ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.49 by root, Sat Nov 3 16:16:58 2007 UTC vs.
Revision 1.67 by root, Mon Nov 5 16:42:15 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h> 59#include <unistd.h>
70 92
71#ifndef EV_USE_KQUEUE 93#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 94# define EV_USE_KQUEUE 0
73#endif 95#endif
74 96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
103#endif
104
75#ifndef EV_USE_REALTIME 105#ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 1 106# define EV_USE_REALTIME 1
77#endif 107#endif
78 108
79/**/ 109/**/
113 143
114typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
115typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
117 147
118static ev_tstamp now_floor, now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
119ev_tstamp ev_now;
120int ev_method;
121 149
122static int have_monotonic; /* runtime */ 150#if WIN32
123 151/* note: the comment below could not be substantiated, but what would I care */
124static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 152/* MSDN says this is required to handle SIGFPE */
125static void (*method_modify)(int fd, int oev, int nev); 153volatile double SIGFPE_REQ = 0.0f;
126static void (*method_poll)(ev_tstamp timeout); 154#endif
127 155
128/*****************************************************************************/ 156/*****************************************************************************/
129 157
130ev_tstamp 158typedef struct
159{
160 struct ev_watcher_list *head;
161 unsigned char events;
162 unsigned char reify;
163} ANFD;
164
165typedef struct
166{
167 W w;
168 int events;
169} ANPENDING;
170
171#if EV_MULTIPLICITY
172
173struct ev_loop
174{
175# define VAR(name,decl) decl;
176# include "ev_vars.h"
177};
178# undef VAR
179# include "ev_wrap.h"
180
181#else
182
183# define VAR(name,decl) static decl;
184# include "ev_vars.h"
185# undef VAR
186
187#endif
188
189/*****************************************************************************/
190
191inline ev_tstamp
131ev_time (void) 192ev_time (void)
132{ 193{
133#if EV_USE_REALTIME 194#if EV_USE_REALTIME
134 struct timespec ts; 195 struct timespec ts;
135 clock_gettime (CLOCK_REALTIME, &ts); 196 clock_gettime (CLOCK_REALTIME, &ts);
139 gettimeofday (&tv, 0); 200 gettimeofday (&tv, 0);
140 return tv.tv_sec + tv.tv_usec * 1e-6; 201 return tv.tv_sec + tv.tv_usec * 1e-6;
141#endif 202#endif
142} 203}
143 204
144static ev_tstamp 205inline ev_tstamp
145get_clock (void) 206get_clock (void)
146{ 207{
147#if EV_USE_MONOTONIC 208#if EV_USE_MONOTONIC
148 if (expect_true (have_monotonic)) 209 if (expect_true (have_monotonic))
149 { 210 {
152 return ts.tv_sec + ts.tv_nsec * 1e-9; 213 return ts.tv_sec + ts.tv_nsec * 1e-9;
153 } 214 }
154#endif 215#endif
155 216
156 return ev_time (); 217 return ev_time ();
218}
219
220ev_tstamp
221ev_now (EV_P)
222{
223 return rt_now;
157} 224}
158 225
159#define array_roundsize(base,n) ((n) | 4 & ~3) 226#define array_roundsize(base,n) ((n) | 4 & ~3)
160 227
161#define array_needsize(base,cur,cnt,init) \ 228#define array_needsize(base,cur,cnt,init) \
171 base = realloc (base, sizeof (*base) * (newcnt)); \ 238 base = realloc (base, sizeof (*base) * (newcnt)); \
172 init (base + cur, newcnt - cur); \ 239 init (base + cur, newcnt - cur); \
173 cur = newcnt; \ 240 cur = newcnt; \
174 } 241 }
175 242
243#define array_slim(stem) \
244 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
245 { \
246 stem ## max = array_roundsize (stem ## cnt >> 1); \
247 base = realloc (base, sizeof (*base) * (stem ## max)); \
248 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
249 }
250
251#define array_free(stem, idx) \
252 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
253
176/*****************************************************************************/ 254/*****************************************************************************/
177
178typedef struct
179{
180 struct ev_io *head;
181 unsigned char events;
182 unsigned char reify;
183} ANFD;
184
185static ANFD *anfds;
186static int anfdmax;
187 255
188static void 256static void
189anfds_init (ANFD *base, int count) 257anfds_init (ANFD *base, int count)
190{ 258{
191 while (count--) 259 while (count--)
196 264
197 ++base; 265 ++base;
198 } 266 }
199} 267}
200 268
201typedef struct
202{
203 W w;
204 int events;
205} ANPENDING;
206
207static ANPENDING *pendings [NUMPRI];
208static int pendingmax [NUMPRI], pendingcnt [NUMPRI];
209
210static void 269static void
211event (W w, int events) 270event (EV_P_ W w, int events)
212{ 271{
213 if (w->pending) 272 if (w->pending)
214 { 273 {
215 pendings [ABSPRI (w)][w->pending - 1].events |= events; 274 pendings [ABSPRI (w)][w->pending - 1].events |= events;
216 return; 275 return;
221 pendings [ABSPRI (w)][w->pending - 1].w = w; 280 pendings [ABSPRI (w)][w->pending - 1].w = w;
222 pendings [ABSPRI (w)][w->pending - 1].events = events; 281 pendings [ABSPRI (w)][w->pending - 1].events = events;
223} 282}
224 283
225static void 284static void
226queue_events (W *events, int eventcnt, int type) 285queue_events (EV_P_ W *events, int eventcnt, int type)
227{ 286{
228 int i; 287 int i;
229 288
230 for (i = 0; i < eventcnt; ++i) 289 for (i = 0; i < eventcnt; ++i)
231 event (events [i], type); 290 event (EV_A_ events [i], type);
232} 291}
233 292
234static void 293static void
235fd_event (int fd, int events) 294fd_event (EV_P_ int fd, int events)
236{ 295{
237 ANFD *anfd = anfds + fd; 296 ANFD *anfd = anfds + fd;
238 struct ev_io *w; 297 struct ev_io *w;
239 298
240 for (w = anfd->head; w; w = w->next) 299 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
241 { 300 {
242 int ev = w->events & events; 301 int ev = w->events & events;
243 302
244 if (ev) 303 if (ev)
245 event ((W)w, ev); 304 event (EV_A_ (W)w, ev);
246 } 305 }
247} 306}
248 307
249/*****************************************************************************/ 308/*****************************************************************************/
250 309
251static int *fdchanges;
252static int fdchangemax, fdchangecnt;
253
254static void 310static void
255fd_reify (void) 311fd_reify (EV_P)
256{ 312{
257 int i; 313 int i;
258 314
259 for (i = 0; i < fdchangecnt; ++i) 315 for (i = 0; i < fdchangecnt; ++i)
260 { 316 {
262 ANFD *anfd = anfds + fd; 318 ANFD *anfd = anfds + fd;
263 struct ev_io *w; 319 struct ev_io *w;
264 320
265 int events = 0; 321 int events = 0;
266 322
267 for (w = anfd->head; w; w = w->next) 323 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
268 events |= w->events; 324 events |= w->events;
269 325
270 anfd->reify = 0; 326 anfd->reify = 0;
271 327
272 if (anfd->events != events)
273 {
274 method_modify (fd, anfd->events, events); 328 method_modify (EV_A_ fd, anfd->events, events);
275 anfd->events = events; 329 anfd->events = events;
276 }
277 } 330 }
278 331
279 fdchangecnt = 0; 332 fdchangecnt = 0;
280} 333}
281 334
282static void 335static void
283fd_change (int fd) 336fd_change (EV_P_ int fd)
284{ 337{
285 if (anfds [fd].reify || fdchangecnt < 0) 338 if (anfds [fd].reify || fdchangecnt < 0)
286 return; 339 return;
287 340
288 anfds [fd].reify = 1; 341 anfds [fd].reify = 1;
291 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 344 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
292 fdchanges [fdchangecnt - 1] = fd; 345 fdchanges [fdchangecnt - 1] = fd;
293} 346}
294 347
295static void 348static void
296fd_kill (int fd) 349fd_kill (EV_P_ int fd)
297{ 350{
298 struct ev_io *w; 351 struct ev_io *w;
299 352
300 printf ("killing fd %d\n", fd);//D
301 while ((w = anfds [fd].head)) 353 while ((w = (struct ev_io *)anfds [fd].head))
302 { 354 {
303 ev_io_stop (w); 355 ev_io_stop (EV_A_ w);
304 event ((W)w, EV_ERROR | EV_READ | EV_WRITE); 356 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
305 } 357 }
306} 358}
307 359
308/* called on EBADF to verify fds */ 360/* called on EBADF to verify fds */
309static void 361static void
310fd_ebadf (void) 362fd_ebadf (EV_P)
311{ 363{
312 int fd; 364 int fd;
313 365
314 for (fd = 0; fd < anfdmax; ++fd) 366 for (fd = 0; fd < anfdmax; ++fd)
315 if (anfds [fd].events) 367 if (anfds [fd].events)
316 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 368 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
317 fd_kill (fd); 369 fd_kill (EV_A_ fd);
318} 370}
319 371
320/* called on ENOMEM in select/poll to kill some fds and retry */ 372/* called on ENOMEM in select/poll to kill some fds and retry */
321static void 373static void
322fd_enomem (void) 374fd_enomem (EV_P)
323{ 375{
324 int fd = anfdmax; 376 int fd;
325 377
326 while (fd--) 378 for (fd = anfdmax; fd--; )
327 if (anfds [fd].events) 379 if (anfds [fd].events)
328 { 380 {
329 close (fd); 381 close (fd);
330 fd_kill (fd); 382 fd_kill (EV_A_ fd);
331 return; 383 return;
332 } 384 }
333} 385}
334 386
387/* susually called after fork if method needs to re-arm all fds from scratch */
388static void
389fd_rearm_all (EV_P)
390{
391 int fd;
392
393 /* this should be highly optimised to not do anything but set a flag */
394 for (fd = 0; fd < anfdmax; ++fd)
395 if (anfds [fd].events)
396 {
397 anfds [fd].events = 0;
398 fd_change (EV_A_ fd);
399 }
400}
401
335/*****************************************************************************/ 402/*****************************************************************************/
336 403
337static struct ev_timer **timers;
338static int timermax, timercnt;
339
340static struct ev_periodic **periodics;
341static int periodicmax, periodiccnt;
342
343static void 404static void
344upheap (WT *timers, int k) 405upheap (WT *heap, int k)
345{ 406{
346 WT w = timers [k]; 407 WT w = heap [k];
347 408
348 while (k && timers [k >> 1]->at > w->at) 409 while (k && heap [k >> 1]->at > w->at)
349 { 410 {
350 timers [k] = timers [k >> 1]; 411 heap [k] = heap [k >> 1];
351 timers [k]->active = k + 1; 412 ((W)heap [k])->active = k + 1;
352 k >>= 1; 413 k >>= 1;
353 } 414 }
354 415
355 timers [k] = w; 416 heap [k] = w;
356 timers [k]->active = k + 1; 417 ((W)heap [k])->active = k + 1;
357 418
358} 419}
359 420
360static void 421static void
361downheap (WT *timers, int N, int k) 422downheap (WT *heap, int N, int k)
362{ 423{
363 WT w = timers [k]; 424 WT w = heap [k];
364 425
365 while (k < (N >> 1)) 426 while (k < (N >> 1))
366 { 427 {
367 int j = k << 1; 428 int j = k << 1;
368 429
369 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 430 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
370 ++j; 431 ++j;
371 432
372 if (w->at <= timers [j]->at) 433 if (w->at <= heap [j]->at)
373 break; 434 break;
374 435
375 timers [k] = timers [j]; 436 heap [k] = heap [j];
376 timers [k]->active = k + 1; 437 ((W)heap [k])->active = k + 1;
377 k = j; 438 k = j;
378 } 439 }
379 440
380 timers [k] = w; 441 heap [k] = w;
381 timers [k]->active = k + 1; 442 ((W)heap [k])->active = k + 1;
382} 443}
383 444
384/*****************************************************************************/ 445/*****************************************************************************/
385 446
386typedef struct 447typedef struct
387{ 448{
388 struct ev_signal *head; 449 struct ev_watcher_list *head;
389 sig_atomic_t volatile gotsig; 450 sig_atomic_t volatile gotsig;
390} ANSIG; 451} ANSIG;
391 452
392static ANSIG *signals; 453static ANSIG *signals;
393static int signalmax; 454static int signalmax;
409} 470}
410 471
411static void 472static void
412sighandler (int signum) 473sighandler (int signum)
413{ 474{
475#if WIN32
476 signal (signum, sighandler);
477#endif
478
414 signals [signum - 1].gotsig = 1; 479 signals [signum - 1].gotsig = 1;
415 480
416 if (!gotsig) 481 if (!gotsig)
417 { 482 {
418 int old_errno = errno; 483 int old_errno = errno;
421 errno = old_errno; 486 errno = old_errno;
422 } 487 }
423} 488}
424 489
425static void 490static void
426sigcb (struct ev_io *iow, int revents) 491sigcb (EV_P_ struct ev_io *iow, int revents)
427{ 492{
428 struct ev_signal *w; 493 struct ev_watcher_list *w;
429 int signum; 494 int signum;
430 495
431 read (sigpipe [0], &revents, 1); 496 read (sigpipe [0], &revents, 1);
432 gotsig = 0; 497 gotsig = 0;
433 498
435 if (signals [signum].gotsig) 500 if (signals [signum].gotsig)
436 { 501 {
437 signals [signum].gotsig = 0; 502 signals [signum].gotsig = 0;
438 503
439 for (w = signals [signum].head; w; w = w->next) 504 for (w = signals [signum].head; w; w = w->next)
440 event ((W)w, EV_SIGNAL); 505 event (EV_A_ (W)w, EV_SIGNAL);
441 } 506 }
442} 507}
443 508
444static void 509static void
445siginit (void) 510siginit (EV_P)
446{ 511{
447#ifndef WIN32 512#ifndef WIN32
448 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 513 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
449 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 514 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
450 515
452 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 517 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
453 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 518 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
454#endif 519#endif
455 520
456 ev_io_set (&sigev, sigpipe [0], EV_READ); 521 ev_io_set (&sigev, sigpipe [0], EV_READ);
457 ev_io_start (&sigev); 522 ev_io_start (EV_A_ &sigev);
523 ev_unref (EV_A); /* child watcher should not keep loop alive */
458} 524}
459 525
460/*****************************************************************************/ 526/*****************************************************************************/
461 527
462static struct ev_idle **idles; 528#ifndef WIN32
463static int idlemax, idlecnt;
464
465static struct ev_prepare **prepares;
466static int preparemax, preparecnt;
467
468static struct ev_check **checks;
469static int checkmax, checkcnt;
470
471/*****************************************************************************/
472 529
473static struct ev_child *childs [PID_HASHSIZE]; 530static struct ev_child *childs [PID_HASHSIZE];
474static struct ev_signal childev; 531static struct ev_signal childev;
475 532
476#ifndef WIN32
477
478#ifndef WCONTINUED 533#ifndef WCONTINUED
479# define WCONTINUED 0 534# define WCONTINUED 0
480#endif 535#endif
481 536
482static void 537static void
483child_reap (struct ev_signal *sw, int chain, int pid, int status) 538child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
484{ 539{
485 struct ev_child *w; 540 struct ev_child *w;
486 541
487 for (w = childs [chain & (PID_HASHSIZE - 1)]; w; w = w->next) 542 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
488 if (w->pid == pid || !w->pid) 543 if (w->pid == pid || !w->pid)
489 { 544 {
490 w->priority = sw->priority; /* need to do it *now* */ 545 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
491 w->rpid = pid; 546 w->rpid = pid;
492 w->rstatus = status; 547 w->rstatus = status;
493 printf ("rpid %p %d %d\n", w, pid, w->pid);//D
494 event ((W)w, EV_CHILD); 548 event (EV_A_ (W)w, EV_CHILD);
495 } 549 }
496} 550}
497 551
498static void 552static void
499childcb (struct ev_signal *sw, int revents) 553childcb (EV_P_ struct ev_signal *sw, int revents)
500{ 554{
501 int pid, status; 555 int pid, status;
502 556
503 printf ("chld %x\n", revents);//D
504 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 557 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
505 { 558 {
506 /* make sure we are called again until all childs have been reaped */ 559 /* make sure we are called again until all childs have been reaped */
507 event ((W)sw, EV_SIGNAL); 560 event (EV_A_ (W)sw, EV_SIGNAL);
508 561
509 child_reap (sw, pid, pid, status); 562 child_reap (EV_A_ sw, pid, pid, status);
510 child_reap (sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 563 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
511 } 564 }
512} 565}
513 566
514#endif 567#endif
515 568
540 return EV_VERSION_MINOR; 593 return EV_VERSION_MINOR;
541} 594}
542 595
543/* return true if we are running with elevated privileges and should ignore env variables */ 596/* return true if we are running with elevated privileges and should ignore env variables */
544static int 597static int
545enable_secure () 598enable_secure (void)
546{ 599{
547#ifdef WIN32 600#ifdef WIN32
548 return 0; 601 return 0;
549#else 602#else
550 return getuid () != geteuid () 603 return getuid () != geteuid ()
551 || getgid () != getegid (); 604 || getgid () != getegid ();
552#endif 605#endif
553} 606}
554 607
555int ev_init (int methods) 608int
609ev_method (EV_P)
556{ 610{
611 return method;
612}
613
614static void
615loop_init (EV_P_ int methods)
616{
557 if (!ev_method) 617 if (!method)
558 { 618 {
559#if EV_USE_MONOTONIC 619#if EV_USE_MONOTONIC
560 { 620 {
561 struct timespec ts; 621 struct timespec ts;
562 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 622 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
563 have_monotonic = 1; 623 have_monotonic = 1;
564 } 624 }
565#endif 625#endif
566 626
567 ev_now = ev_time (); 627 rt_now = ev_time ();
568 now = get_clock (); 628 mn_now = get_clock ();
569 now_floor = now; 629 now_floor = mn_now;
570 diff = ev_now - now; 630 rtmn_diff = rt_now - mn_now;
571
572 if (pipe (sigpipe))
573 return 0;
574 631
575 if (methods == EVMETHOD_AUTO) 632 if (methods == EVMETHOD_AUTO)
576 if (!enable_secure () && getenv ("LIBEV_METHODS")) 633 if (!enable_secure () && getenv ("LIBEV_METHODS"))
577 methods = atoi (getenv ("LIBEV_METHODS")); 634 methods = atoi (getenv ("LIBEV_METHODS"));
578 else 635 else
579 methods = EVMETHOD_ANY; 636 methods = EVMETHOD_ANY;
580 637
581 ev_method = 0; 638 method = 0;
639#if EV_USE_WIN32
640 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
641#endif
582#if EV_USE_KQUEUE 642#if EV_USE_KQUEUE
583 if (!ev_method && (methods & EVMETHOD_KQUEUE)) kqueue_init (methods); 643 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
584#endif 644#endif
585#if EV_USE_EPOLL 645#if EV_USE_EPOLL
586 if (!ev_method && (methods & EVMETHOD_EPOLL )) epoll_init (methods); 646 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
587#endif 647#endif
588#if EV_USE_POLL 648#if EV_USE_POLL
589 if (!ev_method && (methods & EVMETHOD_POLL )) poll_init (methods); 649 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
590#endif 650#endif
591#if EV_USE_SELECT 651#if EV_USE_SELECT
592 if (!ev_method && (methods & EVMETHOD_SELECT)) select_init (methods); 652 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
593#endif 653#endif
654 }
655}
594 656
657void
658loop_destroy (EV_P)
659{
660 int i;
661
662#if EV_USE_WIN32
663 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
664#endif
665#if EV_USE_KQUEUE
666 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
667#endif
668#if EV_USE_EPOLL
669 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
670#endif
671#if EV_USE_POLL
672 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
673#endif
674#if EV_USE_SELECT
675 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
676#endif
677
678 for (i = NUMPRI; i--; )
679 array_free (pending, [i]);
680
681 array_free (fdchange, );
682 array_free (timer, );
683 array_free (periodic, );
684 array_free (idle, );
685 array_free (prepare, );
686 array_free (check, );
687
688 method = 0;
689 /*TODO*/
690}
691
692void
693loop_fork (EV_P)
694{
695 /*TODO*/
696#if EV_USE_EPOLL
697 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
698#endif
699#if EV_USE_KQUEUE
700 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
701#endif
702}
703
704#if EV_MULTIPLICITY
705struct ev_loop *
706ev_loop_new (int methods)
707{
708 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
709
710 loop_init (EV_A_ methods);
711
712 if (ev_method (EV_A))
713 return loop;
714
715 return 0;
716}
717
718void
719ev_loop_destroy (EV_P)
720{
721 loop_destroy (EV_A);
722 free (loop);
723}
724
725void
726ev_loop_fork (EV_P)
727{
728 loop_fork (EV_A);
729}
730
731#endif
732
733#if EV_MULTIPLICITY
734struct ev_loop default_loop_struct;
735static struct ev_loop *default_loop;
736
737struct ev_loop *
738#else
739static int default_loop;
740
741int
742#endif
743ev_default_loop (int methods)
744{
745 if (sigpipe [0] == sigpipe [1])
746 if (pipe (sigpipe))
747 return 0;
748
749 if (!default_loop)
750 {
751#if EV_MULTIPLICITY
752 struct ev_loop *loop = default_loop = &default_loop_struct;
753#else
754 default_loop = 1;
755#endif
756
757 loop_init (EV_A_ methods);
758
595 if (ev_method) 759 if (ev_method (EV_A))
596 { 760 {
597 ev_watcher_init (&sigev, sigcb); 761 ev_watcher_init (&sigev, sigcb);
598 ev_set_priority (&sigev, EV_MAXPRI); 762 ev_set_priority (&sigev, EV_MAXPRI);
599 siginit (); 763 siginit (EV_A);
600 764
601#ifndef WIN32 765#ifndef WIN32
602 ev_signal_init (&childev, childcb, SIGCHLD); 766 ev_signal_init (&childev, childcb, SIGCHLD);
603 ev_set_priority (&childev, EV_MAXPRI); 767 ev_set_priority (&childev, EV_MAXPRI);
604 ev_signal_start (&childev); 768 ev_signal_start (EV_A_ &childev);
769 ev_unref (EV_A); /* child watcher should not keep loop alive */
605#endif 770#endif
606 } 771 }
772 else
773 default_loop = 0;
607 } 774 }
608 775
609 return ev_method; 776 return default_loop;
610} 777}
611 778
612/*****************************************************************************/
613
614void 779void
615ev_fork_prepare (void) 780ev_default_destroy (void)
616{ 781{
617 /* nop */ 782#if EV_MULTIPLICITY
618} 783 struct ev_loop *loop = default_loop;
619
620void
621ev_fork_parent (void)
622{
623 /* nop */
624}
625
626void
627ev_fork_child (void)
628{
629#if EV_USE_EPOLL
630 if (ev_method == EVMETHOD_EPOLL)
631 epoll_postfork_child ();
632#endif 784#endif
633 785
786 ev_ref (EV_A); /* child watcher */
787 ev_signal_stop (EV_A_ &childev);
788
789 ev_ref (EV_A); /* signal watcher */
634 ev_io_stop (&sigev); 790 ev_io_stop (EV_A_ &sigev);
791
792 close (sigpipe [0]); sigpipe [0] = 0;
793 close (sigpipe [1]); sigpipe [1] = 0;
794
795 loop_destroy (EV_A);
796}
797
798void
799ev_default_fork (void)
800{
801#if EV_MULTIPLICITY
802 struct ev_loop *loop = default_loop;
803#endif
804
805 loop_fork (EV_A);
806
807 ev_io_stop (EV_A_ &sigev);
635 close (sigpipe [0]); 808 close (sigpipe [0]);
636 close (sigpipe [1]); 809 close (sigpipe [1]);
637 pipe (sigpipe); 810 pipe (sigpipe);
811
812 ev_ref (EV_A); /* signal watcher */
638 siginit (); 813 siginit (EV_A);
639} 814}
640 815
641/*****************************************************************************/ 816/*****************************************************************************/
642 817
643static void 818static void
644call_pending (void) 819call_pending (EV_P)
645{ 820{
646 int pri; 821 int pri;
647 822
648 for (pri = NUMPRI; pri--; ) 823 for (pri = NUMPRI; pri--; )
649 while (pendingcnt [pri]) 824 while (pendingcnt [pri])
651 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 826 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
652 827
653 if (p->w) 828 if (p->w)
654 { 829 {
655 p->w->pending = 0; 830 p->w->pending = 0;
656 p->w->cb (p->w, p->events); 831 p->w->cb (EV_A_ p->w, p->events);
657 } 832 }
658 } 833 }
659} 834}
660 835
661static void 836static void
662timers_reify (void) 837timers_reify (EV_P)
663{ 838{
664 while (timercnt && timers [0]->at <= now) 839 while (timercnt && ((WT)timers [0])->at <= mn_now)
665 { 840 {
666 struct ev_timer *w = timers [0]; 841 struct ev_timer *w = timers [0];
842
843 assert (("inactive timer on timer heap detected", ev_is_active (w)));
667 844
668 /* first reschedule or stop timer */ 845 /* first reschedule or stop timer */
669 if (w->repeat) 846 if (w->repeat)
670 { 847 {
671 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 848 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
672 w->at = now + w->repeat; 849 ((WT)w)->at = mn_now + w->repeat;
673 downheap ((WT *)timers, timercnt, 0); 850 downheap ((WT *)timers, timercnt, 0);
674 } 851 }
675 else 852 else
676 ev_timer_stop (w); /* nonrepeating: stop timer */ 853 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
677 854
678 event ((W)w, EV_TIMEOUT); 855 event (EV_A_ (W)w, EV_TIMEOUT);
679 } 856 }
680} 857}
681 858
682static void 859static void
683periodics_reify (void) 860periodics_reify (EV_P)
684{ 861{
685 while (periodiccnt && periodics [0]->at <= ev_now) 862 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
686 { 863 {
687 struct ev_periodic *w = periodics [0]; 864 struct ev_periodic *w = periodics [0];
865
866 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
688 867
689 /* first reschedule or stop timer */ 868 /* first reschedule or stop timer */
690 if (w->interval) 869 if (w->interval)
691 { 870 {
692 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 871 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
693 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 872 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
694 downheap ((WT *)periodics, periodiccnt, 0); 873 downheap ((WT *)periodics, periodiccnt, 0);
695 } 874 }
696 else 875 else
697 ev_periodic_stop (w); /* nonrepeating: stop timer */ 876 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
698 877
699 event ((W)w, EV_PERIODIC); 878 event (EV_A_ (W)w, EV_PERIODIC);
700 } 879 }
701} 880}
702 881
703static void 882static void
704periodics_reschedule (ev_tstamp diff) 883periodics_reschedule (EV_P)
705{ 884{
706 int i; 885 int i;
707 886
708 /* adjust periodics after time jump */ 887 /* adjust periodics after time jump */
709 for (i = 0; i < periodiccnt; ++i) 888 for (i = 0; i < periodiccnt; ++i)
710 { 889 {
711 struct ev_periodic *w = periodics [i]; 890 struct ev_periodic *w = periodics [i];
712 891
713 if (w->interval) 892 if (w->interval)
714 { 893 {
715 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 894 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
716 895
717 if (fabs (diff) >= 1e-4) 896 if (fabs (diff) >= 1e-4)
718 { 897 {
719 ev_periodic_stop (w); 898 ev_periodic_stop (EV_A_ w);
720 ev_periodic_start (w); 899 ev_periodic_start (EV_A_ w);
721 900
722 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 901 i = 0; /* restart loop, inefficient, but time jumps should be rare */
723 } 902 }
724 } 903 }
725 } 904 }
726} 905}
727 906
728static int 907inline int
729time_update_monotonic (void) 908time_update_monotonic (EV_P)
730{ 909{
731 now = get_clock (); 910 mn_now = get_clock ();
732 911
733 if (expect_true (now - now_floor < MIN_TIMEJUMP * .5)) 912 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
734 { 913 {
735 ev_now = now + diff; 914 rt_now = rtmn_diff + mn_now;
736 return 0; 915 return 0;
737 } 916 }
738 else 917 else
739 { 918 {
740 now_floor = now; 919 now_floor = mn_now;
741 ev_now = ev_time (); 920 rt_now = ev_time ();
742 return 1; 921 return 1;
743 } 922 }
744} 923}
745 924
746static void 925static void
747time_update (void) 926time_update (EV_P)
748{ 927{
749 int i; 928 int i;
750 929
751#if EV_USE_MONOTONIC 930#if EV_USE_MONOTONIC
752 if (expect_true (have_monotonic)) 931 if (expect_true (have_monotonic))
753 { 932 {
754 if (time_update_monotonic ()) 933 if (time_update_monotonic (EV_A))
755 { 934 {
756 ev_tstamp odiff = diff; 935 ev_tstamp odiff = rtmn_diff;
757 936
758 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 937 for (i = 4; --i; ) /* loop a few times, before making important decisions */
759 { 938 {
760 diff = ev_now - now; 939 rtmn_diff = rt_now - mn_now;
761 940
762 if (fabs (odiff - diff) < MIN_TIMEJUMP) 941 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
763 return; /* all is well */ 942 return; /* all is well */
764 943
765 ev_now = ev_time (); 944 rt_now = ev_time ();
766 now = get_clock (); 945 mn_now = get_clock ();
767 now_floor = now; 946 now_floor = mn_now;
768 } 947 }
769 948
770 periodics_reschedule (diff - odiff); 949 periodics_reschedule (EV_A);
771 /* no timer adjustment, as the monotonic clock doesn't jump */ 950 /* no timer adjustment, as the monotonic clock doesn't jump */
951 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
772 } 952 }
773 } 953 }
774 else 954 else
775#endif 955#endif
776 { 956 {
777 ev_now = ev_time (); 957 rt_now = ev_time ();
778 958
779 if (expect_false (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 959 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
780 { 960 {
781 periodics_reschedule (ev_now - now); 961 periodics_reschedule (EV_A);
782 962
783 /* adjust timers. this is easy, as the offset is the same for all */ 963 /* adjust timers. this is easy, as the offset is the same for all */
784 for (i = 0; i < timercnt; ++i) 964 for (i = 0; i < timercnt; ++i)
785 timers [i]->at += diff; 965 ((WT)timers [i])->at += rt_now - mn_now;
786 } 966 }
787 967
788 now = ev_now; 968 mn_now = rt_now;
789 } 969 }
790} 970}
791 971
792int ev_loop_done; 972void
973ev_ref (EV_P)
974{
975 ++activecnt;
976}
793 977
978void
979ev_unref (EV_P)
980{
981 --activecnt;
982}
983
984static int loop_done;
985
986void
794void ev_loop (int flags) 987ev_loop (EV_P_ int flags)
795{ 988{
796 double block; 989 double block;
797 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 990 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
798 991
799 do 992 do
800 { 993 {
801 /* queue check watchers (and execute them) */ 994 /* queue check watchers (and execute them) */
802 if (expect_false (preparecnt)) 995 if (expect_false (preparecnt))
803 { 996 {
804 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 997 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
805 call_pending (); 998 call_pending (EV_A);
806 } 999 }
807 1000
808 /* update fd-related kernel structures */ 1001 /* update fd-related kernel structures */
809 fd_reify (); 1002 fd_reify (EV_A);
810 1003
811 /* calculate blocking time */ 1004 /* calculate blocking time */
812 1005
813 /* we only need this for !monotonic clockor timers, but as we basically 1006 /* we only need this for !monotonic clockor timers, but as we basically
814 always have timers, we just calculate it always */ 1007 always have timers, we just calculate it always */
815#if EV_USE_MONOTONIC 1008#if EV_USE_MONOTONIC
816 if (expect_true (have_monotonic)) 1009 if (expect_true (have_monotonic))
817 time_update_monotonic (); 1010 time_update_monotonic (EV_A);
818 else 1011 else
819#endif 1012#endif
820 { 1013 {
821 ev_now = ev_time (); 1014 rt_now = ev_time ();
822 now = ev_now; 1015 mn_now = rt_now;
823 } 1016 }
824 1017
825 if (flags & EVLOOP_NONBLOCK || idlecnt) 1018 if (flags & EVLOOP_NONBLOCK || idlecnt)
826 block = 0.; 1019 block = 0.;
827 else 1020 else
828 { 1021 {
829 block = MAX_BLOCKTIME; 1022 block = MAX_BLOCKTIME;
830 1023
831 if (timercnt) 1024 if (timercnt)
832 { 1025 {
833 ev_tstamp to = timers [0]->at - now + method_fudge; 1026 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
834 if (block > to) block = to; 1027 if (block > to) block = to;
835 } 1028 }
836 1029
837 if (periodiccnt) 1030 if (periodiccnt)
838 { 1031 {
839 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1032 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
840 if (block > to) block = to; 1033 if (block > to) block = to;
841 } 1034 }
842 1035
843 if (block < 0.) block = 0.; 1036 if (block < 0.) block = 0.;
844 } 1037 }
845 1038
846 method_poll (block); 1039 method_poll (EV_A_ block);
847 1040
848 /* update ev_now, do magic */ 1041 /* update rt_now, do magic */
849 time_update (); 1042 time_update (EV_A);
850 1043
851 /* queue pending timers and reschedule them */ 1044 /* queue pending timers and reschedule them */
852 timers_reify (); /* relative timers called last */ 1045 timers_reify (EV_A); /* relative timers called last */
853 periodics_reify (); /* absolute timers called first */ 1046 periodics_reify (EV_A); /* absolute timers called first */
854 1047
855 /* queue idle watchers unless io or timers are pending */ 1048 /* queue idle watchers unless io or timers are pending */
856 if (!pendingcnt) 1049 if (!pendingcnt)
857 queue_events ((W *)idles, idlecnt, EV_IDLE); 1050 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
858 1051
859 /* queue check watchers, to be executed first */ 1052 /* queue check watchers, to be executed first */
860 if (checkcnt) 1053 if (checkcnt)
861 queue_events ((W *)checks, checkcnt, EV_CHECK); 1054 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
862 1055
863 call_pending (); 1056 call_pending (EV_A);
864 } 1057 }
865 while (!ev_loop_done); 1058 while (activecnt && !loop_done);
866 1059
867 if (ev_loop_done != 2) 1060 if (loop_done != 2)
868 ev_loop_done = 0; 1061 loop_done = 0;
1062}
1063
1064void
1065ev_unloop (EV_P_ int how)
1066{
1067 loop_done = how;
869} 1068}
870 1069
871/*****************************************************************************/ 1070/*****************************************************************************/
872 1071
873static void 1072inline void
874wlist_add (WL *head, WL elem) 1073wlist_add (WL *head, WL elem)
875{ 1074{
876 elem->next = *head; 1075 elem->next = *head;
877 *head = elem; 1076 *head = elem;
878} 1077}
879 1078
880static void 1079inline void
881wlist_del (WL *head, WL elem) 1080wlist_del (WL *head, WL elem)
882{ 1081{
883 while (*head) 1082 while (*head)
884 { 1083 {
885 if (*head == elem) 1084 if (*head == elem)
890 1089
891 head = &(*head)->next; 1090 head = &(*head)->next;
892 } 1091 }
893} 1092}
894 1093
895static void 1094inline void
896ev_clear_pending (W w) 1095ev_clear_pending (EV_P_ W w)
897{ 1096{
898 if (w->pending) 1097 if (w->pending)
899 { 1098 {
900 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1099 pendings [ABSPRI (w)][w->pending - 1].w = 0;
901 w->pending = 0; 1100 w->pending = 0;
902 } 1101 }
903} 1102}
904 1103
905static void 1104inline void
906ev_start (W w, int active) 1105ev_start (EV_P_ W w, int active)
907{ 1106{
908 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1107 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
909 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 1108 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
910 1109
911 w->active = active; 1110 w->active = active;
1111 ev_ref (EV_A);
912} 1112}
913 1113
914static void 1114inline void
915ev_stop (W w) 1115ev_stop (EV_P_ W w)
916{ 1116{
1117 ev_unref (EV_A);
917 w->active = 0; 1118 w->active = 0;
918} 1119}
919 1120
920/*****************************************************************************/ 1121/*****************************************************************************/
921 1122
922void 1123void
923ev_io_start (struct ev_io *w) 1124ev_io_start (EV_P_ struct ev_io *w)
924{ 1125{
925 int fd = w->fd; 1126 int fd = w->fd;
926 1127
927 if (ev_is_active (w)) 1128 if (ev_is_active (w))
928 return; 1129 return;
929 1130
930 assert (("ev_io_start called with negative fd", fd >= 0)); 1131 assert (("ev_io_start called with negative fd", fd >= 0));
931 1132
932 ev_start ((W)w, 1); 1133 ev_start (EV_A_ (W)w, 1);
933 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1134 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
934 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1135 wlist_add ((WL *)&anfds[fd].head, (WL)w);
935 1136
936 fd_change (fd); 1137 fd_change (EV_A_ fd);
937} 1138}
938 1139
939void 1140void
940ev_io_stop (struct ev_io *w) 1141ev_io_stop (EV_P_ struct ev_io *w)
941{ 1142{
942 ev_clear_pending ((W)w); 1143 ev_clear_pending (EV_A_ (W)w);
943 if (!ev_is_active (w)) 1144 if (!ev_is_active (w))
944 return; 1145 return;
945 1146
946 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1147 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
947 ev_stop ((W)w); 1148 ev_stop (EV_A_ (W)w);
948 1149
949 fd_change (w->fd); 1150 fd_change (EV_A_ w->fd);
950} 1151}
951 1152
952void 1153void
953ev_timer_start (struct ev_timer *w) 1154ev_timer_start (EV_P_ struct ev_timer *w)
954{ 1155{
955 if (ev_is_active (w)) 1156 if (ev_is_active (w))
956 return; 1157 return;
957 1158
958 w->at += now; 1159 ((WT)w)->at += mn_now;
959 1160
960 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1161 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
961 1162
962 ev_start ((W)w, ++timercnt); 1163 ev_start (EV_A_ (W)w, ++timercnt);
963 array_needsize (timers, timermax, timercnt, ); 1164 array_needsize (timers, timermax, timercnt, );
964 timers [timercnt - 1] = w; 1165 timers [timercnt - 1] = w;
965 upheap ((WT *)timers, timercnt - 1); 1166 upheap ((WT *)timers, timercnt - 1);
966}
967 1167
1168 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1169}
1170
968void 1171void
969ev_timer_stop (struct ev_timer *w) 1172ev_timer_stop (EV_P_ struct ev_timer *w)
970{ 1173{
971 ev_clear_pending ((W)w); 1174 ev_clear_pending (EV_A_ (W)w);
972 if (!ev_is_active (w)) 1175 if (!ev_is_active (w))
973 return; 1176 return;
974 1177
1178 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1179
975 if (w->active < timercnt--) 1180 if (((W)w)->active < timercnt--)
976 { 1181 {
977 timers [w->active - 1] = timers [timercnt]; 1182 timers [((W)w)->active - 1] = timers [timercnt];
978 downheap ((WT *)timers, timercnt, w->active - 1); 1183 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
979 } 1184 }
980 1185
981 w->at = w->repeat; 1186 ((WT)w)->at = w->repeat;
982 1187
983 ev_stop ((W)w); 1188 ev_stop (EV_A_ (W)w);
984} 1189}
985 1190
986void 1191void
987ev_timer_again (struct ev_timer *w) 1192ev_timer_again (EV_P_ struct ev_timer *w)
988{ 1193{
989 if (ev_is_active (w)) 1194 if (ev_is_active (w))
990 { 1195 {
991 if (w->repeat) 1196 if (w->repeat)
992 { 1197 {
993 w->at = now + w->repeat; 1198 ((WT)w)->at = mn_now + w->repeat;
994 downheap ((WT *)timers, timercnt, w->active - 1); 1199 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
995 } 1200 }
996 else 1201 else
997 ev_timer_stop (w); 1202 ev_timer_stop (EV_A_ w);
998 } 1203 }
999 else if (w->repeat) 1204 else if (w->repeat)
1000 ev_timer_start (w); 1205 ev_timer_start (EV_A_ w);
1001} 1206}
1002 1207
1003void 1208void
1004ev_periodic_start (struct ev_periodic *w) 1209ev_periodic_start (EV_P_ struct ev_periodic *w)
1005{ 1210{
1006 if (ev_is_active (w)) 1211 if (ev_is_active (w))
1007 return; 1212 return;
1008 1213
1009 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1214 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1010 1215
1011 /* this formula differs from the one in periodic_reify because we do not always round up */ 1216 /* this formula differs from the one in periodic_reify because we do not always round up */
1012 if (w->interval) 1217 if (w->interval)
1013 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1218 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1014 1219
1015 ev_start ((W)w, ++periodiccnt); 1220 ev_start (EV_A_ (W)w, ++periodiccnt);
1016 array_needsize (periodics, periodicmax, periodiccnt, ); 1221 array_needsize (periodics, periodicmax, periodiccnt, );
1017 periodics [periodiccnt - 1] = w; 1222 periodics [periodiccnt - 1] = w;
1018 upheap ((WT *)periodics, periodiccnt - 1); 1223 upheap ((WT *)periodics, periodiccnt - 1);
1019}
1020 1224
1225 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1226}
1227
1021void 1228void
1022ev_periodic_stop (struct ev_periodic *w) 1229ev_periodic_stop (EV_P_ struct ev_periodic *w)
1023{ 1230{
1024 ev_clear_pending ((W)w); 1231 ev_clear_pending (EV_A_ (W)w);
1025 if (!ev_is_active (w)) 1232 if (!ev_is_active (w))
1026 return; 1233 return;
1027 1234
1235 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1236
1028 if (w->active < periodiccnt--) 1237 if (((W)w)->active < periodiccnt--)
1029 { 1238 {
1030 periodics [w->active - 1] = periodics [periodiccnt]; 1239 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1031 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1240 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1032 } 1241 }
1033 1242
1034 ev_stop ((W)w); 1243 ev_stop (EV_A_ (W)w);
1244}
1245
1246void
1247ev_idle_start (EV_P_ struct ev_idle *w)
1248{
1249 if (ev_is_active (w))
1250 return;
1251
1252 ev_start (EV_A_ (W)w, ++idlecnt);
1253 array_needsize (idles, idlemax, idlecnt, );
1254 idles [idlecnt - 1] = w;
1255}
1256
1257void
1258ev_idle_stop (EV_P_ struct ev_idle *w)
1259{
1260 ev_clear_pending (EV_A_ (W)w);
1261 if (ev_is_active (w))
1262 return;
1263
1264 idles [((W)w)->active - 1] = idles [--idlecnt];
1265 ev_stop (EV_A_ (W)w);
1266}
1267
1268void
1269ev_prepare_start (EV_P_ struct ev_prepare *w)
1270{
1271 if (ev_is_active (w))
1272 return;
1273
1274 ev_start (EV_A_ (W)w, ++preparecnt);
1275 array_needsize (prepares, preparemax, preparecnt, );
1276 prepares [preparecnt - 1] = w;
1277}
1278
1279void
1280ev_prepare_stop (EV_P_ struct ev_prepare *w)
1281{
1282 ev_clear_pending (EV_A_ (W)w);
1283 if (ev_is_active (w))
1284 return;
1285
1286 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1287 ev_stop (EV_A_ (W)w);
1288}
1289
1290void
1291ev_check_start (EV_P_ struct ev_check *w)
1292{
1293 if (ev_is_active (w))
1294 return;
1295
1296 ev_start (EV_A_ (W)w, ++checkcnt);
1297 array_needsize (checks, checkmax, checkcnt, );
1298 checks [checkcnt - 1] = w;
1299}
1300
1301void
1302ev_check_stop (EV_P_ struct ev_check *w)
1303{
1304 ev_clear_pending (EV_A_ (W)w);
1305 if (ev_is_active (w))
1306 return;
1307
1308 checks [((W)w)->active - 1] = checks [--checkcnt];
1309 ev_stop (EV_A_ (W)w);
1035} 1310}
1036 1311
1037#ifndef SA_RESTART 1312#ifndef SA_RESTART
1038# define SA_RESTART 0 1313# define SA_RESTART 0
1039#endif 1314#endif
1040 1315
1041void 1316void
1042ev_signal_start (struct ev_signal *w) 1317ev_signal_start (EV_P_ struct ev_signal *w)
1043{ 1318{
1319#if EV_MULTIPLICITY
1320 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1321#endif
1044 if (ev_is_active (w)) 1322 if (ev_is_active (w))
1045 return; 1323 return;
1046 1324
1047 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1325 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1048 1326
1049 ev_start ((W)w, 1); 1327 ev_start (EV_A_ (W)w, 1);
1050 array_needsize (signals, signalmax, w->signum, signals_init); 1328 array_needsize (signals, signalmax, w->signum, signals_init);
1051 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1329 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1052 1330
1053 if (!w->next) 1331 if (!((WL)w)->next)
1054 { 1332 {
1333#if WIN32
1334 signal (w->signum, sighandler);
1335#else
1055 struct sigaction sa; 1336 struct sigaction sa;
1056 sa.sa_handler = sighandler; 1337 sa.sa_handler = sighandler;
1057 sigfillset (&sa.sa_mask); 1338 sigfillset (&sa.sa_mask);
1058 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1339 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1059 sigaction (w->signum, &sa, 0); 1340 sigaction (w->signum, &sa, 0);
1341#endif
1060 } 1342 }
1061} 1343}
1062 1344
1063void 1345void
1064ev_signal_stop (struct ev_signal *w) 1346ev_signal_stop (EV_P_ struct ev_signal *w)
1065{ 1347{
1066 ev_clear_pending ((W)w); 1348 ev_clear_pending (EV_A_ (W)w);
1067 if (!ev_is_active (w)) 1349 if (!ev_is_active (w))
1068 return; 1350 return;
1069 1351
1070 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1352 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1071 ev_stop ((W)w); 1353 ev_stop (EV_A_ (W)w);
1072 1354
1073 if (!signals [w->signum - 1].head) 1355 if (!signals [w->signum - 1].head)
1074 signal (w->signum, SIG_DFL); 1356 signal (w->signum, SIG_DFL);
1075} 1357}
1076 1358
1077void 1359void
1078ev_idle_start (struct ev_idle *w) 1360ev_child_start (EV_P_ struct ev_child *w)
1079{ 1361{
1362#if EV_MULTIPLICITY
1363 assert (("child watchers are only supported in the default loop", loop == default_loop));
1364#endif
1080 if (ev_is_active (w)) 1365 if (ev_is_active (w))
1081 return; 1366 return;
1082 1367
1083 ev_start ((W)w, ++idlecnt); 1368 ev_start (EV_A_ (W)w, 1);
1084 array_needsize (idles, idlemax, idlecnt, ); 1369 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1085 idles [idlecnt - 1] = w;
1086} 1370}
1087 1371
1088void 1372void
1089ev_idle_stop (struct ev_idle *w) 1373ev_child_stop (EV_P_ struct ev_child *w)
1090{ 1374{
1091 ev_clear_pending ((W)w); 1375 ev_clear_pending (EV_A_ (W)w);
1092 if (ev_is_active (w)) 1376 if (ev_is_active (w))
1093 return; 1377 return;
1094 1378
1095 idles [w->active - 1] = idles [--idlecnt];
1096 ev_stop ((W)w);
1097}
1098
1099void
1100ev_prepare_start (struct ev_prepare *w)
1101{
1102 if (ev_is_active (w))
1103 return;
1104
1105 ev_start ((W)w, ++preparecnt);
1106 array_needsize (prepares, preparemax, preparecnt, );
1107 prepares [preparecnt - 1] = w;
1108}
1109
1110void
1111ev_prepare_stop (struct ev_prepare *w)
1112{
1113 ev_clear_pending ((W)w);
1114 if (ev_is_active (w))
1115 return;
1116
1117 prepares [w->active - 1] = prepares [--preparecnt];
1118 ev_stop ((W)w);
1119}
1120
1121void
1122ev_check_start (struct ev_check *w)
1123{
1124 if (ev_is_active (w))
1125 return;
1126
1127 ev_start ((W)w, ++checkcnt);
1128 array_needsize (checks, checkmax, checkcnt, );
1129 checks [checkcnt - 1] = w;
1130}
1131
1132void
1133ev_check_stop (struct ev_check *w)
1134{
1135 ev_clear_pending ((W)w);
1136 if (ev_is_active (w))
1137 return;
1138
1139 checks [w->active - 1] = checks [--checkcnt];
1140 ev_stop ((W)w);
1141}
1142
1143void
1144ev_child_start (struct ev_child *w)
1145{
1146 if (ev_is_active (w))
1147 return;
1148
1149 ev_start ((W)w, 1);
1150 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1151}
1152
1153void
1154ev_child_stop (struct ev_child *w)
1155{
1156 ev_clear_pending ((W)w);
1157 if (ev_is_active (w))
1158 return;
1159
1160 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1379 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1161 ev_stop ((W)w); 1380 ev_stop (EV_A_ (W)w);
1162} 1381}
1163 1382
1164/*****************************************************************************/ 1383/*****************************************************************************/
1165 1384
1166struct ev_once 1385struct ev_once
1170 void (*cb)(int revents, void *arg); 1389 void (*cb)(int revents, void *arg);
1171 void *arg; 1390 void *arg;
1172}; 1391};
1173 1392
1174static void 1393static void
1175once_cb (struct ev_once *once, int revents) 1394once_cb (EV_P_ struct ev_once *once, int revents)
1176{ 1395{
1177 void (*cb)(int revents, void *arg) = once->cb; 1396 void (*cb)(int revents, void *arg) = once->cb;
1178 void *arg = once->arg; 1397 void *arg = once->arg;
1179 1398
1180 ev_io_stop (&once->io); 1399 ev_io_stop (EV_A_ &once->io);
1181 ev_timer_stop (&once->to); 1400 ev_timer_stop (EV_A_ &once->to);
1182 free (once); 1401 free (once);
1183 1402
1184 cb (revents, arg); 1403 cb (revents, arg);
1185} 1404}
1186 1405
1187static void 1406static void
1188once_cb_io (struct ev_io *w, int revents) 1407once_cb_io (EV_P_ struct ev_io *w, int revents)
1189{ 1408{
1190 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1409 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1191} 1410}
1192 1411
1193static void 1412static void
1194once_cb_to (struct ev_timer *w, int revents) 1413once_cb_to (EV_P_ struct ev_timer *w, int revents)
1195{ 1414{
1196 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1415 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1197} 1416}
1198 1417
1199void 1418void
1200ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1419ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1201{ 1420{
1202 struct ev_once *once = malloc (sizeof (struct ev_once)); 1421 struct ev_once *once = malloc (sizeof (struct ev_once));
1203 1422
1204 if (!once) 1423 if (!once)
1205 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1424 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1210 1429
1211 ev_watcher_init (&once->io, once_cb_io); 1430 ev_watcher_init (&once->io, once_cb_io);
1212 if (fd >= 0) 1431 if (fd >= 0)
1213 { 1432 {
1214 ev_io_set (&once->io, fd, events); 1433 ev_io_set (&once->io, fd, events);
1215 ev_io_start (&once->io); 1434 ev_io_start (EV_A_ &once->io);
1216 } 1435 }
1217 1436
1218 ev_watcher_init (&once->to, once_cb_to); 1437 ev_watcher_init (&once->to, once_cb_to);
1219 if (timeout >= 0.) 1438 if (timeout >= 0.)
1220 { 1439 {
1221 ev_timer_set (&once->to, timeout, 0.); 1440 ev_timer_set (&once->to, timeout, 0.);
1222 ev_timer_start (&once->to); 1441 ev_timer_start (EV_A_ &once->to);
1223 } 1442 }
1224 } 1443 }
1225} 1444}
1226 1445
1227/*****************************************************************************/
1228
1229#if 0
1230
1231struct ev_io wio;
1232
1233static void
1234sin_cb (struct ev_io *w, int revents)
1235{
1236 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1237}
1238
1239static void
1240ocb (struct ev_timer *w, int revents)
1241{
1242 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1243 ev_timer_stop (w);
1244 ev_timer_start (w);
1245}
1246
1247static void
1248scb (struct ev_signal *w, int revents)
1249{
1250 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1251 ev_io_stop (&wio);
1252 ev_io_start (&wio);
1253}
1254
1255static void
1256gcb (struct ev_signal *w, int revents)
1257{
1258 fprintf (stderr, "generic %x\n", revents);
1259
1260}
1261
1262int main (void)
1263{
1264 ev_init (0);
1265
1266 ev_io_init (&wio, sin_cb, 0, EV_READ);
1267 ev_io_start (&wio);
1268
1269 struct ev_timer t[10000];
1270
1271#if 0
1272 int i;
1273 for (i = 0; i < 10000; ++i)
1274 {
1275 struct ev_timer *w = t + i;
1276 ev_watcher_init (w, ocb, i);
1277 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1278 ev_timer_start (w);
1279 if (drand48 () < 0.5)
1280 ev_timer_stop (w);
1281 }
1282#endif
1283
1284 struct ev_timer t1;
1285 ev_timer_init (&t1, ocb, 5, 10);
1286 ev_timer_start (&t1);
1287
1288 struct ev_signal sig;
1289 ev_signal_init (&sig, scb, SIGQUIT);
1290 ev_signal_start (&sig);
1291
1292 struct ev_check cw;
1293 ev_check_init (&cw, gcb);
1294 ev_check_start (&cw);
1295
1296 struct ev_idle iw;
1297 ev_idle_init (&iw, gcb);
1298 ev_idle_start (&iw);
1299
1300 ev_loop (0);
1301
1302 return 0;
1303}
1304
1305#endif
1306
1307
1308
1309

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines