ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.123 by root, Sat Nov 17 02:23:54 2007 UTC vs.
Revision 1.491 by root, Thu Jun 20 23:14:53 2019 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
37# include "config.h" 45# include "config.h"
46# endif
47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
38 67
39# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
42# endif 71# endif
43# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
74# endif
75# else
76# ifndef EV_USE_MONOTONIC
77# define EV_USE_MONOTONIC 0
78# endif
79# ifndef EV_USE_REALTIME
80# define EV_USE_REALTIME 0
45# endif 81# endif
46# endif 82# endif
47 83
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 84# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
50# endif 91# endif
51 92
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
53# define EV_USE_POLL 1 99# define EV_USE_SELECT 0
54# endif 100# endif
55 101
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
57# define EV_USE_EPOLL 1 108# define EV_USE_POLL 0
58# endif 109# endif
59 110
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
62# endif 118# endif
63 119
64# if HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT) 120# if HAVE_LINUX_AIO_ABI_H
65# define EV_USE_PORT 1 121# ifndef EV_USE_LINUXAIO
122# define EV_USE_LINUXAIO EV_FEATURE_BACKENDS
123# endif
124# else
125# undef EV_USE_LINUXAIO
126# define EV_USE_LINUXAIO 0
66# endif 127# endif
67 128
129# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
130# ifndef EV_USE_KQUEUE
131# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
132# endif
133# else
134# undef EV_USE_KQUEUE
135# define EV_USE_KQUEUE 0
68#endif 136# endif
137
138# if HAVE_PORT_H && HAVE_PORT_CREATE
139# ifndef EV_USE_PORT
140# define EV_USE_PORT EV_FEATURE_BACKENDS
141# endif
142# else
143# undef EV_USE_PORT
144# define EV_USE_PORT 0
145# endif
69 146
70#include <math.h> 147# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
148# ifndef EV_USE_INOTIFY
149# define EV_USE_INOTIFY EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_INOTIFY
153# define EV_USE_INOTIFY 0
154# endif
155
156# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
157# ifndef EV_USE_SIGNALFD
158# define EV_USE_SIGNALFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_SIGNALFD
162# define EV_USE_SIGNALFD 0
163# endif
164
165# if HAVE_EVENTFD
166# ifndef EV_USE_EVENTFD
167# define EV_USE_EVENTFD EV_FEATURE_OS
168# endif
169# else
170# undef EV_USE_EVENTFD
171# define EV_USE_EVENTFD 0
172# endif
173
174#endif
175
176/* OS X, in its infinite idiocy, actually HARDCODES
177 * a limit of 1024 into their select. Where people have brains,
178 * OS X engineers apparently have a vacuum. Or maybe they were
179 * ordered to have a vacuum, or they do anything for money.
180 * This might help. Or not.
181 * Note that this must be defined early, as other include files
182 * will rely on this define as well.
183 */
184#define _DARWIN_UNLIMITED_SELECT 1
185
71#include <stdlib.h> 186#include <stdlib.h>
187#include <string.h>
72#include <fcntl.h> 188#include <fcntl.h>
73#include <stddef.h> 189#include <stddef.h>
74 190
75#include <stdio.h> 191#include <stdio.h>
76 192
77#include <assert.h> 193#include <assert.h>
78#include <errno.h> 194#include <errno.h>
79#include <sys/types.h> 195#include <sys/types.h>
80#include <time.h> 196#include <time.h>
197#include <limits.h>
81 198
82#include <signal.h> 199#include <signal.h>
83 200
201#ifdef EV_H
202# include EV_H
203#else
204# include "ev.h"
205#endif
206
207#if EV_NO_THREADS
208# undef EV_NO_SMP
209# define EV_NO_SMP 1
210# undef ECB_NO_THREADS
211# define ECB_NO_THREADS 1
212#endif
213#if EV_NO_SMP
214# undef EV_NO_SMP
215# define ECB_NO_SMP 1
216#endif
217
84#ifndef _WIN32 218#ifndef _WIN32
85# include <unistd.h>
86# include <sys/time.h> 219# include <sys/time.h>
87# include <sys/wait.h> 220# include <sys/wait.h>
221# include <unistd.h>
88#else 222#else
223# include <io.h>
89# define WIN32_LEAN_AND_MEAN 224# define WIN32_LEAN_AND_MEAN
225# include <winsock2.h>
90# include <windows.h> 226# include <windows.h>
91# ifndef EV_SELECT_IS_WINSOCKET 227# ifndef EV_SELECT_IS_WINSOCKET
92# define EV_SELECT_IS_WINSOCKET 1 228# define EV_SELECT_IS_WINSOCKET 1
93# endif 229# endif
230# undef EV_AVOID_STDIO
231#endif
232
233/* this block tries to deduce configuration from header-defined symbols and defaults */
234
235/* try to deduce the maximum number of signals on this platform */
236#if defined EV_NSIG
237/* use what's provided */
238#elif defined NSIG
239# define EV_NSIG (NSIG)
240#elif defined _NSIG
241# define EV_NSIG (_NSIG)
242#elif defined SIGMAX
243# define EV_NSIG (SIGMAX+1)
244#elif defined SIG_MAX
245# define EV_NSIG (SIG_MAX+1)
246#elif defined _SIG_MAX
247# define EV_NSIG (_SIG_MAX+1)
248#elif defined MAXSIG
249# define EV_NSIG (MAXSIG+1)
250#elif defined MAX_SIG
251# define EV_NSIG (MAX_SIG+1)
252#elif defined SIGARRAYSIZE
253# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
254#elif defined _sys_nsig
255# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
256#else
257# define EV_NSIG (8 * sizeof (sigset_t) + 1)
258#endif
259
260#ifndef EV_USE_FLOOR
261# define EV_USE_FLOOR 0
262#endif
263
264#ifndef EV_USE_CLOCK_SYSCALL
265# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
266# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
267# else
268# define EV_USE_CLOCK_SYSCALL 0
94#endif 269# endif
270#endif
95 271
96/**/ 272#if !(_POSIX_TIMERS > 0)
273# ifndef EV_USE_MONOTONIC
274# define EV_USE_MONOTONIC 0
275# endif
276# ifndef EV_USE_REALTIME
277# define EV_USE_REALTIME 0
278# endif
279#endif
97 280
98#ifndef EV_USE_MONOTONIC 281#ifndef EV_USE_MONOTONIC
282# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
283# define EV_USE_MONOTONIC EV_FEATURE_OS
284# else
99# define EV_USE_MONOTONIC 0 285# define EV_USE_MONOTONIC 0
286# endif
100#endif 287#endif
101 288
102#ifndef EV_USE_REALTIME 289#ifndef EV_USE_REALTIME
103# define EV_USE_REALTIME 0 290# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
291#endif
292
293#ifndef EV_USE_NANOSLEEP
294# if _POSIX_C_SOURCE >= 199309L
295# define EV_USE_NANOSLEEP EV_FEATURE_OS
296# else
297# define EV_USE_NANOSLEEP 0
298# endif
104#endif 299#endif
105 300
106#ifndef EV_USE_SELECT 301#ifndef EV_USE_SELECT
107# define EV_USE_SELECT 1 302# define EV_USE_SELECT EV_FEATURE_BACKENDS
108#endif 303#endif
109 304
110#ifndef EV_USE_POLL 305#ifndef EV_USE_POLL
111# ifdef _WIN32 306# ifdef _WIN32
112# define EV_USE_POLL 0 307# define EV_USE_POLL 0
113# else 308# else
114# define EV_USE_POLL 1 309# define EV_USE_POLL EV_FEATURE_BACKENDS
115# endif 310# endif
116#endif 311#endif
117 312
118#ifndef EV_USE_EPOLL 313#ifndef EV_USE_EPOLL
314# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
315# define EV_USE_EPOLL EV_FEATURE_BACKENDS
316# else
119# define EV_USE_EPOLL 0 317# define EV_USE_EPOLL 0
318# endif
120#endif 319#endif
121 320
122#ifndef EV_USE_KQUEUE 321#ifndef EV_USE_KQUEUE
123# define EV_USE_KQUEUE 0 322# define EV_USE_KQUEUE 0
124#endif 323#endif
125 324
126#ifndef EV_USE_PORT 325#ifndef EV_USE_PORT
127# define EV_USE_PORT 0 326# define EV_USE_PORT 0
128#endif 327#endif
129 328
130/**/ 329#ifndef EV_USE_LINUXAIO
330# define EV_USE_LINUXAIO 0
331#endif
131 332
132/* darwin simply cannot be helped */ 333#ifndef EV_USE_INOTIFY
133#ifdef __APPLE__ 334# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
335# define EV_USE_INOTIFY EV_FEATURE_OS
336# else
337# define EV_USE_INOTIFY 0
338# endif
339#endif
340
341#ifndef EV_PID_HASHSIZE
342# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
343#endif
344
345#ifndef EV_INOTIFY_HASHSIZE
346# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
347#endif
348
349#ifndef EV_USE_EVENTFD
350# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
351# define EV_USE_EVENTFD EV_FEATURE_OS
352# else
353# define EV_USE_EVENTFD 0
354# endif
355#endif
356
357#ifndef EV_USE_SIGNALFD
358# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
359# define EV_USE_SIGNALFD EV_FEATURE_OS
360# else
361# define EV_USE_SIGNALFD 0
362# endif
363#endif
364
365#if 0 /* debugging */
366# define EV_VERIFY 3
367# define EV_USE_4HEAP 1
368# define EV_HEAP_CACHE_AT 1
369#endif
370
371#ifndef EV_VERIFY
372# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
373#endif
374
375#ifndef EV_USE_4HEAP
376# define EV_USE_4HEAP EV_FEATURE_DATA
377#endif
378
379#ifndef EV_HEAP_CACHE_AT
380# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
381#endif
382
383#ifdef __ANDROID__
384/* supposedly, android doesn't typedef fd_mask */
385# undef EV_USE_SELECT
386# define EV_USE_SELECT 0
387/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
388# undef EV_USE_CLOCK_SYSCALL
389# define EV_USE_CLOCK_SYSCALL 0
390#endif
391
392/* aix's poll.h seems to cause lots of trouble */
393#ifdef _AIX
394/* AIX has a completely broken poll.h header */
134# undef EV_USE_POLL 395# undef EV_USE_POLL
135# undef EV_USE_KQUEUE 396# define EV_USE_POLL 0
397#endif
398
399#if EV_USE_LINUXAIO
400# include <linux/aio_abi.h> /* probably only needed for aio_context_t */
401#endif
402
403/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
404/* which makes programs even slower. might work on other unices, too. */
405#if EV_USE_CLOCK_SYSCALL
406# include <sys/syscall.h>
407# ifdef SYS_clock_gettime
408# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
409# undef EV_USE_MONOTONIC
410# define EV_USE_MONOTONIC 1
411# else
412# undef EV_USE_CLOCK_SYSCALL
413# define EV_USE_CLOCK_SYSCALL 0
136#endif 414# endif
415#endif
416
417/* this block fixes any misconfiguration where we know we run into trouble otherwise */
137 418
138#ifndef CLOCK_MONOTONIC 419#ifndef CLOCK_MONOTONIC
139# undef EV_USE_MONOTONIC 420# undef EV_USE_MONOTONIC
140# define EV_USE_MONOTONIC 0 421# define EV_USE_MONOTONIC 0
141#endif 422#endif
143#ifndef CLOCK_REALTIME 424#ifndef CLOCK_REALTIME
144# undef EV_USE_REALTIME 425# undef EV_USE_REALTIME
145# define EV_USE_REALTIME 0 426# define EV_USE_REALTIME 0
146#endif 427#endif
147 428
148#if EV_SELECT_IS_WINSOCKET 429#if !EV_STAT_ENABLE
430# undef EV_USE_INOTIFY
431# define EV_USE_INOTIFY 0
432#endif
433
434#if !EV_USE_NANOSLEEP
435/* hp-ux has it in sys/time.h, which we unconditionally include above */
436# if !defined _WIN32 && !defined __hpux
437# include <sys/select.h>
438# endif
439#endif
440
441#if EV_USE_LINUXAIO
442# include <sys/syscall.h>
443# if !SYS_io_getevents
444# undef EV_USE_LINUXAIO
445# define EV_USE_LINUXAIO 0
446# endif
447#endif
448
449#if EV_USE_INOTIFY
450# include <sys/statfs.h>
451# include <sys/inotify.h>
452/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
453# ifndef IN_DONT_FOLLOW
454# undef EV_USE_INOTIFY
455# define EV_USE_INOTIFY 0
456# endif
457#endif
458
459#if EV_USE_EVENTFD
460/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
149# include <winsock.h> 461# include <stdint.h>
462# ifndef EFD_NONBLOCK
463# define EFD_NONBLOCK O_NONBLOCK
464# endif
465# ifndef EFD_CLOEXEC
466# ifdef O_CLOEXEC
467# define EFD_CLOEXEC O_CLOEXEC
468# else
469# define EFD_CLOEXEC 02000000
470# endif
471# endif
472EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
473#endif
474
475#if EV_USE_SIGNALFD
476/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
477# include <stdint.h>
478# ifndef SFD_NONBLOCK
479# define SFD_NONBLOCK O_NONBLOCK
480# endif
481# ifndef SFD_CLOEXEC
482# ifdef O_CLOEXEC
483# define SFD_CLOEXEC O_CLOEXEC
484# else
485# define SFD_CLOEXEC 02000000
486# endif
487# endif
488EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
489
490struct signalfd_siginfo
491{
492 uint32_t ssi_signo;
493 char pad[128 - sizeof (uint32_t)];
494};
150#endif 495#endif
151 496
152/**/ 497/**/
498
499#if EV_VERIFY >= 3
500# define EV_FREQUENT_CHECK ev_verify (EV_A)
501#else
502# define EV_FREQUENT_CHECK do { } while (0)
503#endif
504
505/*
506 * This is used to work around floating point rounding problems.
507 * This value is good at least till the year 4000.
508 */
509#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
510/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
153 511
154#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 512#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
155#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 513#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
156#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
157/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
158 514
515#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
516#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
517
518/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
519/* ECB.H BEGIN */
520/*
521 * libecb - http://software.schmorp.de/pkg/libecb
522 *
523 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
524 * Copyright (©) 2011 Emanuele Giaquinta
525 * All rights reserved.
526 *
527 * Redistribution and use in source and binary forms, with or without modifica-
528 * tion, are permitted provided that the following conditions are met:
529 *
530 * 1. Redistributions of source code must retain the above copyright notice,
531 * this list of conditions and the following disclaimer.
532 *
533 * 2. Redistributions in binary form must reproduce the above copyright
534 * notice, this list of conditions and the following disclaimer in the
535 * documentation and/or other materials provided with the distribution.
536 *
537 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
538 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
539 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
540 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
541 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
542 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
543 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
544 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
545 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
546 * OF THE POSSIBILITY OF SUCH DAMAGE.
547 *
548 * Alternatively, the contents of this file may be used under the terms of
549 * the GNU General Public License ("GPL") version 2 or any later version,
550 * in which case the provisions of the GPL are applicable instead of
551 * the above. If you wish to allow the use of your version of this file
552 * only under the terms of the GPL and not to allow others to use your
553 * version of this file under the BSD license, indicate your decision
554 * by deleting the provisions above and replace them with the notice
555 * and other provisions required by the GPL. If you do not delete the
556 * provisions above, a recipient may use your version of this file under
557 * either the BSD or the GPL.
558 */
559
159#ifdef EV_H 560#ifndef ECB_H
160# include EV_H 561#define ECB_H
161#else 562
162# include "ev.h" 563/* 16 bits major, 16 bits minor */
564#define ECB_VERSION 0x00010005
565
566#ifdef _WIN32
567 typedef signed char int8_t;
568 typedef unsigned char uint8_t;
569 typedef signed short int16_t;
570 typedef unsigned short uint16_t;
571 typedef signed int int32_t;
572 typedef unsigned int uint32_t;
573 #if __GNUC__
574 typedef signed long long int64_t;
575 typedef unsigned long long uint64_t;
576 #else /* _MSC_VER || __BORLANDC__ */
577 typedef signed __int64 int64_t;
578 typedef unsigned __int64 uint64_t;
163#endif 579 #endif
580 #ifdef _WIN64
581 #define ECB_PTRSIZE 8
582 typedef uint64_t uintptr_t;
583 typedef int64_t intptr_t;
584 #else
585 #define ECB_PTRSIZE 4
586 typedef uint32_t uintptr_t;
587 typedef int32_t intptr_t;
588 #endif
589#else
590 #include <inttypes.h>
591 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
592 #define ECB_PTRSIZE 8
593 #else
594 #define ECB_PTRSIZE 4
595 #endif
596#endif
164 597
165#if __GNUC__ >= 3 598#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
599#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
600
601/* work around x32 idiocy by defining proper macros */
602#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
603 #if _ILP32
604 #define ECB_AMD64_X32 1
605 #else
606 #define ECB_AMD64 1
607 #endif
608#endif
609
610/* many compilers define _GNUC_ to some versions but then only implement
611 * what their idiot authors think are the "more important" extensions,
612 * causing enormous grief in return for some better fake benchmark numbers.
613 * or so.
614 * we try to detect these and simply assume they are not gcc - if they have
615 * an issue with that they should have done it right in the first place.
616 */
617#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
618 #define ECB_GCC_VERSION(major,minor) 0
619#else
620 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
621#endif
622
623#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
624
625#if __clang__ && defined __has_builtin
626 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
627#else
628 #define ECB_CLANG_BUILTIN(x) 0
629#endif
630
631#if __clang__ && defined __has_extension
632 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
633#else
634 #define ECB_CLANG_EXTENSION(x) 0
635#endif
636
637#define ECB_CPP (__cplusplus+0)
638#define ECB_CPP11 (__cplusplus >= 201103L)
639#define ECB_CPP14 (__cplusplus >= 201402L)
640#define ECB_CPP17 (__cplusplus >= 201703L)
641
642#if ECB_CPP
643 #define ECB_C 0
644 #define ECB_STDC_VERSION 0
645#else
646 #define ECB_C 1
647 #define ECB_STDC_VERSION __STDC_VERSION__
648#endif
649
650#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
651#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
652#define ECB_C17 (ECB_STDC_VERSION >= 201710L)
653
654#if ECB_CPP
655 #define ECB_EXTERN_C extern "C"
656 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
657 #define ECB_EXTERN_C_END }
658#else
659 #define ECB_EXTERN_C extern
660 #define ECB_EXTERN_C_BEG
661 #define ECB_EXTERN_C_END
662#endif
663
664/*****************************************************************************/
665
666/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
667/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
668
669#if ECB_NO_THREADS
670 #define ECB_NO_SMP 1
671#endif
672
673#if ECB_NO_SMP
674 #define ECB_MEMORY_FENCE do { } while (0)
675#endif
676
677/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
678#if __xlC__ && ECB_CPP
679 #include <builtins.h>
680#endif
681
682#if 1400 <= _MSC_VER
683 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
684#endif
685
686#ifndef ECB_MEMORY_FENCE
687 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
688 #if __i386 || __i386__
689 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
690 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
691 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
692 #elif ECB_GCC_AMD64
693 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
694 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
695 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
696 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
697 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
698 #elif defined __ARM_ARCH_2__ \
699 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
700 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
701 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
702 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
703 || defined __ARM_ARCH_5TEJ__
704 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
705 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
706 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
707 || defined __ARM_ARCH_6T2__
708 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
709 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
710 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
711 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
712 #elif __aarch64__
713 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
714 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
715 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
716 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
717 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
718 #elif defined __s390__ || defined __s390x__
719 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
720 #elif defined __mips__
721 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
722 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
723 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
724 #elif defined __alpha__
725 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
726 #elif defined __hppa__
727 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
728 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
729 #elif defined __ia64__
730 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
731 #elif defined __m68k__
732 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
733 #elif defined __m88k__
734 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
735 #elif defined __sh__
736 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
737 #endif
738 #endif
739#endif
740
741#ifndef ECB_MEMORY_FENCE
742 #if ECB_GCC_VERSION(4,7)
743 /* see comment below (stdatomic.h) about the C11 memory model. */
744 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
745 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
746 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
747
748 #elif ECB_CLANG_EXTENSION(c_atomic)
749 /* see comment below (stdatomic.h) about the C11 memory model. */
750 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
751 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
752 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
753
754 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
755 #define ECB_MEMORY_FENCE __sync_synchronize ()
756 #elif _MSC_VER >= 1500 /* VC++ 2008 */
757 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
758 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
759 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
760 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
761 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
762 #elif _MSC_VER >= 1400 /* VC++ 2005 */
763 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
764 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
765 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
766 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
767 #elif defined _WIN32
768 #include <WinNT.h>
769 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
770 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
771 #include <mbarrier.h>
772 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
773 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
774 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
775 #elif __xlC__
776 #define ECB_MEMORY_FENCE __sync ()
777 #endif
778#endif
779
780#ifndef ECB_MEMORY_FENCE
781 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
782 /* we assume that these memory fences work on all variables/all memory accesses, */
783 /* not just C11 atomics and atomic accesses */
784 #include <stdatomic.h>
785 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
786 /* any fence other than seq_cst, which isn't very efficient for us. */
787 /* Why that is, we don't know - either the C11 memory model is quite useless */
788 /* for most usages, or gcc and clang have a bug */
789 /* I *currently* lean towards the latter, and inefficiently implement */
790 /* all three of ecb's fences as a seq_cst fence */
791 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
792 /* for all __atomic_thread_fence's except seq_cst */
793 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
794 #endif
795#endif
796
797#ifndef ECB_MEMORY_FENCE
798 #if !ECB_AVOID_PTHREADS
799 /*
800 * if you get undefined symbol references to pthread_mutex_lock,
801 * or failure to find pthread.h, then you should implement
802 * the ECB_MEMORY_FENCE operations for your cpu/compiler
803 * OR provide pthread.h and link against the posix thread library
804 * of your system.
805 */
806 #include <pthread.h>
807 #define ECB_NEEDS_PTHREADS 1
808 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
809
810 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
811 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
812 #endif
813#endif
814
815#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
816 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
817#endif
818
819#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
820 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
821#endif
822
823/*****************************************************************************/
824
825#if ECB_CPP
826 #define ecb_inline static inline
827#elif ECB_GCC_VERSION(2,5)
828 #define ecb_inline static __inline__
829#elif ECB_C99
830 #define ecb_inline static inline
831#else
832 #define ecb_inline static
833#endif
834
835#if ECB_GCC_VERSION(3,3)
836 #define ecb_restrict __restrict__
837#elif ECB_C99
838 #define ecb_restrict restrict
839#else
840 #define ecb_restrict
841#endif
842
843typedef int ecb_bool;
844
845#define ECB_CONCAT_(a, b) a ## b
846#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
847#define ECB_STRINGIFY_(a) # a
848#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
849#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
850
851#define ecb_function_ ecb_inline
852
853#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
854 #define ecb_attribute(attrlist) __attribute__ (attrlist)
855#else
856 #define ecb_attribute(attrlist)
857#endif
858
859#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
860 #define ecb_is_constant(expr) __builtin_constant_p (expr)
861#else
862 /* possible C11 impl for integral types
863 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
864 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
865
866 #define ecb_is_constant(expr) 0
867#endif
868
869#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
166# define expect(expr,value) __builtin_expect ((expr),(value)) 870 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
167# define inline static inline
168#else 871#else
169# define expect(expr,value) (expr) 872 #define ecb_expect(expr,value) (expr)
170# define inline static
171#endif 873#endif
172 874
875#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
876 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
877#else
878 #define ecb_prefetch(addr,rw,locality)
879#endif
880
881/* no emulation for ecb_decltype */
882#if ECB_CPP11
883 // older implementations might have problems with decltype(x)::type, work around it
884 template<class T> struct ecb_decltype_t { typedef T type; };
885 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
886#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
887 #define ecb_decltype(x) __typeof__ (x)
888#endif
889
890#if _MSC_VER >= 1300
891 #define ecb_deprecated __declspec (deprecated)
892#else
893 #define ecb_deprecated ecb_attribute ((__deprecated__))
894#endif
895
896#if _MSC_VER >= 1500
897 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
898#elif ECB_GCC_VERSION(4,5)
899 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
900#else
901 #define ecb_deprecated_message(msg) ecb_deprecated
902#endif
903
904#if _MSC_VER >= 1400
905 #define ecb_noinline __declspec (noinline)
906#else
907 #define ecb_noinline ecb_attribute ((__noinline__))
908#endif
909
910#define ecb_unused ecb_attribute ((__unused__))
911#define ecb_const ecb_attribute ((__const__))
912#define ecb_pure ecb_attribute ((__pure__))
913
914#if ECB_C11 || __IBMC_NORETURN
915 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
916 #define ecb_noreturn _Noreturn
917#elif ECB_CPP11
918 #define ecb_noreturn [[noreturn]]
919#elif _MSC_VER >= 1200
920 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
921 #define ecb_noreturn __declspec (noreturn)
922#else
923 #define ecb_noreturn ecb_attribute ((__noreturn__))
924#endif
925
926#if ECB_GCC_VERSION(4,3)
927 #define ecb_artificial ecb_attribute ((__artificial__))
928 #define ecb_hot ecb_attribute ((__hot__))
929 #define ecb_cold ecb_attribute ((__cold__))
930#else
931 #define ecb_artificial
932 #define ecb_hot
933 #define ecb_cold
934#endif
935
936/* put around conditional expressions if you are very sure that the */
937/* expression is mostly true or mostly false. note that these return */
938/* booleans, not the expression. */
173#define expect_false(expr) expect ((expr) != 0, 0) 939#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
174#define expect_true(expr) expect ((expr) != 0, 1) 940#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
941/* for compatibility to the rest of the world */
942#define ecb_likely(expr) ecb_expect_true (expr)
943#define ecb_unlikely(expr) ecb_expect_false (expr)
175 944
945/* count trailing zero bits and count # of one bits */
946#if ECB_GCC_VERSION(3,4) \
947 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
948 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
949 && ECB_CLANG_BUILTIN(__builtin_popcount))
950 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
951 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
952 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
953 #define ecb_ctz32(x) __builtin_ctz (x)
954 #define ecb_ctz64(x) __builtin_ctzll (x)
955 #define ecb_popcount32(x) __builtin_popcount (x)
956 /* no popcountll */
957#else
958 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
959 ecb_function_ ecb_const int
960 ecb_ctz32 (uint32_t x)
961 {
962#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
963 unsigned long r;
964 _BitScanForward (&r, x);
965 return (int)r;
966#else
967 int r = 0;
968
969 x &= ~x + 1; /* this isolates the lowest bit */
970
971#if ECB_branchless_on_i386
972 r += !!(x & 0xaaaaaaaa) << 0;
973 r += !!(x & 0xcccccccc) << 1;
974 r += !!(x & 0xf0f0f0f0) << 2;
975 r += !!(x & 0xff00ff00) << 3;
976 r += !!(x & 0xffff0000) << 4;
977#else
978 if (x & 0xaaaaaaaa) r += 1;
979 if (x & 0xcccccccc) r += 2;
980 if (x & 0xf0f0f0f0) r += 4;
981 if (x & 0xff00ff00) r += 8;
982 if (x & 0xffff0000) r += 16;
983#endif
984
985 return r;
986#endif
987 }
988
989 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
990 ecb_function_ ecb_const int
991 ecb_ctz64 (uint64_t x)
992 {
993#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
994 unsigned long r;
995 _BitScanForward64 (&r, x);
996 return (int)r;
997#else
998 int shift = x & 0xffffffff ? 0 : 32;
999 return ecb_ctz32 (x >> shift) + shift;
1000#endif
1001 }
1002
1003 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1004 ecb_function_ ecb_const int
1005 ecb_popcount32 (uint32_t x)
1006 {
1007 x -= (x >> 1) & 0x55555555;
1008 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1009 x = ((x >> 4) + x) & 0x0f0f0f0f;
1010 x *= 0x01010101;
1011
1012 return x >> 24;
1013 }
1014
1015 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1016 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1017 {
1018#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1019 unsigned long r;
1020 _BitScanReverse (&r, x);
1021 return (int)r;
1022#else
1023 int r = 0;
1024
1025 if (x >> 16) { x >>= 16; r += 16; }
1026 if (x >> 8) { x >>= 8; r += 8; }
1027 if (x >> 4) { x >>= 4; r += 4; }
1028 if (x >> 2) { x >>= 2; r += 2; }
1029 if (x >> 1) { r += 1; }
1030
1031 return r;
1032#endif
1033 }
1034
1035 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1036 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1037 {
1038#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1039 unsigned long r;
1040 _BitScanReverse64 (&r, x);
1041 return (int)r;
1042#else
1043 int r = 0;
1044
1045 if (x >> 32) { x >>= 32; r += 32; }
1046
1047 return r + ecb_ld32 (x);
1048#endif
1049 }
1050#endif
1051
1052ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1053ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1054ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1055ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1056
1057ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1058ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1059{
1060 return ( (x * 0x0802U & 0x22110U)
1061 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1062}
1063
1064ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1065ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1066{
1067 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1068 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1069 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1070 x = ( x >> 8 ) | ( x << 8);
1071
1072 return x;
1073}
1074
1075ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1076ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1077{
1078 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1079 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1080 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1081 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1082 x = ( x >> 16 ) | ( x << 16);
1083
1084 return x;
1085}
1086
1087/* popcount64 is only available on 64 bit cpus as gcc builtin */
1088/* so for this version we are lazy */
1089ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1090ecb_function_ ecb_const int
1091ecb_popcount64 (uint64_t x)
1092{
1093 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1094}
1095
1096ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1097ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1098ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1099ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1100ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1101ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1102ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1103ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1104
1105ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1106ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1107ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1108ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1109ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1110ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1111ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1112ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1113
1114#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1115 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1116 #define ecb_bswap16(x) __builtin_bswap16 (x)
1117 #else
1118 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1119 #endif
1120 #define ecb_bswap32(x) __builtin_bswap32 (x)
1121 #define ecb_bswap64(x) __builtin_bswap64 (x)
1122#elif _MSC_VER
1123 #include <stdlib.h>
1124 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1125 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1126 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1127#else
1128 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1129 ecb_function_ ecb_const uint16_t
1130 ecb_bswap16 (uint16_t x)
1131 {
1132 return ecb_rotl16 (x, 8);
1133 }
1134
1135 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1136 ecb_function_ ecb_const uint32_t
1137 ecb_bswap32 (uint32_t x)
1138 {
1139 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1140 }
1141
1142 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1143 ecb_function_ ecb_const uint64_t
1144 ecb_bswap64 (uint64_t x)
1145 {
1146 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1147 }
1148#endif
1149
1150#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1151 #define ecb_unreachable() __builtin_unreachable ()
1152#else
1153 /* this seems to work fine, but gcc always emits a warning for it :/ */
1154 ecb_inline ecb_noreturn void ecb_unreachable (void);
1155 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1156#endif
1157
1158/* try to tell the compiler that some condition is definitely true */
1159#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1160
1161ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1162ecb_inline ecb_const uint32_t
1163ecb_byteorder_helper (void)
1164{
1165 /* the union code still generates code under pressure in gcc, */
1166 /* but less than using pointers, and always seems to */
1167 /* successfully return a constant. */
1168 /* the reason why we have this horrible preprocessor mess */
1169 /* is to avoid it in all cases, at least on common architectures */
1170 /* or when using a recent enough gcc version (>= 4.6) */
1171#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1172 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1173 #define ECB_LITTLE_ENDIAN 1
1174 return 0x44332211;
1175#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1176 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1177 #define ECB_BIG_ENDIAN 1
1178 return 0x11223344;
1179#else
1180 union
1181 {
1182 uint8_t c[4];
1183 uint32_t u;
1184 } u = { 0x11, 0x22, 0x33, 0x44 };
1185 return u.u;
1186#endif
1187}
1188
1189ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1190ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1191ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1192ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1193
1194#if ECB_GCC_VERSION(3,0) || ECB_C99
1195 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1196#else
1197 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1198#endif
1199
1200#if ECB_CPP
1201 template<typename T>
1202 static inline T ecb_div_rd (T val, T div)
1203 {
1204 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1205 }
1206 template<typename T>
1207 static inline T ecb_div_ru (T val, T div)
1208 {
1209 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1210 }
1211#else
1212 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1213 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1214#endif
1215
1216#if ecb_cplusplus_does_not_suck
1217 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1218 template<typename T, int N>
1219 static inline int ecb_array_length (const T (&arr)[N])
1220 {
1221 return N;
1222 }
1223#else
1224 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1225#endif
1226
1227ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1228ecb_function_ ecb_const uint32_t
1229ecb_binary16_to_binary32 (uint32_t x)
1230{
1231 unsigned int s = (x & 0x8000) << (31 - 15);
1232 int e = (x >> 10) & 0x001f;
1233 unsigned int m = x & 0x03ff;
1234
1235 if (ecb_expect_false (e == 31))
1236 /* infinity or NaN */
1237 e = 255 - (127 - 15);
1238 else if (ecb_expect_false (!e))
1239 {
1240 if (ecb_expect_true (!m))
1241 /* zero, handled by code below by forcing e to 0 */
1242 e = 0 - (127 - 15);
1243 else
1244 {
1245 /* subnormal, renormalise */
1246 unsigned int s = 10 - ecb_ld32 (m);
1247
1248 m = (m << s) & 0x3ff; /* mask implicit bit */
1249 e -= s - 1;
1250 }
1251 }
1252
1253 /* e and m now are normalised, or zero, (or inf or nan) */
1254 e += 127 - 15;
1255
1256 return s | (e << 23) | (m << (23 - 10));
1257}
1258
1259ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1260ecb_function_ ecb_const uint16_t
1261ecb_binary32_to_binary16 (uint32_t x)
1262{
1263 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1264 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1265 unsigned int m = x & 0x007fffff;
1266
1267 x &= 0x7fffffff;
1268
1269 /* if it's within range of binary16 normals, use fast path */
1270 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1271 {
1272 /* mantissa round-to-even */
1273 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1274
1275 /* handle overflow */
1276 if (ecb_expect_false (m >= 0x00800000))
1277 {
1278 m >>= 1;
1279 e += 1;
1280 }
1281
1282 return s | (e << 10) | (m >> (23 - 10));
1283 }
1284
1285 /* handle large numbers and infinity */
1286 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1287 return s | 0x7c00;
1288
1289 /* handle zero, subnormals and small numbers */
1290 if (ecb_expect_true (x < 0x38800000))
1291 {
1292 /* zero */
1293 if (ecb_expect_true (!x))
1294 return s;
1295
1296 /* handle subnormals */
1297
1298 /* too small, will be zero */
1299 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1300 return s;
1301
1302 m |= 0x00800000; /* make implicit bit explicit */
1303
1304 /* very tricky - we need to round to the nearest e (+10) bit value */
1305 {
1306 unsigned int bits = 14 - e;
1307 unsigned int half = (1 << (bits - 1)) - 1;
1308 unsigned int even = (m >> bits) & 1;
1309
1310 /* if this overflows, we will end up with a normalised number */
1311 m = (m + half + even) >> bits;
1312 }
1313
1314 return s | m;
1315 }
1316
1317 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1318 m >>= 13;
1319
1320 return s | 0x7c00 | m | !m;
1321}
1322
1323/*******************************************************************************/
1324/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1325
1326/* basically, everything uses "ieee pure-endian" floating point numbers */
1327/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1328#if 0 \
1329 || __i386 || __i386__ \
1330 || ECB_GCC_AMD64 \
1331 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1332 || defined __s390__ || defined __s390x__ \
1333 || defined __mips__ \
1334 || defined __alpha__ \
1335 || defined __hppa__ \
1336 || defined __ia64__ \
1337 || defined __m68k__ \
1338 || defined __m88k__ \
1339 || defined __sh__ \
1340 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1341 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1342 || defined __aarch64__
1343 #define ECB_STDFP 1
1344 #include <string.h> /* for memcpy */
1345#else
1346 #define ECB_STDFP 0
1347#endif
1348
1349#ifndef ECB_NO_LIBM
1350
1351 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1352
1353 /* only the oldest of old doesn't have this one. solaris. */
1354 #ifdef INFINITY
1355 #define ECB_INFINITY INFINITY
1356 #else
1357 #define ECB_INFINITY HUGE_VAL
1358 #endif
1359
1360 #ifdef NAN
1361 #define ECB_NAN NAN
1362 #else
1363 #define ECB_NAN ECB_INFINITY
1364 #endif
1365
1366 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1367 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1368 #define ecb_frexpf(x,e) frexpf ((x), (e))
1369 #else
1370 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1371 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1372 #endif
1373
1374 /* convert a float to ieee single/binary32 */
1375 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1376 ecb_function_ ecb_const uint32_t
1377 ecb_float_to_binary32 (float x)
1378 {
1379 uint32_t r;
1380
1381 #if ECB_STDFP
1382 memcpy (&r, &x, 4);
1383 #else
1384 /* slow emulation, works for anything but -0 */
1385 uint32_t m;
1386 int e;
1387
1388 if (x == 0e0f ) return 0x00000000U;
1389 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1390 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1391 if (x != x ) return 0x7fbfffffU;
1392
1393 m = ecb_frexpf (x, &e) * 0x1000000U;
1394
1395 r = m & 0x80000000U;
1396
1397 if (r)
1398 m = -m;
1399
1400 if (e <= -126)
1401 {
1402 m &= 0xffffffU;
1403 m >>= (-125 - e);
1404 e = -126;
1405 }
1406
1407 r |= (e + 126) << 23;
1408 r |= m & 0x7fffffU;
1409 #endif
1410
1411 return r;
1412 }
1413
1414 /* converts an ieee single/binary32 to a float */
1415 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1416 ecb_function_ ecb_const float
1417 ecb_binary32_to_float (uint32_t x)
1418 {
1419 float r;
1420
1421 #if ECB_STDFP
1422 memcpy (&r, &x, 4);
1423 #else
1424 /* emulation, only works for normals and subnormals and +0 */
1425 int neg = x >> 31;
1426 int e = (x >> 23) & 0xffU;
1427
1428 x &= 0x7fffffU;
1429
1430 if (e)
1431 x |= 0x800000U;
1432 else
1433 e = 1;
1434
1435 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1436 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1437
1438 r = neg ? -r : r;
1439 #endif
1440
1441 return r;
1442 }
1443
1444 /* convert a double to ieee double/binary64 */
1445 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1446 ecb_function_ ecb_const uint64_t
1447 ecb_double_to_binary64 (double x)
1448 {
1449 uint64_t r;
1450
1451 #if ECB_STDFP
1452 memcpy (&r, &x, 8);
1453 #else
1454 /* slow emulation, works for anything but -0 */
1455 uint64_t m;
1456 int e;
1457
1458 if (x == 0e0 ) return 0x0000000000000000U;
1459 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1460 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1461 if (x != x ) return 0X7ff7ffffffffffffU;
1462
1463 m = frexp (x, &e) * 0x20000000000000U;
1464
1465 r = m & 0x8000000000000000;;
1466
1467 if (r)
1468 m = -m;
1469
1470 if (e <= -1022)
1471 {
1472 m &= 0x1fffffffffffffU;
1473 m >>= (-1021 - e);
1474 e = -1022;
1475 }
1476
1477 r |= ((uint64_t)(e + 1022)) << 52;
1478 r |= m & 0xfffffffffffffU;
1479 #endif
1480
1481 return r;
1482 }
1483
1484 /* converts an ieee double/binary64 to a double */
1485 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1486 ecb_function_ ecb_const double
1487 ecb_binary64_to_double (uint64_t x)
1488 {
1489 double r;
1490
1491 #if ECB_STDFP
1492 memcpy (&r, &x, 8);
1493 #else
1494 /* emulation, only works for normals and subnormals and +0 */
1495 int neg = x >> 63;
1496 int e = (x >> 52) & 0x7ffU;
1497
1498 x &= 0xfffffffffffffU;
1499
1500 if (e)
1501 x |= 0x10000000000000U;
1502 else
1503 e = 1;
1504
1505 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1506 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1507
1508 r = neg ? -r : r;
1509 #endif
1510
1511 return r;
1512 }
1513
1514 /* convert a float to ieee half/binary16 */
1515 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1516 ecb_function_ ecb_const uint16_t
1517 ecb_float_to_binary16 (float x)
1518 {
1519 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1520 }
1521
1522 /* convert an ieee half/binary16 to float */
1523 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1524 ecb_function_ ecb_const float
1525 ecb_binary16_to_float (uint16_t x)
1526 {
1527 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1528 }
1529
1530#endif
1531
1532#endif
1533
1534/* ECB.H END */
1535
1536#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1537/* if your architecture doesn't need memory fences, e.g. because it is
1538 * single-cpu/core, or if you use libev in a project that doesn't use libev
1539 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1540 * libev, in which cases the memory fences become nops.
1541 * alternatively, you can remove this #error and link against libpthread,
1542 * which will then provide the memory fences.
1543 */
1544# error "memory fences not defined for your architecture, please report"
1545#endif
1546
1547#ifndef ECB_MEMORY_FENCE
1548# define ECB_MEMORY_FENCE do { } while (0)
1549# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1550# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1551#endif
1552
1553#define expect_false(cond) ecb_expect_false (cond)
1554#define expect_true(cond) ecb_expect_true (cond)
1555#define noinline ecb_noinline
1556
1557#define inline_size ecb_inline
1558
1559#if EV_FEATURE_CODE
1560# define inline_speed ecb_inline
1561#else
1562# define inline_speed noinline static
1563#endif
1564
176#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1565#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1566
1567#if EV_MINPRI == EV_MAXPRI
1568# define ABSPRI(w) (((W)w), 0)
1569#else
177#define ABSPRI(w) ((w)->priority - EV_MINPRI) 1570# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1571#endif
178 1572
179#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 1573#define EMPTY /* required for microsofts broken pseudo-c compiler */
180#define EMPTY2(a,b) /* used to suppress some warnings */
181 1574
182typedef struct ev_watcher *W; 1575typedef ev_watcher *W;
183typedef struct ev_watcher_list *WL; 1576typedef ev_watcher_list *WL;
184typedef struct ev_watcher_time *WT; 1577typedef ev_watcher_time *WT;
185 1578
1579#define ev_active(w) ((W)(w))->active
1580#define ev_at(w) ((WT)(w))->at
1581
1582#if EV_USE_REALTIME
1583/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1584/* giving it a reasonably high chance of working on typical architectures */
1585static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1586#endif
1587
1588#if EV_USE_MONOTONIC
186static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1589static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1590#endif
1591
1592#ifndef EV_FD_TO_WIN32_HANDLE
1593# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1594#endif
1595#ifndef EV_WIN32_HANDLE_TO_FD
1596# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1597#endif
1598#ifndef EV_WIN32_CLOSE_FD
1599# define EV_WIN32_CLOSE_FD(fd) close (fd)
1600#endif
187 1601
188#ifdef _WIN32 1602#ifdef _WIN32
189# include "ev_win32.c" 1603# include "ev_win32.c"
190#endif 1604#endif
191 1605
192/*****************************************************************************/ 1606/*****************************************************************************/
193 1607
1608/* define a suitable floor function (only used by periodics atm) */
1609
1610#if EV_USE_FLOOR
1611# include <math.h>
1612# define ev_floor(v) floor (v)
1613#else
1614
1615#include <float.h>
1616
1617/* a floor() replacement function, should be independent of ev_tstamp type */
1618noinline
1619static ev_tstamp
1620ev_floor (ev_tstamp v)
1621{
1622 /* the choice of shift factor is not terribly important */
1623#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1624 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1625#else
1626 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1627#endif
1628
1629 /* argument too large for an unsigned long? */
1630 if (expect_false (v >= shift))
1631 {
1632 ev_tstamp f;
1633
1634 if (v == v - 1.)
1635 return v; /* very large number */
1636
1637 f = shift * ev_floor (v * (1. / shift));
1638 return f + ev_floor (v - f);
1639 }
1640
1641 /* special treatment for negative args? */
1642 if (expect_false (v < 0.))
1643 {
1644 ev_tstamp f = -ev_floor (-v);
1645
1646 return f - (f == v ? 0 : 1);
1647 }
1648
1649 /* fits into an unsigned long */
1650 return (unsigned long)v;
1651}
1652
1653#endif
1654
1655/*****************************************************************************/
1656
1657#ifdef __linux
1658# include <sys/utsname.h>
1659#endif
1660
1661noinline ecb_cold
1662static unsigned int
1663ev_linux_version (void)
1664{
1665#ifdef __linux
1666 unsigned int v = 0;
1667 struct utsname buf;
1668 int i;
1669 char *p = buf.release;
1670
1671 if (uname (&buf))
1672 return 0;
1673
1674 for (i = 3+1; --i; )
1675 {
1676 unsigned int c = 0;
1677
1678 for (;;)
1679 {
1680 if (*p >= '0' && *p <= '9')
1681 c = c * 10 + *p++ - '0';
1682 else
1683 {
1684 p += *p == '.';
1685 break;
1686 }
1687 }
1688
1689 v = (v << 8) | c;
1690 }
1691
1692 return v;
1693#else
1694 return 0;
1695#endif
1696}
1697
1698/*****************************************************************************/
1699
1700#if EV_AVOID_STDIO
1701noinline ecb_cold
1702static void
1703ev_printerr (const char *msg)
1704{
1705 write (STDERR_FILENO, msg, strlen (msg));
1706}
1707#endif
1708
194static void (*syserr_cb)(const char *msg); 1709static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
195 1710
1711ecb_cold
1712void
196void ev_set_syserr_cb (void (*cb)(const char *msg)) 1713ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
197{ 1714{
198 syserr_cb = cb; 1715 syserr_cb = cb;
199} 1716}
200 1717
1718noinline ecb_cold
201static void 1719static void
202syserr (const char *msg) 1720ev_syserr (const char *msg)
203{ 1721{
204 if (!msg) 1722 if (!msg)
205 msg = "(libev) system error"; 1723 msg = "(libev) system error";
206 1724
207 if (syserr_cb) 1725 if (syserr_cb)
208 syserr_cb (msg); 1726 syserr_cb (msg);
209 else 1727 else
210 { 1728 {
1729#if EV_AVOID_STDIO
1730 ev_printerr (msg);
1731 ev_printerr (": ");
1732 ev_printerr (strerror (errno));
1733 ev_printerr ("\n");
1734#else
211 perror (msg); 1735 perror (msg);
1736#endif
212 abort (); 1737 abort ();
213 } 1738 }
214} 1739}
215 1740
216static void *(*alloc)(void *ptr, long size); 1741static void *
1742ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
1743{
1744 /* some systems, notably openbsd and darwin, fail to properly
1745 * implement realloc (x, 0) (as required by both ansi c-89 and
1746 * the single unix specification, so work around them here.
1747 * recently, also (at least) fedora and debian started breaking it,
1748 * despite documenting it otherwise.
1749 */
217 1750
1751 if (size)
1752 return realloc (ptr, size);
1753
1754 free (ptr);
1755 return 0;
1756}
1757
1758static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
1759
1760ecb_cold
1761void
218void ev_set_allocator (void *(*cb)(void *ptr, long size)) 1762ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
219{ 1763{
220 alloc = cb; 1764 alloc = cb;
221} 1765}
222 1766
223static void * 1767inline_speed void *
224ev_realloc (void *ptr, long size) 1768ev_realloc (void *ptr, long size)
225{ 1769{
226 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1770 ptr = alloc (ptr, size);
227 1771
228 if (!ptr && size) 1772 if (!ptr && size)
229 { 1773 {
1774#if EV_AVOID_STDIO
1775 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1776#else
230 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1777 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1778#endif
231 abort (); 1779 abort ();
232 } 1780 }
233 1781
234 return ptr; 1782 return ptr;
235} 1783}
237#define ev_malloc(size) ev_realloc (0, (size)) 1785#define ev_malloc(size) ev_realloc (0, (size))
238#define ev_free(ptr) ev_realloc ((ptr), 0) 1786#define ev_free(ptr) ev_realloc ((ptr), 0)
239 1787
240/*****************************************************************************/ 1788/*****************************************************************************/
241 1789
1790/* set in reify when reification needed */
1791#define EV_ANFD_REIFY 1
1792
1793/* file descriptor info structure */
242typedef struct 1794typedef struct
243{ 1795{
244 WL head; 1796 WL head;
245 unsigned char events; 1797 unsigned char events; /* the events watched for */
1798 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1799 unsigned char emask; /* some backends store the actual kernel mask in here */
246 unsigned char reify; 1800 unsigned char unused;
1801#if EV_USE_EPOLL
1802 unsigned int egen; /* generation counter to counter epoll bugs */
1803#endif
247#if EV_SELECT_IS_WINSOCKET 1804#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
248 SOCKET handle; 1805 SOCKET handle;
249#endif 1806#endif
1807#if EV_USE_IOCP
1808 OVERLAPPED or, ow;
1809#endif
250} ANFD; 1810} ANFD;
251 1811
1812/* stores the pending event set for a given watcher */
252typedef struct 1813typedef struct
253{ 1814{
254 W w; 1815 W w;
255 int events; 1816 int events; /* the pending event set for the given watcher */
256} ANPENDING; 1817} ANPENDING;
1818
1819#if EV_USE_INOTIFY
1820/* hash table entry per inotify-id */
1821typedef struct
1822{
1823 WL head;
1824} ANFS;
1825#endif
1826
1827/* Heap Entry */
1828#if EV_HEAP_CACHE_AT
1829 /* a heap element */
1830 typedef struct {
1831 ev_tstamp at;
1832 WT w;
1833 } ANHE;
1834
1835 #define ANHE_w(he) (he).w /* access watcher, read-write */
1836 #define ANHE_at(he) (he).at /* access cached at, read-only */
1837 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1838#else
1839 /* a heap element */
1840 typedef WT ANHE;
1841
1842 #define ANHE_w(he) (he)
1843 #define ANHE_at(he) (he)->at
1844 #define ANHE_at_cache(he)
1845#endif
257 1846
258#if EV_MULTIPLICITY 1847#if EV_MULTIPLICITY
259 1848
260 struct ev_loop 1849 struct ev_loop
261 { 1850 {
266 #undef VAR 1855 #undef VAR
267 }; 1856 };
268 #include "ev_wrap.h" 1857 #include "ev_wrap.h"
269 1858
270 static struct ev_loop default_loop_struct; 1859 static struct ev_loop default_loop_struct;
271 struct ev_loop *ev_default_loop_ptr; 1860 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
272 1861
273#else 1862#else
274 1863
275 ev_tstamp ev_rt_now; 1864 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
276 #define VAR(name,decl) static decl; 1865 #define VAR(name,decl) static decl;
277 #include "ev_vars.h" 1866 #include "ev_vars.h"
278 #undef VAR 1867 #undef VAR
279 1868
280 static int ev_default_loop_ptr; 1869 static int ev_default_loop_ptr;
281 1870
282#endif 1871#endif
283 1872
1873#if EV_FEATURE_API
1874# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1875# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1876# define EV_INVOKE_PENDING invoke_cb (EV_A)
1877#else
1878# define EV_RELEASE_CB (void)0
1879# define EV_ACQUIRE_CB (void)0
1880# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1881#endif
1882
1883#define EVBREAK_RECURSE 0x80
1884
284/*****************************************************************************/ 1885/*****************************************************************************/
285 1886
1887#ifndef EV_HAVE_EV_TIME
286ev_tstamp 1888ev_tstamp
287ev_time (void) 1889ev_time (void) EV_NOEXCEPT
288{ 1890{
289#if EV_USE_REALTIME 1891#if EV_USE_REALTIME
1892 if (expect_true (have_realtime))
1893 {
290 struct timespec ts; 1894 struct timespec ts;
291 clock_gettime (CLOCK_REALTIME, &ts); 1895 clock_gettime (CLOCK_REALTIME, &ts);
292 return ts.tv_sec + ts.tv_nsec * 1e-9; 1896 return ts.tv_sec + ts.tv_nsec * 1e-9;
293#else 1897 }
1898#endif
1899
294 struct timeval tv; 1900 struct timeval tv;
295 gettimeofday (&tv, 0); 1901 gettimeofday (&tv, 0);
296 return tv.tv_sec + tv.tv_usec * 1e-6; 1902 return tv.tv_sec + tv.tv_usec * 1e-6;
297#endif
298} 1903}
1904#endif
299 1905
300inline ev_tstamp 1906inline_size ev_tstamp
301get_clock (void) 1907get_clock (void)
302{ 1908{
303#if EV_USE_MONOTONIC 1909#if EV_USE_MONOTONIC
304 if (expect_true (have_monotonic)) 1910 if (expect_true (have_monotonic))
305 { 1911 {
312 return ev_time (); 1918 return ev_time ();
313} 1919}
314 1920
315#if EV_MULTIPLICITY 1921#if EV_MULTIPLICITY
316ev_tstamp 1922ev_tstamp
317ev_now (EV_P) 1923ev_now (EV_P) EV_NOEXCEPT
318{ 1924{
319 return ev_rt_now; 1925 return ev_rt_now;
320} 1926}
321#endif 1927#endif
322 1928
323#define array_roundsize(type,n) (((n) | 4) & ~3) 1929void
1930ev_sleep (ev_tstamp delay) EV_NOEXCEPT
1931{
1932 if (delay > 0.)
1933 {
1934#if EV_USE_NANOSLEEP
1935 struct timespec ts;
1936
1937 EV_TS_SET (ts, delay);
1938 nanosleep (&ts, 0);
1939#elif defined _WIN32
1940 /* maybe this should round up, as ms is very low resolution */
1941 /* compared to select (µs) or nanosleep (ns) */
1942 Sleep ((unsigned long)(delay * 1e3));
1943#else
1944 struct timeval tv;
1945
1946 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1947 /* something not guaranteed by newer posix versions, but guaranteed */
1948 /* by older ones */
1949 EV_TV_SET (tv, delay);
1950 select (0, 0, 0, 0, &tv);
1951#endif
1952 }
1953}
1954
1955/*****************************************************************************/
1956
1957#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1958
1959/* find a suitable new size for the given array, */
1960/* hopefully by rounding to a nice-to-malloc size */
1961inline_size int
1962array_nextsize (int elem, int cur, int cnt)
1963{
1964 int ncur = cur + 1;
1965
1966 do
1967 ncur <<= 1;
1968 while (cnt > ncur);
1969
1970 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1971 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1972 {
1973 ncur *= elem;
1974 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1975 ncur = ncur - sizeof (void *) * 4;
1976 ncur /= elem;
1977 }
1978
1979 return ncur;
1980}
1981
1982noinline ecb_cold
1983static void *
1984array_realloc (int elem, void *base, int *cur, int cnt)
1985{
1986 *cur = array_nextsize (elem, *cur, cnt);
1987 return ev_realloc (base, elem * *cur);
1988}
1989
1990#define array_needsize_noinit(base,count)
1991
1992#define array_needsize_zerofill(base,count) \
1993 memset ((void *)(base), 0, sizeof (*(base)) * (count))
324 1994
325#define array_needsize(type,base,cur,cnt,init) \ 1995#define array_needsize(type,base,cur,cnt,init) \
326 if (expect_false ((cnt) > cur)) \ 1996 if (expect_false ((cnt) > (cur))) \
327 { \ 1997 { \
328 int newcnt = cur; \ 1998 ecb_unused int ocur_ = (cur); \
329 do \ 1999 (base) = (type *)array_realloc \
330 { \ 2000 (sizeof (type), (base), &(cur), (cnt)); \
331 newcnt = array_roundsize (type, newcnt << 1); \ 2001 init ((base) + (ocur_), (cur) - ocur_); \
332 } \
333 while ((cnt) > newcnt); \
334 \
335 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
336 init (base + cur, newcnt - cur); \
337 cur = newcnt; \
338 } 2002 }
339 2003
2004#if 0
340#define array_slim(type,stem) \ 2005#define array_slim(type,stem) \
341 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 2006 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
342 { \ 2007 { \
343 stem ## max = array_roundsize (stem ## cnt >> 1); \ 2008 stem ## max = array_roundsize (stem ## cnt >> 1); \
344 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 2009 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
345 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 2010 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
346 } 2011 }
2012#endif
347 2013
348#define array_free(stem, idx) \ 2014#define array_free(stem, idx) \
349 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 2015 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
350 2016
351/*****************************************************************************/ 2017/*****************************************************************************/
352 2018
2019/* dummy callback for pending events */
2020noinline
353static void 2021static void
354anfds_init (ANFD *base, int count) 2022pendingcb (EV_P_ ev_prepare *w, int revents)
355{ 2023{
356 while (count--)
357 {
358 base->head = 0;
359 base->events = EV_NONE;
360 base->reify = 0;
361
362 ++base;
363 }
364} 2024}
365 2025
2026noinline
366void 2027void
367ev_feed_event (EV_P_ void *w, int revents) 2028ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
368{ 2029{
369 W w_ = (W)w; 2030 W w_ = (W)w;
2031 int pri = ABSPRI (w_);
370 2032
371 if (expect_false (w_->pending)) 2033 if (expect_false (w_->pending))
2034 pendings [pri][w_->pending - 1].events |= revents;
2035 else
372 { 2036 {
2037 w_->pending = ++pendingcnt [pri];
2038 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
2039 pendings [pri][w_->pending - 1].w = w_;
373 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 2040 pendings [pri][w_->pending - 1].events = revents;
374 return;
375 } 2041 }
376 2042
377 w_->pending = ++pendingcnt [ABSPRI (w_)]; 2043 pendingpri = NUMPRI - 1;
378 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
379 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
380 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
381} 2044}
382 2045
383static void 2046inline_speed void
2047feed_reverse (EV_P_ W w)
2048{
2049 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2050 rfeeds [rfeedcnt++] = w;
2051}
2052
2053inline_size void
2054feed_reverse_done (EV_P_ int revents)
2055{
2056 do
2057 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2058 while (rfeedcnt);
2059}
2060
2061inline_speed void
384queue_events (EV_P_ W *events, int eventcnt, int type) 2062queue_events (EV_P_ W *events, int eventcnt, int type)
385{ 2063{
386 int i; 2064 int i;
387 2065
388 for (i = 0; i < eventcnt; ++i) 2066 for (i = 0; i < eventcnt; ++i)
389 ev_feed_event (EV_A_ events [i], type); 2067 ev_feed_event (EV_A_ events [i], type);
390} 2068}
391 2069
2070/*****************************************************************************/
2071
392inline void 2072inline_speed void
393fd_event (EV_P_ int fd, int revents) 2073fd_event_nocheck (EV_P_ int fd, int revents)
394{ 2074{
395 ANFD *anfd = anfds + fd; 2075 ANFD *anfd = anfds + fd;
396 struct ev_io *w; 2076 ev_io *w;
397 2077
398 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 2078 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
399 { 2079 {
400 int ev = w->events & revents; 2080 int ev = w->events & revents;
401 2081
402 if (ev) 2082 if (ev)
403 ev_feed_event (EV_A_ (W)w, ev); 2083 ev_feed_event (EV_A_ (W)w, ev);
404 } 2084 }
405} 2085}
406 2086
407void 2087/* do not submit kernel events for fds that have reify set */
2088/* because that means they changed while we were polling for new events */
2089inline_speed void
408ev_feed_fd_event (EV_P_ int fd, int revents) 2090fd_event (EV_P_ int fd, int revents)
409{ 2091{
2092 ANFD *anfd = anfds + fd;
2093
2094 if (expect_true (!anfd->reify))
410 fd_event (EV_A_ fd, revents); 2095 fd_event_nocheck (EV_A_ fd, revents);
411} 2096}
412 2097
413/*****************************************************************************/ 2098void
2099ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
2100{
2101 if (fd >= 0 && fd < anfdmax)
2102 fd_event_nocheck (EV_A_ fd, revents);
2103}
414 2104
2105/* make sure the external fd watch events are in-sync */
2106/* with the kernel/libev internal state */
415inline void 2107inline_size void
416fd_reify (EV_P) 2108fd_reify (EV_P)
417{ 2109{
418 int i; 2110 int i;
419 2111
2112#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
420 for (i = 0; i < fdchangecnt; ++i) 2113 for (i = 0; i < fdchangecnt; ++i)
421 { 2114 {
422 int fd = fdchanges [i]; 2115 int fd = fdchanges [i];
423 ANFD *anfd = anfds + fd; 2116 ANFD *anfd = anfds + fd;
424 struct ev_io *w;
425 2117
426 int events = 0; 2118 if (anfd->reify & EV__IOFDSET && anfd->head)
427
428 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
429 events |= w->events;
430
431#if EV_SELECT_IS_WINSOCKET
432 if (events)
433 { 2119 {
2120 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2121
2122 if (handle != anfd->handle)
2123 {
434 unsigned long argp; 2124 unsigned long arg;
435 anfd->handle = _get_osfhandle (fd); 2125
436 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 2126 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2127
2128 /* handle changed, but fd didn't - we need to do it in two steps */
2129 backend_modify (EV_A_ fd, anfd->events, 0);
2130 anfd->events = 0;
2131 anfd->handle = handle;
2132 }
437 } 2133 }
2134 }
438#endif 2135#endif
439 2136
2137 for (i = 0; i < fdchangecnt; ++i)
2138 {
2139 int fd = fdchanges [i];
2140 ANFD *anfd = anfds + fd;
2141 ev_io *w;
2142
2143 unsigned char o_events = anfd->events;
2144 unsigned char o_reify = anfd->reify;
2145
440 anfd->reify = 0; 2146 anfd->reify = 0;
441 2147
442 method_modify (EV_A_ fd, anfd->events, events); 2148 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
2149 {
443 anfd->events = events; 2150 anfd->events = 0;
2151
2152 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2153 anfd->events |= (unsigned char)w->events;
2154
2155 if (o_events != anfd->events)
2156 o_reify = EV__IOFDSET; /* actually |= */
2157 }
2158
2159 if (o_reify & EV__IOFDSET)
2160 backend_modify (EV_A_ fd, o_events, anfd->events);
444 } 2161 }
445 2162
446 fdchangecnt = 0; 2163 fdchangecnt = 0;
447} 2164}
448 2165
449static void 2166/* something about the given fd changed */
2167inline_size
2168void
450fd_change (EV_P_ int fd) 2169fd_change (EV_P_ int fd, int flags)
451{ 2170{
452 if (expect_false (anfds [fd].reify)) 2171 unsigned char reify = anfds [fd].reify;
453 return;
454
455 anfds [fd].reify = 1; 2172 anfds [fd].reify |= flags;
456 2173
2174 if (expect_true (!reify))
2175 {
457 ++fdchangecnt; 2176 ++fdchangecnt;
458 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 2177 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
459 fdchanges [fdchangecnt - 1] = fd; 2178 fdchanges [fdchangecnt - 1] = fd;
2179 }
460} 2180}
461 2181
462static void 2182/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2183inline_speed ecb_cold void
463fd_kill (EV_P_ int fd) 2184fd_kill (EV_P_ int fd)
464{ 2185{
465 struct ev_io *w; 2186 ev_io *w;
466 2187
467 while ((w = (struct ev_io *)anfds [fd].head)) 2188 while ((w = (ev_io *)anfds [fd].head))
468 { 2189 {
469 ev_io_stop (EV_A_ w); 2190 ev_io_stop (EV_A_ w);
470 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2191 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
471 } 2192 }
472} 2193}
473 2194
474inline int 2195/* check whether the given fd is actually valid, for error recovery */
2196inline_size ecb_cold int
475fd_valid (int fd) 2197fd_valid (int fd)
476{ 2198{
477#ifdef _WIN32 2199#ifdef _WIN32
478 return _get_osfhandle (fd) != -1; 2200 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
479#else 2201#else
480 return fcntl (fd, F_GETFD) != -1; 2202 return fcntl (fd, F_GETFD) != -1;
481#endif 2203#endif
482} 2204}
483 2205
484/* called on EBADF to verify fds */ 2206/* called on EBADF to verify fds */
2207noinline ecb_cold
485static void 2208static void
486fd_ebadf (EV_P) 2209fd_ebadf (EV_P)
487{ 2210{
488 int fd; 2211 int fd;
489 2212
490 for (fd = 0; fd < anfdmax; ++fd) 2213 for (fd = 0; fd < anfdmax; ++fd)
491 if (anfds [fd].events) 2214 if (anfds [fd].events)
492 if (!fd_valid (fd) == -1 && errno == EBADF) 2215 if (!fd_valid (fd) && errno == EBADF)
493 fd_kill (EV_A_ fd); 2216 fd_kill (EV_A_ fd);
494} 2217}
495 2218
496/* called on ENOMEM in select/poll to kill some fds and retry */ 2219/* called on ENOMEM in select/poll to kill some fds and retry */
2220noinline ecb_cold
497static void 2221static void
498fd_enomem (EV_P) 2222fd_enomem (EV_P)
499{ 2223{
500 int fd; 2224 int fd;
501 2225
502 for (fd = anfdmax; fd--; ) 2226 for (fd = anfdmax; fd--; )
503 if (anfds [fd].events) 2227 if (anfds [fd].events)
504 { 2228 {
505 fd_kill (EV_A_ fd); 2229 fd_kill (EV_A_ fd);
506 return; 2230 break;
507 } 2231 }
508} 2232}
509 2233
510/* usually called after fork if method needs to re-arm all fds from scratch */ 2234/* usually called after fork if backend needs to re-arm all fds from scratch */
2235noinline
511static void 2236static void
512fd_rearm_all (EV_P) 2237fd_rearm_all (EV_P)
513{ 2238{
514 int fd; 2239 int fd;
515 2240
516 /* this should be highly optimised to not do anything but set a flag */
517 for (fd = 0; fd < anfdmax; ++fd) 2241 for (fd = 0; fd < anfdmax; ++fd)
518 if (anfds [fd].events) 2242 if (anfds [fd].events)
519 { 2243 {
520 anfds [fd].events = 0; 2244 anfds [fd].events = 0;
521 fd_change (EV_A_ fd); 2245 anfds [fd].emask = 0;
2246 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
522 } 2247 }
523} 2248}
524 2249
2250/* used to prepare libev internal fd's */
2251/* this is not fork-safe */
2252inline_speed void
2253fd_intern (int fd)
2254{
2255#ifdef _WIN32
2256 unsigned long arg = 1;
2257 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2258#else
2259 fcntl (fd, F_SETFD, FD_CLOEXEC);
2260 fcntl (fd, F_SETFL, O_NONBLOCK);
2261#endif
2262}
2263
525/*****************************************************************************/ 2264/*****************************************************************************/
526 2265
2266/*
2267 * the heap functions want a real array index. array index 0 is guaranteed to not
2268 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2269 * the branching factor of the d-tree.
2270 */
2271
2272/*
2273 * at the moment we allow libev the luxury of two heaps,
2274 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2275 * which is more cache-efficient.
2276 * the difference is about 5% with 50000+ watchers.
2277 */
2278#if EV_USE_4HEAP
2279
2280#define DHEAP 4
2281#define HEAP0 (DHEAP - 1) /* index of first element in heap */
2282#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2283#define UPHEAP_DONE(p,k) ((p) == (k))
2284
2285/* away from the root */
2286inline_speed void
2287downheap (ANHE *heap, int N, int k)
2288{
2289 ANHE he = heap [k];
2290 ANHE *E = heap + N + HEAP0;
2291
2292 for (;;)
2293 {
2294 ev_tstamp minat;
2295 ANHE *minpos;
2296 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2297
2298 /* find minimum child */
2299 if (expect_true (pos + DHEAP - 1 < E))
2300 {
2301 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2302 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2303 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2304 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2305 }
2306 else if (pos < E)
2307 {
2308 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2309 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2310 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2311 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2312 }
2313 else
2314 break;
2315
2316 if (ANHE_at (he) <= minat)
2317 break;
2318
2319 heap [k] = *minpos;
2320 ev_active (ANHE_w (*minpos)) = k;
2321
2322 k = minpos - heap;
2323 }
2324
2325 heap [k] = he;
2326 ev_active (ANHE_w (he)) = k;
2327}
2328
2329#else /* 4HEAP */
2330
2331#define HEAP0 1
2332#define HPARENT(k) ((k) >> 1)
2333#define UPHEAP_DONE(p,k) (!(p))
2334
2335/* away from the root */
2336inline_speed void
2337downheap (ANHE *heap, int N, int k)
2338{
2339 ANHE he = heap [k];
2340
2341 for (;;)
2342 {
2343 int c = k << 1;
2344
2345 if (c >= N + HEAP0)
2346 break;
2347
2348 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2349 ? 1 : 0;
2350
2351 if (ANHE_at (he) <= ANHE_at (heap [c]))
2352 break;
2353
2354 heap [k] = heap [c];
2355 ev_active (ANHE_w (heap [k])) = k;
2356
2357 k = c;
2358 }
2359
2360 heap [k] = he;
2361 ev_active (ANHE_w (he)) = k;
2362}
2363#endif
2364
2365/* towards the root */
2366inline_speed void
2367upheap (ANHE *heap, int k)
2368{
2369 ANHE he = heap [k];
2370
2371 for (;;)
2372 {
2373 int p = HPARENT (k);
2374
2375 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2376 break;
2377
2378 heap [k] = heap [p];
2379 ev_active (ANHE_w (heap [k])) = k;
2380 k = p;
2381 }
2382
2383 heap [k] = he;
2384 ev_active (ANHE_w (he)) = k;
2385}
2386
2387/* move an element suitably so it is in a correct place */
2388inline_size void
2389adjustheap (ANHE *heap, int N, int k)
2390{
2391 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2392 upheap (heap, k);
2393 else
2394 downheap (heap, N, k);
2395}
2396
2397/* rebuild the heap: this function is used only once and executed rarely */
2398inline_size void
2399reheap (ANHE *heap, int N)
2400{
2401 int i;
2402
2403 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2404 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2405 for (i = 0; i < N; ++i)
2406 upheap (heap, i + HEAP0);
2407}
2408
2409/*****************************************************************************/
2410
2411/* associate signal watchers to a signal signal */
2412typedef struct
2413{
2414 EV_ATOMIC_T pending;
2415#if EV_MULTIPLICITY
2416 EV_P;
2417#endif
2418 WL head;
2419} ANSIG;
2420
2421static ANSIG signals [EV_NSIG - 1];
2422
2423/*****************************************************************************/
2424
2425#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2426
2427noinline ecb_cold
527static void 2428static void
528upheap (WT *heap, int k) 2429evpipe_init (EV_P)
529{ 2430{
530 WT w = heap [k]; 2431 if (!ev_is_active (&pipe_w))
531
532 while (k && heap [k >> 1]->at > w->at)
533 {
534 heap [k] = heap [k >> 1];
535 ((W)heap [k])->active = k + 1;
536 k >>= 1;
537 } 2432 {
2433 int fds [2];
538 2434
539 heap [k] = w; 2435# if EV_USE_EVENTFD
540 ((W)heap [k])->active = k + 1; 2436 fds [0] = -1;
2437 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2438 if (fds [1] < 0 && errno == EINVAL)
2439 fds [1] = eventfd (0, 0);
541 2440
542} 2441 if (fds [1] < 0)
2442# endif
2443 {
2444 while (pipe (fds))
2445 ev_syserr ("(libev) error creating signal/async pipe");
543 2446
2447 fd_intern (fds [0]);
2448 }
2449
2450 evpipe [0] = fds [0];
2451
2452 if (evpipe [1] < 0)
2453 evpipe [1] = fds [1]; /* first call, set write fd */
2454 else
2455 {
2456 /* on subsequent calls, do not change evpipe [1] */
2457 /* so that evpipe_write can always rely on its value. */
2458 /* this branch does not do anything sensible on windows, */
2459 /* so must not be executed on windows */
2460
2461 dup2 (fds [1], evpipe [1]);
2462 close (fds [1]);
2463 }
2464
2465 fd_intern (evpipe [1]);
2466
2467 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2468 ev_io_start (EV_A_ &pipe_w);
2469 ev_unref (EV_A); /* watcher should not keep loop alive */
2470 }
2471}
2472
2473inline_speed void
2474evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2475{
2476 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2477
2478 if (expect_true (*flag))
2479 return;
2480
2481 *flag = 1;
2482 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2483
2484 pipe_write_skipped = 1;
2485
2486 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2487
2488 if (pipe_write_wanted)
2489 {
2490 int old_errno;
2491
2492 pipe_write_skipped = 0;
2493 ECB_MEMORY_FENCE_RELEASE;
2494
2495 old_errno = errno; /* save errno because write will clobber it */
2496
2497#if EV_USE_EVENTFD
2498 if (evpipe [0] < 0)
2499 {
2500 uint64_t counter = 1;
2501 write (evpipe [1], &counter, sizeof (uint64_t));
2502 }
2503 else
2504#endif
2505 {
2506#ifdef _WIN32
2507 WSABUF buf;
2508 DWORD sent;
2509 buf.buf = (char *)&buf;
2510 buf.len = 1;
2511 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2512#else
2513 write (evpipe [1], &(evpipe [1]), 1);
2514#endif
2515 }
2516
2517 errno = old_errno;
2518 }
2519}
2520
2521/* called whenever the libev signal pipe */
2522/* got some events (signal, async) */
544static void 2523static void
545downheap (WT *heap, int N, int k) 2524pipecb (EV_P_ ev_io *iow, int revents)
546{ 2525{
547 WT w = heap [k]; 2526 int i;
548 2527
549 while (k < (N >> 1)) 2528 if (revents & EV_READ)
550 {
551 int j = k << 1;
552
553 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
554 ++j;
555
556 if (w->at <= heap [j]->at)
557 break;
558
559 heap [k] = heap [j];
560 ((W)heap [k])->active = k + 1;
561 k = j;
562 } 2529 {
2530#if EV_USE_EVENTFD
2531 if (evpipe [0] < 0)
2532 {
2533 uint64_t counter;
2534 read (evpipe [1], &counter, sizeof (uint64_t));
2535 }
2536 else
2537#endif
2538 {
2539 char dummy[4];
2540#ifdef _WIN32
2541 WSABUF buf;
2542 DWORD recvd;
2543 DWORD flags = 0;
2544 buf.buf = dummy;
2545 buf.len = sizeof (dummy);
2546 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2547#else
2548 read (evpipe [0], &dummy, sizeof (dummy));
2549#endif
2550 }
2551 }
563 2552
564 heap [k] = w; 2553 pipe_write_skipped = 0;
565 ((W)heap [k])->active = k + 1;
566}
567 2554
568inline void 2555 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
569adjustheap (WT *heap, int N, int k) 2556
570{ 2557#if EV_SIGNAL_ENABLE
571 upheap (heap, k); 2558 if (sig_pending)
572 downheap (heap, N, k); 2559 {
2560 sig_pending = 0;
2561
2562 ECB_MEMORY_FENCE;
2563
2564 for (i = EV_NSIG - 1; i--; )
2565 if (expect_false (signals [i].pending))
2566 ev_feed_signal_event (EV_A_ i + 1);
2567 }
2568#endif
2569
2570#if EV_ASYNC_ENABLE
2571 if (async_pending)
2572 {
2573 async_pending = 0;
2574
2575 ECB_MEMORY_FENCE;
2576
2577 for (i = asynccnt; i--; )
2578 if (asyncs [i]->sent)
2579 {
2580 asyncs [i]->sent = 0;
2581 ECB_MEMORY_FENCE_RELEASE;
2582 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2583 }
2584 }
2585#endif
573} 2586}
574 2587
575/*****************************************************************************/ 2588/*****************************************************************************/
576 2589
577typedef struct 2590void
2591ev_feed_signal (int signum) EV_NOEXCEPT
578{ 2592{
579 WL head; 2593#if EV_MULTIPLICITY
580 sig_atomic_t volatile gotsig; 2594 EV_P;
581} ANSIG; 2595 ECB_MEMORY_FENCE_ACQUIRE;
2596 EV_A = signals [signum - 1].loop;
582 2597
583static ANSIG *signals; 2598 if (!EV_A)
584static int signalmax; 2599 return;
2600#endif
585 2601
586static int sigpipe [2]; 2602 signals [signum - 1].pending = 1;
587static sig_atomic_t volatile gotsig; 2603 evpipe_write (EV_A_ &sig_pending);
588static struct ev_io sigev; 2604}
589 2605
590static void 2606static void
591signals_init (ANSIG *base, int count)
592{
593 while (count--)
594 {
595 base->head = 0;
596 base->gotsig = 0;
597
598 ++base;
599 }
600}
601
602static void
603sighandler (int signum) 2607ev_sighandler (int signum)
604{ 2608{
605#if _WIN32 2609#ifdef _WIN32
606 signal (signum, sighandler); 2610 signal (signum, ev_sighandler);
607#endif 2611#endif
608 2612
609 signals [signum - 1].gotsig = 1; 2613 ev_feed_signal (signum);
610
611 if (!gotsig)
612 {
613 int old_errno = errno;
614 gotsig = 1;
615 write (sigpipe [1], &signum, 1);
616 errno = old_errno;
617 }
618} 2614}
619 2615
2616noinline
620void 2617void
621ev_feed_signal_event (EV_P_ int signum) 2618ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
622{ 2619{
623 WL w; 2620 WL w;
624 2621
2622 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2623 return;
2624
2625 --signum;
2626
625#if EV_MULTIPLICITY 2627#if EV_MULTIPLICITY
626 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 2628 /* it is permissible to try to feed a signal to the wrong loop */
627#endif 2629 /* or, likely more useful, feeding a signal nobody is waiting for */
628 2630
629 --signum; 2631 if (expect_false (signals [signum].loop != EV_A))
630
631 if (signum < 0 || signum >= signalmax)
632 return; 2632 return;
2633#endif
633 2634
634 signals [signum].gotsig = 0; 2635 signals [signum].pending = 0;
2636 ECB_MEMORY_FENCE_RELEASE;
635 2637
636 for (w = signals [signum].head; w; w = w->next) 2638 for (w = signals [signum].head; w; w = w->next)
637 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2639 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
638} 2640}
639 2641
2642#if EV_USE_SIGNALFD
640static void 2643static void
641sigcb (EV_P_ struct ev_io *iow, int revents) 2644sigfdcb (EV_P_ ev_io *iow, int revents)
642{ 2645{
643 int signum; 2646 struct signalfd_siginfo si[2], *sip; /* these structs are big */
644 2647
645 read (sigpipe [0], &revents, 1); 2648 for (;;)
646 gotsig = 0; 2649 {
2650 ssize_t res = read (sigfd, si, sizeof (si));
647 2651
648 for (signum = signalmax; signum--; ) 2652 /* not ISO-C, as res might be -1, but works with SuS */
649 if (signals [signum].gotsig) 2653 for (sip = si; (char *)sip < (char *)si + res; ++sip)
650 ev_feed_signal_event (EV_A_ signum + 1); 2654 ev_feed_signal_event (EV_A_ sip->ssi_signo);
651}
652 2655
653static void 2656 if (res < (ssize_t)sizeof (si))
654fd_intern (int fd) 2657 break;
655{ 2658 }
656#ifdef _WIN32
657 int arg = 1;
658 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
659#else
660 fcntl (fd, F_SETFD, FD_CLOEXEC);
661 fcntl (fd, F_SETFL, O_NONBLOCK);
662#endif
663} 2659}
2660#endif
664 2661
665static void 2662#endif
666siginit (EV_P)
667{
668 fd_intern (sigpipe [0]);
669 fd_intern (sigpipe [1]);
670
671 ev_io_set (&sigev, sigpipe [0], EV_READ);
672 ev_io_start (EV_A_ &sigev);
673 ev_unref (EV_A); /* child watcher should not keep loop alive */
674}
675 2663
676/*****************************************************************************/ 2664/*****************************************************************************/
677 2665
678static struct ev_child *childs [PID_HASHSIZE]; 2666#if EV_CHILD_ENABLE
2667static WL childs [EV_PID_HASHSIZE];
679 2668
680#ifndef _WIN32
681
682static struct ev_signal childev; 2669static ev_signal childev;
2670
2671#ifndef WIFCONTINUED
2672# define WIFCONTINUED(status) 0
2673#endif
2674
2675/* handle a single child status event */
2676inline_speed void
2677child_reap (EV_P_ int chain, int pid, int status)
2678{
2679 ev_child *w;
2680 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2681
2682 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2683 {
2684 if ((w->pid == pid || !w->pid)
2685 && (!traced || (w->flags & 1)))
2686 {
2687 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2688 w->rpid = pid;
2689 w->rstatus = status;
2690 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2691 }
2692 }
2693}
683 2694
684#ifndef WCONTINUED 2695#ifndef WCONTINUED
685# define WCONTINUED 0 2696# define WCONTINUED 0
686#endif 2697#endif
687 2698
2699/* called on sigchld etc., calls waitpid */
688static void 2700static void
689child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
690{
691 struct ev_child *w;
692
693 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
694 if (w->pid == pid || !w->pid)
695 {
696 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
697 w->rpid = pid;
698 w->rstatus = status;
699 ev_feed_event (EV_A_ (W)w, EV_CHILD);
700 }
701}
702
703static void
704childcb (EV_P_ struct ev_signal *sw, int revents) 2701childcb (EV_P_ ev_signal *sw, int revents)
705{ 2702{
706 int pid, status; 2703 int pid, status;
707 2704
2705 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
708 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 2706 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
709 { 2707 if (!WCONTINUED
2708 || errno != EINVAL
2709 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2710 return;
2711
710 /* make sure we are called again until all childs have been reaped */ 2712 /* make sure we are called again until all children have been reaped */
2713 /* we need to do it this way so that the callback gets called before we continue */
711 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2714 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
712 2715
713 child_reap (EV_A_ sw, pid, pid, status); 2716 child_reap (EV_A_ pid, pid, status);
2717 if ((EV_PID_HASHSIZE) > 1)
714 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 2718 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
715 }
716} 2719}
717 2720
718#endif 2721#endif
719 2722
720/*****************************************************************************/ 2723/*****************************************************************************/
721 2724
2725#if EV_USE_IOCP
2726# include "ev_iocp.c"
2727#endif
722#if EV_USE_PORT 2728#if EV_USE_PORT
723# include "ev_port.c" 2729# include "ev_port.c"
724#endif 2730#endif
725#if EV_USE_KQUEUE 2731#if EV_USE_KQUEUE
726# include "ev_kqueue.c" 2732# include "ev_kqueue.c"
727#endif 2733#endif
2734#if EV_USE_LINUXAIO
2735# include "ev_linuxaio.c"
2736#endif
728#if EV_USE_EPOLL 2737#if EV_USE_EPOLL
729# include "ev_epoll.c" 2738# include "ev_epoll.c"
730#endif 2739#endif
731#if EV_USE_POLL 2740#if EV_USE_POLL
732# include "ev_poll.c" 2741# include "ev_poll.c"
733#endif 2742#endif
734#if EV_USE_SELECT 2743#if EV_USE_SELECT
735# include "ev_select.c" 2744# include "ev_select.c"
736#endif 2745#endif
737 2746
738int 2747ecb_cold int
739ev_version_major (void) 2748ev_version_major (void) EV_NOEXCEPT
740{ 2749{
741 return EV_VERSION_MAJOR; 2750 return EV_VERSION_MAJOR;
742} 2751}
743 2752
744int 2753ecb_cold int
745ev_version_minor (void) 2754ev_version_minor (void) EV_NOEXCEPT
746{ 2755{
747 return EV_VERSION_MINOR; 2756 return EV_VERSION_MINOR;
748} 2757}
749 2758
750/* return true if we are running with elevated privileges and should ignore env variables */ 2759/* return true if we are running with elevated privileges and should ignore env variables */
751static int 2760inline_size ecb_cold int
752enable_secure (void) 2761enable_secure (void)
753{ 2762{
754#ifdef _WIN32 2763#ifdef _WIN32
755 return 0; 2764 return 0;
756#else 2765#else
757 return getuid () != geteuid () 2766 return getuid () != geteuid ()
758 || getgid () != getegid (); 2767 || getgid () != getegid ();
759#endif 2768#endif
760} 2769}
761 2770
2771ecb_cold
762unsigned int 2772unsigned int
763ev_method (EV_P) 2773ev_supported_backends (void) EV_NOEXCEPT
764{ 2774{
765 return method; 2775 unsigned int flags = 0;
766}
767 2776
2777 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2778 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
2779 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2780 if (EV_USE_LINUXAIO) flags |= EVBACKEND_LINUXAIO;
2781 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2782 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
2783
2784 return flags;
2785}
2786
2787ecb_cold
2788unsigned int
2789ev_recommended_backends (void) EV_NOEXCEPT
2790{
2791 unsigned int flags = ev_supported_backends ();
2792
2793#ifndef __NetBSD__
2794 /* kqueue is borked on everything but netbsd apparently */
2795 /* it usually doesn't work correctly on anything but sockets and pipes */
2796 flags &= ~EVBACKEND_KQUEUE;
2797#endif
2798#ifdef __APPLE__
2799 /* only select works correctly on that "unix-certified" platform */
2800 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2801 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2802#endif
2803#ifdef __FreeBSD__
2804 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2805#endif
2806
2807 /* TODO: linuxaio is very experimental */
2808 flags &= ~EVBACKEND_LINUXAIO;
2809
2810 return flags;
2811}
2812
2813ecb_cold
2814unsigned int
2815ev_embeddable_backends (void) EV_NOEXCEPT
2816{
2817 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2818
2819 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2820 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2821 flags &= ~EVBACKEND_EPOLL;
2822
2823 return flags;
2824}
2825
2826unsigned int
2827ev_backend (EV_P) EV_NOEXCEPT
2828{
2829 return backend;
2830}
2831
2832#if EV_FEATURE_API
2833unsigned int
2834ev_iteration (EV_P) EV_NOEXCEPT
2835{
2836 return loop_count;
2837}
2838
2839unsigned int
2840ev_depth (EV_P) EV_NOEXCEPT
2841{
2842 return loop_depth;
2843}
2844
2845void
2846ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2847{
2848 io_blocktime = interval;
2849}
2850
2851void
2852ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2853{
2854 timeout_blocktime = interval;
2855}
2856
2857void
2858ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
2859{
2860 userdata = data;
2861}
2862
2863void *
2864ev_userdata (EV_P) EV_NOEXCEPT
2865{
2866 return userdata;
2867}
2868
2869void
2870ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
2871{
2872 invoke_cb = invoke_pending_cb;
2873}
2874
2875void
2876ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
2877{
2878 release_cb = release;
2879 acquire_cb = acquire;
2880}
2881#endif
2882
2883/* initialise a loop structure, must be zero-initialised */
2884noinline ecb_cold
768static void 2885static void
769loop_init (EV_P_ unsigned int flags) 2886loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
770{ 2887{
771 if (!method) 2888 if (!backend)
772 { 2889 {
2890 origflags = flags;
2891
2892#if EV_USE_REALTIME
2893 if (!have_realtime)
2894 {
2895 struct timespec ts;
2896
2897 if (!clock_gettime (CLOCK_REALTIME, &ts))
2898 have_realtime = 1;
2899 }
2900#endif
2901
773#if EV_USE_MONOTONIC 2902#if EV_USE_MONOTONIC
2903 if (!have_monotonic)
774 { 2904 {
775 struct timespec ts; 2905 struct timespec ts;
2906
776 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2907 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
777 have_monotonic = 1; 2908 have_monotonic = 1;
778 } 2909 }
779#endif 2910#endif
780 2911
781 ev_rt_now = ev_time (); 2912 /* pid check not overridable via env */
782 mn_now = get_clock (); 2913#ifndef _WIN32
783 now_floor = mn_now; 2914 if (flags & EVFLAG_FORKCHECK)
784 rtmn_diff = ev_rt_now - mn_now; 2915 curpid = getpid ();
2916#endif
785 2917
786 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 2918 if (!(flags & EVFLAG_NOENV)
2919 && !enable_secure ()
2920 && getenv ("LIBEV_FLAGS"))
787 flags = atoi (getenv ("LIBEV_FLAGS")); 2921 flags = atoi (getenv ("LIBEV_FLAGS"));
788 2922
789 if (!(flags & 0x0000ffff)) 2923 ev_rt_now = ev_time ();
790 flags |= 0x0000ffff; 2924 mn_now = get_clock ();
2925 now_floor = mn_now;
2926 rtmn_diff = ev_rt_now - mn_now;
2927#if EV_FEATURE_API
2928 invoke_cb = ev_invoke_pending;
2929#endif
791 2930
792 method = 0; 2931 io_blocktime = 0.;
2932 timeout_blocktime = 0.;
2933 backend = 0;
2934 backend_fd = -1;
2935 sig_pending = 0;
2936#if EV_ASYNC_ENABLE
2937 async_pending = 0;
2938#endif
2939 pipe_write_skipped = 0;
2940 pipe_write_wanted = 0;
2941 evpipe [0] = -1;
2942 evpipe [1] = -1;
2943#if EV_USE_INOTIFY
2944 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2945#endif
2946#if EV_USE_SIGNALFD
2947 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2948#endif
2949
2950 if (!(flags & EVBACKEND_MASK))
2951 flags |= ev_recommended_backends ();
2952
2953#if EV_USE_IOCP
2954 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2955#endif
793#if EV_USE_PORT 2956#if EV_USE_PORT
794 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags); 2957 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
795#endif 2958#endif
796#if EV_USE_KQUEUE 2959#if EV_USE_KQUEUE
797 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags); 2960 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
2961#endif
2962#if EV_USE_LINUXAIO
2963 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
798#endif 2964#endif
799#if EV_USE_EPOLL 2965#if EV_USE_EPOLL
800 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags); 2966 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
801#endif 2967#endif
802#if EV_USE_POLL 2968#if EV_USE_POLL
803 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags); 2969 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
804#endif 2970#endif
805#if EV_USE_SELECT 2971#if EV_USE_SELECT
806 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags); 2972 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
807#endif 2973#endif
808 2974
2975 ev_prepare_init (&pending_w, pendingcb);
2976
2977#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
809 ev_init (&sigev, sigcb); 2978 ev_init (&pipe_w, pipecb);
810 ev_set_priority (&sigev, EV_MAXPRI); 2979 ev_set_priority (&pipe_w, EV_MAXPRI);
2980#endif
811 } 2981 }
812} 2982}
813 2983
2984/* free up a loop structure */
2985ecb_cold
814void 2986void
815loop_destroy (EV_P) 2987ev_loop_destroy (EV_P)
816{ 2988{
817 int i; 2989 int i;
818 2990
2991#if EV_MULTIPLICITY
2992 /* mimic free (0) */
2993 if (!EV_A)
2994 return;
2995#endif
2996
2997#if EV_CLEANUP_ENABLE
2998 /* queue cleanup watchers (and execute them) */
2999 if (expect_false (cleanupcnt))
3000 {
3001 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3002 EV_INVOKE_PENDING;
3003 }
3004#endif
3005
3006#if EV_CHILD_ENABLE
3007 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3008 {
3009 ev_ref (EV_A); /* child watcher */
3010 ev_signal_stop (EV_A_ &childev);
3011 }
3012#endif
3013
3014 if (ev_is_active (&pipe_w))
3015 {
3016 /*ev_ref (EV_A);*/
3017 /*ev_io_stop (EV_A_ &pipe_w);*/
3018
3019 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3020 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3021 }
3022
3023#if EV_USE_SIGNALFD
3024 if (ev_is_active (&sigfd_w))
3025 close (sigfd);
3026#endif
3027
3028#if EV_USE_INOTIFY
3029 if (fs_fd >= 0)
3030 close (fs_fd);
3031#endif
3032
3033 if (backend_fd >= 0)
3034 close (backend_fd);
3035
3036#if EV_USE_IOCP
3037 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3038#endif
819#if EV_USE_PORT 3039#if EV_USE_PORT
820 if (method == EVMETHOD_PORT ) port_destroy (EV_A); 3040 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
821#endif 3041#endif
822#if EV_USE_KQUEUE 3042#if EV_USE_KQUEUE
823 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 3043 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3044#endif
3045#if EV_USE_LINUXAIO
3046 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
824#endif 3047#endif
825#if EV_USE_EPOLL 3048#if EV_USE_EPOLL
826 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 3049 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
827#endif 3050#endif
828#if EV_USE_POLL 3051#if EV_USE_POLL
829 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 3052 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
830#endif 3053#endif
831#if EV_USE_SELECT 3054#if EV_USE_SELECT
832 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 3055 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
833#endif 3056#endif
834 3057
835 for (i = NUMPRI; i--; ) 3058 for (i = NUMPRI; i--; )
3059 {
836 array_free (pending, [i]); 3060 array_free (pending, [i]);
3061#if EV_IDLE_ENABLE
3062 array_free (idle, [i]);
3063#endif
3064 }
3065
3066 ev_free (anfds); anfds = 0; anfdmax = 0;
837 3067
838 /* have to use the microsoft-never-gets-it-right macro */ 3068 /* have to use the microsoft-never-gets-it-right macro */
3069 array_free (rfeed, EMPTY);
839 array_free (fdchange, EMPTY0); 3070 array_free (fdchange, EMPTY);
840 array_free (timer, EMPTY0); 3071 array_free (timer, EMPTY);
841#if EV_PERIODICS 3072#if EV_PERIODIC_ENABLE
842 array_free (periodic, EMPTY0); 3073 array_free (periodic, EMPTY);
843#endif 3074#endif
3075#if EV_FORK_ENABLE
3076 array_free (fork, EMPTY);
3077#endif
3078#if EV_CLEANUP_ENABLE
844 array_free (idle, EMPTY0); 3079 array_free (cleanup, EMPTY);
3080#endif
845 array_free (prepare, EMPTY0); 3081 array_free (prepare, EMPTY);
846 array_free (check, EMPTY0); 3082 array_free (check, EMPTY);
3083#if EV_ASYNC_ENABLE
3084 array_free (async, EMPTY);
3085#endif
847 3086
848 method = 0; 3087 backend = 0;
849}
850 3088
3089#if EV_MULTIPLICITY
3090 if (ev_is_default_loop (EV_A))
3091#endif
3092 ev_default_loop_ptr = 0;
3093#if EV_MULTIPLICITY
3094 else
3095 ev_free (EV_A);
3096#endif
3097}
3098
3099#if EV_USE_INOTIFY
3100inline_size void infy_fork (EV_P);
3101#endif
3102
3103inline_size void
3104loop_fork (EV_P)
3105{
3106#if EV_USE_PORT
3107 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
3108#endif
3109#if EV_USE_KQUEUE
3110 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3111#endif
3112#if EV_USE_LINUXAIO
3113 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
3114#endif
3115#if EV_USE_EPOLL
3116 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
3117#endif
3118#if EV_USE_INOTIFY
3119 infy_fork (EV_A);
3120#endif
3121
3122#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3123 if (ev_is_active (&pipe_w) && postfork != 2)
3124 {
3125 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3126
3127 ev_ref (EV_A);
3128 ev_io_stop (EV_A_ &pipe_w);
3129
3130 if (evpipe [0] >= 0)
3131 EV_WIN32_CLOSE_FD (evpipe [0]);
3132
3133 evpipe_init (EV_A);
3134 /* iterate over everything, in case we missed something before */
3135 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3136 }
3137#endif
3138
3139 postfork = 0;
3140}
3141
3142#if EV_MULTIPLICITY
3143
3144ecb_cold
3145struct ev_loop *
3146ev_loop_new (unsigned int flags) EV_NOEXCEPT
3147{
3148 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3149
3150 memset (EV_A, 0, sizeof (struct ev_loop));
3151 loop_init (EV_A_ flags);
3152
3153 if (ev_backend (EV_A))
3154 return EV_A;
3155
3156 ev_free (EV_A);
3157 return 0;
3158}
3159
3160#endif /* multiplicity */
3161
3162#if EV_VERIFY
3163noinline ecb_cold
851static void 3164static void
852loop_fork (EV_P) 3165verify_watcher (EV_P_ W w)
853{ 3166{
854#if EV_USE_PORT 3167 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
855 if (method == EVMETHOD_PORT ) port_fork (EV_A); 3168
3169 if (w->pending)
3170 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3171}
3172
3173noinline ecb_cold
3174static void
3175verify_heap (EV_P_ ANHE *heap, int N)
3176{
3177 int i;
3178
3179 for (i = HEAP0; i < N + HEAP0; ++i)
3180 {
3181 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3182 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3183 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3184
3185 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3186 }
3187}
3188
3189noinline ecb_cold
3190static void
3191array_verify (EV_P_ W *ws, int cnt)
3192{
3193 while (cnt--)
3194 {
3195 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3196 verify_watcher (EV_A_ ws [cnt]);
3197 }
3198}
3199#endif
3200
3201#if EV_FEATURE_API
3202void ecb_cold
3203ev_verify (EV_P) EV_NOEXCEPT
3204{
3205#if EV_VERIFY
3206 int i;
3207 WL w, w2;
3208
3209 assert (activecnt >= -1);
3210
3211 assert (fdchangemax >= fdchangecnt);
3212 for (i = 0; i < fdchangecnt; ++i)
3213 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3214
3215 assert (anfdmax >= 0);
3216 for (i = 0; i < anfdmax; ++i)
3217 {
3218 int j = 0;
3219
3220 for (w = w2 = anfds [i].head; w; w = w->next)
3221 {
3222 verify_watcher (EV_A_ (W)w);
3223
3224 if (j++ & 1)
3225 {
3226 assert (("libev: io watcher list contains a loop", w != w2));
3227 w2 = w2->next;
3228 }
3229
3230 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3231 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3232 }
3233 }
3234
3235 assert (timermax >= timercnt);
3236 verify_heap (EV_A_ timers, timercnt);
3237
3238#if EV_PERIODIC_ENABLE
3239 assert (periodicmax >= periodiccnt);
3240 verify_heap (EV_A_ periodics, periodiccnt);
3241#endif
3242
3243 for (i = NUMPRI; i--; )
3244 {
3245 assert (pendingmax [i] >= pendingcnt [i]);
3246#if EV_IDLE_ENABLE
3247 assert (idleall >= 0);
3248 assert (idlemax [i] >= idlecnt [i]);
3249 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3250#endif
3251 }
3252
3253#if EV_FORK_ENABLE
3254 assert (forkmax >= forkcnt);
3255 array_verify (EV_A_ (W *)forks, forkcnt);
3256#endif
3257
3258#if EV_CLEANUP_ENABLE
3259 assert (cleanupmax >= cleanupcnt);
3260 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3261#endif
3262
3263#if EV_ASYNC_ENABLE
3264 assert (asyncmax >= asynccnt);
3265 array_verify (EV_A_ (W *)asyncs, asynccnt);
3266#endif
3267
3268#if EV_PREPARE_ENABLE
3269 assert (preparemax >= preparecnt);
3270 array_verify (EV_A_ (W *)prepares, preparecnt);
3271#endif
3272
3273#if EV_CHECK_ENABLE
3274 assert (checkmax >= checkcnt);
3275 array_verify (EV_A_ (W *)checks, checkcnt);
3276#endif
3277
3278# if 0
3279#if EV_CHILD_ENABLE
3280 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3281 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3282#endif
856#endif 3283# endif
857#if EV_USE_KQUEUE
858 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
859#endif 3284#endif
860#if EV_USE_EPOLL
861 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
862#endif
863
864 if (ev_is_active (&sigev))
865 {
866 /* default loop */
867
868 ev_ref (EV_A);
869 ev_io_stop (EV_A_ &sigev);
870 close (sigpipe [0]);
871 close (sigpipe [1]);
872
873 while (pipe (sigpipe))
874 syserr ("(libev) error creating pipe");
875
876 siginit (EV_A);
877 }
878
879 postfork = 0;
880} 3285}
3286#endif
881 3287
882#if EV_MULTIPLICITY 3288#if EV_MULTIPLICITY
3289ecb_cold
883struct ev_loop * 3290struct ev_loop *
884ev_loop_new (unsigned int flags) 3291#else
885{ 3292int
886 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
887
888 memset (loop, 0, sizeof (struct ev_loop));
889
890 loop_init (EV_A_ flags);
891
892 if (ev_method (EV_A))
893 return loop;
894
895 return 0;
896}
897
898void
899ev_loop_destroy (EV_P)
900{
901 loop_destroy (EV_A);
902 ev_free (loop);
903}
904
905void
906ev_loop_fork (EV_P)
907{
908 postfork = 1;
909}
910
911#endif 3293#endif
912 3294ev_default_loop (unsigned int flags) EV_NOEXCEPT
3295{
3296 if (!ev_default_loop_ptr)
3297 {
913#if EV_MULTIPLICITY 3298#if EV_MULTIPLICITY
914struct ev_loop *
915ev_default_loop_ (unsigned int flags)
916#else
917int
918ev_default_loop (unsigned int flags)
919#endif
920{
921 if (sigpipe [0] == sigpipe [1])
922 if (pipe (sigpipe))
923 return 0;
924
925 if (!ev_default_loop_ptr)
926 {
927#if EV_MULTIPLICITY
928 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3299 EV_P = ev_default_loop_ptr = &default_loop_struct;
929#else 3300#else
930 ev_default_loop_ptr = 1; 3301 ev_default_loop_ptr = 1;
931#endif 3302#endif
932 3303
933 loop_init (EV_A_ flags); 3304 loop_init (EV_A_ flags);
934 3305
935 if (ev_method (EV_A)) 3306 if (ev_backend (EV_A))
936 { 3307 {
937 siginit (EV_A); 3308#if EV_CHILD_ENABLE
938
939#ifndef _WIN32
940 ev_signal_init (&childev, childcb, SIGCHLD); 3309 ev_signal_init (&childev, childcb, SIGCHLD);
941 ev_set_priority (&childev, EV_MAXPRI); 3310 ev_set_priority (&childev, EV_MAXPRI);
942 ev_signal_start (EV_A_ &childev); 3311 ev_signal_start (EV_A_ &childev);
943 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3312 ev_unref (EV_A); /* child watcher should not keep loop alive */
944#endif 3313#endif
949 3318
950 return ev_default_loop_ptr; 3319 return ev_default_loop_ptr;
951} 3320}
952 3321
953void 3322void
954ev_default_destroy (void) 3323ev_loop_fork (EV_P) EV_NOEXCEPT
955{ 3324{
956#if EV_MULTIPLICITY
957 struct ev_loop *loop = ev_default_loop_ptr;
958#endif
959
960#ifndef _WIN32
961 ev_ref (EV_A); /* child watcher */
962 ev_signal_stop (EV_A_ &childev);
963#endif
964
965 ev_ref (EV_A); /* signal watcher */
966 ev_io_stop (EV_A_ &sigev);
967
968 close (sigpipe [0]); sigpipe [0] = 0;
969 close (sigpipe [1]); sigpipe [1] = 0;
970
971 loop_destroy (EV_A);
972}
973
974void
975ev_default_fork (void)
976{
977#if EV_MULTIPLICITY
978 struct ev_loop *loop = ev_default_loop_ptr;
979#endif
980
981 if (method)
982 postfork = 1; 3325 postfork = 1;
983} 3326}
984 3327
985/*****************************************************************************/ 3328/*****************************************************************************/
986 3329
987static int 3330void
988any_pending (EV_P) 3331ev_invoke (EV_P_ void *w, int revents)
3332{
3333 EV_CB_INVOKE ((W)w, revents);
3334}
3335
3336unsigned int
3337ev_pending_count (EV_P) EV_NOEXCEPT
989{ 3338{
990 int pri; 3339 int pri;
3340 unsigned int count = 0;
991 3341
992 for (pri = NUMPRI; pri--; ) 3342 for (pri = NUMPRI; pri--; )
993 if (pendingcnt [pri]) 3343 count += pendingcnt [pri];
994 return 1;
995 3344
996 return 0; 3345 return count;
997} 3346}
998 3347
999inline void 3348noinline
1000call_pending (EV_P) 3349void
3350ev_invoke_pending (EV_P)
1001{ 3351{
1002 int pri; 3352 pendingpri = NUMPRI;
1003 3353
1004 for (pri = NUMPRI; pri--; ) 3354 do
3355 {
3356 --pendingpri;
3357
3358 /* pendingpri possibly gets modified in the inner loop */
1005 while (pendingcnt [pri]) 3359 while (pendingcnt [pendingpri])
1006 {
1007 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1008
1009 if (expect_true (p->w))
1010 { 3360 {
3361 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3362
1011 p->w->pending = 0; 3363 p->w->pending = 0;
1012 EV_CB_INVOKE (p->w, p->events); 3364 EV_CB_INVOKE (p->w, p->events);
3365 EV_FREQUENT_CHECK;
3366 }
3367 }
3368 while (pendingpri);
3369}
3370
3371#if EV_IDLE_ENABLE
3372/* make idle watchers pending. this handles the "call-idle */
3373/* only when higher priorities are idle" logic */
3374inline_size void
3375idle_reify (EV_P)
3376{
3377 if (expect_false (idleall))
3378 {
3379 int pri;
3380
3381 for (pri = NUMPRI; pri--; )
3382 {
3383 if (pendingcnt [pri])
3384 break;
3385
3386 if (idlecnt [pri])
3387 {
3388 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3389 break;
1013 } 3390 }
1014 } 3391 }
3392 }
1015} 3393}
3394#endif
1016 3395
3396/* make timers pending */
1017inline void 3397inline_size void
1018timers_reify (EV_P) 3398timers_reify (EV_P)
1019{ 3399{
3400 EV_FREQUENT_CHECK;
3401
1020 while (timercnt && ((WT)timers [0])->at <= mn_now) 3402 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1021 { 3403 {
1022 struct ev_timer *w = timers [0]; 3404 do
1023
1024 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1025
1026 /* first reschedule or stop timer */
1027 if (w->repeat)
1028 { 3405 {
3406 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3407
3408 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3409
3410 /* first reschedule or stop timer */
3411 if (w->repeat)
3412 {
3413 ev_at (w) += w->repeat;
3414 if (ev_at (w) < mn_now)
3415 ev_at (w) = mn_now;
3416
1029 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3417 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1030 3418
1031 ((WT)w)->at += w->repeat; 3419 ANHE_at_cache (timers [HEAP0]);
1032 if (((WT)w)->at < mn_now)
1033 ((WT)w)->at = mn_now;
1034
1035 downheap ((WT *)timers, timercnt, 0); 3420 downheap (timers, timercnt, HEAP0);
3421 }
3422 else
3423 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3424
3425 EV_FREQUENT_CHECK;
3426 feed_reverse (EV_A_ (W)w);
1036 } 3427 }
1037 else 3428 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1038 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1039 3429
1040 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 3430 feed_reverse_done (EV_A_ EV_TIMER);
3431 }
3432}
3433
3434#if EV_PERIODIC_ENABLE
3435
3436noinline
3437static void
3438periodic_recalc (EV_P_ ev_periodic *w)
3439{
3440 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3441 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3442
3443 /* the above almost always errs on the low side */
3444 while (at <= ev_rt_now)
1041 } 3445 {
1042} 3446 ev_tstamp nat = at + w->interval;
1043 3447
1044#if EV_PERIODICS 3448 /* when resolution fails us, we use ev_rt_now */
3449 if (expect_false (nat == at))
3450 {
3451 at = ev_rt_now;
3452 break;
3453 }
3454
3455 at = nat;
3456 }
3457
3458 ev_at (w) = at;
3459}
3460
3461/* make periodics pending */
1045inline void 3462inline_size void
1046periodics_reify (EV_P) 3463periodics_reify (EV_P)
1047{ 3464{
3465 EV_FREQUENT_CHECK;
3466
1048 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 3467 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1049 { 3468 {
1050 struct ev_periodic *w = periodics [0]; 3469 do
1051
1052 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1053
1054 /* first reschedule or stop timer */
1055 if (w->reschedule_cb)
1056 { 3470 {
3471 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3472
3473 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3474
3475 /* first reschedule or stop timer */
3476 if (w->reschedule_cb)
3477 {
1057 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 3478 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3479
1058 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 3480 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3481
3482 ANHE_at_cache (periodics [HEAP0]);
1059 downheap ((WT *)periodics, periodiccnt, 0); 3483 downheap (periodics, periodiccnt, HEAP0);
3484 }
3485 else if (w->interval)
3486 {
3487 periodic_recalc (EV_A_ w);
3488 ANHE_at_cache (periodics [HEAP0]);
3489 downheap (periodics, periodiccnt, HEAP0);
3490 }
3491 else
3492 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3493
3494 EV_FREQUENT_CHECK;
3495 feed_reverse (EV_A_ (W)w);
1060 } 3496 }
1061 else if (w->interval) 3497 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1062 {
1063 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1064 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1065 downheap ((WT *)periodics, periodiccnt, 0);
1066 }
1067 else
1068 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1069 3498
1070 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 3499 feed_reverse_done (EV_A_ EV_PERIODIC);
1071 } 3500 }
1072} 3501}
1073 3502
3503/* simply recalculate all periodics */
3504/* TODO: maybe ensure that at least one event happens when jumping forward? */
3505noinline ecb_cold
1074static void 3506static void
1075periodics_reschedule (EV_P) 3507periodics_reschedule (EV_P)
1076{ 3508{
1077 int i; 3509 int i;
1078 3510
1079 /* adjust periodics after time jump */ 3511 /* adjust periodics after time jump */
1080 for (i = 0; i < periodiccnt; ++i) 3512 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1081 { 3513 {
1082 struct ev_periodic *w = periodics [i]; 3514 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1083 3515
1084 if (w->reschedule_cb) 3516 if (w->reschedule_cb)
1085 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3517 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1086 else if (w->interval) 3518 else if (w->interval)
1087 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 3519 periodic_recalc (EV_A_ w);
3520
3521 ANHE_at_cache (periodics [i]);
3522 }
3523
3524 reheap (periodics, periodiccnt);
3525}
3526#endif
3527
3528/* adjust all timers by a given offset */
3529noinline ecb_cold
3530static void
3531timers_reschedule (EV_P_ ev_tstamp adjust)
3532{
3533 int i;
3534
3535 for (i = 0; i < timercnt; ++i)
1088 } 3536 {
1089 3537 ANHE *he = timers + i + HEAP0;
1090 /* now rebuild the heap */ 3538 ANHE_w (*he)->at += adjust;
1091 for (i = periodiccnt >> 1; i--; ) 3539 ANHE_at_cache (*he);
1092 downheap ((WT *)periodics, periodiccnt, i); 3540 }
1093} 3541}
1094#endif
1095 3542
1096inline int 3543/* fetch new monotonic and realtime times from the kernel */
1097time_update_monotonic (EV_P) 3544/* also detect if there was a timejump, and act accordingly */
3545inline_speed void
3546time_update (EV_P_ ev_tstamp max_block)
1098{ 3547{
3548#if EV_USE_MONOTONIC
3549 if (expect_true (have_monotonic))
3550 {
3551 int i;
3552 ev_tstamp odiff = rtmn_diff;
3553
1099 mn_now = get_clock (); 3554 mn_now = get_clock ();
1100 3555
3556 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3557 /* interpolate in the meantime */
1101 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 3558 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1102 { 3559 {
1103 ev_rt_now = rtmn_diff + mn_now; 3560 ev_rt_now = rtmn_diff + mn_now;
1104 return 0; 3561 return;
1105 } 3562 }
1106 else 3563
1107 {
1108 now_floor = mn_now; 3564 now_floor = mn_now;
1109 ev_rt_now = ev_time (); 3565 ev_rt_now = ev_time ();
1110 return 1;
1111 }
1112}
1113 3566
1114inline void 3567 /* loop a few times, before making important decisions.
1115time_update (EV_P) 3568 * on the choice of "4": one iteration isn't enough,
1116{ 3569 * in case we get preempted during the calls to
1117 int i; 3570 * ev_time and get_clock. a second call is almost guaranteed
1118 3571 * to succeed in that case, though. and looping a few more times
1119#if EV_USE_MONOTONIC 3572 * doesn't hurt either as we only do this on time-jumps or
1120 if (expect_true (have_monotonic)) 3573 * in the unlikely event of having been preempted here.
1121 { 3574 */
1122 if (time_update_monotonic (EV_A)) 3575 for (i = 4; --i; )
1123 { 3576 {
1124 ev_tstamp odiff = rtmn_diff; 3577 ev_tstamp diff;
1125
1126 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1127 {
1128 rtmn_diff = ev_rt_now - mn_now; 3578 rtmn_diff = ev_rt_now - mn_now;
1129 3579
1130 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 3580 diff = odiff - rtmn_diff;
3581
3582 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1131 return; /* all is well */ 3583 return; /* all is well */
1132 3584
1133 ev_rt_now = ev_time (); 3585 ev_rt_now = ev_time ();
1134 mn_now = get_clock (); 3586 mn_now = get_clock ();
1135 now_floor = mn_now; 3587 now_floor = mn_now;
1136 } 3588 }
1137 3589
3590 /* no timer adjustment, as the monotonic clock doesn't jump */
3591 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1138# if EV_PERIODICS 3592# if EV_PERIODIC_ENABLE
3593 periodics_reschedule (EV_A);
3594# endif
3595 }
3596 else
3597#endif
3598 {
3599 ev_rt_now = ev_time ();
3600
3601 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3602 {
3603 /* adjust timers. this is easy, as the offset is the same for all of them */
3604 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3605#if EV_PERIODIC_ENABLE
1139 periodics_reschedule (EV_A); 3606 periodics_reschedule (EV_A);
1140# endif 3607#endif
1141 /* no timer adjustment, as the monotonic clock doesn't jump */
1142 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1143 } 3608 }
1144 }
1145 else
1146#endif
1147 {
1148 ev_rt_now = ev_time ();
1149
1150 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1151 {
1152#if EV_PERIODICS
1153 periodics_reschedule (EV_A);
1154#endif
1155
1156 /* adjust timers. this is easy, as the offset is the same for all */
1157 for (i = 0; i < timercnt; ++i)
1158 ((WT)timers [i])->at += ev_rt_now - mn_now;
1159 }
1160 3609
1161 mn_now = ev_rt_now; 3610 mn_now = ev_rt_now;
1162 } 3611 }
1163} 3612}
1164 3613
1165void 3614int
1166ev_ref (EV_P)
1167{
1168 ++activecnt;
1169}
1170
1171void
1172ev_unref (EV_P)
1173{
1174 --activecnt;
1175}
1176
1177static int loop_done;
1178
1179void
1180ev_loop (EV_P_ int flags) 3615ev_run (EV_P_ int flags)
1181{ 3616{
1182 double block; 3617#if EV_FEATURE_API
1183 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 3618 ++loop_depth;
3619#endif
1184 3620
1185 while (activecnt) 3621 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3622
3623 loop_done = EVBREAK_CANCEL;
3624
3625 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3626
3627 do
1186 { 3628 {
3629#if EV_VERIFY >= 2
3630 ev_verify (EV_A);
3631#endif
3632
3633#ifndef _WIN32
3634 if (expect_false (curpid)) /* penalise the forking check even more */
3635 if (expect_false (getpid () != curpid))
3636 {
3637 curpid = getpid ();
3638 postfork = 1;
3639 }
3640#endif
3641
3642#if EV_FORK_ENABLE
3643 /* we might have forked, so queue fork handlers */
3644 if (expect_false (postfork))
3645 if (forkcnt)
3646 {
3647 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3648 EV_INVOKE_PENDING;
3649 }
3650#endif
3651
3652#if EV_PREPARE_ENABLE
1187 /* queue check watchers (and execute them) */ 3653 /* queue prepare watchers (and execute them) */
1188 if (expect_false (preparecnt)) 3654 if (expect_false (preparecnt))
1189 { 3655 {
1190 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3656 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1191 call_pending (EV_A); 3657 EV_INVOKE_PENDING;
1192 } 3658 }
3659#endif
3660
3661 if (expect_false (loop_done))
3662 break;
1193 3663
1194 /* we might have forked, so reify kernel state if necessary */ 3664 /* we might have forked, so reify kernel state if necessary */
1195 if (expect_false (postfork)) 3665 if (expect_false (postfork))
1196 loop_fork (EV_A); 3666 loop_fork (EV_A);
1197 3667
1198 /* update fd-related kernel structures */ 3668 /* update fd-related kernel structures */
1199 fd_reify (EV_A); 3669 fd_reify (EV_A);
1200 3670
1201 /* calculate blocking time */ 3671 /* calculate blocking time */
3672 {
3673 ev_tstamp waittime = 0.;
3674 ev_tstamp sleeptime = 0.;
1202 3675
1203 /* we only need this for !monotonic clock or timers, but as we basically 3676 /* remember old timestamp for io_blocktime calculation */
1204 always have timers, we just calculate it always */ 3677 ev_tstamp prev_mn_now = mn_now;
1205#if EV_USE_MONOTONIC 3678
1206 if (expect_true (have_monotonic)) 3679 /* update time to cancel out callback processing overhead */
1207 time_update_monotonic (EV_A); 3680 time_update (EV_A_ 1e100);
1208 else 3681
1209#endif 3682 /* from now on, we want a pipe-wake-up */
3683 pipe_write_wanted = 1;
3684
3685 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3686
3687 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1210 { 3688 {
1211 ev_rt_now = ev_time ();
1212 mn_now = ev_rt_now;
1213 }
1214
1215 if (flags & EVLOOP_NONBLOCK || idlecnt)
1216 block = 0.;
1217 else
1218 {
1219 block = MAX_BLOCKTIME; 3689 waittime = MAX_BLOCKTIME;
1220 3690
1221 if (timercnt) 3691 if (timercnt)
1222 { 3692 {
1223 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 3693 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1224 if (block > to) block = to; 3694 if (waittime > to) waittime = to;
1225 } 3695 }
1226 3696
1227#if EV_PERIODICS 3697#if EV_PERIODIC_ENABLE
1228 if (periodiccnt) 3698 if (periodiccnt)
1229 { 3699 {
1230 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 3700 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1231 if (block > to) block = to; 3701 if (waittime > to) waittime = to;
1232 } 3702 }
1233#endif 3703#endif
1234 3704
1235 if (expect_false (block < 0.)) block = 0.; 3705 /* don't let timeouts decrease the waittime below timeout_blocktime */
3706 if (expect_false (waittime < timeout_blocktime))
3707 waittime = timeout_blocktime;
3708
3709 /* at this point, we NEED to wait, so we have to ensure */
3710 /* to pass a minimum nonzero value to the backend */
3711 if (expect_false (waittime < backend_mintime))
3712 waittime = backend_mintime;
3713
3714 /* extra check because io_blocktime is commonly 0 */
3715 if (expect_false (io_blocktime))
3716 {
3717 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3718
3719 if (sleeptime > waittime - backend_mintime)
3720 sleeptime = waittime - backend_mintime;
3721
3722 if (expect_true (sleeptime > 0.))
3723 {
3724 ev_sleep (sleeptime);
3725 waittime -= sleeptime;
3726 }
3727 }
1236 } 3728 }
1237 3729
1238 method_poll (EV_A_ block); 3730#if EV_FEATURE_API
3731 ++loop_count;
3732#endif
3733 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3734 backend_poll (EV_A_ waittime);
3735 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1239 3736
3737 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3738
3739 ECB_MEMORY_FENCE_ACQUIRE;
3740 if (pipe_write_skipped)
3741 {
3742 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3743 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3744 }
3745
3746
1240 /* update ev_rt_now, do magic */ 3747 /* update ev_rt_now, do magic */
1241 time_update (EV_A); 3748 time_update (EV_A_ waittime + sleeptime);
3749 }
1242 3750
1243 /* queue pending timers and reschedule them */ 3751 /* queue pending timers and reschedule them */
1244 timers_reify (EV_A); /* relative timers called last */ 3752 timers_reify (EV_A); /* relative timers called last */
1245#if EV_PERIODICS 3753#if EV_PERIODIC_ENABLE
1246 periodics_reify (EV_A); /* absolute timers called first */ 3754 periodics_reify (EV_A); /* absolute timers called first */
1247#endif 3755#endif
1248 3756
3757#if EV_IDLE_ENABLE
1249 /* queue idle watchers unless io or timers are pending */ 3758 /* queue idle watchers unless other events are pending */
1250 if (idlecnt && !any_pending (EV_A)) 3759 idle_reify (EV_A);
1251 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 3760#endif
1252 3761
3762#if EV_CHECK_ENABLE
1253 /* queue check watchers, to be executed first */ 3763 /* queue check watchers, to be executed first */
1254 if (expect_false (checkcnt)) 3764 if (expect_false (checkcnt))
1255 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3765 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3766#endif
1256 3767
1257 call_pending (EV_A); 3768 EV_INVOKE_PENDING;
1258
1259 if (expect_false (loop_done))
1260 break;
1261 } 3769 }
3770 while (expect_true (
3771 activecnt
3772 && !loop_done
3773 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3774 ));
1262 3775
1263 if (loop_done != 2) 3776 if (loop_done == EVBREAK_ONE)
1264 loop_done = 0; 3777 loop_done = EVBREAK_CANCEL;
1265}
1266 3778
3779#if EV_FEATURE_API
3780 --loop_depth;
3781#endif
3782
3783 return activecnt;
3784}
3785
1267void 3786void
1268ev_unloop (EV_P_ int how) 3787ev_break (EV_P_ int how) EV_NOEXCEPT
1269{ 3788{
1270 loop_done = how; 3789 loop_done = how;
1271} 3790}
1272 3791
3792void
3793ev_ref (EV_P) EV_NOEXCEPT
3794{
3795 ++activecnt;
3796}
3797
3798void
3799ev_unref (EV_P) EV_NOEXCEPT
3800{
3801 --activecnt;
3802}
3803
3804void
3805ev_now_update (EV_P) EV_NOEXCEPT
3806{
3807 time_update (EV_A_ 1e100);
3808}
3809
3810void
3811ev_suspend (EV_P) EV_NOEXCEPT
3812{
3813 ev_now_update (EV_A);
3814}
3815
3816void
3817ev_resume (EV_P) EV_NOEXCEPT
3818{
3819 ev_tstamp mn_prev = mn_now;
3820
3821 ev_now_update (EV_A);
3822 timers_reschedule (EV_A_ mn_now - mn_prev);
3823#if EV_PERIODIC_ENABLE
3824 /* TODO: really do this? */
3825 periodics_reschedule (EV_A);
3826#endif
3827}
3828
1273/*****************************************************************************/ 3829/*****************************************************************************/
3830/* singly-linked list management, used when the expected list length is short */
1274 3831
1275inline void 3832inline_size void
1276wlist_add (WL *head, WL elem) 3833wlist_add (WL *head, WL elem)
1277{ 3834{
1278 elem->next = *head; 3835 elem->next = *head;
1279 *head = elem; 3836 *head = elem;
1280} 3837}
1281 3838
1282inline void 3839inline_size void
1283wlist_del (WL *head, WL elem) 3840wlist_del (WL *head, WL elem)
1284{ 3841{
1285 while (*head) 3842 while (*head)
1286 { 3843 {
1287 if (*head == elem) 3844 if (expect_true (*head == elem))
1288 { 3845 {
1289 *head = elem->next; 3846 *head = elem->next;
1290 return; 3847 break;
1291 } 3848 }
1292 3849
1293 head = &(*head)->next; 3850 head = &(*head)->next;
1294 } 3851 }
1295} 3852}
1296 3853
3854/* internal, faster, version of ev_clear_pending */
1297inline void 3855inline_speed void
1298ev_clear_pending (EV_P_ W w) 3856clear_pending (EV_P_ W w)
1299{ 3857{
1300 if (w->pending) 3858 if (w->pending)
1301 { 3859 {
1302 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3860 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1303 w->pending = 0; 3861 w->pending = 0;
1304 } 3862 }
1305} 3863}
1306 3864
3865int
3866ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
3867{
3868 W w_ = (W)w;
3869 int pending = w_->pending;
3870
3871 if (expect_true (pending))
3872 {
3873 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3874 p->w = (W)&pending_w;
3875 w_->pending = 0;
3876 return p->events;
3877 }
3878 else
3879 return 0;
3880}
3881
1307inline void 3882inline_size void
3883pri_adjust (EV_P_ W w)
3884{
3885 int pri = ev_priority (w);
3886 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3887 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3888 ev_set_priority (w, pri);
3889}
3890
3891inline_speed void
1308ev_start (EV_P_ W w, int active) 3892ev_start (EV_P_ W w, int active)
1309{ 3893{
1310 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 3894 pri_adjust (EV_A_ w);
1311 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1312
1313 w->active = active; 3895 w->active = active;
1314 ev_ref (EV_A); 3896 ev_ref (EV_A);
1315} 3897}
1316 3898
1317inline void 3899inline_size void
1318ev_stop (EV_P_ W w) 3900ev_stop (EV_P_ W w)
1319{ 3901{
1320 ev_unref (EV_A); 3902 ev_unref (EV_A);
1321 w->active = 0; 3903 w->active = 0;
1322} 3904}
1323 3905
1324/*****************************************************************************/ 3906/*****************************************************************************/
1325 3907
3908noinline
1326void 3909void
1327ev_io_start (EV_P_ struct ev_io *w) 3910ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
1328{ 3911{
1329 int fd = w->fd; 3912 int fd = w->fd;
1330 3913
1331 if (expect_false (ev_is_active (w))) 3914 if (expect_false (ev_is_active (w)))
1332 return; 3915 return;
1333 3916
1334 assert (("ev_io_start called with negative fd", fd >= 0)); 3917 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3918 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3919
3920 EV_FREQUENT_CHECK;
1335 3921
1336 ev_start (EV_A_ (W)w, 1); 3922 ev_start (EV_A_ (W)w, 1);
1337 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3923 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
1338 wlist_add ((WL *)&anfds[fd].head, (WL)w); 3924 wlist_add (&anfds[fd].head, (WL)w);
1339 3925
1340 fd_change (EV_A_ fd); 3926 /* common bug, apparently */
1341} 3927 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
1342 3928
3929 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3930 w->events &= ~EV__IOFDSET;
3931
3932 EV_FREQUENT_CHECK;
3933}
3934
3935noinline
1343void 3936void
1344ev_io_stop (EV_P_ struct ev_io *w) 3937ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
1345{ 3938{
1346 ev_clear_pending (EV_A_ (W)w); 3939 clear_pending (EV_A_ (W)w);
1347 if (expect_false (!ev_is_active (w))) 3940 if (expect_false (!ev_is_active (w)))
1348 return; 3941 return;
1349 3942
1350 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3943 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1351 3944
3945 EV_FREQUENT_CHECK;
3946
1352 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 3947 wlist_del (&anfds[w->fd].head, (WL)w);
1353 ev_stop (EV_A_ (W)w); 3948 ev_stop (EV_A_ (W)w);
1354 3949
1355 fd_change (EV_A_ w->fd); 3950 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1356}
1357 3951
3952 EV_FREQUENT_CHECK;
3953}
3954
3955noinline
1358void 3956void
1359ev_timer_start (EV_P_ struct ev_timer *w) 3957ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
1360{ 3958{
1361 if (expect_false (ev_is_active (w))) 3959 if (expect_false (ev_is_active (w)))
1362 return; 3960 return;
1363 3961
1364 ((WT)w)->at += mn_now; 3962 ev_at (w) += mn_now;
1365 3963
1366 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3964 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1367 3965
3966 EV_FREQUENT_CHECK;
3967
3968 ++timercnt;
1368 ev_start (EV_A_ (W)w, ++timercnt); 3969 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1369 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 3970 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
1370 timers [timercnt - 1] = w; 3971 ANHE_w (timers [ev_active (w)]) = (WT)w;
1371 upheap ((WT *)timers, timercnt - 1); 3972 ANHE_at_cache (timers [ev_active (w)]);
3973 upheap (timers, ev_active (w));
1372 3974
3975 EV_FREQUENT_CHECK;
3976
1373 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3977 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1374} 3978}
1375 3979
3980noinline
1376void 3981void
1377ev_timer_stop (EV_P_ struct ev_timer *w) 3982ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
1378{ 3983{
1379 ev_clear_pending (EV_A_ (W)w); 3984 clear_pending (EV_A_ (W)w);
1380 if (expect_false (!ev_is_active (w))) 3985 if (expect_false (!ev_is_active (w)))
1381 return; 3986 return;
1382 3987
3988 EV_FREQUENT_CHECK;
3989
3990 {
3991 int active = ev_active (w);
3992
1383 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3993 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1384 3994
3995 --timercnt;
3996
1385 if (expect_true (((W)w)->active < timercnt--)) 3997 if (expect_true (active < timercnt + HEAP0))
1386 { 3998 {
1387 timers [((W)w)->active - 1] = timers [timercnt]; 3999 timers [active] = timers [timercnt + HEAP0];
1388 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 4000 adjustheap (timers, timercnt, active);
1389 } 4001 }
4002 }
1390 4003
1391 ((WT)w)->at -= mn_now; 4004 ev_at (w) -= mn_now;
1392 4005
1393 ev_stop (EV_A_ (W)w); 4006 ev_stop (EV_A_ (W)w);
1394}
1395 4007
4008 EV_FREQUENT_CHECK;
4009}
4010
4011noinline
1396void 4012void
1397ev_timer_again (EV_P_ struct ev_timer *w) 4013ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
1398{ 4014{
4015 EV_FREQUENT_CHECK;
4016
4017 clear_pending (EV_A_ (W)w);
4018
1399 if (ev_is_active (w)) 4019 if (ev_is_active (w))
1400 { 4020 {
1401 if (w->repeat) 4021 if (w->repeat)
1402 { 4022 {
1403 ((WT)w)->at = mn_now + w->repeat; 4023 ev_at (w) = mn_now + w->repeat;
4024 ANHE_at_cache (timers [ev_active (w)]);
1404 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 4025 adjustheap (timers, timercnt, ev_active (w));
1405 } 4026 }
1406 else 4027 else
1407 ev_timer_stop (EV_A_ w); 4028 ev_timer_stop (EV_A_ w);
1408 } 4029 }
1409 else if (w->repeat) 4030 else if (w->repeat)
1410 { 4031 {
1411 w->at = w->repeat; 4032 ev_at (w) = w->repeat;
1412 ev_timer_start (EV_A_ w); 4033 ev_timer_start (EV_A_ w);
1413 } 4034 }
1414}
1415 4035
4036 EV_FREQUENT_CHECK;
4037}
4038
4039ev_tstamp
4040ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4041{
4042 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
4043}
4044
1416#if EV_PERIODICS 4045#if EV_PERIODIC_ENABLE
4046noinline
1417void 4047void
1418ev_periodic_start (EV_P_ struct ev_periodic *w) 4048ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
1419{ 4049{
1420 if (expect_false (ev_is_active (w))) 4050 if (expect_false (ev_is_active (w)))
1421 return; 4051 return;
1422 4052
1423 if (w->reschedule_cb) 4053 if (w->reschedule_cb)
1424 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 4054 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1425 else if (w->interval) 4055 else if (w->interval)
1426 { 4056 {
1427 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 4057 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1428 /* this formula differs from the one in periodic_reify because we do not always round up */ 4058 periodic_recalc (EV_A_ w);
1429 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1430 } 4059 }
4060 else
4061 ev_at (w) = w->offset;
1431 4062
4063 EV_FREQUENT_CHECK;
4064
4065 ++periodiccnt;
1432 ev_start (EV_A_ (W)w, ++periodiccnt); 4066 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1433 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 4067 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
1434 periodics [periodiccnt - 1] = w; 4068 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1435 upheap ((WT *)periodics, periodiccnt - 1); 4069 ANHE_at_cache (periodics [ev_active (w)]);
4070 upheap (periodics, ev_active (w));
1436 4071
4072 EV_FREQUENT_CHECK;
4073
1437 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 4074 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1438} 4075}
1439 4076
4077noinline
1440void 4078void
1441ev_periodic_stop (EV_P_ struct ev_periodic *w) 4079ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
1442{ 4080{
1443 ev_clear_pending (EV_A_ (W)w); 4081 clear_pending (EV_A_ (W)w);
1444 if (expect_false (!ev_is_active (w))) 4082 if (expect_false (!ev_is_active (w)))
1445 return; 4083 return;
1446 4084
4085 EV_FREQUENT_CHECK;
4086
4087 {
4088 int active = ev_active (w);
4089
1447 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 4090 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1448 4091
4092 --periodiccnt;
4093
1449 if (expect_true (((W)w)->active < periodiccnt--)) 4094 if (expect_true (active < periodiccnt + HEAP0))
1450 { 4095 {
1451 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 4096 periodics [active] = periodics [periodiccnt + HEAP0];
1452 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 4097 adjustheap (periodics, periodiccnt, active);
1453 } 4098 }
4099 }
1454 4100
1455 ev_stop (EV_A_ (W)w); 4101 ev_stop (EV_A_ (W)w);
1456}
1457 4102
4103 EV_FREQUENT_CHECK;
4104}
4105
4106noinline
1458void 4107void
1459ev_periodic_again (EV_P_ struct ev_periodic *w) 4108ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
1460{ 4109{
1461 /* TODO: use adjustheap and recalculation */ 4110 /* TODO: use adjustheap and recalculation */
1462 ev_periodic_stop (EV_A_ w); 4111 ev_periodic_stop (EV_A_ w);
1463 ev_periodic_start (EV_A_ w); 4112 ev_periodic_start (EV_A_ w);
1464} 4113}
1465#endif 4114#endif
1466 4115
4116#ifndef SA_RESTART
4117# define SA_RESTART 0
4118#endif
4119
4120#if EV_SIGNAL_ENABLE
4121
4122noinline
1467void 4123void
1468ev_idle_start (EV_P_ struct ev_idle *w) 4124ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
1469{ 4125{
1470 if (expect_false (ev_is_active (w))) 4126 if (expect_false (ev_is_active (w)))
1471 return; 4127 return;
1472 4128
4129 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4130
4131#if EV_MULTIPLICITY
4132 assert (("libev: a signal must not be attached to two different loops",
4133 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4134
4135 signals [w->signum - 1].loop = EV_A;
4136 ECB_MEMORY_FENCE_RELEASE;
4137#endif
4138
4139 EV_FREQUENT_CHECK;
4140
4141#if EV_USE_SIGNALFD
4142 if (sigfd == -2)
4143 {
4144 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
4145 if (sigfd < 0 && errno == EINVAL)
4146 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
4147
4148 if (sigfd >= 0)
4149 {
4150 fd_intern (sigfd); /* doing it twice will not hurt */
4151
4152 sigemptyset (&sigfd_set);
4153
4154 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4155 ev_set_priority (&sigfd_w, EV_MAXPRI);
4156 ev_io_start (EV_A_ &sigfd_w);
4157 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4158 }
4159 }
4160
4161 if (sigfd >= 0)
4162 {
4163 /* TODO: check .head */
4164 sigaddset (&sigfd_set, w->signum);
4165 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4166
4167 signalfd (sigfd, &sigfd_set, 0);
4168 }
4169#endif
4170
1473 ev_start (EV_A_ (W)w, ++idlecnt); 4171 ev_start (EV_A_ (W)w, 1);
1474 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2); 4172 wlist_add (&signals [w->signum - 1].head, (WL)w);
1475 idles [idlecnt - 1] = w;
1476}
1477 4173
4174 if (!((WL)w)->next)
4175# if EV_USE_SIGNALFD
4176 if (sigfd < 0) /*TODO*/
4177# endif
4178 {
4179# ifdef _WIN32
4180 evpipe_init (EV_A);
4181
4182 signal (w->signum, ev_sighandler);
4183# else
4184 struct sigaction sa;
4185
4186 evpipe_init (EV_A);
4187
4188 sa.sa_handler = ev_sighandler;
4189 sigfillset (&sa.sa_mask);
4190 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
4191 sigaction (w->signum, &sa, 0);
4192
4193 if (origflags & EVFLAG_NOSIGMASK)
4194 {
4195 sigemptyset (&sa.sa_mask);
4196 sigaddset (&sa.sa_mask, w->signum);
4197 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4198 }
4199#endif
4200 }
4201
4202 EV_FREQUENT_CHECK;
4203}
4204
4205noinline
1478void 4206void
1479ev_idle_stop (EV_P_ struct ev_idle *w) 4207ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
1480{ 4208{
1481 ev_clear_pending (EV_A_ (W)w); 4209 clear_pending (EV_A_ (W)w);
1482 if (expect_false (!ev_is_active (w))) 4210 if (expect_false (!ev_is_active (w)))
1483 return; 4211 return;
1484 4212
1485 idles [((W)w)->active - 1] = idles [--idlecnt]; 4213 EV_FREQUENT_CHECK;
4214
4215 wlist_del (&signals [w->signum - 1].head, (WL)w);
1486 ev_stop (EV_A_ (W)w); 4216 ev_stop (EV_A_ (W)w);
1487}
1488 4217
4218 if (!signals [w->signum - 1].head)
4219 {
4220#if EV_MULTIPLICITY
4221 signals [w->signum - 1].loop = 0; /* unattach from signal */
4222#endif
4223#if EV_USE_SIGNALFD
4224 if (sigfd >= 0)
4225 {
4226 sigset_t ss;
4227
4228 sigemptyset (&ss);
4229 sigaddset (&ss, w->signum);
4230 sigdelset (&sigfd_set, w->signum);
4231
4232 signalfd (sigfd, &sigfd_set, 0);
4233 sigprocmask (SIG_UNBLOCK, &ss, 0);
4234 }
4235 else
4236#endif
4237 signal (w->signum, SIG_DFL);
4238 }
4239
4240 EV_FREQUENT_CHECK;
4241}
4242
4243#endif
4244
4245#if EV_CHILD_ENABLE
4246
1489void 4247void
1490ev_prepare_start (EV_P_ struct ev_prepare *w) 4248ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
1491{ 4249{
4250#if EV_MULTIPLICITY
4251 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
4252#endif
1492 if (expect_false (ev_is_active (w))) 4253 if (expect_false (ev_is_active (w)))
1493 return; 4254 return;
1494 4255
4256 EV_FREQUENT_CHECK;
4257
1495 ev_start (EV_A_ (W)w, ++preparecnt); 4258 ev_start (EV_A_ (W)w, 1);
1496 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4259 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1497 prepares [preparecnt - 1] = w;
1498}
1499 4260
4261 EV_FREQUENT_CHECK;
4262}
4263
1500void 4264void
1501ev_prepare_stop (EV_P_ struct ev_prepare *w) 4265ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
1502{ 4266{
1503 ev_clear_pending (EV_A_ (W)w); 4267 clear_pending (EV_A_ (W)w);
1504 if (expect_false (!ev_is_active (w))) 4268 if (expect_false (!ev_is_active (w)))
1505 return; 4269 return;
1506 4270
1507 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 4271 EV_FREQUENT_CHECK;
4272
4273 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1508 ev_stop (EV_A_ (W)w); 4274 ev_stop (EV_A_ (W)w);
1509}
1510 4275
4276 EV_FREQUENT_CHECK;
4277}
4278
4279#endif
4280
4281#if EV_STAT_ENABLE
4282
4283# ifdef _WIN32
4284# undef lstat
4285# define lstat(a,b) _stati64 (a,b)
4286# endif
4287
4288#define DEF_STAT_INTERVAL 5.0074891
4289#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4290#define MIN_STAT_INTERVAL 0.1074891
4291
4292noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4293
4294#if EV_USE_INOTIFY
4295
4296/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4297# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4298
4299noinline
4300static void
4301infy_add (EV_P_ ev_stat *w)
4302{
4303 w->wd = inotify_add_watch (fs_fd, w->path,
4304 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4305 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4306 | IN_DONT_FOLLOW | IN_MASK_ADD);
4307
4308 if (w->wd >= 0)
4309 {
4310 struct statfs sfs;
4311
4312 /* now local changes will be tracked by inotify, but remote changes won't */
4313 /* unless the filesystem is known to be local, we therefore still poll */
4314 /* also do poll on <2.6.25, but with normal frequency */
4315
4316 if (!fs_2625)
4317 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4318 else if (!statfs (w->path, &sfs)
4319 && (sfs.f_type == 0x1373 /* devfs */
4320 || sfs.f_type == 0x4006 /* fat */
4321 || sfs.f_type == 0x4d44 /* msdos */
4322 || sfs.f_type == 0xEF53 /* ext2/3 */
4323 || sfs.f_type == 0x72b6 /* jffs2 */
4324 || sfs.f_type == 0x858458f6 /* ramfs */
4325 || sfs.f_type == 0x5346544e /* ntfs */
4326 || sfs.f_type == 0x3153464a /* jfs */
4327 || sfs.f_type == 0x9123683e /* btrfs */
4328 || sfs.f_type == 0x52654973 /* reiser3 */
4329 || sfs.f_type == 0x01021994 /* tmpfs */
4330 || sfs.f_type == 0x58465342 /* xfs */))
4331 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4332 else
4333 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
4334 }
4335 else
4336 {
4337 /* can't use inotify, continue to stat */
4338 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4339
4340 /* if path is not there, monitor some parent directory for speedup hints */
4341 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4342 /* but an efficiency issue only */
4343 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4344 {
4345 char path [4096];
4346 strcpy (path, w->path);
4347
4348 do
4349 {
4350 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4351 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4352
4353 char *pend = strrchr (path, '/');
4354
4355 if (!pend || pend == path)
4356 break;
4357
4358 *pend = 0;
4359 w->wd = inotify_add_watch (fs_fd, path, mask);
4360 }
4361 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4362 }
4363 }
4364
4365 if (w->wd >= 0)
4366 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4367
4368 /* now re-arm timer, if required */
4369 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4370 ev_timer_again (EV_A_ &w->timer);
4371 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4372}
4373
4374noinline
4375static void
4376infy_del (EV_P_ ev_stat *w)
4377{
4378 int slot;
4379 int wd = w->wd;
4380
4381 if (wd < 0)
4382 return;
4383
4384 w->wd = -2;
4385 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4386 wlist_del (&fs_hash [slot].head, (WL)w);
4387
4388 /* remove this watcher, if others are watching it, they will rearm */
4389 inotify_rm_watch (fs_fd, wd);
4390}
4391
4392noinline
4393static void
4394infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4395{
4396 if (slot < 0)
4397 /* overflow, need to check for all hash slots */
4398 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4399 infy_wd (EV_A_ slot, wd, ev);
4400 else
4401 {
4402 WL w_;
4403
4404 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4405 {
4406 ev_stat *w = (ev_stat *)w_;
4407 w_ = w_->next; /* lets us remove this watcher and all before it */
4408
4409 if (w->wd == wd || wd == -1)
4410 {
4411 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4412 {
4413 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4414 w->wd = -1;
4415 infy_add (EV_A_ w); /* re-add, no matter what */
4416 }
4417
4418 stat_timer_cb (EV_A_ &w->timer, 0);
4419 }
4420 }
4421 }
4422}
4423
4424static void
4425infy_cb (EV_P_ ev_io *w, int revents)
4426{
4427 char buf [EV_INOTIFY_BUFSIZE];
4428 int ofs;
4429 int len = read (fs_fd, buf, sizeof (buf));
4430
4431 for (ofs = 0; ofs < len; )
4432 {
4433 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4434 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4435 ofs += sizeof (struct inotify_event) + ev->len;
4436 }
4437}
4438
4439inline_size ecb_cold
1511void 4440void
1512ev_check_start (EV_P_ struct ev_check *w) 4441ev_check_2625 (EV_P)
4442{
4443 /* kernels < 2.6.25 are borked
4444 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4445 */
4446 if (ev_linux_version () < 0x020619)
4447 return;
4448
4449 fs_2625 = 1;
4450}
4451
4452inline_size int
4453infy_newfd (void)
4454{
4455#if defined IN_CLOEXEC && defined IN_NONBLOCK
4456 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4457 if (fd >= 0)
4458 return fd;
4459#endif
4460 return inotify_init ();
4461}
4462
4463inline_size void
4464infy_init (EV_P)
4465{
4466 if (fs_fd != -2)
4467 return;
4468
4469 fs_fd = -1;
4470
4471 ev_check_2625 (EV_A);
4472
4473 fs_fd = infy_newfd ();
4474
4475 if (fs_fd >= 0)
4476 {
4477 fd_intern (fs_fd);
4478 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4479 ev_set_priority (&fs_w, EV_MAXPRI);
4480 ev_io_start (EV_A_ &fs_w);
4481 ev_unref (EV_A);
4482 }
4483}
4484
4485inline_size void
4486infy_fork (EV_P)
4487{
4488 int slot;
4489
4490 if (fs_fd < 0)
4491 return;
4492
4493 ev_ref (EV_A);
4494 ev_io_stop (EV_A_ &fs_w);
4495 close (fs_fd);
4496 fs_fd = infy_newfd ();
4497
4498 if (fs_fd >= 0)
4499 {
4500 fd_intern (fs_fd);
4501 ev_io_set (&fs_w, fs_fd, EV_READ);
4502 ev_io_start (EV_A_ &fs_w);
4503 ev_unref (EV_A);
4504 }
4505
4506 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4507 {
4508 WL w_ = fs_hash [slot].head;
4509 fs_hash [slot].head = 0;
4510
4511 while (w_)
4512 {
4513 ev_stat *w = (ev_stat *)w_;
4514 w_ = w_->next; /* lets us add this watcher */
4515
4516 w->wd = -1;
4517
4518 if (fs_fd >= 0)
4519 infy_add (EV_A_ w); /* re-add, no matter what */
4520 else
4521 {
4522 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4523 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4524 ev_timer_again (EV_A_ &w->timer);
4525 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4526 }
4527 }
4528 }
4529}
4530
4531#endif
4532
4533#ifdef _WIN32
4534# define EV_LSTAT(p,b) _stati64 (p, b)
4535#else
4536# define EV_LSTAT(p,b) lstat (p, b)
4537#endif
4538
4539void
4540ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
4541{
4542 if (lstat (w->path, &w->attr) < 0)
4543 w->attr.st_nlink = 0;
4544 else if (!w->attr.st_nlink)
4545 w->attr.st_nlink = 1;
4546}
4547
4548noinline
4549static void
4550stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4551{
4552 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4553
4554 ev_statdata prev = w->attr;
4555 ev_stat_stat (EV_A_ w);
4556
4557 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4558 if (
4559 prev.st_dev != w->attr.st_dev
4560 || prev.st_ino != w->attr.st_ino
4561 || prev.st_mode != w->attr.st_mode
4562 || prev.st_nlink != w->attr.st_nlink
4563 || prev.st_uid != w->attr.st_uid
4564 || prev.st_gid != w->attr.st_gid
4565 || prev.st_rdev != w->attr.st_rdev
4566 || prev.st_size != w->attr.st_size
4567 || prev.st_atime != w->attr.st_atime
4568 || prev.st_mtime != w->attr.st_mtime
4569 || prev.st_ctime != w->attr.st_ctime
4570 ) {
4571 /* we only update w->prev on actual differences */
4572 /* in case we test more often than invoke the callback, */
4573 /* to ensure that prev is always different to attr */
4574 w->prev = prev;
4575
4576 #if EV_USE_INOTIFY
4577 if (fs_fd >= 0)
4578 {
4579 infy_del (EV_A_ w);
4580 infy_add (EV_A_ w);
4581 ev_stat_stat (EV_A_ w); /* avoid race... */
4582 }
4583 #endif
4584
4585 ev_feed_event (EV_A_ w, EV_STAT);
4586 }
4587}
4588
4589void
4590ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
1513{ 4591{
1514 if (expect_false (ev_is_active (w))) 4592 if (expect_false (ev_is_active (w)))
1515 return; 4593 return;
1516 4594
4595 ev_stat_stat (EV_A_ w);
4596
4597 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4598 w->interval = MIN_STAT_INTERVAL;
4599
4600 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4601 ev_set_priority (&w->timer, ev_priority (w));
4602
4603#if EV_USE_INOTIFY
4604 infy_init (EV_A);
4605
4606 if (fs_fd >= 0)
4607 infy_add (EV_A_ w);
4608 else
4609#endif
4610 {
4611 ev_timer_again (EV_A_ &w->timer);
4612 ev_unref (EV_A);
4613 }
4614
1517 ev_start (EV_A_ (W)w, ++checkcnt); 4615 ev_start (EV_A_ (W)w, 1);
1518 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1519 checks [checkcnt - 1] = w;
1520}
1521 4616
4617 EV_FREQUENT_CHECK;
4618}
4619
1522void 4620void
1523ev_check_stop (EV_P_ struct ev_check *w) 4621ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
1524{ 4622{
1525 ev_clear_pending (EV_A_ (W)w); 4623 clear_pending (EV_A_ (W)w);
1526 if (expect_false (!ev_is_active (w))) 4624 if (expect_false (!ev_is_active (w)))
1527 return; 4625 return;
1528 4626
1529 checks [((W)w)->active - 1] = checks [--checkcnt]; 4627 EV_FREQUENT_CHECK;
4628
4629#if EV_USE_INOTIFY
4630 infy_del (EV_A_ w);
4631#endif
4632
4633 if (ev_is_active (&w->timer))
4634 {
4635 ev_ref (EV_A);
4636 ev_timer_stop (EV_A_ &w->timer);
4637 }
4638
1530 ev_stop (EV_A_ (W)w); 4639 ev_stop (EV_A_ (W)w);
1531}
1532 4640
1533#ifndef SA_RESTART 4641 EV_FREQUENT_CHECK;
1534# define SA_RESTART 0 4642}
1535#endif 4643#endif
1536 4644
4645#if EV_IDLE_ENABLE
1537void 4646void
1538ev_signal_start (EV_P_ struct ev_signal *w) 4647ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
1539{ 4648{
1540#if EV_MULTIPLICITY
1541 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1542#endif
1543 if (expect_false (ev_is_active (w))) 4649 if (expect_false (ev_is_active (w)))
1544 return; 4650 return;
1545 4651
1546 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 4652 pri_adjust (EV_A_ (W)w);
1547 4653
4654 EV_FREQUENT_CHECK;
4655
4656 {
4657 int active = ++idlecnt [ABSPRI (w)];
4658
4659 ++idleall;
1548 ev_start (EV_A_ (W)w, 1); 4660 ev_start (EV_A_ (W)w, active);
1549 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1550 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1551 4661
1552 if (!((WL)w)->next) 4662 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
1553 { 4663 idles [ABSPRI (w)][active - 1] = w;
1554#if _WIN32
1555 signal (w->signum, sighandler);
1556#else
1557 struct sigaction sa;
1558 sa.sa_handler = sighandler;
1559 sigfillset (&sa.sa_mask);
1560 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1561 sigaction (w->signum, &sa, 0);
1562#endif
1563 } 4664 }
1564}
1565 4665
4666 EV_FREQUENT_CHECK;
4667}
4668
1566void 4669void
1567ev_signal_stop (EV_P_ struct ev_signal *w) 4670ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
1568{ 4671{
1569 ev_clear_pending (EV_A_ (W)w); 4672 clear_pending (EV_A_ (W)w);
1570 if (expect_false (!ev_is_active (w))) 4673 if (expect_false (!ev_is_active (w)))
1571 return; 4674 return;
1572 4675
1573 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 4676 EV_FREQUENT_CHECK;
4677
4678 {
4679 int active = ev_active (w);
4680
4681 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4682 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4683
1574 ev_stop (EV_A_ (W)w); 4684 ev_stop (EV_A_ (W)w);
4685 --idleall;
4686 }
1575 4687
1576 if (!signals [w->signum - 1].head) 4688 EV_FREQUENT_CHECK;
1577 signal (w->signum, SIG_DFL);
1578} 4689}
1579
1580void
1581ev_child_start (EV_P_ struct ev_child *w)
1582{
1583#if EV_MULTIPLICITY
1584 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1585#endif 4690#endif
4691
4692#if EV_PREPARE_ENABLE
4693void
4694ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
4695{
1586 if (expect_false (ev_is_active (w))) 4696 if (expect_false (ev_is_active (w)))
1587 return; 4697 return;
1588 4698
4699 EV_FREQUENT_CHECK;
4700
1589 ev_start (EV_A_ (W)w, 1); 4701 ev_start (EV_A_ (W)w, ++preparecnt);
1590 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4702 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
1591} 4703 prepares [preparecnt - 1] = w;
1592 4704
4705 EV_FREQUENT_CHECK;
4706}
4707
1593void 4708void
1594ev_child_stop (EV_P_ struct ev_child *w) 4709ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
1595{ 4710{
1596 ev_clear_pending (EV_A_ (W)w); 4711 clear_pending (EV_A_ (W)w);
1597 if (expect_false (!ev_is_active (w))) 4712 if (expect_false (!ev_is_active (w)))
1598 return; 4713 return;
1599 4714
1600 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4715 EV_FREQUENT_CHECK;
4716
4717 {
4718 int active = ev_active (w);
4719
4720 prepares [active - 1] = prepares [--preparecnt];
4721 ev_active (prepares [active - 1]) = active;
4722 }
4723
1601 ev_stop (EV_A_ (W)w); 4724 ev_stop (EV_A_ (W)w);
4725
4726 EV_FREQUENT_CHECK;
1602} 4727}
4728#endif
4729
4730#if EV_CHECK_ENABLE
4731void
4732ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
4733{
4734 if (expect_false (ev_is_active (w)))
4735 return;
4736
4737 EV_FREQUENT_CHECK;
4738
4739 ev_start (EV_A_ (W)w, ++checkcnt);
4740 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
4741 checks [checkcnt - 1] = w;
4742
4743 EV_FREQUENT_CHECK;
4744}
4745
4746void
4747ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
4748{
4749 clear_pending (EV_A_ (W)w);
4750 if (expect_false (!ev_is_active (w)))
4751 return;
4752
4753 EV_FREQUENT_CHECK;
4754
4755 {
4756 int active = ev_active (w);
4757
4758 checks [active - 1] = checks [--checkcnt];
4759 ev_active (checks [active - 1]) = active;
4760 }
4761
4762 ev_stop (EV_A_ (W)w);
4763
4764 EV_FREQUENT_CHECK;
4765}
4766#endif
4767
4768#if EV_EMBED_ENABLE
4769noinline
4770void
4771ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
4772{
4773 ev_run (w->other, EVRUN_NOWAIT);
4774}
4775
4776static void
4777embed_io_cb (EV_P_ ev_io *io, int revents)
4778{
4779 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4780
4781 if (ev_cb (w))
4782 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4783 else
4784 ev_run (w->other, EVRUN_NOWAIT);
4785}
4786
4787static void
4788embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4789{
4790 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4791
4792 {
4793 EV_P = w->other;
4794
4795 while (fdchangecnt)
4796 {
4797 fd_reify (EV_A);
4798 ev_run (EV_A_ EVRUN_NOWAIT);
4799 }
4800 }
4801}
4802
4803static void
4804embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4805{
4806 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4807
4808 ev_embed_stop (EV_A_ w);
4809
4810 {
4811 EV_P = w->other;
4812
4813 ev_loop_fork (EV_A);
4814 ev_run (EV_A_ EVRUN_NOWAIT);
4815 }
4816
4817 ev_embed_start (EV_A_ w);
4818}
4819
4820#if 0
4821static void
4822embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4823{
4824 ev_idle_stop (EV_A_ idle);
4825}
4826#endif
4827
4828void
4829ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
4830{
4831 if (expect_false (ev_is_active (w)))
4832 return;
4833
4834 {
4835 EV_P = w->other;
4836 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4837 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4838 }
4839
4840 EV_FREQUENT_CHECK;
4841
4842 ev_set_priority (&w->io, ev_priority (w));
4843 ev_io_start (EV_A_ &w->io);
4844
4845 ev_prepare_init (&w->prepare, embed_prepare_cb);
4846 ev_set_priority (&w->prepare, EV_MINPRI);
4847 ev_prepare_start (EV_A_ &w->prepare);
4848
4849 ev_fork_init (&w->fork, embed_fork_cb);
4850 ev_fork_start (EV_A_ &w->fork);
4851
4852 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4853
4854 ev_start (EV_A_ (W)w, 1);
4855
4856 EV_FREQUENT_CHECK;
4857}
4858
4859void
4860ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
4861{
4862 clear_pending (EV_A_ (W)w);
4863 if (expect_false (!ev_is_active (w)))
4864 return;
4865
4866 EV_FREQUENT_CHECK;
4867
4868 ev_io_stop (EV_A_ &w->io);
4869 ev_prepare_stop (EV_A_ &w->prepare);
4870 ev_fork_stop (EV_A_ &w->fork);
4871
4872 ev_stop (EV_A_ (W)w);
4873
4874 EV_FREQUENT_CHECK;
4875}
4876#endif
4877
4878#if EV_FORK_ENABLE
4879void
4880ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
4881{
4882 if (expect_false (ev_is_active (w)))
4883 return;
4884
4885 EV_FREQUENT_CHECK;
4886
4887 ev_start (EV_A_ (W)w, ++forkcnt);
4888 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
4889 forks [forkcnt - 1] = w;
4890
4891 EV_FREQUENT_CHECK;
4892}
4893
4894void
4895ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
4896{
4897 clear_pending (EV_A_ (W)w);
4898 if (expect_false (!ev_is_active (w)))
4899 return;
4900
4901 EV_FREQUENT_CHECK;
4902
4903 {
4904 int active = ev_active (w);
4905
4906 forks [active - 1] = forks [--forkcnt];
4907 ev_active (forks [active - 1]) = active;
4908 }
4909
4910 ev_stop (EV_A_ (W)w);
4911
4912 EV_FREQUENT_CHECK;
4913}
4914#endif
4915
4916#if EV_CLEANUP_ENABLE
4917void
4918ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
4919{
4920 if (expect_false (ev_is_active (w)))
4921 return;
4922
4923 EV_FREQUENT_CHECK;
4924
4925 ev_start (EV_A_ (W)w, ++cleanupcnt);
4926 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
4927 cleanups [cleanupcnt - 1] = w;
4928
4929 /* cleanup watchers should never keep a refcount on the loop */
4930 ev_unref (EV_A);
4931 EV_FREQUENT_CHECK;
4932}
4933
4934void
4935ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
4936{
4937 clear_pending (EV_A_ (W)w);
4938 if (expect_false (!ev_is_active (w)))
4939 return;
4940
4941 EV_FREQUENT_CHECK;
4942 ev_ref (EV_A);
4943
4944 {
4945 int active = ev_active (w);
4946
4947 cleanups [active - 1] = cleanups [--cleanupcnt];
4948 ev_active (cleanups [active - 1]) = active;
4949 }
4950
4951 ev_stop (EV_A_ (W)w);
4952
4953 EV_FREQUENT_CHECK;
4954}
4955#endif
4956
4957#if EV_ASYNC_ENABLE
4958void
4959ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
4960{
4961 if (expect_false (ev_is_active (w)))
4962 return;
4963
4964 w->sent = 0;
4965
4966 evpipe_init (EV_A);
4967
4968 EV_FREQUENT_CHECK;
4969
4970 ev_start (EV_A_ (W)w, ++asynccnt);
4971 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
4972 asyncs [asynccnt - 1] = w;
4973
4974 EV_FREQUENT_CHECK;
4975}
4976
4977void
4978ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
4979{
4980 clear_pending (EV_A_ (W)w);
4981 if (expect_false (!ev_is_active (w)))
4982 return;
4983
4984 EV_FREQUENT_CHECK;
4985
4986 {
4987 int active = ev_active (w);
4988
4989 asyncs [active - 1] = asyncs [--asynccnt];
4990 ev_active (asyncs [active - 1]) = active;
4991 }
4992
4993 ev_stop (EV_A_ (W)w);
4994
4995 EV_FREQUENT_CHECK;
4996}
4997
4998void
4999ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
5000{
5001 w->sent = 1;
5002 evpipe_write (EV_A_ &async_pending);
5003}
5004#endif
1603 5005
1604/*****************************************************************************/ 5006/*****************************************************************************/
1605 5007
1606struct ev_once 5008struct ev_once
1607{ 5009{
1608 struct ev_io io; 5010 ev_io io;
1609 struct ev_timer to; 5011 ev_timer to;
1610 void (*cb)(int revents, void *arg); 5012 void (*cb)(int revents, void *arg);
1611 void *arg; 5013 void *arg;
1612}; 5014};
1613 5015
1614static void 5016static void
1615once_cb (EV_P_ struct ev_once *once, int revents) 5017once_cb (EV_P_ struct ev_once *once, int revents)
1616{ 5018{
1617 void (*cb)(int revents, void *arg) = once->cb; 5019 void (*cb)(int revents, void *arg) = once->cb;
1618 void *arg = once->arg; 5020 void *arg = once->arg;
1619 5021
1620 ev_io_stop (EV_A_ &once->io); 5022 ev_io_stop (EV_A_ &once->io);
1621 ev_timer_stop (EV_A_ &once->to); 5023 ev_timer_stop (EV_A_ &once->to);
1622 ev_free (once); 5024 ev_free (once);
1623 5025
1624 cb (revents, arg); 5026 cb (revents, arg);
1625} 5027}
1626 5028
1627static void 5029static void
1628once_cb_io (EV_P_ struct ev_io *w, int revents) 5030once_cb_io (EV_P_ ev_io *w, int revents)
1629{ 5031{
1630 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 5032 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
5033
5034 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1631} 5035}
1632 5036
1633static void 5037static void
1634once_cb_to (EV_P_ struct ev_timer *w, int revents) 5038once_cb_to (EV_P_ ev_timer *w, int revents)
1635{ 5039{
1636 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 5040 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
1637}
1638 5041
5042 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
5043}
5044
1639void 5045void
1640ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 5046ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
1641{ 5047{
1642 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 5048 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1643
1644 if (expect_false (!once))
1645 {
1646 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1647 return;
1648 }
1649 5049
1650 once->cb = cb; 5050 once->cb = cb;
1651 once->arg = arg; 5051 once->arg = arg;
1652 5052
1653 ev_init (&once->io, once_cb_io); 5053 ev_init (&once->io, once_cb_io);
1663 ev_timer_set (&once->to, timeout, 0.); 5063 ev_timer_set (&once->to, timeout, 0.);
1664 ev_timer_start (EV_A_ &once->to); 5064 ev_timer_start (EV_A_ &once->to);
1665 } 5065 }
1666} 5066}
1667 5067
1668#ifdef __cplusplus 5068/*****************************************************************************/
1669} 5069
5070#if EV_WALK_ENABLE
5071ecb_cold
5072void
5073ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5074{
5075 int i, j;
5076 ev_watcher_list *wl, *wn;
5077
5078 if (types & (EV_IO | EV_EMBED))
5079 for (i = 0; i < anfdmax; ++i)
5080 for (wl = anfds [i].head; wl; )
5081 {
5082 wn = wl->next;
5083
5084#if EV_EMBED_ENABLE
5085 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5086 {
5087 if (types & EV_EMBED)
5088 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5089 }
5090 else
5091#endif
5092#if EV_USE_INOTIFY
5093 if (ev_cb ((ev_io *)wl) == infy_cb)
5094 ;
5095 else
5096#endif
5097 if ((ev_io *)wl != &pipe_w)
5098 if (types & EV_IO)
5099 cb (EV_A_ EV_IO, wl);
5100
5101 wl = wn;
5102 }
5103
5104 if (types & (EV_TIMER | EV_STAT))
5105 for (i = timercnt + HEAP0; i-- > HEAP0; )
5106#if EV_STAT_ENABLE
5107 /*TODO: timer is not always active*/
5108 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5109 {
5110 if (types & EV_STAT)
5111 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5112 }
5113 else
5114#endif
5115 if (types & EV_TIMER)
5116 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5117
5118#if EV_PERIODIC_ENABLE
5119 if (types & EV_PERIODIC)
5120 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5121 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5122#endif
5123
5124#if EV_IDLE_ENABLE
5125 if (types & EV_IDLE)
5126 for (j = NUMPRI; j--; )
5127 for (i = idlecnt [j]; i--; )
5128 cb (EV_A_ EV_IDLE, idles [j][i]);
5129#endif
5130
5131#if EV_FORK_ENABLE
5132 if (types & EV_FORK)
5133 for (i = forkcnt; i--; )
5134 if (ev_cb (forks [i]) != embed_fork_cb)
5135 cb (EV_A_ EV_FORK, forks [i]);
5136#endif
5137
5138#if EV_ASYNC_ENABLE
5139 if (types & EV_ASYNC)
5140 for (i = asynccnt; i--; )
5141 cb (EV_A_ EV_ASYNC, asyncs [i]);
5142#endif
5143
5144#if EV_PREPARE_ENABLE
5145 if (types & EV_PREPARE)
5146 for (i = preparecnt; i--; )
5147# if EV_EMBED_ENABLE
5148 if (ev_cb (prepares [i]) != embed_prepare_cb)
1670#endif 5149# endif
5150 cb (EV_A_ EV_PREPARE, prepares [i]);
5151#endif
1671 5152
5153#if EV_CHECK_ENABLE
5154 if (types & EV_CHECK)
5155 for (i = checkcnt; i--; )
5156 cb (EV_A_ EV_CHECK, checks [i]);
5157#endif
5158
5159#if EV_SIGNAL_ENABLE
5160 if (types & EV_SIGNAL)
5161 for (i = 0; i < EV_NSIG - 1; ++i)
5162 for (wl = signals [i].head; wl; )
5163 {
5164 wn = wl->next;
5165 cb (EV_A_ EV_SIGNAL, wl);
5166 wl = wn;
5167 }
5168#endif
5169
5170#if EV_CHILD_ENABLE
5171 if (types & EV_CHILD)
5172 for (i = (EV_PID_HASHSIZE); i--; )
5173 for (wl = childs [i]; wl; )
5174 {
5175 wn = wl->next;
5176 cb (EV_A_ EV_CHILD, wl);
5177 wl = wn;
5178 }
5179#endif
5180/* EV_STAT 0x00001000 /* stat data changed */
5181/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5182}
5183#endif
5184
5185#if EV_MULTIPLICITY
5186 #include "ev_wrap.h"
5187#endif
5188

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines