ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.49 by root, Sat Nov 3 16:16:58 2007 UTC vs.
Revision 1.59 by root, Sun Nov 4 18:15:16 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33#endif 33#endif
34 34
35#include <math.h> 35#include <math.h>
36#include <stdlib.h> 36#include <stdlib.h>
113 113
114typedef struct ev_watcher *W; 114typedef struct ev_watcher *W;
115typedef struct ev_watcher_list *WL; 115typedef struct ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT; 116typedef struct ev_watcher_time *WT;
117 117
118static ev_tstamp now_floor, now, diff; /* monotonic clock */ 118static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
119ev_tstamp ev_now;
120int ev_method;
121
122static int have_monotonic; /* runtime */
123
124static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
125static void (*method_modify)(int fd, int oev, int nev);
126static void (*method_poll)(ev_tstamp timeout);
127 119
128/*****************************************************************************/ 120/*****************************************************************************/
129 121
130ev_tstamp 122typedef struct
123{
124 struct ev_watcher_list *head;
125 unsigned char events;
126 unsigned char reify;
127} ANFD;
128
129typedef struct
130{
131 W w;
132 int events;
133} ANPENDING;
134
135#if EV_MULTIPLICITY
136
137struct ev_loop
138{
139# define VAR(name,decl) decl;
140# include "ev_vars.h"
141};
142# undef VAR
143# include "ev_wrap.h"
144
145#else
146
147# define VAR(name,decl) static decl;
148# include "ev_vars.h"
149# undef VAR
150
151#endif
152
153/*****************************************************************************/
154
155inline ev_tstamp
131ev_time (void) 156ev_time (void)
132{ 157{
133#if EV_USE_REALTIME 158#if EV_USE_REALTIME
134 struct timespec ts; 159 struct timespec ts;
135 clock_gettime (CLOCK_REALTIME, &ts); 160 clock_gettime (CLOCK_REALTIME, &ts);
139 gettimeofday (&tv, 0); 164 gettimeofday (&tv, 0);
140 return tv.tv_sec + tv.tv_usec * 1e-6; 165 return tv.tv_sec + tv.tv_usec * 1e-6;
141#endif 166#endif
142} 167}
143 168
144static ev_tstamp 169inline ev_tstamp
145get_clock (void) 170get_clock (void)
146{ 171{
147#if EV_USE_MONOTONIC 172#if EV_USE_MONOTONIC
148 if (expect_true (have_monotonic)) 173 if (expect_true (have_monotonic))
149 { 174 {
152 return ts.tv_sec + ts.tv_nsec * 1e-9; 177 return ts.tv_sec + ts.tv_nsec * 1e-9;
153 } 178 }
154#endif 179#endif
155 180
156 return ev_time (); 181 return ev_time ();
182}
183
184ev_tstamp
185ev_now (EV_P)
186{
187 return rt_now;
157} 188}
158 189
159#define array_roundsize(base,n) ((n) | 4 & ~3) 190#define array_roundsize(base,n) ((n) | 4 & ~3)
160 191
161#define array_needsize(base,cur,cnt,init) \ 192#define array_needsize(base,cur,cnt,init) \
173 cur = newcnt; \ 204 cur = newcnt; \
174 } 205 }
175 206
176/*****************************************************************************/ 207/*****************************************************************************/
177 208
178typedef struct
179{
180 struct ev_io *head;
181 unsigned char events;
182 unsigned char reify;
183} ANFD;
184
185static ANFD *anfds;
186static int anfdmax;
187
188static void 209static void
189anfds_init (ANFD *base, int count) 210anfds_init (ANFD *base, int count)
190{ 211{
191 while (count--) 212 while (count--)
192 { 213 {
196 217
197 ++base; 218 ++base;
198 } 219 }
199} 220}
200 221
201typedef struct
202{
203 W w;
204 int events;
205} ANPENDING;
206
207static ANPENDING *pendings [NUMPRI];
208static int pendingmax [NUMPRI], pendingcnt [NUMPRI];
209
210static void 222static void
211event (W w, int events) 223event (EV_P_ W w, int events)
212{ 224{
213 if (w->pending) 225 if (w->pending)
214 { 226 {
215 pendings [ABSPRI (w)][w->pending - 1].events |= events; 227 pendings [ABSPRI (w)][w->pending - 1].events |= events;
216 return; 228 return;
221 pendings [ABSPRI (w)][w->pending - 1].w = w; 233 pendings [ABSPRI (w)][w->pending - 1].w = w;
222 pendings [ABSPRI (w)][w->pending - 1].events = events; 234 pendings [ABSPRI (w)][w->pending - 1].events = events;
223} 235}
224 236
225static void 237static void
226queue_events (W *events, int eventcnt, int type) 238queue_events (EV_P_ W *events, int eventcnt, int type)
227{ 239{
228 int i; 240 int i;
229 241
230 for (i = 0; i < eventcnt; ++i) 242 for (i = 0; i < eventcnt; ++i)
231 event (events [i], type); 243 event (EV_A_ events [i], type);
232} 244}
233 245
234static void 246static void
235fd_event (int fd, int events) 247fd_event (EV_P_ int fd, int events)
236{ 248{
237 ANFD *anfd = anfds + fd; 249 ANFD *anfd = anfds + fd;
238 struct ev_io *w; 250 struct ev_io *w;
239 251
240 for (w = anfd->head; w; w = w->next) 252 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
241 { 253 {
242 int ev = w->events & events; 254 int ev = w->events & events;
243 255
244 if (ev) 256 if (ev)
245 event ((W)w, ev); 257 event (EV_A_ (W)w, ev);
246 } 258 }
247} 259}
248 260
249/*****************************************************************************/ 261/*****************************************************************************/
250 262
251static int *fdchanges;
252static int fdchangemax, fdchangecnt;
253
254static void 263static void
255fd_reify (void) 264fd_reify (EV_P)
256{ 265{
257 int i; 266 int i;
258 267
259 for (i = 0; i < fdchangecnt; ++i) 268 for (i = 0; i < fdchangecnt; ++i)
260 { 269 {
262 ANFD *anfd = anfds + fd; 271 ANFD *anfd = anfds + fd;
263 struct ev_io *w; 272 struct ev_io *w;
264 273
265 int events = 0; 274 int events = 0;
266 275
267 for (w = anfd->head; w; w = w->next) 276 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
268 events |= w->events; 277 events |= w->events;
269 278
270 anfd->reify = 0; 279 anfd->reify = 0;
271 280
272 if (anfd->events != events) 281 if (anfd->events != events)
273 { 282 {
274 method_modify (fd, anfd->events, events); 283 method_modify (EV_A_ fd, anfd->events, events);
275 anfd->events = events; 284 anfd->events = events;
276 } 285 }
277 } 286 }
278 287
279 fdchangecnt = 0; 288 fdchangecnt = 0;
280} 289}
281 290
282static void 291static void
283fd_change (int fd) 292fd_change (EV_P_ int fd)
284{ 293{
285 if (anfds [fd].reify || fdchangecnt < 0) 294 if (anfds [fd].reify || fdchangecnt < 0)
286 return; 295 return;
287 296
288 anfds [fd].reify = 1; 297 anfds [fd].reify = 1;
291 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 300 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
292 fdchanges [fdchangecnt - 1] = fd; 301 fdchanges [fdchangecnt - 1] = fd;
293} 302}
294 303
295static void 304static void
296fd_kill (int fd) 305fd_kill (EV_P_ int fd)
297{ 306{
298 struct ev_io *w; 307 struct ev_io *w;
299 308
300 printf ("killing fd %d\n", fd);//D
301 while ((w = anfds [fd].head)) 309 while ((w = (struct ev_io *)anfds [fd].head))
302 { 310 {
303 ev_io_stop (w); 311 ev_io_stop (EV_A_ w);
304 event ((W)w, EV_ERROR | EV_READ | EV_WRITE); 312 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
305 } 313 }
306} 314}
307 315
308/* called on EBADF to verify fds */ 316/* called on EBADF to verify fds */
309static void 317static void
310fd_ebadf (void) 318fd_ebadf (EV_P)
311{ 319{
312 int fd; 320 int fd;
313 321
314 for (fd = 0; fd < anfdmax; ++fd) 322 for (fd = 0; fd < anfdmax; ++fd)
315 if (anfds [fd].events) 323 if (anfds [fd].events)
316 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 324 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
317 fd_kill (fd); 325 fd_kill (EV_A_ fd);
318} 326}
319 327
320/* called on ENOMEM in select/poll to kill some fds and retry */ 328/* called on ENOMEM in select/poll to kill some fds and retry */
321static void 329static void
322fd_enomem (void) 330fd_enomem (EV_P)
323{ 331{
324 int fd = anfdmax; 332 int fd = anfdmax;
325 333
326 while (fd--) 334 while (fd--)
327 if (anfds [fd].events) 335 if (anfds [fd].events)
328 { 336 {
329 close (fd); 337 close (fd);
330 fd_kill (fd); 338 fd_kill (EV_A_ fd);
331 return; 339 return;
332 } 340 }
333} 341}
334 342
343/* susually called after fork if method needs to re-arm all fds from scratch */
344static void
345fd_rearm_all (EV_P)
346{
347 int fd;
348
349 /* this should be highly optimised to not do anything but set a flag */
350 for (fd = 0; fd < anfdmax; ++fd)
351 if (anfds [fd].events)
352 {
353 anfds [fd].events = 0;
354 fd_change (fd);
355 }
356}
357
335/*****************************************************************************/ 358/*****************************************************************************/
336 359
337static struct ev_timer **timers;
338static int timermax, timercnt;
339
340static struct ev_periodic **periodics;
341static int periodicmax, periodiccnt;
342
343static void 360static void
344upheap (WT *timers, int k) 361upheap (WT *heap, int k)
345{ 362{
346 WT w = timers [k]; 363 WT w = heap [k];
347 364
348 while (k && timers [k >> 1]->at > w->at) 365 while (k && heap [k >> 1]->at > w->at)
349 { 366 {
350 timers [k] = timers [k >> 1]; 367 heap [k] = heap [k >> 1];
351 timers [k]->active = k + 1; 368 heap [k]->active = k + 1;
352 k >>= 1; 369 k >>= 1;
353 } 370 }
354 371
355 timers [k] = w; 372 heap [k] = w;
356 timers [k]->active = k + 1; 373 heap [k]->active = k + 1;
357 374
358} 375}
359 376
360static void 377static void
361downheap (WT *timers, int N, int k) 378downheap (WT *heap, int N, int k)
362{ 379{
363 WT w = timers [k]; 380 WT w = heap [k];
364 381
365 while (k < (N >> 1)) 382 while (k < (N >> 1))
366 { 383 {
367 int j = k << 1; 384 int j = k << 1;
368 385
369 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 386 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
370 ++j; 387 ++j;
371 388
372 if (w->at <= timers [j]->at) 389 if (w->at <= heap [j]->at)
373 break; 390 break;
374 391
375 timers [k] = timers [j]; 392 heap [k] = heap [j];
376 timers [k]->active = k + 1; 393 heap [k]->active = k + 1;
377 k = j; 394 k = j;
378 } 395 }
379 396
380 timers [k] = w; 397 heap [k] = w;
381 timers [k]->active = k + 1; 398 heap [k]->active = k + 1;
382} 399}
383 400
384/*****************************************************************************/ 401/*****************************************************************************/
385 402
386typedef struct 403typedef struct
387{ 404{
388 struct ev_signal *head; 405 struct ev_watcher_list *head;
389 sig_atomic_t volatile gotsig; 406 sig_atomic_t volatile gotsig;
390} ANSIG; 407} ANSIG;
391 408
392static ANSIG *signals; 409static ANSIG *signals;
393static int signalmax; 410static int signalmax;
421 errno = old_errno; 438 errno = old_errno;
422 } 439 }
423} 440}
424 441
425static void 442static void
426sigcb (struct ev_io *iow, int revents) 443sigcb (EV_P_ struct ev_io *iow, int revents)
427{ 444{
428 struct ev_signal *w; 445 struct ev_watcher_list *w;
429 int signum; 446 int signum;
430 447
431 read (sigpipe [0], &revents, 1); 448 read (sigpipe [0], &revents, 1);
432 gotsig = 0; 449 gotsig = 0;
433 450
435 if (signals [signum].gotsig) 452 if (signals [signum].gotsig)
436 { 453 {
437 signals [signum].gotsig = 0; 454 signals [signum].gotsig = 0;
438 455
439 for (w = signals [signum].head; w; w = w->next) 456 for (w = signals [signum].head; w; w = w->next)
440 event ((W)w, EV_SIGNAL); 457 event (EV_A_ (W)w, EV_SIGNAL);
441 } 458 }
442} 459}
443 460
444static void 461static void
445siginit (void) 462siginit (EV_P)
446{ 463{
447#ifndef WIN32 464#ifndef WIN32
448 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 465 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
449 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 466 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
450 467
452 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 469 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
453 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 470 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
454#endif 471#endif
455 472
456 ev_io_set (&sigev, sigpipe [0], EV_READ); 473 ev_io_set (&sigev, sigpipe [0], EV_READ);
457 ev_io_start (&sigev); 474 ev_io_start (EV_A_ &sigev);
475 ev_unref (EV_A); /* child watcher should not keep loop alive */
458} 476}
459 477
460/*****************************************************************************/ 478/*****************************************************************************/
461 479
462static struct ev_idle **idles; 480#ifndef WIN32
463static int idlemax, idlecnt;
464
465static struct ev_prepare **prepares;
466static int preparemax, preparecnt;
467
468static struct ev_check **checks;
469static int checkmax, checkcnt;
470
471/*****************************************************************************/
472 481
473static struct ev_child *childs [PID_HASHSIZE]; 482static struct ev_child *childs [PID_HASHSIZE];
474static struct ev_signal childev; 483static struct ev_signal childev;
475 484
476#ifndef WIN32
477
478#ifndef WCONTINUED 485#ifndef WCONTINUED
479# define WCONTINUED 0 486# define WCONTINUED 0
480#endif 487#endif
481 488
482static void 489static void
483child_reap (struct ev_signal *sw, int chain, int pid, int status) 490child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
484{ 491{
485 struct ev_child *w; 492 struct ev_child *w;
486 493
487 for (w = childs [chain & (PID_HASHSIZE - 1)]; w; w = w->next) 494 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
488 if (w->pid == pid || !w->pid) 495 if (w->pid == pid || !w->pid)
489 { 496 {
490 w->priority = sw->priority; /* need to do it *now* */ 497 w->priority = sw->priority; /* need to do it *now* */
491 w->rpid = pid; 498 w->rpid = pid;
492 w->rstatus = status; 499 w->rstatus = status;
493 printf ("rpid %p %d %d\n", w, pid, w->pid);//D
494 event ((W)w, EV_CHILD); 500 event (EV_A_ (W)w, EV_CHILD);
495 } 501 }
496} 502}
497 503
498static void 504static void
499childcb (struct ev_signal *sw, int revents) 505childcb (EV_P_ struct ev_signal *sw, int revents)
500{ 506{
501 int pid, status; 507 int pid, status;
502 508
503 printf ("chld %x\n", revents);//D
504 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 509 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
505 { 510 {
506 /* make sure we are called again until all childs have been reaped */ 511 /* make sure we are called again until all childs have been reaped */
507 event ((W)sw, EV_SIGNAL); 512 event (EV_A_ (W)sw, EV_SIGNAL);
508 513
509 child_reap (sw, pid, pid, status); 514 child_reap (EV_A_ sw, pid, pid, status);
510 child_reap (sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 515 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
511 } 516 }
512} 517}
513 518
514#endif 519#endif
515 520
540 return EV_VERSION_MINOR; 545 return EV_VERSION_MINOR;
541} 546}
542 547
543/* return true if we are running with elevated privileges and should ignore env variables */ 548/* return true if we are running with elevated privileges and should ignore env variables */
544static int 549static int
545enable_secure () 550enable_secure (void)
546{ 551{
547#ifdef WIN32 552#ifdef WIN32
548 return 0; 553 return 0;
549#else 554#else
550 return getuid () != geteuid () 555 return getuid () != geteuid ()
551 || getgid () != getegid (); 556 || getgid () != getegid ();
552#endif 557#endif
553} 558}
554 559
555int ev_init (int methods) 560int
561ev_method (EV_P)
556{ 562{
563 return method;
564}
565
566static void
567loop_init (EV_P_ int methods)
568{
557 if (!ev_method) 569 if (!method)
558 { 570 {
559#if EV_USE_MONOTONIC 571#if EV_USE_MONOTONIC
560 { 572 {
561 struct timespec ts; 573 struct timespec ts;
562 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 574 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
563 have_monotonic = 1; 575 have_monotonic = 1;
564 } 576 }
565#endif 577#endif
566 578
567 ev_now = ev_time (); 579 rt_now = ev_time ();
568 now = get_clock (); 580 mn_now = get_clock ();
569 now_floor = now; 581 now_floor = mn_now;
570 diff = ev_now - now; 582 rtmn_diff = rt_now - mn_now;
571
572 if (pipe (sigpipe))
573 return 0;
574 583
575 if (methods == EVMETHOD_AUTO) 584 if (methods == EVMETHOD_AUTO)
576 if (!enable_secure () && getenv ("LIBEV_METHODS")) 585 if (!enable_secure () && getenv ("LIBEV_METHODS"))
577 methods = atoi (getenv ("LIBEV_METHODS")); 586 methods = atoi (getenv ("LIBEV_METHODS"));
578 else 587 else
579 methods = EVMETHOD_ANY; 588 methods = EVMETHOD_ANY;
580 589
581 ev_method = 0; 590 method = 0;
582#if EV_USE_KQUEUE 591#if EV_USE_KQUEUE
583 if (!ev_method && (methods & EVMETHOD_KQUEUE)) kqueue_init (methods); 592 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
584#endif 593#endif
585#if EV_USE_EPOLL 594#if EV_USE_EPOLL
586 if (!ev_method && (methods & EVMETHOD_EPOLL )) epoll_init (methods); 595 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
587#endif 596#endif
588#if EV_USE_POLL 597#if EV_USE_POLL
589 if (!ev_method && (methods & EVMETHOD_POLL )) poll_init (methods); 598 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
590#endif 599#endif
591#if EV_USE_SELECT 600#if EV_USE_SELECT
592 if (!ev_method && (methods & EVMETHOD_SELECT)) select_init (methods); 601 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
593#endif 602#endif
603 }
604}
594 605
606void
607loop_destroy (EV_P)
608{
609#if EV_USE_KQUEUE
610 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
611#endif
612#if EV_USE_EPOLL
613 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
614#endif
615#if EV_USE_POLL
616 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
617#endif
618#if EV_USE_SELECT
619 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
620#endif
621
622 method = 0;
623 /*TODO*/
624}
625
626void
627loop_fork (EV_P)
628{
629 /*TODO*/
630#if EV_USE_EPOLL
631 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
632#endif
633#if EV_USE_KQUEUE
634 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
635#endif
636}
637
638#if EV_MULTIPLICITY
639struct ev_loop *
640ev_loop_new (int methods)
641{
642 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
643
644 loop_init (EV_A_ methods);
645
646 if (ev_methods (EV_A))
647 return loop;
648
649 return 0;
650}
651
652void
653ev_loop_destroy (EV_P)
654{
655 loop_destroy (EV_A);
656 free (loop);
657}
658
659void
660ev_loop_fork (EV_P)
661{
662 loop_fork (EV_A);
663}
664
665#endif
666
667#if EV_MULTIPLICITY
668struct ev_loop default_loop_struct;
669static struct ev_loop *default_loop;
670
671struct ev_loop *
672#else
673static int default_loop;
674
675int
676#endif
677ev_default_loop (int methods)
678{
679 if (sigpipe [0] == sigpipe [1])
680 if (pipe (sigpipe))
681 return 0;
682
683 if (!default_loop)
684 {
685#if EV_MULTIPLICITY
686 struct ev_loop *loop = default_loop = &default_loop_struct;
687#else
688 default_loop = 1;
689#endif
690
691 loop_init (EV_A_ methods);
692
595 if (ev_method) 693 if (ev_method (EV_A))
596 { 694 {
597 ev_watcher_init (&sigev, sigcb); 695 ev_watcher_init (&sigev, sigcb);
598 ev_set_priority (&sigev, EV_MAXPRI); 696 ev_set_priority (&sigev, EV_MAXPRI);
599 siginit (); 697 siginit (EV_A);
600 698
601#ifndef WIN32 699#ifndef WIN32
602 ev_signal_init (&childev, childcb, SIGCHLD); 700 ev_signal_init (&childev, childcb, SIGCHLD);
603 ev_set_priority (&childev, EV_MAXPRI); 701 ev_set_priority (&childev, EV_MAXPRI);
604 ev_signal_start (&childev); 702 ev_signal_start (EV_A_ &childev);
703 ev_unref (EV_A); /* child watcher should not keep loop alive */
605#endif 704#endif
606 } 705 }
706 else
707 default_loop = 0;
607 } 708 }
608 709
609 return ev_method; 710 return default_loop;
610} 711}
611 712
612/*****************************************************************************/
613
614void 713void
615ev_fork_prepare (void) 714ev_default_destroy (void)
616{ 715{
617 /* nop */ 716#if EV_MULTIPLICITY
618} 717 struct ev_loop *loop = default_loop;
619
620void
621ev_fork_parent (void)
622{
623 /* nop */
624}
625
626void
627ev_fork_child (void)
628{
629#if EV_USE_EPOLL
630 if (ev_method == EVMETHOD_EPOLL)
631 epoll_postfork_child ();
632#endif 718#endif
633 719
720 ev_ref (EV_A); /* child watcher */
721 ev_signal_stop (EV_A_ &childev);
722
723 ev_ref (EV_A); /* signal watcher */
634 ev_io_stop (&sigev); 724 ev_io_stop (EV_A_ &sigev);
725
726 close (sigpipe [0]); sigpipe [0] = 0;
727 close (sigpipe [1]); sigpipe [1] = 0;
728
729 loop_destroy (EV_A);
730}
731
732void
733ev_default_fork (EV_P)
734{
735 loop_fork (EV_A);
736
737 ev_io_stop (EV_A_ &sigev);
635 close (sigpipe [0]); 738 close (sigpipe [0]);
636 close (sigpipe [1]); 739 close (sigpipe [1]);
637 pipe (sigpipe); 740 pipe (sigpipe);
741
742 ev_ref (EV_A); /* signal watcher */
638 siginit (); 743 siginit (EV_A);
639} 744}
640 745
641/*****************************************************************************/ 746/*****************************************************************************/
642 747
643static void 748static void
644call_pending (void) 749call_pending (EV_P)
645{ 750{
646 int pri; 751 int pri;
647 752
648 for (pri = NUMPRI; pri--; ) 753 for (pri = NUMPRI; pri--; )
649 while (pendingcnt [pri]) 754 while (pendingcnt [pri])
651 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 756 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
652 757
653 if (p->w) 758 if (p->w)
654 { 759 {
655 p->w->pending = 0; 760 p->w->pending = 0;
656 p->w->cb (p->w, p->events); 761 p->w->cb (EV_A_ p->w, p->events);
657 } 762 }
658 } 763 }
659} 764}
660 765
661static void 766static void
662timers_reify (void) 767timers_reify (EV_P)
663{ 768{
664 while (timercnt && timers [0]->at <= now) 769 while (timercnt && timers [0]->at <= mn_now)
665 { 770 {
666 struct ev_timer *w = timers [0]; 771 struct ev_timer *w = timers [0];
667 772
668 /* first reschedule or stop timer */ 773 /* first reschedule or stop timer */
669 if (w->repeat) 774 if (w->repeat)
670 { 775 {
671 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 776 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
672 w->at = now + w->repeat; 777 w->at = mn_now + w->repeat;
673 downheap ((WT *)timers, timercnt, 0); 778 downheap ((WT *)timers, timercnt, 0);
674 } 779 }
675 else 780 else
676 ev_timer_stop (w); /* nonrepeating: stop timer */ 781 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
677 782
678 event ((W)w, EV_TIMEOUT); 783 event (EV_A_ (W)w, EV_TIMEOUT);
679 } 784 }
680} 785}
681 786
682static void 787static void
683periodics_reify (void) 788periodics_reify (EV_P)
684{ 789{
685 while (periodiccnt && periodics [0]->at <= ev_now) 790 while (periodiccnt && periodics [0]->at <= rt_now)
686 { 791 {
687 struct ev_periodic *w = periodics [0]; 792 struct ev_periodic *w = periodics [0];
688 793
689 /* first reschedule or stop timer */ 794 /* first reschedule or stop timer */
690 if (w->interval) 795 if (w->interval)
691 { 796 {
692 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 797 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
693 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 798 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
694 downheap ((WT *)periodics, periodiccnt, 0); 799 downheap ((WT *)periodics, periodiccnt, 0);
695 } 800 }
696 else 801 else
697 ev_periodic_stop (w); /* nonrepeating: stop timer */ 802 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
698 803
699 event ((W)w, EV_PERIODIC); 804 event (EV_A_ (W)w, EV_PERIODIC);
700 } 805 }
701} 806}
702 807
703static void 808static void
704periodics_reschedule (ev_tstamp diff) 809periodics_reschedule (EV_P)
705{ 810{
706 int i; 811 int i;
707 812
708 /* adjust periodics after time jump */ 813 /* adjust periodics after time jump */
709 for (i = 0; i < periodiccnt; ++i) 814 for (i = 0; i < periodiccnt; ++i)
710 { 815 {
711 struct ev_periodic *w = periodics [i]; 816 struct ev_periodic *w = periodics [i];
712 817
713 if (w->interval) 818 if (w->interval)
714 { 819 {
715 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 820 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
716 821
717 if (fabs (diff) >= 1e-4) 822 if (fabs (diff) >= 1e-4)
718 { 823 {
719 ev_periodic_stop (w); 824 ev_periodic_stop (EV_A_ w);
720 ev_periodic_start (w); 825 ev_periodic_start (EV_A_ w);
721 826
722 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 827 i = 0; /* restart loop, inefficient, but time jumps should be rare */
723 } 828 }
724 } 829 }
725 } 830 }
726} 831}
727 832
728static int 833inline int
729time_update_monotonic (void) 834time_update_monotonic (EV_P)
730{ 835{
731 now = get_clock (); 836 mn_now = get_clock ();
732 837
733 if (expect_true (now - now_floor < MIN_TIMEJUMP * .5)) 838 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
734 { 839 {
735 ev_now = now + diff; 840 rt_now = rtmn_diff + mn_now;
736 return 0; 841 return 0;
737 } 842 }
738 else 843 else
739 { 844 {
740 now_floor = now; 845 now_floor = mn_now;
741 ev_now = ev_time (); 846 rt_now = ev_time ();
742 return 1; 847 return 1;
743 } 848 }
744} 849}
745 850
746static void 851static void
747time_update (void) 852time_update (EV_P)
748{ 853{
749 int i; 854 int i;
750 855
751#if EV_USE_MONOTONIC 856#if EV_USE_MONOTONIC
752 if (expect_true (have_monotonic)) 857 if (expect_true (have_monotonic))
753 { 858 {
754 if (time_update_monotonic ()) 859 if (time_update_monotonic (EV_A))
755 { 860 {
756 ev_tstamp odiff = diff; 861 ev_tstamp odiff = rtmn_diff;
757 862
758 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 863 for (i = 4; --i; ) /* loop a few times, before making important decisions */
759 { 864 {
760 diff = ev_now - now; 865 rtmn_diff = rt_now - mn_now;
761 866
762 if (fabs (odiff - diff) < MIN_TIMEJUMP) 867 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
763 return; /* all is well */ 868 return; /* all is well */
764 869
765 ev_now = ev_time (); 870 rt_now = ev_time ();
766 now = get_clock (); 871 mn_now = get_clock ();
767 now_floor = now; 872 now_floor = mn_now;
768 } 873 }
769 874
770 periodics_reschedule (diff - odiff); 875 periodics_reschedule (EV_A);
771 /* no timer adjustment, as the monotonic clock doesn't jump */ 876 /* no timer adjustment, as the monotonic clock doesn't jump */
877 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
772 } 878 }
773 } 879 }
774 else 880 else
775#endif 881#endif
776 { 882 {
777 ev_now = ev_time (); 883 rt_now = ev_time ();
778 884
779 if (expect_false (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 885 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
780 { 886 {
781 periodics_reschedule (ev_now - now); 887 periodics_reschedule (EV_A);
782 888
783 /* adjust timers. this is easy, as the offset is the same for all */ 889 /* adjust timers. this is easy, as the offset is the same for all */
784 for (i = 0; i < timercnt; ++i) 890 for (i = 0; i < timercnt; ++i)
785 timers [i]->at += diff; 891 timers [i]->at += rt_now - mn_now;
786 } 892 }
787 893
788 now = ev_now; 894 mn_now = rt_now;
789 } 895 }
790} 896}
791 897
792int ev_loop_done; 898void
899ev_ref (EV_P)
900{
901 ++activecnt;
902}
793 903
904void
905ev_unref (EV_P)
906{
907 --activecnt;
908}
909
910static int loop_done;
911
912void
794void ev_loop (int flags) 913ev_loop (EV_P_ int flags)
795{ 914{
796 double block; 915 double block;
797 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 916 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
798 917
799 do 918 do
800 { 919 {
801 /* queue check watchers (and execute them) */ 920 /* queue check watchers (and execute them) */
802 if (expect_false (preparecnt)) 921 if (expect_false (preparecnt))
803 { 922 {
804 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 923 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
805 call_pending (); 924 call_pending (EV_A);
806 } 925 }
807 926
808 /* update fd-related kernel structures */ 927 /* update fd-related kernel structures */
809 fd_reify (); 928 fd_reify (EV_A);
810 929
811 /* calculate blocking time */ 930 /* calculate blocking time */
812 931
813 /* we only need this for !monotonic clockor timers, but as we basically 932 /* we only need this for !monotonic clockor timers, but as we basically
814 always have timers, we just calculate it always */ 933 always have timers, we just calculate it always */
815#if EV_USE_MONOTONIC 934#if EV_USE_MONOTONIC
816 if (expect_true (have_monotonic)) 935 if (expect_true (have_monotonic))
817 time_update_monotonic (); 936 time_update_monotonic (EV_A);
818 else 937 else
819#endif 938#endif
820 { 939 {
821 ev_now = ev_time (); 940 rt_now = ev_time ();
822 now = ev_now; 941 mn_now = rt_now;
823 } 942 }
824 943
825 if (flags & EVLOOP_NONBLOCK || idlecnt) 944 if (flags & EVLOOP_NONBLOCK || idlecnt)
826 block = 0.; 945 block = 0.;
827 else 946 else
828 { 947 {
829 block = MAX_BLOCKTIME; 948 block = MAX_BLOCKTIME;
830 949
831 if (timercnt) 950 if (timercnt)
832 { 951 {
833 ev_tstamp to = timers [0]->at - now + method_fudge; 952 ev_tstamp to = timers [0]->at - mn_now + method_fudge;
834 if (block > to) block = to; 953 if (block > to) block = to;
835 } 954 }
836 955
837 if (periodiccnt) 956 if (periodiccnt)
838 { 957 {
839 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 958 ev_tstamp to = periodics [0]->at - rt_now + method_fudge;
840 if (block > to) block = to; 959 if (block > to) block = to;
841 } 960 }
842 961
843 if (block < 0.) block = 0.; 962 if (block < 0.) block = 0.;
844 } 963 }
845 964
846 method_poll (block); 965 method_poll (EV_A_ block);
847 966
848 /* update ev_now, do magic */ 967 /* update rt_now, do magic */
849 time_update (); 968 time_update (EV_A);
850 969
851 /* queue pending timers and reschedule them */ 970 /* queue pending timers and reschedule them */
852 timers_reify (); /* relative timers called last */ 971 timers_reify (EV_A); /* relative timers called last */
853 periodics_reify (); /* absolute timers called first */ 972 periodics_reify (EV_A); /* absolute timers called first */
854 973
855 /* queue idle watchers unless io or timers are pending */ 974 /* queue idle watchers unless io or timers are pending */
856 if (!pendingcnt) 975 if (!pendingcnt)
857 queue_events ((W *)idles, idlecnt, EV_IDLE); 976 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
858 977
859 /* queue check watchers, to be executed first */ 978 /* queue check watchers, to be executed first */
860 if (checkcnt) 979 if (checkcnt)
861 queue_events ((W *)checks, checkcnt, EV_CHECK); 980 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
862 981
863 call_pending (); 982 call_pending (EV_A);
864 } 983 }
865 while (!ev_loop_done); 984 while (activecnt && !loop_done);
866 985
867 if (ev_loop_done != 2) 986 if (loop_done != 2)
868 ev_loop_done = 0; 987 loop_done = 0;
988}
989
990void
991ev_unloop (EV_P_ int how)
992{
993 loop_done = how;
869} 994}
870 995
871/*****************************************************************************/ 996/*****************************************************************************/
872 997
873static void 998inline void
874wlist_add (WL *head, WL elem) 999wlist_add (WL *head, WL elem)
875{ 1000{
876 elem->next = *head; 1001 elem->next = *head;
877 *head = elem; 1002 *head = elem;
878} 1003}
879 1004
880static void 1005inline void
881wlist_del (WL *head, WL elem) 1006wlist_del (WL *head, WL elem)
882{ 1007{
883 while (*head) 1008 while (*head)
884 { 1009 {
885 if (*head == elem) 1010 if (*head == elem)
890 1015
891 head = &(*head)->next; 1016 head = &(*head)->next;
892 } 1017 }
893} 1018}
894 1019
895static void 1020inline void
896ev_clear_pending (W w) 1021ev_clear_pending (EV_P_ W w)
897{ 1022{
898 if (w->pending) 1023 if (w->pending)
899 { 1024 {
900 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1025 pendings [ABSPRI (w)][w->pending - 1].w = 0;
901 w->pending = 0; 1026 w->pending = 0;
902 } 1027 }
903} 1028}
904 1029
905static void 1030inline void
906ev_start (W w, int active) 1031ev_start (EV_P_ W w, int active)
907{ 1032{
908 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1033 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
909 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 1034 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
910 1035
911 w->active = active; 1036 w->active = active;
1037 ev_ref (EV_A);
912} 1038}
913 1039
914static void 1040inline void
915ev_stop (W w) 1041ev_stop (EV_P_ W w)
916{ 1042{
1043 ev_unref (EV_A);
917 w->active = 0; 1044 w->active = 0;
918} 1045}
919 1046
920/*****************************************************************************/ 1047/*****************************************************************************/
921 1048
922void 1049void
923ev_io_start (struct ev_io *w) 1050ev_io_start (EV_P_ struct ev_io *w)
924{ 1051{
925 int fd = w->fd; 1052 int fd = w->fd;
926 1053
927 if (ev_is_active (w)) 1054 if (ev_is_active (w))
928 return; 1055 return;
929 1056
930 assert (("ev_io_start called with negative fd", fd >= 0)); 1057 assert (("ev_io_start called with negative fd", fd >= 0));
931 1058
932 ev_start ((W)w, 1); 1059 ev_start (EV_A_ (W)w, 1);
933 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1060 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
934 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1061 wlist_add ((WL *)&anfds[fd].head, (WL)w);
935 1062
936 fd_change (fd); 1063 fd_change (EV_A_ fd);
937} 1064}
938 1065
939void 1066void
940ev_io_stop (struct ev_io *w) 1067ev_io_stop (EV_P_ struct ev_io *w)
941{ 1068{
942 ev_clear_pending ((W)w); 1069 ev_clear_pending (EV_A_ (W)w);
943 if (!ev_is_active (w)) 1070 if (!ev_is_active (w))
944 return; 1071 return;
945 1072
946 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1073 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
947 ev_stop ((W)w); 1074 ev_stop (EV_A_ (W)w);
948 1075
949 fd_change (w->fd); 1076 fd_change (EV_A_ w->fd);
950} 1077}
951 1078
952void 1079void
953ev_timer_start (struct ev_timer *w) 1080ev_timer_start (EV_P_ struct ev_timer *w)
954{ 1081{
955 if (ev_is_active (w)) 1082 if (ev_is_active (w))
956 return; 1083 return;
957 1084
958 w->at += now; 1085 w->at += mn_now;
959 1086
960 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1087 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
961 1088
962 ev_start ((W)w, ++timercnt); 1089 ev_start (EV_A_ (W)w, ++timercnt);
963 array_needsize (timers, timermax, timercnt, ); 1090 array_needsize (timers, timermax, timercnt, );
964 timers [timercnt - 1] = w; 1091 timers [timercnt - 1] = w;
965 upheap ((WT *)timers, timercnt - 1); 1092 upheap ((WT *)timers, timercnt - 1);
966} 1093}
967 1094
968void 1095void
969ev_timer_stop (struct ev_timer *w) 1096ev_timer_stop (EV_P_ struct ev_timer *w)
970{ 1097{
971 ev_clear_pending ((W)w); 1098 ev_clear_pending (EV_A_ (W)w);
972 if (!ev_is_active (w)) 1099 if (!ev_is_active (w))
973 return; 1100 return;
974 1101
975 if (w->active < timercnt--) 1102 if (w->active < timercnt--)
976 { 1103 {
978 downheap ((WT *)timers, timercnt, w->active - 1); 1105 downheap ((WT *)timers, timercnt, w->active - 1);
979 } 1106 }
980 1107
981 w->at = w->repeat; 1108 w->at = w->repeat;
982 1109
983 ev_stop ((W)w); 1110 ev_stop (EV_A_ (W)w);
984} 1111}
985 1112
986void 1113void
987ev_timer_again (struct ev_timer *w) 1114ev_timer_again (EV_P_ struct ev_timer *w)
988{ 1115{
989 if (ev_is_active (w)) 1116 if (ev_is_active (w))
990 { 1117 {
991 if (w->repeat) 1118 if (w->repeat)
992 { 1119 {
993 w->at = now + w->repeat; 1120 w->at = mn_now + w->repeat;
994 downheap ((WT *)timers, timercnt, w->active - 1); 1121 downheap ((WT *)timers, timercnt, w->active - 1);
995 } 1122 }
996 else 1123 else
997 ev_timer_stop (w); 1124 ev_timer_stop (EV_A_ w);
998 } 1125 }
999 else if (w->repeat) 1126 else if (w->repeat)
1000 ev_timer_start (w); 1127 ev_timer_start (EV_A_ w);
1001} 1128}
1002 1129
1003void 1130void
1004ev_periodic_start (struct ev_periodic *w) 1131ev_periodic_start (EV_P_ struct ev_periodic *w)
1005{ 1132{
1006 if (ev_is_active (w)) 1133 if (ev_is_active (w))
1007 return; 1134 return;
1008 1135
1009 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1136 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1010 1137
1011 /* this formula differs from the one in periodic_reify because we do not always round up */ 1138 /* this formula differs from the one in periodic_reify because we do not always round up */
1012 if (w->interval) 1139 if (w->interval)
1013 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1140 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval;
1014 1141
1015 ev_start ((W)w, ++periodiccnt); 1142 ev_start (EV_A_ (W)w, ++periodiccnt);
1016 array_needsize (periodics, periodicmax, periodiccnt, ); 1143 array_needsize (periodics, periodicmax, periodiccnt, );
1017 periodics [periodiccnt - 1] = w; 1144 periodics [periodiccnt - 1] = w;
1018 upheap ((WT *)periodics, periodiccnt - 1); 1145 upheap ((WT *)periodics, periodiccnt - 1);
1019} 1146}
1020 1147
1021void 1148void
1022ev_periodic_stop (struct ev_periodic *w) 1149ev_periodic_stop (EV_P_ struct ev_periodic *w)
1023{ 1150{
1024 ev_clear_pending ((W)w); 1151 ev_clear_pending (EV_A_ (W)w);
1025 if (!ev_is_active (w)) 1152 if (!ev_is_active (w))
1026 return; 1153 return;
1027 1154
1028 if (w->active < periodiccnt--) 1155 if (w->active < periodiccnt--)
1029 { 1156 {
1030 periodics [w->active - 1] = periodics [periodiccnt]; 1157 periodics [w->active - 1] = periodics [periodiccnt];
1031 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1158 downheap ((WT *)periodics, periodiccnt, w->active - 1);
1032 } 1159 }
1033 1160
1034 ev_stop ((W)w); 1161 ev_stop (EV_A_ (W)w);
1162}
1163
1164void
1165ev_idle_start (EV_P_ struct ev_idle *w)
1166{
1167 if (ev_is_active (w))
1168 return;
1169
1170 ev_start (EV_A_ (W)w, ++idlecnt);
1171 array_needsize (idles, idlemax, idlecnt, );
1172 idles [idlecnt - 1] = w;
1173}
1174
1175void
1176ev_idle_stop (EV_P_ struct ev_idle *w)
1177{
1178 ev_clear_pending (EV_A_ (W)w);
1179 if (ev_is_active (w))
1180 return;
1181
1182 idles [w->active - 1] = idles [--idlecnt];
1183 ev_stop (EV_A_ (W)w);
1184}
1185
1186void
1187ev_prepare_start (EV_P_ struct ev_prepare *w)
1188{
1189 if (ev_is_active (w))
1190 return;
1191
1192 ev_start (EV_A_ (W)w, ++preparecnt);
1193 array_needsize (prepares, preparemax, preparecnt, );
1194 prepares [preparecnt - 1] = w;
1195}
1196
1197void
1198ev_prepare_stop (EV_P_ struct ev_prepare *w)
1199{
1200 ev_clear_pending (EV_A_ (W)w);
1201 if (ev_is_active (w))
1202 return;
1203
1204 prepares [w->active - 1] = prepares [--preparecnt];
1205 ev_stop (EV_A_ (W)w);
1206}
1207
1208void
1209ev_check_start (EV_P_ struct ev_check *w)
1210{
1211 if (ev_is_active (w))
1212 return;
1213
1214 ev_start (EV_A_ (W)w, ++checkcnt);
1215 array_needsize (checks, checkmax, checkcnt, );
1216 checks [checkcnt - 1] = w;
1217}
1218
1219void
1220ev_check_stop (EV_P_ struct ev_check *w)
1221{
1222 ev_clear_pending (EV_A_ (W)w);
1223 if (ev_is_active (w))
1224 return;
1225
1226 checks [w->active - 1] = checks [--checkcnt];
1227 ev_stop (EV_A_ (W)w);
1035} 1228}
1036 1229
1037#ifndef SA_RESTART 1230#ifndef SA_RESTART
1038# define SA_RESTART 0 1231# define SA_RESTART 0
1039#endif 1232#endif
1040 1233
1041void 1234void
1042ev_signal_start (struct ev_signal *w) 1235ev_signal_start (EV_P_ struct ev_signal *w)
1043{ 1236{
1237#if EV_MULTIPLICITY
1238 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1239#endif
1044 if (ev_is_active (w)) 1240 if (ev_is_active (w))
1045 return; 1241 return;
1046 1242
1047 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1243 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1048 1244
1049 ev_start ((W)w, 1); 1245 ev_start (EV_A_ (W)w, 1);
1050 array_needsize (signals, signalmax, w->signum, signals_init); 1246 array_needsize (signals, signalmax, w->signum, signals_init);
1051 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1247 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1052 1248
1053 if (!w->next) 1249 if (!w->next)
1054 { 1250 {
1059 sigaction (w->signum, &sa, 0); 1255 sigaction (w->signum, &sa, 0);
1060 } 1256 }
1061} 1257}
1062 1258
1063void 1259void
1064ev_signal_stop (struct ev_signal *w) 1260ev_signal_stop (EV_P_ struct ev_signal *w)
1065{ 1261{
1066 ev_clear_pending ((W)w); 1262 ev_clear_pending (EV_A_ (W)w);
1067 if (!ev_is_active (w)) 1263 if (!ev_is_active (w))
1068 return; 1264 return;
1069 1265
1070 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1266 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1071 ev_stop ((W)w); 1267 ev_stop (EV_A_ (W)w);
1072 1268
1073 if (!signals [w->signum - 1].head) 1269 if (!signals [w->signum - 1].head)
1074 signal (w->signum, SIG_DFL); 1270 signal (w->signum, SIG_DFL);
1075} 1271}
1076 1272
1077void 1273void
1078ev_idle_start (struct ev_idle *w) 1274ev_child_start (EV_P_ struct ev_child *w)
1079{ 1275{
1276#if EV_MULTIPLICITY
1277 assert (("child watchers are only supported in the default loop", loop == default_loop));
1278#endif
1080 if (ev_is_active (w)) 1279 if (ev_is_active (w))
1081 return; 1280 return;
1082 1281
1083 ev_start ((W)w, ++idlecnt); 1282 ev_start (EV_A_ (W)w, 1);
1084 array_needsize (idles, idlemax, idlecnt, ); 1283 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1085 idles [idlecnt - 1] = w;
1086} 1284}
1087 1285
1088void 1286void
1089ev_idle_stop (struct ev_idle *w) 1287ev_child_stop (EV_P_ struct ev_child *w)
1090{ 1288{
1091 ev_clear_pending ((W)w); 1289 ev_clear_pending (EV_A_ (W)w);
1092 if (ev_is_active (w)) 1290 if (ev_is_active (w))
1093 return; 1291 return;
1094 1292
1095 idles [w->active - 1] = idles [--idlecnt];
1096 ev_stop ((W)w);
1097}
1098
1099void
1100ev_prepare_start (struct ev_prepare *w)
1101{
1102 if (ev_is_active (w))
1103 return;
1104
1105 ev_start ((W)w, ++preparecnt);
1106 array_needsize (prepares, preparemax, preparecnt, );
1107 prepares [preparecnt - 1] = w;
1108}
1109
1110void
1111ev_prepare_stop (struct ev_prepare *w)
1112{
1113 ev_clear_pending ((W)w);
1114 if (ev_is_active (w))
1115 return;
1116
1117 prepares [w->active - 1] = prepares [--preparecnt];
1118 ev_stop ((W)w);
1119}
1120
1121void
1122ev_check_start (struct ev_check *w)
1123{
1124 if (ev_is_active (w))
1125 return;
1126
1127 ev_start ((W)w, ++checkcnt);
1128 array_needsize (checks, checkmax, checkcnt, );
1129 checks [checkcnt - 1] = w;
1130}
1131
1132void
1133ev_check_stop (struct ev_check *w)
1134{
1135 ev_clear_pending ((W)w);
1136 if (ev_is_active (w))
1137 return;
1138
1139 checks [w->active - 1] = checks [--checkcnt];
1140 ev_stop ((W)w);
1141}
1142
1143void
1144ev_child_start (struct ev_child *w)
1145{
1146 if (ev_is_active (w))
1147 return;
1148
1149 ev_start ((W)w, 1);
1150 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1151}
1152
1153void
1154ev_child_stop (struct ev_child *w)
1155{
1156 ev_clear_pending ((W)w);
1157 if (ev_is_active (w))
1158 return;
1159
1160 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1293 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1161 ev_stop ((W)w); 1294 ev_stop (EV_A_ (W)w);
1162} 1295}
1163 1296
1164/*****************************************************************************/ 1297/*****************************************************************************/
1165 1298
1166struct ev_once 1299struct ev_once
1170 void (*cb)(int revents, void *arg); 1303 void (*cb)(int revents, void *arg);
1171 void *arg; 1304 void *arg;
1172}; 1305};
1173 1306
1174static void 1307static void
1175once_cb (struct ev_once *once, int revents) 1308once_cb (EV_P_ struct ev_once *once, int revents)
1176{ 1309{
1177 void (*cb)(int revents, void *arg) = once->cb; 1310 void (*cb)(int revents, void *arg) = once->cb;
1178 void *arg = once->arg; 1311 void *arg = once->arg;
1179 1312
1180 ev_io_stop (&once->io); 1313 ev_io_stop (EV_A_ &once->io);
1181 ev_timer_stop (&once->to); 1314 ev_timer_stop (EV_A_ &once->to);
1182 free (once); 1315 free (once);
1183 1316
1184 cb (revents, arg); 1317 cb (revents, arg);
1185} 1318}
1186 1319
1187static void 1320static void
1188once_cb_io (struct ev_io *w, int revents) 1321once_cb_io (EV_P_ struct ev_io *w, int revents)
1189{ 1322{
1190 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1323 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1191} 1324}
1192 1325
1193static void 1326static void
1194once_cb_to (struct ev_timer *w, int revents) 1327once_cb_to (EV_P_ struct ev_timer *w, int revents)
1195{ 1328{
1196 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1329 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1197} 1330}
1198 1331
1199void 1332void
1200ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1333ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1201{ 1334{
1202 struct ev_once *once = malloc (sizeof (struct ev_once)); 1335 struct ev_once *once = malloc (sizeof (struct ev_once));
1203 1336
1204 if (!once) 1337 if (!once)
1205 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1338 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1210 1343
1211 ev_watcher_init (&once->io, once_cb_io); 1344 ev_watcher_init (&once->io, once_cb_io);
1212 if (fd >= 0) 1345 if (fd >= 0)
1213 { 1346 {
1214 ev_io_set (&once->io, fd, events); 1347 ev_io_set (&once->io, fd, events);
1215 ev_io_start (&once->io); 1348 ev_io_start (EV_A_ &once->io);
1216 } 1349 }
1217 1350
1218 ev_watcher_init (&once->to, once_cb_to); 1351 ev_watcher_init (&once->to, once_cb_to);
1219 if (timeout >= 0.) 1352 if (timeout >= 0.)
1220 { 1353 {
1221 ev_timer_set (&once->to, timeout, 0.); 1354 ev_timer_set (&once->to, timeout, 0.);
1222 ev_timer_start (&once->to); 1355 ev_timer_start (EV_A_ &once->to);
1223 } 1356 }
1224 } 1357 }
1225} 1358}
1226 1359
1227/*****************************************************************************/
1228
1229#if 0
1230
1231struct ev_io wio;
1232
1233static void
1234sin_cb (struct ev_io *w, int revents)
1235{
1236 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1237}
1238
1239static void
1240ocb (struct ev_timer *w, int revents)
1241{
1242 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1243 ev_timer_stop (w);
1244 ev_timer_start (w);
1245}
1246
1247static void
1248scb (struct ev_signal *w, int revents)
1249{
1250 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1251 ev_io_stop (&wio);
1252 ev_io_start (&wio);
1253}
1254
1255static void
1256gcb (struct ev_signal *w, int revents)
1257{
1258 fprintf (stderr, "generic %x\n", revents);
1259
1260}
1261
1262int main (void)
1263{
1264 ev_init (0);
1265
1266 ev_io_init (&wio, sin_cb, 0, EV_READ);
1267 ev_io_start (&wio);
1268
1269 struct ev_timer t[10000];
1270
1271#if 0
1272 int i;
1273 for (i = 0; i < 10000; ++i)
1274 {
1275 struct ev_timer *w = t + i;
1276 ev_watcher_init (w, ocb, i);
1277 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1278 ev_timer_start (w);
1279 if (drand48 () < 0.5)
1280 ev_timer_stop (w);
1281 }
1282#endif
1283
1284 struct ev_timer t1;
1285 ev_timer_init (&t1, ocb, 5, 10);
1286 ev_timer_start (&t1);
1287
1288 struct ev_signal sig;
1289 ev_signal_init (&sig, scb, SIGQUIT);
1290 ev_signal_start (&sig);
1291
1292 struct ev_check cw;
1293 ev_check_init (&cw, gcb);
1294 ev_check_start (&cw);
1295
1296 struct ev_idle iw;
1297 ev_idle_init (&iw, gcb);
1298 ev_idle_start (&iw);
1299
1300 ev_loop (0);
1301
1302 return 0;
1303}
1304
1305#endif
1306
1307
1308
1309

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines