ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.49 by root, Sat Nov 3 16:16:58 2007 UTC vs.
Revision 1.86 by root, Sat Nov 10 03:19:21 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 59#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 60#include <stddef.h>
41 61
42#include <stdio.h> 62#include <stdio.h>
43 63
44#include <assert.h> 64#include <assert.h>
45#include <errno.h> 65#include <errno.h>
46#include <sys/types.h> 66#include <sys/types.h>
67#include <time.h>
68
69#include <signal.h>
70
47#ifndef WIN32 71#ifndef WIN32
72# include <unistd.h>
73# include <sys/time.h>
48# include <sys/wait.h> 74# include <sys/wait.h>
49#endif 75#endif
50#include <sys/time.h>
51#include <time.h>
52
53/**/ 76/**/
54 77
55#ifndef EV_USE_MONOTONIC 78#ifndef EV_USE_MONOTONIC
56# define EV_USE_MONOTONIC 1 79# define EV_USE_MONOTONIC 1
57#endif 80#endif
68# define EV_USE_EPOLL 0 91# define EV_USE_EPOLL 0
69#endif 92#endif
70 93
71#ifndef EV_USE_KQUEUE 94#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 95# define EV_USE_KQUEUE 0
96#endif
97
98#ifndef EV_USE_WIN32
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else
104# define EV_USE_WIN32 0
105# endif
73#endif 106#endif
74 107
75#ifndef EV_USE_REALTIME 108#ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 1 109# define EV_USE_REALTIME 1
77#endif 110#endif
93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
97 130
131#ifdef EV_H
132# include EV_H
133#else
98#include "ev.h" 134# include "ev.h"
135#endif
99 136
100#if __GNUC__ >= 3 137#if __GNUC__ >= 3
101# define expect(expr,value) __builtin_expect ((expr),(value)) 138# define expect(expr,value) __builtin_expect ((expr),(value))
102# define inline inline 139# define inline inline
103#else 140#else
113 150
114typedef struct ev_watcher *W; 151typedef struct ev_watcher *W;
115typedef struct ev_watcher_list *WL; 152typedef struct ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT; 153typedef struct ev_watcher_time *WT;
117 154
118static ev_tstamp now_floor, now, diff; /* monotonic clock */ 155static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
119ev_tstamp ev_now;
120int ev_method;
121 156
122static int have_monotonic; /* runtime */ 157#include "ev_win32.c"
123
124static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
125static void (*method_modify)(int fd, int oev, int nev);
126static void (*method_poll)(ev_tstamp timeout);
127 158
128/*****************************************************************************/ 159/*****************************************************************************/
129 160
130ev_tstamp 161static void (*syserr_cb)(const char *msg);
162
163void ev_set_syserr_cb (void (*cb)(const char *msg))
164{
165 syserr_cb = cb;
166}
167
168static void
169syserr (const char *msg)
170{
171 if (!msg)
172 msg = "(libev) system error";
173
174 if (syserr_cb)
175 syserr_cb (msg);
176 else
177 {
178 perror (msg);
179 abort ();
180 }
181}
182
183static void *(*alloc)(void *ptr, long size);
184
185void ev_set_allocator (void *(*cb)(void *ptr, long size))
186{
187 alloc = cb;
188}
189
190static void *
191ev_realloc (void *ptr, long size)
192{
193 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
194
195 if (!ptr && size)
196 {
197 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
198 abort ();
199 }
200
201 return ptr;
202}
203
204#define ev_malloc(size) ev_realloc (0, (size))
205#define ev_free(ptr) ev_realloc ((ptr), 0)
206
207/*****************************************************************************/
208
209typedef struct
210{
211 WL head;
212 unsigned char events;
213 unsigned char reify;
214} ANFD;
215
216typedef struct
217{
218 W w;
219 int events;
220} ANPENDING;
221
222#if EV_MULTIPLICITY
223
224 struct ev_loop
225 {
226 ev_tstamp ev_rt_now;
227 #define VAR(name,decl) decl;
228 #include "ev_vars.h"
229 #undef VAR
230 };
231 #include "ev_wrap.h"
232
233 struct ev_loop default_loop_struct;
234 static struct ev_loop *default_loop;
235
236#else
237
238 ev_tstamp ev_rt_now;
239 #define VAR(name,decl) static decl;
240 #include "ev_vars.h"
241 #undef VAR
242
243 static int default_loop;
244
245#endif
246
247/*****************************************************************************/
248
249inline ev_tstamp
131ev_time (void) 250ev_time (void)
132{ 251{
133#if EV_USE_REALTIME 252#if EV_USE_REALTIME
134 struct timespec ts; 253 struct timespec ts;
135 clock_gettime (CLOCK_REALTIME, &ts); 254 clock_gettime (CLOCK_REALTIME, &ts);
139 gettimeofday (&tv, 0); 258 gettimeofday (&tv, 0);
140 return tv.tv_sec + tv.tv_usec * 1e-6; 259 return tv.tv_sec + tv.tv_usec * 1e-6;
141#endif 260#endif
142} 261}
143 262
144static ev_tstamp 263inline ev_tstamp
145get_clock (void) 264get_clock (void)
146{ 265{
147#if EV_USE_MONOTONIC 266#if EV_USE_MONOTONIC
148 if (expect_true (have_monotonic)) 267 if (expect_true (have_monotonic))
149 { 268 {
154#endif 273#endif
155 274
156 return ev_time (); 275 return ev_time ();
157} 276}
158 277
278#if EV_MULTIPLICITY
279ev_tstamp
280ev_now (EV_P)
281{
282 return ev_rt_now;
283}
284#endif
285
159#define array_roundsize(base,n) ((n) | 4 & ~3) 286#define array_roundsize(type,n) ((n) | 4 & ~3)
160 287
161#define array_needsize(base,cur,cnt,init) \ 288#define array_needsize(type,base,cur,cnt,init) \
162 if (expect_false ((cnt) > cur)) \ 289 if (expect_false ((cnt) > cur)) \
163 { \ 290 { \
164 int newcnt = cur; \ 291 int newcnt = cur; \
165 do \ 292 do \
166 { \ 293 { \
167 newcnt = array_roundsize (base, newcnt << 1); \ 294 newcnt = array_roundsize (type, newcnt << 1); \
168 } \ 295 } \
169 while ((cnt) > newcnt); \ 296 while ((cnt) > newcnt); \
170 \ 297 \
171 base = realloc (base, sizeof (*base) * (newcnt)); \ 298 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
172 init (base + cur, newcnt - cur); \ 299 init (base + cur, newcnt - cur); \
173 cur = newcnt; \ 300 cur = newcnt; \
174 } 301 }
302
303#define array_slim(type,stem) \
304 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
305 { \
306 stem ## max = array_roundsize (stem ## cnt >> 1); \
307 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
308 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
309 }
310
311/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
312/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
313#define array_free_microshit(stem) \
314 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
315
316#define array_free(stem, idx) \
317 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
175 318
176/*****************************************************************************/ 319/*****************************************************************************/
177
178typedef struct
179{
180 struct ev_io *head;
181 unsigned char events;
182 unsigned char reify;
183} ANFD;
184
185static ANFD *anfds;
186static int anfdmax;
187 320
188static void 321static void
189anfds_init (ANFD *base, int count) 322anfds_init (ANFD *base, int count)
190{ 323{
191 while (count--) 324 while (count--)
196 329
197 ++base; 330 ++base;
198 } 331 }
199} 332}
200 333
201typedef struct 334void
335ev_feed_event (EV_P_ void *w, int revents)
202{ 336{
203 W w; 337 W w_ = (W)w;
204 int events;
205} ANPENDING;
206 338
207static ANPENDING *pendings [NUMPRI];
208static int pendingmax [NUMPRI], pendingcnt [NUMPRI];
209
210static void
211event (W w, int events)
212{
213 if (w->pending) 339 if (w_->pending)
214 { 340 {
215 pendings [ABSPRI (w)][w->pending - 1].events |= events; 341 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
216 return; 342 return;
217 } 343 }
218 344
219 w->pending = ++pendingcnt [ABSPRI (w)]; 345 w_->pending = ++pendingcnt [ABSPRI (w_)];
220 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 346 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
221 pendings [ABSPRI (w)][w->pending - 1].w = w; 347 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
222 pendings [ABSPRI (w)][w->pending - 1].events = events; 348 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
223} 349}
224 350
225static void 351static void
226queue_events (W *events, int eventcnt, int type) 352queue_events (EV_P_ W *events, int eventcnt, int type)
227{ 353{
228 int i; 354 int i;
229 355
230 for (i = 0; i < eventcnt; ++i) 356 for (i = 0; i < eventcnt; ++i)
231 event (events [i], type); 357 ev_feed_event (EV_A_ events [i], type);
232} 358}
233 359
234static void 360inline void
235fd_event (int fd, int events) 361fd_event (EV_P_ int fd, int revents)
236{ 362{
237 ANFD *anfd = anfds + fd; 363 ANFD *anfd = anfds + fd;
238 struct ev_io *w; 364 struct ev_io *w;
239 365
240 for (w = anfd->head; w; w = w->next) 366 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
241 { 367 {
242 int ev = w->events & events; 368 int ev = w->events & revents;
243 369
244 if (ev) 370 if (ev)
245 event ((W)w, ev); 371 ev_feed_event (EV_A_ (W)w, ev);
246 } 372 }
373}
374
375void
376ev_feed_fd_event (EV_P_ int fd, int revents)
377{
378 fd_event (EV_A_ fd, revents);
247} 379}
248 380
249/*****************************************************************************/ 381/*****************************************************************************/
250 382
251static int *fdchanges;
252static int fdchangemax, fdchangecnt;
253
254static void 383static void
255fd_reify (void) 384fd_reify (EV_P)
256{ 385{
257 int i; 386 int i;
258 387
259 for (i = 0; i < fdchangecnt; ++i) 388 for (i = 0; i < fdchangecnt; ++i)
260 { 389 {
262 ANFD *anfd = anfds + fd; 391 ANFD *anfd = anfds + fd;
263 struct ev_io *w; 392 struct ev_io *w;
264 393
265 int events = 0; 394 int events = 0;
266 395
267 for (w = anfd->head; w; w = w->next) 396 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
268 events |= w->events; 397 events |= w->events;
269 398
270 anfd->reify = 0; 399 anfd->reify = 0;
271 400
272 if (anfd->events != events)
273 {
274 method_modify (fd, anfd->events, events); 401 method_modify (EV_A_ fd, anfd->events, events);
275 anfd->events = events; 402 anfd->events = events;
276 }
277 } 403 }
278 404
279 fdchangecnt = 0; 405 fdchangecnt = 0;
280} 406}
281 407
282static void 408static void
283fd_change (int fd) 409fd_change (EV_P_ int fd)
284{ 410{
285 if (anfds [fd].reify || fdchangecnt < 0) 411 if (anfds [fd].reify)
286 return; 412 return;
287 413
288 anfds [fd].reify = 1; 414 anfds [fd].reify = 1;
289 415
290 ++fdchangecnt; 416 ++fdchangecnt;
291 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 417 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
292 fdchanges [fdchangecnt - 1] = fd; 418 fdchanges [fdchangecnt - 1] = fd;
293} 419}
294 420
295static void 421static void
296fd_kill (int fd) 422fd_kill (EV_P_ int fd)
297{ 423{
298 struct ev_io *w; 424 struct ev_io *w;
299 425
300 printf ("killing fd %d\n", fd);//D
301 while ((w = anfds [fd].head)) 426 while ((w = (struct ev_io *)anfds [fd].head))
302 { 427 {
303 ev_io_stop (w); 428 ev_io_stop (EV_A_ w);
304 event ((W)w, EV_ERROR | EV_READ | EV_WRITE); 429 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
305 } 430 }
431}
432
433static int
434fd_valid (int fd)
435{
436#ifdef WIN32
437 return !!win32_get_osfhandle (fd);
438#else
439 return fcntl (fd, F_GETFD) != -1;
440#endif
306} 441}
307 442
308/* called on EBADF to verify fds */ 443/* called on EBADF to verify fds */
309static void 444static void
310fd_ebadf (void) 445fd_ebadf (EV_P)
311{ 446{
312 int fd; 447 int fd;
313 448
314 for (fd = 0; fd < anfdmax; ++fd) 449 for (fd = 0; fd < anfdmax; ++fd)
315 if (anfds [fd].events) 450 if (anfds [fd].events)
316 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 451 if (!fd_valid (fd) == -1 && errno == EBADF)
317 fd_kill (fd); 452 fd_kill (EV_A_ fd);
318} 453}
319 454
320/* called on ENOMEM in select/poll to kill some fds and retry */ 455/* called on ENOMEM in select/poll to kill some fds and retry */
321static void 456static void
322fd_enomem (void) 457fd_enomem (EV_P)
323{ 458{
324 int fd = anfdmax; 459 int fd;
325 460
326 while (fd--) 461 for (fd = anfdmax; fd--; )
327 if (anfds [fd].events) 462 if (anfds [fd].events)
328 { 463 {
329 close (fd);
330 fd_kill (fd); 464 fd_kill (EV_A_ fd);
331 return; 465 return;
332 } 466 }
333} 467}
334 468
469/* usually called after fork if method needs to re-arm all fds from scratch */
470static void
471fd_rearm_all (EV_P)
472{
473 int fd;
474
475 /* this should be highly optimised to not do anything but set a flag */
476 for (fd = 0; fd < anfdmax; ++fd)
477 if (anfds [fd].events)
478 {
479 anfds [fd].events = 0;
480 fd_change (EV_A_ fd);
481 }
482}
483
335/*****************************************************************************/ 484/*****************************************************************************/
336 485
337static struct ev_timer **timers;
338static int timermax, timercnt;
339
340static struct ev_periodic **periodics;
341static int periodicmax, periodiccnt;
342
343static void 486static void
344upheap (WT *timers, int k) 487upheap (WT *heap, int k)
345{ 488{
346 WT w = timers [k]; 489 WT w = heap [k];
347 490
348 while (k && timers [k >> 1]->at > w->at) 491 while (k && heap [k >> 1]->at > w->at)
349 { 492 {
350 timers [k] = timers [k >> 1]; 493 heap [k] = heap [k >> 1];
351 timers [k]->active = k + 1; 494 ((W)heap [k])->active = k + 1;
352 k >>= 1; 495 k >>= 1;
353 } 496 }
354 497
355 timers [k] = w; 498 heap [k] = w;
356 timers [k]->active = k + 1; 499 ((W)heap [k])->active = k + 1;
357 500
358} 501}
359 502
360static void 503static void
361downheap (WT *timers, int N, int k) 504downheap (WT *heap, int N, int k)
362{ 505{
363 WT w = timers [k]; 506 WT w = heap [k];
364 507
365 while (k < (N >> 1)) 508 while (k < (N >> 1))
366 { 509 {
367 int j = k << 1; 510 int j = k << 1;
368 511
369 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 512 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
370 ++j; 513 ++j;
371 514
372 if (w->at <= timers [j]->at) 515 if (w->at <= heap [j]->at)
373 break; 516 break;
374 517
375 timers [k] = timers [j]; 518 heap [k] = heap [j];
376 timers [k]->active = k + 1; 519 ((W)heap [k])->active = k + 1;
377 k = j; 520 k = j;
378 } 521 }
379 522
380 timers [k] = w; 523 heap [k] = w;
381 timers [k]->active = k + 1; 524 ((W)heap [k])->active = k + 1;
525}
526
527inline void
528adjustheap (WT *heap, int N, int k, ev_tstamp at)
529{
530 ev_tstamp old_at = heap [k]->at;
531 heap [k]->at = at;
532
533 if (old_at < at)
534 downheap (heap, N, k);
535 else
536 upheap (heap, k);
382} 537}
383 538
384/*****************************************************************************/ 539/*****************************************************************************/
385 540
386typedef struct 541typedef struct
387{ 542{
388 struct ev_signal *head; 543 WL head;
389 sig_atomic_t volatile gotsig; 544 sig_atomic_t volatile gotsig;
390} ANSIG; 545} ANSIG;
391 546
392static ANSIG *signals; 547static ANSIG *signals;
393static int signalmax; 548static int signalmax;
409} 564}
410 565
411static void 566static void
412sighandler (int signum) 567sighandler (int signum)
413{ 568{
569#if WIN32
570 signal (signum, sighandler);
571#endif
572
414 signals [signum - 1].gotsig = 1; 573 signals [signum - 1].gotsig = 1;
415 574
416 if (!gotsig) 575 if (!gotsig)
417 { 576 {
418 int old_errno = errno; 577 int old_errno = errno;
419 gotsig = 1; 578 gotsig = 1;
579#ifdef WIN32
580 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
581#else
420 write (sigpipe [1], &signum, 1); 582 write (sigpipe [1], &signum, 1);
583#endif
421 errno = old_errno; 584 errno = old_errno;
422 } 585 }
423} 586}
424 587
588void
589ev_feed_signal_event (EV_P_ int signum)
590{
591 WL w;
592
593#if EV_MULTIPLICITY
594 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
595#endif
596
597 --signum;
598
599 if (signum < 0 || signum >= signalmax)
600 return;
601
602 signals [signum].gotsig = 0;
603
604 for (w = signals [signum].head; w; w = w->next)
605 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
606}
607
425static void 608static void
426sigcb (struct ev_io *iow, int revents) 609sigcb (EV_P_ struct ev_io *iow, int revents)
427{ 610{
428 struct ev_signal *w;
429 int signum; 611 int signum;
430 612
613#ifdef WIN32
614 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
615#else
431 read (sigpipe [0], &revents, 1); 616 read (sigpipe [0], &revents, 1);
617#endif
432 gotsig = 0; 618 gotsig = 0;
433 619
434 for (signum = signalmax; signum--; ) 620 for (signum = signalmax; signum--; )
435 if (signals [signum].gotsig) 621 if (signals [signum].gotsig)
436 { 622 ev_feed_signal_event (EV_A_ signum + 1);
437 signals [signum].gotsig = 0;
438
439 for (w = signals [signum].head; w; w = w->next)
440 event ((W)w, EV_SIGNAL);
441 }
442} 623}
443 624
444static void 625static void
445siginit (void) 626siginit (EV_P)
446{ 627{
447#ifndef WIN32 628#ifndef WIN32
448 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 629 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
449 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 630 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
450 631
452 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 633 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
453 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 634 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
454#endif 635#endif
455 636
456 ev_io_set (&sigev, sigpipe [0], EV_READ); 637 ev_io_set (&sigev, sigpipe [0], EV_READ);
457 ev_io_start (&sigev); 638 ev_io_start (EV_A_ &sigev);
639 ev_unref (EV_A); /* child watcher should not keep loop alive */
458} 640}
459 641
460/*****************************************************************************/ 642/*****************************************************************************/
461 643
462static struct ev_idle **idles;
463static int idlemax, idlecnt;
464
465static struct ev_prepare **prepares;
466static int preparemax, preparecnt;
467
468static struct ev_check **checks;
469static int checkmax, checkcnt;
470
471/*****************************************************************************/
472
473static struct ev_child *childs [PID_HASHSIZE]; 644static struct ev_child *childs [PID_HASHSIZE];
645
646#ifndef WIN32
647
474static struct ev_signal childev; 648static struct ev_signal childev;
475
476#ifndef WIN32
477 649
478#ifndef WCONTINUED 650#ifndef WCONTINUED
479# define WCONTINUED 0 651# define WCONTINUED 0
480#endif 652#endif
481 653
482static void 654static void
483child_reap (struct ev_signal *sw, int chain, int pid, int status) 655child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
484{ 656{
485 struct ev_child *w; 657 struct ev_child *w;
486 658
487 for (w = childs [chain & (PID_HASHSIZE - 1)]; w; w = w->next) 659 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
488 if (w->pid == pid || !w->pid) 660 if (w->pid == pid || !w->pid)
489 { 661 {
490 w->priority = sw->priority; /* need to do it *now* */ 662 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
491 w->rpid = pid; 663 w->rpid = pid;
492 w->rstatus = status; 664 w->rstatus = status;
493 printf ("rpid %p %d %d\n", w, pid, w->pid);//D
494 event ((W)w, EV_CHILD); 665 ev_feed_event (EV_A_ (W)w, EV_CHILD);
495 } 666 }
496} 667}
497 668
498static void 669static void
499childcb (struct ev_signal *sw, int revents) 670childcb (EV_P_ struct ev_signal *sw, int revents)
500{ 671{
501 int pid, status; 672 int pid, status;
502 673
503 printf ("chld %x\n", revents);//D
504 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 674 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
505 { 675 {
506 /* make sure we are called again until all childs have been reaped */ 676 /* make sure we are called again until all childs have been reaped */
507 event ((W)sw, EV_SIGNAL); 677 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
508 678
509 child_reap (sw, pid, pid, status); 679 child_reap (EV_A_ sw, pid, pid, status);
510 child_reap (sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 680 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
511 } 681 }
512} 682}
513 683
514#endif 684#endif
515 685
540 return EV_VERSION_MINOR; 710 return EV_VERSION_MINOR;
541} 711}
542 712
543/* return true if we are running with elevated privileges and should ignore env variables */ 713/* return true if we are running with elevated privileges and should ignore env variables */
544static int 714static int
545enable_secure () 715enable_secure (void)
546{ 716{
547#ifdef WIN32 717#ifdef WIN32
548 return 0; 718 return 0;
549#else 719#else
550 return getuid () != geteuid () 720 return getuid () != geteuid ()
551 || getgid () != getegid (); 721 || getgid () != getegid ();
552#endif 722#endif
553} 723}
554 724
555int ev_init (int methods) 725int
726ev_method (EV_P)
556{ 727{
728 return method;
729}
730
731static void
732loop_init (EV_P_ int methods)
733{
557 if (!ev_method) 734 if (!method)
558 { 735 {
559#if EV_USE_MONOTONIC 736#if EV_USE_MONOTONIC
560 { 737 {
561 struct timespec ts; 738 struct timespec ts;
562 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 739 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
563 have_monotonic = 1; 740 have_monotonic = 1;
564 } 741 }
565#endif 742#endif
566 743
567 ev_now = ev_time (); 744 ev_rt_now = ev_time ();
568 now = get_clock (); 745 mn_now = get_clock ();
569 now_floor = now; 746 now_floor = mn_now;
570 diff = ev_now - now; 747 rtmn_diff = ev_rt_now - mn_now;
571
572 if (pipe (sigpipe))
573 return 0;
574 748
575 if (methods == EVMETHOD_AUTO) 749 if (methods == EVMETHOD_AUTO)
576 if (!enable_secure () && getenv ("LIBEV_METHODS")) 750 if (!enable_secure () && getenv ("LIBEV_METHODS"))
577 methods = atoi (getenv ("LIBEV_METHODS")); 751 methods = atoi (getenv ("LIBEV_METHODS"));
578 else 752 else
579 methods = EVMETHOD_ANY; 753 methods = EVMETHOD_ANY;
580 754
581 ev_method = 0; 755 method = 0;
756#if EV_USE_WIN32
757 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
758#endif
582#if EV_USE_KQUEUE 759#if EV_USE_KQUEUE
583 if (!ev_method && (methods & EVMETHOD_KQUEUE)) kqueue_init (methods); 760 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
584#endif 761#endif
585#if EV_USE_EPOLL 762#if EV_USE_EPOLL
586 if (!ev_method && (methods & EVMETHOD_EPOLL )) epoll_init (methods); 763 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
587#endif 764#endif
588#if EV_USE_POLL 765#if EV_USE_POLL
589 if (!ev_method && (methods & EVMETHOD_POLL )) poll_init (methods); 766 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
590#endif 767#endif
591#if EV_USE_SELECT 768#if EV_USE_SELECT
592 if (!ev_method && (methods & EVMETHOD_SELECT)) select_init (methods); 769 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
593#endif 770#endif
594 771
772 ev_init (&sigev, sigcb);
773 ev_set_priority (&sigev, EV_MAXPRI);
774 }
775}
776
777void
778loop_destroy (EV_P)
779{
780 int i;
781
782#if EV_USE_WIN32
783 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
784#endif
785#if EV_USE_KQUEUE
786 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
787#endif
788#if EV_USE_EPOLL
789 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
790#endif
791#if EV_USE_POLL
792 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
793#endif
794#if EV_USE_SELECT
795 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
796#endif
797
798 for (i = NUMPRI; i--; )
799 array_free (pending, [i]);
800
801 /* have to use the microsoft-never-gets-it-right macro */
802 array_free_microshit (fdchange);
803 array_free_microshit (timer);
804 array_free_microshit (periodic);
805 array_free_microshit (idle);
806 array_free_microshit (prepare);
807 array_free_microshit (check);
808
809 method = 0;
810}
811
812static void
813loop_fork (EV_P)
814{
815#if EV_USE_EPOLL
816 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
817#endif
818#if EV_USE_KQUEUE
819 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
820#endif
821
822 if (ev_is_active (&sigev))
823 {
824 /* default loop */
825
826 ev_ref (EV_A);
827 ev_io_stop (EV_A_ &sigev);
828 close (sigpipe [0]);
829 close (sigpipe [1]);
830
831 while (pipe (sigpipe))
832 syserr ("(libev) error creating pipe");
833
834 siginit (EV_A);
835 }
836
837 postfork = 0;
838}
839
840#if EV_MULTIPLICITY
841struct ev_loop *
842ev_loop_new (int methods)
843{
844 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
845
846 memset (loop, 0, sizeof (struct ev_loop));
847
848 loop_init (EV_A_ methods);
849
850 if (ev_method (EV_A))
851 return loop;
852
853 return 0;
854}
855
856void
857ev_loop_destroy (EV_P)
858{
859 loop_destroy (EV_A);
860 ev_free (loop);
861}
862
863void
864ev_loop_fork (EV_P)
865{
866 postfork = 1;
867}
868
869#endif
870
871#if EV_MULTIPLICITY
872struct ev_loop *
873#else
874int
875#endif
876ev_default_loop (int methods)
877{
878 if (sigpipe [0] == sigpipe [1])
879 if (pipe (sigpipe))
880 return 0;
881
882 if (!default_loop)
883 {
884#if EV_MULTIPLICITY
885 struct ev_loop *loop = default_loop = &default_loop_struct;
886#else
887 default_loop = 1;
888#endif
889
890 loop_init (EV_A_ methods);
891
595 if (ev_method) 892 if (ev_method (EV_A))
596 { 893 {
597 ev_watcher_init (&sigev, sigcb);
598 ev_set_priority (&sigev, EV_MAXPRI);
599 siginit (); 894 siginit (EV_A);
600 895
601#ifndef WIN32 896#ifndef WIN32
602 ev_signal_init (&childev, childcb, SIGCHLD); 897 ev_signal_init (&childev, childcb, SIGCHLD);
603 ev_set_priority (&childev, EV_MAXPRI); 898 ev_set_priority (&childev, EV_MAXPRI);
604 ev_signal_start (&childev); 899 ev_signal_start (EV_A_ &childev);
900 ev_unref (EV_A); /* child watcher should not keep loop alive */
605#endif 901#endif
606 } 902 }
903 else
904 default_loop = 0;
607 } 905 }
608 906
609 return ev_method; 907 return default_loop;
908}
909
910void
911ev_default_destroy (void)
912{
913#if EV_MULTIPLICITY
914 struct ev_loop *loop = default_loop;
915#endif
916
917#ifndef WIN32
918 ev_ref (EV_A); /* child watcher */
919 ev_signal_stop (EV_A_ &childev);
920#endif
921
922 ev_ref (EV_A); /* signal watcher */
923 ev_io_stop (EV_A_ &sigev);
924
925 close (sigpipe [0]); sigpipe [0] = 0;
926 close (sigpipe [1]); sigpipe [1] = 0;
927
928 loop_destroy (EV_A);
929}
930
931void
932ev_default_fork (void)
933{
934#if EV_MULTIPLICITY
935 struct ev_loop *loop = default_loop;
936#endif
937
938 if (method)
939 postfork = 1;
610} 940}
611 941
612/*****************************************************************************/ 942/*****************************************************************************/
613 943
614void
615ev_fork_prepare (void)
616{
617 /* nop */
618}
619
620void
621ev_fork_parent (void)
622{
623 /* nop */
624}
625
626void
627ev_fork_child (void)
628{
629#if EV_USE_EPOLL
630 if (ev_method == EVMETHOD_EPOLL)
631 epoll_postfork_child ();
632#endif
633
634 ev_io_stop (&sigev);
635 close (sigpipe [0]);
636 close (sigpipe [1]);
637 pipe (sigpipe);
638 siginit ();
639}
640
641/*****************************************************************************/
642
643static void 944static int
945any_pending (EV_P)
946{
947 int pri;
948
949 for (pri = NUMPRI; pri--; )
950 if (pendingcnt [pri])
951 return 1;
952
953 return 0;
954}
955
956static void
644call_pending (void) 957call_pending (EV_P)
645{ 958{
646 int pri; 959 int pri;
647 960
648 for (pri = NUMPRI; pri--; ) 961 for (pri = NUMPRI; pri--; )
649 while (pendingcnt [pri]) 962 while (pendingcnt [pri])
651 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 964 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
652 965
653 if (p->w) 966 if (p->w)
654 { 967 {
655 p->w->pending = 0; 968 p->w->pending = 0;
656 p->w->cb (p->w, p->events); 969 EV_CB_INVOKE (p->w, p->events);
657 } 970 }
658 } 971 }
659} 972}
660 973
661static void 974static void
662timers_reify (void) 975timers_reify (EV_P)
663{ 976{
664 while (timercnt && timers [0]->at <= now) 977 while (timercnt && ((WT)timers [0])->at <= mn_now)
665 { 978 {
666 struct ev_timer *w = timers [0]; 979 struct ev_timer *w = timers [0];
980
981 assert (("inactive timer on timer heap detected", ev_is_active (w)));
667 982
668 /* first reschedule or stop timer */ 983 /* first reschedule or stop timer */
669 if (w->repeat) 984 if (w->repeat)
670 { 985 {
671 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 986 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
672 w->at = now + w->repeat; 987 ((WT)w)->at = mn_now + w->repeat;
673 downheap ((WT *)timers, timercnt, 0); 988 downheap ((WT *)timers, timercnt, 0);
674 } 989 }
675 else 990 else
676 ev_timer_stop (w); /* nonrepeating: stop timer */ 991 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
677 992
678 event ((W)w, EV_TIMEOUT); 993 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
679 } 994 }
680} 995}
681 996
682static void 997static void
683periodics_reify (void) 998periodics_reify (EV_P)
684{ 999{
685 while (periodiccnt && periodics [0]->at <= ev_now) 1000 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
686 { 1001 {
687 struct ev_periodic *w = periodics [0]; 1002 struct ev_periodic *w = periodics [0];
688 1003
1004 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1005
689 /* first reschedule or stop timer */ 1006 /* first reschedule or stop timer */
690 if (w->interval) 1007 if (w->reschedule_cb)
691 { 1008 {
1009 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1010
1011 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1012 downheap ((WT *)periodics, periodiccnt, 0);
1013 }
1014 else if (w->interval)
1015 {
692 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 1016 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
693 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 1017 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
694 downheap ((WT *)periodics, periodiccnt, 0); 1018 downheap ((WT *)periodics, periodiccnt, 0);
695 } 1019 }
696 else 1020 else
697 ev_periodic_stop (w); /* nonrepeating: stop timer */ 1021 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
698 1022
699 event ((W)w, EV_PERIODIC); 1023 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
700 } 1024 }
701} 1025}
702 1026
703static void 1027static void
704periodics_reschedule (ev_tstamp diff) 1028periodics_reschedule (EV_P)
705{ 1029{
706 int i; 1030 int i;
707 1031
708 /* adjust periodics after time jump */ 1032 /* adjust periodics after time jump */
709 for (i = 0; i < periodiccnt; ++i) 1033 for (i = 0; i < periodiccnt; ++i)
710 { 1034 {
711 struct ev_periodic *w = periodics [i]; 1035 struct ev_periodic *w = periodics [i];
712 1036
1037 if (w->reschedule_cb)
1038 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
713 if (w->interval) 1039 else if (w->interval)
714 {
715 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 1040 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
716
717 if (fabs (diff) >= 1e-4)
718 {
719 ev_periodic_stop (w);
720 ev_periodic_start (w);
721
722 i = 0; /* restart loop, inefficient, but time jumps should be rare */
723 }
724 }
725 } 1041 }
726}
727 1042
728static int 1043 /* now rebuild the heap */
1044 for (i = periodiccnt >> 1; i--; )
1045 downheap ((WT *)periodics, periodiccnt, i);
1046}
1047
1048inline int
729time_update_monotonic (void) 1049time_update_monotonic (EV_P)
730{ 1050{
731 now = get_clock (); 1051 mn_now = get_clock ();
732 1052
733 if (expect_true (now - now_floor < MIN_TIMEJUMP * .5)) 1053 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
734 { 1054 {
735 ev_now = now + diff; 1055 ev_rt_now = rtmn_diff + mn_now;
736 return 0; 1056 return 0;
737 } 1057 }
738 else 1058 else
739 { 1059 {
740 now_floor = now; 1060 now_floor = mn_now;
741 ev_now = ev_time (); 1061 ev_rt_now = ev_time ();
742 return 1; 1062 return 1;
743 } 1063 }
744} 1064}
745 1065
746static void 1066static void
747time_update (void) 1067time_update (EV_P)
748{ 1068{
749 int i; 1069 int i;
750 1070
751#if EV_USE_MONOTONIC 1071#if EV_USE_MONOTONIC
752 if (expect_true (have_monotonic)) 1072 if (expect_true (have_monotonic))
753 { 1073 {
754 if (time_update_monotonic ()) 1074 if (time_update_monotonic (EV_A))
755 { 1075 {
756 ev_tstamp odiff = diff; 1076 ev_tstamp odiff = rtmn_diff;
757 1077
758 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1078 for (i = 4; --i; ) /* loop a few times, before making important decisions */
759 { 1079 {
760 diff = ev_now - now; 1080 rtmn_diff = ev_rt_now - mn_now;
761 1081
762 if (fabs (odiff - diff) < MIN_TIMEJUMP) 1082 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
763 return; /* all is well */ 1083 return; /* all is well */
764 1084
765 ev_now = ev_time (); 1085 ev_rt_now = ev_time ();
766 now = get_clock (); 1086 mn_now = get_clock ();
767 now_floor = now; 1087 now_floor = mn_now;
768 } 1088 }
769 1089
770 periodics_reschedule (diff - odiff); 1090 periodics_reschedule (EV_A);
771 /* no timer adjustment, as the monotonic clock doesn't jump */ 1091 /* no timer adjustment, as the monotonic clock doesn't jump */
1092 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
772 } 1093 }
773 } 1094 }
774 else 1095 else
775#endif 1096#endif
776 { 1097 {
777 ev_now = ev_time (); 1098 ev_rt_now = ev_time ();
778 1099
779 if (expect_false (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1100 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
780 { 1101 {
781 periodics_reschedule (ev_now - now); 1102 periodics_reschedule (EV_A);
782 1103
783 /* adjust timers. this is easy, as the offset is the same for all */ 1104 /* adjust timers. this is easy, as the offset is the same for all */
784 for (i = 0; i < timercnt; ++i) 1105 for (i = 0; i < timercnt; ++i)
785 timers [i]->at += diff; 1106 ((WT)timers [i])->at += ev_rt_now - mn_now;
786 } 1107 }
787 1108
788 now = ev_now; 1109 mn_now = ev_rt_now;
789 } 1110 }
790} 1111}
791 1112
792int ev_loop_done; 1113void
1114ev_ref (EV_P)
1115{
1116 ++activecnt;
1117}
793 1118
1119void
1120ev_unref (EV_P)
1121{
1122 --activecnt;
1123}
1124
1125static int loop_done;
1126
1127void
794void ev_loop (int flags) 1128ev_loop (EV_P_ int flags)
795{ 1129{
796 double block; 1130 double block;
797 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1131 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
798 1132
799 do 1133 do
800 { 1134 {
801 /* queue check watchers (and execute them) */ 1135 /* queue check watchers (and execute them) */
802 if (expect_false (preparecnt)) 1136 if (expect_false (preparecnt))
803 { 1137 {
804 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 1138 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
805 call_pending (); 1139 call_pending (EV_A);
806 } 1140 }
807 1141
1142 /* we might have forked, so reify kernel state if necessary */
1143 if (expect_false (postfork))
1144 loop_fork (EV_A);
1145
808 /* update fd-related kernel structures */ 1146 /* update fd-related kernel structures */
809 fd_reify (); 1147 fd_reify (EV_A);
810 1148
811 /* calculate blocking time */ 1149 /* calculate blocking time */
812 1150
813 /* we only need this for !monotonic clockor timers, but as we basically 1151 /* we only need this for !monotonic clock or timers, but as we basically
814 always have timers, we just calculate it always */ 1152 always have timers, we just calculate it always */
815#if EV_USE_MONOTONIC 1153#if EV_USE_MONOTONIC
816 if (expect_true (have_monotonic)) 1154 if (expect_true (have_monotonic))
817 time_update_monotonic (); 1155 time_update_monotonic (EV_A);
818 else 1156 else
819#endif 1157#endif
820 { 1158 {
821 ev_now = ev_time (); 1159 ev_rt_now = ev_time ();
822 now = ev_now; 1160 mn_now = ev_rt_now;
823 } 1161 }
824 1162
825 if (flags & EVLOOP_NONBLOCK || idlecnt) 1163 if (flags & EVLOOP_NONBLOCK || idlecnt)
826 block = 0.; 1164 block = 0.;
827 else 1165 else
828 { 1166 {
829 block = MAX_BLOCKTIME; 1167 block = MAX_BLOCKTIME;
830 1168
831 if (timercnt) 1169 if (timercnt)
832 { 1170 {
833 ev_tstamp to = timers [0]->at - now + method_fudge; 1171 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
834 if (block > to) block = to; 1172 if (block > to) block = to;
835 } 1173 }
836 1174
837 if (periodiccnt) 1175 if (periodiccnt)
838 { 1176 {
839 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1177 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
840 if (block > to) block = to; 1178 if (block > to) block = to;
841 } 1179 }
842 1180
843 if (block < 0.) block = 0.; 1181 if (block < 0.) block = 0.;
844 } 1182 }
845 1183
846 method_poll (block); 1184 method_poll (EV_A_ block);
847 1185
848 /* update ev_now, do magic */ 1186 /* update ev_rt_now, do magic */
849 time_update (); 1187 time_update (EV_A);
850 1188
851 /* queue pending timers and reschedule them */ 1189 /* queue pending timers and reschedule them */
852 timers_reify (); /* relative timers called last */ 1190 timers_reify (EV_A); /* relative timers called last */
853 periodics_reify (); /* absolute timers called first */ 1191 periodics_reify (EV_A); /* absolute timers called first */
854 1192
855 /* queue idle watchers unless io or timers are pending */ 1193 /* queue idle watchers unless io or timers are pending */
856 if (!pendingcnt) 1194 if (idlecnt && !any_pending (EV_A))
857 queue_events ((W *)idles, idlecnt, EV_IDLE); 1195 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
858 1196
859 /* queue check watchers, to be executed first */ 1197 /* queue check watchers, to be executed first */
860 if (checkcnt) 1198 if (checkcnt)
861 queue_events ((W *)checks, checkcnt, EV_CHECK); 1199 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
862 1200
863 call_pending (); 1201 call_pending (EV_A);
864 } 1202 }
865 while (!ev_loop_done); 1203 while (activecnt && !loop_done);
866 1204
867 if (ev_loop_done != 2) 1205 if (loop_done != 2)
868 ev_loop_done = 0; 1206 loop_done = 0;
1207}
1208
1209void
1210ev_unloop (EV_P_ int how)
1211{
1212 loop_done = how;
869} 1213}
870 1214
871/*****************************************************************************/ 1215/*****************************************************************************/
872 1216
873static void 1217inline void
874wlist_add (WL *head, WL elem) 1218wlist_add (WL *head, WL elem)
875{ 1219{
876 elem->next = *head; 1220 elem->next = *head;
877 *head = elem; 1221 *head = elem;
878} 1222}
879 1223
880static void 1224inline void
881wlist_del (WL *head, WL elem) 1225wlist_del (WL *head, WL elem)
882{ 1226{
883 while (*head) 1227 while (*head)
884 { 1228 {
885 if (*head == elem) 1229 if (*head == elem)
890 1234
891 head = &(*head)->next; 1235 head = &(*head)->next;
892 } 1236 }
893} 1237}
894 1238
895static void 1239inline void
896ev_clear_pending (W w) 1240ev_clear_pending (EV_P_ W w)
897{ 1241{
898 if (w->pending) 1242 if (w->pending)
899 { 1243 {
900 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1244 pendings [ABSPRI (w)][w->pending - 1].w = 0;
901 w->pending = 0; 1245 w->pending = 0;
902 } 1246 }
903} 1247}
904 1248
905static void 1249inline void
906ev_start (W w, int active) 1250ev_start (EV_P_ W w, int active)
907{ 1251{
908 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1252 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
909 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 1253 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
910 1254
911 w->active = active; 1255 w->active = active;
1256 ev_ref (EV_A);
912} 1257}
913 1258
914static void 1259inline void
915ev_stop (W w) 1260ev_stop (EV_P_ W w)
916{ 1261{
1262 ev_unref (EV_A);
917 w->active = 0; 1263 w->active = 0;
918} 1264}
919 1265
920/*****************************************************************************/ 1266/*****************************************************************************/
921 1267
922void 1268void
923ev_io_start (struct ev_io *w) 1269ev_io_start (EV_P_ struct ev_io *w)
924{ 1270{
925 int fd = w->fd; 1271 int fd = w->fd;
926 1272
927 if (ev_is_active (w)) 1273 if (ev_is_active (w))
928 return; 1274 return;
929 1275
930 assert (("ev_io_start called with negative fd", fd >= 0)); 1276 assert (("ev_io_start called with negative fd", fd >= 0));
931 1277
932 ev_start ((W)w, 1); 1278 ev_start (EV_A_ (W)w, 1);
933 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1279 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
934 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1280 wlist_add ((WL *)&anfds[fd].head, (WL)w);
935 1281
936 fd_change (fd); 1282 fd_change (EV_A_ fd);
937} 1283}
938 1284
939void 1285void
940ev_io_stop (struct ev_io *w) 1286ev_io_stop (EV_P_ struct ev_io *w)
941{ 1287{
942 ev_clear_pending ((W)w); 1288 ev_clear_pending (EV_A_ (W)w);
943 if (!ev_is_active (w)) 1289 if (!ev_is_active (w))
944 return; 1290 return;
945 1291
946 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1292 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
947 ev_stop ((W)w); 1293 ev_stop (EV_A_ (W)w);
948 1294
949 fd_change (w->fd); 1295 fd_change (EV_A_ w->fd);
950} 1296}
951 1297
952void 1298void
953ev_timer_start (struct ev_timer *w) 1299ev_timer_start (EV_P_ struct ev_timer *w)
954{ 1300{
955 if (ev_is_active (w)) 1301 if (ev_is_active (w))
956 return; 1302 return;
957 1303
958 w->at += now; 1304 ((WT)w)->at += mn_now;
959 1305
960 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1306 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
961 1307
962 ev_start ((W)w, ++timercnt); 1308 ev_start (EV_A_ (W)w, ++timercnt);
963 array_needsize (timers, timermax, timercnt, ); 1309 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
964 timers [timercnt - 1] = w; 1310 timers [timercnt - 1] = w;
965 upheap ((WT *)timers, timercnt - 1); 1311 upheap ((WT *)timers, timercnt - 1);
966}
967 1312
1313 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1314}
1315
968void 1316void
969ev_timer_stop (struct ev_timer *w) 1317ev_timer_stop (EV_P_ struct ev_timer *w)
970{ 1318{
971 ev_clear_pending ((W)w); 1319 ev_clear_pending (EV_A_ (W)w);
972 if (!ev_is_active (w)) 1320 if (!ev_is_active (w))
973 return; 1321 return;
974 1322
1323 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1324
975 if (w->active < timercnt--) 1325 if (((W)w)->active < timercnt--)
976 { 1326 {
977 timers [w->active - 1] = timers [timercnt]; 1327 timers [((W)w)->active - 1] = timers [timercnt];
978 downheap ((WT *)timers, timercnt, w->active - 1); 1328 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
979 } 1329 }
980 1330
981 w->at = w->repeat; 1331 ((WT)w)->at = w->repeat;
982 1332
983 ev_stop ((W)w); 1333 ev_stop (EV_A_ (W)w);
984} 1334}
985 1335
986void 1336void
987ev_timer_again (struct ev_timer *w) 1337ev_timer_again (EV_P_ struct ev_timer *w)
988{ 1338{
989 if (ev_is_active (w)) 1339 if (ev_is_active (w))
990 { 1340 {
991 if (w->repeat) 1341 if (w->repeat)
992 {
993 w->at = now + w->repeat;
994 downheap ((WT *)timers, timercnt, w->active - 1); 1342 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
995 }
996 else 1343 else
997 ev_timer_stop (w); 1344 ev_timer_stop (EV_A_ w);
998 } 1345 }
999 else if (w->repeat) 1346 else if (w->repeat)
1000 ev_timer_start (w); 1347 ev_timer_start (EV_A_ w);
1001} 1348}
1002 1349
1003void 1350void
1004ev_periodic_start (struct ev_periodic *w) 1351ev_periodic_start (EV_P_ struct ev_periodic *w)
1005{ 1352{
1006 if (ev_is_active (w)) 1353 if (ev_is_active (w))
1007 return; 1354 return;
1008 1355
1356 if (w->reschedule_cb)
1357 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1358 else if (w->interval)
1359 {
1009 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1360 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1010
1011 /* this formula differs from the one in periodic_reify because we do not always round up */ 1361 /* this formula differs from the one in periodic_reify because we do not always round up */
1012 if (w->interval)
1013 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1362 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1363 }
1014 1364
1015 ev_start ((W)w, ++periodiccnt); 1365 ev_start (EV_A_ (W)w, ++periodiccnt);
1016 array_needsize (periodics, periodicmax, periodiccnt, ); 1366 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1017 periodics [periodiccnt - 1] = w; 1367 periodics [periodiccnt - 1] = w;
1018 upheap ((WT *)periodics, periodiccnt - 1); 1368 upheap ((WT *)periodics, periodiccnt - 1);
1019}
1020 1369
1370 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1371}
1372
1021void 1373void
1022ev_periodic_stop (struct ev_periodic *w) 1374ev_periodic_stop (EV_P_ struct ev_periodic *w)
1023{ 1375{
1024 ev_clear_pending ((W)w); 1376 ev_clear_pending (EV_A_ (W)w);
1025 if (!ev_is_active (w)) 1377 if (!ev_is_active (w))
1026 return; 1378 return;
1027 1379
1380 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1381
1028 if (w->active < periodiccnt--) 1382 if (((W)w)->active < periodiccnt--)
1029 { 1383 {
1030 periodics [w->active - 1] = periodics [periodiccnt]; 1384 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1031 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1385 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1032 } 1386 }
1033 1387
1034 ev_stop ((W)w); 1388 ev_stop (EV_A_ (W)w);
1389}
1390
1391void
1392ev_periodic_again (EV_P_ struct ev_periodic *w)
1393{
1394 /* TODO: use adjustheap and recalculation */
1395 ev_periodic_stop (EV_A_ w);
1396 ev_periodic_start (EV_A_ w);
1397}
1398
1399void
1400ev_idle_start (EV_P_ struct ev_idle *w)
1401{
1402 if (ev_is_active (w))
1403 return;
1404
1405 ev_start (EV_A_ (W)w, ++idlecnt);
1406 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1407 idles [idlecnt - 1] = w;
1408}
1409
1410void
1411ev_idle_stop (EV_P_ struct ev_idle *w)
1412{
1413 ev_clear_pending (EV_A_ (W)w);
1414 if (ev_is_active (w))
1415 return;
1416
1417 idles [((W)w)->active - 1] = idles [--idlecnt];
1418 ev_stop (EV_A_ (W)w);
1419}
1420
1421void
1422ev_prepare_start (EV_P_ struct ev_prepare *w)
1423{
1424 if (ev_is_active (w))
1425 return;
1426
1427 ev_start (EV_A_ (W)w, ++preparecnt);
1428 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1429 prepares [preparecnt - 1] = w;
1430}
1431
1432void
1433ev_prepare_stop (EV_P_ struct ev_prepare *w)
1434{
1435 ev_clear_pending (EV_A_ (W)w);
1436 if (ev_is_active (w))
1437 return;
1438
1439 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1440 ev_stop (EV_A_ (W)w);
1441}
1442
1443void
1444ev_check_start (EV_P_ struct ev_check *w)
1445{
1446 if (ev_is_active (w))
1447 return;
1448
1449 ev_start (EV_A_ (W)w, ++checkcnt);
1450 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1451 checks [checkcnt - 1] = w;
1452}
1453
1454void
1455ev_check_stop (EV_P_ struct ev_check *w)
1456{
1457 ev_clear_pending (EV_A_ (W)w);
1458 if (ev_is_active (w))
1459 return;
1460
1461 checks [((W)w)->active - 1] = checks [--checkcnt];
1462 ev_stop (EV_A_ (W)w);
1035} 1463}
1036 1464
1037#ifndef SA_RESTART 1465#ifndef SA_RESTART
1038# define SA_RESTART 0 1466# define SA_RESTART 0
1039#endif 1467#endif
1040 1468
1041void 1469void
1042ev_signal_start (struct ev_signal *w) 1470ev_signal_start (EV_P_ struct ev_signal *w)
1043{ 1471{
1472#if EV_MULTIPLICITY
1473 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1474#endif
1044 if (ev_is_active (w)) 1475 if (ev_is_active (w))
1045 return; 1476 return;
1046 1477
1047 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1478 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1048 1479
1049 ev_start ((W)w, 1); 1480 ev_start (EV_A_ (W)w, 1);
1050 array_needsize (signals, signalmax, w->signum, signals_init); 1481 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1051 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1482 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1052 1483
1053 if (!w->next) 1484 if (!((WL)w)->next)
1054 { 1485 {
1486#if WIN32
1487 signal (w->signum, sighandler);
1488#else
1055 struct sigaction sa; 1489 struct sigaction sa;
1056 sa.sa_handler = sighandler; 1490 sa.sa_handler = sighandler;
1057 sigfillset (&sa.sa_mask); 1491 sigfillset (&sa.sa_mask);
1058 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1492 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1059 sigaction (w->signum, &sa, 0); 1493 sigaction (w->signum, &sa, 0);
1494#endif
1060 } 1495 }
1061} 1496}
1062 1497
1063void 1498void
1064ev_signal_stop (struct ev_signal *w) 1499ev_signal_stop (EV_P_ struct ev_signal *w)
1065{ 1500{
1066 ev_clear_pending ((W)w); 1501 ev_clear_pending (EV_A_ (W)w);
1067 if (!ev_is_active (w)) 1502 if (!ev_is_active (w))
1068 return; 1503 return;
1069 1504
1070 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1505 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1071 ev_stop ((W)w); 1506 ev_stop (EV_A_ (W)w);
1072 1507
1073 if (!signals [w->signum - 1].head) 1508 if (!signals [w->signum - 1].head)
1074 signal (w->signum, SIG_DFL); 1509 signal (w->signum, SIG_DFL);
1075} 1510}
1076 1511
1077void 1512void
1078ev_idle_start (struct ev_idle *w) 1513ev_child_start (EV_P_ struct ev_child *w)
1079{ 1514{
1515#if EV_MULTIPLICITY
1516 assert (("child watchers are only supported in the default loop", loop == default_loop));
1517#endif
1080 if (ev_is_active (w)) 1518 if (ev_is_active (w))
1081 return; 1519 return;
1082 1520
1083 ev_start ((W)w, ++idlecnt); 1521 ev_start (EV_A_ (W)w, 1);
1084 array_needsize (idles, idlemax, idlecnt, ); 1522 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1085 idles [idlecnt - 1] = w;
1086} 1523}
1087 1524
1088void 1525void
1089ev_idle_stop (struct ev_idle *w) 1526ev_child_stop (EV_P_ struct ev_child *w)
1090{ 1527{
1091 ev_clear_pending ((W)w); 1528 ev_clear_pending (EV_A_ (W)w);
1092 if (ev_is_active (w)) 1529 if (ev_is_active (w))
1093 return; 1530 return;
1094 1531
1095 idles [w->active - 1] = idles [--idlecnt];
1096 ev_stop ((W)w);
1097}
1098
1099void
1100ev_prepare_start (struct ev_prepare *w)
1101{
1102 if (ev_is_active (w))
1103 return;
1104
1105 ev_start ((W)w, ++preparecnt);
1106 array_needsize (prepares, preparemax, preparecnt, );
1107 prepares [preparecnt - 1] = w;
1108}
1109
1110void
1111ev_prepare_stop (struct ev_prepare *w)
1112{
1113 ev_clear_pending ((W)w);
1114 if (ev_is_active (w))
1115 return;
1116
1117 prepares [w->active - 1] = prepares [--preparecnt];
1118 ev_stop ((W)w);
1119}
1120
1121void
1122ev_check_start (struct ev_check *w)
1123{
1124 if (ev_is_active (w))
1125 return;
1126
1127 ev_start ((W)w, ++checkcnt);
1128 array_needsize (checks, checkmax, checkcnt, );
1129 checks [checkcnt - 1] = w;
1130}
1131
1132void
1133ev_check_stop (struct ev_check *w)
1134{
1135 ev_clear_pending ((W)w);
1136 if (ev_is_active (w))
1137 return;
1138
1139 checks [w->active - 1] = checks [--checkcnt];
1140 ev_stop ((W)w);
1141}
1142
1143void
1144ev_child_start (struct ev_child *w)
1145{
1146 if (ev_is_active (w))
1147 return;
1148
1149 ev_start ((W)w, 1);
1150 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1151}
1152
1153void
1154ev_child_stop (struct ev_child *w)
1155{
1156 ev_clear_pending ((W)w);
1157 if (ev_is_active (w))
1158 return;
1159
1160 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1532 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1161 ev_stop ((W)w); 1533 ev_stop (EV_A_ (W)w);
1162} 1534}
1163 1535
1164/*****************************************************************************/ 1536/*****************************************************************************/
1165 1537
1166struct ev_once 1538struct ev_once
1170 void (*cb)(int revents, void *arg); 1542 void (*cb)(int revents, void *arg);
1171 void *arg; 1543 void *arg;
1172}; 1544};
1173 1545
1174static void 1546static void
1175once_cb (struct ev_once *once, int revents) 1547once_cb (EV_P_ struct ev_once *once, int revents)
1176{ 1548{
1177 void (*cb)(int revents, void *arg) = once->cb; 1549 void (*cb)(int revents, void *arg) = once->cb;
1178 void *arg = once->arg; 1550 void *arg = once->arg;
1179 1551
1180 ev_io_stop (&once->io); 1552 ev_io_stop (EV_A_ &once->io);
1181 ev_timer_stop (&once->to); 1553 ev_timer_stop (EV_A_ &once->to);
1182 free (once); 1554 ev_free (once);
1183 1555
1184 cb (revents, arg); 1556 cb (revents, arg);
1185} 1557}
1186 1558
1187static void 1559static void
1188once_cb_io (struct ev_io *w, int revents) 1560once_cb_io (EV_P_ struct ev_io *w, int revents)
1189{ 1561{
1190 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1562 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1191} 1563}
1192 1564
1193static void 1565static void
1194once_cb_to (struct ev_timer *w, int revents) 1566once_cb_to (EV_P_ struct ev_timer *w, int revents)
1195{ 1567{
1196 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1568 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1197} 1569}
1198 1570
1199void 1571void
1200ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1572ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1201{ 1573{
1202 struct ev_once *once = malloc (sizeof (struct ev_once)); 1574 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1203 1575
1204 if (!once) 1576 if (!once)
1205 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1577 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1206 else 1578 else
1207 { 1579 {
1208 once->cb = cb; 1580 once->cb = cb;
1209 once->arg = arg; 1581 once->arg = arg;
1210 1582
1211 ev_watcher_init (&once->io, once_cb_io); 1583 ev_init (&once->io, once_cb_io);
1212 if (fd >= 0) 1584 if (fd >= 0)
1213 { 1585 {
1214 ev_io_set (&once->io, fd, events); 1586 ev_io_set (&once->io, fd, events);
1215 ev_io_start (&once->io); 1587 ev_io_start (EV_A_ &once->io);
1216 } 1588 }
1217 1589
1218 ev_watcher_init (&once->to, once_cb_to); 1590 ev_init (&once->to, once_cb_to);
1219 if (timeout >= 0.) 1591 if (timeout >= 0.)
1220 { 1592 {
1221 ev_timer_set (&once->to, timeout, 0.); 1593 ev_timer_set (&once->to, timeout, 0.);
1222 ev_timer_start (&once->to); 1594 ev_timer_start (EV_A_ &once->to);
1223 } 1595 }
1224 } 1596 }
1225} 1597}
1226 1598
1227/*****************************************************************************/
1228
1229#if 0
1230
1231struct ev_io wio;
1232
1233static void
1234sin_cb (struct ev_io *w, int revents)
1235{
1236 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1237}
1238
1239static void
1240ocb (struct ev_timer *w, int revents)
1241{
1242 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1243 ev_timer_stop (w);
1244 ev_timer_start (w);
1245}
1246
1247static void
1248scb (struct ev_signal *w, int revents)
1249{
1250 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1251 ev_io_stop (&wio);
1252 ev_io_start (&wio);
1253}
1254
1255static void
1256gcb (struct ev_signal *w, int revents)
1257{
1258 fprintf (stderr, "generic %x\n", revents);
1259
1260}
1261
1262int main (void)
1263{
1264 ev_init (0);
1265
1266 ev_io_init (&wio, sin_cb, 0, EV_READ);
1267 ev_io_start (&wio);
1268
1269 struct ev_timer t[10000];
1270
1271#if 0
1272 int i;
1273 for (i = 0; i < 10000; ++i)
1274 {
1275 struct ev_timer *w = t + i;
1276 ev_watcher_init (w, ocb, i);
1277 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1278 ev_timer_start (w);
1279 if (drand48 () < 0.5)
1280 ev_timer_stop (w);
1281 }
1282#endif
1283
1284 struct ev_timer t1;
1285 ev_timer_init (&t1, ocb, 5, 10);
1286 ev_timer_start (&t1);
1287
1288 struct ev_signal sig;
1289 ev_signal_init (&sig, scb, SIGQUIT);
1290 ev_signal_start (&sig);
1291
1292 struct ev_check cw;
1293 ev_check_init (&cw, gcb);
1294 ev_check_start (&cw);
1295
1296 struct ev_idle iw;
1297 ev_idle_init (&iw, gcb);
1298 ev_idle_start (&iw);
1299
1300 ev_loop (0);
1301
1302 return 0;
1303}
1304
1305#endif
1306
1307
1308
1309

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines