 3633
3634 /* remember old timestamp for io_blocktime calculation */
3635 ev_tstamp prev_mn_now = mn_now;
3636
3637 /* update time to cancel out callback processing overhead */
3638 time_update (EV_A_ 1e100);
3639
3640 /* from now on, we want a pipe-wake-up */
3641 pipe_write_wanted = 1;
3642
3643 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3644
1908 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3645 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1909 { 3646 {
1910 /* update time to cancel out callback processing overhead */
1911 time_update (EV_A_ 1e100);
1912
1913 waittime = MAX_BLOCKTIME; 3647 waittime = MAX_BLOCKTIME;
1914 3648
1915 if (timercnt) 3649 if (timercnt)
1916 { 3650 {
1917 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 3651 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1918 if (waittime > to) waittime = to; 3652 if (waittime > to) waittime = to;
1919 } 3653 }
1920 3654
1921#if EV_PERIODIC_ENABLE 3655#if EV_PERIODIC_ENABLE
1922 if (periodiccnt) 3656 if (periodiccnt)
1923 { 3657 {
1924 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3658 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1925 if (waittime > to) waittime = to; 3659 if (waittime > to) waittime = to;
1926 } 3660 }
1927#endif 3661#endif
1928 3662
3663 /* don't let timeouts decrease the waittime below timeout_blocktime */
1929 if (expect_false (waittime < timeout_blocktime)) 3664 if (expect_false (waittime < timeout_blocktime))
1930 waittime = timeout_blocktime; 3665 waittime = timeout_blocktime;
1931 3666
1932 sleeptime = waittime - backend_fudge; 3667 /* at this point, we NEED to wait, so we have to ensure */
3668 /* to pass a minimum nonzero value to the backend */
3669 if (expect_false (waittime < backend_mintime))
3670 waittime = backend_mintime;
1933 3671
3672 /* extra check because io_blocktime is commonly 0 */
1934 if (expect_true (sleeptime > io_blocktime)) 3673 if (expect_false (io_blocktime))
1935 sleeptime = io_blocktime;
1936
1937 if (sleeptime)
1938 { 3674 {
3675 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3676
3677 if (sleeptime > waittime - backend_mintime)
3678 sleeptime = waittime - backend_mintime;
3679
3680 if (expect_true (sleeptime > 0.))
3681 {
1939 ev_sleep (sleeptime); 3682 ev_sleep (sleeptime);
1940 waittime -= sleeptime; 3683 waittime -= sleeptime;
3684 }
1941 } 3685 }
1942 } 3686 }
1943 3687
3688#if EV_FEATURE_API
1944 ++loop_count; 3689 ++loop_count;
3690#endif
3691 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1945 backend_poll (EV_A_ waittime); 3692 backend_poll (EV_A_ waittime);
3693 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3694
3695 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3696
3697 ECB_MEMORY_FENCE_ACQUIRE;
3698 if (pipe_write_skipped)
3699 {
3700 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3701 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3702 }
3703
1946 3704
1947 /* update ev_rt_now, do magic */ 3705 /* update ev_rt_now, do magic */
1948 time_update (EV_A_ waittime + sleeptime); 3706 time_update (EV_A_ waittime + sleeptime);
1949 } 3707 }
1950 3708
1957#if EV_IDLE_ENABLE 3715#if EV_IDLE_ENABLE
1958 /* queue idle watchers unless other events are pending */ 3716 /* queue idle watchers unless other events are pending */
1959 idle_reify (EV_A); 3717 idle_reify (EV_A);
1960#endif 3718#endif
1961 3719
3720#if EV_CHECK_ENABLE
1962 /* queue check watchers, to be executed first */ 3721 /* queue check watchers, to be executed first */
1963 if (expect_false (checkcnt)) 3722 if (expect_false (checkcnt))
1964 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3723 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3724#endif
1965 3725
1966 call_pending (EV_A); 3726 EV_INVOKE_PENDING;
1967 } 3727 }
1968 while (expect_true ( 3728 while (expect_true (
1969 activecnt 3729 activecnt
1970 && !loop_done 3730 && !loop_done
1971 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3731 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1972 )); 3732 ));
1973 3733
1974 if (loop_done == EVUNLOOP_ONE) 3734 if (loop_done == EVBREAK_ONE)
1975 loop_done = EVUNLOOP_CANCEL; 3735 loop_done = EVBREAK_CANCEL;
1976}
1977 3736
3737#if EV_FEATURE_API
3738 --loop_depth;
3739#endif
3740
3741 return activecnt;
3742}
3743
1978void 3744void
1979ev_unloop (EV_P_ int how) 3745ev_break (EV_P_ int how) EV_NOEXCEPT
1980{ 3746{
1981 loop_done = how; 3747 loop_done = how;
1982} 3748}
1983 3749
3750void
3751ev_ref (EV_P) EV_NOEXCEPT
3752{
3753 ++activecnt;
3754}
3755
3756void
3757ev_unref (EV_P) EV_NOEXCEPT
3758{
3759 --activecnt;
3760}
3761
3762void
3763ev_now_update (EV_P) EV_NOEXCEPT
3764{
3765 time_update (EV_A_ 1e100);
3766}
3767
3768void
3769ev_suspend (EV_P) EV_NOEXCEPT
3770{
3771 ev_now_update (EV_A);
3772}
3773
3774void
3775ev_resume (EV_P) EV_NOEXCEPT
3776{
3777 ev_tstamp mn_prev = mn_now;
3778
3779 ev_now_update (EV_A);
3780 timers_reschedule (EV_A_ mn_now - mn_prev);
3781#if EV_PERIODIC_ENABLE
3782 /* TODO: really do this? */
3783 periodics_reschedule (EV_A);
3784#endif
3785}
3786
1984/*****************************************************************************/ 3787/*****************************************************************************/
3788/* singly-linked list management, used when the expected list length is short */
1985 3789
1986void inline_size 3790inline_size void
1987wlist_add (WL *head, WL elem) 3791wlist_add (WL *head, WL elem)
1988{ 3792{
1989 elem->next = *head; 3793 elem->next = *head;
1990 *head = elem; 3794 *head = elem;
1991} 3795}
1992 3796
1993void inline_size 3797inline_size void
1994wlist_del (WL *head, WL elem) 3798wlist_del (WL *head, WL elem)
1995{ 3799{
1996 while (*head) 3800 while (*head)
1997 { 3801 {
1998 if (*head == elem) 3802 if (expect_true (*head == elem))
1999 { 3803 {
2000 *head = elem->next; 3804 *head = elem->next;
2001 return; 3805 break;
2002 } 3806 }
2003 3807
2004 head = &(*head)->next; 3808 head = &(*head)->next;
2005 } 3809 }
2006} 3810}
2007 3811
2008void inline_speed 3812/* internal, faster, version of ev_clear_pending */
3813inline_speed void
2009clear_pending (EV_P_ W w) 3814clear_pending (EV_P_ W w)
2010{ 3815{
2011 if (w->pending) 3816 if (w->pending)
2012 { 3817 {
2013 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3818 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2014 w->pending = 0; 3819 w->pending = 0;
2015 } 3820 }
2016} 3821}
2017 3822
2018int 3823int
2019ev_clear_pending (EV_P_ void *w) 3824ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
2020{ 3825{
2021 W w_ = (W)w; 3826 W w_ = (W)w;
2022 int pending = w_->pending; 3827 int pending = w_->pending;
2023 3828
2024 if (expect_true (pending)) 3829 if (expect_true (pending))
2025 { 3830 {
2026 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3831 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3832 p->w = (W)&pending_w;
2027 w_->pending = 0; 3833 w_->pending = 0;
2028 p->w = 0;
2029 return p->events; 3834 return p->events;
2030 } 3835 }
2031 else 3836 else
2032 return 0; 3837 return 0;
2033} 3838}
2034 3839
2035void inline_size 3840inline_size void
2036pri_adjust (EV_P_ W w) 3841pri_adjust (EV_P_ W w)
2037{ 3842{
2038 int pri = w->priority; 3843 int pri = ev_priority (w);
2039 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3844 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2040 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3845 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2041 w->priority = pri; 3846 ev_set_priority (w, pri);
2042} 3847}
2043 3848
2044void inline_speed 3849inline_speed void
2045ev_start (EV_P_ W w, int active) 3850ev_start (EV_P_ W w, int active)
2046{ 3851{
2047 pri_adjust (EV_A_ w); 3852 pri_adjust (EV_A_ w);
2048 w->active = active; 3853 w->active = active;
2049 ev_ref (EV_A); 3854 ev_ref (EV_A);
2050} 3855}
2051 3856
2052void inline_size 3857inline_size void
2053ev_stop (EV_P_ W w) 3858ev_stop (EV_P_ W w)
2054{ 3859{
2055 ev_unref (EV_A); 3860 ev_unref (EV_A);
2056 w->active = 0; 3861 w->active = 0;
2057} 3862}
2058 3863
2059/*****************************************************************************/ 3864/*****************************************************************************/
2060 3865
2061void noinline 3866noinline
3867void
2062ev_io_start (EV_P_ ev_io *w) 3868ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
2063{ 3869{
2064 int fd = w->fd; 3870 int fd = w->fd;
2065 3871
2066 if (expect_false (ev_is_active (w))) 3872 if (expect_false (ev_is_active (w)))
2067 return; 3873 return;
2068 3874
2069 assert (("ev_io_start called with negative fd", fd >= 0)); 3875 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3876 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2070 3877
2071 EV_FREQUENT_CHECK; 3878 EV_FREQUENT_CHECK;
2072 3879
2073 ev_start (EV_A_ (W)w, 1); 3880 ev_start (EV_A_ (W)w, 1);
2074 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3881 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2075 wlist_add (&anfds[fd].head, (WL)w); 3882 wlist_add (&anfds[fd].head, (WL)w);
2076 3883
3884 /* common bug, apparently */
3885 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3886
2077 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3887 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2078 w->events &= ~EV_IOFDSET; 3888 w->events &= ~EV__IOFDSET;
2079 3889
2080 EV_FREQUENT_CHECK; 3890 EV_FREQUENT_CHECK;
2081} 3891}
2082 3892
2083void noinline 3893noinline
3894void
2084ev_io_stop (EV_P_ ev_io *w) 3895ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
2085{ 3896{
2086 clear_pending (EV_A_ (W)w); 3897 clear_pending (EV_A_ (W)w);
2087 if (expect_false (!ev_is_active (w))) 3898 if (expect_false (!ev_is_active (w)))
2088 return; 3899 return;
2089 3900
2090 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3901 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2091 3902
2092 EV_FREQUENT_CHECK; 3903 EV_FREQUENT_CHECK;
2093 3904
2094 wlist_del (&anfds[w->fd].head, (WL)w); 3905 wlist_del (&anfds[w->fd].head, (WL)w);
2095 ev_stop (EV_A_ (W)w); 3906 ev_stop (EV_A_ (W)w);
2096 3907
2097 fd_change (EV_A_ w->fd, 1); 3908 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2098 3909
2099 EV_FREQUENT_CHECK; 3910 EV_FREQUENT_CHECK;
2100} 3911}
2101 3912
2102void noinline 3913noinline
3914void
2103ev_timer_start (EV_P_ ev_timer *w) 3915ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
2104{ 3916{
2105 if (expect_false (ev_is_active (w))) 3917 if (expect_false (ev_is_active (w)))
2106 return; 3918 return;
2107 3919
2108 ev_at (w) += mn_now; 3920 ev_at (w) += mn_now;
2109 3921
2110 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3922 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2111 3923
2112 EV_FREQUENT_CHECK; 3924 EV_FREQUENT_CHECK;
2113 3925
2114 ++timercnt; 3926 ++timercnt;
2115 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 3927 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2118 ANHE_at_cache (timers [ev_active (w)]); 3930 ANHE_at_cache (timers [ev_active (w)]);
2119 upheap (timers, ev_active (w)); 3931 upheap (timers, ev_active (w));
2120 3932
2121 EV_FREQUENT_CHECK; 3933 EV_FREQUENT_CHECK;
2122 3934
2123 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 3935 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2124} 3936}
2125 3937
2126void noinline 3938noinline
3939void
2127ev_timer_stop (EV_P_ ev_timer *w) 3940ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
2128{ 3941{
2129 clear_pending (EV_A_ (W)w); 3942 clear_pending (EV_A_ (W)w);
2130 if (expect_false (!ev_is_active (w))) 3943 if (expect_false (!ev_is_active (w)))
2131 return; 3944 return;
2132 3945
2133 EV_FREQUENT_CHECK; 3946 EV_FREQUENT_CHECK;
2134 3947
2135 { 3948 {
2136 int active = ev_active (w); 3949 int active = ev_active (w);
2137 3950
2138 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 3951 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2139 3952
2140 --timercnt; 3953 --timercnt;
2141 3954
2142 if (expect_true (active < timercnt + HEAP0)) 3955 if (expect_true (active < timercnt + HEAP0))
2143 { 3956 {
2144 timers [active] = timers [timercnt + HEAP0]; 3957 timers [active] = timers [timercnt + HEAP0];
2145 adjustheap (timers, timercnt, active); 3958 adjustheap (timers, timercnt, active);
2146 } 3959 }
2147 } 3960 }
2148 3961
2149 EV_FREQUENT_CHECK;
2150
2151 ev_at (w) -= mn_now; 3962 ev_at (w) -= mn_now;
2152 3963
2153 ev_stop (EV_A_ (W)w); 3964 ev_stop (EV_A_ (W)w);
2154}
2155 3965
3966 EV_FREQUENT_CHECK;
3967}
3968
2156void noinline 3969noinline
3970void
2157ev_timer_again (EV_P_ ev_timer *w) 3971ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
2158{ 3972{
2159 EV_FREQUENT_CHECK; 3973 EV_FREQUENT_CHECK;
3974
3975 clear_pending (EV_A_ (W)w);
2160 3976
2161 if (ev_is_active (w)) 3977 if (ev_is_active (w))
2162 { 3978 {
2163 if (w->repeat) 3979 if (w->repeat)
2164 { 3980 {
2176 } 3992 }
2177 3993
2178 EV_FREQUENT_CHECK; 3994 EV_FREQUENT_CHECK;
2179} 3995}
2180 3996
3997ev_tstamp
3998ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
3999{
4000 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
4001}
4002
2181#if EV_PERIODIC_ENABLE 4003#if EV_PERIODIC_ENABLE
2182void noinline 4004noinline
4005void
2183ev_periodic_start (EV_P_ ev_periodic *w) 4006ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
2184{ 4007{
2185 if (expect_false (ev_is_active (w))) 4008 if (expect_false (ev_is_active (w)))
2186 return; 4009 return;
2187 4010
2188 if (w->reschedule_cb) 4011 if (w->reschedule_cb)
2189 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 4012 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2190 else if (w->interval) 4013 else if (w->interval)
2191 { 4014 {
2192 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 4015 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2193 /* this formula differs from the one in periodic_reify because we do not always round up */ 4016 periodic_recalc (EV_A_ w);
2194 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2195 } 4017 }
2196 else 4018 else
2197 ev_at (w) = w->offset; 4019 ev_at (w) = w->offset;
2198 4020
2199 EV_FREQUENT_CHECK; 4021 EV_FREQUENT_CHECK;
2205 ANHE_at_cache (periodics [ev_active (w)]); 4027 ANHE_at_cache (periodics [ev_active (w)]);
2206 upheap (periodics, ev_active (w)); 4028 upheap (periodics, ev_active (w));
2207 4029
2208 EV_FREQUENT_CHECK; 4030 EV_FREQUENT_CHECK;
2209 4031
2210 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 4032 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2211} 4033}
2212 4034
2213void noinline 4035noinline
4036void
2214ev_periodic_stop (EV_P_ ev_periodic *w) 4037ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
2215{ 4038{
2216 clear_pending (EV_A_ (W)w); 4039 clear_pending (EV_A_ (W)w);
2217 if (expect_false (!ev_is_active (w))) 4040 if (expect_false (!ev_is_active (w)))
2218 return; 4041 return;
2219 4042
2220 EV_FREQUENT_CHECK; 4043 EV_FREQUENT_CHECK;
2221 4044
2222 { 4045 {
2223 int active = ev_active (w); 4046 int active = ev_active (w);
2224 4047
2225 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 4048 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2226 4049
2227 --periodiccnt; 4050 --periodiccnt;
2228 4051
2229 if (expect_true (active < periodiccnt + HEAP0)) 4052 if (expect_true (active < periodiccnt + HEAP0))
2230 { 4053 {
2231 periodics [active] = periodics [periodiccnt + HEAP0]; 4054 periodics [active] = periodics [periodiccnt + HEAP0];
2232 adjustheap (periodics, periodiccnt, active); 4055 adjustheap (periodics, periodiccnt, active);
2233 } 4056 }
2234 } 4057 }
2235 4058
2236 EV_FREQUENT_CHECK;
2237
2238 ev_stop (EV_A_ (W)w); 4059 ev_stop (EV_A_ (W)w);
2239}
2240 4060
4061 EV_FREQUENT_CHECK;
4062}
4063
2241void noinline 4064noinline
4065void
2242ev_periodic_again (EV_P_ ev_periodic *w) 4066ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
2243{ 4067{
2244 /* TODO: use adjustheap and recalculation */ 4068 /* TODO: use adjustheap and recalculation */
2245 ev_periodic_stop (EV_A_ w); 4069 ev_periodic_stop (EV_A_ w);
2246 ev_periodic_start (EV_A_ w); 4070 ev_periodic_start (EV_A_ w);
2247} 4071}
2249 4073
2250#ifndef SA_RESTART 4074#ifndef SA_RESTART
2251# define SA_RESTART 0 4075# define SA_RESTART 0
2252#endif 4076#endif
2253 4077
4078#if EV_SIGNAL_ENABLE
4079
2254void noinline 4080noinline
4081void
2255ev_signal_start (EV_P_ ev_signal *w) 4082ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
2256{ 4083{
2257#if EV_MULTIPLICITY
2258 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2259#endif
2260 if (expect_false (ev_is_active (w))) 4084 if (expect_false (ev_is_active (w)))
2261 return; 4085 return;
2262 4086
2263 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 4087 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2264 4088
2265 evpipe_init (EV_A); 4089#if EV_MULTIPLICITY
4090 assert (("libev: a signal must not be attached to two different loops",
4091 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2266 4092
2267 EV_FREQUENT_CHECK; 4093 signals [w->signum - 1].loop = EV_A;
4094 ECB_MEMORY_FENCE_RELEASE;
4095#endif
2268 4096
4097 EV_FREQUENT_CHECK;
4098
4099#if EV_USE_SIGNALFD
4100 if (sigfd == -2)
2269 { 4101 {
2270#ifndef _WIN32 4102 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2271 sigset_t full, prev; 4103 if (sigfd < 0 && errno == EINVAL)
2272 sigfillset (&full); 4104 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2273 sigprocmask (SIG_SETMASK, &full, &prev);
2274#endif
2275 4105
2276 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 4106 if (sigfd >= 0)
4107 {
4108 fd_intern (sigfd); /* doing it twice will not hurt */
2277 4109
2278#ifndef _WIN32 4110 sigemptyset (&sigfd_set);
2279 sigprocmask (SIG_SETMASK, &prev, 0); 4111
2280#endif 4112 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4113 ev_set_priority (&sigfd_w, EV_MAXPRI);
4114 ev_io_start (EV_A_ &sigfd_w);
4115 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4116 }
2281 } 4117 }
4118
4119 if (sigfd >= 0)
4120 {
4121 /* TODO: check .head */
4122 sigaddset (&sigfd_set, w->signum);
4123 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4124
4125 signalfd (sigfd, &sigfd_set, 0);
4126 }
4127#endif
2282 4128
2283 ev_start (EV_A_ (W)w, 1); 4129 ev_start (EV_A_ (W)w, 1);
2284 wlist_add (&signals [w->signum - 1].head, (WL)w); 4130 wlist_add (&signals [w->signum - 1].head, (WL)w);
2285 4131
2286 if (!((WL)w)->next) 4132 if (!((WL)w)->next)
4133# if EV_USE_SIGNALFD
4134 if (sigfd < 0) /*TODO*/
4135# endif
2287 { 4136 {
2288#if _WIN32 4137# ifdef _WIN32
4138 evpipe_init (EV_A);
4139
2289 signal (w->signum, ev_sighandler); 4140 signal (w->signum, ev_sighandler);
2290#else 4141# else
2291 struct sigaction sa; 4142 struct sigaction sa;
4143
4144 evpipe_init (EV_A);
4145
2292 sa.sa_handler = ev_sighandler; 4146 sa.sa_handler = ev_sighandler;
2293 sigfillset (&sa.sa_mask); 4147 sigfillset (&sa.sa_mask);
2294 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 4148 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2295 sigaction (w->signum, &sa, 0); 4149 sigaction (w->signum, &sa, 0);
4150
4151 if (origflags & EVFLAG_NOSIGMASK)
4152 {
4153 sigemptyset (&sa.sa_mask);
4154 sigaddset (&sa.sa_mask, w->signum);
4155 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4156 }
2296#endif 4157#endif
2297 } 4158 }
2298 4159
2299 EV_FREQUENT_CHECK; 4160 EV_FREQUENT_CHECK;
2300} 4161}
2301 4162
2302void noinline 4163noinline
4164void
2303ev_signal_stop (EV_P_ ev_signal *w) 4165ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
2304{ 4166{
2305 clear_pending (EV_A_ (W)w); 4167 clear_pending (EV_A_ (W)w);
2306 if (expect_false (!ev_is_active (w))) 4168 if (expect_false (!ev_is_active (w)))
2307 return; 4169 return;
2308 4170
2310 4172
2311 wlist_del (&signals [w->signum - 1].head, (WL)w); 4173 wlist_del (&signals [w->signum - 1].head, (WL)w);
2312 ev_stop (EV_A_ (W)w); 4174 ev_stop (EV_A_ (W)w);
2313 4175
2314 if (!signals [w->signum - 1].head) 4176 if (!signals [w->signum - 1].head)
2315 signal (w->signum, SIG_DFL); 4177 {
2316
2317 EV_FREQUENT_CHECK;
2318}
2319
2320void
2321ev_child_start (EV_P_ ev_child *w)
2322{
2323#if EV_MULTIPLICITY 4178#if EV_MULTIPLICITY
4179 signals [w->signum - 1].loop = 0; /* unattach from signal */
4180#endif
4181#if EV_USE_SIGNALFD
4182 if (sigfd >= 0)
4183 {
4184 sigset_t ss;
4185
4186 sigemptyset (&ss);
4187 sigaddset (&ss, w->signum);
4188 sigdelset (&sigfd_set, w->signum);
4189
4190 signalfd (sigfd, &sigfd_set, 0);
4191 sigprocmask (SIG_UNBLOCK, &ss, 0);
4192 }
4193 else
4194#endif
4195 signal (w->signum, SIG_DFL);
4196 }
4197
4198 EV_FREQUENT_CHECK;
4199}
4200
4201#endif
4202
4203#if EV_CHILD_ENABLE
4204
4205void
4206ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4207{
4208#if EV_MULTIPLICITY
2324 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4209 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2325#endif 4210#endif
2326 if (expect_false (ev_is_active (w))) 4211 if (expect_false (ev_is_active (w)))
2327 return; 4212 return;
2328 4213
2329 EV_FREQUENT_CHECK; 4214 EV_FREQUENT_CHECK;
2330 4215
2331 ev_start (EV_A_ (W)w, 1); 4216 ev_start (EV_A_ (W)w, 1);
2332 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4217 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2333 4218
2334 EV_FREQUENT_CHECK; 4219 EV_FREQUENT_CHECK;
2335} 4220}
2336 4221
2337void 4222void
2338ev_child_stop (EV_P_ ev_child *w) 4223ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
2339{ 4224{
2340 clear_pending (EV_A_ (W)w); 4225 clear_pending (EV_A_ (W)w);
2341 if (expect_false (!ev_is_active (w))) 4226 if (expect_false (!ev_is_active (w)))
2342 return; 4227 return;
2343 4228
2344 EV_FREQUENT_CHECK; 4229 EV_FREQUENT_CHECK;
2345 4230
2346 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4231 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2347 ev_stop (EV_A_ (W)w); 4232 ev_stop (EV_A_ (W)w);
2348 4233
2349 EV_FREQUENT_CHECK; 4234 EV_FREQUENT_CHECK;
2350} 4235}
4236
4237#endif
2351 4238
2352#if EV_STAT_ENABLE 4239#if EV_STAT_ENABLE
2353 4240
2354# ifdef _WIN32 4241# ifdef _WIN32
2355# undef lstat 4242# undef lstat
2356# define lstat(a,b) _stati64 (a,b) 4243# define lstat(a,b) _stati64 (a,b)
2357# endif 4244# endif
2358 4245
2359#define DEF_STAT_INTERVAL 5.0074891 4246#define DEF_STAT_INTERVAL 5.0074891
4247#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2360#define MIN_STAT_INTERVAL 0.1074891 4248#define MIN_STAT_INTERVAL 0.1074891
2361 4249
2362static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 4250noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2363 4251
2364#if EV_USE_INOTIFY 4252#if EV_USE_INOTIFY
2365# define EV_INOTIFY_BUFSIZE 8192
2366 4253
2367static void noinline 4254/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4255# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4256
4257noinline
4258static void
2368infy_add (EV_P_ ev_stat *w) 4259infy_add (EV_P_ ev_stat *w)
2369{ 4260{
2370 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 4261 w->wd = inotify_add_watch (fs_fd, w->path,
4262 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4263 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4264 | IN_DONT_FOLLOW | IN_MASK_ADD);
2371 4265
2372 if (w->wd < 0) 4266 if (w->wd >= 0)
4267 {
4268 struct statfs sfs;
4269
4270 /* now local changes will be tracked by inotify, but remote changes won't */
4271 /* unless the filesystem is known to be local, we therefore still poll */
4272 /* also do poll on <2.6.25, but with normal frequency */
4273
4274 if (!fs_2625)
4275 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4276 else if (!statfs (w->path, &sfs)
4277 && (sfs.f_type == 0x1373 /* devfs */
4278 || sfs.f_type == 0x4006 /* fat */
4279 || sfs.f_type == 0x4d44 /* msdos */
4280 || sfs.f_type == 0xEF53 /* ext2/3 */
4281 || sfs.f_type == 0x72b6 /* jffs2 */
4282 || sfs.f_type == 0x858458f6 /* ramfs */
4283 || sfs.f_type == 0x5346544e /* ntfs */
4284 || sfs.f_type == 0x3153464a /* jfs */
4285 || sfs.f_type == 0x9123683e /* btrfs */
4286 || sfs.f_type == 0x52654973 /* reiser3 */
4287 || sfs.f_type == 0x01021994 /* tmpfs */
4288 || sfs.f_type == 0x58465342 /* xfs */))
4289 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4290 else
4291 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2373 { 4292 }
2374 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 4293 else
4294 {
4295 /* can't use inotify, continue to stat */
4296 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2375 4297
2376 /* monitor some parent directory for speedup hints */ 4298 /* if path is not there, monitor some parent directory for speedup hints */
2377 /* note that exceeding the hardcoded limit is not a correctness issue, */ 4299 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2378 /* but an efficiency issue only */ 4300 /* but an efficiency issue only */
2379 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4301 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2380 { 4302 {
2381 char path [4096]; 4303 char path [4096];
2382 strcpy (path, w->path); 4304 strcpy (path, w->path);
2386 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 4308 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2387 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 4309 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2388 4310
2389 char *pend = strrchr (path, '/'); 4311 char *pend = strrchr (path, '/');
2390 4312
2391 if (!pend) 4313 if (!pend || pend == path)
2392 break; /* whoops, no '/', complain to your admin */ 4314 break;
2393 4315
2394 *pend = 0; 4316 *pend = 0;
2395 w->wd = inotify_add_watch (fs_fd, path, mask); 4317 w->wd = inotify_add_watch (fs_fd, path, mask);
2396 } 4318 }
2397 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4319 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2398 } 4320 }
2399 } 4321 }
2400 else
2401 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2402 4322
2403 if (w->wd >= 0) 4323 if (w->wd >= 0)
2404 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4324 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2405}
2406 4325
2407static void noinline 4326 /* now re-arm timer, if required */
4327 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4328 ev_timer_again (EV_A_ &w->timer);
4329 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4330}
4331
4332noinline
4333static void
2408infy_del (EV_P_ ev_stat *w) 4334infy_del (EV_P_ ev_stat *w)
2409{ 4335{
2410 int slot; 4336 int slot;
2411 int wd = w->wd; 4337 int wd = w->wd;
2412 4338
2413 if (wd < 0) 4339 if (wd < 0)
2414 return; 4340 return;
2415 4341
2416 w->wd = -2; 4342 w->wd = -2;
2417 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4343 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2418 wlist_del (&fs_hash [slot].head, (WL)w); 4344 wlist_del (&fs_hash [slot].head, (WL)w);
2419 4345
2420 /* remove this watcher, if others are watching it, they will rearm */ 4346 /* remove this watcher, if others are watching it, they will rearm */
2421 inotify_rm_watch (fs_fd, wd); 4347 inotify_rm_watch (fs_fd, wd);
2422} 4348}
2423 4349
2424static void noinline 4350noinline
4351static void
2425infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4352infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2426{ 4353{
2427 if (slot < 0) 4354 if (slot < 0)
2428 /* overflow, need to check for all hahs slots */ 4355 /* overflow, need to check for all hash slots */
2429 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4356 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2430 infy_wd (EV_A_ slot, wd, ev); 4357 infy_wd (EV_A_ slot, wd, ev);
2431 else 4358 else
2432 { 4359 {
2433 WL w_; 4360 WL w_;
2434 4361
2435 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4362 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2436 { 4363 {
2437 ev_stat *w = (ev_stat *)w_; 4364 ev_stat *w = (ev_stat *)w_;
2438 w_ = w_->next; /* lets us remove this watcher and all before it */ 4365 w_ = w_->next; /* lets us remove this watcher and all before it */
2439 4366
2440 if (w->wd == wd || wd == -1) 4367 if (w->wd == wd || wd == -1)
2441 { 4368 {
2442 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4369 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2443 { 4370 {
4371 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2444 w->wd = -1; 4372 w->wd = -1;
2445 infy_add (EV_A_ w); /* re-add, no matter what */ 4373 infy_add (EV_A_ w); /* re-add, no matter what */
2446 } 4374 }
2447 4375
2448 stat_timer_cb (EV_A_ &w->timer, 0); 4376 stat_timer_cb (EV_A_ &w->timer, 0);
2453 4381
2454static void 4382static void
2455infy_cb (EV_P_ ev_io *w, int revents) 4383infy_cb (EV_P_ ev_io *w, int revents)
2456{ 4384{
2457 char buf [EV_INOTIFY_BUFSIZE]; 4385 char buf [EV_INOTIFY_BUFSIZE];
2458 struct inotify_event *ev = (struct inotify_event *)buf;
2459 int ofs; 4386 int ofs;
2460 int len = read (fs_fd, buf, sizeof (buf)); 4387 int len = read (fs_fd, buf, sizeof (buf));
2461 4388
2462 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4389 for (ofs = 0; ofs < len; )
4390 {
4391 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2463 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4392 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4393 ofs += sizeof (struct inotify_event) + ev->len;
4394 }
2464} 4395}
2465 4396
2466void inline_size 4397inline_size ecb_cold
4398void
4399ev_check_2625 (EV_P)
4400{
4401 /* kernels < 2.6.25 are borked
4402 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4403 */
4404 if (ev_linux_version () < 0x020619)
4405 return;
4406
4407 fs_2625 = 1;
4408}
4409
4410inline_size int
4411infy_newfd (void)
4412{
4413#if defined IN_CLOEXEC && defined IN_NONBLOCK
4414 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4415 if (fd >= 0)
4416 return fd;
4417#endif
4418 return inotify_init ();
4419}
4420
4421inline_size void
2467infy_init (EV_P) 4422infy_init (EV_P)
2468{ 4423{
2469 if (fs_fd != -2) 4424 if (fs_fd != -2)
2470 return; 4425 return;
2471 4426
4427 fs_fd = -1;
4428
4429 ev_check_2625 (EV_A);
4430
2472 fs_fd = inotify_init (); 4431 fs_fd = infy_newfd ();
2473 4432
2474 if (fs_fd >= 0) 4433 if (fs_fd >= 0)
2475 { 4434 {
4435 fd_intern (fs_fd);
2476 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4436 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2477 ev_set_priority (&fs_w, EV_MAXPRI); 4437 ev_set_priority (&fs_w, EV_MAXPRI);
2478 ev_io_start (EV_A_ &fs_w); 4438 ev_io_start (EV_A_ &fs_w);
4439 ev_unref (EV_A);
2479 } 4440 }
2480} 4441}
2481 4442
2482void inline_size 4443inline_size void
2483infy_fork (EV_P) 4444infy_fork (EV_P)
2484{ 4445{
2485 int slot; 4446 int slot;
2486 4447
2487 if (fs_fd < 0) 4448 if (fs_fd < 0)
2488 return; 4449 return;
2489 4450
4451 ev_ref (EV_A);
4452 ev_io_stop (EV_A_ &fs_w);
2490 close (fs_fd); 4453 close (fs_fd);
2491 fs_fd = inotify_init (); 4454 fs_fd = infy_newfd ();
2492 4455
4456 if (fs_fd >= 0)
4457 {
4458 fd_intern (fs_fd);
4459 ev_io_set (&fs_w, fs_fd, EV_READ);
4460 ev_io_start (EV_A_ &fs_w);
4461 ev_unref (EV_A);
4462 }
4463
2493 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4464 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2494 { 4465 {
2495 WL w_ = fs_hash [slot].head; 4466 WL w_ = fs_hash [slot].head;
2496 fs_hash [slot].head = 0; 4467 fs_hash [slot].head = 0;
2497 4468
2498 while (w_) 4469 while (w_)
2503 w->wd = -1; 4474 w->wd = -1;
2504 4475
2505 if (fs_fd >= 0) 4476 if (fs_fd >= 0)
2506 infy_add (EV_A_ w); /* re-add, no matter what */ 4477 infy_add (EV_A_ w); /* re-add, no matter what */
2507 else 4478 else
4479 {
4480 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4481 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2508 ev_timer_start (EV_A_ &w->timer); 4482 ev_timer_again (EV_A_ &w->timer);
4483 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4484 }
2509 } 4485 }
2510
2511 } 4486 }
2512} 4487}
2513 4488
2514#endif 4489#endif
2515 4490
4491#ifdef _WIN32
4492# define EV_LSTAT(p,b) _stati64 (p, b)
4493#else
4494# define EV_LSTAT(p,b) lstat (p, b)
4495#endif
4496
2516void 4497void
2517ev_stat_stat (EV_P_ ev_stat *w) 4498ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
2518{ 4499{
2519 if (lstat (w->path, &w->attr) < 0) 4500 if (lstat (w->path, &w->attr) < 0)
2520 w->attr.st_nlink = 0; 4501 w->attr.st_nlink = 0;
2521 else if (!w->attr.st_nlink) 4502 else if (!w->attr.st_nlink)
2522 w->attr.st_nlink = 1; 4503 w->attr.st_nlink = 1;
2523} 4504}
2524 4505
2525static void noinline 4506noinline
4507static void
2526stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4508stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2527{ 4509{
2528 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4510 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2529 4511
2530 /* we copy this here each the time so that */ 4512 ev_statdata prev = w->attr;
2531 /* prev has the old value when the callback gets invoked */
2532 w->prev = w->attr;
2533 ev_stat_stat (EV_A_ w); 4513 ev_stat_stat (EV_A_ w);
2534 4514
2535 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4515 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2536 if ( 4516 if (
2537 w->prev.st_dev != w->attr.st_dev 4517 prev.st_dev != w->attr.st_dev
2538 || w->prev.st_ino != w->attr.st_ino 4518 || prev.st_ino != w->attr.st_ino
2539 || w->prev.st_mode != w->attr.st_mode 4519 || prev.st_mode != w->attr.st_mode
2540 || w->prev.st_nlink != w->attr.st_nlink 4520 || prev.st_nlink != w->attr.st_nlink
2541 || w->prev.st_uid != w->attr.st_uid 4521 || prev.st_uid != w->attr.st_uid
2542 || w->prev.st_gid != w->attr.st_gid 4522 || prev.st_gid != w->attr.st_gid
2543 || w->prev.st_rdev != w->attr.st_rdev 4523 || prev.st_rdev != w->attr.st_rdev
2544 || w->prev.st_size != w->attr.st_size 4524 || prev.st_size != w->attr.st_size
2545 || w->prev.st_atime != w->attr.st_atime 4525 || prev.st_atime != w->attr.st_atime
2546 || w->prev.st_mtime != w->attr.st_mtime 4526 || prev.st_mtime != w->attr.st_mtime
2547 || w->prev.st_ctime != w->attr.st_ctime 4527 || prev.st_ctime != w->attr.st_ctime
2548 ) { 4528 ) {
4529 /* we only update w->prev on actual differences */
4530 /* in case we test more often than invoke the callback, */
4531 /* to ensure that prev is always different to attr */
4532 w->prev = prev;
4533
2549 #if EV_USE_INOTIFY 4534 #if EV_USE_INOTIFY
4535 if (fs_fd >= 0)
4536 {
2550 infy_del (EV_A_ w); 4537 infy_del (EV_A_ w);
2551 infy_add (EV_A_ w); 4538 infy_add (EV_A_ w);
2552 ev_stat_stat (EV_A_ w); /* avoid race... */ 4539 ev_stat_stat (EV_A_ w); /* avoid race... */
4540 }
2553 #endif 4541 #endif
2554 4542
2555 ev_feed_event (EV_A_ w, EV_STAT); 4543 ev_feed_event (EV_A_ w, EV_STAT);
2556 } 4544 }
2557} 4545}
2558 4546
2559void 4547void
2560ev_stat_start (EV_P_ ev_stat *w) 4548ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
2561{ 4549{
2562 if (expect_false (ev_is_active (w))) 4550 if (expect_false (ev_is_active (w)))
2563 return; 4551 return;
2564 4552
2565 /* since we use memcmp, we need to clear any padding data etc. */
2566 memset (&w->prev, 0, sizeof (ev_statdata));
2567 memset (&w->attr, 0, sizeof (ev_statdata));
2568
2569 ev_stat_stat (EV_A_ w); 4553 ev_stat_stat (EV_A_ w);
2570 4554
4555 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2571 if (w->interval < MIN_STAT_INTERVAL) 4556 w->interval = MIN_STAT_INTERVAL;
2572 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2573 4557
2574 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4558 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2575 ev_set_priority (&w->timer, ev_priority (w)); 4559 ev_set_priority (&w->timer, ev_priority (w));
2576 4560
2577#if EV_USE_INOTIFY 4561#if EV_USE_INOTIFY
2578 infy_init (EV_A); 4562 infy_init (EV_A);
2579 4563
2580 if (fs_fd >= 0) 4564 if (fs_fd >= 0)
2581 infy_add (EV_A_ w); 4565 infy_add (EV_A_ w);
2582 else 4566 else
2583#endif 4567#endif
4568 {
2584 ev_timer_start (EV_A_ &w->timer); 4569 ev_timer_again (EV_A_ &w->timer);
4570 ev_unref (EV_A);
4571 }
2585 4572
2586 ev_start (EV_A_ (W)w, 1); 4573 ev_start (EV_A_ (W)w, 1);
2587 4574
2588 EV_FREQUENT_CHECK; 4575 EV_FREQUENT_CHECK;
2589} 4576}
2590 4577
2591void 4578void
2592ev_stat_stop (EV_P_ ev_stat *w) 4579ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
2593{ 4580{
2594 clear_pending (EV_A_ (W)w); 4581 clear_pending (EV_A_ (W)w);
2595 if (expect_false (!ev_is_active (w))) 4582 if (expect_false (!ev_is_active (w)))
2596 return; 4583 return;
2597 4584
2598 EV_FREQUENT_CHECK; 4585 EV_FREQUENT_CHECK;
2599 4586
2600#if EV_USE_INOTIFY 4587#if EV_USE_INOTIFY
2601 infy_del (EV_A_ w); 4588 infy_del (EV_A_ w);
2602#endif 4589#endif
4590
4591 if (ev_is_active (&w->timer))
4592 {
4593 ev_ref (EV_A);
2603 ev_timer_stop (EV_A_ &w->timer); 4594 ev_timer_stop (EV_A_ &w->timer);
4595 }
2604 4596
2605 ev_stop (EV_A_ (W)w); 4597 ev_stop (EV_A_ (W)w);
2606 4598
2607 EV_FREQUENT_CHECK; 4599 EV_FREQUENT_CHECK;
2608} 4600}
2609#endif 4601#endif
2610 4602
2611#if EV_IDLE_ENABLE 4603#if EV_IDLE_ENABLE
2612void 4604void
2613ev_idle_start (EV_P_ ev_idle *w) 4605ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
2614{ 4606{
2615 if (expect_false (ev_is_active (w))) 4607 if (expect_false (ev_is_active (w)))
2616 return; 4608 return;
2617 4609
2618 pri_adjust (EV_A_ (W)w); 4610 pri_adjust (EV_A_ (W)w);
2631 4623
2632 EV_FREQUENT_CHECK; 4624 EV_FREQUENT_CHECK;
2633} 4625}
2634 4626
2635void 4627void
2636ev_idle_stop (EV_P_ ev_idle *w) 4628ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
2637{ 4629{
2638 clear_pending (EV_A_ (W)w); 4630 clear_pending (EV_A_ (W)w);
2639 if (expect_false (!ev_is_active (w))) 4631 if (expect_false (!ev_is_active (w)))
2640 return; 4632 return;
2641 4633
2653 4645
2654 EV_FREQUENT_CHECK; 4646 EV_FREQUENT_CHECK;
2655} 4647}
2656#endif 4648#endif
2657 4649
4650#if EV_PREPARE_ENABLE
2658void 4651void
2659ev_prepare_start (EV_P_ ev_prepare *w) 4652ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
2660{ 4653{
2661 if (expect_false (ev_is_active (w))) 4654 if (expect_false (ev_is_active (w)))
2662 return; 4655 return;
2663 4656
2664 EV_FREQUENT_CHECK; 4657 EV_FREQUENT_CHECK;
2669 4662
2670 EV_FREQUENT_CHECK; 4663 EV_FREQUENT_CHECK;
2671} 4664}
2672 4665
2673void 4666void
2674ev_prepare_stop (EV_P_ ev_prepare *w) 4667ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
2675{ 4668{
2676 clear_pending (EV_A_ (W)w); 4669 clear_pending (EV_A_ (W)w);
2677 if (expect_false (!ev_is_active (w))) 4670 if (expect_false (!ev_is_active (w)))
2678 return; 4671 return;
2679 4672
2688 4681
2689 ev_stop (EV_A_ (W)w); 4682 ev_stop (EV_A_ (W)w);
2690 4683
2691 EV_FREQUENT_CHECK; 4684 EV_FREQUENT_CHECK;
2692} 4685}
4686#endif
2693 4687
4688#if EV_CHECK_ENABLE
2694void 4689void
2695ev_check_start (EV_P_ ev_check *w) 4690ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
2696{ 4691{
2697 if (expect_false (ev_is_active (w))) 4692 if (expect_false (ev_is_active (w)))
2698 return; 4693 return;
2699 4694
2700 EV_FREQUENT_CHECK; 4695 EV_FREQUENT_CHECK;
2705 4700
2706 EV_FREQUENT_CHECK; 4701 EV_FREQUENT_CHECK;
2707} 4702}
2708 4703
2709void 4704void
2710ev_check_stop (EV_P_ ev_check *w) 4705ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
2711{ 4706{
2712 clear_pending (EV_A_ (W)w); 4707 clear_pending (EV_A_ (W)w);
2713 if (expect_false (!ev_is_active (w))) 4708 if (expect_false (!ev_is_active (w)))
2714 return; 4709 return;
2715 4710
2724 4719
2725 ev_stop (EV_A_ (W)w); 4720 ev_stop (EV_A_ (W)w);
2726 4721
2727 EV_FREQUENT_CHECK; 4722 EV_FREQUENT_CHECK;
2728} 4723}
4724#endif
2729 4725
2730#if EV_EMBED_ENABLE 4726#if EV_EMBED_ENABLE
2731void noinline 4727noinline
4728void
2732ev_embed_sweep (EV_P_ ev_embed *w) 4729ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
2733{ 4730{
2734 ev_loop (w->other, EVLOOP_NONBLOCK); 4731 ev_run (w->other, EVRUN_NOWAIT);
2735} 4732}
2736 4733
2737static void 4734static void
2738embed_io_cb (EV_P_ ev_io *io, int revents) 4735embed_io_cb (EV_P_ ev_io *io, int revents)
2739{ 4736{
2740 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4737 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2741 4738
2742 if (ev_cb (w)) 4739 if (ev_cb (w))
2743 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4740 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2744 else 4741 else
2745 ev_loop (w->other, EVLOOP_NONBLOCK); 4742 ev_run (w->other, EVRUN_NOWAIT);
2746} 4743}
2747 4744
2748static void 4745static void
2749embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4746embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2750{ 4747{
2751 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4748 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2752 4749
2753 { 4750 {
2754 struct ev_loop *loop = w->other; 4751 EV_P = w->other;
2755 4752
2756 while (fdchangecnt) 4753 while (fdchangecnt)
2757 { 4754 {
2758 fd_reify (EV_A); 4755 fd_reify (EV_A);
2759 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4756 ev_run (EV_A_ EVRUN_NOWAIT);
2760 } 4757 }
2761 } 4758 }
4759}
4760
4761static void
4762embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4763{
4764 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4765
4766 ev_embed_stop (EV_A_ w);
4767
4768 {
4769 EV_P = w->other;
4770
4771 ev_loop_fork (EV_A);
4772 ev_run (EV_A_ EVRUN_NOWAIT);
4773 }
4774
4775 ev_embed_start (EV_A_ w);
2762} 4776}
2763 4777
2764#if 0 4778#if 0
2765static void 4779static void
2766embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4780embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2768 ev_idle_stop (EV_A_ idle); 4782 ev_idle_stop (EV_A_ idle);
2769} 4783}
2770#endif 4784#endif
2771 4785
2772void 4786void
2773ev_embed_start (EV_P_ ev_embed *w) 4787ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
2774{ 4788{
2775 if (expect_false (ev_is_active (w))) 4789 if (expect_false (ev_is_active (w)))
2776 return; 4790 return;
2777 4791
2778 { 4792 {
2779 struct ev_loop *loop = w->other; 4793 EV_P = w->other;
2780 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4794 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2781 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4795 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2782 } 4796 }
2783 4797
2784 EV_FREQUENT_CHECK; 4798 EV_FREQUENT_CHECK;
2785 4799
2788 4802
2789 ev_prepare_init (&w->prepare, embed_prepare_cb); 4803 ev_prepare_init (&w->prepare, embed_prepare_cb);
2790 ev_set_priority (&w->prepare, EV_MINPRI); 4804 ev_set_priority (&w->prepare, EV_MINPRI);
2791 ev_prepare_start (EV_A_ &w->prepare); 4805 ev_prepare_start (EV_A_ &w->prepare);
2792 4806
4807 ev_fork_init (&w->fork, embed_fork_cb);
4808 ev_fork_start (EV_A_ &w->fork);
4809
2793 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4810 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2794 4811
2795 ev_start (EV_A_ (W)w, 1); 4812 ev_start (EV_A_ (W)w, 1);
2796 4813
2797 EV_FREQUENT_CHECK; 4814 EV_FREQUENT_CHECK;
2798} 4815}
2799 4816
2800void 4817void
2801ev_embed_stop (EV_P_ ev_embed *w) 4818ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
2802{ 4819{
2803 clear_pending (EV_A_ (W)w); 4820 clear_pending (EV_A_ (W)w);
2804 if (expect_false (!ev_is_active (w))) 4821 if (expect_false (!ev_is_active (w)))
2805 return; 4822 return;
2806 4823
2807 EV_FREQUENT_CHECK; 4824 EV_FREQUENT_CHECK;
2808 4825
2809 ev_io_stop (EV_A_ &w->io); 4826 ev_io_stop (EV_A_ &w->io);
2810 ev_prepare_stop (EV_A_ &w->prepare); 4827 ev_prepare_stop (EV_A_ &w->prepare);
4828 ev_fork_stop (EV_A_ &w->fork);
2811 4829
2812 ev_stop (EV_A_ (W)w); 4830 ev_stop (EV_A_ (W)w);
2813 4831
2814 EV_FREQUENT_CHECK; 4832 EV_FREQUENT_CHECK;
2815} 4833}
2816#endif 4834#endif
2817 4835
2818#if EV_FORK_ENABLE 4836#if EV_FORK_ENABLE
2819void 4837void
2820ev_fork_start (EV_P_ ev_fork *w) 4838ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
2821{ 4839{
2822 if (expect_false (ev_is_active (w))) 4840 if (expect_false (ev_is_active (w)))
2823 return; 4841 return;
2824 4842
2825 EV_FREQUENT_CHECK; 4843 EV_FREQUENT_CHECK;
2830 4848
2831 EV_FREQUENT_CHECK; 4849 EV_FREQUENT_CHECK;
2832} 4850}
2833 4851
2834void 4852void
2835ev_fork_stop (EV_P_ ev_fork *w) 4853ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
2836{ 4854{
2837 clear_pending (EV_A_ (W)w); 4855 clear_pending (EV_A_ (W)w);
2838 if (expect_false (!ev_is_active (w))) 4856 if (expect_false (!ev_is_active (w)))
2839 return; 4857 return;
2840 4858
2851 4869
2852 EV_FREQUENT_CHECK; 4870 EV_FREQUENT_CHECK;
2853} 4871}
2854#endif 4872#endif
2855 4873
2856#if EV_ASYNC_ENABLE 4874#if EV_CLEANUP_ENABLE
2857void 4875void
2858ev_async_start (EV_P_ ev_async *w) 4876ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
2859{ 4877{
2860 if (expect_false (ev_is_active (w))) 4878 if (expect_false (ev_is_active (w)))
2861 return; 4879 return;
4880
4881 EV_FREQUENT_CHECK;
4882
4883 ev_start (EV_A_ (W)w, ++cleanupcnt);
4884 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4885 cleanups [cleanupcnt - 1] = w;
4886
4887 /* cleanup watchers should never keep a refcount on the loop */
4888 ev_unref (EV_A);
4889 EV_FREQUENT_CHECK;
4890}
4891
4892void
4893ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
4894{
4895 clear_pending (EV_A_ (W)w);
4896 if (expect_false (!ev_is_active (w)))
4897 return;
4898
4899 EV_FREQUENT_CHECK;
4900 ev_ref (EV_A);
4901
4902 {
4903 int active = ev_active (w);
4904
4905 cleanups [active - 1] = cleanups [--cleanupcnt];
4906 ev_active (cleanups [active - 1]) = active;
4907 }
4908
4909 ev_stop (EV_A_ (W)w);
4910
4911 EV_FREQUENT_CHECK;
4912}
4913#endif
4914
4915#if EV_ASYNC_ENABLE
4916void
4917ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
4918{
4919 if (expect_false (ev_is_active (w)))
4920 return;
4921
4922 w->sent = 0;
2862 4923
2863 evpipe_init (EV_A); 4924 evpipe_init (EV_A);
2864 4925
2865 EV_FREQUENT_CHECK; 4926 EV_FREQUENT_CHECK;
2866 4927
2870 4931
2871 EV_FREQUENT_CHECK; 4932 EV_FREQUENT_CHECK;
2872} 4933}
2873 4934
2874void 4935void
2875ev_async_stop (EV_P_ ev_async *w) 4936ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
2876{ 4937{
2877 clear_pending (EV_A_ (W)w); 4938 clear_pending (EV_A_ (W)w);
2878 if (expect_false (!ev_is_active (w))) 4939 if (expect_false (!ev_is_active (w)))
2879 return; 4940 return;
2880 4941
2891 4952
2892 EV_FREQUENT_CHECK; 4953 EV_FREQUENT_CHECK;
2893} 4954}
2894 4955
2895void 4956void
2896ev_async_send (EV_P_ ev_async *w) 4957ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
2897{ 4958{
2898 w->sent = 1; 4959 w->sent = 1;
2899 evpipe_write (EV_A_ &gotasync); 4960 evpipe_write (EV_A_ &async_pending);
2900} 4961}
2901#endif 4962#endif
2902 4963
2903/*****************************************************************************/ 4964/*****************************************************************************/
2904 4965
2914once_cb (EV_P_ struct ev_once *once, int revents) 4975once_cb (EV_P_ struct ev_once *once, int revents)
2915{ 4976{
2916 void (*cb)(int revents, void *arg) = once->cb; 4977 void (*cb)(int revents, void *arg) = once->cb;
2917 void *arg = once->arg; 4978 void *arg = once->arg;
2918 4979
2919 ev_io_stop (EV_A_ &once->io); 4980 ev_io_stop (EV_A_ &once->io);
2920 ev_timer_stop (EV_A_ &once->to); 4981 ev_timer_stop (EV_A_ &once->to);
2921 ev_free (once); 4982 ev_free (once);
2922 4983
2923 cb (revents, arg); 4984 cb (revents, arg);
2924} 4985}
2925 4986
2926static void 4987static void
2927once_cb_io (EV_P_ ev_io *w, int revents) 4988once_cb_io (EV_P_ ev_io *w, int revents)
2928{ 4989{
2929 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4990 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4991
4992 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2930} 4993}
2931 4994
2932static void 4995static void
2933once_cb_to (EV_P_ ev_timer *w, int revents) 4996once_cb_to (EV_P_ ev_timer *w, int revents)
2934{ 4997{
2935 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4998 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
2936}
2937 4999
5000 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
5001}
5002
2938void 5003void
2939ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 5004ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
2940{ 5005{
2941 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 5006 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2942
2943 if (expect_false (!once))
2944 {
2945 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
2946 return;
2947 }
2948 5007
2949 once->cb = cb; 5008 once->cb = cb;
2950 once->arg = arg; 5009 once->arg = arg;
2951 5010
2952 ev_init (&once->io, once_cb_io); 5011 ev_init (&once->io, once_cb_io);
2962 ev_timer_set (&once->to, timeout, 0.); 5021 ev_timer_set (&once->to, timeout, 0.);
2963 ev_timer_start (EV_A_ &once->to); 5022 ev_timer_start (EV_A_ &once->to);
2964 } 5023 }
2965} 5024}
2966 5025
5026/*****************************************************************************/
5027
5028#if EV_WALK_ENABLE
5029ecb_cold
5030void
5031ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5032{
5033 int i, j;
5034 ev_watcher_list *wl, *wn;
5035
5036 if (types & (EV_IO | EV_EMBED))
5037 for (i = 0; i < anfdmax; ++i)
5038 for (wl = anfds [i].head; wl; )
5039 {
5040 wn = wl->next;
5041
5042#if EV_EMBED_ENABLE
5043 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5044 {
5045 if (types & EV_EMBED)
5046 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5047 }
5048 else
5049#endif
5050#if EV_USE_INOTIFY
5051 if (ev_cb ((ev_io *)wl) == infy_cb)
5052 ;
5053 else
5054#endif
5055 if ((ev_io *)wl != &pipe_w)
5056 if (types & EV_IO)
5057 cb (EV_A_ EV_IO, wl);
5058
5059 wl = wn;
5060 }
5061
5062 if (types & (EV_TIMER | EV_STAT))
5063 for (i = timercnt + HEAP0; i-- > HEAP0; )
5064#if EV_STAT_ENABLE
5065 /*TODO: timer is not always active*/
5066 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5067 {
5068 if (types & EV_STAT)
5069 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5070 }
5071 else
5072#endif
5073 if (types & EV_TIMER)
5074 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5075
5076#if EV_PERIODIC_ENABLE
5077 if (types & EV_PERIODIC)
5078 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5079 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5080#endif
5081
5082#if EV_IDLE_ENABLE
5083 if (types & EV_IDLE)
5084 for (j = NUMPRI; j--; )
5085 for (i = idlecnt [j]; i--; )
5086 cb (EV_A_ EV_IDLE, idles [j][i]);
5087#endif
5088
5089#if EV_FORK_ENABLE
5090 if (types & EV_FORK)
5091 for (i = forkcnt; i--; )
5092 if (ev_cb (forks [i]) != embed_fork_cb)
5093 cb (EV_A_ EV_FORK, forks [i]);
5094#endif
5095
5096#if EV_ASYNC_ENABLE
5097 if (types & EV_ASYNC)
5098 for (i = asynccnt; i--; )
5099 cb (EV_A_ EV_ASYNC, asyncs [i]);
5100#endif
5101
5102#if EV_PREPARE_ENABLE
5103 if (types & EV_PREPARE)
5104 for (i = preparecnt; i--; )
5105# if EV_EMBED_ENABLE
5106 if (ev_cb (prepares [i]) != embed_prepare_cb)
5107# endif
5108 cb (EV_A_ EV_PREPARE, prepares [i]);
5109#endif
5110
5111#if EV_CHECK_ENABLE
5112 if (types & EV_CHECK)
5113 for (i = checkcnt; i--; )
5114 cb (EV_A_ EV_CHECK, checks [i]);
5115#endif
5116
5117#if EV_SIGNAL_ENABLE
5118 if (types & EV_SIGNAL)
5119 for (i = 0; i < EV_NSIG - 1; ++i)
5120 for (wl = signals [i].head; wl; )
5121 {
5122 wn = wl->next;
5123 cb (EV_A_ EV_SIGNAL, wl);
5124 wl = wn;
5125 }
5126#endif
5127
5128#if EV_CHILD_ENABLE
5129 if (types & EV_CHILD)
5130 for (i = (EV_PID_HASHSIZE); i--; )
5131 for (wl = childs [i]; wl; )
5132 {
5133 wn = wl->next;
5134 cb (EV_A_ EV_CHILD, wl);
5135 wl = wn;
5136 }
5137#endif
5138/* EV_STAT 0x00001000 /* stat data changed */
5139/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5140}
5141#endif
5142
2967#if EV_MULTIPLICITY 5143#if EV_MULTIPLICITY
2968 #include "ev_wrap.h" 5144 #include "ev_wrap.h"
2969#endif 5145#endif
2970 5146
2971#ifdef __cplusplus
2972}
2973#endif
2974

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines