ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.49 by root, Sat Nov 3 16:16:58 2007 UTC vs.
Revision 1.70 by root, Tue Nov 6 00:52:32 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h> 59#include <unistd.h>
70 92
71#ifndef EV_USE_KQUEUE 93#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 94# define EV_USE_KQUEUE 0
73#endif 95#endif
74 96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
103#endif
104
75#ifndef EV_USE_REALTIME 105#ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 1 106# define EV_USE_REALTIME 1
77#endif 107#endif
78 108
79/**/ 109/**/
113 143
114typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
115typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
117 147
118static ev_tstamp now_floor, now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
119ev_tstamp ev_now;
120int ev_method;
121 149
122static int have_monotonic; /* runtime */ 150#if WIN32
123 151/* note: the comment below could not be substantiated, but what would I care */
124static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 152/* MSDN says this is required to handle SIGFPE */
125static void (*method_modify)(int fd, int oev, int nev); 153volatile double SIGFPE_REQ = 0.0f;
126static void (*method_poll)(ev_tstamp timeout); 154#endif
127 155
128/*****************************************************************************/ 156/*****************************************************************************/
129 157
130ev_tstamp 158static void (*syserr_cb)(const char *msg);
159
160void ev_set_syserr_cb (void (*cb)(const char *msg))
161{
162 syserr_cb = cb;
163}
164
165static void
166syserr (const char *msg)
167{
168 if (!msg)
169 msg = "(libev) system error";
170
171 if (syserr_cb)
172 syserr_cb (msg);
173 else
174 {
175 perror (msg);
176 abort ();
177 }
178}
179
180static void *(*alloc)(void *ptr, long size);
181
182void ev_set_allocator (void *(*cb)(void *ptr, long size))
183{
184 alloc = cb;
185}
186
187static void *
188ev_realloc (void *ptr, long size)
189{
190 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
191
192 if (!ptr && size)
193 {
194 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
195 abort ();
196 }
197
198 return ptr;
199}
200
201#define ev_malloc(size) ev_realloc (0, (size))
202#define ev_free(ptr) ev_realloc ((ptr), 0)
203
204/*****************************************************************************/
205
206typedef struct
207{
208 WL head;
209 unsigned char events;
210 unsigned char reify;
211} ANFD;
212
213typedef struct
214{
215 W w;
216 int events;
217} ANPENDING;
218
219#if EV_MULTIPLICITY
220
221struct ev_loop
222{
223# define VAR(name,decl) decl;
224# include "ev_vars.h"
225};
226# undef VAR
227# include "ev_wrap.h"
228
229#else
230
231# define VAR(name,decl) static decl;
232# include "ev_vars.h"
233# undef VAR
234
235#endif
236
237/*****************************************************************************/
238
239inline ev_tstamp
131ev_time (void) 240ev_time (void)
132{ 241{
133#if EV_USE_REALTIME 242#if EV_USE_REALTIME
134 struct timespec ts; 243 struct timespec ts;
135 clock_gettime (CLOCK_REALTIME, &ts); 244 clock_gettime (CLOCK_REALTIME, &ts);
139 gettimeofday (&tv, 0); 248 gettimeofday (&tv, 0);
140 return tv.tv_sec + tv.tv_usec * 1e-6; 249 return tv.tv_sec + tv.tv_usec * 1e-6;
141#endif 250#endif
142} 251}
143 252
144static ev_tstamp 253inline ev_tstamp
145get_clock (void) 254get_clock (void)
146{ 255{
147#if EV_USE_MONOTONIC 256#if EV_USE_MONOTONIC
148 if (expect_true (have_monotonic)) 257 if (expect_true (have_monotonic))
149 { 258 {
154#endif 263#endif
155 264
156 return ev_time (); 265 return ev_time ();
157} 266}
158 267
268ev_tstamp
269ev_now (EV_P)
270{
271 return rt_now;
272}
273
159#define array_roundsize(base,n) ((n) | 4 & ~3) 274#define array_roundsize(base,n) ((n) | 4 & ~3)
160 275
161#define array_needsize(base,cur,cnt,init) \ 276#define array_needsize(base,cur,cnt,init) \
162 if (expect_false ((cnt) > cur)) \ 277 if (expect_false ((cnt) > cur)) \
163 { \ 278 { \
164 int newcnt = cur; \ 279 int newcnt = cur; \
165 do \ 280 do \
166 { \ 281 { \
167 newcnt = array_roundsize (base, newcnt << 1); \ 282 newcnt = array_roundsize (base, newcnt << 1); \
168 } \ 283 } \
169 while ((cnt) > newcnt); \ 284 while ((cnt) > newcnt); \
170 \ 285 \
171 base = realloc (base, sizeof (*base) * (newcnt)); \ 286 base = ev_realloc (base, sizeof (*base) * (newcnt)); \
172 init (base + cur, newcnt - cur); \ 287 init (base + cur, newcnt - cur); \
173 cur = newcnt; \ 288 cur = newcnt; \
174 } 289 }
290
291#define array_slim(stem) \
292 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
293 { \
294 stem ## max = array_roundsize (stem ## cnt >> 1); \
295 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \
296 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
297 }
298
299#define array_free(stem, idx) \
300 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
175 301
176/*****************************************************************************/ 302/*****************************************************************************/
177
178typedef struct
179{
180 struct ev_io *head;
181 unsigned char events;
182 unsigned char reify;
183} ANFD;
184
185static ANFD *anfds;
186static int anfdmax;
187 303
188static void 304static void
189anfds_init (ANFD *base, int count) 305anfds_init (ANFD *base, int count)
190{ 306{
191 while (count--) 307 while (count--)
196 312
197 ++base; 313 ++base;
198 } 314 }
199} 315}
200 316
201typedef struct
202{
203 W w;
204 int events;
205} ANPENDING;
206
207static ANPENDING *pendings [NUMPRI];
208static int pendingmax [NUMPRI], pendingcnt [NUMPRI];
209
210static void 317static void
211event (W w, int events) 318event (EV_P_ W w, int events)
212{ 319{
213 if (w->pending) 320 if (w->pending)
214 { 321 {
215 pendings [ABSPRI (w)][w->pending - 1].events |= events; 322 pendings [ABSPRI (w)][w->pending - 1].events |= events;
216 return; 323 return;
221 pendings [ABSPRI (w)][w->pending - 1].w = w; 328 pendings [ABSPRI (w)][w->pending - 1].w = w;
222 pendings [ABSPRI (w)][w->pending - 1].events = events; 329 pendings [ABSPRI (w)][w->pending - 1].events = events;
223} 330}
224 331
225static void 332static void
226queue_events (W *events, int eventcnt, int type) 333queue_events (EV_P_ W *events, int eventcnt, int type)
227{ 334{
228 int i; 335 int i;
229 336
230 for (i = 0; i < eventcnt; ++i) 337 for (i = 0; i < eventcnt; ++i)
231 event (events [i], type); 338 event (EV_A_ events [i], type);
232} 339}
233 340
234static void 341static void
235fd_event (int fd, int events) 342fd_event (EV_P_ int fd, int events)
236{ 343{
237 ANFD *anfd = anfds + fd; 344 ANFD *anfd = anfds + fd;
238 struct ev_io *w; 345 struct ev_io *w;
239 346
240 for (w = anfd->head; w; w = w->next) 347 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
241 { 348 {
242 int ev = w->events & events; 349 int ev = w->events & events;
243 350
244 if (ev) 351 if (ev)
245 event ((W)w, ev); 352 event (EV_A_ (W)w, ev);
246 } 353 }
247} 354}
248 355
249/*****************************************************************************/ 356/*****************************************************************************/
250 357
251static int *fdchanges;
252static int fdchangemax, fdchangecnt;
253
254static void 358static void
255fd_reify (void) 359fd_reify (EV_P)
256{ 360{
257 int i; 361 int i;
258 362
259 for (i = 0; i < fdchangecnt; ++i) 363 for (i = 0; i < fdchangecnt; ++i)
260 { 364 {
262 ANFD *anfd = anfds + fd; 366 ANFD *anfd = anfds + fd;
263 struct ev_io *w; 367 struct ev_io *w;
264 368
265 int events = 0; 369 int events = 0;
266 370
267 for (w = anfd->head; w; w = w->next) 371 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
268 events |= w->events; 372 events |= w->events;
269 373
270 anfd->reify = 0; 374 anfd->reify = 0;
271 375
272 if (anfd->events != events)
273 {
274 method_modify (fd, anfd->events, events); 376 method_modify (EV_A_ fd, anfd->events, events);
275 anfd->events = events; 377 anfd->events = events;
276 }
277 } 378 }
278 379
279 fdchangecnt = 0; 380 fdchangecnt = 0;
280} 381}
281 382
282static void 383static void
283fd_change (int fd) 384fd_change (EV_P_ int fd)
284{ 385{
285 if (anfds [fd].reify || fdchangecnt < 0) 386 if (anfds [fd].reify)
286 return; 387 return;
287 388
288 anfds [fd].reify = 1; 389 anfds [fd].reify = 1;
289 390
290 ++fdchangecnt; 391 ++fdchangecnt;
291 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 392 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
292 fdchanges [fdchangecnt - 1] = fd; 393 fdchanges [fdchangecnt - 1] = fd;
293} 394}
294 395
295static void 396static void
296fd_kill (int fd) 397fd_kill (EV_P_ int fd)
297{ 398{
298 struct ev_io *w; 399 struct ev_io *w;
299 400
300 printf ("killing fd %d\n", fd);//D
301 while ((w = anfds [fd].head)) 401 while ((w = (struct ev_io *)anfds [fd].head))
302 { 402 {
303 ev_io_stop (w); 403 ev_io_stop (EV_A_ w);
304 event ((W)w, EV_ERROR | EV_READ | EV_WRITE); 404 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
305 } 405 }
306} 406}
307 407
308/* called on EBADF to verify fds */ 408/* called on EBADF to verify fds */
309static void 409static void
310fd_ebadf (void) 410fd_ebadf (EV_P)
311{ 411{
312 int fd; 412 int fd;
313 413
314 for (fd = 0; fd < anfdmax; ++fd) 414 for (fd = 0; fd < anfdmax; ++fd)
315 if (anfds [fd].events) 415 if (anfds [fd].events)
316 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 416 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
317 fd_kill (fd); 417 fd_kill (EV_A_ fd);
318} 418}
319 419
320/* called on ENOMEM in select/poll to kill some fds and retry */ 420/* called on ENOMEM in select/poll to kill some fds and retry */
321static void 421static void
322fd_enomem (void) 422fd_enomem (EV_P)
323{ 423{
324 int fd = anfdmax; 424 int fd;
325 425
326 while (fd--) 426 for (fd = anfdmax; fd--; )
327 if (anfds [fd].events) 427 if (anfds [fd].events)
328 { 428 {
329 close (fd);
330 fd_kill (fd); 429 fd_kill (EV_A_ fd);
331 return; 430 return;
332 } 431 }
333} 432}
334 433
434/* usually called after fork if method needs to re-arm all fds from scratch */
435static void
436fd_rearm_all (EV_P)
437{
438 int fd;
439
440 /* this should be highly optimised to not do anything but set a flag */
441 for (fd = 0; fd < anfdmax; ++fd)
442 if (anfds [fd].events)
443 {
444 anfds [fd].events = 0;
445 fd_change (EV_A_ fd);
446 }
447}
448
335/*****************************************************************************/ 449/*****************************************************************************/
336 450
337static struct ev_timer **timers;
338static int timermax, timercnt;
339
340static struct ev_periodic **periodics;
341static int periodicmax, periodiccnt;
342
343static void 451static void
344upheap (WT *timers, int k) 452upheap (WT *heap, int k)
345{ 453{
346 WT w = timers [k]; 454 WT w = heap [k];
347 455
348 while (k && timers [k >> 1]->at > w->at) 456 while (k && heap [k >> 1]->at > w->at)
349 { 457 {
350 timers [k] = timers [k >> 1]; 458 heap [k] = heap [k >> 1];
351 timers [k]->active = k + 1; 459 ((W)heap [k])->active = k + 1;
352 k >>= 1; 460 k >>= 1;
353 } 461 }
354 462
355 timers [k] = w; 463 heap [k] = w;
356 timers [k]->active = k + 1; 464 ((W)heap [k])->active = k + 1;
357 465
358} 466}
359 467
360static void 468static void
361downheap (WT *timers, int N, int k) 469downheap (WT *heap, int N, int k)
362{ 470{
363 WT w = timers [k]; 471 WT w = heap [k];
364 472
365 while (k < (N >> 1)) 473 while (k < (N >> 1))
366 { 474 {
367 int j = k << 1; 475 int j = k << 1;
368 476
369 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 477 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
370 ++j; 478 ++j;
371 479
372 if (w->at <= timers [j]->at) 480 if (w->at <= heap [j]->at)
373 break; 481 break;
374 482
375 timers [k] = timers [j]; 483 heap [k] = heap [j];
376 timers [k]->active = k + 1; 484 ((W)heap [k])->active = k + 1;
377 k = j; 485 k = j;
378 } 486 }
379 487
380 timers [k] = w; 488 heap [k] = w;
381 timers [k]->active = k + 1; 489 ((W)heap [k])->active = k + 1;
382} 490}
383 491
384/*****************************************************************************/ 492/*****************************************************************************/
385 493
386typedef struct 494typedef struct
387{ 495{
388 struct ev_signal *head; 496 WL head;
389 sig_atomic_t volatile gotsig; 497 sig_atomic_t volatile gotsig;
390} ANSIG; 498} ANSIG;
391 499
392static ANSIG *signals; 500static ANSIG *signals;
393static int signalmax; 501static int signalmax;
409} 517}
410 518
411static void 519static void
412sighandler (int signum) 520sighandler (int signum)
413{ 521{
522#if WIN32
523 signal (signum, sighandler);
524#endif
525
414 signals [signum - 1].gotsig = 1; 526 signals [signum - 1].gotsig = 1;
415 527
416 if (!gotsig) 528 if (!gotsig)
417 { 529 {
418 int old_errno = errno; 530 int old_errno = errno;
421 errno = old_errno; 533 errno = old_errno;
422 } 534 }
423} 535}
424 536
425static void 537static void
426sigcb (struct ev_io *iow, int revents) 538sigcb (EV_P_ struct ev_io *iow, int revents)
427{ 539{
428 struct ev_signal *w; 540 WL w;
429 int signum; 541 int signum;
430 542
431 read (sigpipe [0], &revents, 1); 543 read (sigpipe [0], &revents, 1);
432 gotsig = 0; 544 gotsig = 0;
433 545
435 if (signals [signum].gotsig) 547 if (signals [signum].gotsig)
436 { 548 {
437 signals [signum].gotsig = 0; 549 signals [signum].gotsig = 0;
438 550
439 for (w = signals [signum].head; w; w = w->next) 551 for (w = signals [signum].head; w; w = w->next)
440 event ((W)w, EV_SIGNAL); 552 event (EV_A_ (W)w, EV_SIGNAL);
441 } 553 }
442} 554}
443 555
444static void 556static void
445siginit (void) 557siginit (EV_P)
446{ 558{
447#ifndef WIN32 559#ifndef WIN32
448 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 560 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
449 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 561 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
450 562
452 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 564 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
453 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 565 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
454#endif 566#endif
455 567
456 ev_io_set (&sigev, sigpipe [0], EV_READ); 568 ev_io_set (&sigev, sigpipe [0], EV_READ);
457 ev_io_start (&sigev); 569 ev_io_start (EV_A_ &sigev);
570 ev_unref (EV_A); /* child watcher should not keep loop alive */
458} 571}
459 572
460/*****************************************************************************/ 573/*****************************************************************************/
461 574
462static struct ev_idle **idles; 575#ifndef WIN32
463static int idlemax, idlecnt;
464
465static struct ev_prepare **prepares;
466static int preparemax, preparecnt;
467
468static struct ev_check **checks;
469static int checkmax, checkcnt;
470
471/*****************************************************************************/
472 576
473static struct ev_child *childs [PID_HASHSIZE]; 577static struct ev_child *childs [PID_HASHSIZE];
474static struct ev_signal childev; 578static struct ev_signal childev;
475 579
476#ifndef WIN32
477
478#ifndef WCONTINUED 580#ifndef WCONTINUED
479# define WCONTINUED 0 581# define WCONTINUED 0
480#endif 582#endif
481 583
482static void 584static void
483child_reap (struct ev_signal *sw, int chain, int pid, int status) 585child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
484{ 586{
485 struct ev_child *w; 587 struct ev_child *w;
486 588
487 for (w = childs [chain & (PID_HASHSIZE - 1)]; w; w = w->next) 589 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
488 if (w->pid == pid || !w->pid) 590 if (w->pid == pid || !w->pid)
489 { 591 {
490 w->priority = sw->priority; /* need to do it *now* */ 592 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
491 w->rpid = pid; 593 w->rpid = pid;
492 w->rstatus = status; 594 w->rstatus = status;
493 printf ("rpid %p %d %d\n", w, pid, w->pid);//D
494 event ((W)w, EV_CHILD); 595 event (EV_A_ (W)w, EV_CHILD);
495 } 596 }
496} 597}
497 598
498static void 599static void
499childcb (struct ev_signal *sw, int revents) 600childcb (EV_P_ struct ev_signal *sw, int revents)
500{ 601{
501 int pid, status; 602 int pid, status;
502 603
503 printf ("chld %x\n", revents);//D
504 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 604 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
505 { 605 {
506 /* make sure we are called again until all childs have been reaped */ 606 /* make sure we are called again until all childs have been reaped */
507 event ((W)sw, EV_SIGNAL); 607 event (EV_A_ (W)sw, EV_SIGNAL);
508 608
509 child_reap (sw, pid, pid, status); 609 child_reap (EV_A_ sw, pid, pid, status);
510 child_reap (sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 610 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
511 } 611 }
512} 612}
513 613
514#endif 614#endif
515 615
540 return EV_VERSION_MINOR; 640 return EV_VERSION_MINOR;
541} 641}
542 642
543/* return true if we are running with elevated privileges and should ignore env variables */ 643/* return true if we are running with elevated privileges and should ignore env variables */
544static int 644static int
545enable_secure () 645enable_secure (void)
546{ 646{
547#ifdef WIN32 647#ifdef WIN32
548 return 0; 648 return 0;
549#else 649#else
550 return getuid () != geteuid () 650 return getuid () != geteuid ()
551 || getgid () != getegid (); 651 || getgid () != getegid ();
552#endif 652#endif
553} 653}
554 654
555int ev_init (int methods) 655int
656ev_method (EV_P)
556{ 657{
658 return method;
659}
660
661static void
662loop_init (EV_P_ int methods)
663{
557 if (!ev_method) 664 if (!method)
558 { 665 {
559#if EV_USE_MONOTONIC 666#if EV_USE_MONOTONIC
560 { 667 {
561 struct timespec ts; 668 struct timespec ts;
562 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 669 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
563 have_monotonic = 1; 670 have_monotonic = 1;
564 } 671 }
565#endif 672#endif
566 673
567 ev_now = ev_time (); 674 rt_now = ev_time ();
568 now = get_clock (); 675 mn_now = get_clock ();
569 now_floor = now; 676 now_floor = mn_now;
570 diff = ev_now - now; 677 rtmn_diff = rt_now - mn_now;
571
572 if (pipe (sigpipe))
573 return 0;
574 678
575 if (methods == EVMETHOD_AUTO) 679 if (methods == EVMETHOD_AUTO)
576 if (!enable_secure () && getenv ("LIBEV_METHODS")) 680 if (!enable_secure () && getenv ("LIBEV_METHODS"))
577 methods = atoi (getenv ("LIBEV_METHODS")); 681 methods = atoi (getenv ("LIBEV_METHODS"));
578 else 682 else
579 methods = EVMETHOD_ANY; 683 methods = EVMETHOD_ANY;
580 684
581 ev_method = 0; 685 method = 0;
686#if EV_USE_WIN32
687 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
688#endif
582#if EV_USE_KQUEUE 689#if EV_USE_KQUEUE
583 if (!ev_method && (methods & EVMETHOD_KQUEUE)) kqueue_init (methods); 690 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
584#endif 691#endif
585#if EV_USE_EPOLL 692#if EV_USE_EPOLL
586 if (!ev_method && (methods & EVMETHOD_EPOLL )) epoll_init (methods); 693 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
587#endif 694#endif
588#if EV_USE_POLL 695#if EV_USE_POLL
589 if (!ev_method && (methods & EVMETHOD_POLL )) poll_init (methods); 696 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
590#endif 697#endif
591#if EV_USE_SELECT 698#if EV_USE_SELECT
592 if (!ev_method && (methods & EVMETHOD_SELECT)) select_init (methods); 699 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
593#endif 700#endif
594 701
702 ev_watcher_init (&sigev, sigcb);
703 ev_set_priority (&sigev, EV_MAXPRI);
704 }
705}
706
707void
708loop_destroy (EV_P)
709{
710 int i;
711
712#if EV_USE_WIN32
713 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
714#endif
715#if EV_USE_KQUEUE
716 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
717#endif
718#if EV_USE_EPOLL
719 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
720#endif
721#if EV_USE_POLL
722 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
723#endif
724#if EV_USE_SELECT
725 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
726#endif
727
728 for (i = NUMPRI; i--; )
729 array_free (pending, [i]);
730
731 array_free (fdchange, );
732 array_free (timer, );
733 array_free (periodic, );
734 array_free (idle, );
735 array_free (prepare, );
736 array_free (check, );
737
738 method = 0;
739}
740
741static void
742loop_fork (EV_P)
743{
744#if EV_USE_EPOLL
745 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
746#endif
747#if EV_USE_KQUEUE
748 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
749#endif
750
751 if (ev_is_active (&sigev))
752 {
753 /* default loop */
754
755 ev_ref (EV_A);
756 ev_io_stop (EV_A_ &sigev);
757 close (sigpipe [0]);
758 close (sigpipe [1]);
759
760 while (pipe (sigpipe))
761 syserr ("(libev) error creating pipe");
762
763 siginit (EV_A);
764 }
765
766 postfork = 0;
767}
768
769#if EV_MULTIPLICITY
770struct ev_loop *
771ev_loop_new (int methods)
772{
773 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
774
775 memset (loop, 0, sizeof (struct ev_loop));
776
777 loop_init (EV_A_ methods);
778
779 if (ev_method (EV_A))
780 return loop;
781
782 return 0;
783}
784
785void
786ev_loop_destroy (EV_P)
787{
788 loop_destroy (EV_A);
789 ev_free (loop);
790}
791
792void
793ev_loop_fork (EV_P)
794{
795 postfork = 1;
796}
797
798#endif
799
800#if EV_MULTIPLICITY
801struct ev_loop default_loop_struct;
802static struct ev_loop *default_loop;
803
804struct ev_loop *
805#else
806static int default_loop;
807
808int
809#endif
810ev_default_loop (int methods)
811{
812 if (sigpipe [0] == sigpipe [1])
813 if (pipe (sigpipe))
814 return 0;
815
816 if (!default_loop)
817 {
818#if EV_MULTIPLICITY
819 struct ev_loop *loop = default_loop = &default_loop_struct;
820#else
821 default_loop = 1;
822#endif
823
824 loop_init (EV_A_ methods);
825
595 if (ev_method) 826 if (ev_method (EV_A))
596 { 827 {
597 ev_watcher_init (&sigev, sigcb);
598 ev_set_priority (&sigev, EV_MAXPRI);
599 siginit (); 828 siginit (EV_A);
600 829
601#ifndef WIN32 830#ifndef WIN32
602 ev_signal_init (&childev, childcb, SIGCHLD); 831 ev_signal_init (&childev, childcb, SIGCHLD);
603 ev_set_priority (&childev, EV_MAXPRI); 832 ev_set_priority (&childev, EV_MAXPRI);
604 ev_signal_start (&childev); 833 ev_signal_start (EV_A_ &childev);
834 ev_unref (EV_A); /* child watcher should not keep loop alive */
605#endif 835#endif
606 } 836 }
837 else
838 default_loop = 0;
607 } 839 }
608 840
609 return ev_method; 841 return default_loop;
842}
843
844void
845ev_default_destroy (void)
846{
847#if EV_MULTIPLICITY
848 struct ev_loop *loop = default_loop;
849#endif
850
851 ev_ref (EV_A); /* child watcher */
852 ev_signal_stop (EV_A_ &childev);
853
854 ev_ref (EV_A); /* signal watcher */
855 ev_io_stop (EV_A_ &sigev);
856
857 close (sigpipe [0]); sigpipe [0] = 0;
858 close (sigpipe [1]); sigpipe [1] = 0;
859
860 loop_destroy (EV_A);
861}
862
863void
864ev_default_fork (void)
865{
866#if EV_MULTIPLICITY
867 struct ev_loop *loop = default_loop;
868#endif
869
870 if (method)
871 postfork = 1;
610} 872}
611 873
612/*****************************************************************************/ 874/*****************************************************************************/
613 875
614void
615ev_fork_prepare (void)
616{
617 /* nop */
618}
619
620void
621ev_fork_parent (void)
622{
623 /* nop */
624}
625
626void
627ev_fork_child (void)
628{
629#if EV_USE_EPOLL
630 if (ev_method == EVMETHOD_EPOLL)
631 epoll_postfork_child ();
632#endif
633
634 ev_io_stop (&sigev);
635 close (sigpipe [0]);
636 close (sigpipe [1]);
637 pipe (sigpipe);
638 siginit ();
639}
640
641/*****************************************************************************/
642
643static void 876static void
644call_pending (void) 877call_pending (EV_P)
645{ 878{
646 int pri; 879 int pri;
647 880
648 for (pri = NUMPRI; pri--; ) 881 for (pri = NUMPRI; pri--; )
649 while (pendingcnt [pri]) 882 while (pendingcnt [pri])
651 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 884 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
652 885
653 if (p->w) 886 if (p->w)
654 { 887 {
655 p->w->pending = 0; 888 p->w->pending = 0;
656 p->w->cb (p->w, p->events); 889 p->w->cb (EV_A_ p->w, p->events);
657 } 890 }
658 } 891 }
659} 892}
660 893
661static void 894static void
662timers_reify (void) 895timers_reify (EV_P)
663{ 896{
664 while (timercnt && timers [0]->at <= now) 897 while (timercnt && ((WT)timers [0])->at <= mn_now)
665 { 898 {
666 struct ev_timer *w = timers [0]; 899 struct ev_timer *w = timers [0];
900
901 assert (("inactive timer on timer heap detected", ev_is_active (w)));
667 902
668 /* first reschedule or stop timer */ 903 /* first reschedule or stop timer */
669 if (w->repeat) 904 if (w->repeat)
670 { 905 {
671 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 906 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
672 w->at = now + w->repeat; 907 ((WT)w)->at = mn_now + w->repeat;
673 downheap ((WT *)timers, timercnt, 0); 908 downheap ((WT *)timers, timercnt, 0);
674 } 909 }
675 else 910 else
676 ev_timer_stop (w); /* nonrepeating: stop timer */ 911 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
677 912
678 event ((W)w, EV_TIMEOUT); 913 event (EV_A_ (W)w, EV_TIMEOUT);
679 } 914 }
680} 915}
681 916
682static void 917static void
683periodics_reify (void) 918periodics_reify (EV_P)
684{ 919{
685 while (periodiccnt && periodics [0]->at <= ev_now) 920 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
686 { 921 {
687 struct ev_periodic *w = periodics [0]; 922 struct ev_periodic *w = periodics [0];
923
924 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
688 925
689 /* first reschedule or stop timer */ 926 /* first reschedule or stop timer */
690 if (w->interval) 927 if (w->interval)
691 { 928 {
692 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 929 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
693 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 930 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
694 downheap ((WT *)periodics, periodiccnt, 0); 931 downheap ((WT *)periodics, periodiccnt, 0);
695 } 932 }
696 else 933 else
697 ev_periodic_stop (w); /* nonrepeating: stop timer */ 934 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
698 935
699 event ((W)w, EV_PERIODIC); 936 event (EV_A_ (W)w, EV_PERIODIC);
700 } 937 }
701} 938}
702 939
703static void 940static void
704periodics_reschedule (ev_tstamp diff) 941periodics_reschedule (EV_P)
705{ 942{
706 int i; 943 int i;
707 944
708 /* adjust periodics after time jump */ 945 /* adjust periodics after time jump */
709 for (i = 0; i < periodiccnt; ++i) 946 for (i = 0; i < periodiccnt; ++i)
710 { 947 {
711 struct ev_periodic *w = periodics [i]; 948 struct ev_periodic *w = periodics [i];
712 949
713 if (w->interval) 950 if (w->interval)
714 { 951 {
715 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 952 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
716 953
717 if (fabs (diff) >= 1e-4) 954 if (fabs (diff) >= 1e-4)
718 { 955 {
719 ev_periodic_stop (w); 956 ev_periodic_stop (EV_A_ w);
720 ev_periodic_start (w); 957 ev_periodic_start (EV_A_ w);
721 958
722 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 959 i = 0; /* restart loop, inefficient, but time jumps should be rare */
723 } 960 }
724 } 961 }
725 } 962 }
726} 963}
727 964
728static int 965inline int
729time_update_monotonic (void) 966time_update_monotonic (EV_P)
730{ 967{
731 now = get_clock (); 968 mn_now = get_clock ();
732 969
733 if (expect_true (now - now_floor < MIN_TIMEJUMP * .5)) 970 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
734 { 971 {
735 ev_now = now + diff; 972 rt_now = rtmn_diff + mn_now;
736 return 0; 973 return 0;
737 } 974 }
738 else 975 else
739 { 976 {
740 now_floor = now; 977 now_floor = mn_now;
741 ev_now = ev_time (); 978 rt_now = ev_time ();
742 return 1; 979 return 1;
743 } 980 }
744} 981}
745 982
746static void 983static void
747time_update (void) 984time_update (EV_P)
748{ 985{
749 int i; 986 int i;
750 987
751#if EV_USE_MONOTONIC 988#if EV_USE_MONOTONIC
752 if (expect_true (have_monotonic)) 989 if (expect_true (have_monotonic))
753 { 990 {
754 if (time_update_monotonic ()) 991 if (time_update_monotonic (EV_A))
755 { 992 {
756 ev_tstamp odiff = diff; 993 ev_tstamp odiff = rtmn_diff;
757 994
758 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 995 for (i = 4; --i; ) /* loop a few times, before making important decisions */
759 { 996 {
760 diff = ev_now - now; 997 rtmn_diff = rt_now - mn_now;
761 998
762 if (fabs (odiff - diff) < MIN_TIMEJUMP) 999 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
763 return; /* all is well */ 1000 return; /* all is well */
764 1001
765 ev_now = ev_time (); 1002 rt_now = ev_time ();
766 now = get_clock (); 1003 mn_now = get_clock ();
767 now_floor = now; 1004 now_floor = mn_now;
768 } 1005 }
769 1006
770 periodics_reschedule (diff - odiff); 1007 periodics_reschedule (EV_A);
771 /* no timer adjustment, as the monotonic clock doesn't jump */ 1008 /* no timer adjustment, as the monotonic clock doesn't jump */
1009 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
772 } 1010 }
773 } 1011 }
774 else 1012 else
775#endif 1013#endif
776 { 1014 {
777 ev_now = ev_time (); 1015 rt_now = ev_time ();
778 1016
779 if (expect_false (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1017 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
780 { 1018 {
781 periodics_reschedule (ev_now - now); 1019 periodics_reschedule (EV_A);
782 1020
783 /* adjust timers. this is easy, as the offset is the same for all */ 1021 /* adjust timers. this is easy, as the offset is the same for all */
784 for (i = 0; i < timercnt; ++i) 1022 for (i = 0; i < timercnt; ++i)
785 timers [i]->at += diff; 1023 ((WT)timers [i])->at += rt_now - mn_now;
786 } 1024 }
787 1025
788 now = ev_now; 1026 mn_now = rt_now;
789 } 1027 }
790} 1028}
791 1029
792int ev_loop_done; 1030void
1031ev_ref (EV_P)
1032{
1033 ++activecnt;
1034}
793 1035
1036void
1037ev_unref (EV_P)
1038{
1039 --activecnt;
1040}
1041
1042static int loop_done;
1043
1044void
794void ev_loop (int flags) 1045ev_loop (EV_P_ int flags)
795{ 1046{
796 double block; 1047 double block;
797 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1048 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
798 1049
799 do 1050 do
800 { 1051 {
801 /* queue check watchers (and execute them) */ 1052 /* queue check watchers (and execute them) */
802 if (expect_false (preparecnt)) 1053 if (expect_false (preparecnt))
803 { 1054 {
804 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 1055 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
805 call_pending (); 1056 call_pending (EV_A);
806 } 1057 }
807 1058
1059 /* we might have forked, so reify kernel state if necessary */
1060 if (expect_false (postfork))
1061 loop_fork (EV_A);
1062
808 /* update fd-related kernel structures */ 1063 /* update fd-related kernel structures */
809 fd_reify (); 1064 fd_reify (EV_A);
810 1065
811 /* calculate blocking time */ 1066 /* calculate blocking time */
812 1067
813 /* we only need this for !monotonic clockor timers, but as we basically 1068 /* we only need this for !monotonic clockor timers, but as we basically
814 always have timers, we just calculate it always */ 1069 always have timers, we just calculate it always */
815#if EV_USE_MONOTONIC 1070#if EV_USE_MONOTONIC
816 if (expect_true (have_monotonic)) 1071 if (expect_true (have_monotonic))
817 time_update_monotonic (); 1072 time_update_monotonic (EV_A);
818 else 1073 else
819#endif 1074#endif
820 { 1075 {
821 ev_now = ev_time (); 1076 rt_now = ev_time ();
822 now = ev_now; 1077 mn_now = rt_now;
823 } 1078 }
824 1079
825 if (flags & EVLOOP_NONBLOCK || idlecnt) 1080 if (flags & EVLOOP_NONBLOCK || idlecnt)
826 block = 0.; 1081 block = 0.;
827 else 1082 else
828 { 1083 {
829 block = MAX_BLOCKTIME; 1084 block = MAX_BLOCKTIME;
830 1085
831 if (timercnt) 1086 if (timercnt)
832 { 1087 {
833 ev_tstamp to = timers [0]->at - now + method_fudge; 1088 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
834 if (block > to) block = to; 1089 if (block > to) block = to;
835 } 1090 }
836 1091
837 if (periodiccnt) 1092 if (periodiccnt)
838 { 1093 {
839 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1094 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
840 if (block > to) block = to; 1095 if (block > to) block = to;
841 } 1096 }
842 1097
843 if (block < 0.) block = 0.; 1098 if (block < 0.) block = 0.;
844 } 1099 }
845 1100
846 method_poll (block); 1101 method_poll (EV_A_ block);
847 1102
848 /* update ev_now, do magic */ 1103 /* update rt_now, do magic */
849 time_update (); 1104 time_update (EV_A);
850 1105
851 /* queue pending timers and reschedule them */ 1106 /* queue pending timers and reschedule them */
852 timers_reify (); /* relative timers called last */ 1107 timers_reify (EV_A); /* relative timers called last */
853 periodics_reify (); /* absolute timers called first */ 1108 periodics_reify (EV_A); /* absolute timers called first */
854 1109
855 /* queue idle watchers unless io or timers are pending */ 1110 /* queue idle watchers unless io or timers are pending */
856 if (!pendingcnt) 1111 if (!pendingcnt)
857 queue_events ((W *)idles, idlecnt, EV_IDLE); 1112 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
858 1113
859 /* queue check watchers, to be executed first */ 1114 /* queue check watchers, to be executed first */
860 if (checkcnt) 1115 if (checkcnt)
861 queue_events ((W *)checks, checkcnt, EV_CHECK); 1116 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
862 1117
863 call_pending (); 1118 call_pending (EV_A);
864 } 1119 }
865 while (!ev_loop_done); 1120 while (activecnt && !loop_done);
866 1121
867 if (ev_loop_done != 2) 1122 if (loop_done != 2)
868 ev_loop_done = 0; 1123 loop_done = 0;
1124}
1125
1126void
1127ev_unloop (EV_P_ int how)
1128{
1129 loop_done = how;
869} 1130}
870 1131
871/*****************************************************************************/ 1132/*****************************************************************************/
872 1133
873static void 1134inline void
874wlist_add (WL *head, WL elem) 1135wlist_add (WL *head, WL elem)
875{ 1136{
876 elem->next = *head; 1137 elem->next = *head;
877 *head = elem; 1138 *head = elem;
878} 1139}
879 1140
880static void 1141inline void
881wlist_del (WL *head, WL elem) 1142wlist_del (WL *head, WL elem)
882{ 1143{
883 while (*head) 1144 while (*head)
884 { 1145 {
885 if (*head == elem) 1146 if (*head == elem)
890 1151
891 head = &(*head)->next; 1152 head = &(*head)->next;
892 } 1153 }
893} 1154}
894 1155
895static void 1156inline void
896ev_clear_pending (W w) 1157ev_clear_pending (EV_P_ W w)
897{ 1158{
898 if (w->pending) 1159 if (w->pending)
899 { 1160 {
900 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1161 pendings [ABSPRI (w)][w->pending - 1].w = 0;
901 w->pending = 0; 1162 w->pending = 0;
902 } 1163 }
903} 1164}
904 1165
905static void 1166inline void
906ev_start (W w, int active) 1167ev_start (EV_P_ W w, int active)
907{ 1168{
908 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1169 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
909 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 1170 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
910 1171
911 w->active = active; 1172 w->active = active;
1173 ev_ref (EV_A);
912} 1174}
913 1175
914static void 1176inline void
915ev_stop (W w) 1177ev_stop (EV_P_ W w)
916{ 1178{
1179 ev_unref (EV_A);
917 w->active = 0; 1180 w->active = 0;
918} 1181}
919 1182
920/*****************************************************************************/ 1183/*****************************************************************************/
921 1184
922void 1185void
923ev_io_start (struct ev_io *w) 1186ev_io_start (EV_P_ struct ev_io *w)
924{ 1187{
925 int fd = w->fd; 1188 int fd = w->fd;
926 1189
927 if (ev_is_active (w)) 1190 if (ev_is_active (w))
928 return; 1191 return;
929 1192
930 assert (("ev_io_start called with negative fd", fd >= 0)); 1193 assert (("ev_io_start called with negative fd", fd >= 0));
931 1194
932 ev_start ((W)w, 1); 1195 ev_start (EV_A_ (W)w, 1);
933 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1196 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
934 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1197 wlist_add ((WL *)&anfds[fd].head, (WL)w);
935 1198
936 fd_change (fd); 1199 fd_change (EV_A_ fd);
937} 1200}
938 1201
939void 1202void
940ev_io_stop (struct ev_io *w) 1203ev_io_stop (EV_P_ struct ev_io *w)
941{ 1204{
942 ev_clear_pending ((W)w); 1205 ev_clear_pending (EV_A_ (W)w);
943 if (!ev_is_active (w)) 1206 if (!ev_is_active (w))
944 return; 1207 return;
945 1208
946 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1209 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
947 ev_stop ((W)w); 1210 ev_stop (EV_A_ (W)w);
948 1211
949 fd_change (w->fd); 1212 fd_change (EV_A_ w->fd);
950} 1213}
951 1214
952void 1215void
953ev_timer_start (struct ev_timer *w) 1216ev_timer_start (EV_P_ struct ev_timer *w)
954{ 1217{
955 if (ev_is_active (w)) 1218 if (ev_is_active (w))
956 return; 1219 return;
957 1220
958 w->at += now; 1221 ((WT)w)->at += mn_now;
959 1222
960 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1223 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
961 1224
962 ev_start ((W)w, ++timercnt); 1225 ev_start (EV_A_ (W)w, ++timercnt);
963 array_needsize (timers, timermax, timercnt, ); 1226 array_needsize (timers, timermax, timercnt, );
964 timers [timercnt - 1] = w; 1227 timers [timercnt - 1] = w;
965 upheap ((WT *)timers, timercnt - 1); 1228 upheap ((WT *)timers, timercnt - 1);
966}
967 1229
1230 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1231}
1232
968void 1233void
969ev_timer_stop (struct ev_timer *w) 1234ev_timer_stop (EV_P_ struct ev_timer *w)
970{ 1235{
971 ev_clear_pending ((W)w); 1236 ev_clear_pending (EV_A_ (W)w);
972 if (!ev_is_active (w)) 1237 if (!ev_is_active (w))
973 return; 1238 return;
974 1239
1240 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1241
975 if (w->active < timercnt--) 1242 if (((W)w)->active < timercnt--)
976 { 1243 {
977 timers [w->active - 1] = timers [timercnt]; 1244 timers [((W)w)->active - 1] = timers [timercnt];
978 downheap ((WT *)timers, timercnt, w->active - 1); 1245 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
979 } 1246 }
980 1247
981 w->at = w->repeat; 1248 ((WT)w)->at = w->repeat;
982 1249
983 ev_stop ((W)w); 1250 ev_stop (EV_A_ (W)w);
984} 1251}
985 1252
986void 1253void
987ev_timer_again (struct ev_timer *w) 1254ev_timer_again (EV_P_ struct ev_timer *w)
988{ 1255{
989 if (ev_is_active (w)) 1256 if (ev_is_active (w))
990 { 1257 {
991 if (w->repeat) 1258 if (w->repeat)
992 { 1259 {
993 w->at = now + w->repeat; 1260 ((WT)w)->at = mn_now + w->repeat;
994 downheap ((WT *)timers, timercnt, w->active - 1); 1261 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
995 } 1262 }
996 else 1263 else
997 ev_timer_stop (w); 1264 ev_timer_stop (EV_A_ w);
998 } 1265 }
999 else if (w->repeat) 1266 else if (w->repeat)
1000 ev_timer_start (w); 1267 ev_timer_start (EV_A_ w);
1001} 1268}
1002 1269
1003void 1270void
1004ev_periodic_start (struct ev_periodic *w) 1271ev_periodic_start (EV_P_ struct ev_periodic *w)
1005{ 1272{
1006 if (ev_is_active (w)) 1273 if (ev_is_active (w))
1007 return; 1274 return;
1008 1275
1009 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1276 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1010 1277
1011 /* this formula differs from the one in periodic_reify because we do not always round up */ 1278 /* this formula differs from the one in periodic_reify because we do not always round up */
1012 if (w->interval) 1279 if (w->interval)
1013 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1280 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1014 1281
1015 ev_start ((W)w, ++periodiccnt); 1282 ev_start (EV_A_ (W)w, ++periodiccnt);
1016 array_needsize (periodics, periodicmax, periodiccnt, ); 1283 array_needsize (periodics, periodicmax, periodiccnt, );
1017 periodics [periodiccnt - 1] = w; 1284 periodics [periodiccnt - 1] = w;
1018 upheap ((WT *)periodics, periodiccnt - 1); 1285 upheap ((WT *)periodics, periodiccnt - 1);
1019}
1020 1286
1287 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1288}
1289
1021void 1290void
1022ev_periodic_stop (struct ev_periodic *w) 1291ev_periodic_stop (EV_P_ struct ev_periodic *w)
1023{ 1292{
1024 ev_clear_pending ((W)w); 1293 ev_clear_pending (EV_A_ (W)w);
1025 if (!ev_is_active (w)) 1294 if (!ev_is_active (w))
1026 return; 1295 return;
1027 1296
1297 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1298
1028 if (w->active < periodiccnt--) 1299 if (((W)w)->active < periodiccnt--)
1029 { 1300 {
1030 periodics [w->active - 1] = periodics [periodiccnt]; 1301 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1031 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1302 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1032 } 1303 }
1033 1304
1034 ev_stop ((W)w); 1305 ev_stop (EV_A_ (W)w);
1306}
1307
1308void
1309ev_idle_start (EV_P_ struct ev_idle *w)
1310{
1311 if (ev_is_active (w))
1312 return;
1313
1314 ev_start (EV_A_ (W)w, ++idlecnt);
1315 array_needsize (idles, idlemax, idlecnt, );
1316 idles [idlecnt - 1] = w;
1317}
1318
1319void
1320ev_idle_stop (EV_P_ struct ev_idle *w)
1321{
1322 ev_clear_pending (EV_A_ (W)w);
1323 if (ev_is_active (w))
1324 return;
1325
1326 idles [((W)w)->active - 1] = idles [--idlecnt];
1327 ev_stop (EV_A_ (W)w);
1328}
1329
1330void
1331ev_prepare_start (EV_P_ struct ev_prepare *w)
1332{
1333 if (ev_is_active (w))
1334 return;
1335
1336 ev_start (EV_A_ (W)w, ++preparecnt);
1337 array_needsize (prepares, preparemax, preparecnt, );
1338 prepares [preparecnt - 1] = w;
1339}
1340
1341void
1342ev_prepare_stop (EV_P_ struct ev_prepare *w)
1343{
1344 ev_clear_pending (EV_A_ (W)w);
1345 if (ev_is_active (w))
1346 return;
1347
1348 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1349 ev_stop (EV_A_ (W)w);
1350}
1351
1352void
1353ev_check_start (EV_P_ struct ev_check *w)
1354{
1355 if (ev_is_active (w))
1356 return;
1357
1358 ev_start (EV_A_ (W)w, ++checkcnt);
1359 array_needsize (checks, checkmax, checkcnt, );
1360 checks [checkcnt - 1] = w;
1361}
1362
1363void
1364ev_check_stop (EV_P_ struct ev_check *w)
1365{
1366 ev_clear_pending (EV_A_ (W)w);
1367 if (ev_is_active (w))
1368 return;
1369
1370 checks [((W)w)->active - 1] = checks [--checkcnt];
1371 ev_stop (EV_A_ (W)w);
1035} 1372}
1036 1373
1037#ifndef SA_RESTART 1374#ifndef SA_RESTART
1038# define SA_RESTART 0 1375# define SA_RESTART 0
1039#endif 1376#endif
1040 1377
1041void 1378void
1042ev_signal_start (struct ev_signal *w) 1379ev_signal_start (EV_P_ struct ev_signal *w)
1043{ 1380{
1381#if EV_MULTIPLICITY
1382 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1383#endif
1044 if (ev_is_active (w)) 1384 if (ev_is_active (w))
1045 return; 1385 return;
1046 1386
1047 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1387 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1048 1388
1049 ev_start ((W)w, 1); 1389 ev_start (EV_A_ (W)w, 1);
1050 array_needsize (signals, signalmax, w->signum, signals_init); 1390 array_needsize (signals, signalmax, w->signum, signals_init);
1051 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1391 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1052 1392
1053 if (!w->next) 1393 if (!((WL)w)->next)
1054 { 1394 {
1395#if WIN32
1396 signal (w->signum, sighandler);
1397#else
1055 struct sigaction sa; 1398 struct sigaction sa;
1056 sa.sa_handler = sighandler; 1399 sa.sa_handler = sighandler;
1057 sigfillset (&sa.sa_mask); 1400 sigfillset (&sa.sa_mask);
1058 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1401 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1059 sigaction (w->signum, &sa, 0); 1402 sigaction (w->signum, &sa, 0);
1403#endif
1060 } 1404 }
1061} 1405}
1062 1406
1063void 1407void
1064ev_signal_stop (struct ev_signal *w) 1408ev_signal_stop (EV_P_ struct ev_signal *w)
1065{ 1409{
1066 ev_clear_pending ((W)w); 1410 ev_clear_pending (EV_A_ (W)w);
1067 if (!ev_is_active (w)) 1411 if (!ev_is_active (w))
1068 return; 1412 return;
1069 1413
1070 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1414 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1071 ev_stop ((W)w); 1415 ev_stop (EV_A_ (W)w);
1072 1416
1073 if (!signals [w->signum - 1].head) 1417 if (!signals [w->signum - 1].head)
1074 signal (w->signum, SIG_DFL); 1418 signal (w->signum, SIG_DFL);
1075} 1419}
1076 1420
1077void 1421void
1078ev_idle_start (struct ev_idle *w) 1422ev_child_start (EV_P_ struct ev_child *w)
1079{ 1423{
1424#if EV_MULTIPLICITY
1425 assert (("child watchers are only supported in the default loop", loop == default_loop));
1426#endif
1080 if (ev_is_active (w)) 1427 if (ev_is_active (w))
1081 return; 1428 return;
1082 1429
1083 ev_start ((W)w, ++idlecnt); 1430 ev_start (EV_A_ (W)w, 1);
1084 array_needsize (idles, idlemax, idlecnt, ); 1431 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1085 idles [idlecnt - 1] = w;
1086} 1432}
1087 1433
1088void 1434void
1089ev_idle_stop (struct ev_idle *w) 1435ev_child_stop (EV_P_ struct ev_child *w)
1090{ 1436{
1091 ev_clear_pending ((W)w); 1437 ev_clear_pending (EV_A_ (W)w);
1092 if (ev_is_active (w)) 1438 if (ev_is_active (w))
1093 return; 1439 return;
1094 1440
1095 idles [w->active - 1] = idles [--idlecnt];
1096 ev_stop ((W)w);
1097}
1098
1099void
1100ev_prepare_start (struct ev_prepare *w)
1101{
1102 if (ev_is_active (w))
1103 return;
1104
1105 ev_start ((W)w, ++preparecnt);
1106 array_needsize (prepares, preparemax, preparecnt, );
1107 prepares [preparecnt - 1] = w;
1108}
1109
1110void
1111ev_prepare_stop (struct ev_prepare *w)
1112{
1113 ev_clear_pending ((W)w);
1114 if (ev_is_active (w))
1115 return;
1116
1117 prepares [w->active - 1] = prepares [--preparecnt];
1118 ev_stop ((W)w);
1119}
1120
1121void
1122ev_check_start (struct ev_check *w)
1123{
1124 if (ev_is_active (w))
1125 return;
1126
1127 ev_start ((W)w, ++checkcnt);
1128 array_needsize (checks, checkmax, checkcnt, );
1129 checks [checkcnt - 1] = w;
1130}
1131
1132void
1133ev_check_stop (struct ev_check *w)
1134{
1135 ev_clear_pending ((W)w);
1136 if (ev_is_active (w))
1137 return;
1138
1139 checks [w->active - 1] = checks [--checkcnt];
1140 ev_stop ((W)w);
1141}
1142
1143void
1144ev_child_start (struct ev_child *w)
1145{
1146 if (ev_is_active (w))
1147 return;
1148
1149 ev_start ((W)w, 1);
1150 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1151}
1152
1153void
1154ev_child_stop (struct ev_child *w)
1155{
1156 ev_clear_pending ((W)w);
1157 if (ev_is_active (w))
1158 return;
1159
1160 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1441 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1161 ev_stop ((W)w); 1442 ev_stop (EV_A_ (W)w);
1162} 1443}
1163 1444
1164/*****************************************************************************/ 1445/*****************************************************************************/
1165 1446
1166struct ev_once 1447struct ev_once
1170 void (*cb)(int revents, void *arg); 1451 void (*cb)(int revents, void *arg);
1171 void *arg; 1452 void *arg;
1172}; 1453};
1173 1454
1174static void 1455static void
1175once_cb (struct ev_once *once, int revents) 1456once_cb (EV_P_ struct ev_once *once, int revents)
1176{ 1457{
1177 void (*cb)(int revents, void *arg) = once->cb; 1458 void (*cb)(int revents, void *arg) = once->cb;
1178 void *arg = once->arg; 1459 void *arg = once->arg;
1179 1460
1180 ev_io_stop (&once->io); 1461 ev_io_stop (EV_A_ &once->io);
1181 ev_timer_stop (&once->to); 1462 ev_timer_stop (EV_A_ &once->to);
1182 free (once); 1463 ev_free (once);
1183 1464
1184 cb (revents, arg); 1465 cb (revents, arg);
1185} 1466}
1186 1467
1187static void 1468static void
1188once_cb_io (struct ev_io *w, int revents) 1469once_cb_io (EV_P_ struct ev_io *w, int revents)
1189{ 1470{
1190 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1471 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1191} 1472}
1192 1473
1193static void 1474static void
1194once_cb_to (struct ev_timer *w, int revents) 1475once_cb_to (EV_P_ struct ev_timer *w, int revents)
1195{ 1476{
1196 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1477 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1197} 1478}
1198 1479
1199void 1480void
1200ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1481ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1201{ 1482{
1202 struct ev_once *once = malloc (sizeof (struct ev_once)); 1483 struct ev_once *once = ev_malloc (sizeof (struct ev_once));
1203 1484
1204 if (!once) 1485 if (!once)
1205 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1486 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1206 else 1487 else
1207 { 1488 {
1210 1491
1211 ev_watcher_init (&once->io, once_cb_io); 1492 ev_watcher_init (&once->io, once_cb_io);
1212 if (fd >= 0) 1493 if (fd >= 0)
1213 { 1494 {
1214 ev_io_set (&once->io, fd, events); 1495 ev_io_set (&once->io, fd, events);
1215 ev_io_start (&once->io); 1496 ev_io_start (EV_A_ &once->io);
1216 } 1497 }
1217 1498
1218 ev_watcher_init (&once->to, once_cb_to); 1499 ev_watcher_init (&once->to, once_cb_to);
1219 if (timeout >= 0.) 1500 if (timeout >= 0.)
1220 { 1501 {
1221 ev_timer_set (&once->to, timeout, 0.); 1502 ev_timer_set (&once->to, timeout, 0.);
1222 ev_timer_start (&once->to); 1503 ev_timer_start (EV_A_ &once->to);
1223 } 1504 }
1224 } 1505 }
1225} 1506}
1226 1507
1227/*****************************************************************************/
1228
1229#if 0
1230
1231struct ev_io wio;
1232
1233static void
1234sin_cb (struct ev_io *w, int revents)
1235{
1236 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1237}
1238
1239static void
1240ocb (struct ev_timer *w, int revents)
1241{
1242 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1243 ev_timer_stop (w);
1244 ev_timer_start (w);
1245}
1246
1247static void
1248scb (struct ev_signal *w, int revents)
1249{
1250 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1251 ev_io_stop (&wio);
1252 ev_io_start (&wio);
1253}
1254
1255static void
1256gcb (struct ev_signal *w, int revents)
1257{
1258 fprintf (stderr, "generic %x\n", revents);
1259
1260}
1261
1262int main (void)
1263{
1264 ev_init (0);
1265
1266 ev_io_init (&wio, sin_cb, 0, EV_READ);
1267 ev_io_start (&wio);
1268
1269 struct ev_timer t[10000];
1270
1271#if 0
1272 int i;
1273 for (i = 0; i < 10000; ++i)
1274 {
1275 struct ev_timer *w = t + i;
1276 ev_watcher_init (w, ocb, i);
1277 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1278 ev_timer_start (w);
1279 if (drand48 () < 0.5)
1280 ev_timer_stop (w);
1281 }
1282#endif
1283
1284 struct ev_timer t1;
1285 ev_timer_init (&t1, ocb, 5, 10);
1286 ev_timer_start (&t1);
1287
1288 struct ev_signal sig;
1289 ev_signal_init (&sig, scb, SIGQUIT);
1290 ev_signal_start (&sig);
1291
1292 struct ev_check cw;
1293 ev_check_init (&cw, gcb);
1294 ev_check_start (&cw);
1295
1296 struct ev_idle iw;
1297 ev_idle_init (&iw, gcb);
1298 ev_idle_start (&iw);
1299
1300 ev_loop (0);
1301
1302 return 0;
1303}
1304
1305#endif
1306
1307
1308
1309

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines