ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.242 by root, Fri May 9 14:07:19 2008 UTC vs.
Revision 1.490 by root, Thu Jun 20 22:44:59 2019 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
130# endif 154# endif
131 155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
132#endif 163# endif
164
165#endif
133 166
134#include <math.h> 167/* OS X, in its infinite idiocy, actually HARDCODES
168 * a limit of 1024 into their select. Where people have brains,
169 * OS X engineers apparently have a vacuum. Or maybe they were
170 * ordered to have a vacuum, or they do anything for money.
171 * This might help. Or not.
172 * Note that this must be defined early, as other include files
173 * will rely on this define as well.
174 */
175#define _DARWIN_UNLIMITED_SELECT 1
176
135#include <stdlib.h> 177#include <stdlib.h>
178#include <string.h>
136#include <fcntl.h> 179#include <fcntl.h>
137#include <stddef.h> 180#include <stddef.h>
138 181
139#include <stdio.h> 182#include <stdio.h>
140 183
141#include <assert.h> 184#include <assert.h>
142#include <errno.h> 185#include <errno.h>
143#include <sys/types.h> 186#include <sys/types.h>
144#include <time.h> 187#include <time.h>
188#include <limits.h>
145 189
146#include <signal.h> 190#include <signal.h>
147 191
148#ifdef EV_H 192#ifdef EV_H
149# include EV_H 193# include EV_H
150#else 194#else
151# include "ev.h" 195# include "ev.h"
196#endif
197
198#if EV_NO_THREADS
199# undef EV_NO_SMP
200# define EV_NO_SMP 1
201# undef ECB_NO_THREADS
202# define ECB_NO_THREADS 1
203#endif
204#if EV_NO_SMP
205# undef EV_NO_SMP
206# define ECB_NO_SMP 1
152#endif 207#endif
153 208
154#ifndef _WIN32 209#ifndef _WIN32
155# include <sys/time.h> 210# include <sys/time.h>
156# include <sys/wait.h> 211# include <sys/wait.h>
157# include <unistd.h> 212# include <unistd.h>
158#else 213#else
214# include <io.h>
159# define WIN32_LEAN_AND_MEAN 215# define WIN32_LEAN_AND_MEAN
216# include <winsock2.h>
160# include <windows.h> 217# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 218# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 219# define EV_SELECT_IS_WINSOCKET 1
163# endif 220# endif
221# undef EV_AVOID_STDIO
164#endif 222#endif
165 223
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 224/* this block tries to deduce configuration from header-defined symbols and defaults */
167 225
226/* try to deduce the maximum number of signals on this platform */
227#if defined EV_NSIG
228/* use what's provided */
229#elif defined NSIG
230# define EV_NSIG (NSIG)
231#elif defined _NSIG
232# define EV_NSIG (_NSIG)
233#elif defined SIGMAX
234# define EV_NSIG (SIGMAX+1)
235#elif defined SIG_MAX
236# define EV_NSIG (SIG_MAX+1)
237#elif defined _SIG_MAX
238# define EV_NSIG (_SIG_MAX+1)
239#elif defined MAXSIG
240# define EV_NSIG (MAXSIG+1)
241#elif defined MAX_SIG
242# define EV_NSIG (MAX_SIG+1)
243#elif defined SIGARRAYSIZE
244# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
245#elif defined _sys_nsig
246# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
247#else
248# define EV_NSIG (8 * sizeof (sigset_t) + 1)
249#endif
250
251#ifndef EV_USE_FLOOR
252# define EV_USE_FLOOR 0
253#endif
254
255#ifndef EV_USE_CLOCK_SYSCALL
256# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
257# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
258# else
259# define EV_USE_CLOCK_SYSCALL 0
260# endif
261#endif
262
263#if !(_POSIX_TIMERS > 0)
264# ifndef EV_USE_MONOTONIC
265# define EV_USE_MONOTONIC 0
266# endif
267# ifndef EV_USE_REALTIME
268# define EV_USE_REALTIME 0
269# endif
270#endif
271
168#ifndef EV_USE_MONOTONIC 272#ifndef EV_USE_MONOTONIC
273# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
274# define EV_USE_MONOTONIC EV_FEATURE_OS
275# else
169# define EV_USE_MONOTONIC 0 276# define EV_USE_MONOTONIC 0
277# endif
170#endif 278#endif
171 279
172#ifndef EV_USE_REALTIME 280#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 281# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 282#endif
175 283
176#ifndef EV_USE_NANOSLEEP 284#ifndef EV_USE_NANOSLEEP
285# if _POSIX_C_SOURCE >= 199309L
286# define EV_USE_NANOSLEEP EV_FEATURE_OS
287# else
177# define EV_USE_NANOSLEEP 0 288# define EV_USE_NANOSLEEP 0
289# endif
178#endif 290#endif
179 291
180#ifndef EV_USE_SELECT 292#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 293# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 294#endif
183 295
184#ifndef EV_USE_POLL 296#ifndef EV_USE_POLL
185# ifdef _WIN32 297# ifdef _WIN32
186# define EV_USE_POLL 0 298# define EV_USE_POLL 0
187# else 299# else
188# define EV_USE_POLL 1 300# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 301# endif
190#endif 302#endif
191 303
192#ifndef EV_USE_EPOLL 304#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 305# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 306# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 307# else
196# define EV_USE_EPOLL 0 308# define EV_USE_EPOLL 0
197# endif 309# endif
198#endif 310#endif
199 311
203 315
204#ifndef EV_USE_PORT 316#ifndef EV_USE_PORT
205# define EV_USE_PORT 0 317# define EV_USE_PORT 0
206#endif 318#endif
207 319
320#ifndef EV_USE_LINUXAIO
321# define EV_USE_LINUXAIO 0
322#endif
323
208#ifndef EV_USE_INOTIFY 324#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 325# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 326# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 327# else
212# define EV_USE_INOTIFY 0 328# define EV_USE_INOTIFY 0
213# endif 329# endif
214#endif 330#endif
215 331
216#ifndef EV_PID_HASHSIZE 332#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 333# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 334#endif
223 335
224#ifndef EV_INOTIFY_HASHSIZE 336#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 337# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 338#endif
231 339
232#ifndef EV_USE_EVENTFD 340#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 341# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 342# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 343# else
236# define EV_USE_EVENTFD 0 344# define EV_USE_EVENTFD 0
237# endif 345# endif
238#endif 346#endif
239 347
348#ifndef EV_USE_SIGNALFD
349# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
350# define EV_USE_SIGNALFD EV_FEATURE_OS
351# else
352# define EV_USE_SIGNALFD 0
353# endif
354#endif
355
356#if 0 /* debugging */
357# define EV_VERIFY 3
358# define EV_USE_4HEAP 1
359# define EV_HEAP_CACHE_AT 1
360#endif
361
362#ifndef EV_VERIFY
363# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
364#endif
365
366#ifndef EV_USE_4HEAP
367# define EV_USE_4HEAP EV_FEATURE_DATA
368#endif
369
370#ifndef EV_HEAP_CACHE_AT
371# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
372#endif
373
374#ifdef __ANDROID__
375/* supposedly, android doesn't typedef fd_mask */
376# undef EV_USE_SELECT
377# define EV_USE_SELECT 0
378/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
379# undef EV_USE_CLOCK_SYSCALL
380# define EV_USE_CLOCK_SYSCALL 0
381#endif
382
383/* aix's poll.h seems to cause lots of trouble */
384#ifdef _AIX
385/* AIX has a completely broken poll.h header */
386# undef EV_USE_POLL
387# define EV_USE_POLL 0
388#endif
389
390#if EV_USE_LINUXAIO
391# include <linux/aio_abi.h> /* probably only needed for aio_context_t */
392#endif
393
394/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
395/* which makes programs even slower. might work on other unices, too. */
396#if EV_USE_CLOCK_SYSCALL
397# include <sys/syscall.h>
398# ifdef SYS_clock_gettime
399# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
400# undef EV_USE_MONOTONIC
401# define EV_USE_MONOTONIC 1
402# else
403# undef EV_USE_CLOCK_SYSCALL
404# define EV_USE_CLOCK_SYSCALL 0
405# endif
406#endif
407
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 408/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 409
242#ifndef CLOCK_MONOTONIC 410#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 411# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 412# define EV_USE_MONOTONIC 0
253# undef EV_USE_INOTIFY 421# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0 422# define EV_USE_INOTIFY 0
255#endif 423#endif
256 424
257#if !EV_USE_NANOSLEEP 425#if !EV_USE_NANOSLEEP
258# ifndef _WIN32 426/* hp-ux has it in sys/time.h, which we unconditionally include above */
427# if !defined _WIN32 && !defined __hpux
259# include <sys/select.h> 428# include <sys/select.h>
260# endif 429# endif
261#endif 430#endif
262 431
263#if EV_USE_INOTIFY 432#if EV_USE_INOTIFY
433# include <sys/statfs.h>
264# include <sys/inotify.h> 434# include <sys/inotify.h>
435/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
436# ifndef IN_DONT_FOLLOW
437# undef EV_USE_INOTIFY
438# define EV_USE_INOTIFY 0
265#endif 439# endif
266
267#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h>
269#endif 440#endif
270 441
271#if EV_USE_EVENTFD 442#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 443/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 444# include <stdint.h>
274# ifdef __cplusplus 445# ifndef EFD_NONBLOCK
275extern "C" { 446# define EFD_NONBLOCK O_NONBLOCK
276# endif 447# endif
277int eventfd (unsigned int initval, int flags); 448# ifndef EFD_CLOEXEC
278# ifdef __cplusplus 449# ifdef O_CLOEXEC
279} 450# define EFD_CLOEXEC O_CLOEXEC
451# else
452# define EFD_CLOEXEC 02000000
453# endif
280# endif 454# endif
455EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
456#endif
457
458#if EV_USE_SIGNALFD
459/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
460# include <stdint.h>
461# ifndef SFD_NONBLOCK
462# define SFD_NONBLOCK O_NONBLOCK
463# endif
464# ifndef SFD_CLOEXEC
465# ifdef O_CLOEXEC
466# define SFD_CLOEXEC O_CLOEXEC
467# else
468# define SFD_CLOEXEC 02000000
469# endif
470# endif
471EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
472
473struct signalfd_siginfo
474{
475 uint32_t ssi_signo;
476 char pad[128 - sizeof (uint32_t)];
477};
281#endif 478#endif
282 479
283/**/ 480/**/
284 481
482#if EV_VERIFY >= 3
483# define EV_FREQUENT_CHECK ev_verify (EV_A)
484#else
485# define EV_FREQUENT_CHECK do { } while (0)
486#endif
487
285/* 488/*
286 * This is used to avoid floating point rounding problems. 489 * This is used to work around floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000. 490 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */ 491 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 492#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
493/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
294 494
295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 495#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 496#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
298 497
498#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
499#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
500
501/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
502/* ECB.H BEGIN */
503/*
504 * libecb - http://software.schmorp.de/pkg/libecb
505 *
506 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
507 * Copyright (©) 2011 Emanuele Giaquinta
508 * All rights reserved.
509 *
510 * Redistribution and use in source and binary forms, with or without modifica-
511 * tion, are permitted provided that the following conditions are met:
512 *
513 * 1. Redistributions of source code must retain the above copyright notice,
514 * this list of conditions and the following disclaimer.
515 *
516 * 2. Redistributions in binary form must reproduce the above copyright
517 * notice, this list of conditions and the following disclaimer in the
518 * documentation and/or other materials provided with the distribution.
519 *
520 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
521 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
522 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
523 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
524 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
525 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
526 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
527 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
528 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
529 * OF THE POSSIBILITY OF SUCH DAMAGE.
530 *
531 * Alternatively, the contents of this file may be used under the terms of
532 * the GNU General Public License ("GPL") version 2 or any later version,
533 * in which case the provisions of the GPL are applicable instead of
534 * the above. If you wish to allow the use of your version of this file
535 * only under the terms of the GPL and not to allow others to use your
536 * version of this file under the BSD license, indicate your decision
537 * by deleting the provisions above and replace them with the notice
538 * and other provisions required by the GPL. If you do not delete the
539 * provisions above, a recipient may use your version of this file under
540 * either the BSD or the GPL.
541 */
542
543#ifndef ECB_H
544#define ECB_H
545
546/* 16 bits major, 16 bits minor */
547#define ECB_VERSION 0x00010005
548
549#ifdef _WIN32
550 typedef signed char int8_t;
551 typedef unsigned char uint8_t;
552 typedef signed short int16_t;
553 typedef unsigned short uint16_t;
554 typedef signed int int32_t;
555 typedef unsigned int uint32_t;
299#if __GNUC__ >= 4 556 #if __GNUC__
557 typedef signed long long int64_t;
558 typedef unsigned long long uint64_t;
559 #else /* _MSC_VER || __BORLANDC__ */
560 typedef signed __int64 int64_t;
561 typedef unsigned __int64 uint64_t;
562 #endif
563 #ifdef _WIN64
564 #define ECB_PTRSIZE 8
565 typedef uint64_t uintptr_t;
566 typedef int64_t intptr_t;
567 #else
568 #define ECB_PTRSIZE 4
569 typedef uint32_t uintptr_t;
570 typedef int32_t intptr_t;
571 #endif
572#else
573 #include <inttypes.h>
574 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
575 #define ECB_PTRSIZE 8
576 #else
577 #define ECB_PTRSIZE 4
578 #endif
579#endif
580
581#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
582#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
583
584/* work around x32 idiocy by defining proper macros */
585#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
586 #if _ILP32
587 #define ECB_AMD64_X32 1
588 #else
589 #define ECB_AMD64 1
590 #endif
591#endif
592
593/* many compilers define _GNUC_ to some versions but then only implement
594 * what their idiot authors think are the "more important" extensions,
595 * causing enormous grief in return for some better fake benchmark numbers.
596 * or so.
597 * we try to detect these and simply assume they are not gcc - if they have
598 * an issue with that they should have done it right in the first place.
599 */
600#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
601 #define ECB_GCC_VERSION(major,minor) 0
602#else
603 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
604#endif
605
606#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
607
608#if __clang__ && defined __has_builtin
609 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
610#else
611 #define ECB_CLANG_BUILTIN(x) 0
612#endif
613
614#if __clang__ && defined __has_extension
615 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
616#else
617 #define ECB_CLANG_EXTENSION(x) 0
618#endif
619
620#define ECB_CPP (__cplusplus+0)
621#define ECB_CPP11 (__cplusplus >= 201103L)
622#define ECB_CPP14 (__cplusplus >= 201402L)
623#define ECB_CPP17 (__cplusplus >= 201703L)
624
625#if ECB_CPP
626 #define ECB_C 0
627 #define ECB_STDC_VERSION 0
628#else
629 #define ECB_C 1
630 #define ECB_STDC_VERSION __STDC_VERSION__
631#endif
632
633#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
634#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
635#define ECB_C17 (ECB_STDC_VERSION >= 201710L)
636
637#if ECB_CPP
638 #define ECB_EXTERN_C extern "C"
639 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
640 #define ECB_EXTERN_C_END }
641#else
642 #define ECB_EXTERN_C extern
643 #define ECB_EXTERN_C_BEG
644 #define ECB_EXTERN_C_END
645#endif
646
647/*****************************************************************************/
648
649/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
650/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
651
652#if ECB_NO_THREADS
653 #define ECB_NO_SMP 1
654#endif
655
656#if ECB_NO_SMP
657 #define ECB_MEMORY_FENCE do { } while (0)
658#endif
659
660/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
661#if __xlC__ && ECB_CPP
662 #include <builtins.h>
663#endif
664
665#if 1400 <= _MSC_VER
666 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
667#endif
668
669#ifndef ECB_MEMORY_FENCE
670 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
671 #if __i386 || __i386__
672 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
673 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
674 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
675 #elif ECB_GCC_AMD64
676 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
677 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
678 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
679 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
680 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
681 #elif defined __ARM_ARCH_2__ \
682 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
683 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
684 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
685 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
686 || defined __ARM_ARCH_5TEJ__
687 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
688 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
689 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
690 || defined __ARM_ARCH_6T2__
691 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
692 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
693 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
694 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
695 #elif __aarch64__
696 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
697 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
698 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
699 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
700 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
701 #elif defined __s390__ || defined __s390x__
702 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
703 #elif defined __mips__
704 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
705 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
706 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
707 #elif defined __alpha__
708 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
709 #elif defined __hppa__
710 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
711 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
712 #elif defined __ia64__
713 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
714 #elif defined __m68k__
715 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
716 #elif defined __m88k__
717 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
718 #elif defined __sh__
719 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
720 #endif
721 #endif
722#endif
723
724#ifndef ECB_MEMORY_FENCE
725 #if ECB_GCC_VERSION(4,7)
726 /* see comment below (stdatomic.h) about the C11 memory model. */
727 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
728 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
729 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
730
731 #elif ECB_CLANG_EXTENSION(c_atomic)
732 /* see comment below (stdatomic.h) about the C11 memory model. */
733 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
734 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
735 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
736
737 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
738 #define ECB_MEMORY_FENCE __sync_synchronize ()
739 #elif _MSC_VER >= 1500 /* VC++ 2008 */
740 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
741 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
742 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
743 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
744 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
745 #elif _MSC_VER >= 1400 /* VC++ 2005 */
746 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
747 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
748 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
749 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
750 #elif defined _WIN32
751 #include <WinNT.h>
752 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
753 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
754 #include <mbarrier.h>
755 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
756 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
757 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
758 #elif __xlC__
759 #define ECB_MEMORY_FENCE __sync ()
760 #endif
761#endif
762
763#ifndef ECB_MEMORY_FENCE
764 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
765 /* we assume that these memory fences work on all variables/all memory accesses, */
766 /* not just C11 atomics and atomic accesses */
767 #include <stdatomic.h>
768 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
769 /* any fence other than seq_cst, which isn't very efficient for us. */
770 /* Why that is, we don't know - either the C11 memory model is quite useless */
771 /* for most usages, or gcc and clang have a bug */
772 /* I *currently* lean towards the latter, and inefficiently implement */
773 /* all three of ecb's fences as a seq_cst fence */
774 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
775 /* for all __atomic_thread_fence's except seq_cst */
776 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
777 #endif
778#endif
779
780#ifndef ECB_MEMORY_FENCE
781 #if !ECB_AVOID_PTHREADS
782 /*
783 * if you get undefined symbol references to pthread_mutex_lock,
784 * or failure to find pthread.h, then you should implement
785 * the ECB_MEMORY_FENCE operations for your cpu/compiler
786 * OR provide pthread.h and link against the posix thread library
787 * of your system.
788 */
789 #include <pthread.h>
790 #define ECB_NEEDS_PTHREADS 1
791 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
792
793 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
794 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
795 #endif
796#endif
797
798#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
799 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
800#endif
801
802#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
803 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
804#endif
805
806/*****************************************************************************/
807
808#if ECB_CPP
809 #define ecb_inline static inline
810#elif ECB_GCC_VERSION(2,5)
811 #define ecb_inline static __inline__
812#elif ECB_C99
813 #define ecb_inline static inline
814#else
815 #define ecb_inline static
816#endif
817
818#if ECB_GCC_VERSION(3,3)
819 #define ecb_restrict __restrict__
820#elif ECB_C99
821 #define ecb_restrict restrict
822#else
823 #define ecb_restrict
824#endif
825
826typedef int ecb_bool;
827
828#define ECB_CONCAT_(a, b) a ## b
829#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
830#define ECB_STRINGIFY_(a) # a
831#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
832#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
833
834#define ecb_function_ ecb_inline
835
836#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
837 #define ecb_attribute(attrlist) __attribute__ (attrlist)
838#else
839 #define ecb_attribute(attrlist)
840#endif
841
842#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
843 #define ecb_is_constant(expr) __builtin_constant_p (expr)
844#else
845 /* possible C11 impl for integral types
846 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
847 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
848
849 #define ecb_is_constant(expr) 0
850#endif
851
852#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
300# define expect(expr,value) __builtin_expect ((expr),(value)) 853 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
301# define noinline __attribute__ ((noinline))
302#else 854#else
303# define expect(expr,value) (expr) 855 #define ecb_expect(expr,value) (expr)
304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif 856#endif
308#endif
309 857
858#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
859 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
860#else
861 #define ecb_prefetch(addr,rw,locality)
862#endif
863
864/* no emulation for ecb_decltype */
865#if ECB_CPP11
866 // older implementations might have problems with decltype(x)::type, work around it
867 template<class T> struct ecb_decltype_t { typedef T type; };
868 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
869#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
870 #define ecb_decltype(x) __typeof__ (x)
871#endif
872
873#if _MSC_VER >= 1300
874 #define ecb_deprecated __declspec (deprecated)
875#else
876 #define ecb_deprecated ecb_attribute ((__deprecated__))
877#endif
878
879#if _MSC_VER >= 1500
880 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
881#elif ECB_GCC_VERSION(4,5)
882 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
883#else
884 #define ecb_deprecated_message(msg) ecb_deprecated
885#endif
886
887#if _MSC_VER >= 1400
888 #define ecb_noinline __declspec (noinline)
889#else
890 #define ecb_noinline ecb_attribute ((__noinline__))
891#endif
892
893#define ecb_unused ecb_attribute ((__unused__))
894#define ecb_const ecb_attribute ((__const__))
895#define ecb_pure ecb_attribute ((__pure__))
896
897#if ECB_C11 || __IBMC_NORETURN
898 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
899 #define ecb_noreturn _Noreturn
900#elif ECB_CPP11
901 #define ecb_noreturn [[noreturn]]
902#elif _MSC_VER >= 1200
903 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
904 #define ecb_noreturn __declspec (noreturn)
905#else
906 #define ecb_noreturn ecb_attribute ((__noreturn__))
907#endif
908
909#if ECB_GCC_VERSION(4,3)
910 #define ecb_artificial ecb_attribute ((__artificial__))
911 #define ecb_hot ecb_attribute ((__hot__))
912 #define ecb_cold ecb_attribute ((__cold__))
913#else
914 #define ecb_artificial
915 #define ecb_hot
916 #define ecb_cold
917#endif
918
919/* put around conditional expressions if you are very sure that the */
920/* expression is mostly true or mostly false. note that these return */
921/* booleans, not the expression. */
310#define expect_false(expr) expect ((expr) != 0, 0) 922#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
311#define expect_true(expr) expect ((expr) != 0, 1) 923#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
924/* for compatibility to the rest of the world */
925#define ecb_likely(expr) ecb_expect_true (expr)
926#define ecb_unlikely(expr) ecb_expect_false (expr)
927
928/* count trailing zero bits and count # of one bits */
929#if ECB_GCC_VERSION(3,4) \
930 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
931 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
932 && ECB_CLANG_BUILTIN(__builtin_popcount))
933 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
934 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
935 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
936 #define ecb_ctz32(x) __builtin_ctz (x)
937 #define ecb_ctz64(x) __builtin_ctzll (x)
938 #define ecb_popcount32(x) __builtin_popcount (x)
939 /* no popcountll */
940#else
941 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
942 ecb_function_ ecb_const int
943 ecb_ctz32 (uint32_t x)
944 {
945#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
946 unsigned long r;
947 _BitScanForward (&r, x);
948 return (int)r;
949#else
950 int r = 0;
951
952 x &= ~x + 1; /* this isolates the lowest bit */
953
954#if ECB_branchless_on_i386
955 r += !!(x & 0xaaaaaaaa) << 0;
956 r += !!(x & 0xcccccccc) << 1;
957 r += !!(x & 0xf0f0f0f0) << 2;
958 r += !!(x & 0xff00ff00) << 3;
959 r += !!(x & 0xffff0000) << 4;
960#else
961 if (x & 0xaaaaaaaa) r += 1;
962 if (x & 0xcccccccc) r += 2;
963 if (x & 0xf0f0f0f0) r += 4;
964 if (x & 0xff00ff00) r += 8;
965 if (x & 0xffff0000) r += 16;
966#endif
967
968 return r;
969#endif
970 }
971
972 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
973 ecb_function_ ecb_const int
974 ecb_ctz64 (uint64_t x)
975 {
976#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
977 unsigned long r;
978 _BitScanForward64 (&r, x);
979 return (int)r;
980#else
981 int shift = x & 0xffffffff ? 0 : 32;
982 return ecb_ctz32 (x >> shift) + shift;
983#endif
984 }
985
986 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
987 ecb_function_ ecb_const int
988 ecb_popcount32 (uint32_t x)
989 {
990 x -= (x >> 1) & 0x55555555;
991 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
992 x = ((x >> 4) + x) & 0x0f0f0f0f;
993 x *= 0x01010101;
994
995 return x >> 24;
996 }
997
998 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
999 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1000 {
1001#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1002 unsigned long r;
1003 _BitScanReverse (&r, x);
1004 return (int)r;
1005#else
1006 int r = 0;
1007
1008 if (x >> 16) { x >>= 16; r += 16; }
1009 if (x >> 8) { x >>= 8; r += 8; }
1010 if (x >> 4) { x >>= 4; r += 4; }
1011 if (x >> 2) { x >>= 2; r += 2; }
1012 if (x >> 1) { r += 1; }
1013
1014 return r;
1015#endif
1016 }
1017
1018 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1019 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1020 {
1021#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1022 unsigned long r;
1023 _BitScanReverse64 (&r, x);
1024 return (int)r;
1025#else
1026 int r = 0;
1027
1028 if (x >> 32) { x >>= 32; r += 32; }
1029
1030 return r + ecb_ld32 (x);
1031#endif
1032 }
1033#endif
1034
1035ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1036ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1037ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1038ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1039
1040ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1041ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1042{
1043 return ( (x * 0x0802U & 0x22110U)
1044 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1045}
1046
1047ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1048ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1049{
1050 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1051 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1052 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1053 x = ( x >> 8 ) | ( x << 8);
1054
1055 return x;
1056}
1057
1058ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1059ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1060{
1061 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1062 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1063 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1064 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1065 x = ( x >> 16 ) | ( x << 16);
1066
1067 return x;
1068}
1069
1070/* popcount64 is only available on 64 bit cpus as gcc builtin */
1071/* so for this version we are lazy */
1072ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1073ecb_function_ ecb_const int
1074ecb_popcount64 (uint64_t x)
1075{
1076 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1077}
1078
1079ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1080ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1081ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1082ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1083ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1084ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1085ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1086ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1087
1088ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1089ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1090ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1091ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1092ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1093ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1094ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1095ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1096
1097#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1098 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1099 #define ecb_bswap16(x) __builtin_bswap16 (x)
1100 #else
1101 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1102 #endif
1103 #define ecb_bswap32(x) __builtin_bswap32 (x)
1104 #define ecb_bswap64(x) __builtin_bswap64 (x)
1105#elif _MSC_VER
1106 #include <stdlib.h>
1107 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1108 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1109 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1110#else
1111 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1112 ecb_function_ ecb_const uint16_t
1113 ecb_bswap16 (uint16_t x)
1114 {
1115 return ecb_rotl16 (x, 8);
1116 }
1117
1118 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1119 ecb_function_ ecb_const uint32_t
1120 ecb_bswap32 (uint32_t x)
1121 {
1122 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1123 }
1124
1125 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1126 ecb_function_ ecb_const uint64_t
1127 ecb_bswap64 (uint64_t x)
1128 {
1129 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1130 }
1131#endif
1132
1133#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1134 #define ecb_unreachable() __builtin_unreachable ()
1135#else
1136 /* this seems to work fine, but gcc always emits a warning for it :/ */
1137 ecb_inline ecb_noreturn void ecb_unreachable (void);
1138 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1139#endif
1140
1141/* try to tell the compiler that some condition is definitely true */
1142#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1143
1144ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1145ecb_inline ecb_const uint32_t
1146ecb_byteorder_helper (void)
1147{
1148 /* the union code still generates code under pressure in gcc, */
1149 /* but less than using pointers, and always seems to */
1150 /* successfully return a constant. */
1151 /* the reason why we have this horrible preprocessor mess */
1152 /* is to avoid it in all cases, at least on common architectures */
1153 /* or when using a recent enough gcc version (>= 4.6) */
1154#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1155 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1156 #define ECB_LITTLE_ENDIAN 1
1157 return 0x44332211;
1158#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1159 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1160 #define ECB_BIG_ENDIAN 1
1161 return 0x11223344;
1162#else
1163 union
1164 {
1165 uint8_t c[4];
1166 uint32_t u;
1167 } u = { 0x11, 0x22, 0x33, 0x44 };
1168 return u.u;
1169#endif
1170}
1171
1172ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1173ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1174ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1175ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1176
1177#if ECB_GCC_VERSION(3,0) || ECB_C99
1178 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1179#else
1180 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1181#endif
1182
1183#if ECB_CPP
1184 template<typename T>
1185 static inline T ecb_div_rd (T val, T div)
1186 {
1187 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1188 }
1189 template<typename T>
1190 static inline T ecb_div_ru (T val, T div)
1191 {
1192 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1193 }
1194#else
1195 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1196 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1197#endif
1198
1199#if ecb_cplusplus_does_not_suck
1200 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1201 template<typename T, int N>
1202 static inline int ecb_array_length (const T (&arr)[N])
1203 {
1204 return N;
1205 }
1206#else
1207 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1208#endif
1209
1210ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1211ecb_function_ ecb_const uint32_t
1212ecb_binary16_to_binary32 (uint32_t x)
1213{
1214 unsigned int s = (x & 0x8000) << (31 - 15);
1215 int e = (x >> 10) & 0x001f;
1216 unsigned int m = x & 0x03ff;
1217
1218 if (ecb_expect_false (e == 31))
1219 /* infinity or NaN */
1220 e = 255 - (127 - 15);
1221 else if (ecb_expect_false (!e))
1222 {
1223 if (ecb_expect_true (!m))
1224 /* zero, handled by code below by forcing e to 0 */
1225 e = 0 - (127 - 15);
1226 else
1227 {
1228 /* subnormal, renormalise */
1229 unsigned int s = 10 - ecb_ld32 (m);
1230
1231 m = (m << s) & 0x3ff; /* mask implicit bit */
1232 e -= s - 1;
1233 }
1234 }
1235
1236 /* e and m now are normalised, or zero, (or inf or nan) */
1237 e += 127 - 15;
1238
1239 return s | (e << 23) | (m << (23 - 10));
1240}
1241
1242ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1243ecb_function_ ecb_const uint16_t
1244ecb_binary32_to_binary16 (uint32_t x)
1245{
1246 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1247 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1248 unsigned int m = x & 0x007fffff;
1249
1250 x &= 0x7fffffff;
1251
1252 /* if it's within range of binary16 normals, use fast path */
1253 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1254 {
1255 /* mantissa round-to-even */
1256 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1257
1258 /* handle overflow */
1259 if (ecb_expect_false (m >= 0x00800000))
1260 {
1261 m >>= 1;
1262 e += 1;
1263 }
1264
1265 return s | (e << 10) | (m >> (23 - 10));
1266 }
1267
1268 /* handle large numbers and infinity */
1269 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1270 return s | 0x7c00;
1271
1272 /* handle zero, subnormals and small numbers */
1273 if (ecb_expect_true (x < 0x38800000))
1274 {
1275 /* zero */
1276 if (ecb_expect_true (!x))
1277 return s;
1278
1279 /* handle subnormals */
1280
1281 /* too small, will be zero */
1282 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1283 return s;
1284
1285 m |= 0x00800000; /* make implicit bit explicit */
1286
1287 /* very tricky - we need to round to the nearest e (+10) bit value */
1288 {
1289 unsigned int bits = 14 - e;
1290 unsigned int half = (1 << (bits - 1)) - 1;
1291 unsigned int even = (m >> bits) & 1;
1292
1293 /* if this overflows, we will end up with a normalised number */
1294 m = (m + half + even) >> bits;
1295 }
1296
1297 return s | m;
1298 }
1299
1300 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1301 m >>= 13;
1302
1303 return s | 0x7c00 | m | !m;
1304}
1305
1306/*******************************************************************************/
1307/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1308
1309/* basically, everything uses "ieee pure-endian" floating point numbers */
1310/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1311#if 0 \
1312 || __i386 || __i386__ \
1313 || ECB_GCC_AMD64 \
1314 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1315 || defined __s390__ || defined __s390x__ \
1316 || defined __mips__ \
1317 || defined __alpha__ \
1318 || defined __hppa__ \
1319 || defined __ia64__ \
1320 || defined __m68k__ \
1321 || defined __m88k__ \
1322 || defined __sh__ \
1323 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1324 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1325 || defined __aarch64__
1326 #define ECB_STDFP 1
1327 #include <string.h> /* for memcpy */
1328#else
1329 #define ECB_STDFP 0
1330#endif
1331
1332#ifndef ECB_NO_LIBM
1333
1334 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1335
1336 /* only the oldest of old doesn't have this one. solaris. */
1337 #ifdef INFINITY
1338 #define ECB_INFINITY INFINITY
1339 #else
1340 #define ECB_INFINITY HUGE_VAL
1341 #endif
1342
1343 #ifdef NAN
1344 #define ECB_NAN NAN
1345 #else
1346 #define ECB_NAN ECB_INFINITY
1347 #endif
1348
1349 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1350 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1351 #define ecb_frexpf(x,e) frexpf ((x), (e))
1352 #else
1353 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1354 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1355 #endif
1356
1357 /* convert a float to ieee single/binary32 */
1358 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1359 ecb_function_ ecb_const uint32_t
1360 ecb_float_to_binary32 (float x)
1361 {
1362 uint32_t r;
1363
1364 #if ECB_STDFP
1365 memcpy (&r, &x, 4);
1366 #else
1367 /* slow emulation, works for anything but -0 */
1368 uint32_t m;
1369 int e;
1370
1371 if (x == 0e0f ) return 0x00000000U;
1372 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1373 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1374 if (x != x ) return 0x7fbfffffU;
1375
1376 m = ecb_frexpf (x, &e) * 0x1000000U;
1377
1378 r = m & 0x80000000U;
1379
1380 if (r)
1381 m = -m;
1382
1383 if (e <= -126)
1384 {
1385 m &= 0xffffffU;
1386 m >>= (-125 - e);
1387 e = -126;
1388 }
1389
1390 r |= (e + 126) << 23;
1391 r |= m & 0x7fffffU;
1392 #endif
1393
1394 return r;
1395 }
1396
1397 /* converts an ieee single/binary32 to a float */
1398 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1399 ecb_function_ ecb_const float
1400 ecb_binary32_to_float (uint32_t x)
1401 {
1402 float r;
1403
1404 #if ECB_STDFP
1405 memcpy (&r, &x, 4);
1406 #else
1407 /* emulation, only works for normals and subnormals and +0 */
1408 int neg = x >> 31;
1409 int e = (x >> 23) & 0xffU;
1410
1411 x &= 0x7fffffU;
1412
1413 if (e)
1414 x |= 0x800000U;
1415 else
1416 e = 1;
1417
1418 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1419 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1420
1421 r = neg ? -r : r;
1422 #endif
1423
1424 return r;
1425 }
1426
1427 /* convert a double to ieee double/binary64 */
1428 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1429 ecb_function_ ecb_const uint64_t
1430 ecb_double_to_binary64 (double x)
1431 {
1432 uint64_t r;
1433
1434 #if ECB_STDFP
1435 memcpy (&r, &x, 8);
1436 #else
1437 /* slow emulation, works for anything but -0 */
1438 uint64_t m;
1439 int e;
1440
1441 if (x == 0e0 ) return 0x0000000000000000U;
1442 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1443 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1444 if (x != x ) return 0X7ff7ffffffffffffU;
1445
1446 m = frexp (x, &e) * 0x20000000000000U;
1447
1448 r = m & 0x8000000000000000;;
1449
1450 if (r)
1451 m = -m;
1452
1453 if (e <= -1022)
1454 {
1455 m &= 0x1fffffffffffffU;
1456 m >>= (-1021 - e);
1457 e = -1022;
1458 }
1459
1460 r |= ((uint64_t)(e + 1022)) << 52;
1461 r |= m & 0xfffffffffffffU;
1462 #endif
1463
1464 return r;
1465 }
1466
1467 /* converts an ieee double/binary64 to a double */
1468 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1469 ecb_function_ ecb_const double
1470 ecb_binary64_to_double (uint64_t x)
1471 {
1472 double r;
1473
1474 #if ECB_STDFP
1475 memcpy (&r, &x, 8);
1476 #else
1477 /* emulation, only works for normals and subnormals and +0 */
1478 int neg = x >> 63;
1479 int e = (x >> 52) & 0x7ffU;
1480
1481 x &= 0xfffffffffffffU;
1482
1483 if (e)
1484 x |= 0x10000000000000U;
1485 else
1486 e = 1;
1487
1488 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1489 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1490
1491 r = neg ? -r : r;
1492 #endif
1493
1494 return r;
1495 }
1496
1497 /* convert a float to ieee half/binary16 */
1498 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1499 ecb_function_ ecb_const uint16_t
1500 ecb_float_to_binary16 (float x)
1501 {
1502 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1503 }
1504
1505 /* convert an ieee half/binary16 to float */
1506 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1507 ecb_function_ ecb_const float
1508 ecb_binary16_to_float (uint16_t x)
1509 {
1510 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1511 }
1512
1513#endif
1514
1515#endif
1516
1517/* ECB.H END */
1518
1519#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1520/* if your architecture doesn't need memory fences, e.g. because it is
1521 * single-cpu/core, or if you use libev in a project that doesn't use libev
1522 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1523 * libev, in which cases the memory fences become nops.
1524 * alternatively, you can remove this #error and link against libpthread,
1525 * which will then provide the memory fences.
1526 */
1527# error "memory fences not defined for your architecture, please report"
1528#endif
1529
1530#ifndef ECB_MEMORY_FENCE
1531# define ECB_MEMORY_FENCE do { } while (0)
1532# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1533# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1534#endif
1535
1536#define expect_false(cond) ecb_expect_false (cond)
1537#define expect_true(cond) ecb_expect_true (cond)
1538#define noinline ecb_noinline
1539
312#define inline_size static inline 1540#define inline_size ecb_inline
313 1541
314#if EV_MINIMAL 1542#if EV_FEATURE_CODE
315# define inline_speed static noinline
316#else
317# define inline_speed static inline 1543# define inline_speed ecb_inline
1544#else
1545# define inline_speed noinline static
318#endif 1546#endif
319 1547
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1548#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1549
1550#if EV_MINPRI == EV_MAXPRI
1551# define ABSPRI(w) (((W)w), 0)
1552#else
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1553# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1554#endif
322 1555
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1556#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */
325 1557
326typedef ev_watcher *W; 1558typedef ev_watcher *W;
327typedef ev_watcher_list *WL; 1559typedef ev_watcher_list *WL;
328typedef ev_watcher_time *WT; 1560typedef ev_watcher_time *WT;
329 1561
330#define ev_active(w) ((W)(w))->active 1562#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at 1563#define ev_at(w) ((WT)(w))->at
332 1564
1565#if EV_USE_REALTIME
1566/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1567/* giving it a reasonably high chance of working on typical architectures */
1568static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1569#endif
1570
333#if EV_USE_MONOTONIC 1571#if EV_USE_MONOTONIC
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */
336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1572static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1573#endif
1574
1575#ifndef EV_FD_TO_WIN32_HANDLE
1576# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1577#endif
1578#ifndef EV_WIN32_HANDLE_TO_FD
1579# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1580#endif
1581#ifndef EV_WIN32_CLOSE_FD
1582# define EV_WIN32_CLOSE_FD(fd) close (fd)
337#endif 1583#endif
338 1584
339#ifdef _WIN32 1585#ifdef _WIN32
340# include "ev_win32.c" 1586# include "ev_win32.c"
341#endif 1587#endif
342 1588
343/*****************************************************************************/ 1589/*****************************************************************************/
344 1590
1591/* define a suitable floor function (only used by periodics atm) */
1592
1593#if EV_USE_FLOOR
1594# include <math.h>
1595# define ev_floor(v) floor (v)
1596#else
1597
1598#include <float.h>
1599
1600/* a floor() replacement function, should be independent of ev_tstamp type */
1601noinline
1602static ev_tstamp
1603ev_floor (ev_tstamp v)
1604{
1605 /* the choice of shift factor is not terribly important */
1606#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1607 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1608#else
1609 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1610#endif
1611
1612 /* argument too large for an unsigned long? */
1613 if (expect_false (v >= shift))
1614 {
1615 ev_tstamp f;
1616
1617 if (v == v - 1.)
1618 return v; /* very large number */
1619
1620 f = shift * ev_floor (v * (1. / shift));
1621 return f + ev_floor (v - f);
1622 }
1623
1624 /* special treatment for negative args? */
1625 if (expect_false (v < 0.))
1626 {
1627 ev_tstamp f = -ev_floor (-v);
1628
1629 return f - (f == v ? 0 : 1);
1630 }
1631
1632 /* fits into an unsigned long */
1633 return (unsigned long)v;
1634}
1635
1636#endif
1637
1638/*****************************************************************************/
1639
1640#ifdef __linux
1641# include <sys/utsname.h>
1642#endif
1643
1644noinline ecb_cold
1645static unsigned int
1646ev_linux_version (void)
1647{
1648#ifdef __linux
1649 unsigned int v = 0;
1650 struct utsname buf;
1651 int i;
1652 char *p = buf.release;
1653
1654 if (uname (&buf))
1655 return 0;
1656
1657 for (i = 3+1; --i; )
1658 {
1659 unsigned int c = 0;
1660
1661 for (;;)
1662 {
1663 if (*p >= '0' && *p <= '9')
1664 c = c * 10 + *p++ - '0';
1665 else
1666 {
1667 p += *p == '.';
1668 break;
1669 }
1670 }
1671
1672 v = (v << 8) | c;
1673 }
1674
1675 return v;
1676#else
1677 return 0;
1678#endif
1679}
1680
1681/*****************************************************************************/
1682
1683#if EV_AVOID_STDIO
1684noinline ecb_cold
1685static void
1686ev_printerr (const char *msg)
1687{
1688 write (STDERR_FILENO, msg, strlen (msg));
1689}
1690#endif
1691
345static void (*syserr_cb)(const char *msg); 1692static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
346 1693
1694ecb_cold
347void 1695void
348ev_set_syserr_cb (void (*cb)(const char *msg)) 1696ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
349{ 1697{
350 syserr_cb = cb; 1698 syserr_cb = cb;
351} 1699}
352 1700
353static void noinline 1701noinline ecb_cold
1702static void
354syserr (const char *msg) 1703ev_syserr (const char *msg)
355{ 1704{
356 if (!msg) 1705 if (!msg)
357 msg = "(libev) system error"; 1706 msg = "(libev) system error";
358 1707
359 if (syserr_cb) 1708 if (syserr_cb)
360 syserr_cb (msg); 1709 syserr_cb (msg);
361 else 1710 else
362 { 1711 {
1712#if EV_AVOID_STDIO
1713 ev_printerr (msg);
1714 ev_printerr (": ");
1715 ev_printerr (strerror (errno));
1716 ev_printerr ("\n");
1717#else
363 perror (msg); 1718 perror (msg);
1719#endif
364 abort (); 1720 abort ();
365 } 1721 }
366} 1722}
367 1723
368static void * 1724static void *
369ev_realloc_emul (void *ptr, long size) 1725ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
370{ 1726{
371 /* some systems, notably openbsd and darwin, fail to properly 1727 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and 1728 * implement realloc (x, 0) (as required by both ansi c-89 and
373 * the single unix specification, so work around them here. 1729 * the single unix specification, so work around them here.
1730 * recently, also (at least) fedora and debian started breaking it,
1731 * despite documenting it otherwise.
374 */ 1732 */
375 1733
376 if (size) 1734 if (size)
377 return realloc (ptr, size); 1735 return realloc (ptr, size);
378 1736
379 free (ptr); 1737 free (ptr);
380 return 0; 1738 return 0;
381} 1739}
382 1740
383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1741static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
384 1742
1743ecb_cold
385void 1744void
386ev_set_allocator (void *(*cb)(void *ptr, long size)) 1745ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
387{ 1746{
388 alloc = cb; 1747 alloc = cb;
389} 1748}
390 1749
391inline_speed void * 1750inline_speed void *
393{ 1752{
394 ptr = alloc (ptr, size); 1753 ptr = alloc (ptr, size);
395 1754
396 if (!ptr && size) 1755 if (!ptr && size)
397 { 1756 {
1757#if EV_AVOID_STDIO
1758 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1759#else
398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1760 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1761#endif
399 abort (); 1762 abort ();
400 } 1763 }
401 1764
402 return ptr; 1765 return ptr;
403} 1766}
405#define ev_malloc(size) ev_realloc (0, (size)) 1768#define ev_malloc(size) ev_realloc (0, (size))
406#define ev_free(ptr) ev_realloc ((ptr), 0) 1769#define ev_free(ptr) ev_realloc ((ptr), 0)
407 1770
408/*****************************************************************************/ 1771/*****************************************************************************/
409 1772
1773/* set in reify when reification needed */
1774#define EV_ANFD_REIFY 1
1775
1776/* file descriptor info structure */
410typedef struct 1777typedef struct
411{ 1778{
412 WL head; 1779 WL head;
413 unsigned char events; 1780 unsigned char events; /* the events watched for */
1781 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1782 unsigned char emask; /* some backends store the actual kernel mask in here */
414 unsigned char reify; 1783 unsigned char unused;
1784#if EV_USE_EPOLL
1785 unsigned int egen; /* generation counter to counter epoll bugs */
1786#endif
415#if EV_SELECT_IS_WINSOCKET 1787#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
416 SOCKET handle; 1788 SOCKET handle;
417#endif 1789#endif
1790#if EV_USE_IOCP
1791 OVERLAPPED or, ow;
1792#endif
418} ANFD; 1793} ANFD;
419 1794
1795/* stores the pending event set for a given watcher */
420typedef struct 1796typedef struct
421{ 1797{
422 W w; 1798 W w;
423 int events; 1799 int events; /* the pending event set for the given watcher */
424} ANPENDING; 1800} ANPENDING;
425 1801
426#if EV_USE_INOTIFY 1802#if EV_USE_INOTIFY
427/* hash table entry per inotify-id */ 1803/* hash table entry per inotify-id */
428typedef struct 1804typedef struct
430 WL head; 1806 WL head;
431} ANFS; 1807} ANFS;
432#endif 1808#endif
433 1809
434/* Heap Entry */ 1810/* Heap Entry */
435#define EV_HEAP_CACHE_AT 0
436#if EV_HEAP_CACHE_AT 1811#if EV_HEAP_CACHE_AT
1812 /* a heap element */
437 typedef struct { 1813 typedef struct {
1814 ev_tstamp at;
438 WT w; 1815 WT w;
439 ev_tstamp at;
440 } ANHE; 1816 } ANHE;
441 1817
442 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1818 #define ANHE_w(he) (he).w /* access watcher, read-write */
443 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1819 #define ANHE_at(he) (he).at /* access cached at, read-only */
444 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */ 1820 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
445#else 1821#else
1822 /* a heap element */
446 typedef WT ANHE; 1823 typedef WT ANHE;
447 1824
448 #define ANHE_w(he) (he) 1825 #define ANHE_w(he) (he)
449 #define ANHE_at(he) (he)->at 1826 #define ANHE_at(he) (he)->at
450 #define ANHE_at_set(he) 1827 #define ANHE_at_cache(he)
451#endif 1828#endif
452 1829
453#if EV_MULTIPLICITY 1830#if EV_MULTIPLICITY
454 1831
455 struct ev_loop 1832 struct ev_loop
461 #undef VAR 1838 #undef VAR
462 }; 1839 };
463 #include "ev_wrap.h" 1840 #include "ev_wrap.h"
464 1841
465 static struct ev_loop default_loop_struct; 1842 static struct ev_loop default_loop_struct;
466 struct ev_loop *ev_default_loop_ptr; 1843 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
467 1844
468#else 1845#else
469 1846
470 ev_tstamp ev_rt_now; 1847 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
471 #define VAR(name,decl) static decl; 1848 #define VAR(name,decl) static decl;
472 #include "ev_vars.h" 1849 #include "ev_vars.h"
473 #undef VAR 1850 #undef VAR
474 1851
475 static int ev_default_loop_ptr; 1852 static int ev_default_loop_ptr;
476 1853
477#endif 1854#endif
478 1855
1856#if EV_FEATURE_API
1857# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1858# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1859# define EV_INVOKE_PENDING invoke_cb (EV_A)
1860#else
1861# define EV_RELEASE_CB (void)0
1862# define EV_ACQUIRE_CB (void)0
1863# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1864#endif
1865
1866#define EVBREAK_RECURSE 0x80
1867
479/*****************************************************************************/ 1868/*****************************************************************************/
480 1869
1870#ifndef EV_HAVE_EV_TIME
481ev_tstamp 1871ev_tstamp
482ev_time (void) 1872ev_time (void) EV_NOEXCEPT
483{ 1873{
484#if EV_USE_REALTIME 1874#if EV_USE_REALTIME
1875 if (expect_true (have_realtime))
1876 {
485 struct timespec ts; 1877 struct timespec ts;
486 clock_gettime (CLOCK_REALTIME, &ts); 1878 clock_gettime (CLOCK_REALTIME, &ts);
487 return ts.tv_sec + ts.tv_nsec * 1e-9; 1879 return ts.tv_sec + ts.tv_nsec * 1e-9;
488#else 1880 }
1881#endif
1882
489 struct timeval tv; 1883 struct timeval tv;
490 gettimeofday (&tv, 0); 1884 gettimeofday (&tv, 0);
491 return tv.tv_sec + tv.tv_usec * 1e-6; 1885 return tv.tv_sec + tv.tv_usec * 1e-6;
492#endif
493} 1886}
1887#endif
494 1888
495ev_tstamp inline_size 1889inline_size ev_tstamp
496get_clock (void) 1890get_clock (void)
497{ 1891{
498#if EV_USE_MONOTONIC 1892#if EV_USE_MONOTONIC
499 if (expect_true (have_monotonic)) 1893 if (expect_true (have_monotonic))
500 { 1894 {
507 return ev_time (); 1901 return ev_time ();
508} 1902}
509 1903
510#if EV_MULTIPLICITY 1904#if EV_MULTIPLICITY
511ev_tstamp 1905ev_tstamp
512ev_now (EV_P) 1906ev_now (EV_P) EV_NOEXCEPT
513{ 1907{
514 return ev_rt_now; 1908 return ev_rt_now;
515} 1909}
516#endif 1910#endif
517 1911
518void 1912void
519ev_sleep (ev_tstamp delay) 1913ev_sleep (ev_tstamp delay) EV_NOEXCEPT
520{ 1914{
521 if (delay > 0.) 1915 if (delay > 0.)
522 { 1916 {
523#if EV_USE_NANOSLEEP 1917#if EV_USE_NANOSLEEP
524 struct timespec ts; 1918 struct timespec ts;
525 1919
526 ts.tv_sec = (time_t)delay; 1920 EV_TS_SET (ts, delay);
527 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
528
529 nanosleep (&ts, 0); 1921 nanosleep (&ts, 0);
530#elif defined(_WIN32) 1922#elif defined _WIN32
1923 /* maybe this should round up, as ms is very low resolution */
1924 /* compared to select (µs) or nanosleep (ns) */
531 Sleep ((unsigned long)(delay * 1e3)); 1925 Sleep ((unsigned long)(delay * 1e3));
532#else 1926#else
533 struct timeval tv; 1927 struct timeval tv;
534 1928
535 tv.tv_sec = (time_t)delay; 1929 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
536 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1930 /* something not guaranteed by newer posix versions, but guaranteed */
537 1931 /* by older ones */
1932 EV_TV_SET (tv, delay);
538 select (0, 0, 0, 0, &tv); 1933 select (0, 0, 0, 0, &tv);
539#endif 1934#endif
540 } 1935 }
541} 1936}
542 1937
543/*****************************************************************************/ 1938/*****************************************************************************/
544 1939
545#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1940#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
546 1941
547int inline_size 1942/* find a suitable new size for the given array, */
1943/* hopefully by rounding to a nice-to-malloc size */
1944inline_size int
548array_nextsize (int elem, int cur, int cnt) 1945array_nextsize (int elem, int cur, int cnt)
549{ 1946{
550 int ncur = cur + 1; 1947 int ncur = cur + 1;
551 1948
552 do 1949 do
553 ncur <<= 1; 1950 ncur <<= 1;
554 while (cnt > ncur); 1951 while (cnt > ncur);
555 1952
556 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 1953 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
557 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 1954 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
558 { 1955 {
559 ncur *= elem; 1956 ncur *= elem;
560 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 1957 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
561 ncur = ncur - sizeof (void *) * 4; 1958 ncur = ncur - sizeof (void *) * 4;
563 } 1960 }
564 1961
565 return ncur; 1962 return ncur;
566} 1963}
567 1964
568static noinline void * 1965noinline ecb_cold
1966static void *
569array_realloc (int elem, void *base, int *cur, int cnt) 1967array_realloc (int elem, void *base, int *cur, int cnt)
570{ 1968{
571 *cur = array_nextsize (elem, *cur, cnt); 1969 *cur = array_nextsize (elem, *cur, cnt);
572 return ev_realloc (base, elem * *cur); 1970 return ev_realloc (base, elem * *cur);
573} 1971}
1972
1973#define array_needsize_noinit(base,count)
1974
1975#define array_needsize_zerofill(base,count) \
1976 memset ((void *)(base), 0, sizeof (*(base)) * (count))
574 1977
575#define array_needsize(type,base,cur,cnt,init) \ 1978#define array_needsize(type,base,cur,cnt,init) \
576 if (expect_false ((cnt) > (cur))) \ 1979 if (expect_false ((cnt) > (cur))) \
577 { \ 1980 { \
578 int ocur_ = (cur); \ 1981 ecb_unused int ocur_ = (cur); \
579 (base) = (type *)array_realloc \ 1982 (base) = (type *)array_realloc \
580 (sizeof (type), (base), &(cur), (cnt)); \ 1983 (sizeof (type), (base), &(cur), (cnt)); \
581 init ((base) + (ocur_), (cur) - ocur_); \ 1984 init ((base) + (ocur_), (cur) - ocur_); \
582 } 1985 }
583 1986
590 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1993 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
591 } 1994 }
592#endif 1995#endif
593 1996
594#define array_free(stem, idx) \ 1997#define array_free(stem, idx) \
595 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1998 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
596 1999
597/*****************************************************************************/ 2000/*****************************************************************************/
598 2001
2002/* dummy callback for pending events */
599void noinline 2003noinline
2004static void
2005pendingcb (EV_P_ ev_prepare *w, int revents)
2006{
2007}
2008
2009noinline
2010void
600ev_feed_event (EV_P_ void *w, int revents) 2011ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
601{ 2012{
602 W w_ = (W)w; 2013 W w_ = (W)w;
603 int pri = ABSPRI (w_); 2014 int pri = ABSPRI (w_);
604 2015
605 if (expect_false (w_->pending)) 2016 if (expect_false (w_->pending))
606 pendings [pri][w_->pending - 1].events |= revents; 2017 pendings [pri][w_->pending - 1].events |= revents;
607 else 2018 else
608 { 2019 {
609 w_->pending = ++pendingcnt [pri]; 2020 w_->pending = ++pendingcnt [pri];
610 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 2021 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
611 pendings [pri][w_->pending - 1].w = w_; 2022 pendings [pri][w_->pending - 1].w = w_;
612 pendings [pri][w_->pending - 1].events = revents; 2023 pendings [pri][w_->pending - 1].events = revents;
613 } 2024 }
614}
615 2025
616void inline_speed 2026 pendingpri = NUMPRI - 1;
2027}
2028
2029inline_speed void
2030feed_reverse (EV_P_ W w)
2031{
2032 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2033 rfeeds [rfeedcnt++] = w;
2034}
2035
2036inline_size void
2037feed_reverse_done (EV_P_ int revents)
2038{
2039 do
2040 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2041 while (rfeedcnt);
2042}
2043
2044inline_speed void
617queue_events (EV_P_ W *events, int eventcnt, int type) 2045queue_events (EV_P_ W *events, int eventcnt, int type)
618{ 2046{
619 int i; 2047 int i;
620 2048
621 for (i = 0; i < eventcnt; ++i) 2049 for (i = 0; i < eventcnt; ++i)
622 ev_feed_event (EV_A_ events [i], type); 2050 ev_feed_event (EV_A_ events [i], type);
623} 2051}
624 2052
625/*****************************************************************************/ 2053/*****************************************************************************/
626 2054
627void inline_size 2055inline_speed void
628anfds_init (ANFD *base, int count)
629{
630 while (count--)
631 {
632 base->head = 0;
633 base->events = EV_NONE;
634 base->reify = 0;
635
636 ++base;
637 }
638}
639
640void inline_speed
641fd_event (EV_P_ int fd, int revents) 2056fd_event_nocheck (EV_P_ int fd, int revents)
642{ 2057{
643 ANFD *anfd = anfds + fd; 2058 ANFD *anfd = anfds + fd;
644 ev_io *w; 2059 ev_io *w;
645 2060
646 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2061 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
650 if (ev) 2065 if (ev)
651 ev_feed_event (EV_A_ (W)w, ev); 2066 ev_feed_event (EV_A_ (W)w, ev);
652 } 2067 }
653} 2068}
654 2069
655void 2070/* do not submit kernel events for fds that have reify set */
2071/* because that means they changed while we were polling for new events */
2072inline_speed void
656ev_feed_fd_event (EV_P_ int fd, int revents) 2073fd_event (EV_P_ int fd, int revents)
2074{
2075 ANFD *anfd = anfds + fd;
2076
2077 if (expect_true (!anfd->reify))
2078 fd_event_nocheck (EV_A_ fd, revents);
2079}
2080
2081void
2082ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
657{ 2083{
658 if (fd >= 0 && fd < anfdmax) 2084 if (fd >= 0 && fd < anfdmax)
659 fd_event (EV_A_ fd, revents); 2085 fd_event_nocheck (EV_A_ fd, revents);
660} 2086}
661 2087
662void inline_size 2088/* make sure the external fd watch events are in-sync */
2089/* with the kernel/libev internal state */
2090inline_size void
663fd_reify (EV_P) 2091fd_reify (EV_P)
664{ 2092{
665 int i; 2093 int i;
2094
2095#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2096 for (i = 0; i < fdchangecnt; ++i)
2097 {
2098 int fd = fdchanges [i];
2099 ANFD *anfd = anfds + fd;
2100
2101 if (anfd->reify & EV__IOFDSET && anfd->head)
2102 {
2103 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2104
2105 if (handle != anfd->handle)
2106 {
2107 unsigned long arg;
2108
2109 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2110
2111 /* handle changed, but fd didn't - we need to do it in two steps */
2112 backend_modify (EV_A_ fd, anfd->events, 0);
2113 anfd->events = 0;
2114 anfd->handle = handle;
2115 }
2116 }
2117 }
2118#endif
666 2119
667 for (i = 0; i < fdchangecnt; ++i) 2120 for (i = 0; i < fdchangecnt; ++i)
668 { 2121 {
669 int fd = fdchanges [i]; 2122 int fd = fdchanges [i];
670 ANFD *anfd = anfds + fd; 2123 ANFD *anfd = anfds + fd;
671 ev_io *w; 2124 ev_io *w;
672 2125
673 unsigned char events = 0; 2126 unsigned char o_events = anfd->events;
2127 unsigned char o_reify = anfd->reify;
674 2128
675 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2129 anfd->reify = 0;
676 events |= (unsigned char)w->events;
677 2130
678#if EV_SELECT_IS_WINSOCKET 2131 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
679 if (events)
680 { 2132 {
681 unsigned long argp; 2133 anfd->events = 0;
682 #ifdef EV_FD_TO_WIN32_HANDLE 2134
683 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 2135 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
684 #else 2136 anfd->events |= (unsigned char)w->events;
685 anfd->handle = _get_osfhandle (fd); 2137
686 #endif 2138 if (o_events != anfd->events)
687 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 2139 o_reify = EV__IOFDSET; /* actually |= */
688 } 2140 }
689#endif
690 2141
691 { 2142 if (o_reify & EV__IOFDSET)
692 unsigned char o_events = anfd->events;
693 unsigned char o_reify = anfd->reify;
694
695 anfd->reify = 0;
696 anfd->events = events;
697
698 if (o_events != events || o_reify & EV_IOFDSET)
699 backend_modify (EV_A_ fd, o_events, events); 2143 backend_modify (EV_A_ fd, o_events, anfd->events);
700 }
701 } 2144 }
702 2145
703 fdchangecnt = 0; 2146 fdchangecnt = 0;
704} 2147}
705 2148
2149/* something about the given fd changed */
706void inline_size 2150inline_size
2151void
707fd_change (EV_P_ int fd, int flags) 2152fd_change (EV_P_ int fd, int flags)
708{ 2153{
709 unsigned char reify = anfds [fd].reify; 2154 unsigned char reify = anfds [fd].reify;
710 anfds [fd].reify |= flags; 2155 anfds [fd].reify |= flags;
711 2156
712 if (expect_true (!reify)) 2157 if (expect_true (!reify))
713 { 2158 {
714 ++fdchangecnt; 2159 ++fdchangecnt;
715 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 2160 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
716 fdchanges [fdchangecnt - 1] = fd; 2161 fdchanges [fdchangecnt - 1] = fd;
717 } 2162 }
718} 2163}
719 2164
720void inline_speed 2165/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2166inline_speed ecb_cold void
721fd_kill (EV_P_ int fd) 2167fd_kill (EV_P_ int fd)
722{ 2168{
723 ev_io *w; 2169 ev_io *w;
724 2170
725 while ((w = (ev_io *)anfds [fd].head)) 2171 while ((w = (ev_io *)anfds [fd].head))
727 ev_io_stop (EV_A_ w); 2173 ev_io_stop (EV_A_ w);
728 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2174 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
729 } 2175 }
730} 2176}
731 2177
732int inline_size 2178/* check whether the given fd is actually valid, for error recovery */
2179inline_size ecb_cold int
733fd_valid (int fd) 2180fd_valid (int fd)
734{ 2181{
735#ifdef _WIN32 2182#ifdef _WIN32
736 return _get_osfhandle (fd) != -1; 2183 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
737#else 2184#else
738 return fcntl (fd, F_GETFD) != -1; 2185 return fcntl (fd, F_GETFD) != -1;
739#endif 2186#endif
740} 2187}
741 2188
742/* called on EBADF to verify fds */ 2189/* called on EBADF to verify fds */
743static void noinline 2190noinline ecb_cold
2191static void
744fd_ebadf (EV_P) 2192fd_ebadf (EV_P)
745{ 2193{
746 int fd; 2194 int fd;
747 2195
748 for (fd = 0; fd < anfdmax; ++fd) 2196 for (fd = 0; fd < anfdmax; ++fd)
749 if (anfds [fd].events) 2197 if (anfds [fd].events)
750 if (!fd_valid (fd) == -1 && errno == EBADF) 2198 if (!fd_valid (fd) && errno == EBADF)
751 fd_kill (EV_A_ fd); 2199 fd_kill (EV_A_ fd);
752} 2200}
753 2201
754/* called on ENOMEM in select/poll to kill some fds and retry */ 2202/* called on ENOMEM in select/poll to kill some fds and retry */
755static void noinline 2203noinline ecb_cold
2204static void
756fd_enomem (EV_P) 2205fd_enomem (EV_P)
757{ 2206{
758 int fd; 2207 int fd;
759 2208
760 for (fd = anfdmax; fd--; ) 2209 for (fd = anfdmax; fd--; )
761 if (anfds [fd].events) 2210 if (anfds [fd].events)
762 { 2211 {
763 fd_kill (EV_A_ fd); 2212 fd_kill (EV_A_ fd);
764 return; 2213 break;
765 } 2214 }
766} 2215}
767 2216
768/* usually called after fork if backend needs to re-arm all fds from scratch */ 2217/* usually called after fork if backend needs to re-arm all fds from scratch */
769static void noinline 2218noinline
2219static void
770fd_rearm_all (EV_P) 2220fd_rearm_all (EV_P)
771{ 2221{
772 int fd; 2222 int fd;
773 2223
774 for (fd = 0; fd < anfdmax; ++fd) 2224 for (fd = 0; fd < anfdmax; ++fd)
775 if (anfds [fd].events) 2225 if (anfds [fd].events)
776 { 2226 {
777 anfds [fd].events = 0; 2227 anfds [fd].events = 0;
2228 anfds [fd].emask = 0;
778 fd_change (EV_A_ fd, EV_IOFDSET | 1); 2229 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
779 } 2230 }
780} 2231}
781 2232
2233/* used to prepare libev internal fd's */
2234/* this is not fork-safe */
2235inline_speed void
2236fd_intern (int fd)
2237{
2238#ifdef _WIN32
2239 unsigned long arg = 1;
2240 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2241#else
2242 fcntl (fd, F_SETFD, FD_CLOEXEC);
2243 fcntl (fd, F_SETFL, O_NONBLOCK);
2244#endif
2245}
2246
782/*****************************************************************************/ 2247/*****************************************************************************/
783 2248
784/* 2249/*
785 * the heap functions want a real array index. array index 0 uis guaranteed to not 2250 * the heap functions want a real array index. array index 0 is guaranteed to not
786 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 2251 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
787 * the branching factor of the d-tree. 2252 * the branching factor of the d-tree.
788 */ 2253 */
789 2254
790/* 2255/*
791 * at the moment we allow libev the luxury of two heaps, 2256 * at the moment we allow libev the luxury of two heaps,
792 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 2257 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
793 * which is more cache-efficient. 2258 * which is more cache-efficient.
794 * the difference is about 5% with 50000+ watchers. 2259 * the difference is about 5% with 50000+ watchers.
795 */ 2260 */
796#define EV_USE_4HEAP !EV_MINIMAL
797#if EV_USE_4HEAP 2261#if EV_USE_4HEAP
798 2262
799#define DHEAP 4 2263#define DHEAP 4
800#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 2264#define HEAP0 (DHEAP - 1) /* index of first element in heap */
801 2265#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
802/* towards the root */ 2266#define UPHEAP_DONE(p,k) ((p) == (k))
803void inline_speed
804upheap (ANHE *heap, int k)
805{
806 ANHE he = heap [k];
807
808 for (;;)
809 {
810 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
811
812 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
813 break;
814
815 heap [k] = heap [p];
816 ev_active (ANHE_w (heap [k])) = k;
817 k = p;
818 }
819
820 ev_active (ANHE_w (he)) = k;
821 heap [k] = he;
822}
823 2267
824/* away from the root */ 2268/* away from the root */
825void inline_speed 2269inline_speed void
826downheap (ANHE *heap, int N, int k) 2270downheap (ANHE *heap, int N, int k)
827{ 2271{
828 ANHE he = heap [k]; 2272 ANHE he = heap [k];
829 ANHE *E = heap + N + HEAP0; 2273 ANHE *E = heap + N + HEAP0;
830 2274
831 for (;;) 2275 for (;;)
832 { 2276 {
833 ev_tstamp minat; 2277 ev_tstamp minat;
834 ANHE *minpos; 2278 ANHE *minpos;
835 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 2279 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
836 2280
837 // find minimum child 2281 /* find minimum child */
838 if (expect_true (pos + DHEAP - 1 < E)) 2282 if (expect_true (pos + DHEAP - 1 < E))
839 { 2283 {
840 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 2284 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
841 if (ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 2285 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
842 if (ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 2286 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
843 if (ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); 2287 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
844 } 2288 }
845 else if (pos < E) 2289 else if (pos < E)
846 { 2290 {
847 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 2291 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
848 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 2292 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
853 break; 2297 break;
854 2298
855 if (ANHE_at (he) <= minat) 2299 if (ANHE_at (he) <= minat)
856 break; 2300 break;
857 2301
2302 heap [k] = *minpos;
858 ev_active (ANHE_w (*minpos)) = k; 2303 ev_active (ANHE_w (*minpos)) = k;
859 heap [k] = *minpos;
860 2304
861 k = minpos - heap; 2305 k = minpos - heap;
862 } 2306 }
863 2307
2308 heap [k] = he;
864 ev_active (ANHE_w (he)) = k; 2309 ev_active (ANHE_w (he)) = k;
865 heap [k] = he;
866} 2310}
867 2311
868#else // 4HEAP 2312#else /* 4HEAP */
869 2313
870#define HEAP0 1 2314#define HEAP0 1
2315#define HPARENT(k) ((k) >> 1)
2316#define UPHEAP_DONE(p,k) (!(p))
871 2317
872/* towards the root */ 2318/* away from the root */
873void inline_speed 2319inline_speed void
874upheap (ANHE *heap, int k) 2320downheap (ANHE *heap, int N, int k)
875{ 2321{
876 ANHE he = heap [k]; 2322 ANHE he = heap [k];
877 2323
878 for (;;) 2324 for (;;)
879 { 2325 {
880 int p = k >> 1; 2326 int c = k << 1;
881 2327
882 /* maybe we could use a dummy element at heap [0]? */ 2328 if (c >= N + HEAP0)
883 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
884 break; 2329 break;
885 2330
886 heap [k] = heap [p];
887 ev_active (ANHE_w (heap [k])) = k;
888 k = p;
889 }
890
891 heap [k] = w;
892 ev_active (ANHE_w (heap [k])) = k;
893}
894
895/* away from the root */
896void inline_speed
897downheap (ANHE *heap, int N, int k)
898{
899 ANHE he = heap [k];
900
901 for (;;)
902 {
903 int c = k << 1;
904
905 if (c > N)
906 break;
907
908 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 2331 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
909 ? 1 : 0; 2332 ? 1 : 0;
910 2333
911 if (w->at <= ANHE_at (heap [c])) 2334 if (ANHE_at (he) <= ANHE_at (heap [c]))
912 break; 2335 break;
913 2336
914 heap [k] = heap [c]; 2337 heap [k] = heap [c];
915 ev_active (ANHE_w (heap [k])) = k; 2338 ev_active (ANHE_w (heap [k])) = k;
916 2339
920 heap [k] = he; 2343 heap [k] = he;
921 ev_active (ANHE_w (he)) = k; 2344 ev_active (ANHE_w (he)) = k;
922} 2345}
923#endif 2346#endif
924 2347
925void inline_size 2348/* towards the root */
2349inline_speed void
2350upheap (ANHE *heap, int k)
2351{
2352 ANHE he = heap [k];
2353
2354 for (;;)
2355 {
2356 int p = HPARENT (k);
2357
2358 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2359 break;
2360
2361 heap [k] = heap [p];
2362 ev_active (ANHE_w (heap [k])) = k;
2363 k = p;
2364 }
2365
2366 heap [k] = he;
2367 ev_active (ANHE_w (he)) = k;
2368}
2369
2370/* move an element suitably so it is in a correct place */
2371inline_size void
926adjustheap (ANHE *heap, int N, int k) 2372adjustheap (ANHE *heap, int N, int k)
927{ 2373{
2374 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
928 upheap (heap, k); 2375 upheap (heap, k);
2376 else
929 downheap (heap, N, k); 2377 downheap (heap, N, k);
2378}
2379
2380/* rebuild the heap: this function is used only once and executed rarely */
2381inline_size void
2382reheap (ANHE *heap, int N)
2383{
2384 int i;
2385
2386 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2387 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2388 for (i = 0; i < N; ++i)
2389 upheap (heap, i + HEAP0);
930} 2390}
931 2391
932/*****************************************************************************/ 2392/*****************************************************************************/
933 2393
2394/* associate signal watchers to a signal signal */
934typedef struct 2395typedef struct
935{ 2396{
2397 EV_ATOMIC_T pending;
2398#if EV_MULTIPLICITY
2399 EV_P;
2400#endif
936 WL head; 2401 WL head;
937 EV_ATOMIC_T gotsig;
938} ANSIG; 2402} ANSIG;
939 2403
940static ANSIG *signals; 2404static ANSIG signals [EV_NSIG - 1];
941static int signalmax;
942
943static EV_ATOMIC_T gotsig;
944
945void inline_size
946signals_init (ANSIG *base, int count)
947{
948 while (count--)
949 {
950 base->head = 0;
951 base->gotsig = 0;
952
953 ++base;
954 }
955}
956 2405
957/*****************************************************************************/ 2406/*****************************************************************************/
958 2407
959void inline_speed 2408#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
960fd_intern (int fd)
961{
962#ifdef _WIN32
963 int arg = 1;
964 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
965#else
966 fcntl (fd, F_SETFD, FD_CLOEXEC);
967 fcntl (fd, F_SETFL, O_NONBLOCK);
968#endif
969}
970 2409
971static void noinline 2410noinline ecb_cold
2411static void
972evpipe_init (EV_P) 2412evpipe_init (EV_P)
973{ 2413{
974 if (!ev_is_active (&pipeev)) 2414 if (!ev_is_active (&pipe_w))
2415 {
2416 int fds [2];
2417
2418# if EV_USE_EVENTFD
2419 fds [0] = -1;
2420 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2421 if (fds [1] < 0 && errno == EINVAL)
2422 fds [1] = eventfd (0, 0);
2423
2424 if (fds [1] < 0)
2425# endif
2426 {
2427 while (pipe (fds))
2428 ev_syserr ("(libev) error creating signal/async pipe");
2429
2430 fd_intern (fds [0]);
2431 }
2432
2433 evpipe [0] = fds [0];
2434
2435 if (evpipe [1] < 0)
2436 evpipe [1] = fds [1]; /* first call, set write fd */
2437 else
2438 {
2439 /* on subsequent calls, do not change evpipe [1] */
2440 /* so that evpipe_write can always rely on its value. */
2441 /* this branch does not do anything sensible on windows, */
2442 /* so must not be executed on windows */
2443
2444 dup2 (fds [1], evpipe [1]);
2445 close (fds [1]);
2446 }
2447
2448 fd_intern (evpipe [1]);
2449
2450 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2451 ev_io_start (EV_A_ &pipe_w);
2452 ev_unref (EV_A); /* watcher should not keep loop alive */
975 { 2453 }
2454}
2455
2456inline_speed void
2457evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2458{
2459 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2460
2461 if (expect_true (*flag))
2462 return;
2463
2464 *flag = 1;
2465 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2466
2467 pipe_write_skipped = 1;
2468
2469 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2470
2471 if (pipe_write_wanted)
2472 {
2473 int old_errno;
2474
2475 pipe_write_skipped = 0;
2476 ECB_MEMORY_FENCE_RELEASE;
2477
2478 old_errno = errno; /* save errno because write will clobber it */
2479
976#if EV_USE_EVENTFD 2480#if EV_USE_EVENTFD
977 if ((evfd = eventfd (0, 0)) >= 0) 2481 if (evpipe [0] < 0)
978 { 2482 {
979 evpipe [0] = -1; 2483 uint64_t counter = 1;
980 fd_intern (evfd); 2484 write (evpipe [1], &counter, sizeof (uint64_t));
981 ev_io_set (&pipeev, evfd, EV_READ);
982 } 2485 }
983 else 2486 else
984#endif 2487#endif
985 { 2488 {
986 while (pipe (evpipe)) 2489#ifdef _WIN32
987 syserr ("(libev) error creating signal/async pipe"); 2490 WSABUF buf;
988 2491 DWORD sent;
989 fd_intern (evpipe [0]); 2492 buf.buf = (char *)&buf;
990 fd_intern (evpipe [1]); 2493 buf.len = 1;
991 ev_io_set (&pipeev, evpipe [0], EV_READ); 2494 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2495#else
2496 write (evpipe [1], &(evpipe [1]), 1);
2497#endif
992 } 2498 }
993 2499
994 ev_io_start (EV_A_ &pipeev); 2500 errno = old_errno;
995 ev_unref (EV_A); /* watcher should not keep loop alive */
996 }
997}
998
999void inline_size
1000evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1001{
1002 if (!*flag)
1003 { 2501 }
1004 int old_errno = errno; /* save errno because write might clobber it */ 2502}
1005 2503
1006 *flag = 1; 2504/* called whenever the libev signal pipe */
2505/* got some events (signal, async) */
2506static void
2507pipecb (EV_P_ ev_io *iow, int revents)
2508{
2509 int i;
1007 2510
2511 if (revents & EV_READ)
2512 {
1008#if EV_USE_EVENTFD 2513#if EV_USE_EVENTFD
1009 if (evfd >= 0) 2514 if (evpipe [0] < 0)
1010 { 2515 {
1011 uint64_t counter = 1; 2516 uint64_t counter;
1012 write (evfd, &counter, sizeof (uint64_t)); 2517 read (evpipe [1], &counter, sizeof (uint64_t));
1013 } 2518 }
1014 else 2519 else
1015#endif 2520#endif
1016 write (evpipe [1], &old_errno, 1); 2521 {
1017
1018 errno = old_errno;
1019 }
1020}
1021
1022static void
1023pipecb (EV_P_ ev_io *iow, int revents)
1024{
1025#if EV_USE_EVENTFD
1026 if (evfd >= 0)
1027 {
1028 uint64_t counter;
1029 read (evfd, &counter, sizeof (uint64_t));
1030 }
1031 else
1032#endif
1033 {
1034 char dummy; 2522 char dummy[4];
2523#ifdef _WIN32
2524 WSABUF buf;
2525 DWORD recvd;
2526 DWORD flags = 0;
2527 buf.buf = dummy;
2528 buf.len = sizeof (dummy);
2529 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2530#else
1035 read (evpipe [0], &dummy, 1); 2531 read (evpipe [0], &dummy, sizeof (dummy));
2532#endif
2533 }
2534 }
2535
2536 pipe_write_skipped = 0;
2537
2538 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2539
2540#if EV_SIGNAL_ENABLE
2541 if (sig_pending)
1036 } 2542 {
2543 sig_pending = 0;
1037 2544
1038 if (gotsig && ev_is_default_loop (EV_A)) 2545 ECB_MEMORY_FENCE;
1039 {
1040 int signum;
1041 gotsig = 0;
1042 2546
1043 for (signum = signalmax; signum--; ) 2547 for (i = EV_NSIG - 1; i--; )
1044 if (signals [signum].gotsig) 2548 if (expect_false (signals [i].pending))
1045 ev_feed_signal_event (EV_A_ signum + 1); 2549 ev_feed_signal_event (EV_A_ i + 1);
1046 } 2550 }
2551#endif
1047 2552
1048#if EV_ASYNC_ENABLE 2553#if EV_ASYNC_ENABLE
1049 if (gotasync) 2554 if (async_pending)
1050 { 2555 {
1051 int i; 2556 async_pending = 0;
1052 gotasync = 0; 2557
2558 ECB_MEMORY_FENCE;
1053 2559
1054 for (i = asynccnt; i--; ) 2560 for (i = asynccnt; i--; )
1055 if (asyncs [i]->sent) 2561 if (asyncs [i]->sent)
1056 { 2562 {
1057 asyncs [i]->sent = 0; 2563 asyncs [i]->sent = 0;
2564 ECB_MEMORY_FENCE_RELEASE;
1058 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2565 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1059 } 2566 }
1060 } 2567 }
1061#endif 2568#endif
1062} 2569}
1063 2570
1064/*****************************************************************************/ 2571/*****************************************************************************/
1065 2572
2573void
2574ev_feed_signal (int signum) EV_NOEXCEPT
2575{
2576#if EV_MULTIPLICITY
2577 EV_P;
2578 ECB_MEMORY_FENCE_ACQUIRE;
2579 EV_A = signals [signum - 1].loop;
2580
2581 if (!EV_A)
2582 return;
2583#endif
2584
2585 signals [signum - 1].pending = 1;
2586 evpipe_write (EV_A_ &sig_pending);
2587}
2588
1066static void 2589static void
1067ev_sighandler (int signum) 2590ev_sighandler (int signum)
1068{ 2591{
2592#ifdef _WIN32
2593 signal (signum, ev_sighandler);
2594#endif
2595
2596 ev_feed_signal (signum);
2597}
2598
2599noinline
2600void
2601ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2602{
2603 WL w;
2604
2605 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2606 return;
2607
2608 --signum;
2609
1069#if EV_MULTIPLICITY 2610#if EV_MULTIPLICITY
1070 struct ev_loop *loop = &default_loop_struct; 2611 /* it is permissible to try to feed a signal to the wrong loop */
1071#endif 2612 /* or, likely more useful, feeding a signal nobody is waiting for */
1072 2613
1073#if _WIN32 2614 if (expect_false (signals [signum].loop != EV_A))
1074 signal (signum, ev_sighandler);
1075#endif
1076
1077 signals [signum - 1].gotsig = 1;
1078 evpipe_write (EV_A_ &gotsig);
1079}
1080
1081void noinline
1082ev_feed_signal_event (EV_P_ int signum)
1083{
1084 WL w;
1085
1086#if EV_MULTIPLICITY
1087 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1088#endif
1089
1090 --signum;
1091
1092 if (signum < 0 || signum >= signalmax)
1093 return; 2615 return;
2616#endif
1094 2617
1095 signals [signum].gotsig = 0; 2618 signals [signum].pending = 0;
2619 ECB_MEMORY_FENCE_RELEASE;
1096 2620
1097 for (w = signals [signum].head; w; w = w->next) 2621 for (w = signals [signum].head; w; w = w->next)
1098 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2622 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1099} 2623}
1100 2624
2625#if EV_USE_SIGNALFD
2626static void
2627sigfdcb (EV_P_ ev_io *iow, int revents)
2628{
2629 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2630
2631 for (;;)
2632 {
2633 ssize_t res = read (sigfd, si, sizeof (si));
2634
2635 /* not ISO-C, as res might be -1, but works with SuS */
2636 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2637 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2638
2639 if (res < (ssize_t)sizeof (si))
2640 break;
2641 }
2642}
2643#endif
2644
2645#endif
2646
1101/*****************************************************************************/ 2647/*****************************************************************************/
1102 2648
2649#if EV_CHILD_ENABLE
1103static WL childs [EV_PID_HASHSIZE]; 2650static WL childs [EV_PID_HASHSIZE];
1104
1105#ifndef _WIN32
1106 2651
1107static ev_signal childev; 2652static ev_signal childev;
1108 2653
1109#ifndef WIFCONTINUED 2654#ifndef WIFCONTINUED
1110# define WIFCONTINUED(status) 0 2655# define WIFCONTINUED(status) 0
1111#endif 2656#endif
1112 2657
1113void inline_speed 2658/* handle a single child status event */
2659inline_speed void
1114child_reap (EV_P_ int chain, int pid, int status) 2660child_reap (EV_P_ int chain, int pid, int status)
1115{ 2661{
1116 ev_child *w; 2662 ev_child *w;
1117 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2663 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1118 2664
1119 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2665 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1120 { 2666 {
1121 if ((w->pid == pid || !w->pid) 2667 if ((w->pid == pid || !w->pid)
1122 && (!traced || (w->flags & 1))) 2668 && (!traced || (w->flags & 1)))
1123 { 2669 {
1124 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2670 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1131 2677
1132#ifndef WCONTINUED 2678#ifndef WCONTINUED
1133# define WCONTINUED 0 2679# define WCONTINUED 0
1134#endif 2680#endif
1135 2681
2682/* called on sigchld etc., calls waitpid */
1136static void 2683static void
1137childcb (EV_P_ ev_signal *sw, int revents) 2684childcb (EV_P_ ev_signal *sw, int revents)
1138{ 2685{
1139 int pid, status; 2686 int pid, status;
1140 2687
1148 /* make sure we are called again until all children have been reaped */ 2695 /* make sure we are called again until all children have been reaped */
1149 /* we need to do it this way so that the callback gets called before we continue */ 2696 /* we need to do it this way so that the callback gets called before we continue */
1150 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2697 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1151 2698
1152 child_reap (EV_A_ pid, pid, status); 2699 child_reap (EV_A_ pid, pid, status);
1153 if (EV_PID_HASHSIZE > 1) 2700 if ((EV_PID_HASHSIZE) > 1)
1154 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2701 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1155} 2702}
1156 2703
1157#endif 2704#endif
1158 2705
1159/*****************************************************************************/ 2706/*****************************************************************************/
1160 2707
2708#if EV_USE_IOCP
2709# include "ev_iocp.c"
2710#endif
1161#if EV_USE_PORT 2711#if EV_USE_PORT
1162# include "ev_port.c" 2712# include "ev_port.c"
1163#endif 2713#endif
1164#if EV_USE_KQUEUE 2714#if EV_USE_KQUEUE
1165# include "ev_kqueue.c" 2715# include "ev_kqueue.c"
1166#endif 2716#endif
2717#if EV_USE_LINUXAIO
2718# include "ev_linuxaio.c"
2719#endif
1167#if EV_USE_EPOLL 2720#if EV_USE_EPOLL
1168# include "ev_epoll.c" 2721# include "ev_epoll.c"
1169#endif 2722#endif
1170#if EV_USE_POLL 2723#if EV_USE_POLL
1171# include "ev_poll.c" 2724# include "ev_poll.c"
1172#endif 2725#endif
1173#if EV_USE_SELECT 2726#if EV_USE_SELECT
1174# include "ev_select.c" 2727# include "ev_select.c"
1175#endif 2728#endif
1176 2729
1177int 2730ecb_cold int
1178ev_version_major (void) 2731ev_version_major (void) EV_NOEXCEPT
1179{ 2732{
1180 return EV_VERSION_MAJOR; 2733 return EV_VERSION_MAJOR;
1181} 2734}
1182 2735
1183int 2736ecb_cold int
1184ev_version_minor (void) 2737ev_version_minor (void) EV_NOEXCEPT
1185{ 2738{
1186 return EV_VERSION_MINOR; 2739 return EV_VERSION_MINOR;
1187} 2740}
1188 2741
1189/* return true if we are running with elevated privileges and should ignore env variables */ 2742/* return true if we are running with elevated privileges and should ignore env variables */
1190int inline_size 2743inline_size ecb_cold int
1191enable_secure (void) 2744enable_secure (void)
1192{ 2745{
1193#ifdef _WIN32 2746#ifdef _WIN32
1194 return 0; 2747 return 0;
1195#else 2748#else
1196 return getuid () != geteuid () 2749 return getuid () != geteuid ()
1197 || getgid () != getegid (); 2750 || getgid () != getegid ();
1198#endif 2751#endif
1199} 2752}
1200 2753
2754ecb_cold
1201unsigned int 2755unsigned int
1202ev_supported_backends (void) 2756ev_supported_backends (void) EV_NOEXCEPT
1203{ 2757{
1204 unsigned int flags = 0; 2758 unsigned int flags = 0;
1205 2759
1206 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2760 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1207 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2761 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
1208 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL; 2762 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2763 if (EV_USE_LINUXAIO) flags |= EVBACKEND_LINUXAIO;
1209 if (EV_USE_POLL ) flags |= EVBACKEND_POLL; 2764 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1210 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2765 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
1211 2766
1212 return flags; 2767 return flags;
1213} 2768}
1214 2769
2770ecb_cold
1215unsigned int 2771unsigned int
1216ev_recommended_backends (void) 2772ev_recommended_backends (void) EV_NOEXCEPT
1217{ 2773{
1218 unsigned int flags = ev_supported_backends (); 2774 unsigned int flags = ev_supported_backends ();
1219 2775
1220#ifndef __NetBSD__ 2776#ifndef __NetBSD__
1221 /* kqueue is borked on everything but netbsd apparently */ 2777 /* kqueue is borked on everything but netbsd apparently */
1222 /* it usually doesn't work correctly on anything but sockets and pipes */ 2778 /* it usually doesn't work correctly on anything but sockets and pipes */
1223 flags &= ~EVBACKEND_KQUEUE; 2779 flags &= ~EVBACKEND_KQUEUE;
1224#endif 2780#endif
1225#ifdef __APPLE__ 2781#ifdef __APPLE__
1226 // flags &= ~EVBACKEND_KQUEUE; for documentation 2782 /* only select works correctly on that "unix-certified" platform */
1227 flags &= ~EVBACKEND_POLL; 2783 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2784 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2785#endif
2786#ifdef __FreeBSD__
2787 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1228#endif 2788#endif
1229 2789
1230 return flags; 2790 return flags;
1231} 2791}
1232 2792
2793ecb_cold
1233unsigned int 2794unsigned int
1234ev_embeddable_backends (void) 2795ev_embeddable_backends (void) EV_NOEXCEPT
1235{ 2796{
1236 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2797 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1237 2798
1238 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 2799 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1239 /* please fix it and tell me how to detect the fix */ 2800 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1240 flags &= ~EVBACKEND_EPOLL; 2801 flags &= ~EVBACKEND_EPOLL;
1241 2802
1242 return flags; 2803 return flags;
1243} 2804}
1244 2805
1245unsigned int 2806unsigned int
1246ev_backend (EV_P) 2807ev_backend (EV_P) EV_NOEXCEPT
1247{ 2808{
1248 return backend; 2809 return backend;
1249} 2810}
1250 2811
2812#if EV_FEATURE_API
1251unsigned int 2813unsigned int
1252ev_loop_count (EV_P) 2814ev_iteration (EV_P) EV_NOEXCEPT
1253{ 2815{
1254 return loop_count; 2816 return loop_count;
1255} 2817}
1256 2818
2819unsigned int
2820ev_depth (EV_P) EV_NOEXCEPT
2821{
2822 return loop_depth;
2823}
2824
1257void 2825void
1258ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2826ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
1259{ 2827{
1260 io_blocktime = interval; 2828 io_blocktime = interval;
1261} 2829}
1262 2830
1263void 2831void
1264ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2832ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
1265{ 2833{
1266 timeout_blocktime = interval; 2834 timeout_blocktime = interval;
1267} 2835}
1268 2836
1269static void noinline 2837void
2838ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
2839{
2840 userdata = data;
2841}
2842
2843void *
2844ev_userdata (EV_P) EV_NOEXCEPT
2845{
2846 return userdata;
2847}
2848
2849void
2850ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
2851{
2852 invoke_cb = invoke_pending_cb;
2853}
2854
2855void
2856ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
2857{
2858 release_cb = release;
2859 acquire_cb = acquire;
2860}
2861#endif
2862
2863/* initialise a loop structure, must be zero-initialised */
2864noinline ecb_cold
2865static void
1270loop_init (EV_P_ unsigned int flags) 2866loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
1271{ 2867{
1272 if (!backend) 2868 if (!backend)
1273 { 2869 {
2870 origflags = flags;
2871
2872#if EV_USE_REALTIME
2873 if (!have_realtime)
2874 {
2875 struct timespec ts;
2876
2877 if (!clock_gettime (CLOCK_REALTIME, &ts))
2878 have_realtime = 1;
2879 }
2880#endif
2881
1274#if EV_USE_MONOTONIC 2882#if EV_USE_MONOTONIC
2883 if (!have_monotonic)
1275 { 2884 {
1276 struct timespec ts; 2885 struct timespec ts;
2886
1277 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2887 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1278 have_monotonic = 1; 2888 have_monotonic = 1;
1279 } 2889 }
1280#endif
1281
1282 ev_rt_now = ev_time ();
1283 mn_now = get_clock ();
1284 now_floor = mn_now;
1285 rtmn_diff = ev_rt_now - mn_now;
1286
1287 io_blocktime = 0.;
1288 timeout_blocktime = 0.;
1289 backend = 0;
1290 backend_fd = -1;
1291 gotasync = 0;
1292#if EV_USE_INOTIFY
1293 fs_fd = -2;
1294#endif 2890#endif
1295 2891
1296 /* pid check not overridable via env */ 2892 /* pid check not overridable via env */
1297#ifndef _WIN32 2893#ifndef _WIN32
1298 if (flags & EVFLAG_FORKCHECK) 2894 if (flags & EVFLAG_FORKCHECK)
1302 if (!(flags & EVFLAG_NOENV) 2898 if (!(flags & EVFLAG_NOENV)
1303 && !enable_secure () 2899 && !enable_secure ()
1304 && getenv ("LIBEV_FLAGS")) 2900 && getenv ("LIBEV_FLAGS"))
1305 flags = atoi (getenv ("LIBEV_FLAGS")); 2901 flags = atoi (getenv ("LIBEV_FLAGS"));
1306 2902
1307 if (!(flags & 0x0000ffffU)) 2903 ev_rt_now = ev_time ();
2904 mn_now = get_clock ();
2905 now_floor = mn_now;
2906 rtmn_diff = ev_rt_now - mn_now;
2907#if EV_FEATURE_API
2908 invoke_cb = ev_invoke_pending;
2909#endif
2910
2911 io_blocktime = 0.;
2912 timeout_blocktime = 0.;
2913 backend = 0;
2914 backend_fd = -1;
2915 sig_pending = 0;
2916#if EV_ASYNC_ENABLE
2917 async_pending = 0;
2918#endif
2919 pipe_write_skipped = 0;
2920 pipe_write_wanted = 0;
2921 evpipe [0] = -1;
2922 evpipe [1] = -1;
2923#if EV_USE_INOTIFY
2924 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2925#endif
2926#if EV_USE_SIGNALFD
2927 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2928#endif
2929
2930 if (!(flags & EVBACKEND_MASK))
1308 flags |= ev_recommended_backends (); 2931 flags |= ev_recommended_backends ();
1309 2932
2933#if EV_USE_IOCP
2934 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2935#endif
1310#if EV_USE_PORT 2936#if EV_USE_PORT
1311 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2937 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1312#endif 2938#endif
1313#if EV_USE_KQUEUE 2939#if EV_USE_KQUEUE
1314 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2940 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
2941#endif
2942#if EV_USE_LINUXAIO
2943 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
1315#endif 2944#endif
1316#if EV_USE_EPOLL 2945#if EV_USE_EPOLL
1317 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags); 2946 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1318#endif 2947#endif
1319#if EV_USE_POLL 2948#if EV_USE_POLL
1320 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags); 2949 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1321#endif 2950#endif
1322#if EV_USE_SELECT 2951#if EV_USE_SELECT
1323 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2952 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
1324#endif 2953#endif
1325 2954
2955 ev_prepare_init (&pending_w, pendingcb);
2956
2957#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1326 ev_init (&pipeev, pipecb); 2958 ev_init (&pipe_w, pipecb);
1327 ev_set_priority (&pipeev, EV_MAXPRI); 2959 ev_set_priority (&pipe_w, EV_MAXPRI);
2960#endif
1328 } 2961 }
1329} 2962}
1330 2963
1331static void noinline 2964/* free up a loop structure */
2965ecb_cold
2966void
1332loop_destroy (EV_P) 2967ev_loop_destroy (EV_P)
1333{ 2968{
1334 int i; 2969 int i;
1335 2970
2971#if EV_MULTIPLICITY
2972 /* mimic free (0) */
2973 if (!EV_A)
2974 return;
2975#endif
2976
2977#if EV_CLEANUP_ENABLE
2978 /* queue cleanup watchers (and execute them) */
2979 if (expect_false (cleanupcnt))
2980 {
2981 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2982 EV_INVOKE_PENDING;
2983 }
2984#endif
2985
2986#if EV_CHILD_ENABLE
2987 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2988 {
2989 ev_ref (EV_A); /* child watcher */
2990 ev_signal_stop (EV_A_ &childev);
2991 }
2992#endif
2993
1336 if (ev_is_active (&pipeev)) 2994 if (ev_is_active (&pipe_w))
1337 { 2995 {
1338 ev_ref (EV_A); /* signal watcher */ 2996 /*ev_ref (EV_A);*/
1339 ev_io_stop (EV_A_ &pipeev); 2997 /*ev_io_stop (EV_A_ &pipe_w);*/
1340 2998
2999 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3000 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3001 }
3002
1341#if EV_USE_EVENTFD 3003#if EV_USE_SIGNALFD
1342 if (evfd >= 0) 3004 if (ev_is_active (&sigfd_w))
1343 close (evfd); 3005 close (sigfd);
1344#endif 3006#endif
1345
1346 if (evpipe [0] >= 0)
1347 {
1348 close (evpipe [0]);
1349 close (evpipe [1]);
1350 }
1351 }
1352 3007
1353#if EV_USE_INOTIFY 3008#if EV_USE_INOTIFY
1354 if (fs_fd >= 0) 3009 if (fs_fd >= 0)
1355 close (fs_fd); 3010 close (fs_fd);
1356#endif 3011#endif
1357 3012
1358 if (backend_fd >= 0) 3013 if (backend_fd >= 0)
1359 close (backend_fd); 3014 close (backend_fd);
1360 3015
3016#if EV_USE_IOCP
3017 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3018#endif
1361#if EV_USE_PORT 3019#if EV_USE_PORT
1362 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 3020 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1363#endif 3021#endif
1364#if EV_USE_KQUEUE 3022#if EV_USE_KQUEUE
1365 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 3023 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3024#endif
3025#if EV_USE_LINUXAIO
3026 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
1366#endif 3027#endif
1367#if EV_USE_EPOLL 3028#if EV_USE_EPOLL
1368 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A); 3029 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1369#endif 3030#endif
1370#if EV_USE_POLL 3031#if EV_USE_POLL
1371 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A); 3032 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1372#endif 3033#endif
1373#if EV_USE_SELECT 3034#if EV_USE_SELECT
1374 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 3035 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
1375#endif 3036#endif
1376 3037
1377 for (i = NUMPRI; i--; ) 3038 for (i = NUMPRI; i--; )
1378 { 3039 {
1379 array_free (pending, [i]); 3040 array_free (pending, [i]);
1380#if EV_IDLE_ENABLE 3041#if EV_IDLE_ENABLE
1381 array_free (idle, [i]); 3042 array_free (idle, [i]);
1382#endif 3043#endif
1383 } 3044 }
1384 3045
1385 ev_free (anfds); anfdmax = 0; 3046 ev_free (anfds); anfds = 0; anfdmax = 0;
1386 3047
1387 /* have to use the microsoft-never-gets-it-right macro */ 3048 /* have to use the microsoft-never-gets-it-right macro */
3049 array_free (rfeed, EMPTY);
1388 array_free (fdchange, EMPTY); 3050 array_free (fdchange, EMPTY);
1389 array_free (timer, EMPTY); 3051 array_free (timer, EMPTY);
1390#if EV_PERIODIC_ENABLE 3052#if EV_PERIODIC_ENABLE
1391 array_free (periodic, EMPTY); 3053 array_free (periodic, EMPTY);
1392#endif 3054#endif
1393#if EV_FORK_ENABLE 3055#if EV_FORK_ENABLE
1394 array_free (fork, EMPTY); 3056 array_free (fork, EMPTY);
1395#endif 3057#endif
3058#if EV_CLEANUP_ENABLE
3059 array_free (cleanup, EMPTY);
3060#endif
1396 array_free (prepare, EMPTY); 3061 array_free (prepare, EMPTY);
1397 array_free (check, EMPTY); 3062 array_free (check, EMPTY);
1398#if EV_ASYNC_ENABLE 3063#if EV_ASYNC_ENABLE
1399 array_free (async, EMPTY); 3064 array_free (async, EMPTY);
1400#endif 3065#endif
1401 3066
1402 backend = 0; 3067 backend = 0;
3068
3069#if EV_MULTIPLICITY
3070 if (ev_is_default_loop (EV_A))
3071#endif
3072 ev_default_loop_ptr = 0;
3073#if EV_MULTIPLICITY
3074 else
3075 ev_free (EV_A);
3076#endif
1403} 3077}
1404 3078
1405#if EV_USE_INOTIFY 3079#if EV_USE_INOTIFY
1406void inline_size infy_fork (EV_P); 3080inline_size void infy_fork (EV_P);
1407#endif 3081#endif
1408 3082
1409void inline_size 3083inline_size void
1410loop_fork (EV_P) 3084loop_fork (EV_P)
1411{ 3085{
1412#if EV_USE_PORT 3086#if EV_USE_PORT
1413 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 3087 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1414#endif 3088#endif
1415#if EV_USE_KQUEUE 3089#if EV_USE_KQUEUE
1416 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 3090 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3091#endif
3092#if EV_USE_LINUXAIO
3093 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
1417#endif 3094#endif
1418#if EV_USE_EPOLL 3095#if EV_USE_EPOLL
1419 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 3096 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1420#endif 3097#endif
1421#if EV_USE_INOTIFY 3098#if EV_USE_INOTIFY
1422 infy_fork (EV_A); 3099 infy_fork (EV_A);
1423#endif 3100#endif
1424 3101
1425 if (ev_is_active (&pipeev)) 3102#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3103 if (ev_is_active (&pipe_w) && postfork != 2)
3104 {
3105 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3106
3107 ev_ref (EV_A);
3108 ev_io_stop (EV_A_ &pipe_w);
3109
3110 if (evpipe [0] >= 0)
3111 EV_WIN32_CLOSE_FD (evpipe [0]);
3112
3113 evpipe_init (EV_A);
3114 /* iterate over everything, in case we missed something before */
3115 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1426 { 3116 }
1427 /* this "locks" the handlers against writing to the pipe */ 3117#endif
1428 /* while we modify the fd vars */ 3118
1429 gotsig = 1; 3119 postfork = 0;
3120}
3121
3122#if EV_MULTIPLICITY
3123
3124ecb_cold
3125struct ev_loop *
3126ev_loop_new (unsigned int flags) EV_NOEXCEPT
3127{
3128 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3129
3130 memset (EV_A, 0, sizeof (struct ev_loop));
3131 loop_init (EV_A_ flags);
3132
3133 if (ev_backend (EV_A))
3134 return EV_A;
3135
3136 ev_free (EV_A);
3137 return 0;
3138}
3139
3140#endif /* multiplicity */
3141
3142#if EV_VERIFY
3143noinline ecb_cold
3144static void
3145verify_watcher (EV_P_ W w)
3146{
3147 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
3148
3149 if (w->pending)
3150 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3151}
3152
3153noinline ecb_cold
3154static void
3155verify_heap (EV_P_ ANHE *heap, int N)
3156{
3157 int i;
3158
3159 for (i = HEAP0; i < N + HEAP0; ++i)
3160 {
3161 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3162 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3163 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3164
3165 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3166 }
3167}
3168
3169noinline ecb_cold
3170static void
3171array_verify (EV_P_ W *ws, int cnt)
3172{
3173 while (cnt--)
3174 {
3175 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3176 verify_watcher (EV_A_ ws [cnt]);
3177 }
3178}
3179#endif
3180
3181#if EV_FEATURE_API
3182void ecb_cold
3183ev_verify (EV_P) EV_NOEXCEPT
3184{
3185#if EV_VERIFY
3186 int i;
3187 WL w, w2;
3188
3189 assert (activecnt >= -1);
3190
3191 assert (fdchangemax >= fdchangecnt);
3192 for (i = 0; i < fdchangecnt; ++i)
3193 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3194
3195 assert (anfdmax >= 0);
3196 for (i = 0; i < anfdmax; ++i)
3197 {
3198 int j = 0;
3199
3200 for (w = w2 = anfds [i].head; w; w = w->next)
3201 {
3202 verify_watcher (EV_A_ (W)w);
3203
3204 if (j++ & 1)
3205 {
3206 assert (("libev: io watcher list contains a loop", w != w2));
3207 w2 = w2->next;
3208 }
3209
3210 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3211 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3212 }
3213 }
3214
3215 assert (timermax >= timercnt);
3216 verify_heap (EV_A_ timers, timercnt);
3217
3218#if EV_PERIODIC_ENABLE
3219 assert (periodicmax >= periodiccnt);
3220 verify_heap (EV_A_ periodics, periodiccnt);
3221#endif
3222
3223 for (i = NUMPRI; i--; )
3224 {
3225 assert (pendingmax [i] >= pendingcnt [i]);
3226#if EV_IDLE_ENABLE
3227 assert (idleall >= 0);
3228 assert (idlemax [i] >= idlecnt [i]);
3229 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3230#endif
3231 }
3232
3233#if EV_FORK_ENABLE
3234 assert (forkmax >= forkcnt);
3235 array_verify (EV_A_ (W *)forks, forkcnt);
3236#endif
3237
3238#if EV_CLEANUP_ENABLE
3239 assert (cleanupmax >= cleanupcnt);
3240 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3241#endif
3242
1430#if EV_ASYNC_ENABLE 3243#if EV_ASYNC_ENABLE
1431 gotasync = 1; 3244 assert (asyncmax >= asynccnt);
3245 array_verify (EV_A_ (W *)asyncs, asynccnt);
3246#endif
3247
3248#if EV_PREPARE_ENABLE
3249 assert (preparemax >= preparecnt);
3250 array_verify (EV_A_ (W *)prepares, preparecnt);
3251#endif
3252
3253#if EV_CHECK_ENABLE
3254 assert (checkmax >= checkcnt);
3255 array_verify (EV_A_ (W *)checks, checkcnt);
3256#endif
3257
3258# if 0
3259#if EV_CHILD_ENABLE
3260 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3261 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3262#endif
1432#endif 3263# endif
1433
1434 ev_ref (EV_A);
1435 ev_io_stop (EV_A_ &pipeev);
1436
1437#if EV_USE_EVENTFD
1438 if (evfd >= 0)
1439 close (evfd);
1440#endif 3264#endif
1441
1442 if (evpipe [0] >= 0)
1443 {
1444 close (evpipe [0]);
1445 close (evpipe [1]);
1446 }
1447
1448 evpipe_init (EV_A);
1449 /* now iterate over everything, in case we missed something */
1450 pipecb (EV_A_ &pipeev, EV_READ);
1451 }
1452
1453 postfork = 0;
1454} 3265}
3266#endif
1455 3267
1456#if EV_MULTIPLICITY 3268#if EV_MULTIPLICITY
3269ecb_cold
1457struct ev_loop * 3270struct ev_loop *
1458ev_loop_new (unsigned int flags) 3271#else
1459{ 3272int
1460 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1461
1462 memset (loop, 0, sizeof (struct ev_loop));
1463
1464 loop_init (EV_A_ flags);
1465
1466 if (ev_backend (EV_A))
1467 return loop;
1468
1469 return 0;
1470}
1471
1472void
1473ev_loop_destroy (EV_P)
1474{
1475 loop_destroy (EV_A);
1476 ev_free (loop);
1477}
1478
1479void
1480ev_loop_fork (EV_P)
1481{
1482 postfork = 1; /* must be in line with ev_default_fork */
1483}
1484#endif 3273#endif
1485 3274ev_default_loop (unsigned int flags) EV_NOEXCEPT
3275{
3276 if (!ev_default_loop_ptr)
3277 {
1486#if EV_MULTIPLICITY 3278#if EV_MULTIPLICITY
1487struct ev_loop *
1488ev_default_loop_init (unsigned int flags)
1489#else
1490int
1491ev_default_loop (unsigned int flags)
1492#endif
1493{
1494 if (!ev_default_loop_ptr)
1495 {
1496#if EV_MULTIPLICITY
1497 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3279 EV_P = ev_default_loop_ptr = &default_loop_struct;
1498#else 3280#else
1499 ev_default_loop_ptr = 1; 3281 ev_default_loop_ptr = 1;
1500#endif 3282#endif
1501 3283
1502 loop_init (EV_A_ flags); 3284 loop_init (EV_A_ flags);
1503 3285
1504 if (ev_backend (EV_A)) 3286 if (ev_backend (EV_A))
1505 { 3287 {
1506#ifndef _WIN32 3288#if EV_CHILD_ENABLE
1507 ev_signal_init (&childev, childcb, SIGCHLD); 3289 ev_signal_init (&childev, childcb, SIGCHLD);
1508 ev_set_priority (&childev, EV_MAXPRI); 3290 ev_set_priority (&childev, EV_MAXPRI);
1509 ev_signal_start (EV_A_ &childev); 3291 ev_signal_start (EV_A_ &childev);
1510 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3292 ev_unref (EV_A); /* child watcher should not keep loop alive */
1511#endif 3293#endif
1516 3298
1517 return ev_default_loop_ptr; 3299 return ev_default_loop_ptr;
1518} 3300}
1519 3301
1520void 3302void
1521ev_default_destroy (void) 3303ev_loop_fork (EV_P) EV_NOEXCEPT
1522{ 3304{
1523#if EV_MULTIPLICITY 3305 postfork = 1;
1524 struct ev_loop *loop = ev_default_loop_ptr;
1525#endif
1526
1527#ifndef _WIN32
1528 ev_ref (EV_A); /* child watcher */
1529 ev_signal_stop (EV_A_ &childev);
1530#endif
1531
1532 loop_destroy (EV_A);
1533}
1534
1535void
1536ev_default_fork (void)
1537{
1538#if EV_MULTIPLICITY
1539 struct ev_loop *loop = ev_default_loop_ptr;
1540#endif
1541
1542 if (backend)
1543 postfork = 1; /* must be in line with ev_loop_fork */
1544} 3306}
1545 3307
1546/*****************************************************************************/ 3308/*****************************************************************************/
1547 3309
1548void 3310void
1549ev_invoke (EV_P_ void *w, int revents) 3311ev_invoke (EV_P_ void *w, int revents)
1550{ 3312{
1551 EV_CB_INVOKE ((W)w, revents); 3313 EV_CB_INVOKE ((W)w, revents);
1552} 3314}
1553 3315
1554void inline_speed 3316unsigned int
1555call_pending (EV_P) 3317ev_pending_count (EV_P) EV_NOEXCEPT
1556{ 3318{
1557 int pri; 3319 int pri;
3320 unsigned int count = 0;
1558 3321
1559 for (pri = NUMPRI; pri--; ) 3322 for (pri = NUMPRI; pri--; )
3323 count += pendingcnt [pri];
3324
3325 return count;
3326}
3327
3328noinline
3329void
3330ev_invoke_pending (EV_P)
3331{
3332 pendingpri = NUMPRI;
3333
3334 do
3335 {
3336 --pendingpri;
3337
3338 /* pendingpri possibly gets modified in the inner loop */
1560 while (pendingcnt [pri]) 3339 while (pendingcnt [pendingpri])
1561 {
1562 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1563
1564 if (expect_true (p->w))
1565 { 3340 {
1566 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 3341 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1567 3342
1568 p->w->pending = 0; 3343 p->w->pending = 0;
1569 EV_CB_INVOKE (p->w, p->events); 3344 EV_CB_INVOKE (p->w, p->events);
3345 EV_FREQUENT_CHECK;
1570 } 3346 }
1571 } 3347 }
3348 while (pendingpri);
1572} 3349}
1573 3350
1574#if EV_IDLE_ENABLE 3351#if EV_IDLE_ENABLE
1575void inline_size 3352/* make idle watchers pending. this handles the "call-idle */
3353/* only when higher priorities are idle" logic */
3354inline_size void
1576idle_reify (EV_P) 3355idle_reify (EV_P)
1577{ 3356{
1578 if (expect_false (idleall)) 3357 if (expect_false (idleall))
1579 { 3358 {
1580 int pri; 3359 int pri;
1592 } 3371 }
1593 } 3372 }
1594} 3373}
1595#endif 3374#endif
1596 3375
1597void inline_size 3376/* make timers pending */
3377inline_size void
1598timers_reify (EV_P) 3378timers_reify (EV_P)
1599{ 3379{
3380 EV_FREQUENT_CHECK;
3381
1600 while (timercnt && ANHE_at (timers [HEAP0]) <= mn_now) 3382 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1601 { 3383 {
1602 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 3384 do
1603
1604 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1605
1606 /* first reschedule or stop timer */
1607 if (w->repeat)
1608 { 3385 {
3386 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3387
3388 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3389
3390 /* first reschedule or stop timer */
3391 if (w->repeat)
3392 {
3393 ev_at (w) += w->repeat;
3394 if (ev_at (w) < mn_now)
3395 ev_at (w) = mn_now;
3396
1609 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3397 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1610 3398
1611 ev_at (w) += w->repeat;
1612 if (ev_at (w) < mn_now)
1613 ev_at (w) = mn_now;
1614
1615 ANHE_at_set (timers [HEAP0]); 3399 ANHE_at_cache (timers [HEAP0]);
1616 downheap (timers, timercnt, HEAP0); 3400 downheap (timers, timercnt, HEAP0);
3401 }
3402 else
3403 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3404
3405 EV_FREQUENT_CHECK;
3406 feed_reverse (EV_A_ (W)w);
1617 } 3407 }
1618 else 3408 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1619 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1620 3409
1621 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 3410 feed_reverse_done (EV_A_ EV_TIMER);
1622 } 3411 }
1623} 3412}
1624 3413
1625#if EV_PERIODIC_ENABLE 3414#if EV_PERIODIC_ENABLE
1626void inline_size 3415
3416noinline
3417static void
3418periodic_recalc (EV_P_ ev_periodic *w)
3419{
3420 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3421 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3422
3423 /* the above almost always errs on the low side */
3424 while (at <= ev_rt_now)
3425 {
3426 ev_tstamp nat = at + w->interval;
3427
3428 /* when resolution fails us, we use ev_rt_now */
3429 if (expect_false (nat == at))
3430 {
3431 at = ev_rt_now;
3432 break;
3433 }
3434
3435 at = nat;
3436 }
3437
3438 ev_at (w) = at;
3439}
3440
3441/* make periodics pending */
3442inline_size void
1627periodics_reify (EV_P) 3443periodics_reify (EV_P)
1628{ 3444{
3445 EV_FREQUENT_CHECK;
3446
1629 while (periodiccnt && ANHE_at (periodics [HEAP0]) <= ev_rt_now) 3447 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1630 { 3448 {
1631 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 3449 do
1632
1633 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1634
1635 /* first reschedule or stop timer */
1636 if (w->reschedule_cb)
1637 { 3450 {
3451 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3452
3453 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3454
3455 /* first reschedule or stop timer */
3456 if (w->reschedule_cb)
3457 {
1638 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 3458 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3459
1639 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 3460 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3461
1640 ANHE_at_set (periodics [HEAP0]); 3462 ANHE_at_cache (periodics [HEAP0]);
1641 downheap (periodics, periodiccnt, HEAP0); 3463 downheap (periodics, periodiccnt, HEAP0);
3464 }
3465 else if (w->interval)
3466 {
3467 periodic_recalc (EV_A_ w);
3468 ANHE_at_cache (periodics [HEAP0]);
3469 downheap (periodics, periodiccnt, HEAP0);
3470 }
3471 else
3472 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3473
3474 EV_FREQUENT_CHECK;
3475 feed_reverse (EV_A_ (W)w);
1642 } 3476 }
1643 else if (w->interval) 3477 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1644 {
1645 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1646 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1647 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1648 ANHE_at_set (periodics [HEAP0]);
1649 downheap (periodics, periodiccnt, HEAP0);
1650 }
1651 else
1652 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1653 3478
1654 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 3479 feed_reverse_done (EV_A_ EV_PERIODIC);
1655 } 3480 }
1656} 3481}
1657 3482
1658static void noinline 3483/* simply recalculate all periodics */
3484/* TODO: maybe ensure that at least one event happens when jumping forward? */
3485noinline ecb_cold
3486static void
1659periodics_reschedule (EV_P) 3487periodics_reschedule (EV_P)
1660{ 3488{
1661 int i; 3489 int i;
1662 3490
1663 /* adjust periodics after time jump */ 3491 /* adjust periodics after time jump */
1666 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 3494 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1667 3495
1668 if (w->reschedule_cb) 3496 if (w->reschedule_cb)
1669 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3497 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1670 else if (w->interval) 3498 else if (w->interval)
1671 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 3499 periodic_recalc (EV_A_ w);
1672 3500
1673 ANHE_at_set (periodics [i]); 3501 ANHE_at_cache (periodics [i]);
3502 }
3503
3504 reheap (periodics, periodiccnt);
3505}
3506#endif
3507
3508/* adjust all timers by a given offset */
3509noinline ecb_cold
3510static void
3511timers_reschedule (EV_P_ ev_tstamp adjust)
3512{
3513 int i;
3514
3515 for (i = 0; i < timercnt; ++i)
1674 } 3516 {
1675 3517 ANHE *he = timers + i + HEAP0;
1676 /* now rebuild the heap, this for the 2-heap, inefficient for the 4-heap, but correct */ 3518 ANHE_w (*he)->at += adjust;
1677 for (i = periodiccnt >> 1; --i; ) 3519 ANHE_at_cache (*he);
1678 downheap (periodics, periodiccnt, i + HEAP0); 3520 }
1679} 3521}
1680#endif
1681 3522
1682void inline_speed 3523/* fetch new monotonic and realtime times from the kernel */
3524/* also detect if there was a timejump, and act accordingly */
3525inline_speed void
1683time_update (EV_P_ ev_tstamp max_block) 3526time_update (EV_P_ ev_tstamp max_block)
1684{ 3527{
1685 int i;
1686
1687#if EV_USE_MONOTONIC 3528#if EV_USE_MONOTONIC
1688 if (expect_true (have_monotonic)) 3529 if (expect_true (have_monotonic))
1689 { 3530 {
3531 int i;
1690 ev_tstamp odiff = rtmn_diff; 3532 ev_tstamp odiff = rtmn_diff;
1691 3533
1692 mn_now = get_clock (); 3534 mn_now = get_clock ();
1693 3535
1694 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3536 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1710 * doesn't hurt either as we only do this on time-jumps or 3552 * doesn't hurt either as we only do this on time-jumps or
1711 * in the unlikely event of having been preempted here. 3553 * in the unlikely event of having been preempted here.
1712 */ 3554 */
1713 for (i = 4; --i; ) 3555 for (i = 4; --i; )
1714 { 3556 {
3557 ev_tstamp diff;
1715 rtmn_diff = ev_rt_now - mn_now; 3558 rtmn_diff = ev_rt_now - mn_now;
1716 3559
3560 diff = odiff - rtmn_diff;
3561
1717 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 3562 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1718 return; /* all is well */ 3563 return; /* all is well */
1719 3564
1720 ev_rt_now = ev_time (); 3565 ev_rt_now = ev_time ();
1721 mn_now = get_clock (); 3566 mn_now = get_clock ();
1722 now_floor = mn_now; 3567 now_floor = mn_now;
1723 } 3568 }
1724 3569
3570 /* no timer adjustment, as the monotonic clock doesn't jump */
3571 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1725# if EV_PERIODIC_ENABLE 3572# if EV_PERIODIC_ENABLE
1726 periodics_reschedule (EV_A); 3573 periodics_reschedule (EV_A);
1727# endif 3574# endif
1728 /* no timer adjustment, as the monotonic clock doesn't jump */
1729 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1730 } 3575 }
1731 else 3576 else
1732#endif 3577#endif
1733 { 3578 {
1734 ev_rt_now = ev_time (); 3579 ev_rt_now = ev_time ();
1735 3580
1736 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3581 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1737 { 3582 {
3583 /* adjust timers. this is easy, as the offset is the same for all of them */
3584 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1738#if EV_PERIODIC_ENABLE 3585#if EV_PERIODIC_ENABLE
1739 periodics_reschedule (EV_A); 3586 periodics_reschedule (EV_A);
1740#endif 3587#endif
1741 /* adjust timers. this is easy, as the offset is the same for all of them */
1742 for (i = 0; i < timercnt; ++i)
1743 {
1744 ANHE *he = timers + i + HEAP0;
1745 ANHE_w (*he)->at += ev_rt_now - mn_now;
1746 ANHE_at_set (*he);
1747 }
1748 } 3588 }
1749 3589
1750 mn_now = ev_rt_now; 3590 mn_now = ev_rt_now;
1751 } 3591 }
1752} 3592}
1753 3593
1754void 3594int
1755ev_ref (EV_P)
1756{
1757 ++activecnt;
1758}
1759
1760void
1761ev_unref (EV_P)
1762{
1763 --activecnt;
1764}
1765
1766static int loop_done;
1767
1768void
1769ev_loop (EV_P_ int flags) 3595ev_run (EV_P_ int flags)
1770{ 3596{
3597#if EV_FEATURE_API
3598 ++loop_depth;
3599#endif
3600
3601 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3602
1771 loop_done = EVUNLOOP_CANCEL; 3603 loop_done = EVBREAK_CANCEL;
1772 3604
1773 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3605 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1774 3606
1775 do 3607 do
1776 { 3608 {
3609#if EV_VERIFY >= 2
3610 ev_verify (EV_A);
3611#endif
3612
1777#ifndef _WIN32 3613#ifndef _WIN32
1778 if (expect_false (curpid)) /* penalise the forking check even more */ 3614 if (expect_false (curpid)) /* penalise the forking check even more */
1779 if (expect_false (getpid () != curpid)) 3615 if (expect_false (getpid () != curpid))
1780 { 3616 {
1781 curpid = getpid (); 3617 curpid = getpid ();
1787 /* we might have forked, so queue fork handlers */ 3623 /* we might have forked, so queue fork handlers */
1788 if (expect_false (postfork)) 3624 if (expect_false (postfork))
1789 if (forkcnt) 3625 if (forkcnt)
1790 { 3626 {
1791 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3627 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1792 call_pending (EV_A); 3628 EV_INVOKE_PENDING;
1793 } 3629 }
1794#endif 3630#endif
1795 3631
3632#if EV_PREPARE_ENABLE
1796 /* queue prepare watchers (and execute them) */ 3633 /* queue prepare watchers (and execute them) */
1797 if (expect_false (preparecnt)) 3634 if (expect_false (preparecnt))
1798 { 3635 {
1799 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3636 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1800 call_pending (EV_A); 3637 EV_INVOKE_PENDING;
1801 } 3638 }
3639#endif
1802 3640
1803 if (expect_false (!activecnt)) 3641 if (expect_false (loop_done))
1804 break; 3642 break;
1805 3643
1806 /* we might have forked, so reify kernel state if necessary */ 3644 /* we might have forked, so reify kernel state if necessary */
1807 if (expect_false (postfork)) 3645 if (expect_false (postfork))
1808 loop_fork (EV_A); 3646 loop_fork (EV_A);
1813 /* calculate blocking time */ 3651 /* calculate blocking time */
1814 { 3652 {
1815 ev_tstamp waittime = 0.; 3653 ev_tstamp waittime = 0.;
1816 ev_tstamp sleeptime = 0.; 3654 ev_tstamp sleeptime = 0.;
1817 3655
3656 /* remember old timestamp for io_blocktime calculation */
3657 ev_tstamp prev_mn_now = mn_now;
3658
3659 /* update time to cancel out callback processing overhead */
3660 time_update (EV_A_ 1e100);
3661
3662 /* from now on, we want a pipe-wake-up */
3663 pipe_write_wanted = 1;
3664
3665 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3666
1818 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3667 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1819 { 3668 {
1820 /* update time to cancel out callback processing overhead */
1821 time_update (EV_A_ 1e100);
1822
1823 waittime = MAX_BLOCKTIME; 3669 waittime = MAX_BLOCKTIME;
1824 3670
1825 if (timercnt) 3671 if (timercnt)
1826 { 3672 {
1827 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 3673 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1828 if (waittime > to) waittime = to; 3674 if (waittime > to) waittime = to;
1829 } 3675 }
1830 3676
1831#if EV_PERIODIC_ENABLE 3677#if EV_PERIODIC_ENABLE
1832 if (periodiccnt) 3678 if (periodiccnt)
1833 { 3679 {
1834 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3680 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1835 if (waittime > to) waittime = to; 3681 if (waittime > to) waittime = to;
1836 } 3682 }
1837#endif 3683#endif
1838 3684
3685 /* don't let timeouts decrease the waittime below timeout_blocktime */
1839 if (expect_false (waittime < timeout_blocktime)) 3686 if (expect_false (waittime < timeout_blocktime))
1840 waittime = timeout_blocktime; 3687 waittime = timeout_blocktime;
1841 3688
1842 sleeptime = waittime - backend_fudge; 3689 /* at this point, we NEED to wait, so we have to ensure */
3690 /* to pass a minimum nonzero value to the backend */
3691 if (expect_false (waittime < backend_mintime))
3692 waittime = backend_mintime;
1843 3693
3694 /* extra check because io_blocktime is commonly 0 */
1844 if (expect_true (sleeptime > io_blocktime)) 3695 if (expect_false (io_blocktime))
1845 sleeptime = io_blocktime;
1846
1847 if (sleeptime)
1848 { 3696 {
3697 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3698
3699 if (sleeptime > waittime - backend_mintime)
3700 sleeptime = waittime - backend_mintime;
3701
3702 if (expect_true (sleeptime > 0.))
3703 {
1849 ev_sleep (sleeptime); 3704 ev_sleep (sleeptime);
1850 waittime -= sleeptime; 3705 waittime -= sleeptime;
3706 }
1851 } 3707 }
1852 } 3708 }
1853 3709
3710#if EV_FEATURE_API
1854 ++loop_count; 3711 ++loop_count;
3712#endif
3713 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1855 backend_poll (EV_A_ waittime); 3714 backend_poll (EV_A_ waittime);
3715 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3716
3717 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3718
3719 ECB_MEMORY_FENCE_ACQUIRE;
3720 if (pipe_write_skipped)
3721 {
3722 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3723 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3724 }
3725
1856 3726
1857 /* update ev_rt_now, do magic */ 3727 /* update ev_rt_now, do magic */
1858 time_update (EV_A_ waittime + sleeptime); 3728 time_update (EV_A_ waittime + sleeptime);
1859 } 3729 }
1860 3730
1867#if EV_IDLE_ENABLE 3737#if EV_IDLE_ENABLE
1868 /* queue idle watchers unless other events are pending */ 3738 /* queue idle watchers unless other events are pending */
1869 idle_reify (EV_A); 3739 idle_reify (EV_A);
1870#endif 3740#endif
1871 3741
3742#if EV_CHECK_ENABLE
1872 /* queue check watchers, to be executed first */ 3743 /* queue check watchers, to be executed first */
1873 if (expect_false (checkcnt)) 3744 if (expect_false (checkcnt))
1874 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3745 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3746#endif
1875 3747
1876 call_pending (EV_A); 3748 EV_INVOKE_PENDING;
1877 } 3749 }
1878 while (expect_true ( 3750 while (expect_true (
1879 activecnt 3751 activecnt
1880 && !loop_done 3752 && !loop_done
1881 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3753 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1882 )); 3754 ));
1883 3755
1884 if (loop_done == EVUNLOOP_ONE) 3756 if (loop_done == EVBREAK_ONE)
1885 loop_done = EVUNLOOP_CANCEL; 3757 loop_done = EVBREAK_CANCEL;
1886}
1887 3758
3759#if EV_FEATURE_API
3760 --loop_depth;
3761#endif
3762
3763 return activecnt;
3764}
3765
1888void 3766void
1889ev_unloop (EV_P_ int how) 3767ev_break (EV_P_ int how) EV_NOEXCEPT
1890{ 3768{
1891 loop_done = how; 3769 loop_done = how;
1892} 3770}
1893 3771
3772void
3773ev_ref (EV_P) EV_NOEXCEPT
3774{
3775 ++activecnt;
3776}
3777
3778void
3779ev_unref (EV_P) EV_NOEXCEPT
3780{
3781 --activecnt;
3782}
3783
3784void
3785ev_now_update (EV_P) EV_NOEXCEPT
3786{
3787 time_update (EV_A_ 1e100);
3788}
3789
3790void
3791ev_suspend (EV_P) EV_NOEXCEPT
3792{
3793 ev_now_update (EV_A);
3794}
3795
3796void
3797ev_resume (EV_P) EV_NOEXCEPT
3798{
3799 ev_tstamp mn_prev = mn_now;
3800
3801 ev_now_update (EV_A);
3802 timers_reschedule (EV_A_ mn_now - mn_prev);
3803#if EV_PERIODIC_ENABLE
3804 /* TODO: really do this? */
3805 periodics_reschedule (EV_A);
3806#endif
3807}
3808
1894/*****************************************************************************/ 3809/*****************************************************************************/
3810/* singly-linked list management, used when the expected list length is short */
1895 3811
1896void inline_size 3812inline_size void
1897wlist_add (WL *head, WL elem) 3813wlist_add (WL *head, WL elem)
1898{ 3814{
1899 elem->next = *head; 3815 elem->next = *head;
1900 *head = elem; 3816 *head = elem;
1901} 3817}
1902 3818
1903void inline_size 3819inline_size void
1904wlist_del (WL *head, WL elem) 3820wlist_del (WL *head, WL elem)
1905{ 3821{
1906 while (*head) 3822 while (*head)
1907 { 3823 {
1908 if (*head == elem) 3824 if (expect_true (*head == elem))
1909 { 3825 {
1910 *head = elem->next; 3826 *head = elem->next;
1911 return; 3827 break;
1912 } 3828 }
1913 3829
1914 head = &(*head)->next; 3830 head = &(*head)->next;
1915 } 3831 }
1916} 3832}
1917 3833
1918void inline_speed 3834/* internal, faster, version of ev_clear_pending */
3835inline_speed void
1919clear_pending (EV_P_ W w) 3836clear_pending (EV_P_ W w)
1920{ 3837{
1921 if (w->pending) 3838 if (w->pending)
1922 { 3839 {
1923 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3840 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1924 w->pending = 0; 3841 w->pending = 0;
1925 } 3842 }
1926} 3843}
1927 3844
1928int 3845int
1929ev_clear_pending (EV_P_ void *w) 3846ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
1930{ 3847{
1931 W w_ = (W)w; 3848 W w_ = (W)w;
1932 int pending = w_->pending; 3849 int pending = w_->pending;
1933 3850
1934 if (expect_true (pending)) 3851 if (expect_true (pending))
1935 { 3852 {
1936 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3853 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3854 p->w = (W)&pending_w;
1937 w_->pending = 0; 3855 w_->pending = 0;
1938 p->w = 0;
1939 return p->events; 3856 return p->events;
1940 } 3857 }
1941 else 3858 else
1942 return 0; 3859 return 0;
1943} 3860}
1944 3861
1945void inline_size 3862inline_size void
1946pri_adjust (EV_P_ W w) 3863pri_adjust (EV_P_ W w)
1947{ 3864{
1948 int pri = w->priority; 3865 int pri = ev_priority (w);
1949 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3866 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1950 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3867 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1951 w->priority = pri; 3868 ev_set_priority (w, pri);
1952} 3869}
1953 3870
1954void inline_speed 3871inline_speed void
1955ev_start (EV_P_ W w, int active) 3872ev_start (EV_P_ W w, int active)
1956{ 3873{
1957 pri_adjust (EV_A_ w); 3874 pri_adjust (EV_A_ w);
1958 w->active = active; 3875 w->active = active;
1959 ev_ref (EV_A); 3876 ev_ref (EV_A);
1960} 3877}
1961 3878
1962void inline_size 3879inline_size void
1963ev_stop (EV_P_ W w) 3880ev_stop (EV_P_ W w)
1964{ 3881{
1965 ev_unref (EV_A); 3882 ev_unref (EV_A);
1966 w->active = 0; 3883 w->active = 0;
1967} 3884}
1968 3885
1969/*****************************************************************************/ 3886/*****************************************************************************/
1970 3887
1971void noinline 3888noinline
3889void
1972ev_io_start (EV_P_ ev_io *w) 3890ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
1973{ 3891{
1974 int fd = w->fd; 3892 int fd = w->fd;
1975 3893
1976 if (expect_false (ev_is_active (w))) 3894 if (expect_false (ev_is_active (w)))
1977 return; 3895 return;
1978 3896
1979 assert (("ev_io_start called with negative fd", fd >= 0)); 3897 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3898 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3899
3900 EV_FREQUENT_CHECK;
1980 3901
1981 ev_start (EV_A_ (W)w, 1); 3902 ev_start (EV_A_ (W)w, 1);
1982 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3903 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
1983 wlist_add (&anfds[fd].head, (WL)w); 3904 wlist_add (&anfds[fd].head, (WL)w);
1984 3905
3906 /* common bug, apparently */
3907 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3908
1985 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3909 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1986 w->events &= ~EV_IOFDSET; 3910 w->events &= ~EV__IOFDSET;
1987}
1988 3911
3912 EV_FREQUENT_CHECK;
3913}
3914
1989void noinline 3915noinline
3916void
1990ev_io_stop (EV_P_ ev_io *w) 3917ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
1991{ 3918{
1992 clear_pending (EV_A_ (W)w); 3919 clear_pending (EV_A_ (W)w);
1993 if (expect_false (!ev_is_active (w))) 3920 if (expect_false (!ev_is_active (w)))
1994 return; 3921 return;
1995 3922
1996 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3923 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3924
3925 EV_FREQUENT_CHECK;
1997 3926
1998 wlist_del (&anfds[w->fd].head, (WL)w); 3927 wlist_del (&anfds[w->fd].head, (WL)w);
1999 ev_stop (EV_A_ (W)w); 3928 ev_stop (EV_A_ (W)w);
2000 3929
2001 fd_change (EV_A_ w->fd, 1); 3930 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2002}
2003 3931
3932 EV_FREQUENT_CHECK;
3933}
3934
2004void noinline 3935noinline
3936void
2005ev_timer_start (EV_P_ ev_timer *w) 3937ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
2006{ 3938{
2007 if (expect_false (ev_is_active (w))) 3939 if (expect_false (ev_is_active (w)))
2008 return; 3940 return;
2009 3941
2010 ev_at (w) += mn_now; 3942 ev_at (w) += mn_now;
2011 3943
2012 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3944 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2013 3945
3946 EV_FREQUENT_CHECK;
3947
3948 ++timercnt;
2014 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 3949 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2015 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 3950 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
2016 ANHE_w (timers [ev_active (w)]) = (WT)w; 3951 ANHE_w (timers [ev_active (w)]) = (WT)w;
2017 ANHE_at_set (timers [ev_active (w)]); 3952 ANHE_at_cache (timers [ev_active (w)]);
2018 upheap (timers, ev_active (w)); 3953 upheap (timers, ev_active (w));
2019 3954
3955 EV_FREQUENT_CHECK;
3956
2020 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 3957 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2021} 3958}
2022 3959
2023void noinline 3960noinline
3961void
2024ev_timer_stop (EV_P_ ev_timer *w) 3962ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
2025{ 3963{
2026 clear_pending (EV_A_ (W)w); 3964 clear_pending (EV_A_ (W)w);
2027 if (expect_false (!ev_is_active (w))) 3965 if (expect_false (!ev_is_active (w)))
2028 return; 3966 return;
2029 3967
3968 EV_FREQUENT_CHECK;
3969
2030 { 3970 {
2031 int active = ev_active (w); 3971 int active = ev_active (w);
2032 3972
2033 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 3973 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2034 3974
3975 --timercnt;
3976
2035 if (expect_true (active < timercnt + HEAP0 - 1)) 3977 if (expect_true (active < timercnt + HEAP0))
2036 { 3978 {
2037 timers [active] = timers [timercnt + HEAP0 - 1]; 3979 timers [active] = timers [timercnt + HEAP0];
2038 adjustheap (timers, timercnt, active); 3980 adjustheap (timers, timercnt, active);
2039 } 3981 }
2040
2041 --timercnt;
2042 } 3982 }
2043 3983
2044 ev_at (w) -= mn_now; 3984 ev_at (w) -= mn_now;
2045 3985
2046 ev_stop (EV_A_ (W)w); 3986 ev_stop (EV_A_ (W)w);
2047}
2048 3987
3988 EV_FREQUENT_CHECK;
3989}
3990
2049void noinline 3991noinline
3992void
2050ev_timer_again (EV_P_ ev_timer *w) 3993ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
2051{ 3994{
3995 EV_FREQUENT_CHECK;
3996
3997 clear_pending (EV_A_ (W)w);
3998
2052 if (ev_is_active (w)) 3999 if (ev_is_active (w))
2053 { 4000 {
2054 if (w->repeat) 4001 if (w->repeat)
2055 { 4002 {
2056 ev_at (w) = mn_now + w->repeat; 4003 ev_at (w) = mn_now + w->repeat;
2057 ANHE_at_set (timers [ev_active (w)]); 4004 ANHE_at_cache (timers [ev_active (w)]);
2058 adjustheap (timers, timercnt, ev_active (w)); 4005 adjustheap (timers, timercnt, ev_active (w));
2059 } 4006 }
2060 else 4007 else
2061 ev_timer_stop (EV_A_ w); 4008 ev_timer_stop (EV_A_ w);
2062 } 4009 }
2063 else if (w->repeat) 4010 else if (w->repeat)
2064 { 4011 {
2065 ev_at (w) = w->repeat; 4012 ev_at (w) = w->repeat;
2066 ev_timer_start (EV_A_ w); 4013 ev_timer_start (EV_A_ w);
2067 } 4014 }
4015
4016 EV_FREQUENT_CHECK;
4017}
4018
4019ev_tstamp
4020ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4021{
4022 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2068} 4023}
2069 4024
2070#if EV_PERIODIC_ENABLE 4025#if EV_PERIODIC_ENABLE
2071void noinline 4026noinline
4027void
2072ev_periodic_start (EV_P_ ev_periodic *w) 4028ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
2073{ 4029{
2074 if (expect_false (ev_is_active (w))) 4030 if (expect_false (ev_is_active (w)))
2075 return; 4031 return;
2076 4032
2077 if (w->reschedule_cb) 4033 if (w->reschedule_cb)
2078 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 4034 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2079 else if (w->interval) 4035 else if (w->interval)
2080 { 4036 {
2081 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 4037 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2082 /* this formula differs from the one in periodic_reify because we do not always round up */ 4038 periodic_recalc (EV_A_ w);
2083 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2084 } 4039 }
2085 else 4040 else
2086 ev_at (w) = w->offset; 4041 ev_at (w) = w->offset;
2087 4042
4043 EV_FREQUENT_CHECK;
4044
4045 ++periodiccnt;
2088 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 4046 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2089 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 4047 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
2090 ANHE_w (periodics [ev_active (w)]) = (WT)w; 4048 ANHE_w (periodics [ev_active (w)]) = (WT)w;
4049 ANHE_at_cache (periodics [ev_active (w)]);
2091 upheap (periodics, ev_active (w)); 4050 upheap (periodics, ev_active (w));
2092 4051
4052 EV_FREQUENT_CHECK;
4053
2093 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 4054 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2094} 4055}
2095 4056
2096void noinline 4057noinline
4058void
2097ev_periodic_stop (EV_P_ ev_periodic *w) 4059ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
2098{ 4060{
2099 clear_pending (EV_A_ (W)w); 4061 clear_pending (EV_A_ (W)w);
2100 if (expect_false (!ev_is_active (w))) 4062 if (expect_false (!ev_is_active (w)))
2101 return; 4063 return;
2102 4064
4065 EV_FREQUENT_CHECK;
4066
2103 { 4067 {
2104 int active = ev_active (w); 4068 int active = ev_active (w);
2105 4069
2106 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 4070 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2107 4071
4072 --periodiccnt;
4073
2108 if (expect_true (active < periodiccnt + HEAP0 - 1)) 4074 if (expect_true (active < periodiccnt + HEAP0))
2109 { 4075 {
2110 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 4076 periodics [active] = periodics [periodiccnt + HEAP0];
2111 adjustheap (periodics, periodiccnt, active); 4077 adjustheap (periodics, periodiccnt, active);
2112 } 4078 }
2113
2114 --periodiccnt;
2115 } 4079 }
2116 4080
2117 ev_stop (EV_A_ (W)w); 4081 ev_stop (EV_A_ (W)w);
2118}
2119 4082
4083 EV_FREQUENT_CHECK;
4084}
4085
2120void noinline 4086noinline
4087void
2121ev_periodic_again (EV_P_ ev_periodic *w) 4088ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
2122{ 4089{
2123 /* TODO: use adjustheap and recalculation */ 4090 /* TODO: use adjustheap and recalculation */
2124 ev_periodic_stop (EV_A_ w); 4091 ev_periodic_stop (EV_A_ w);
2125 ev_periodic_start (EV_A_ w); 4092 ev_periodic_start (EV_A_ w);
2126} 4093}
2128 4095
2129#ifndef SA_RESTART 4096#ifndef SA_RESTART
2130# define SA_RESTART 0 4097# define SA_RESTART 0
2131#endif 4098#endif
2132 4099
4100#if EV_SIGNAL_ENABLE
4101
2133void noinline 4102noinline
4103void
2134ev_signal_start (EV_P_ ev_signal *w) 4104ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
2135{ 4105{
2136#if EV_MULTIPLICITY
2137 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2138#endif
2139 if (expect_false (ev_is_active (w))) 4106 if (expect_false (ev_is_active (w)))
2140 return; 4107 return;
2141 4108
2142 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 4109 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2143 4110
2144 evpipe_init (EV_A); 4111#if EV_MULTIPLICITY
4112 assert (("libev: a signal must not be attached to two different loops",
4113 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2145 4114
4115 signals [w->signum - 1].loop = EV_A;
4116 ECB_MEMORY_FENCE_RELEASE;
4117#endif
4118
4119 EV_FREQUENT_CHECK;
4120
4121#if EV_USE_SIGNALFD
4122 if (sigfd == -2)
2146 { 4123 {
2147#ifndef _WIN32 4124 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2148 sigset_t full, prev; 4125 if (sigfd < 0 && errno == EINVAL)
2149 sigfillset (&full); 4126 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2150 sigprocmask (SIG_SETMASK, &full, &prev);
2151#endif
2152 4127
2153 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 4128 if (sigfd >= 0)
4129 {
4130 fd_intern (sigfd); /* doing it twice will not hurt */
2154 4131
2155#ifndef _WIN32 4132 sigemptyset (&sigfd_set);
2156 sigprocmask (SIG_SETMASK, &prev, 0); 4133
2157#endif 4134 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4135 ev_set_priority (&sigfd_w, EV_MAXPRI);
4136 ev_io_start (EV_A_ &sigfd_w);
4137 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4138 }
2158 } 4139 }
4140
4141 if (sigfd >= 0)
4142 {
4143 /* TODO: check .head */
4144 sigaddset (&sigfd_set, w->signum);
4145 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4146
4147 signalfd (sigfd, &sigfd_set, 0);
4148 }
4149#endif
2159 4150
2160 ev_start (EV_A_ (W)w, 1); 4151 ev_start (EV_A_ (W)w, 1);
2161 wlist_add (&signals [w->signum - 1].head, (WL)w); 4152 wlist_add (&signals [w->signum - 1].head, (WL)w);
2162 4153
2163 if (!((WL)w)->next) 4154 if (!((WL)w)->next)
4155# if EV_USE_SIGNALFD
4156 if (sigfd < 0) /*TODO*/
4157# endif
2164 { 4158 {
2165#if _WIN32 4159# ifdef _WIN32
4160 evpipe_init (EV_A);
4161
2166 signal (w->signum, ev_sighandler); 4162 signal (w->signum, ev_sighandler);
2167#else 4163# else
2168 struct sigaction sa; 4164 struct sigaction sa;
4165
4166 evpipe_init (EV_A);
4167
2169 sa.sa_handler = ev_sighandler; 4168 sa.sa_handler = ev_sighandler;
2170 sigfillset (&sa.sa_mask); 4169 sigfillset (&sa.sa_mask);
2171 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 4170 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2172 sigaction (w->signum, &sa, 0); 4171 sigaction (w->signum, &sa, 0);
4172
4173 if (origflags & EVFLAG_NOSIGMASK)
4174 {
4175 sigemptyset (&sa.sa_mask);
4176 sigaddset (&sa.sa_mask, w->signum);
4177 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4178 }
2173#endif 4179#endif
2174 } 4180 }
2175}
2176 4181
4182 EV_FREQUENT_CHECK;
4183}
4184
2177void noinline 4185noinline
4186void
2178ev_signal_stop (EV_P_ ev_signal *w) 4187ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
2179{ 4188{
2180 clear_pending (EV_A_ (W)w); 4189 clear_pending (EV_A_ (W)w);
2181 if (expect_false (!ev_is_active (w))) 4190 if (expect_false (!ev_is_active (w)))
2182 return; 4191 return;
2183 4192
4193 EV_FREQUENT_CHECK;
4194
2184 wlist_del (&signals [w->signum - 1].head, (WL)w); 4195 wlist_del (&signals [w->signum - 1].head, (WL)w);
2185 ev_stop (EV_A_ (W)w); 4196 ev_stop (EV_A_ (W)w);
2186 4197
2187 if (!signals [w->signum - 1].head) 4198 if (!signals [w->signum - 1].head)
2188 signal (w->signum, SIG_DFL); 4199 {
2189}
2190
2191void
2192ev_child_start (EV_P_ ev_child *w)
2193{
2194#if EV_MULTIPLICITY 4200#if EV_MULTIPLICITY
4201 signals [w->signum - 1].loop = 0; /* unattach from signal */
4202#endif
4203#if EV_USE_SIGNALFD
4204 if (sigfd >= 0)
4205 {
4206 sigset_t ss;
4207
4208 sigemptyset (&ss);
4209 sigaddset (&ss, w->signum);
4210 sigdelset (&sigfd_set, w->signum);
4211
4212 signalfd (sigfd, &sigfd_set, 0);
4213 sigprocmask (SIG_UNBLOCK, &ss, 0);
4214 }
4215 else
4216#endif
4217 signal (w->signum, SIG_DFL);
4218 }
4219
4220 EV_FREQUENT_CHECK;
4221}
4222
4223#endif
4224
4225#if EV_CHILD_ENABLE
4226
4227void
4228ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4229{
4230#if EV_MULTIPLICITY
2195 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4231 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2196#endif 4232#endif
2197 if (expect_false (ev_is_active (w))) 4233 if (expect_false (ev_is_active (w)))
2198 return; 4234 return;
2199 4235
4236 EV_FREQUENT_CHECK;
4237
2200 ev_start (EV_A_ (W)w, 1); 4238 ev_start (EV_A_ (W)w, 1);
2201 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4239 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2202}
2203 4240
4241 EV_FREQUENT_CHECK;
4242}
4243
2204void 4244void
2205ev_child_stop (EV_P_ ev_child *w) 4245ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
2206{ 4246{
2207 clear_pending (EV_A_ (W)w); 4247 clear_pending (EV_A_ (W)w);
2208 if (expect_false (!ev_is_active (w))) 4248 if (expect_false (!ev_is_active (w)))
2209 return; 4249 return;
2210 4250
4251 EV_FREQUENT_CHECK;
4252
2211 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4253 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2212 ev_stop (EV_A_ (W)w); 4254 ev_stop (EV_A_ (W)w);
4255
4256 EV_FREQUENT_CHECK;
2213} 4257}
4258
4259#endif
2214 4260
2215#if EV_STAT_ENABLE 4261#if EV_STAT_ENABLE
2216 4262
2217# ifdef _WIN32 4263# ifdef _WIN32
2218# undef lstat 4264# undef lstat
2219# define lstat(a,b) _stati64 (a,b) 4265# define lstat(a,b) _stati64 (a,b)
2220# endif 4266# endif
2221 4267
2222#define DEF_STAT_INTERVAL 5.0074891 4268#define DEF_STAT_INTERVAL 5.0074891
4269#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2223#define MIN_STAT_INTERVAL 0.1074891 4270#define MIN_STAT_INTERVAL 0.1074891
2224 4271
2225static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 4272noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2226 4273
2227#if EV_USE_INOTIFY 4274#if EV_USE_INOTIFY
2228# define EV_INOTIFY_BUFSIZE 8192
2229 4275
2230static void noinline 4276/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4277# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4278
4279noinline
4280static void
2231infy_add (EV_P_ ev_stat *w) 4281infy_add (EV_P_ ev_stat *w)
2232{ 4282{
2233 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 4283 w->wd = inotify_add_watch (fs_fd, w->path,
4284 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4285 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4286 | IN_DONT_FOLLOW | IN_MASK_ADD);
2234 4287
2235 if (w->wd < 0) 4288 if (w->wd >= 0)
4289 {
4290 struct statfs sfs;
4291
4292 /* now local changes will be tracked by inotify, but remote changes won't */
4293 /* unless the filesystem is known to be local, we therefore still poll */
4294 /* also do poll on <2.6.25, but with normal frequency */
4295
4296 if (!fs_2625)
4297 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4298 else if (!statfs (w->path, &sfs)
4299 && (sfs.f_type == 0x1373 /* devfs */
4300 || sfs.f_type == 0x4006 /* fat */
4301 || sfs.f_type == 0x4d44 /* msdos */
4302 || sfs.f_type == 0xEF53 /* ext2/3 */
4303 || sfs.f_type == 0x72b6 /* jffs2 */
4304 || sfs.f_type == 0x858458f6 /* ramfs */
4305 || sfs.f_type == 0x5346544e /* ntfs */
4306 || sfs.f_type == 0x3153464a /* jfs */
4307 || sfs.f_type == 0x9123683e /* btrfs */
4308 || sfs.f_type == 0x52654973 /* reiser3 */
4309 || sfs.f_type == 0x01021994 /* tmpfs */
4310 || sfs.f_type == 0x58465342 /* xfs */))
4311 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4312 else
4313 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2236 { 4314 }
2237 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 4315 else
4316 {
4317 /* can't use inotify, continue to stat */
4318 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2238 4319
2239 /* monitor some parent directory for speedup hints */ 4320 /* if path is not there, monitor some parent directory for speedup hints */
2240 /* note that exceeding the hardcoded limit is not a correctness issue, */ 4321 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2241 /* but an efficiency issue only */ 4322 /* but an efficiency issue only */
2242 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4323 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2243 { 4324 {
2244 char path [4096]; 4325 char path [4096];
2245 strcpy (path, w->path); 4326 strcpy (path, w->path);
2249 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 4330 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2250 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 4331 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2251 4332
2252 char *pend = strrchr (path, '/'); 4333 char *pend = strrchr (path, '/');
2253 4334
2254 if (!pend) 4335 if (!pend || pend == path)
2255 break; /* whoops, no '/', complain to your admin */ 4336 break;
2256 4337
2257 *pend = 0; 4338 *pend = 0;
2258 w->wd = inotify_add_watch (fs_fd, path, mask); 4339 w->wd = inotify_add_watch (fs_fd, path, mask);
2259 } 4340 }
2260 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4341 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2261 } 4342 }
2262 } 4343 }
2263 else
2264 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2265 4344
2266 if (w->wd >= 0) 4345 if (w->wd >= 0)
2267 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4346 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2268}
2269 4347
2270static void noinline 4348 /* now re-arm timer, if required */
4349 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4350 ev_timer_again (EV_A_ &w->timer);
4351 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4352}
4353
4354noinline
4355static void
2271infy_del (EV_P_ ev_stat *w) 4356infy_del (EV_P_ ev_stat *w)
2272{ 4357{
2273 int slot; 4358 int slot;
2274 int wd = w->wd; 4359 int wd = w->wd;
2275 4360
2276 if (wd < 0) 4361 if (wd < 0)
2277 return; 4362 return;
2278 4363
2279 w->wd = -2; 4364 w->wd = -2;
2280 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4365 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2281 wlist_del (&fs_hash [slot].head, (WL)w); 4366 wlist_del (&fs_hash [slot].head, (WL)w);
2282 4367
2283 /* remove this watcher, if others are watching it, they will rearm */ 4368 /* remove this watcher, if others are watching it, they will rearm */
2284 inotify_rm_watch (fs_fd, wd); 4369 inotify_rm_watch (fs_fd, wd);
2285} 4370}
2286 4371
2287static void noinline 4372noinline
4373static void
2288infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4374infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2289{ 4375{
2290 if (slot < 0) 4376 if (slot < 0)
2291 /* overflow, need to check for all hahs slots */ 4377 /* overflow, need to check for all hash slots */
2292 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4378 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2293 infy_wd (EV_A_ slot, wd, ev); 4379 infy_wd (EV_A_ slot, wd, ev);
2294 else 4380 else
2295 { 4381 {
2296 WL w_; 4382 WL w_;
2297 4383
2298 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4384 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2299 { 4385 {
2300 ev_stat *w = (ev_stat *)w_; 4386 ev_stat *w = (ev_stat *)w_;
2301 w_ = w_->next; /* lets us remove this watcher and all before it */ 4387 w_ = w_->next; /* lets us remove this watcher and all before it */
2302 4388
2303 if (w->wd == wd || wd == -1) 4389 if (w->wd == wd || wd == -1)
2304 { 4390 {
2305 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4391 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2306 { 4392 {
4393 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2307 w->wd = -1; 4394 w->wd = -1;
2308 infy_add (EV_A_ w); /* re-add, no matter what */ 4395 infy_add (EV_A_ w); /* re-add, no matter what */
2309 } 4396 }
2310 4397
2311 stat_timer_cb (EV_A_ &w->timer, 0); 4398 stat_timer_cb (EV_A_ &w->timer, 0);
2316 4403
2317static void 4404static void
2318infy_cb (EV_P_ ev_io *w, int revents) 4405infy_cb (EV_P_ ev_io *w, int revents)
2319{ 4406{
2320 char buf [EV_INOTIFY_BUFSIZE]; 4407 char buf [EV_INOTIFY_BUFSIZE];
2321 struct inotify_event *ev = (struct inotify_event *)buf;
2322 int ofs; 4408 int ofs;
2323 int len = read (fs_fd, buf, sizeof (buf)); 4409 int len = read (fs_fd, buf, sizeof (buf));
2324 4410
2325 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4411 for (ofs = 0; ofs < len; )
4412 {
4413 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2326 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4414 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4415 ofs += sizeof (struct inotify_event) + ev->len;
4416 }
2327} 4417}
2328 4418
2329void inline_size 4419inline_size ecb_cold
4420void
4421ev_check_2625 (EV_P)
4422{
4423 /* kernels < 2.6.25 are borked
4424 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4425 */
4426 if (ev_linux_version () < 0x020619)
4427 return;
4428
4429 fs_2625 = 1;
4430}
4431
4432inline_size int
4433infy_newfd (void)
4434{
4435#if defined IN_CLOEXEC && defined IN_NONBLOCK
4436 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4437 if (fd >= 0)
4438 return fd;
4439#endif
4440 return inotify_init ();
4441}
4442
4443inline_size void
2330infy_init (EV_P) 4444infy_init (EV_P)
2331{ 4445{
2332 if (fs_fd != -2) 4446 if (fs_fd != -2)
2333 return; 4447 return;
2334 4448
4449 fs_fd = -1;
4450
4451 ev_check_2625 (EV_A);
4452
2335 fs_fd = inotify_init (); 4453 fs_fd = infy_newfd ();
2336 4454
2337 if (fs_fd >= 0) 4455 if (fs_fd >= 0)
2338 { 4456 {
4457 fd_intern (fs_fd);
2339 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4458 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2340 ev_set_priority (&fs_w, EV_MAXPRI); 4459 ev_set_priority (&fs_w, EV_MAXPRI);
2341 ev_io_start (EV_A_ &fs_w); 4460 ev_io_start (EV_A_ &fs_w);
4461 ev_unref (EV_A);
2342 } 4462 }
2343} 4463}
2344 4464
2345void inline_size 4465inline_size void
2346infy_fork (EV_P) 4466infy_fork (EV_P)
2347{ 4467{
2348 int slot; 4468 int slot;
2349 4469
2350 if (fs_fd < 0) 4470 if (fs_fd < 0)
2351 return; 4471 return;
2352 4472
4473 ev_ref (EV_A);
4474 ev_io_stop (EV_A_ &fs_w);
2353 close (fs_fd); 4475 close (fs_fd);
2354 fs_fd = inotify_init (); 4476 fs_fd = infy_newfd ();
2355 4477
4478 if (fs_fd >= 0)
4479 {
4480 fd_intern (fs_fd);
4481 ev_io_set (&fs_w, fs_fd, EV_READ);
4482 ev_io_start (EV_A_ &fs_w);
4483 ev_unref (EV_A);
4484 }
4485
2356 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4486 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2357 { 4487 {
2358 WL w_ = fs_hash [slot].head; 4488 WL w_ = fs_hash [slot].head;
2359 fs_hash [slot].head = 0; 4489 fs_hash [slot].head = 0;
2360 4490
2361 while (w_) 4491 while (w_)
2366 w->wd = -1; 4496 w->wd = -1;
2367 4497
2368 if (fs_fd >= 0) 4498 if (fs_fd >= 0)
2369 infy_add (EV_A_ w); /* re-add, no matter what */ 4499 infy_add (EV_A_ w); /* re-add, no matter what */
2370 else 4500 else
4501 {
4502 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4503 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2371 ev_timer_start (EV_A_ &w->timer); 4504 ev_timer_again (EV_A_ &w->timer);
4505 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4506 }
2372 } 4507 }
2373
2374 } 4508 }
2375} 4509}
2376 4510
2377#endif 4511#endif
2378 4512
4513#ifdef _WIN32
4514# define EV_LSTAT(p,b) _stati64 (p, b)
4515#else
4516# define EV_LSTAT(p,b) lstat (p, b)
4517#endif
4518
2379void 4519void
2380ev_stat_stat (EV_P_ ev_stat *w) 4520ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
2381{ 4521{
2382 if (lstat (w->path, &w->attr) < 0) 4522 if (lstat (w->path, &w->attr) < 0)
2383 w->attr.st_nlink = 0; 4523 w->attr.st_nlink = 0;
2384 else if (!w->attr.st_nlink) 4524 else if (!w->attr.st_nlink)
2385 w->attr.st_nlink = 1; 4525 w->attr.st_nlink = 1;
2386} 4526}
2387 4527
2388static void noinline 4528noinline
4529static void
2389stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4530stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2390{ 4531{
2391 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4532 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2392 4533
2393 /* we copy this here each the time so that */ 4534 ev_statdata prev = w->attr;
2394 /* prev has the old value when the callback gets invoked */
2395 w->prev = w->attr;
2396 ev_stat_stat (EV_A_ w); 4535 ev_stat_stat (EV_A_ w);
2397 4536
2398 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4537 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2399 if ( 4538 if (
2400 w->prev.st_dev != w->attr.st_dev 4539 prev.st_dev != w->attr.st_dev
2401 || w->prev.st_ino != w->attr.st_ino 4540 || prev.st_ino != w->attr.st_ino
2402 || w->prev.st_mode != w->attr.st_mode 4541 || prev.st_mode != w->attr.st_mode
2403 || w->prev.st_nlink != w->attr.st_nlink 4542 || prev.st_nlink != w->attr.st_nlink
2404 || w->prev.st_uid != w->attr.st_uid 4543 || prev.st_uid != w->attr.st_uid
2405 || w->prev.st_gid != w->attr.st_gid 4544 || prev.st_gid != w->attr.st_gid
2406 || w->prev.st_rdev != w->attr.st_rdev 4545 || prev.st_rdev != w->attr.st_rdev
2407 || w->prev.st_size != w->attr.st_size 4546 || prev.st_size != w->attr.st_size
2408 || w->prev.st_atime != w->attr.st_atime 4547 || prev.st_atime != w->attr.st_atime
2409 || w->prev.st_mtime != w->attr.st_mtime 4548 || prev.st_mtime != w->attr.st_mtime
2410 || w->prev.st_ctime != w->attr.st_ctime 4549 || prev.st_ctime != w->attr.st_ctime
2411 ) { 4550 ) {
4551 /* we only update w->prev on actual differences */
4552 /* in case we test more often than invoke the callback, */
4553 /* to ensure that prev is always different to attr */
4554 w->prev = prev;
4555
2412 #if EV_USE_INOTIFY 4556 #if EV_USE_INOTIFY
4557 if (fs_fd >= 0)
4558 {
2413 infy_del (EV_A_ w); 4559 infy_del (EV_A_ w);
2414 infy_add (EV_A_ w); 4560 infy_add (EV_A_ w);
2415 ev_stat_stat (EV_A_ w); /* avoid race... */ 4561 ev_stat_stat (EV_A_ w); /* avoid race... */
4562 }
2416 #endif 4563 #endif
2417 4564
2418 ev_feed_event (EV_A_ w, EV_STAT); 4565 ev_feed_event (EV_A_ w, EV_STAT);
2419 } 4566 }
2420} 4567}
2421 4568
2422void 4569void
2423ev_stat_start (EV_P_ ev_stat *w) 4570ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
2424{ 4571{
2425 if (expect_false (ev_is_active (w))) 4572 if (expect_false (ev_is_active (w)))
2426 return; 4573 return;
2427 4574
2428 /* since we use memcmp, we need to clear any padding data etc. */
2429 memset (&w->prev, 0, sizeof (ev_statdata));
2430 memset (&w->attr, 0, sizeof (ev_statdata));
2431
2432 ev_stat_stat (EV_A_ w); 4575 ev_stat_stat (EV_A_ w);
2433 4576
4577 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2434 if (w->interval < MIN_STAT_INTERVAL) 4578 w->interval = MIN_STAT_INTERVAL;
2435 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2436 4579
2437 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4580 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2438 ev_set_priority (&w->timer, ev_priority (w)); 4581 ev_set_priority (&w->timer, ev_priority (w));
2439 4582
2440#if EV_USE_INOTIFY 4583#if EV_USE_INOTIFY
2441 infy_init (EV_A); 4584 infy_init (EV_A);
2442 4585
2443 if (fs_fd >= 0) 4586 if (fs_fd >= 0)
2444 infy_add (EV_A_ w); 4587 infy_add (EV_A_ w);
2445 else 4588 else
2446#endif 4589#endif
4590 {
2447 ev_timer_start (EV_A_ &w->timer); 4591 ev_timer_again (EV_A_ &w->timer);
4592 ev_unref (EV_A);
4593 }
2448 4594
2449 ev_start (EV_A_ (W)w, 1); 4595 ev_start (EV_A_ (W)w, 1);
2450}
2451 4596
4597 EV_FREQUENT_CHECK;
4598}
4599
2452void 4600void
2453ev_stat_stop (EV_P_ ev_stat *w) 4601ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
2454{ 4602{
2455 clear_pending (EV_A_ (W)w); 4603 clear_pending (EV_A_ (W)w);
2456 if (expect_false (!ev_is_active (w))) 4604 if (expect_false (!ev_is_active (w)))
2457 return; 4605 return;
2458 4606
4607 EV_FREQUENT_CHECK;
4608
2459#if EV_USE_INOTIFY 4609#if EV_USE_INOTIFY
2460 infy_del (EV_A_ w); 4610 infy_del (EV_A_ w);
2461#endif 4611#endif
4612
4613 if (ev_is_active (&w->timer))
4614 {
4615 ev_ref (EV_A);
2462 ev_timer_stop (EV_A_ &w->timer); 4616 ev_timer_stop (EV_A_ &w->timer);
4617 }
2463 4618
2464 ev_stop (EV_A_ (W)w); 4619 ev_stop (EV_A_ (W)w);
4620
4621 EV_FREQUENT_CHECK;
2465} 4622}
2466#endif 4623#endif
2467 4624
2468#if EV_IDLE_ENABLE 4625#if EV_IDLE_ENABLE
2469void 4626void
2470ev_idle_start (EV_P_ ev_idle *w) 4627ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
2471{ 4628{
2472 if (expect_false (ev_is_active (w))) 4629 if (expect_false (ev_is_active (w)))
2473 return; 4630 return;
2474 4631
2475 pri_adjust (EV_A_ (W)w); 4632 pri_adjust (EV_A_ (W)w);
2476 4633
4634 EV_FREQUENT_CHECK;
4635
2477 { 4636 {
2478 int active = ++idlecnt [ABSPRI (w)]; 4637 int active = ++idlecnt [ABSPRI (w)];
2479 4638
2480 ++idleall; 4639 ++idleall;
2481 ev_start (EV_A_ (W)w, active); 4640 ev_start (EV_A_ (W)w, active);
2482 4641
2483 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 4642 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
2484 idles [ABSPRI (w)][active - 1] = w; 4643 idles [ABSPRI (w)][active - 1] = w;
2485 } 4644 }
2486}
2487 4645
4646 EV_FREQUENT_CHECK;
4647}
4648
2488void 4649void
2489ev_idle_stop (EV_P_ ev_idle *w) 4650ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
2490{ 4651{
2491 clear_pending (EV_A_ (W)w); 4652 clear_pending (EV_A_ (W)w);
2492 if (expect_false (!ev_is_active (w))) 4653 if (expect_false (!ev_is_active (w)))
2493 return; 4654 return;
2494 4655
4656 EV_FREQUENT_CHECK;
4657
2495 { 4658 {
2496 int active = ev_active (w); 4659 int active = ev_active (w);
2497 4660
2498 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 4661 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2499 ev_active (idles [ABSPRI (w)][active - 1]) = active; 4662 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2500 4663
2501 ev_stop (EV_A_ (W)w); 4664 ev_stop (EV_A_ (W)w);
2502 --idleall; 4665 --idleall;
2503 } 4666 }
2504}
2505#endif
2506 4667
4668 EV_FREQUENT_CHECK;
4669}
4670#endif
4671
4672#if EV_PREPARE_ENABLE
2507void 4673void
2508ev_prepare_start (EV_P_ ev_prepare *w) 4674ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
2509{ 4675{
2510 if (expect_false (ev_is_active (w))) 4676 if (expect_false (ev_is_active (w)))
2511 return; 4677 return;
2512 4678
4679 EV_FREQUENT_CHECK;
4680
2513 ev_start (EV_A_ (W)w, ++preparecnt); 4681 ev_start (EV_A_ (W)w, ++preparecnt);
2514 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4682 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
2515 prepares [preparecnt - 1] = w; 4683 prepares [preparecnt - 1] = w;
2516}
2517 4684
4685 EV_FREQUENT_CHECK;
4686}
4687
2518void 4688void
2519ev_prepare_stop (EV_P_ ev_prepare *w) 4689ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
2520{ 4690{
2521 clear_pending (EV_A_ (W)w); 4691 clear_pending (EV_A_ (W)w);
2522 if (expect_false (!ev_is_active (w))) 4692 if (expect_false (!ev_is_active (w)))
2523 return; 4693 return;
2524 4694
4695 EV_FREQUENT_CHECK;
4696
2525 { 4697 {
2526 int active = ev_active (w); 4698 int active = ev_active (w);
2527 4699
2528 prepares [active - 1] = prepares [--preparecnt]; 4700 prepares [active - 1] = prepares [--preparecnt];
2529 ev_active (prepares [active - 1]) = active; 4701 ev_active (prepares [active - 1]) = active;
2530 } 4702 }
2531 4703
2532 ev_stop (EV_A_ (W)w); 4704 ev_stop (EV_A_ (W)w);
2533}
2534 4705
4706 EV_FREQUENT_CHECK;
4707}
4708#endif
4709
4710#if EV_CHECK_ENABLE
2535void 4711void
2536ev_check_start (EV_P_ ev_check *w) 4712ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
2537{ 4713{
2538 if (expect_false (ev_is_active (w))) 4714 if (expect_false (ev_is_active (w)))
2539 return; 4715 return;
2540 4716
4717 EV_FREQUENT_CHECK;
4718
2541 ev_start (EV_A_ (W)w, ++checkcnt); 4719 ev_start (EV_A_ (W)w, ++checkcnt);
2542 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4720 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
2543 checks [checkcnt - 1] = w; 4721 checks [checkcnt - 1] = w;
2544}
2545 4722
4723 EV_FREQUENT_CHECK;
4724}
4725
2546void 4726void
2547ev_check_stop (EV_P_ ev_check *w) 4727ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
2548{ 4728{
2549 clear_pending (EV_A_ (W)w); 4729 clear_pending (EV_A_ (W)w);
2550 if (expect_false (!ev_is_active (w))) 4730 if (expect_false (!ev_is_active (w)))
2551 return; 4731 return;
2552 4732
4733 EV_FREQUENT_CHECK;
4734
2553 { 4735 {
2554 int active = ev_active (w); 4736 int active = ev_active (w);
2555 4737
2556 checks [active - 1] = checks [--checkcnt]; 4738 checks [active - 1] = checks [--checkcnt];
2557 ev_active (checks [active - 1]) = active; 4739 ev_active (checks [active - 1]) = active;
2558 } 4740 }
2559 4741
2560 ev_stop (EV_A_ (W)w); 4742 ev_stop (EV_A_ (W)w);
4743
4744 EV_FREQUENT_CHECK;
2561} 4745}
4746#endif
2562 4747
2563#if EV_EMBED_ENABLE 4748#if EV_EMBED_ENABLE
2564void noinline 4749noinline
4750void
2565ev_embed_sweep (EV_P_ ev_embed *w) 4751ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
2566{ 4752{
2567 ev_loop (w->other, EVLOOP_NONBLOCK); 4753 ev_run (w->other, EVRUN_NOWAIT);
2568} 4754}
2569 4755
2570static void 4756static void
2571embed_io_cb (EV_P_ ev_io *io, int revents) 4757embed_io_cb (EV_P_ ev_io *io, int revents)
2572{ 4758{
2573 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4759 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2574 4760
2575 if (ev_cb (w)) 4761 if (ev_cb (w))
2576 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4762 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2577 else 4763 else
2578 ev_loop (w->other, EVLOOP_NONBLOCK); 4764 ev_run (w->other, EVRUN_NOWAIT);
2579} 4765}
2580 4766
2581static void 4767static void
2582embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4768embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2583{ 4769{
2584 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4770 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2585 4771
2586 { 4772 {
2587 struct ev_loop *loop = w->other; 4773 EV_P = w->other;
2588 4774
2589 while (fdchangecnt) 4775 while (fdchangecnt)
2590 { 4776 {
2591 fd_reify (EV_A); 4777 fd_reify (EV_A);
2592 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4778 ev_run (EV_A_ EVRUN_NOWAIT);
2593 } 4779 }
2594 } 4780 }
4781}
4782
4783static void
4784embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4785{
4786 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4787
4788 ev_embed_stop (EV_A_ w);
4789
4790 {
4791 EV_P = w->other;
4792
4793 ev_loop_fork (EV_A);
4794 ev_run (EV_A_ EVRUN_NOWAIT);
4795 }
4796
4797 ev_embed_start (EV_A_ w);
2595} 4798}
2596 4799
2597#if 0 4800#if 0
2598static void 4801static void
2599embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4802embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2601 ev_idle_stop (EV_A_ idle); 4804 ev_idle_stop (EV_A_ idle);
2602} 4805}
2603#endif 4806#endif
2604 4807
2605void 4808void
2606ev_embed_start (EV_P_ ev_embed *w) 4809ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
2607{ 4810{
2608 if (expect_false (ev_is_active (w))) 4811 if (expect_false (ev_is_active (w)))
2609 return; 4812 return;
2610 4813
2611 { 4814 {
2612 struct ev_loop *loop = w->other; 4815 EV_P = w->other;
2613 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4816 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2614 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4817 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2615 } 4818 }
4819
4820 EV_FREQUENT_CHECK;
2616 4821
2617 ev_set_priority (&w->io, ev_priority (w)); 4822 ev_set_priority (&w->io, ev_priority (w));
2618 ev_io_start (EV_A_ &w->io); 4823 ev_io_start (EV_A_ &w->io);
2619 4824
2620 ev_prepare_init (&w->prepare, embed_prepare_cb); 4825 ev_prepare_init (&w->prepare, embed_prepare_cb);
2621 ev_set_priority (&w->prepare, EV_MINPRI); 4826 ev_set_priority (&w->prepare, EV_MINPRI);
2622 ev_prepare_start (EV_A_ &w->prepare); 4827 ev_prepare_start (EV_A_ &w->prepare);
2623 4828
4829 ev_fork_init (&w->fork, embed_fork_cb);
4830 ev_fork_start (EV_A_ &w->fork);
4831
2624 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4832 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2625 4833
2626 ev_start (EV_A_ (W)w, 1); 4834 ev_start (EV_A_ (W)w, 1);
2627}
2628 4835
4836 EV_FREQUENT_CHECK;
4837}
4838
2629void 4839void
2630ev_embed_stop (EV_P_ ev_embed *w) 4840ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
2631{ 4841{
2632 clear_pending (EV_A_ (W)w); 4842 clear_pending (EV_A_ (W)w);
2633 if (expect_false (!ev_is_active (w))) 4843 if (expect_false (!ev_is_active (w)))
2634 return; 4844 return;
2635 4845
4846 EV_FREQUENT_CHECK;
4847
2636 ev_io_stop (EV_A_ &w->io); 4848 ev_io_stop (EV_A_ &w->io);
2637 ev_prepare_stop (EV_A_ &w->prepare); 4849 ev_prepare_stop (EV_A_ &w->prepare);
4850 ev_fork_stop (EV_A_ &w->fork);
2638 4851
2639 ev_stop (EV_A_ (W)w); 4852 ev_stop (EV_A_ (W)w);
4853
4854 EV_FREQUENT_CHECK;
2640} 4855}
2641#endif 4856#endif
2642 4857
2643#if EV_FORK_ENABLE 4858#if EV_FORK_ENABLE
2644void 4859void
2645ev_fork_start (EV_P_ ev_fork *w) 4860ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
2646{ 4861{
2647 if (expect_false (ev_is_active (w))) 4862 if (expect_false (ev_is_active (w)))
2648 return; 4863 return;
2649 4864
4865 EV_FREQUENT_CHECK;
4866
2650 ev_start (EV_A_ (W)w, ++forkcnt); 4867 ev_start (EV_A_ (W)w, ++forkcnt);
2651 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4868 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
2652 forks [forkcnt - 1] = w; 4869 forks [forkcnt - 1] = w;
2653}
2654 4870
4871 EV_FREQUENT_CHECK;
4872}
4873
2655void 4874void
2656ev_fork_stop (EV_P_ ev_fork *w) 4875ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
2657{ 4876{
2658 clear_pending (EV_A_ (W)w); 4877 clear_pending (EV_A_ (W)w);
2659 if (expect_false (!ev_is_active (w))) 4878 if (expect_false (!ev_is_active (w)))
2660 return; 4879 return;
2661 4880
4881 EV_FREQUENT_CHECK;
4882
2662 { 4883 {
2663 int active = ev_active (w); 4884 int active = ev_active (w);
2664 4885
2665 forks [active - 1] = forks [--forkcnt]; 4886 forks [active - 1] = forks [--forkcnt];
2666 ev_active (forks [active - 1]) = active; 4887 ev_active (forks [active - 1]) = active;
2667 } 4888 }
2668 4889
2669 ev_stop (EV_A_ (W)w); 4890 ev_stop (EV_A_ (W)w);
2670}
2671#endif
2672 4891
4892 EV_FREQUENT_CHECK;
4893}
4894#endif
4895
2673#if EV_ASYNC_ENABLE 4896#if EV_CLEANUP_ENABLE
2674void 4897void
2675ev_async_start (EV_P_ ev_async *w) 4898ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
2676{ 4899{
2677 if (expect_false (ev_is_active (w))) 4900 if (expect_false (ev_is_active (w)))
2678 return; 4901 return;
2679 4902
2680 evpipe_init (EV_A); 4903 EV_FREQUENT_CHECK;
2681 4904
2682 ev_start (EV_A_ (W)w, ++asynccnt); 4905 ev_start (EV_A_ (W)w, ++cleanupcnt);
2683 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 4906 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
2684 asyncs [asynccnt - 1] = w; 4907 cleanups [cleanupcnt - 1] = w;
2685}
2686 4908
4909 /* cleanup watchers should never keep a refcount on the loop */
4910 ev_unref (EV_A);
4911 EV_FREQUENT_CHECK;
4912}
4913
2687void 4914void
2688ev_async_stop (EV_P_ ev_async *w) 4915ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
2689{ 4916{
2690 clear_pending (EV_A_ (W)w); 4917 clear_pending (EV_A_ (W)w);
2691 if (expect_false (!ev_is_active (w))) 4918 if (expect_false (!ev_is_active (w)))
2692 return; 4919 return;
2693 4920
4921 EV_FREQUENT_CHECK;
4922 ev_ref (EV_A);
4923
4924 {
4925 int active = ev_active (w);
4926
4927 cleanups [active - 1] = cleanups [--cleanupcnt];
4928 ev_active (cleanups [active - 1]) = active;
4929 }
4930
4931 ev_stop (EV_A_ (W)w);
4932
4933 EV_FREQUENT_CHECK;
4934}
4935#endif
4936
4937#if EV_ASYNC_ENABLE
4938void
4939ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
4940{
4941 if (expect_false (ev_is_active (w)))
4942 return;
4943
4944 w->sent = 0;
4945
4946 evpipe_init (EV_A);
4947
4948 EV_FREQUENT_CHECK;
4949
4950 ev_start (EV_A_ (W)w, ++asynccnt);
4951 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
4952 asyncs [asynccnt - 1] = w;
4953
4954 EV_FREQUENT_CHECK;
4955}
4956
4957void
4958ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
4959{
4960 clear_pending (EV_A_ (W)w);
4961 if (expect_false (!ev_is_active (w)))
4962 return;
4963
4964 EV_FREQUENT_CHECK;
4965
2694 { 4966 {
2695 int active = ev_active (w); 4967 int active = ev_active (w);
2696 4968
2697 asyncs [active - 1] = asyncs [--asynccnt]; 4969 asyncs [active - 1] = asyncs [--asynccnt];
2698 ev_active (asyncs [active - 1]) = active; 4970 ev_active (asyncs [active - 1]) = active;
2699 } 4971 }
2700 4972
2701 ev_stop (EV_A_ (W)w); 4973 ev_stop (EV_A_ (W)w);
2702}
2703 4974
4975 EV_FREQUENT_CHECK;
4976}
4977
2704void 4978void
2705ev_async_send (EV_P_ ev_async *w) 4979ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
2706{ 4980{
2707 w->sent = 1; 4981 w->sent = 1;
2708 evpipe_write (EV_A_ &gotasync); 4982 evpipe_write (EV_A_ &async_pending);
2709} 4983}
2710#endif 4984#endif
2711 4985
2712/*****************************************************************************/ 4986/*****************************************************************************/
2713 4987
2723once_cb (EV_P_ struct ev_once *once, int revents) 4997once_cb (EV_P_ struct ev_once *once, int revents)
2724{ 4998{
2725 void (*cb)(int revents, void *arg) = once->cb; 4999 void (*cb)(int revents, void *arg) = once->cb;
2726 void *arg = once->arg; 5000 void *arg = once->arg;
2727 5001
2728 ev_io_stop (EV_A_ &once->io); 5002 ev_io_stop (EV_A_ &once->io);
2729 ev_timer_stop (EV_A_ &once->to); 5003 ev_timer_stop (EV_A_ &once->to);
2730 ev_free (once); 5004 ev_free (once);
2731 5005
2732 cb (revents, arg); 5006 cb (revents, arg);
2733} 5007}
2734 5008
2735static void 5009static void
2736once_cb_io (EV_P_ ev_io *w, int revents) 5010once_cb_io (EV_P_ ev_io *w, int revents)
2737{ 5011{
2738 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 5012 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
5013
5014 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2739} 5015}
2740 5016
2741static void 5017static void
2742once_cb_to (EV_P_ ev_timer *w, int revents) 5018once_cb_to (EV_P_ ev_timer *w, int revents)
2743{ 5019{
2744 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 5020 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
2745}
2746 5021
5022 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
5023}
5024
2747void 5025void
2748ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 5026ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
2749{ 5027{
2750 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 5028 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2751
2752 if (expect_false (!once))
2753 {
2754 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
2755 return;
2756 }
2757 5029
2758 once->cb = cb; 5030 once->cb = cb;
2759 once->arg = arg; 5031 once->arg = arg;
2760 5032
2761 ev_init (&once->io, once_cb_io); 5033 ev_init (&once->io, once_cb_io);
2771 ev_timer_set (&once->to, timeout, 0.); 5043 ev_timer_set (&once->to, timeout, 0.);
2772 ev_timer_start (EV_A_ &once->to); 5044 ev_timer_start (EV_A_ &once->to);
2773 } 5045 }
2774} 5046}
2775 5047
5048/*****************************************************************************/
5049
5050#if EV_WALK_ENABLE
5051ecb_cold
5052void
5053ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5054{
5055 int i, j;
5056 ev_watcher_list *wl, *wn;
5057
5058 if (types & (EV_IO | EV_EMBED))
5059 for (i = 0; i < anfdmax; ++i)
5060 for (wl = anfds [i].head; wl; )
5061 {
5062 wn = wl->next;
5063
5064#if EV_EMBED_ENABLE
5065 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5066 {
5067 if (types & EV_EMBED)
5068 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5069 }
5070 else
5071#endif
5072#if EV_USE_INOTIFY
5073 if (ev_cb ((ev_io *)wl) == infy_cb)
5074 ;
5075 else
5076#endif
5077 if ((ev_io *)wl != &pipe_w)
5078 if (types & EV_IO)
5079 cb (EV_A_ EV_IO, wl);
5080
5081 wl = wn;
5082 }
5083
5084 if (types & (EV_TIMER | EV_STAT))
5085 for (i = timercnt + HEAP0; i-- > HEAP0; )
5086#if EV_STAT_ENABLE
5087 /*TODO: timer is not always active*/
5088 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5089 {
5090 if (types & EV_STAT)
5091 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5092 }
5093 else
5094#endif
5095 if (types & EV_TIMER)
5096 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5097
5098#if EV_PERIODIC_ENABLE
5099 if (types & EV_PERIODIC)
5100 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5101 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5102#endif
5103
5104#if EV_IDLE_ENABLE
5105 if (types & EV_IDLE)
5106 for (j = NUMPRI; j--; )
5107 for (i = idlecnt [j]; i--; )
5108 cb (EV_A_ EV_IDLE, idles [j][i]);
5109#endif
5110
5111#if EV_FORK_ENABLE
5112 if (types & EV_FORK)
5113 for (i = forkcnt; i--; )
5114 if (ev_cb (forks [i]) != embed_fork_cb)
5115 cb (EV_A_ EV_FORK, forks [i]);
5116#endif
5117
5118#if EV_ASYNC_ENABLE
5119 if (types & EV_ASYNC)
5120 for (i = asynccnt; i--; )
5121 cb (EV_A_ EV_ASYNC, asyncs [i]);
5122#endif
5123
5124#if EV_PREPARE_ENABLE
5125 if (types & EV_PREPARE)
5126 for (i = preparecnt; i--; )
5127# if EV_EMBED_ENABLE
5128 if (ev_cb (prepares [i]) != embed_prepare_cb)
5129# endif
5130 cb (EV_A_ EV_PREPARE, prepares [i]);
5131#endif
5132
5133#if EV_CHECK_ENABLE
5134 if (types & EV_CHECK)
5135 for (i = checkcnt; i--; )
5136 cb (EV_A_ EV_CHECK, checks [i]);
5137#endif
5138
5139#if EV_SIGNAL_ENABLE
5140 if (types & EV_SIGNAL)
5141 for (i = 0; i < EV_NSIG - 1; ++i)
5142 for (wl = signals [i].head; wl; )
5143 {
5144 wn = wl->next;
5145 cb (EV_A_ EV_SIGNAL, wl);
5146 wl = wn;
5147 }
5148#endif
5149
5150#if EV_CHILD_ENABLE
5151 if (types & EV_CHILD)
5152 for (i = (EV_PID_HASHSIZE); i--; )
5153 for (wl = childs [i]; wl; )
5154 {
5155 wn = wl->next;
5156 cb (EV_A_ EV_CHILD, wl);
5157 wl = wn;
5158 }
5159#endif
5160/* EV_STAT 0x00001000 /* stat data changed */
5161/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5162}
5163#endif
5164
2776#if EV_MULTIPLICITY 5165#if EV_MULTIPLICITY
2777 #include "ev_wrap.h" 5166 #include "ev_wrap.h"
2778#endif 5167#endif
2779 5168
2780#ifdef __cplusplus
2781}
2782#endif
2783

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines