ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.40 by root, Fri Nov 2 11:02:23 2007 UTC vs.
Revision 1.491 by root, Thu Jun 20 23:14:53 2019 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
39
40/* this big block deduces configuration from config.h */
41#ifndef EV_STANDALONE
31#if EV_USE_CONFIG_H 42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
32# include "config.h" 45# include "config.h"
33#endif 46# endif
34 47
35#include <math.h> 48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
68# if HAVE_CLOCK_GETTIME
69# ifndef EV_USE_MONOTONIC
70# define EV_USE_MONOTONIC 1
71# endif
72# ifndef EV_USE_REALTIME
73# define EV_USE_REALTIME 0
74# endif
75# else
76# ifndef EV_USE_MONOTONIC
77# define EV_USE_MONOTONIC 0
78# endif
79# ifndef EV_USE_REALTIME
80# define EV_USE_REALTIME 0
81# endif
82# endif
83
84# if HAVE_NANOSLEEP
85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
109# endif
110
111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
118# endif
119
120# if HAVE_LINUX_AIO_ABI_H
121# ifndef EV_USE_LINUXAIO
122# define EV_USE_LINUXAIO EV_FEATURE_BACKENDS
123# endif
124# else
125# undef EV_USE_LINUXAIO
126# define EV_USE_LINUXAIO 0
127# endif
128
129# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
130# ifndef EV_USE_KQUEUE
131# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
132# endif
133# else
134# undef EV_USE_KQUEUE
135# define EV_USE_KQUEUE 0
136# endif
137
138# if HAVE_PORT_H && HAVE_PORT_CREATE
139# ifndef EV_USE_PORT
140# define EV_USE_PORT EV_FEATURE_BACKENDS
141# endif
142# else
143# undef EV_USE_PORT
144# define EV_USE_PORT 0
145# endif
146
147# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
148# ifndef EV_USE_INOTIFY
149# define EV_USE_INOTIFY EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_INOTIFY
153# define EV_USE_INOTIFY 0
154# endif
155
156# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
157# ifndef EV_USE_SIGNALFD
158# define EV_USE_SIGNALFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_SIGNALFD
162# define EV_USE_SIGNALFD 0
163# endif
164
165# if HAVE_EVENTFD
166# ifndef EV_USE_EVENTFD
167# define EV_USE_EVENTFD EV_FEATURE_OS
168# endif
169# else
170# undef EV_USE_EVENTFD
171# define EV_USE_EVENTFD 0
172# endif
173
174#endif
175
176/* OS X, in its infinite idiocy, actually HARDCODES
177 * a limit of 1024 into their select. Where people have brains,
178 * OS X engineers apparently have a vacuum. Or maybe they were
179 * ordered to have a vacuum, or they do anything for money.
180 * This might help. Or not.
181 * Note that this must be defined early, as other include files
182 * will rely on this define as well.
183 */
184#define _DARWIN_UNLIMITED_SELECT 1
185
36#include <stdlib.h> 186#include <stdlib.h>
37#include <unistd.h> 187#include <string.h>
38#include <fcntl.h> 188#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 189#include <stddef.h>
41 190
42#include <stdio.h> 191#include <stdio.h>
43 192
44#include <assert.h> 193#include <assert.h>
45#include <errno.h> 194#include <errno.h>
46#include <sys/types.h> 195#include <sys/types.h>
47#include <sys/wait.h>
48#include <sys/time.h>
49#include <time.h> 196#include <time.h>
197#include <limits.h>
50 198
51/**/ 199#include <signal.h>
200
201#ifdef EV_H
202# include EV_H
203#else
204# include "ev.h"
205#endif
206
207#if EV_NO_THREADS
208# undef EV_NO_SMP
209# define EV_NO_SMP 1
210# undef ECB_NO_THREADS
211# define ECB_NO_THREADS 1
212#endif
213#if EV_NO_SMP
214# undef EV_NO_SMP
215# define ECB_NO_SMP 1
216#endif
217
218#ifndef _WIN32
219# include <sys/time.h>
220# include <sys/wait.h>
221# include <unistd.h>
222#else
223# include <io.h>
224# define WIN32_LEAN_AND_MEAN
225# include <winsock2.h>
226# include <windows.h>
227# ifndef EV_SELECT_IS_WINSOCKET
228# define EV_SELECT_IS_WINSOCKET 1
229# endif
230# undef EV_AVOID_STDIO
231#endif
232
233/* this block tries to deduce configuration from header-defined symbols and defaults */
234
235/* try to deduce the maximum number of signals on this platform */
236#if defined EV_NSIG
237/* use what's provided */
238#elif defined NSIG
239# define EV_NSIG (NSIG)
240#elif defined _NSIG
241# define EV_NSIG (_NSIG)
242#elif defined SIGMAX
243# define EV_NSIG (SIGMAX+1)
244#elif defined SIG_MAX
245# define EV_NSIG (SIG_MAX+1)
246#elif defined _SIG_MAX
247# define EV_NSIG (_SIG_MAX+1)
248#elif defined MAXSIG
249# define EV_NSIG (MAXSIG+1)
250#elif defined MAX_SIG
251# define EV_NSIG (MAX_SIG+1)
252#elif defined SIGARRAYSIZE
253# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
254#elif defined _sys_nsig
255# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
256#else
257# define EV_NSIG (8 * sizeof (sigset_t) + 1)
258#endif
259
260#ifndef EV_USE_FLOOR
261# define EV_USE_FLOOR 0
262#endif
263
264#ifndef EV_USE_CLOCK_SYSCALL
265# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
266# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
267# else
268# define EV_USE_CLOCK_SYSCALL 0
269# endif
270#endif
271
272#if !(_POSIX_TIMERS > 0)
273# ifndef EV_USE_MONOTONIC
274# define EV_USE_MONOTONIC 0
275# endif
276# ifndef EV_USE_REALTIME
277# define EV_USE_REALTIME 0
278# endif
279#endif
52 280
53#ifndef EV_USE_MONOTONIC 281#ifndef EV_USE_MONOTONIC
282# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
283# define EV_USE_MONOTONIC EV_FEATURE_OS
284# else
54# define EV_USE_MONOTONIC 1 285# define EV_USE_MONOTONIC 0
286# endif
287#endif
288
289#ifndef EV_USE_REALTIME
290# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
291#endif
292
293#ifndef EV_USE_NANOSLEEP
294# if _POSIX_C_SOURCE >= 199309L
295# define EV_USE_NANOSLEEP EV_FEATURE_OS
296# else
297# define EV_USE_NANOSLEEP 0
298# endif
55#endif 299#endif
56 300
57#ifndef EV_USE_SELECT 301#ifndef EV_USE_SELECT
58# define EV_USE_SELECT 1 302# define EV_USE_SELECT EV_FEATURE_BACKENDS
303#endif
304
305#ifndef EV_USE_POLL
306# ifdef _WIN32
307# define EV_USE_POLL 0
308# else
309# define EV_USE_POLL EV_FEATURE_BACKENDS
310# endif
59#endif 311#endif
60 312
61#ifndef EV_USE_EPOLL 313#ifndef EV_USE_EPOLL
314# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
315# define EV_USE_EPOLL EV_FEATURE_BACKENDS
316# else
62# define EV_USE_EPOLL 0 317# define EV_USE_EPOLL 0
63#endif 318# endif
319#endif
64 320
321#ifndef EV_USE_KQUEUE
322# define EV_USE_KQUEUE 0
323#endif
324
65#ifndef EV_USE_REALTIME 325#ifndef EV_USE_PORT
66# define EV_USE_REALTIME 1 326# define EV_USE_PORT 0
327#endif
328
329#ifndef EV_USE_LINUXAIO
330# define EV_USE_LINUXAIO 0
331#endif
332
333#ifndef EV_USE_INOTIFY
334# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
335# define EV_USE_INOTIFY EV_FEATURE_OS
336# else
337# define EV_USE_INOTIFY 0
67#endif 338# endif
339#endif
68 340
69/**/ 341#ifndef EV_PID_HASHSIZE
342# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
343#endif
344
345#ifndef EV_INOTIFY_HASHSIZE
346# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
347#endif
348
349#ifndef EV_USE_EVENTFD
350# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
351# define EV_USE_EVENTFD EV_FEATURE_OS
352# else
353# define EV_USE_EVENTFD 0
354# endif
355#endif
356
357#ifndef EV_USE_SIGNALFD
358# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
359# define EV_USE_SIGNALFD EV_FEATURE_OS
360# else
361# define EV_USE_SIGNALFD 0
362# endif
363#endif
364
365#if 0 /* debugging */
366# define EV_VERIFY 3
367# define EV_USE_4HEAP 1
368# define EV_HEAP_CACHE_AT 1
369#endif
370
371#ifndef EV_VERIFY
372# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
373#endif
374
375#ifndef EV_USE_4HEAP
376# define EV_USE_4HEAP EV_FEATURE_DATA
377#endif
378
379#ifndef EV_HEAP_CACHE_AT
380# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
381#endif
382
383#ifdef __ANDROID__
384/* supposedly, android doesn't typedef fd_mask */
385# undef EV_USE_SELECT
386# define EV_USE_SELECT 0
387/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
388# undef EV_USE_CLOCK_SYSCALL
389# define EV_USE_CLOCK_SYSCALL 0
390#endif
391
392/* aix's poll.h seems to cause lots of trouble */
393#ifdef _AIX
394/* AIX has a completely broken poll.h header */
395# undef EV_USE_POLL
396# define EV_USE_POLL 0
397#endif
398
399#if EV_USE_LINUXAIO
400# include <linux/aio_abi.h> /* probably only needed for aio_context_t */
401#endif
402
403/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
404/* which makes programs even slower. might work on other unices, too. */
405#if EV_USE_CLOCK_SYSCALL
406# include <sys/syscall.h>
407# ifdef SYS_clock_gettime
408# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
409# undef EV_USE_MONOTONIC
410# define EV_USE_MONOTONIC 1
411# else
412# undef EV_USE_CLOCK_SYSCALL
413# define EV_USE_CLOCK_SYSCALL 0
414# endif
415#endif
416
417/* this block fixes any misconfiguration where we know we run into trouble otherwise */
70 418
71#ifndef CLOCK_MONOTONIC 419#ifndef CLOCK_MONOTONIC
72# undef EV_USE_MONOTONIC 420# undef EV_USE_MONOTONIC
73# define EV_USE_MONOTONIC 0 421# define EV_USE_MONOTONIC 0
74#endif 422#endif
76#ifndef CLOCK_REALTIME 424#ifndef CLOCK_REALTIME
77# undef EV_USE_REALTIME 425# undef EV_USE_REALTIME
78# define EV_USE_REALTIME 0 426# define EV_USE_REALTIME 0
79#endif 427#endif
80 428
429#if !EV_STAT_ENABLE
430# undef EV_USE_INOTIFY
431# define EV_USE_INOTIFY 0
432#endif
433
434#if !EV_USE_NANOSLEEP
435/* hp-ux has it in sys/time.h, which we unconditionally include above */
436# if !defined _WIN32 && !defined __hpux
437# include <sys/select.h>
438# endif
439#endif
440
441#if EV_USE_LINUXAIO
442# include <sys/syscall.h>
443# if !SYS_io_getevents
444# undef EV_USE_LINUXAIO
445# define EV_USE_LINUXAIO 0
446# endif
447#endif
448
449#if EV_USE_INOTIFY
450# include <sys/statfs.h>
451# include <sys/inotify.h>
452/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
453# ifndef IN_DONT_FOLLOW
454# undef EV_USE_INOTIFY
455# define EV_USE_INOTIFY 0
456# endif
457#endif
458
459#if EV_USE_EVENTFD
460/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
461# include <stdint.h>
462# ifndef EFD_NONBLOCK
463# define EFD_NONBLOCK O_NONBLOCK
464# endif
465# ifndef EFD_CLOEXEC
466# ifdef O_CLOEXEC
467# define EFD_CLOEXEC O_CLOEXEC
468# else
469# define EFD_CLOEXEC 02000000
470# endif
471# endif
472EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
473#endif
474
475#if EV_USE_SIGNALFD
476/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
477# include <stdint.h>
478# ifndef SFD_NONBLOCK
479# define SFD_NONBLOCK O_NONBLOCK
480# endif
481# ifndef SFD_CLOEXEC
482# ifdef O_CLOEXEC
483# define SFD_CLOEXEC O_CLOEXEC
484# else
485# define SFD_CLOEXEC 02000000
486# endif
487# endif
488EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
489
490struct signalfd_siginfo
491{
492 uint32_t ssi_signo;
493 char pad[128 - sizeof (uint32_t)];
494};
495#endif
496
81/**/ 497/**/
82 498
499#if EV_VERIFY >= 3
500# define EV_FREQUENT_CHECK ev_verify (EV_A)
501#else
502# define EV_FREQUENT_CHECK do { } while (0)
503#endif
504
505/*
506 * This is used to work around floating point rounding problems.
507 * This value is good at least till the year 4000.
508 */
509#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
510/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
511
83#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 512#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
84#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 513#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
85#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
86/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
87 514
88#include "ev.h" 515#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
516#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
89 517
518/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
519/* ECB.H BEGIN */
520/*
521 * libecb - http://software.schmorp.de/pkg/libecb
522 *
523 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
524 * Copyright (©) 2011 Emanuele Giaquinta
525 * All rights reserved.
526 *
527 * Redistribution and use in source and binary forms, with or without modifica-
528 * tion, are permitted provided that the following conditions are met:
529 *
530 * 1. Redistributions of source code must retain the above copyright notice,
531 * this list of conditions and the following disclaimer.
532 *
533 * 2. Redistributions in binary form must reproduce the above copyright
534 * notice, this list of conditions and the following disclaimer in the
535 * documentation and/or other materials provided with the distribution.
536 *
537 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
538 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
539 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
540 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
541 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
542 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
543 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
544 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
545 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
546 * OF THE POSSIBILITY OF SUCH DAMAGE.
547 *
548 * Alternatively, the contents of this file may be used under the terms of
549 * the GNU General Public License ("GPL") version 2 or any later version,
550 * in which case the provisions of the GPL are applicable instead of
551 * the above. If you wish to allow the use of your version of this file
552 * only under the terms of the GPL and not to allow others to use your
553 * version of this file under the BSD license, indicate your decision
554 * by deleting the provisions above and replace them with the notice
555 * and other provisions required by the GPL. If you do not delete the
556 * provisions above, a recipient may use your version of this file under
557 * either the BSD or the GPL.
558 */
559
560#ifndef ECB_H
561#define ECB_H
562
563/* 16 bits major, 16 bits minor */
564#define ECB_VERSION 0x00010005
565
566#ifdef _WIN32
567 typedef signed char int8_t;
568 typedef unsigned char uint8_t;
569 typedef signed short int16_t;
570 typedef unsigned short uint16_t;
571 typedef signed int int32_t;
572 typedef unsigned int uint32_t;
90#if __GNUC__ >= 3 573 #if __GNUC__
91# define expect(expr,value) __builtin_expect ((expr),(value)) 574 typedef signed long long int64_t;
92# define inline inline 575 typedef unsigned long long uint64_t;
93#else 576 #else /* _MSC_VER || __BORLANDC__ */
94# define expect(expr,value) (expr) 577 typedef signed __int64 int64_t;
95# define inline static 578 typedef unsigned __int64 uint64_t;
96#endif 579 #endif
580 #ifdef _WIN64
581 #define ECB_PTRSIZE 8
582 typedef uint64_t uintptr_t;
583 typedef int64_t intptr_t;
584 #else
585 #define ECB_PTRSIZE 4
586 typedef uint32_t uintptr_t;
587 typedef int32_t intptr_t;
588 #endif
589#else
590 #include <inttypes.h>
591 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
592 #define ECB_PTRSIZE 8
593 #else
594 #define ECB_PTRSIZE 4
595 #endif
596#endif
97 597
98#define expect_false(expr) expect ((expr) != 0, 0) 598#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
99#define expect_true(expr) expect ((expr) != 0, 1) 599#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
100 600
101typedef struct ev_watcher *W; 601/* work around x32 idiocy by defining proper macros */
102typedef struct ev_watcher_list *WL; 602#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
103typedef struct ev_watcher_time *WT; 603 #if _ILP32
604 #define ECB_AMD64_X32 1
605 #else
606 #define ECB_AMD64 1
607 #endif
608#endif
104 609
105static ev_tstamp now_floor, now, diff; /* monotonic clock */ 610/* many compilers define _GNUC_ to some versions but then only implement
106ev_tstamp ev_now; 611 * what their idiot authors think are the "more important" extensions,
107int ev_method; 612 * causing enormous grief in return for some better fake benchmark numbers.
613 * or so.
614 * we try to detect these and simply assume they are not gcc - if they have
615 * an issue with that they should have done it right in the first place.
616 */
617#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
618 #define ECB_GCC_VERSION(major,minor) 0
619#else
620 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
621#endif
108 622
109static int have_monotonic; /* runtime */ 623#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
110 624
111static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 625#if __clang__ && defined __has_builtin
112static void (*method_modify)(int fd, int oev, int nev); 626 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
113static void (*method_poll)(ev_tstamp timeout); 627#else
628 #define ECB_CLANG_BUILTIN(x) 0
629#endif
630
631#if __clang__ && defined __has_extension
632 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
633#else
634 #define ECB_CLANG_EXTENSION(x) 0
635#endif
636
637#define ECB_CPP (__cplusplus+0)
638#define ECB_CPP11 (__cplusplus >= 201103L)
639#define ECB_CPP14 (__cplusplus >= 201402L)
640#define ECB_CPP17 (__cplusplus >= 201703L)
641
642#if ECB_CPP
643 #define ECB_C 0
644 #define ECB_STDC_VERSION 0
645#else
646 #define ECB_C 1
647 #define ECB_STDC_VERSION __STDC_VERSION__
648#endif
649
650#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
651#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
652#define ECB_C17 (ECB_STDC_VERSION >= 201710L)
653
654#if ECB_CPP
655 #define ECB_EXTERN_C extern "C"
656 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
657 #define ECB_EXTERN_C_END }
658#else
659 #define ECB_EXTERN_C extern
660 #define ECB_EXTERN_C_BEG
661 #define ECB_EXTERN_C_END
662#endif
114 663
115/*****************************************************************************/ 664/*****************************************************************************/
116 665
666/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
667/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
668
669#if ECB_NO_THREADS
670 #define ECB_NO_SMP 1
671#endif
672
673#if ECB_NO_SMP
674 #define ECB_MEMORY_FENCE do { } while (0)
675#endif
676
677/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
678#if __xlC__ && ECB_CPP
679 #include <builtins.h>
680#endif
681
682#if 1400 <= _MSC_VER
683 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
684#endif
685
686#ifndef ECB_MEMORY_FENCE
687 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
688 #if __i386 || __i386__
689 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
690 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
691 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
692 #elif ECB_GCC_AMD64
693 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
694 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
695 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
696 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
697 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
698 #elif defined __ARM_ARCH_2__ \
699 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
700 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
701 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
702 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
703 || defined __ARM_ARCH_5TEJ__
704 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
705 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
706 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
707 || defined __ARM_ARCH_6T2__
708 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
709 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
710 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
711 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
712 #elif __aarch64__
713 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
714 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
715 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
716 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
717 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
718 #elif defined __s390__ || defined __s390x__
719 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
720 #elif defined __mips__
721 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
722 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
723 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
724 #elif defined __alpha__
725 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
726 #elif defined __hppa__
727 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
728 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
729 #elif defined __ia64__
730 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
731 #elif defined __m68k__
732 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
733 #elif defined __m88k__
734 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
735 #elif defined __sh__
736 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
737 #endif
738 #endif
739#endif
740
741#ifndef ECB_MEMORY_FENCE
742 #if ECB_GCC_VERSION(4,7)
743 /* see comment below (stdatomic.h) about the C11 memory model. */
744 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
745 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
746 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
747
748 #elif ECB_CLANG_EXTENSION(c_atomic)
749 /* see comment below (stdatomic.h) about the C11 memory model. */
750 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
751 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
752 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
753
754 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
755 #define ECB_MEMORY_FENCE __sync_synchronize ()
756 #elif _MSC_VER >= 1500 /* VC++ 2008 */
757 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
758 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
759 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
760 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
761 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
762 #elif _MSC_VER >= 1400 /* VC++ 2005 */
763 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
764 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
765 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
766 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
767 #elif defined _WIN32
768 #include <WinNT.h>
769 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
770 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
771 #include <mbarrier.h>
772 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
773 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
774 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
775 #elif __xlC__
776 #define ECB_MEMORY_FENCE __sync ()
777 #endif
778#endif
779
780#ifndef ECB_MEMORY_FENCE
781 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
782 /* we assume that these memory fences work on all variables/all memory accesses, */
783 /* not just C11 atomics and atomic accesses */
784 #include <stdatomic.h>
785 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
786 /* any fence other than seq_cst, which isn't very efficient for us. */
787 /* Why that is, we don't know - either the C11 memory model is quite useless */
788 /* for most usages, or gcc and clang have a bug */
789 /* I *currently* lean towards the latter, and inefficiently implement */
790 /* all three of ecb's fences as a seq_cst fence */
791 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
792 /* for all __atomic_thread_fence's except seq_cst */
793 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
794 #endif
795#endif
796
797#ifndef ECB_MEMORY_FENCE
798 #if !ECB_AVOID_PTHREADS
799 /*
800 * if you get undefined symbol references to pthread_mutex_lock,
801 * or failure to find pthread.h, then you should implement
802 * the ECB_MEMORY_FENCE operations for your cpu/compiler
803 * OR provide pthread.h and link against the posix thread library
804 * of your system.
805 */
806 #include <pthread.h>
807 #define ECB_NEEDS_PTHREADS 1
808 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
809
810 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
811 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
812 #endif
813#endif
814
815#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
816 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
817#endif
818
819#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
820 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
821#endif
822
823/*****************************************************************************/
824
825#if ECB_CPP
826 #define ecb_inline static inline
827#elif ECB_GCC_VERSION(2,5)
828 #define ecb_inline static __inline__
829#elif ECB_C99
830 #define ecb_inline static inline
831#else
832 #define ecb_inline static
833#endif
834
835#if ECB_GCC_VERSION(3,3)
836 #define ecb_restrict __restrict__
837#elif ECB_C99
838 #define ecb_restrict restrict
839#else
840 #define ecb_restrict
841#endif
842
843typedef int ecb_bool;
844
845#define ECB_CONCAT_(a, b) a ## b
846#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
847#define ECB_STRINGIFY_(a) # a
848#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
849#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
850
851#define ecb_function_ ecb_inline
852
853#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
854 #define ecb_attribute(attrlist) __attribute__ (attrlist)
855#else
856 #define ecb_attribute(attrlist)
857#endif
858
859#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
860 #define ecb_is_constant(expr) __builtin_constant_p (expr)
861#else
862 /* possible C11 impl for integral types
863 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
864 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
865
866 #define ecb_is_constant(expr) 0
867#endif
868
869#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
870 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
871#else
872 #define ecb_expect(expr,value) (expr)
873#endif
874
875#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
876 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
877#else
878 #define ecb_prefetch(addr,rw,locality)
879#endif
880
881/* no emulation for ecb_decltype */
882#if ECB_CPP11
883 // older implementations might have problems with decltype(x)::type, work around it
884 template<class T> struct ecb_decltype_t { typedef T type; };
885 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
886#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
887 #define ecb_decltype(x) __typeof__ (x)
888#endif
889
890#if _MSC_VER >= 1300
891 #define ecb_deprecated __declspec (deprecated)
892#else
893 #define ecb_deprecated ecb_attribute ((__deprecated__))
894#endif
895
896#if _MSC_VER >= 1500
897 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
898#elif ECB_GCC_VERSION(4,5)
899 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
900#else
901 #define ecb_deprecated_message(msg) ecb_deprecated
902#endif
903
904#if _MSC_VER >= 1400
905 #define ecb_noinline __declspec (noinline)
906#else
907 #define ecb_noinline ecb_attribute ((__noinline__))
908#endif
909
910#define ecb_unused ecb_attribute ((__unused__))
911#define ecb_const ecb_attribute ((__const__))
912#define ecb_pure ecb_attribute ((__pure__))
913
914#if ECB_C11 || __IBMC_NORETURN
915 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
916 #define ecb_noreturn _Noreturn
917#elif ECB_CPP11
918 #define ecb_noreturn [[noreturn]]
919#elif _MSC_VER >= 1200
920 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
921 #define ecb_noreturn __declspec (noreturn)
922#else
923 #define ecb_noreturn ecb_attribute ((__noreturn__))
924#endif
925
926#if ECB_GCC_VERSION(4,3)
927 #define ecb_artificial ecb_attribute ((__artificial__))
928 #define ecb_hot ecb_attribute ((__hot__))
929 #define ecb_cold ecb_attribute ((__cold__))
930#else
931 #define ecb_artificial
932 #define ecb_hot
933 #define ecb_cold
934#endif
935
936/* put around conditional expressions if you are very sure that the */
937/* expression is mostly true or mostly false. note that these return */
938/* booleans, not the expression. */
939#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
940#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
941/* for compatibility to the rest of the world */
942#define ecb_likely(expr) ecb_expect_true (expr)
943#define ecb_unlikely(expr) ecb_expect_false (expr)
944
945/* count trailing zero bits and count # of one bits */
946#if ECB_GCC_VERSION(3,4) \
947 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
948 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
949 && ECB_CLANG_BUILTIN(__builtin_popcount))
950 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
951 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
952 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
953 #define ecb_ctz32(x) __builtin_ctz (x)
954 #define ecb_ctz64(x) __builtin_ctzll (x)
955 #define ecb_popcount32(x) __builtin_popcount (x)
956 /* no popcountll */
957#else
958 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
959 ecb_function_ ecb_const int
960 ecb_ctz32 (uint32_t x)
961 {
962#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
963 unsigned long r;
964 _BitScanForward (&r, x);
965 return (int)r;
966#else
967 int r = 0;
968
969 x &= ~x + 1; /* this isolates the lowest bit */
970
971#if ECB_branchless_on_i386
972 r += !!(x & 0xaaaaaaaa) << 0;
973 r += !!(x & 0xcccccccc) << 1;
974 r += !!(x & 0xf0f0f0f0) << 2;
975 r += !!(x & 0xff00ff00) << 3;
976 r += !!(x & 0xffff0000) << 4;
977#else
978 if (x & 0xaaaaaaaa) r += 1;
979 if (x & 0xcccccccc) r += 2;
980 if (x & 0xf0f0f0f0) r += 4;
981 if (x & 0xff00ff00) r += 8;
982 if (x & 0xffff0000) r += 16;
983#endif
984
985 return r;
986#endif
987 }
988
989 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
990 ecb_function_ ecb_const int
991 ecb_ctz64 (uint64_t x)
992 {
993#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
994 unsigned long r;
995 _BitScanForward64 (&r, x);
996 return (int)r;
997#else
998 int shift = x & 0xffffffff ? 0 : 32;
999 return ecb_ctz32 (x >> shift) + shift;
1000#endif
1001 }
1002
1003 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1004 ecb_function_ ecb_const int
1005 ecb_popcount32 (uint32_t x)
1006 {
1007 x -= (x >> 1) & 0x55555555;
1008 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1009 x = ((x >> 4) + x) & 0x0f0f0f0f;
1010 x *= 0x01010101;
1011
1012 return x >> 24;
1013 }
1014
1015 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1016 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1017 {
1018#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1019 unsigned long r;
1020 _BitScanReverse (&r, x);
1021 return (int)r;
1022#else
1023 int r = 0;
1024
1025 if (x >> 16) { x >>= 16; r += 16; }
1026 if (x >> 8) { x >>= 8; r += 8; }
1027 if (x >> 4) { x >>= 4; r += 4; }
1028 if (x >> 2) { x >>= 2; r += 2; }
1029 if (x >> 1) { r += 1; }
1030
1031 return r;
1032#endif
1033 }
1034
1035 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1036 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1037 {
1038#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1039 unsigned long r;
1040 _BitScanReverse64 (&r, x);
1041 return (int)r;
1042#else
1043 int r = 0;
1044
1045 if (x >> 32) { x >>= 32; r += 32; }
1046
1047 return r + ecb_ld32 (x);
1048#endif
1049 }
1050#endif
1051
1052ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1053ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1054ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1055ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1056
1057ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1058ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1059{
1060 return ( (x * 0x0802U & 0x22110U)
1061 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1062}
1063
1064ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1065ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1066{
1067 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1068 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1069 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1070 x = ( x >> 8 ) | ( x << 8);
1071
1072 return x;
1073}
1074
1075ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1076ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1077{
1078 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1079 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1080 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1081 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1082 x = ( x >> 16 ) | ( x << 16);
1083
1084 return x;
1085}
1086
1087/* popcount64 is only available on 64 bit cpus as gcc builtin */
1088/* so for this version we are lazy */
1089ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1090ecb_function_ ecb_const int
1091ecb_popcount64 (uint64_t x)
1092{
1093 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1094}
1095
1096ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1097ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1098ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1099ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1100ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1101ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1102ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1103ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1104
1105ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1106ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1107ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1108ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1109ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1110ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1111ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1112ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1113
1114#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1115 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1116 #define ecb_bswap16(x) __builtin_bswap16 (x)
1117 #else
1118 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1119 #endif
1120 #define ecb_bswap32(x) __builtin_bswap32 (x)
1121 #define ecb_bswap64(x) __builtin_bswap64 (x)
1122#elif _MSC_VER
1123 #include <stdlib.h>
1124 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1125 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1126 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1127#else
1128 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1129 ecb_function_ ecb_const uint16_t
1130 ecb_bswap16 (uint16_t x)
1131 {
1132 return ecb_rotl16 (x, 8);
1133 }
1134
1135 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1136 ecb_function_ ecb_const uint32_t
1137 ecb_bswap32 (uint32_t x)
1138 {
1139 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1140 }
1141
1142 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1143 ecb_function_ ecb_const uint64_t
1144 ecb_bswap64 (uint64_t x)
1145 {
1146 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1147 }
1148#endif
1149
1150#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1151 #define ecb_unreachable() __builtin_unreachable ()
1152#else
1153 /* this seems to work fine, but gcc always emits a warning for it :/ */
1154 ecb_inline ecb_noreturn void ecb_unreachable (void);
1155 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1156#endif
1157
1158/* try to tell the compiler that some condition is definitely true */
1159#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1160
1161ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1162ecb_inline ecb_const uint32_t
1163ecb_byteorder_helper (void)
1164{
1165 /* the union code still generates code under pressure in gcc, */
1166 /* but less than using pointers, and always seems to */
1167 /* successfully return a constant. */
1168 /* the reason why we have this horrible preprocessor mess */
1169 /* is to avoid it in all cases, at least on common architectures */
1170 /* or when using a recent enough gcc version (>= 4.6) */
1171#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1172 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1173 #define ECB_LITTLE_ENDIAN 1
1174 return 0x44332211;
1175#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1176 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1177 #define ECB_BIG_ENDIAN 1
1178 return 0x11223344;
1179#else
1180 union
1181 {
1182 uint8_t c[4];
1183 uint32_t u;
1184 } u = { 0x11, 0x22, 0x33, 0x44 };
1185 return u.u;
1186#endif
1187}
1188
1189ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1190ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1191ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1192ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1193
1194#if ECB_GCC_VERSION(3,0) || ECB_C99
1195 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1196#else
1197 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1198#endif
1199
1200#if ECB_CPP
1201 template<typename T>
1202 static inline T ecb_div_rd (T val, T div)
1203 {
1204 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1205 }
1206 template<typename T>
1207 static inline T ecb_div_ru (T val, T div)
1208 {
1209 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1210 }
1211#else
1212 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1213 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1214#endif
1215
1216#if ecb_cplusplus_does_not_suck
1217 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1218 template<typename T, int N>
1219 static inline int ecb_array_length (const T (&arr)[N])
1220 {
1221 return N;
1222 }
1223#else
1224 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1225#endif
1226
1227ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1228ecb_function_ ecb_const uint32_t
1229ecb_binary16_to_binary32 (uint32_t x)
1230{
1231 unsigned int s = (x & 0x8000) << (31 - 15);
1232 int e = (x >> 10) & 0x001f;
1233 unsigned int m = x & 0x03ff;
1234
1235 if (ecb_expect_false (e == 31))
1236 /* infinity or NaN */
1237 e = 255 - (127 - 15);
1238 else if (ecb_expect_false (!e))
1239 {
1240 if (ecb_expect_true (!m))
1241 /* zero, handled by code below by forcing e to 0 */
1242 e = 0 - (127 - 15);
1243 else
1244 {
1245 /* subnormal, renormalise */
1246 unsigned int s = 10 - ecb_ld32 (m);
1247
1248 m = (m << s) & 0x3ff; /* mask implicit bit */
1249 e -= s - 1;
1250 }
1251 }
1252
1253 /* e and m now are normalised, or zero, (or inf or nan) */
1254 e += 127 - 15;
1255
1256 return s | (e << 23) | (m << (23 - 10));
1257}
1258
1259ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1260ecb_function_ ecb_const uint16_t
1261ecb_binary32_to_binary16 (uint32_t x)
1262{
1263 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1264 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1265 unsigned int m = x & 0x007fffff;
1266
1267 x &= 0x7fffffff;
1268
1269 /* if it's within range of binary16 normals, use fast path */
1270 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1271 {
1272 /* mantissa round-to-even */
1273 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1274
1275 /* handle overflow */
1276 if (ecb_expect_false (m >= 0x00800000))
1277 {
1278 m >>= 1;
1279 e += 1;
1280 }
1281
1282 return s | (e << 10) | (m >> (23 - 10));
1283 }
1284
1285 /* handle large numbers and infinity */
1286 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1287 return s | 0x7c00;
1288
1289 /* handle zero, subnormals and small numbers */
1290 if (ecb_expect_true (x < 0x38800000))
1291 {
1292 /* zero */
1293 if (ecb_expect_true (!x))
1294 return s;
1295
1296 /* handle subnormals */
1297
1298 /* too small, will be zero */
1299 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1300 return s;
1301
1302 m |= 0x00800000; /* make implicit bit explicit */
1303
1304 /* very tricky - we need to round to the nearest e (+10) bit value */
1305 {
1306 unsigned int bits = 14 - e;
1307 unsigned int half = (1 << (bits - 1)) - 1;
1308 unsigned int even = (m >> bits) & 1;
1309
1310 /* if this overflows, we will end up with a normalised number */
1311 m = (m + half + even) >> bits;
1312 }
1313
1314 return s | m;
1315 }
1316
1317 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1318 m >>= 13;
1319
1320 return s | 0x7c00 | m | !m;
1321}
1322
1323/*******************************************************************************/
1324/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1325
1326/* basically, everything uses "ieee pure-endian" floating point numbers */
1327/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1328#if 0 \
1329 || __i386 || __i386__ \
1330 || ECB_GCC_AMD64 \
1331 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1332 || defined __s390__ || defined __s390x__ \
1333 || defined __mips__ \
1334 || defined __alpha__ \
1335 || defined __hppa__ \
1336 || defined __ia64__ \
1337 || defined __m68k__ \
1338 || defined __m88k__ \
1339 || defined __sh__ \
1340 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1341 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1342 || defined __aarch64__
1343 #define ECB_STDFP 1
1344 #include <string.h> /* for memcpy */
1345#else
1346 #define ECB_STDFP 0
1347#endif
1348
1349#ifndef ECB_NO_LIBM
1350
1351 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1352
1353 /* only the oldest of old doesn't have this one. solaris. */
1354 #ifdef INFINITY
1355 #define ECB_INFINITY INFINITY
1356 #else
1357 #define ECB_INFINITY HUGE_VAL
1358 #endif
1359
1360 #ifdef NAN
1361 #define ECB_NAN NAN
1362 #else
1363 #define ECB_NAN ECB_INFINITY
1364 #endif
1365
1366 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1367 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1368 #define ecb_frexpf(x,e) frexpf ((x), (e))
1369 #else
1370 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1371 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1372 #endif
1373
1374 /* convert a float to ieee single/binary32 */
1375 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1376 ecb_function_ ecb_const uint32_t
1377 ecb_float_to_binary32 (float x)
1378 {
1379 uint32_t r;
1380
1381 #if ECB_STDFP
1382 memcpy (&r, &x, 4);
1383 #else
1384 /* slow emulation, works for anything but -0 */
1385 uint32_t m;
1386 int e;
1387
1388 if (x == 0e0f ) return 0x00000000U;
1389 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1390 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1391 if (x != x ) return 0x7fbfffffU;
1392
1393 m = ecb_frexpf (x, &e) * 0x1000000U;
1394
1395 r = m & 0x80000000U;
1396
1397 if (r)
1398 m = -m;
1399
1400 if (e <= -126)
1401 {
1402 m &= 0xffffffU;
1403 m >>= (-125 - e);
1404 e = -126;
1405 }
1406
1407 r |= (e + 126) << 23;
1408 r |= m & 0x7fffffU;
1409 #endif
1410
1411 return r;
1412 }
1413
1414 /* converts an ieee single/binary32 to a float */
1415 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1416 ecb_function_ ecb_const float
1417 ecb_binary32_to_float (uint32_t x)
1418 {
1419 float r;
1420
1421 #if ECB_STDFP
1422 memcpy (&r, &x, 4);
1423 #else
1424 /* emulation, only works for normals and subnormals and +0 */
1425 int neg = x >> 31;
1426 int e = (x >> 23) & 0xffU;
1427
1428 x &= 0x7fffffU;
1429
1430 if (e)
1431 x |= 0x800000U;
1432 else
1433 e = 1;
1434
1435 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1436 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1437
1438 r = neg ? -r : r;
1439 #endif
1440
1441 return r;
1442 }
1443
1444 /* convert a double to ieee double/binary64 */
1445 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1446 ecb_function_ ecb_const uint64_t
1447 ecb_double_to_binary64 (double x)
1448 {
1449 uint64_t r;
1450
1451 #if ECB_STDFP
1452 memcpy (&r, &x, 8);
1453 #else
1454 /* slow emulation, works for anything but -0 */
1455 uint64_t m;
1456 int e;
1457
1458 if (x == 0e0 ) return 0x0000000000000000U;
1459 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1460 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1461 if (x != x ) return 0X7ff7ffffffffffffU;
1462
1463 m = frexp (x, &e) * 0x20000000000000U;
1464
1465 r = m & 0x8000000000000000;;
1466
1467 if (r)
1468 m = -m;
1469
1470 if (e <= -1022)
1471 {
1472 m &= 0x1fffffffffffffU;
1473 m >>= (-1021 - e);
1474 e = -1022;
1475 }
1476
1477 r |= ((uint64_t)(e + 1022)) << 52;
1478 r |= m & 0xfffffffffffffU;
1479 #endif
1480
1481 return r;
1482 }
1483
1484 /* converts an ieee double/binary64 to a double */
1485 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1486 ecb_function_ ecb_const double
1487 ecb_binary64_to_double (uint64_t x)
1488 {
1489 double r;
1490
1491 #if ECB_STDFP
1492 memcpy (&r, &x, 8);
1493 #else
1494 /* emulation, only works for normals and subnormals and +0 */
1495 int neg = x >> 63;
1496 int e = (x >> 52) & 0x7ffU;
1497
1498 x &= 0xfffffffffffffU;
1499
1500 if (e)
1501 x |= 0x10000000000000U;
1502 else
1503 e = 1;
1504
1505 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1506 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1507
1508 r = neg ? -r : r;
1509 #endif
1510
1511 return r;
1512 }
1513
1514 /* convert a float to ieee half/binary16 */
1515 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1516 ecb_function_ ecb_const uint16_t
1517 ecb_float_to_binary16 (float x)
1518 {
1519 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1520 }
1521
1522 /* convert an ieee half/binary16 to float */
1523 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1524 ecb_function_ ecb_const float
1525 ecb_binary16_to_float (uint16_t x)
1526 {
1527 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1528 }
1529
1530#endif
1531
1532#endif
1533
1534/* ECB.H END */
1535
1536#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1537/* if your architecture doesn't need memory fences, e.g. because it is
1538 * single-cpu/core, or if you use libev in a project that doesn't use libev
1539 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1540 * libev, in which cases the memory fences become nops.
1541 * alternatively, you can remove this #error and link against libpthread,
1542 * which will then provide the memory fences.
1543 */
1544# error "memory fences not defined for your architecture, please report"
1545#endif
1546
1547#ifndef ECB_MEMORY_FENCE
1548# define ECB_MEMORY_FENCE do { } while (0)
1549# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1550# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1551#endif
1552
1553#define expect_false(cond) ecb_expect_false (cond)
1554#define expect_true(cond) ecb_expect_true (cond)
1555#define noinline ecb_noinline
1556
1557#define inline_size ecb_inline
1558
1559#if EV_FEATURE_CODE
1560# define inline_speed ecb_inline
1561#else
1562# define inline_speed noinline static
1563#endif
1564
1565#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1566
1567#if EV_MINPRI == EV_MAXPRI
1568# define ABSPRI(w) (((W)w), 0)
1569#else
1570# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1571#endif
1572
1573#define EMPTY /* required for microsofts broken pseudo-c compiler */
1574
1575typedef ev_watcher *W;
1576typedef ev_watcher_list *WL;
1577typedef ev_watcher_time *WT;
1578
1579#define ev_active(w) ((W)(w))->active
1580#define ev_at(w) ((WT)(w))->at
1581
1582#if EV_USE_REALTIME
1583/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1584/* giving it a reasonably high chance of working on typical architectures */
1585static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1586#endif
1587
1588#if EV_USE_MONOTONIC
1589static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1590#endif
1591
1592#ifndef EV_FD_TO_WIN32_HANDLE
1593# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1594#endif
1595#ifndef EV_WIN32_HANDLE_TO_FD
1596# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1597#endif
1598#ifndef EV_WIN32_CLOSE_FD
1599# define EV_WIN32_CLOSE_FD(fd) close (fd)
1600#endif
1601
1602#ifdef _WIN32
1603# include "ev_win32.c"
1604#endif
1605
1606/*****************************************************************************/
1607
1608/* define a suitable floor function (only used by periodics atm) */
1609
1610#if EV_USE_FLOOR
1611# include <math.h>
1612# define ev_floor(v) floor (v)
1613#else
1614
1615#include <float.h>
1616
1617/* a floor() replacement function, should be independent of ev_tstamp type */
1618noinline
1619static ev_tstamp
1620ev_floor (ev_tstamp v)
1621{
1622 /* the choice of shift factor is not terribly important */
1623#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1624 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1625#else
1626 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1627#endif
1628
1629 /* argument too large for an unsigned long? */
1630 if (expect_false (v >= shift))
1631 {
1632 ev_tstamp f;
1633
1634 if (v == v - 1.)
1635 return v; /* very large number */
1636
1637 f = shift * ev_floor (v * (1. / shift));
1638 return f + ev_floor (v - f);
1639 }
1640
1641 /* special treatment for negative args? */
1642 if (expect_false (v < 0.))
1643 {
1644 ev_tstamp f = -ev_floor (-v);
1645
1646 return f - (f == v ? 0 : 1);
1647 }
1648
1649 /* fits into an unsigned long */
1650 return (unsigned long)v;
1651}
1652
1653#endif
1654
1655/*****************************************************************************/
1656
1657#ifdef __linux
1658# include <sys/utsname.h>
1659#endif
1660
1661noinline ecb_cold
1662static unsigned int
1663ev_linux_version (void)
1664{
1665#ifdef __linux
1666 unsigned int v = 0;
1667 struct utsname buf;
1668 int i;
1669 char *p = buf.release;
1670
1671 if (uname (&buf))
1672 return 0;
1673
1674 for (i = 3+1; --i; )
1675 {
1676 unsigned int c = 0;
1677
1678 for (;;)
1679 {
1680 if (*p >= '0' && *p <= '9')
1681 c = c * 10 + *p++ - '0';
1682 else
1683 {
1684 p += *p == '.';
1685 break;
1686 }
1687 }
1688
1689 v = (v << 8) | c;
1690 }
1691
1692 return v;
1693#else
1694 return 0;
1695#endif
1696}
1697
1698/*****************************************************************************/
1699
1700#if EV_AVOID_STDIO
1701noinline ecb_cold
1702static void
1703ev_printerr (const char *msg)
1704{
1705 write (STDERR_FILENO, msg, strlen (msg));
1706}
1707#endif
1708
1709static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
1710
1711ecb_cold
1712void
1713ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
1714{
1715 syserr_cb = cb;
1716}
1717
1718noinline ecb_cold
1719static void
1720ev_syserr (const char *msg)
1721{
1722 if (!msg)
1723 msg = "(libev) system error";
1724
1725 if (syserr_cb)
1726 syserr_cb (msg);
1727 else
1728 {
1729#if EV_AVOID_STDIO
1730 ev_printerr (msg);
1731 ev_printerr (": ");
1732 ev_printerr (strerror (errno));
1733 ev_printerr ("\n");
1734#else
1735 perror (msg);
1736#endif
1737 abort ();
1738 }
1739}
1740
1741static void *
1742ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
1743{
1744 /* some systems, notably openbsd and darwin, fail to properly
1745 * implement realloc (x, 0) (as required by both ansi c-89 and
1746 * the single unix specification, so work around them here.
1747 * recently, also (at least) fedora and debian started breaking it,
1748 * despite documenting it otherwise.
1749 */
1750
1751 if (size)
1752 return realloc (ptr, size);
1753
1754 free (ptr);
1755 return 0;
1756}
1757
1758static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
1759
1760ecb_cold
1761void
1762ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
1763{
1764 alloc = cb;
1765}
1766
1767inline_speed void *
1768ev_realloc (void *ptr, long size)
1769{
1770 ptr = alloc (ptr, size);
1771
1772 if (!ptr && size)
1773 {
1774#if EV_AVOID_STDIO
1775 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1776#else
1777 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1778#endif
1779 abort ();
1780 }
1781
1782 return ptr;
1783}
1784
1785#define ev_malloc(size) ev_realloc (0, (size))
1786#define ev_free(ptr) ev_realloc ((ptr), 0)
1787
1788/*****************************************************************************/
1789
1790/* set in reify when reification needed */
1791#define EV_ANFD_REIFY 1
1792
1793/* file descriptor info structure */
1794typedef struct
1795{
1796 WL head;
1797 unsigned char events; /* the events watched for */
1798 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1799 unsigned char emask; /* some backends store the actual kernel mask in here */
1800 unsigned char unused;
1801#if EV_USE_EPOLL
1802 unsigned int egen; /* generation counter to counter epoll bugs */
1803#endif
1804#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1805 SOCKET handle;
1806#endif
1807#if EV_USE_IOCP
1808 OVERLAPPED or, ow;
1809#endif
1810} ANFD;
1811
1812/* stores the pending event set for a given watcher */
1813typedef struct
1814{
1815 W w;
1816 int events; /* the pending event set for the given watcher */
1817} ANPENDING;
1818
1819#if EV_USE_INOTIFY
1820/* hash table entry per inotify-id */
1821typedef struct
1822{
1823 WL head;
1824} ANFS;
1825#endif
1826
1827/* Heap Entry */
1828#if EV_HEAP_CACHE_AT
1829 /* a heap element */
1830 typedef struct {
1831 ev_tstamp at;
1832 WT w;
1833 } ANHE;
1834
1835 #define ANHE_w(he) (he).w /* access watcher, read-write */
1836 #define ANHE_at(he) (he).at /* access cached at, read-only */
1837 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1838#else
1839 /* a heap element */
1840 typedef WT ANHE;
1841
1842 #define ANHE_w(he) (he)
1843 #define ANHE_at(he) (he)->at
1844 #define ANHE_at_cache(he)
1845#endif
1846
1847#if EV_MULTIPLICITY
1848
1849 struct ev_loop
1850 {
1851 ev_tstamp ev_rt_now;
1852 #define ev_rt_now ((loop)->ev_rt_now)
1853 #define VAR(name,decl) decl;
1854 #include "ev_vars.h"
1855 #undef VAR
1856 };
1857 #include "ev_wrap.h"
1858
1859 static struct ev_loop default_loop_struct;
1860 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1861
1862#else
1863
1864 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1865 #define VAR(name,decl) static decl;
1866 #include "ev_vars.h"
1867 #undef VAR
1868
1869 static int ev_default_loop_ptr;
1870
1871#endif
1872
1873#if EV_FEATURE_API
1874# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1875# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1876# define EV_INVOKE_PENDING invoke_cb (EV_A)
1877#else
1878# define EV_RELEASE_CB (void)0
1879# define EV_ACQUIRE_CB (void)0
1880# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1881#endif
1882
1883#define EVBREAK_RECURSE 0x80
1884
1885/*****************************************************************************/
1886
1887#ifndef EV_HAVE_EV_TIME
117ev_tstamp 1888ev_tstamp
118ev_time (void) 1889ev_time (void) EV_NOEXCEPT
119{ 1890{
120#if EV_USE_REALTIME 1891#if EV_USE_REALTIME
1892 if (expect_true (have_realtime))
1893 {
121 struct timespec ts; 1894 struct timespec ts;
122 clock_gettime (CLOCK_REALTIME, &ts); 1895 clock_gettime (CLOCK_REALTIME, &ts);
123 return ts.tv_sec + ts.tv_nsec * 1e-9; 1896 return ts.tv_sec + ts.tv_nsec * 1e-9;
124#else 1897 }
1898#endif
1899
125 struct timeval tv; 1900 struct timeval tv;
126 gettimeofday (&tv, 0); 1901 gettimeofday (&tv, 0);
127 return tv.tv_sec + tv.tv_usec * 1e-6; 1902 return tv.tv_sec + tv.tv_usec * 1e-6;
128#endif
129} 1903}
1904#endif
130 1905
131static ev_tstamp 1906inline_size ev_tstamp
132get_clock (void) 1907get_clock (void)
133{ 1908{
134#if EV_USE_MONOTONIC 1909#if EV_USE_MONOTONIC
135 if (expect_true (have_monotonic)) 1910 if (expect_true (have_monotonic))
136 { 1911 {
141#endif 1916#endif
142 1917
143 return ev_time (); 1918 return ev_time ();
144} 1919}
145 1920
146#define array_roundsize(base,n) ((n) | 4 & ~3) 1921#if EV_MULTIPLICITY
1922ev_tstamp
1923ev_now (EV_P) EV_NOEXCEPT
1924{
1925 return ev_rt_now;
1926}
1927#endif
147 1928
148#define array_needsize(base,cur,cnt,init) \ 1929void
149 if (expect_false ((cnt) > cur)) \ 1930ev_sleep (ev_tstamp delay) EV_NOEXCEPT
150 { \ 1931{
151 int newcnt = cur; \ 1932 if (delay > 0.)
152 do \
153 { \
154 newcnt = array_roundsize (base, newcnt << 1); \
155 } \
156 while ((cnt) > newcnt); \
157 \
158 base = realloc (base, sizeof (*base) * (newcnt)); \
159 init (base + cur, newcnt - cur); \
160 cur = newcnt; \
161 } 1933 {
1934#if EV_USE_NANOSLEEP
1935 struct timespec ts;
1936
1937 EV_TS_SET (ts, delay);
1938 nanosleep (&ts, 0);
1939#elif defined _WIN32
1940 /* maybe this should round up, as ms is very low resolution */
1941 /* compared to select (µs) or nanosleep (ns) */
1942 Sleep ((unsigned long)(delay * 1e3));
1943#else
1944 struct timeval tv;
1945
1946 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1947 /* something not guaranteed by newer posix versions, but guaranteed */
1948 /* by older ones */
1949 EV_TV_SET (tv, delay);
1950 select (0, 0, 0, 0, &tv);
1951#endif
1952 }
1953}
162 1954
163/*****************************************************************************/ 1955/*****************************************************************************/
164 1956
165typedef struct 1957#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
166{
167 struct ev_io *head;
168 unsigned char events;
169 unsigned char reify;
170} ANFD;
171 1958
172static ANFD *anfds; 1959/* find a suitable new size for the given array, */
173static int anfdmax; 1960/* hopefully by rounding to a nice-to-malloc size */
1961inline_size int
1962array_nextsize (int elem, int cur, int cnt)
1963{
1964 int ncur = cur + 1;
174 1965
1966 do
1967 ncur <<= 1;
1968 while (cnt > ncur);
1969
1970 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1971 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1972 {
1973 ncur *= elem;
1974 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1975 ncur = ncur - sizeof (void *) * 4;
1976 ncur /= elem;
1977 }
1978
1979 return ncur;
1980}
1981
1982noinline ecb_cold
1983static void *
1984array_realloc (int elem, void *base, int *cur, int cnt)
1985{
1986 *cur = array_nextsize (elem, *cur, cnt);
1987 return ev_realloc (base, elem * *cur);
1988}
1989
1990#define array_needsize_noinit(base,count)
1991
1992#define array_needsize_zerofill(base,count) \
1993 memset ((void *)(base), 0, sizeof (*(base)) * (count))
1994
1995#define array_needsize(type,base,cur,cnt,init) \
1996 if (expect_false ((cnt) > (cur))) \
1997 { \
1998 ecb_unused int ocur_ = (cur); \
1999 (base) = (type *)array_realloc \
2000 (sizeof (type), (base), &(cur), (cnt)); \
2001 init ((base) + (ocur_), (cur) - ocur_); \
2002 }
2003
2004#if 0
2005#define array_slim(type,stem) \
2006 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
2007 { \
2008 stem ## max = array_roundsize (stem ## cnt >> 1); \
2009 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
2010 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
2011 }
2012#endif
2013
2014#define array_free(stem, idx) \
2015 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
2016
2017/*****************************************************************************/
2018
2019/* dummy callback for pending events */
2020noinline
175static void 2021static void
176anfds_init (ANFD *base, int count) 2022pendingcb (EV_P_ ev_prepare *w, int revents)
177{ 2023{
178 while (count--) 2024}
179 {
180 base->head = 0;
181 base->events = EV_NONE;
182 base->reify = 0;
183 2025
184 ++base; 2026noinline
2027void
2028ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
2029{
2030 W w_ = (W)w;
2031 int pri = ABSPRI (w_);
2032
2033 if (expect_false (w_->pending))
2034 pendings [pri][w_->pending - 1].events |= revents;
2035 else
185 } 2036 {
186} 2037 w_->pending = ++pendingcnt [pri];
187 2038 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
188typedef struct 2039 pendings [pri][w_->pending - 1].w = w_;
189{
190 W w;
191 int events;
192} ANPENDING;
193
194static ANPENDING *pendings;
195static int pendingmax, pendingcnt;
196
197static void
198event (W w, int events)
199{
200 if (w->pending)
201 {
202 pendings [w->pending - 1].events |= events; 2040 pendings [pri][w_->pending - 1].events = revents;
203 return;
204 } 2041 }
205 2042
206 w->pending = ++pendingcnt; 2043 pendingpri = NUMPRI - 1;
207 array_needsize (pendings, pendingmax, pendingcnt, );
208 pendings [pendingcnt - 1].w = w;
209 pendings [pendingcnt - 1].events = events;
210} 2044}
211 2045
212static void 2046inline_speed void
2047feed_reverse (EV_P_ W w)
2048{
2049 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2050 rfeeds [rfeedcnt++] = w;
2051}
2052
2053inline_size void
2054feed_reverse_done (EV_P_ int revents)
2055{
2056 do
2057 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2058 while (rfeedcnt);
2059}
2060
2061inline_speed void
213queue_events (W *events, int eventcnt, int type) 2062queue_events (EV_P_ W *events, int eventcnt, int type)
214{ 2063{
215 int i; 2064 int i;
216 2065
217 for (i = 0; i < eventcnt; ++i) 2066 for (i = 0; i < eventcnt; ++i)
218 event (events [i], type); 2067 ev_feed_event (EV_A_ events [i], type);
219} 2068}
220 2069
221static void 2070/*****************************************************************************/
2071
2072inline_speed void
222fd_event (int fd, int events) 2073fd_event_nocheck (EV_P_ int fd, int revents)
223{ 2074{
224 ANFD *anfd = anfds + fd; 2075 ANFD *anfd = anfds + fd;
225 struct ev_io *w; 2076 ev_io *w;
226 2077
227 for (w = anfd->head; w; w = w->next) 2078 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
228 { 2079 {
229 int ev = w->events & events; 2080 int ev = w->events & revents;
230 2081
231 if (ev) 2082 if (ev)
232 event ((W)w, ev); 2083 ev_feed_event (EV_A_ (W)w, ev);
233 } 2084 }
234} 2085}
235 2086
236/*****************************************************************************/ 2087/* do not submit kernel events for fds that have reify set */
2088/* because that means they changed while we were polling for new events */
2089inline_speed void
2090fd_event (EV_P_ int fd, int revents)
2091{
2092 ANFD *anfd = anfds + fd;
237 2093
238static int *fdchanges; 2094 if (expect_true (!anfd->reify))
239static int fdchangemax, fdchangecnt; 2095 fd_event_nocheck (EV_A_ fd, revents);
2096}
240 2097
241static void 2098void
242fd_reify (void) 2099ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
2100{
2101 if (fd >= 0 && fd < anfdmax)
2102 fd_event_nocheck (EV_A_ fd, revents);
2103}
2104
2105/* make sure the external fd watch events are in-sync */
2106/* with the kernel/libev internal state */
2107inline_size void
2108fd_reify (EV_P)
243{ 2109{
244 int i; 2110 int i;
245 2111
2112#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
246 for (i = 0; i < fdchangecnt; ++i) 2113 for (i = 0; i < fdchangecnt; ++i)
247 { 2114 {
248 int fd = fdchanges [i]; 2115 int fd = fdchanges [i];
249 ANFD *anfd = anfds + fd; 2116 ANFD *anfd = anfds + fd;
250 struct ev_io *w;
251 2117
252 int events = 0; 2118 if (anfd->reify & EV__IOFDSET && anfd->head)
253
254 for (w = anfd->head; w; w = w->next)
255 events |= w->events;
256
257 anfd->reify = 0;
258
259 if (anfd->events != events)
260 { 2119 {
2120 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2121
2122 if (handle != anfd->handle)
2123 {
2124 unsigned long arg;
2125
2126 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2127
2128 /* handle changed, but fd didn't - we need to do it in two steps */
261 method_modify (fd, anfd->events, events); 2129 backend_modify (EV_A_ fd, anfd->events, 0);
262 anfd->events = events; 2130 anfd->events = 0;
2131 anfd->handle = handle;
2132 }
263 } 2133 }
264 } 2134 }
2135#endif
2136
2137 for (i = 0; i < fdchangecnt; ++i)
2138 {
2139 int fd = fdchanges [i];
2140 ANFD *anfd = anfds + fd;
2141 ev_io *w;
2142
2143 unsigned char o_events = anfd->events;
2144 unsigned char o_reify = anfd->reify;
2145
2146 anfd->reify = 0;
2147
2148 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
2149 {
2150 anfd->events = 0;
2151
2152 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2153 anfd->events |= (unsigned char)w->events;
2154
2155 if (o_events != anfd->events)
2156 o_reify = EV__IOFDSET; /* actually |= */
2157 }
2158
2159 if (o_reify & EV__IOFDSET)
2160 backend_modify (EV_A_ fd, o_events, anfd->events);
2161 }
265 2162
266 fdchangecnt = 0; 2163 fdchangecnt = 0;
267} 2164}
268 2165
2166/* something about the given fd changed */
2167inline_size
2168void
2169fd_change (EV_P_ int fd, int flags)
2170{
2171 unsigned char reify = anfds [fd].reify;
2172 anfds [fd].reify |= flags;
2173
2174 if (expect_true (!reify))
2175 {
2176 ++fdchangecnt;
2177 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
2178 fdchanges [fdchangecnt - 1] = fd;
2179 }
2180}
2181
2182/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2183inline_speed ecb_cold void
2184fd_kill (EV_P_ int fd)
2185{
2186 ev_io *w;
2187
2188 while ((w = (ev_io *)anfds [fd].head))
2189 {
2190 ev_io_stop (EV_A_ w);
2191 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
2192 }
2193}
2194
2195/* check whether the given fd is actually valid, for error recovery */
2196inline_size ecb_cold int
2197fd_valid (int fd)
2198{
2199#ifdef _WIN32
2200 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
2201#else
2202 return fcntl (fd, F_GETFD) != -1;
2203#endif
2204}
2205
2206/* called on EBADF to verify fds */
2207noinline ecb_cold
269static void 2208static void
270fd_change (int fd) 2209fd_ebadf (EV_P)
271{
272 if (anfds [fd].reify || fdchangecnt < 0)
273 return;
274
275 anfds [fd].reify = 1;
276
277 ++fdchangecnt;
278 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
279 fdchanges [fdchangecnt - 1] = fd;
280}
281
282/* called on EBADF to verify fds */
283static void
284fd_recheck (void)
285{ 2210{
286 int fd; 2211 int fd;
287 2212
288 for (fd = 0; fd < anfdmax; ++fd) 2213 for (fd = 0; fd < anfdmax; ++fd)
289 if (anfds [fd].events) 2214 if (anfds [fd].events)
290 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 2215 if (!fd_valid (fd) && errno == EBADF)
291 while (anfds [fd].head) 2216 fd_kill (EV_A_ fd);
2217}
2218
2219/* called on ENOMEM in select/poll to kill some fds and retry */
2220noinline ecb_cold
2221static void
2222fd_enomem (EV_P)
2223{
2224 int fd;
2225
2226 for (fd = anfdmax; fd--; )
2227 if (anfds [fd].events)
2228 {
2229 fd_kill (EV_A_ fd);
2230 break;
2231 }
2232}
2233
2234/* usually called after fork if backend needs to re-arm all fds from scratch */
2235noinline
2236static void
2237fd_rearm_all (EV_P)
2238{
2239 int fd;
2240
2241 for (fd = 0; fd < anfdmax; ++fd)
2242 if (anfds [fd].events)
2243 {
2244 anfds [fd].events = 0;
2245 anfds [fd].emask = 0;
2246 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
2247 }
2248}
2249
2250/* used to prepare libev internal fd's */
2251/* this is not fork-safe */
2252inline_speed void
2253fd_intern (int fd)
2254{
2255#ifdef _WIN32
2256 unsigned long arg = 1;
2257 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2258#else
2259 fcntl (fd, F_SETFD, FD_CLOEXEC);
2260 fcntl (fd, F_SETFL, O_NONBLOCK);
2261#endif
2262}
2263
2264/*****************************************************************************/
2265
2266/*
2267 * the heap functions want a real array index. array index 0 is guaranteed to not
2268 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2269 * the branching factor of the d-tree.
2270 */
2271
2272/*
2273 * at the moment we allow libev the luxury of two heaps,
2274 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2275 * which is more cache-efficient.
2276 * the difference is about 5% with 50000+ watchers.
2277 */
2278#if EV_USE_4HEAP
2279
2280#define DHEAP 4
2281#define HEAP0 (DHEAP - 1) /* index of first element in heap */
2282#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2283#define UPHEAP_DONE(p,k) ((p) == (k))
2284
2285/* away from the root */
2286inline_speed void
2287downheap (ANHE *heap, int N, int k)
2288{
2289 ANHE he = heap [k];
2290 ANHE *E = heap + N + HEAP0;
2291
2292 for (;;)
2293 {
2294 ev_tstamp minat;
2295 ANHE *minpos;
2296 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2297
2298 /* find minimum child */
2299 if (expect_true (pos + DHEAP - 1 < E))
2300 {
2301 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2302 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2303 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2304 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2305 }
2306 else if (pos < E)
2307 {
2308 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2309 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2310 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2311 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2312 }
2313 else
2314 break;
2315
2316 if (ANHE_at (he) <= minat)
2317 break;
2318
2319 heap [k] = *minpos;
2320 ev_active (ANHE_w (*minpos)) = k;
2321
2322 k = minpos - heap;
2323 }
2324
2325 heap [k] = he;
2326 ev_active (ANHE_w (he)) = k;
2327}
2328
2329#else /* 4HEAP */
2330
2331#define HEAP0 1
2332#define HPARENT(k) ((k) >> 1)
2333#define UPHEAP_DONE(p,k) (!(p))
2334
2335/* away from the root */
2336inline_speed void
2337downheap (ANHE *heap, int N, int k)
2338{
2339 ANHE he = heap [k];
2340
2341 for (;;)
2342 {
2343 int c = k << 1;
2344
2345 if (c >= N + HEAP0)
2346 break;
2347
2348 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2349 ? 1 : 0;
2350
2351 if (ANHE_at (he) <= ANHE_at (heap [c]))
2352 break;
2353
2354 heap [k] = heap [c];
2355 ev_active (ANHE_w (heap [k])) = k;
2356
2357 k = c;
2358 }
2359
2360 heap [k] = he;
2361 ev_active (ANHE_w (he)) = k;
2362}
2363#endif
2364
2365/* towards the root */
2366inline_speed void
2367upheap (ANHE *heap, int k)
2368{
2369 ANHE he = heap [k];
2370
2371 for (;;)
2372 {
2373 int p = HPARENT (k);
2374
2375 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2376 break;
2377
2378 heap [k] = heap [p];
2379 ev_active (ANHE_w (heap [k])) = k;
2380 k = p;
2381 }
2382
2383 heap [k] = he;
2384 ev_active (ANHE_w (he)) = k;
2385}
2386
2387/* move an element suitably so it is in a correct place */
2388inline_size void
2389adjustheap (ANHE *heap, int N, int k)
2390{
2391 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2392 upheap (heap, k);
2393 else
2394 downheap (heap, N, k);
2395}
2396
2397/* rebuild the heap: this function is used only once and executed rarely */
2398inline_size void
2399reheap (ANHE *heap, int N)
2400{
2401 int i;
2402
2403 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2404 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2405 for (i = 0; i < N; ++i)
2406 upheap (heap, i + HEAP0);
2407}
2408
2409/*****************************************************************************/
2410
2411/* associate signal watchers to a signal signal */
2412typedef struct
2413{
2414 EV_ATOMIC_T pending;
2415#if EV_MULTIPLICITY
2416 EV_P;
2417#endif
2418 WL head;
2419} ANSIG;
2420
2421static ANSIG signals [EV_NSIG - 1];
2422
2423/*****************************************************************************/
2424
2425#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2426
2427noinline ecb_cold
2428static void
2429evpipe_init (EV_P)
2430{
2431 if (!ev_is_active (&pipe_w))
2432 {
2433 int fds [2];
2434
2435# if EV_USE_EVENTFD
2436 fds [0] = -1;
2437 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2438 if (fds [1] < 0 && errno == EINVAL)
2439 fds [1] = eventfd (0, 0);
2440
2441 if (fds [1] < 0)
2442# endif
2443 {
2444 while (pipe (fds))
2445 ev_syserr ("(libev) error creating signal/async pipe");
2446
2447 fd_intern (fds [0]);
2448 }
2449
2450 evpipe [0] = fds [0];
2451
2452 if (evpipe [1] < 0)
2453 evpipe [1] = fds [1]; /* first call, set write fd */
2454 else
2455 {
2456 /* on subsequent calls, do not change evpipe [1] */
2457 /* so that evpipe_write can always rely on its value. */
2458 /* this branch does not do anything sensible on windows, */
2459 /* so must not be executed on windows */
2460
2461 dup2 (fds [1], evpipe [1]);
2462 close (fds [1]);
2463 }
2464
2465 fd_intern (evpipe [1]);
2466
2467 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2468 ev_io_start (EV_A_ &pipe_w);
2469 ev_unref (EV_A); /* watcher should not keep loop alive */
2470 }
2471}
2472
2473inline_speed void
2474evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2475{
2476 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2477
2478 if (expect_true (*flag))
2479 return;
2480
2481 *flag = 1;
2482 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2483
2484 pipe_write_skipped = 1;
2485
2486 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2487
2488 if (pipe_write_wanted)
2489 {
2490 int old_errno;
2491
2492 pipe_write_skipped = 0;
2493 ECB_MEMORY_FENCE_RELEASE;
2494
2495 old_errno = errno; /* save errno because write will clobber it */
2496
2497#if EV_USE_EVENTFD
2498 if (evpipe [0] < 0)
2499 {
2500 uint64_t counter = 1;
2501 write (evpipe [1], &counter, sizeof (uint64_t));
2502 }
2503 else
2504#endif
2505 {
2506#ifdef _WIN32
2507 WSABUF buf;
2508 DWORD sent;
2509 buf.buf = (char *)&buf;
2510 buf.len = 1;
2511 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2512#else
2513 write (evpipe [1], &(evpipe [1]), 1);
2514#endif
2515 }
2516
2517 errno = old_errno;
2518 }
2519}
2520
2521/* called whenever the libev signal pipe */
2522/* got some events (signal, async) */
2523static void
2524pipecb (EV_P_ ev_io *iow, int revents)
2525{
2526 int i;
2527
2528 if (revents & EV_READ)
2529 {
2530#if EV_USE_EVENTFD
2531 if (evpipe [0] < 0)
2532 {
2533 uint64_t counter;
2534 read (evpipe [1], &counter, sizeof (uint64_t));
2535 }
2536 else
2537#endif
2538 {
2539 char dummy[4];
2540#ifdef _WIN32
2541 WSABUF buf;
2542 DWORD recvd;
2543 DWORD flags = 0;
2544 buf.buf = dummy;
2545 buf.len = sizeof (dummy);
2546 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2547#else
2548 read (evpipe [0], &dummy, sizeof (dummy));
2549#endif
2550 }
2551 }
2552
2553 pipe_write_skipped = 0;
2554
2555 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2556
2557#if EV_SIGNAL_ENABLE
2558 if (sig_pending)
2559 {
2560 sig_pending = 0;
2561
2562 ECB_MEMORY_FENCE;
2563
2564 for (i = EV_NSIG - 1; i--; )
2565 if (expect_false (signals [i].pending))
2566 ev_feed_signal_event (EV_A_ i + 1);
2567 }
2568#endif
2569
2570#if EV_ASYNC_ENABLE
2571 if (async_pending)
2572 {
2573 async_pending = 0;
2574
2575 ECB_MEMORY_FENCE;
2576
2577 for (i = asynccnt; i--; )
2578 if (asyncs [i]->sent)
292 { 2579 {
293 ev_io_stop (anfds [fd].head); 2580 asyncs [i]->sent = 0;
294 event ((W)anfds [fd].head, EV_ERROR | EV_READ | EV_WRITE); 2581 ECB_MEMORY_FENCE_RELEASE;
2582 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
295 } 2583 }
2584 }
2585#endif
296} 2586}
297 2587
298/*****************************************************************************/ 2588/*****************************************************************************/
299 2589
300static struct ev_timer **timers; 2590void
301static int timermax, timercnt; 2591ev_feed_signal (int signum) EV_NOEXCEPT
2592{
2593#if EV_MULTIPLICITY
2594 EV_P;
2595 ECB_MEMORY_FENCE_ACQUIRE;
2596 EV_A = signals [signum - 1].loop;
302 2597
303static struct ev_periodic **periodics; 2598 if (!EV_A)
304static int periodicmax, periodiccnt; 2599 return;
2600#endif
2601
2602 signals [signum - 1].pending = 1;
2603 evpipe_write (EV_A_ &sig_pending);
2604}
305 2605
306static void 2606static void
307upheap (WT *timers, int k) 2607ev_sighandler (int signum)
308{ 2608{
309 WT w = timers [k]; 2609#ifdef _WIN32
2610 signal (signum, ev_sighandler);
2611#endif
310 2612
311 while (k && timers [k >> 1]->at > w->at) 2613 ev_feed_signal (signum);
312 {
313 timers [k] = timers [k >> 1];
314 timers [k]->active = k + 1;
315 k >>= 1;
316 }
317
318 timers [k] = w;
319 timers [k]->active = k + 1;
320
321} 2614}
322 2615
2616noinline
2617void
2618ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2619{
2620 WL w;
2621
2622 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2623 return;
2624
2625 --signum;
2626
2627#if EV_MULTIPLICITY
2628 /* it is permissible to try to feed a signal to the wrong loop */
2629 /* or, likely more useful, feeding a signal nobody is waiting for */
2630
2631 if (expect_false (signals [signum].loop != EV_A))
2632 return;
2633#endif
2634
2635 signals [signum].pending = 0;
2636 ECB_MEMORY_FENCE_RELEASE;
2637
2638 for (w = signals [signum].head; w; w = w->next)
2639 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2640}
2641
2642#if EV_USE_SIGNALFD
323static void 2643static void
324downheap (WT *timers, int N, int k) 2644sigfdcb (EV_P_ ev_io *iow, int revents)
325{ 2645{
326 WT w = timers [k]; 2646 struct signalfd_siginfo si[2], *sip; /* these structs are big */
327 2647
328 while (k < (N >> 1)) 2648 for (;;)
329 { 2649 {
330 int j = k << 1; 2650 ssize_t res = read (sigfd, si, sizeof (si));
331 2651
332 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 2652 /* not ISO-C, as res might be -1, but works with SuS */
333 ++j; 2653 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2654 ev_feed_signal_event (EV_A_ sip->ssi_signo);
334 2655
335 if (w->at <= timers [j]->at) 2656 if (res < (ssize_t)sizeof (si))
336 break; 2657 break;
337
338 timers [k] = timers [j];
339 timers [k]->active = k + 1;
340 k = j;
341 } 2658 }
342
343 timers [k] = w;
344 timers [k]->active = k + 1;
345} 2659}
2660#endif
2661
2662#endif
346 2663
347/*****************************************************************************/ 2664/*****************************************************************************/
348 2665
349typedef struct 2666#if EV_CHILD_ENABLE
350{ 2667static WL childs [EV_PID_HASHSIZE];
351 struct ev_signal *head;
352 sig_atomic_t volatile gotsig;
353} ANSIG;
354 2668
355static ANSIG *signals;
356static int signalmax;
357
358static int sigpipe [2];
359static sig_atomic_t volatile gotsig;
360static struct ev_io sigev;
361
362static void
363signals_init (ANSIG *base, int count)
364{
365 while (count--)
366 {
367 base->head = 0;
368 base->gotsig = 0;
369
370 ++base;
371 }
372}
373
374static void
375sighandler (int signum)
376{
377 signals [signum - 1].gotsig = 1;
378
379 if (!gotsig)
380 {
381 gotsig = 1;
382 write (sigpipe [1], &signum, 1);
383 }
384}
385
386static void
387sigcb (struct ev_io *iow, int revents)
388{
389 struct ev_signal *w;
390 int signum;
391
392 read (sigpipe [0], &revents, 1);
393 gotsig = 0;
394
395 for (signum = signalmax; signum--; )
396 if (signals [signum].gotsig)
397 {
398 signals [signum].gotsig = 0;
399
400 for (w = signals [signum].head; w; w = w->next)
401 event ((W)w, EV_SIGNAL);
402 }
403}
404
405static void
406siginit (void)
407{
408 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
409 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
410
411 /* rather than sort out wether we really need nb, set it */
412 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
413 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
414
415 ev_io_set (&sigev, sigpipe [0], EV_READ);
416 ev_io_start (&sigev);
417}
418
419/*****************************************************************************/
420
421static struct ev_idle **idles;
422static int idlemax, idlecnt;
423
424static struct ev_prepare **prepares;
425static int preparemax, preparecnt;
426
427static struct ev_check **checks;
428static int checkmax, checkcnt;
429
430/*****************************************************************************/
431
432static struct ev_child *childs [PID_HASHSIZE];
433static struct ev_signal childev; 2669static ev_signal childev;
2670
2671#ifndef WIFCONTINUED
2672# define WIFCONTINUED(status) 0
2673#endif
2674
2675/* handle a single child status event */
2676inline_speed void
2677child_reap (EV_P_ int chain, int pid, int status)
2678{
2679 ev_child *w;
2680 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2681
2682 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2683 {
2684 if ((w->pid == pid || !w->pid)
2685 && (!traced || (w->flags & 1)))
2686 {
2687 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2688 w->rpid = pid;
2689 w->rstatus = status;
2690 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2691 }
2692 }
2693}
434 2694
435#ifndef WCONTINUED 2695#ifndef WCONTINUED
436# define WCONTINUED 0 2696# define WCONTINUED 0
437#endif 2697#endif
438 2698
2699/* called on sigchld etc., calls waitpid */
439static void 2700static void
440childcb (struct ev_signal *sw, int revents) 2701childcb (EV_P_ ev_signal *sw, int revents)
441{ 2702{
442 struct ev_child *w;
443 int pid, status; 2703 int pid, status;
444 2704
2705 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
445 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 2706 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
446 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 2707 if (!WCONTINUED
447 if (w->pid == pid || !w->pid) 2708 || errno != EINVAL
448 { 2709 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
449 w->status = status; 2710 return;
450 event ((W)w, EV_CHILD); 2711
451 } 2712 /* make sure we are called again until all children have been reaped */
2713 /* we need to do it this way so that the callback gets called before we continue */
2714 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2715
2716 child_reap (EV_A_ pid, pid, status);
2717 if ((EV_PID_HASHSIZE) > 1)
2718 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
452} 2719}
2720
2721#endif
453 2722
454/*****************************************************************************/ 2723/*****************************************************************************/
455 2724
2725#if EV_USE_IOCP
2726# include "ev_iocp.c"
2727#endif
2728#if EV_USE_PORT
2729# include "ev_port.c"
2730#endif
2731#if EV_USE_KQUEUE
2732# include "ev_kqueue.c"
2733#endif
2734#if EV_USE_LINUXAIO
2735# include "ev_linuxaio.c"
2736#endif
456#if EV_USE_EPOLL 2737#if EV_USE_EPOLL
457# include "ev_epoll.c" 2738# include "ev_epoll.c"
458#endif 2739#endif
2740#if EV_USE_POLL
2741# include "ev_poll.c"
2742#endif
459#if EV_USE_SELECT 2743#if EV_USE_SELECT
460# include "ev_select.c" 2744# include "ev_select.c"
461#endif 2745#endif
462 2746
2747ecb_cold int
2748ev_version_major (void) EV_NOEXCEPT
2749{
2750 return EV_VERSION_MAJOR;
2751}
2752
2753ecb_cold int
2754ev_version_minor (void) EV_NOEXCEPT
2755{
2756 return EV_VERSION_MINOR;
2757}
2758
2759/* return true if we are running with elevated privileges and should ignore env variables */
2760inline_size ecb_cold int
2761enable_secure (void)
2762{
2763#ifdef _WIN32
2764 return 0;
2765#else
2766 return getuid () != geteuid ()
2767 || getgid () != getegid ();
2768#endif
2769}
2770
2771ecb_cold
2772unsigned int
2773ev_supported_backends (void) EV_NOEXCEPT
2774{
2775 unsigned int flags = 0;
2776
2777 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2778 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
2779 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2780 if (EV_USE_LINUXAIO) flags |= EVBACKEND_LINUXAIO;
2781 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2782 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
2783
2784 return flags;
2785}
2786
2787ecb_cold
2788unsigned int
2789ev_recommended_backends (void) EV_NOEXCEPT
2790{
2791 unsigned int flags = ev_supported_backends ();
2792
2793#ifndef __NetBSD__
2794 /* kqueue is borked on everything but netbsd apparently */
2795 /* it usually doesn't work correctly on anything but sockets and pipes */
2796 flags &= ~EVBACKEND_KQUEUE;
2797#endif
2798#ifdef __APPLE__
2799 /* only select works correctly on that "unix-certified" platform */
2800 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2801 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2802#endif
2803#ifdef __FreeBSD__
2804 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2805#endif
2806
2807 /* TODO: linuxaio is very experimental */
2808 flags &= ~EVBACKEND_LINUXAIO;
2809
2810 return flags;
2811}
2812
2813ecb_cold
2814unsigned int
2815ev_embeddable_backends (void) EV_NOEXCEPT
2816{
2817 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2818
2819 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2820 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2821 flags &= ~EVBACKEND_EPOLL;
2822
2823 return flags;
2824}
2825
2826unsigned int
2827ev_backend (EV_P) EV_NOEXCEPT
2828{
2829 return backend;
2830}
2831
2832#if EV_FEATURE_API
2833unsigned int
2834ev_iteration (EV_P) EV_NOEXCEPT
2835{
2836 return loop_count;
2837}
2838
2839unsigned int
2840ev_depth (EV_P) EV_NOEXCEPT
2841{
2842 return loop_depth;
2843}
2844
2845void
2846ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2847{
2848 io_blocktime = interval;
2849}
2850
2851void
2852ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2853{
2854 timeout_blocktime = interval;
2855}
2856
2857void
2858ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
2859{
2860 userdata = data;
2861}
2862
2863void *
2864ev_userdata (EV_P) EV_NOEXCEPT
2865{
2866 return userdata;
2867}
2868
2869void
2870ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
2871{
2872 invoke_cb = invoke_pending_cb;
2873}
2874
2875void
2876ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
2877{
2878 release_cb = release;
2879 acquire_cb = acquire;
2880}
2881#endif
2882
2883/* initialise a loop structure, must be zero-initialised */
2884noinline ecb_cold
2885static void
2886loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
2887{
2888 if (!backend)
2889 {
2890 origflags = flags;
2891
2892#if EV_USE_REALTIME
2893 if (!have_realtime)
2894 {
2895 struct timespec ts;
2896
2897 if (!clock_gettime (CLOCK_REALTIME, &ts))
2898 have_realtime = 1;
2899 }
2900#endif
2901
2902#if EV_USE_MONOTONIC
2903 if (!have_monotonic)
2904 {
2905 struct timespec ts;
2906
2907 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2908 have_monotonic = 1;
2909 }
2910#endif
2911
2912 /* pid check not overridable via env */
2913#ifndef _WIN32
2914 if (flags & EVFLAG_FORKCHECK)
2915 curpid = getpid ();
2916#endif
2917
2918 if (!(flags & EVFLAG_NOENV)
2919 && !enable_secure ()
2920 && getenv ("LIBEV_FLAGS"))
2921 flags = atoi (getenv ("LIBEV_FLAGS"));
2922
2923 ev_rt_now = ev_time ();
2924 mn_now = get_clock ();
2925 now_floor = mn_now;
2926 rtmn_diff = ev_rt_now - mn_now;
2927#if EV_FEATURE_API
2928 invoke_cb = ev_invoke_pending;
2929#endif
2930
2931 io_blocktime = 0.;
2932 timeout_blocktime = 0.;
2933 backend = 0;
2934 backend_fd = -1;
2935 sig_pending = 0;
2936#if EV_ASYNC_ENABLE
2937 async_pending = 0;
2938#endif
2939 pipe_write_skipped = 0;
2940 pipe_write_wanted = 0;
2941 evpipe [0] = -1;
2942 evpipe [1] = -1;
2943#if EV_USE_INOTIFY
2944 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2945#endif
2946#if EV_USE_SIGNALFD
2947 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2948#endif
2949
2950 if (!(flags & EVBACKEND_MASK))
2951 flags |= ev_recommended_backends ();
2952
2953#if EV_USE_IOCP
2954 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2955#endif
2956#if EV_USE_PORT
2957 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2958#endif
2959#if EV_USE_KQUEUE
2960 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
2961#endif
2962#if EV_USE_LINUXAIO
2963 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
2964#endif
2965#if EV_USE_EPOLL
2966 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2967#endif
2968#if EV_USE_POLL
2969 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2970#endif
2971#if EV_USE_SELECT
2972 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
2973#endif
2974
2975 ev_prepare_init (&pending_w, pendingcb);
2976
2977#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2978 ev_init (&pipe_w, pipecb);
2979 ev_set_priority (&pipe_w, EV_MAXPRI);
2980#endif
2981 }
2982}
2983
2984/* free up a loop structure */
2985ecb_cold
2986void
2987ev_loop_destroy (EV_P)
2988{
2989 int i;
2990
2991#if EV_MULTIPLICITY
2992 /* mimic free (0) */
2993 if (!EV_A)
2994 return;
2995#endif
2996
2997#if EV_CLEANUP_ENABLE
2998 /* queue cleanup watchers (and execute them) */
2999 if (expect_false (cleanupcnt))
3000 {
3001 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3002 EV_INVOKE_PENDING;
3003 }
3004#endif
3005
3006#if EV_CHILD_ENABLE
3007 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3008 {
3009 ev_ref (EV_A); /* child watcher */
3010 ev_signal_stop (EV_A_ &childev);
3011 }
3012#endif
3013
3014 if (ev_is_active (&pipe_w))
3015 {
3016 /*ev_ref (EV_A);*/
3017 /*ev_io_stop (EV_A_ &pipe_w);*/
3018
3019 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3020 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3021 }
3022
3023#if EV_USE_SIGNALFD
3024 if (ev_is_active (&sigfd_w))
3025 close (sigfd);
3026#endif
3027
3028#if EV_USE_INOTIFY
3029 if (fs_fd >= 0)
3030 close (fs_fd);
3031#endif
3032
3033 if (backend_fd >= 0)
3034 close (backend_fd);
3035
3036#if EV_USE_IOCP
3037 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3038#endif
3039#if EV_USE_PORT
3040 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
3041#endif
3042#if EV_USE_KQUEUE
3043 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3044#endif
3045#if EV_USE_LINUXAIO
3046 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
3047#endif
3048#if EV_USE_EPOLL
3049 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
3050#endif
3051#if EV_USE_POLL
3052 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
3053#endif
3054#if EV_USE_SELECT
3055 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
3056#endif
3057
3058 for (i = NUMPRI; i--; )
3059 {
3060 array_free (pending, [i]);
3061#if EV_IDLE_ENABLE
3062 array_free (idle, [i]);
3063#endif
3064 }
3065
3066 ev_free (anfds); anfds = 0; anfdmax = 0;
3067
3068 /* have to use the microsoft-never-gets-it-right macro */
3069 array_free (rfeed, EMPTY);
3070 array_free (fdchange, EMPTY);
3071 array_free (timer, EMPTY);
3072#if EV_PERIODIC_ENABLE
3073 array_free (periodic, EMPTY);
3074#endif
3075#if EV_FORK_ENABLE
3076 array_free (fork, EMPTY);
3077#endif
3078#if EV_CLEANUP_ENABLE
3079 array_free (cleanup, EMPTY);
3080#endif
3081 array_free (prepare, EMPTY);
3082 array_free (check, EMPTY);
3083#if EV_ASYNC_ENABLE
3084 array_free (async, EMPTY);
3085#endif
3086
3087 backend = 0;
3088
3089#if EV_MULTIPLICITY
3090 if (ev_is_default_loop (EV_A))
3091#endif
3092 ev_default_loop_ptr = 0;
3093#if EV_MULTIPLICITY
3094 else
3095 ev_free (EV_A);
3096#endif
3097}
3098
3099#if EV_USE_INOTIFY
3100inline_size void infy_fork (EV_P);
3101#endif
3102
3103inline_size void
3104loop_fork (EV_P)
3105{
3106#if EV_USE_PORT
3107 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
3108#endif
3109#if EV_USE_KQUEUE
3110 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3111#endif
3112#if EV_USE_LINUXAIO
3113 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
3114#endif
3115#if EV_USE_EPOLL
3116 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
3117#endif
3118#if EV_USE_INOTIFY
3119 infy_fork (EV_A);
3120#endif
3121
3122#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3123 if (ev_is_active (&pipe_w) && postfork != 2)
3124 {
3125 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3126
3127 ev_ref (EV_A);
3128 ev_io_stop (EV_A_ &pipe_w);
3129
3130 if (evpipe [0] >= 0)
3131 EV_WIN32_CLOSE_FD (evpipe [0]);
3132
3133 evpipe_init (EV_A);
3134 /* iterate over everything, in case we missed something before */
3135 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3136 }
3137#endif
3138
3139 postfork = 0;
3140}
3141
3142#if EV_MULTIPLICITY
3143
3144ecb_cold
3145struct ev_loop *
3146ev_loop_new (unsigned int flags) EV_NOEXCEPT
3147{
3148 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3149
3150 memset (EV_A, 0, sizeof (struct ev_loop));
3151 loop_init (EV_A_ flags);
3152
3153 if (ev_backend (EV_A))
3154 return EV_A;
3155
3156 ev_free (EV_A);
3157 return 0;
3158}
3159
3160#endif /* multiplicity */
3161
3162#if EV_VERIFY
3163noinline ecb_cold
3164static void
3165verify_watcher (EV_P_ W w)
3166{
3167 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
3168
3169 if (w->pending)
3170 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3171}
3172
3173noinline ecb_cold
3174static void
3175verify_heap (EV_P_ ANHE *heap, int N)
3176{
3177 int i;
3178
3179 for (i = HEAP0; i < N + HEAP0; ++i)
3180 {
3181 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3182 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3183 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3184
3185 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3186 }
3187}
3188
3189noinline ecb_cold
3190static void
3191array_verify (EV_P_ W *ws, int cnt)
3192{
3193 while (cnt--)
3194 {
3195 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3196 verify_watcher (EV_A_ ws [cnt]);
3197 }
3198}
3199#endif
3200
3201#if EV_FEATURE_API
3202void ecb_cold
3203ev_verify (EV_P) EV_NOEXCEPT
3204{
3205#if EV_VERIFY
3206 int i;
3207 WL w, w2;
3208
3209 assert (activecnt >= -1);
3210
3211 assert (fdchangemax >= fdchangecnt);
3212 for (i = 0; i < fdchangecnt; ++i)
3213 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3214
3215 assert (anfdmax >= 0);
3216 for (i = 0; i < anfdmax; ++i)
3217 {
3218 int j = 0;
3219
3220 for (w = w2 = anfds [i].head; w; w = w->next)
3221 {
3222 verify_watcher (EV_A_ (W)w);
3223
3224 if (j++ & 1)
3225 {
3226 assert (("libev: io watcher list contains a loop", w != w2));
3227 w2 = w2->next;
3228 }
3229
3230 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3231 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3232 }
3233 }
3234
3235 assert (timermax >= timercnt);
3236 verify_heap (EV_A_ timers, timercnt);
3237
3238#if EV_PERIODIC_ENABLE
3239 assert (periodicmax >= periodiccnt);
3240 verify_heap (EV_A_ periodics, periodiccnt);
3241#endif
3242
3243 for (i = NUMPRI; i--; )
3244 {
3245 assert (pendingmax [i] >= pendingcnt [i]);
3246#if EV_IDLE_ENABLE
3247 assert (idleall >= 0);
3248 assert (idlemax [i] >= idlecnt [i]);
3249 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3250#endif
3251 }
3252
3253#if EV_FORK_ENABLE
3254 assert (forkmax >= forkcnt);
3255 array_verify (EV_A_ (W *)forks, forkcnt);
3256#endif
3257
3258#if EV_CLEANUP_ENABLE
3259 assert (cleanupmax >= cleanupcnt);
3260 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3261#endif
3262
3263#if EV_ASYNC_ENABLE
3264 assert (asyncmax >= asynccnt);
3265 array_verify (EV_A_ (W *)asyncs, asynccnt);
3266#endif
3267
3268#if EV_PREPARE_ENABLE
3269 assert (preparemax >= preparecnt);
3270 array_verify (EV_A_ (W *)prepares, preparecnt);
3271#endif
3272
3273#if EV_CHECK_ENABLE
3274 assert (checkmax >= checkcnt);
3275 array_verify (EV_A_ (W *)checks, checkcnt);
3276#endif
3277
3278# if 0
3279#if EV_CHILD_ENABLE
3280 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3281 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3282#endif
3283# endif
3284#endif
3285}
3286#endif
3287
3288#if EV_MULTIPLICITY
3289ecb_cold
3290struct ev_loop *
3291#else
463int 3292int
464ev_version_major (void) 3293#endif
3294ev_default_loop (unsigned int flags) EV_NOEXCEPT
465{ 3295{
466 return EV_VERSION_MAJOR; 3296 if (!ev_default_loop_ptr)
3297 {
3298#if EV_MULTIPLICITY
3299 EV_P = ev_default_loop_ptr = &default_loop_struct;
3300#else
3301 ev_default_loop_ptr = 1;
3302#endif
3303
3304 loop_init (EV_A_ flags);
3305
3306 if (ev_backend (EV_A))
3307 {
3308#if EV_CHILD_ENABLE
3309 ev_signal_init (&childev, childcb, SIGCHLD);
3310 ev_set_priority (&childev, EV_MAXPRI);
3311 ev_signal_start (EV_A_ &childev);
3312 ev_unref (EV_A); /* child watcher should not keep loop alive */
3313#endif
3314 }
3315 else
3316 ev_default_loop_ptr = 0;
3317 }
3318
3319 return ev_default_loop_ptr;
3320}
3321
3322void
3323ev_loop_fork (EV_P) EV_NOEXCEPT
3324{
3325 postfork = 1;
3326}
3327
3328/*****************************************************************************/
3329
3330void
3331ev_invoke (EV_P_ void *w, int revents)
3332{
3333 EV_CB_INVOKE ((W)w, revents);
3334}
3335
3336unsigned int
3337ev_pending_count (EV_P) EV_NOEXCEPT
3338{
3339 int pri;
3340 unsigned int count = 0;
3341
3342 for (pri = NUMPRI; pri--; )
3343 count += pendingcnt [pri];
3344
3345 return count;
3346}
3347
3348noinline
3349void
3350ev_invoke_pending (EV_P)
3351{
3352 pendingpri = NUMPRI;
3353
3354 do
3355 {
3356 --pendingpri;
3357
3358 /* pendingpri possibly gets modified in the inner loop */
3359 while (pendingcnt [pendingpri])
3360 {
3361 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3362
3363 p->w->pending = 0;
3364 EV_CB_INVOKE (p->w, p->events);
3365 EV_FREQUENT_CHECK;
3366 }
3367 }
3368 while (pendingpri);
3369}
3370
3371#if EV_IDLE_ENABLE
3372/* make idle watchers pending. this handles the "call-idle */
3373/* only when higher priorities are idle" logic */
3374inline_size void
3375idle_reify (EV_P)
3376{
3377 if (expect_false (idleall))
3378 {
3379 int pri;
3380
3381 for (pri = NUMPRI; pri--; )
3382 {
3383 if (pendingcnt [pri])
3384 break;
3385
3386 if (idlecnt [pri])
3387 {
3388 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3389 break;
3390 }
3391 }
3392 }
3393}
3394#endif
3395
3396/* make timers pending */
3397inline_size void
3398timers_reify (EV_P)
3399{
3400 EV_FREQUENT_CHECK;
3401
3402 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3403 {
3404 do
3405 {
3406 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3407
3408 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3409
3410 /* first reschedule or stop timer */
3411 if (w->repeat)
3412 {
3413 ev_at (w) += w->repeat;
3414 if (ev_at (w) < mn_now)
3415 ev_at (w) = mn_now;
3416
3417 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3418
3419 ANHE_at_cache (timers [HEAP0]);
3420 downheap (timers, timercnt, HEAP0);
3421 }
3422 else
3423 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3424
3425 EV_FREQUENT_CHECK;
3426 feed_reverse (EV_A_ (W)w);
3427 }
3428 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3429
3430 feed_reverse_done (EV_A_ EV_TIMER);
3431 }
3432}
3433
3434#if EV_PERIODIC_ENABLE
3435
3436noinline
3437static void
3438periodic_recalc (EV_P_ ev_periodic *w)
3439{
3440 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3441 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3442
3443 /* the above almost always errs on the low side */
3444 while (at <= ev_rt_now)
3445 {
3446 ev_tstamp nat = at + w->interval;
3447
3448 /* when resolution fails us, we use ev_rt_now */
3449 if (expect_false (nat == at))
3450 {
3451 at = ev_rt_now;
3452 break;
3453 }
3454
3455 at = nat;
3456 }
3457
3458 ev_at (w) = at;
3459}
3460
3461/* make periodics pending */
3462inline_size void
3463periodics_reify (EV_P)
3464{
3465 EV_FREQUENT_CHECK;
3466
3467 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3468 {
3469 do
3470 {
3471 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3472
3473 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3474
3475 /* first reschedule or stop timer */
3476 if (w->reschedule_cb)
3477 {
3478 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3479
3480 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3481
3482 ANHE_at_cache (periodics [HEAP0]);
3483 downheap (periodics, periodiccnt, HEAP0);
3484 }
3485 else if (w->interval)
3486 {
3487 periodic_recalc (EV_A_ w);
3488 ANHE_at_cache (periodics [HEAP0]);
3489 downheap (periodics, periodiccnt, HEAP0);
3490 }
3491 else
3492 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3493
3494 EV_FREQUENT_CHECK;
3495 feed_reverse (EV_A_ (W)w);
3496 }
3497 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3498
3499 feed_reverse_done (EV_A_ EV_PERIODIC);
3500 }
3501}
3502
3503/* simply recalculate all periodics */
3504/* TODO: maybe ensure that at least one event happens when jumping forward? */
3505noinline ecb_cold
3506static void
3507periodics_reschedule (EV_P)
3508{
3509 int i;
3510
3511 /* adjust periodics after time jump */
3512 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3513 {
3514 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3515
3516 if (w->reschedule_cb)
3517 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3518 else if (w->interval)
3519 periodic_recalc (EV_A_ w);
3520
3521 ANHE_at_cache (periodics [i]);
3522 }
3523
3524 reheap (periodics, periodiccnt);
3525}
3526#endif
3527
3528/* adjust all timers by a given offset */
3529noinline ecb_cold
3530static void
3531timers_reschedule (EV_P_ ev_tstamp adjust)
3532{
3533 int i;
3534
3535 for (i = 0; i < timercnt; ++i)
3536 {
3537 ANHE *he = timers + i + HEAP0;
3538 ANHE_w (*he)->at += adjust;
3539 ANHE_at_cache (*he);
3540 }
3541}
3542
3543/* fetch new monotonic and realtime times from the kernel */
3544/* also detect if there was a timejump, and act accordingly */
3545inline_speed void
3546time_update (EV_P_ ev_tstamp max_block)
3547{
3548#if EV_USE_MONOTONIC
3549 if (expect_true (have_monotonic))
3550 {
3551 int i;
3552 ev_tstamp odiff = rtmn_diff;
3553
3554 mn_now = get_clock ();
3555
3556 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3557 /* interpolate in the meantime */
3558 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
3559 {
3560 ev_rt_now = rtmn_diff + mn_now;
3561 return;
3562 }
3563
3564 now_floor = mn_now;
3565 ev_rt_now = ev_time ();
3566
3567 /* loop a few times, before making important decisions.
3568 * on the choice of "4": one iteration isn't enough,
3569 * in case we get preempted during the calls to
3570 * ev_time and get_clock. a second call is almost guaranteed
3571 * to succeed in that case, though. and looping a few more times
3572 * doesn't hurt either as we only do this on time-jumps or
3573 * in the unlikely event of having been preempted here.
3574 */
3575 for (i = 4; --i; )
3576 {
3577 ev_tstamp diff;
3578 rtmn_diff = ev_rt_now - mn_now;
3579
3580 diff = odiff - rtmn_diff;
3581
3582 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
3583 return; /* all is well */
3584
3585 ev_rt_now = ev_time ();
3586 mn_now = get_clock ();
3587 now_floor = mn_now;
3588 }
3589
3590 /* no timer adjustment, as the monotonic clock doesn't jump */
3591 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3592# if EV_PERIODIC_ENABLE
3593 periodics_reschedule (EV_A);
3594# endif
3595 }
3596 else
3597#endif
3598 {
3599 ev_rt_now = ev_time ();
3600
3601 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3602 {
3603 /* adjust timers. this is easy, as the offset is the same for all of them */
3604 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3605#if EV_PERIODIC_ENABLE
3606 periodics_reschedule (EV_A);
3607#endif
3608 }
3609
3610 mn_now = ev_rt_now;
3611 }
467} 3612}
468 3613
469int 3614int
470ev_version_minor (void) 3615ev_run (EV_P_ int flags)
471{ 3616{
472 return EV_VERSION_MINOR; 3617#if EV_FEATURE_API
473} 3618 ++loop_depth;
3619#endif
474 3620
475int ev_init (int flags) 3621 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
476{ 3622
477 if (!ev_method) 3623 loop_done = EVBREAK_CANCEL;
3624
3625 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3626
3627 do
478 { 3628 {
479#if EV_USE_MONOTONIC 3629#if EV_VERIFY >= 2
3630 ev_verify (EV_A);
3631#endif
3632
3633#ifndef _WIN32
3634 if (expect_false (curpid)) /* penalise the forking check even more */
3635 if (expect_false (getpid () != curpid))
3636 {
3637 curpid = getpid ();
3638 postfork = 1;
3639 }
3640#endif
3641
3642#if EV_FORK_ENABLE
3643 /* we might have forked, so queue fork handlers */
3644 if (expect_false (postfork))
3645 if (forkcnt)
3646 {
3647 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3648 EV_INVOKE_PENDING;
3649 }
3650#endif
3651
3652#if EV_PREPARE_ENABLE
3653 /* queue prepare watchers (and execute them) */
3654 if (expect_false (preparecnt))
3655 {
3656 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3657 EV_INVOKE_PENDING;
3658 }
3659#endif
3660
3661 if (expect_false (loop_done))
3662 break;
3663
3664 /* we might have forked, so reify kernel state if necessary */
3665 if (expect_false (postfork))
3666 loop_fork (EV_A);
3667
3668 /* update fd-related kernel structures */
3669 fd_reify (EV_A);
3670
3671 /* calculate blocking time */
480 { 3672 {
481 struct timespec ts; 3673 ev_tstamp waittime = 0.;
482 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 3674 ev_tstamp sleeptime = 0.;
483 have_monotonic = 1; 3675
3676 /* remember old timestamp for io_blocktime calculation */
3677 ev_tstamp prev_mn_now = mn_now;
3678
3679 /* update time to cancel out callback processing overhead */
3680 time_update (EV_A_ 1e100);
3681
3682 /* from now on, we want a pipe-wake-up */
3683 pipe_write_wanted = 1;
3684
3685 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3686
3687 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3688 {
3689 waittime = MAX_BLOCKTIME;
3690
3691 if (timercnt)
3692 {
3693 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3694 if (waittime > to) waittime = to;
3695 }
3696
3697#if EV_PERIODIC_ENABLE
3698 if (periodiccnt)
3699 {
3700 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3701 if (waittime > to) waittime = to;
3702 }
3703#endif
3704
3705 /* don't let timeouts decrease the waittime below timeout_blocktime */
3706 if (expect_false (waittime < timeout_blocktime))
3707 waittime = timeout_blocktime;
3708
3709 /* at this point, we NEED to wait, so we have to ensure */
3710 /* to pass a minimum nonzero value to the backend */
3711 if (expect_false (waittime < backend_mintime))
3712 waittime = backend_mintime;
3713
3714 /* extra check because io_blocktime is commonly 0 */
3715 if (expect_false (io_blocktime))
3716 {
3717 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3718
3719 if (sleeptime > waittime - backend_mintime)
3720 sleeptime = waittime - backend_mintime;
3721
3722 if (expect_true (sleeptime > 0.))
3723 {
3724 ev_sleep (sleeptime);
3725 waittime -= sleeptime;
3726 }
3727 }
3728 }
3729
3730#if EV_FEATURE_API
3731 ++loop_count;
3732#endif
3733 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3734 backend_poll (EV_A_ waittime);
3735 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3736
3737 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3738
3739 ECB_MEMORY_FENCE_ACQUIRE;
3740 if (pipe_write_skipped)
3741 {
3742 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3743 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3744 }
3745
3746
3747 /* update ev_rt_now, do magic */
3748 time_update (EV_A_ waittime + sleeptime);
484 } 3749 }
485#endif
486 3750
487 ev_now = ev_time (); 3751 /* queue pending timers and reschedule them */
488 now = get_clock (); 3752 timers_reify (EV_A); /* relative timers called last */
489 now_floor = now; 3753#if EV_PERIODIC_ENABLE
490 diff = ev_now - now; 3754 periodics_reify (EV_A); /* absolute timers called first */
491
492 if (pipe (sigpipe))
493 return 0;
494
495 ev_method = EVMETHOD_NONE;
496#if EV_USE_EPOLL
497 if (ev_method == EVMETHOD_NONE) epoll_init (flags);
498#endif 3755#endif
499#if EV_USE_SELECT
500 if (ev_method == EVMETHOD_NONE) select_init (flags);
501#endif
502 3756
503 if (ev_method) 3757#if EV_IDLE_ENABLE
3758 /* queue idle watchers unless other events are pending */
3759 idle_reify (EV_A);
3760#endif
3761
3762#if EV_CHECK_ENABLE
3763 /* queue check watchers, to be executed first */
3764 if (expect_false (checkcnt))
3765 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3766#endif
3767
3768 EV_INVOKE_PENDING;
3769 }
3770 while (expect_true (
3771 activecnt
3772 && !loop_done
3773 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3774 ));
3775
3776 if (loop_done == EVBREAK_ONE)
3777 loop_done = EVBREAK_CANCEL;
3778
3779#if EV_FEATURE_API
3780 --loop_depth;
3781#endif
3782
3783 return activecnt;
3784}
3785
3786void
3787ev_break (EV_P_ int how) EV_NOEXCEPT
3788{
3789 loop_done = how;
3790}
3791
3792void
3793ev_ref (EV_P) EV_NOEXCEPT
3794{
3795 ++activecnt;
3796}
3797
3798void
3799ev_unref (EV_P) EV_NOEXCEPT
3800{
3801 --activecnt;
3802}
3803
3804void
3805ev_now_update (EV_P) EV_NOEXCEPT
3806{
3807 time_update (EV_A_ 1e100);
3808}
3809
3810void
3811ev_suspend (EV_P) EV_NOEXCEPT
3812{
3813 ev_now_update (EV_A);
3814}
3815
3816void
3817ev_resume (EV_P) EV_NOEXCEPT
3818{
3819 ev_tstamp mn_prev = mn_now;
3820
3821 ev_now_update (EV_A);
3822 timers_reschedule (EV_A_ mn_now - mn_prev);
3823#if EV_PERIODIC_ENABLE
3824 /* TODO: really do this? */
3825 periodics_reschedule (EV_A);
3826#endif
3827}
3828
3829/*****************************************************************************/
3830/* singly-linked list management, used when the expected list length is short */
3831
3832inline_size void
3833wlist_add (WL *head, WL elem)
3834{
3835 elem->next = *head;
3836 *head = elem;
3837}
3838
3839inline_size void
3840wlist_del (WL *head, WL elem)
3841{
3842 while (*head)
3843 {
3844 if (expect_true (*head == elem))
504 { 3845 {
505 ev_watcher_init (&sigev, sigcb); 3846 *head = elem->next;
506 siginit (); 3847 break;
507
508 ev_signal_init (&childev, childcb, SIGCHLD);
509 ev_signal_start (&childev);
510 } 3848 }
3849
3850 head = &(*head)->next;
3851 }
3852}
3853
3854/* internal, faster, version of ev_clear_pending */
3855inline_speed void
3856clear_pending (EV_P_ W w)
3857{
3858 if (w->pending)
511 } 3859 {
3860 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3861 w->pending = 0;
3862 }
3863}
512 3864
513 return ev_method; 3865int
3866ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
3867{
3868 W w_ = (W)w;
3869 int pending = w_->pending;
3870
3871 if (expect_true (pending))
3872 {
3873 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3874 p->w = (W)&pending_w;
3875 w_->pending = 0;
3876 return p->events;
3877 }
3878 else
3879 return 0;
3880}
3881
3882inline_size void
3883pri_adjust (EV_P_ W w)
3884{
3885 int pri = ev_priority (w);
3886 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3887 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3888 ev_set_priority (w, pri);
3889}
3890
3891inline_speed void
3892ev_start (EV_P_ W w, int active)
3893{
3894 pri_adjust (EV_A_ w);
3895 w->active = active;
3896 ev_ref (EV_A);
3897}
3898
3899inline_size void
3900ev_stop (EV_P_ W w)
3901{
3902 ev_unref (EV_A);
3903 w->active = 0;
514} 3904}
515 3905
516/*****************************************************************************/ 3906/*****************************************************************************/
517 3907
3908noinline
518void 3909void
519ev_fork_prepare (void) 3910ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
520{ 3911{
521 /* nop */ 3912 int fd = w->fd;
522}
523 3913
524void 3914 if (expect_false (ev_is_active (w)))
525ev_fork_parent (void) 3915 return;
526{
527 /* nop */
528}
529 3916
530void 3917 assert (("libev: ev_io_start called with negative fd", fd >= 0));
531ev_fork_child (void) 3918 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
532{
533#if EV_USE_EPOLL
534 if (ev_method == EVMETHOD_EPOLL)
535 epoll_postfork_child ();
536#endif
537 3919
538 ev_io_stop (&sigev); 3920 EV_FREQUENT_CHECK;
539 close (sigpipe [0]);
540 close (sigpipe [1]);
541 pipe (sigpipe);
542 siginit ();
543}
544 3921
545/*****************************************************************************/ 3922 ev_start (EV_A_ (W)w, 1);
3923 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
3924 wlist_add (&anfds[fd].head, (WL)w);
546 3925
547static void 3926 /* common bug, apparently */
548call_pending (void) 3927 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3928
3929 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3930 w->events &= ~EV__IOFDSET;
3931
3932 EV_FREQUENT_CHECK;
3933}
3934
3935noinline
3936void
3937ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
549{ 3938{
550 while (pendingcnt) 3939 clear_pending (EV_A_ (W)w);
3940 if (expect_false (!ev_is_active (w)))
3941 return;
3942
3943 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3944
3945 EV_FREQUENT_CHECK;
3946
3947 wlist_del (&anfds[w->fd].head, (WL)w);
3948 ev_stop (EV_A_ (W)w);
3949
3950 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3951
3952 EV_FREQUENT_CHECK;
3953}
3954
3955noinline
3956void
3957ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
3958{
3959 if (expect_false (ev_is_active (w)))
3960 return;
3961
3962 ev_at (w) += mn_now;
3963
3964 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3965
3966 EV_FREQUENT_CHECK;
3967
3968 ++timercnt;
3969 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3970 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
3971 ANHE_w (timers [ev_active (w)]) = (WT)w;
3972 ANHE_at_cache (timers [ev_active (w)]);
3973 upheap (timers, ev_active (w));
3974
3975 EV_FREQUENT_CHECK;
3976
3977 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3978}
3979
3980noinline
3981void
3982ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
3983{
3984 clear_pending (EV_A_ (W)w);
3985 if (expect_false (!ev_is_active (w)))
3986 return;
3987
3988 EV_FREQUENT_CHECK;
3989
551 { 3990 {
552 ANPENDING *p = pendings + --pendingcnt; 3991 int active = ev_active (w);
553 3992
554 if (p->w) 3993 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3994
3995 --timercnt;
3996
3997 if (expect_true (active < timercnt + HEAP0))
555 { 3998 {
556 p->w->pending = 0; 3999 timers [active] = timers [timercnt + HEAP0];
557 p->w->cb (p->w, p->events); 4000 adjustheap (timers, timercnt, active);
558 } 4001 }
4002 }
4003
4004 ev_at (w) -= mn_now;
4005
4006 ev_stop (EV_A_ (W)w);
4007
4008 EV_FREQUENT_CHECK;
4009}
4010
4011noinline
4012void
4013ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
4014{
4015 EV_FREQUENT_CHECK;
4016
4017 clear_pending (EV_A_ (W)w);
4018
4019 if (ev_is_active (w))
559 } 4020 {
560}
561
562static void
563timers_reify (void)
564{
565 while (timercnt && timers [0]->at <= now)
566 {
567 struct ev_timer *w = timers [0];
568
569 /* first reschedule or stop timer */
570 if (w->repeat) 4021 if (w->repeat)
571 { 4022 {
572 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
573 w->at = now + w->repeat; 4023 ev_at (w) = mn_now + w->repeat;
574 downheap ((WT *)timers, timercnt, 0); 4024 ANHE_at_cache (timers [ev_active (w)]);
4025 adjustheap (timers, timercnt, ev_active (w));
575 } 4026 }
576 else 4027 else
577 ev_timer_stop (w); /* nonrepeating: stop timer */ 4028 ev_timer_stop (EV_A_ w);
578
579 event ((W)w, EV_TIMEOUT);
580 }
581}
582
583static void
584periodics_reify (void)
585{
586 while (periodiccnt && periodics [0]->at <= ev_now)
587 { 4029 }
588 struct ev_periodic *w = periodics [0]; 4030 else if (w->repeat)
4031 {
4032 ev_at (w) = w->repeat;
4033 ev_timer_start (EV_A_ w);
4034 }
589 4035
590 /* first reschedule or stop timer */ 4036 EV_FREQUENT_CHECK;
4037}
4038
4039ev_tstamp
4040ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4041{
4042 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
4043}
4044
4045#if EV_PERIODIC_ENABLE
4046noinline
4047void
4048ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
4049{
4050 if (expect_false (ev_is_active (w)))
4051 return;
4052
4053 if (w->reschedule_cb)
4054 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
591 if (w->interval) 4055 else if (w->interval)
4056 {
4057 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
4058 periodic_recalc (EV_A_ w);
4059 }
4060 else
4061 ev_at (w) = w->offset;
4062
4063 EV_FREQUENT_CHECK;
4064
4065 ++periodiccnt;
4066 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
4067 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
4068 ANHE_w (periodics [ev_active (w)]) = (WT)w;
4069 ANHE_at_cache (periodics [ev_active (w)]);
4070 upheap (periodics, ev_active (w));
4071
4072 EV_FREQUENT_CHECK;
4073
4074 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
4075}
4076
4077noinline
4078void
4079ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
4080{
4081 clear_pending (EV_A_ (W)w);
4082 if (expect_false (!ev_is_active (w)))
4083 return;
4084
4085 EV_FREQUENT_CHECK;
4086
4087 {
4088 int active = ev_active (w);
4089
4090 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
4091
4092 --periodiccnt;
4093
4094 if (expect_true (active < periodiccnt + HEAP0))
4095 {
4096 periodics [active] = periodics [periodiccnt + HEAP0];
4097 adjustheap (periodics, periodiccnt, active);
4098 }
4099 }
4100
4101 ev_stop (EV_A_ (W)w);
4102
4103 EV_FREQUENT_CHECK;
4104}
4105
4106noinline
4107void
4108ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
4109{
4110 /* TODO: use adjustheap and recalculation */
4111 ev_periodic_stop (EV_A_ w);
4112 ev_periodic_start (EV_A_ w);
4113}
4114#endif
4115
4116#ifndef SA_RESTART
4117# define SA_RESTART 0
4118#endif
4119
4120#if EV_SIGNAL_ENABLE
4121
4122noinline
4123void
4124ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
4125{
4126 if (expect_false (ev_is_active (w)))
4127 return;
4128
4129 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4130
4131#if EV_MULTIPLICITY
4132 assert (("libev: a signal must not be attached to two different loops",
4133 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4134
4135 signals [w->signum - 1].loop = EV_A;
4136 ECB_MEMORY_FENCE_RELEASE;
4137#endif
4138
4139 EV_FREQUENT_CHECK;
4140
4141#if EV_USE_SIGNALFD
4142 if (sigfd == -2)
4143 {
4144 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
4145 if (sigfd < 0 && errno == EINVAL)
4146 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
4147
4148 if (sigfd >= 0)
592 { 4149 {
593 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 4150 fd_intern (sigfd); /* doing it twice will not hurt */
594 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 4151
595 downheap ((WT *)periodics, periodiccnt, 0); 4152 sigemptyset (&sigfd_set);
4153
4154 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4155 ev_set_priority (&sigfd_w, EV_MAXPRI);
4156 ev_io_start (EV_A_ &sigfd_w);
4157 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4158 }
4159 }
4160
4161 if (sigfd >= 0)
4162 {
4163 /* TODO: check .head */
4164 sigaddset (&sigfd_set, w->signum);
4165 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4166
4167 signalfd (sigfd, &sigfd_set, 0);
4168 }
4169#endif
4170
4171 ev_start (EV_A_ (W)w, 1);
4172 wlist_add (&signals [w->signum - 1].head, (WL)w);
4173
4174 if (!((WL)w)->next)
4175# if EV_USE_SIGNALFD
4176 if (sigfd < 0) /*TODO*/
4177# endif
4178 {
4179# ifdef _WIN32
4180 evpipe_init (EV_A);
4181
4182 signal (w->signum, ev_sighandler);
4183# else
4184 struct sigaction sa;
4185
4186 evpipe_init (EV_A);
4187
4188 sa.sa_handler = ev_sighandler;
4189 sigfillset (&sa.sa_mask);
4190 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
4191 sigaction (w->signum, &sa, 0);
4192
4193 if (origflags & EVFLAG_NOSIGMASK)
4194 {
4195 sigemptyset (&sa.sa_mask);
4196 sigaddset (&sa.sa_mask, w->signum);
4197 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4198 }
4199#endif
4200 }
4201
4202 EV_FREQUENT_CHECK;
4203}
4204
4205noinline
4206void
4207ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
4208{
4209 clear_pending (EV_A_ (W)w);
4210 if (expect_false (!ev_is_active (w)))
4211 return;
4212
4213 EV_FREQUENT_CHECK;
4214
4215 wlist_del (&signals [w->signum - 1].head, (WL)w);
4216 ev_stop (EV_A_ (W)w);
4217
4218 if (!signals [w->signum - 1].head)
4219 {
4220#if EV_MULTIPLICITY
4221 signals [w->signum - 1].loop = 0; /* unattach from signal */
4222#endif
4223#if EV_USE_SIGNALFD
4224 if (sigfd >= 0)
4225 {
4226 sigset_t ss;
4227
4228 sigemptyset (&ss);
4229 sigaddset (&ss, w->signum);
4230 sigdelset (&sigfd_set, w->signum);
4231
4232 signalfd (sigfd, &sigfd_set, 0);
4233 sigprocmask (SIG_UNBLOCK, &ss, 0);
596 } 4234 }
597 else 4235 else
598 ev_periodic_stop (w); /* nonrepeating: stop timer */ 4236#endif
599 4237 signal (w->signum, SIG_DFL);
600 event ((W)w, EV_PERIODIC);
601 } 4238 }
602}
603 4239
4240 EV_FREQUENT_CHECK;
4241}
4242
4243#endif
4244
4245#if EV_CHILD_ENABLE
4246
4247void
4248ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4249{
4250#if EV_MULTIPLICITY
4251 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
4252#endif
4253 if (expect_false (ev_is_active (w)))
4254 return;
4255
4256 EV_FREQUENT_CHECK;
4257
4258 ev_start (EV_A_ (W)w, 1);
4259 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4260
4261 EV_FREQUENT_CHECK;
4262}
4263
4264void
4265ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
4266{
4267 clear_pending (EV_A_ (W)w);
4268 if (expect_false (!ev_is_active (w)))
4269 return;
4270
4271 EV_FREQUENT_CHECK;
4272
4273 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4274 ev_stop (EV_A_ (W)w);
4275
4276 EV_FREQUENT_CHECK;
4277}
4278
4279#endif
4280
4281#if EV_STAT_ENABLE
4282
4283# ifdef _WIN32
4284# undef lstat
4285# define lstat(a,b) _stati64 (a,b)
4286# endif
4287
4288#define DEF_STAT_INTERVAL 5.0074891
4289#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4290#define MIN_STAT_INTERVAL 0.1074891
4291
4292noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4293
4294#if EV_USE_INOTIFY
4295
4296/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4297# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4298
4299noinline
604static void 4300static void
605periodics_reschedule (ev_tstamp diff) 4301infy_add (EV_P_ ev_stat *w)
606{ 4302{
607 int i; 4303 w->wd = inotify_add_watch (fs_fd, w->path,
4304 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4305 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4306 | IN_DONT_FOLLOW | IN_MASK_ADD);
608 4307
609 /* adjust periodics after time jump */ 4308 if (w->wd >= 0)
610 for (i = 0; i < periodiccnt; ++i) 4309 {
4310 struct statfs sfs;
4311
4312 /* now local changes will be tracked by inotify, but remote changes won't */
4313 /* unless the filesystem is known to be local, we therefore still poll */
4314 /* also do poll on <2.6.25, but with normal frequency */
4315
4316 if (!fs_2625)
4317 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4318 else if (!statfs (w->path, &sfs)
4319 && (sfs.f_type == 0x1373 /* devfs */
4320 || sfs.f_type == 0x4006 /* fat */
4321 || sfs.f_type == 0x4d44 /* msdos */
4322 || sfs.f_type == 0xEF53 /* ext2/3 */
4323 || sfs.f_type == 0x72b6 /* jffs2 */
4324 || sfs.f_type == 0x858458f6 /* ramfs */
4325 || sfs.f_type == 0x5346544e /* ntfs */
4326 || sfs.f_type == 0x3153464a /* jfs */
4327 || sfs.f_type == 0x9123683e /* btrfs */
4328 || sfs.f_type == 0x52654973 /* reiser3 */
4329 || sfs.f_type == 0x01021994 /* tmpfs */
4330 || sfs.f_type == 0x58465342 /* xfs */))
4331 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4332 else
4333 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
611 { 4334 }
612 struct ev_periodic *w = periodics [i]; 4335 else
4336 {
4337 /* can't use inotify, continue to stat */
4338 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
613 4339
614 if (w->interval) 4340 /* if path is not there, monitor some parent directory for speedup hints */
4341 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4342 /* but an efficiency issue only */
4343 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
615 { 4344 {
616 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 4345 char path [4096];
4346 strcpy (path, w->path);
617 4347
618 if (fabs (diff) >= 1e-4) 4348 do
619 { 4349 {
620 ev_periodic_stop (w); 4350 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
621 ev_periodic_start (w); 4351 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
622 4352
623 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 4353 char *pend = strrchr (path, '/');
4354
4355 if (!pend || pend == path)
4356 break;
4357
4358 *pend = 0;
4359 w->wd = inotify_add_watch (fs_fd, path, mask);
4360 }
4361 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4362 }
4363 }
4364
4365 if (w->wd >= 0)
4366 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4367
4368 /* now re-arm timer, if required */
4369 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4370 ev_timer_again (EV_A_ &w->timer);
4371 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4372}
4373
4374noinline
4375static void
4376infy_del (EV_P_ ev_stat *w)
4377{
4378 int slot;
4379 int wd = w->wd;
4380
4381 if (wd < 0)
4382 return;
4383
4384 w->wd = -2;
4385 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4386 wlist_del (&fs_hash [slot].head, (WL)w);
4387
4388 /* remove this watcher, if others are watching it, they will rearm */
4389 inotify_rm_watch (fs_fd, wd);
4390}
4391
4392noinline
4393static void
4394infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4395{
4396 if (slot < 0)
4397 /* overflow, need to check for all hash slots */
4398 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4399 infy_wd (EV_A_ slot, wd, ev);
4400 else
4401 {
4402 WL w_;
4403
4404 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4405 {
4406 ev_stat *w = (ev_stat *)w_;
4407 w_ = w_->next; /* lets us remove this watcher and all before it */
4408
4409 if (w->wd == wd || wd == -1)
4410 {
4411 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4412 {
4413 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4414 w->wd = -1;
4415 infy_add (EV_A_ w); /* re-add, no matter what */
4416 }
4417
4418 stat_timer_cb (EV_A_ &w->timer, 0);
624 } 4419 }
625 } 4420 }
626 } 4421 }
627} 4422}
628 4423
629static int 4424static void
630time_update_monotonic (void) 4425infy_cb (EV_P_ ev_io *w, int revents)
631{ 4426{
632 now = get_clock (); 4427 char buf [EV_INOTIFY_BUFSIZE];
4428 int ofs;
4429 int len = read (fs_fd, buf, sizeof (buf));
633 4430
634 if (expect_true (now - now_floor < MIN_TIMEJUMP * .5)) 4431 for (ofs = 0; ofs < len; )
4432 {
4433 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4434 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4435 ofs += sizeof (struct inotify_event) + ev->len;
635 { 4436 }
636 ev_now = now + diff; 4437}
4438
4439inline_size ecb_cold
4440void
4441ev_check_2625 (EV_P)
4442{
4443 /* kernels < 2.6.25 are borked
4444 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4445 */
4446 if (ev_linux_version () < 0x020619)
637 return 0; 4447 return;
4448
4449 fs_2625 = 1;
4450}
4451
4452inline_size int
4453infy_newfd (void)
4454{
4455#if defined IN_CLOEXEC && defined IN_NONBLOCK
4456 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4457 if (fd >= 0)
4458 return fd;
4459#endif
4460 return inotify_init ();
4461}
4462
4463inline_size void
4464infy_init (EV_P)
4465{
4466 if (fs_fd != -2)
4467 return;
4468
4469 fs_fd = -1;
4470
4471 ev_check_2625 (EV_A);
4472
4473 fs_fd = infy_newfd ();
4474
4475 if (fs_fd >= 0)
638 } 4476 {
4477 fd_intern (fs_fd);
4478 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4479 ev_set_priority (&fs_w, EV_MAXPRI);
4480 ev_io_start (EV_A_ &fs_w);
4481 ev_unref (EV_A);
4482 }
4483}
4484
4485inline_size void
4486infy_fork (EV_P)
4487{
4488 int slot;
4489
4490 if (fs_fd < 0)
4491 return;
4492
4493 ev_ref (EV_A);
4494 ev_io_stop (EV_A_ &fs_w);
4495 close (fs_fd);
4496 fs_fd = infy_newfd ();
4497
4498 if (fs_fd >= 0)
4499 {
4500 fd_intern (fs_fd);
4501 ev_io_set (&fs_w, fs_fd, EV_READ);
4502 ev_io_start (EV_A_ &fs_w);
4503 ev_unref (EV_A);
4504 }
4505
4506 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4507 {
4508 WL w_ = fs_hash [slot].head;
4509 fs_hash [slot].head = 0;
4510
4511 while (w_)
4512 {
4513 ev_stat *w = (ev_stat *)w_;
4514 w_ = w_->next; /* lets us add this watcher */
4515
4516 w->wd = -1;
4517
4518 if (fs_fd >= 0)
4519 infy_add (EV_A_ w); /* re-add, no matter what */
4520 else
4521 {
4522 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4523 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4524 ev_timer_again (EV_A_ &w->timer);
4525 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4526 }
4527 }
4528 }
4529}
4530
4531#endif
4532
4533#ifdef _WIN32
4534# define EV_LSTAT(p,b) _stati64 (p, b)
4535#else
4536# define EV_LSTAT(p,b) lstat (p, b)
4537#endif
4538
4539void
4540ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
4541{
4542 if (lstat (w->path, &w->attr) < 0)
4543 w->attr.st_nlink = 0;
4544 else if (!w->attr.st_nlink)
4545 w->attr.st_nlink = 1;
4546}
4547
4548noinline
4549static void
4550stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4551{
4552 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4553
4554 ev_statdata prev = w->attr;
4555 ev_stat_stat (EV_A_ w);
4556
4557 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4558 if (
4559 prev.st_dev != w->attr.st_dev
4560 || prev.st_ino != w->attr.st_ino
4561 || prev.st_mode != w->attr.st_mode
4562 || prev.st_nlink != w->attr.st_nlink
4563 || prev.st_uid != w->attr.st_uid
4564 || prev.st_gid != w->attr.st_gid
4565 || prev.st_rdev != w->attr.st_rdev
4566 || prev.st_size != w->attr.st_size
4567 || prev.st_atime != w->attr.st_atime
4568 || prev.st_mtime != w->attr.st_mtime
4569 || prev.st_ctime != w->attr.st_ctime
4570 ) {
4571 /* we only update w->prev on actual differences */
4572 /* in case we test more often than invoke the callback, */
4573 /* to ensure that prev is always different to attr */
4574 w->prev = prev;
4575
4576 #if EV_USE_INOTIFY
4577 if (fs_fd >= 0)
4578 {
4579 infy_del (EV_A_ w);
4580 infy_add (EV_A_ w);
4581 ev_stat_stat (EV_A_ w); /* avoid race... */
4582 }
4583 #endif
4584
4585 ev_feed_event (EV_A_ w, EV_STAT);
4586 }
4587}
4588
4589void
4590ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
4591{
4592 if (expect_false (ev_is_active (w)))
4593 return;
4594
4595 ev_stat_stat (EV_A_ w);
4596
4597 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4598 w->interval = MIN_STAT_INTERVAL;
4599
4600 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4601 ev_set_priority (&w->timer, ev_priority (w));
4602
4603#if EV_USE_INOTIFY
4604 infy_init (EV_A);
4605
4606 if (fs_fd >= 0)
4607 infy_add (EV_A_ w);
639 else 4608 else
4609#endif
4610 {
4611 ev_timer_again (EV_A_ &w->timer);
4612 ev_unref (EV_A);
640 { 4613 }
641 now_floor = now; 4614
642 ev_now = ev_time (); 4615 ev_start (EV_A_ (W)w, 1);
4616
4617 EV_FREQUENT_CHECK;
4618}
4619
4620void
4621ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
4622{
4623 clear_pending (EV_A_ (W)w);
4624 if (expect_false (!ev_is_active (w)))
643 return 1; 4625 return;
4626
4627 EV_FREQUENT_CHECK;
4628
4629#if EV_USE_INOTIFY
4630 infy_del (EV_A_ w);
4631#endif
4632
4633 if (ev_is_active (&w->timer))
644 } 4634 {
4635 ev_ref (EV_A);
4636 ev_timer_stop (EV_A_ &w->timer);
4637 }
4638
4639 ev_stop (EV_A_ (W)w);
4640
4641 EV_FREQUENT_CHECK;
4642}
4643#endif
4644
4645#if EV_IDLE_ENABLE
4646void
4647ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
4648{
4649 if (expect_false (ev_is_active (w)))
4650 return;
4651
4652 pri_adjust (EV_A_ (W)w);
4653
4654 EV_FREQUENT_CHECK;
4655
4656 {
4657 int active = ++idlecnt [ABSPRI (w)];
4658
4659 ++idleall;
4660 ev_start (EV_A_ (W)w, active);
4661
4662 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
4663 idles [ABSPRI (w)][active - 1] = w;
4664 }
4665
4666 EV_FREQUENT_CHECK;
4667}
4668
4669void
4670ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
4671{
4672 clear_pending (EV_A_ (W)w);
4673 if (expect_false (!ev_is_active (w)))
4674 return;
4675
4676 EV_FREQUENT_CHECK;
4677
4678 {
4679 int active = ev_active (w);
4680
4681 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4682 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4683
4684 ev_stop (EV_A_ (W)w);
4685 --idleall;
4686 }
4687
4688 EV_FREQUENT_CHECK;
4689}
4690#endif
4691
4692#if EV_PREPARE_ENABLE
4693void
4694ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
4695{
4696 if (expect_false (ev_is_active (w)))
4697 return;
4698
4699 EV_FREQUENT_CHECK;
4700
4701 ev_start (EV_A_ (W)w, ++preparecnt);
4702 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
4703 prepares [preparecnt - 1] = w;
4704
4705 EV_FREQUENT_CHECK;
4706}
4707
4708void
4709ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
4710{
4711 clear_pending (EV_A_ (W)w);
4712 if (expect_false (!ev_is_active (w)))
4713 return;
4714
4715 EV_FREQUENT_CHECK;
4716
4717 {
4718 int active = ev_active (w);
4719
4720 prepares [active - 1] = prepares [--preparecnt];
4721 ev_active (prepares [active - 1]) = active;
4722 }
4723
4724 ev_stop (EV_A_ (W)w);
4725
4726 EV_FREQUENT_CHECK;
4727}
4728#endif
4729
4730#if EV_CHECK_ENABLE
4731void
4732ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
4733{
4734 if (expect_false (ev_is_active (w)))
4735 return;
4736
4737 EV_FREQUENT_CHECK;
4738
4739 ev_start (EV_A_ (W)w, ++checkcnt);
4740 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
4741 checks [checkcnt - 1] = w;
4742
4743 EV_FREQUENT_CHECK;
4744}
4745
4746void
4747ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
4748{
4749 clear_pending (EV_A_ (W)w);
4750 if (expect_false (!ev_is_active (w)))
4751 return;
4752
4753 EV_FREQUENT_CHECK;
4754
4755 {
4756 int active = ev_active (w);
4757
4758 checks [active - 1] = checks [--checkcnt];
4759 ev_active (checks [active - 1]) = active;
4760 }
4761
4762 ev_stop (EV_A_ (W)w);
4763
4764 EV_FREQUENT_CHECK;
4765}
4766#endif
4767
4768#if EV_EMBED_ENABLE
4769noinline
4770void
4771ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
4772{
4773 ev_run (w->other, EVRUN_NOWAIT);
645} 4774}
646 4775
647static void 4776static void
648time_update (void) 4777embed_io_cb (EV_P_ ev_io *io, int revents)
649{ 4778{
650 int i; 4779 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
651 4780
652#if EV_USE_MONOTONIC 4781 if (ev_cb (w))
653 if (expect_true (have_monotonic)) 4782 ev_feed_event (EV_A_ (W)w, EV_EMBED);
654 {
655 if (time_update_monotonic ())
656 {
657 ev_tstamp odiff = diff;
658
659 for (i = 4; --i; ) /* loop a few times, before making important decisions */
660 {
661 diff = ev_now - now;
662
663 if (fabs (odiff - diff) < MIN_TIMEJUMP)
664 return; /* all is well */
665
666 ev_now = ev_time ();
667 now = get_clock ();
668 now_floor = now;
669 }
670
671 periodics_reschedule (diff - odiff);
672 /* no timer adjustment, as the monotonic clock doesn't jump */
673 }
674 }
675 else 4783 else
676#endif 4784 ev_run (w->other, EVRUN_NOWAIT);
4785}
4786
4787static void
4788embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4789{
4790 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4791
677 { 4792 {
678 ev_now = ev_time (); 4793 EV_P = w->other;
679 4794
680 if (expect_false (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 4795 while (fdchangecnt)
681 { 4796 {
682 periodics_reschedule (ev_now - now); 4797 fd_reify (EV_A);
683 4798 ev_run (EV_A_ EVRUN_NOWAIT);
684 /* adjust timers. this is easy, as the offset is the same for all */
685 for (i = 0; i < timercnt; ++i)
686 timers [i]->at += diff;
687 } 4799 }
688
689 now = ev_now;
690 } 4800 }
691} 4801}
692 4802
693int ev_loop_done; 4803static void
694 4804embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
695void ev_loop (int flags)
696{ 4805{
697 double block; 4806 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
698 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
699 4807
700 do 4808 ev_embed_stop (EV_A_ w);
4809
701 { 4810 {
702 /* queue check watchers (and execute them) */ 4811 EV_P = w->other;
703 if (expect_false (preparecnt))
704 {
705 queue_events ((W *)prepares, preparecnt, EV_PREPARE);
706 call_pending ();
707 }
708 4812
709 /* update fd-related kernel structures */ 4813 ev_loop_fork (EV_A);
710 fd_reify (); 4814 ev_run (EV_A_ EVRUN_NOWAIT);
711
712 /* calculate blocking time */
713
714 /* we only need this for !monotonic clockor timers, but as we basically
715 always have timers, we just calculate it always */
716#if EV_USE_MONOTONIC
717 if (expect_true (have_monotonic))
718 time_update_monotonic ();
719 else
720#endif
721 {
722 ev_now = ev_time ();
723 now = ev_now;
724 }
725
726 if (flags & EVLOOP_NONBLOCK || idlecnt)
727 block = 0.;
728 else
729 {
730 block = MAX_BLOCKTIME;
731
732 if (timercnt)
733 {
734 ev_tstamp to = timers [0]->at - now + method_fudge;
735 if (block > to) block = to;
736 }
737
738 if (periodiccnt)
739 {
740 ev_tstamp to = periodics [0]->at - ev_now + method_fudge;
741 if (block > to) block = to;
742 }
743
744 if (block < 0.) block = 0.;
745 }
746
747 method_poll (block);
748
749 /* update ev_now, do magic */
750 time_update ();
751
752 /* queue pending timers and reschedule them */
753 timers_reify (); /* relative timers called last */
754 periodics_reify (); /* absolute timers called first */
755
756 /* queue idle watchers unless io or timers are pending */
757 if (!pendingcnt)
758 queue_events ((W *)idles, idlecnt, EV_IDLE);
759
760 /* queue check watchers, to be executed first */
761 if (checkcnt)
762 queue_events ((W *)checks, checkcnt, EV_CHECK);
763
764 call_pending ();
765 } 4815 }
766 while (!ev_loop_done);
767 4816
768 if (ev_loop_done != 2) 4817 ev_embed_start (EV_A_ w);
769 ev_loop_done = 0;
770} 4818}
4819
4820#if 0
4821static void
4822embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4823{
4824 ev_idle_stop (EV_A_ idle);
4825}
4826#endif
4827
4828void
4829ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
4830{
4831 if (expect_false (ev_is_active (w)))
4832 return;
4833
4834 {
4835 EV_P = w->other;
4836 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4837 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4838 }
4839
4840 EV_FREQUENT_CHECK;
4841
4842 ev_set_priority (&w->io, ev_priority (w));
4843 ev_io_start (EV_A_ &w->io);
4844
4845 ev_prepare_init (&w->prepare, embed_prepare_cb);
4846 ev_set_priority (&w->prepare, EV_MINPRI);
4847 ev_prepare_start (EV_A_ &w->prepare);
4848
4849 ev_fork_init (&w->fork, embed_fork_cb);
4850 ev_fork_start (EV_A_ &w->fork);
4851
4852 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4853
4854 ev_start (EV_A_ (W)w, 1);
4855
4856 EV_FREQUENT_CHECK;
4857}
4858
4859void
4860ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
4861{
4862 clear_pending (EV_A_ (W)w);
4863 if (expect_false (!ev_is_active (w)))
4864 return;
4865
4866 EV_FREQUENT_CHECK;
4867
4868 ev_io_stop (EV_A_ &w->io);
4869 ev_prepare_stop (EV_A_ &w->prepare);
4870 ev_fork_stop (EV_A_ &w->fork);
4871
4872 ev_stop (EV_A_ (W)w);
4873
4874 EV_FREQUENT_CHECK;
4875}
4876#endif
4877
4878#if EV_FORK_ENABLE
4879void
4880ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
4881{
4882 if (expect_false (ev_is_active (w)))
4883 return;
4884
4885 EV_FREQUENT_CHECK;
4886
4887 ev_start (EV_A_ (W)w, ++forkcnt);
4888 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
4889 forks [forkcnt - 1] = w;
4890
4891 EV_FREQUENT_CHECK;
4892}
4893
4894void
4895ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
4896{
4897 clear_pending (EV_A_ (W)w);
4898 if (expect_false (!ev_is_active (w)))
4899 return;
4900
4901 EV_FREQUENT_CHECK;
4902
4903 {
4904 int active = ev_active (w);
4905
4906 forks [active - 1] = forks [--forkcnt];
4907 ev_active (forks [active - 1]) = active;
4908 }
4909
4910 ev_stop (EV_A_ (W)w);
4911
4912 EV_FREQUENT_CHECK;
4913}
4914#endif
4915
4916#if EV_CLEANUP_ENABLE
4917void
4918ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
4919{
4920 if (expect_false (ev_is_active (w)))
4921 return;
4922
4923 EV_FREQUENT_CHECK;
4924
4925 ev_start (EV_A_ (W)w, ++cleanupcnt);
4926 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
4927 cleanups [cleanupcnt - 1] = w;
4928
4929 /* cleanup watchers should never keep a refcount on the loop */
4930 ev_unref (EV_A);
4931 EV_FREQUENT_CHECK;
4932}
4933
4934void
4935ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
4936{
4937 clear_pending (EV_A_ (W)w);
4938 if (expect_false (!ev_is_active (w)))
4939 return;
4940
4941 EV_FREQUENT_CHECK;
4942 ev_ref (EV_A);
4943
4944 {
4945 int active = ev_active (w);
4946
4947 cleanups [active - 1] = cleanups [--cleanupcnt];
4948 ev_active (cleanups [active - 1]) = active;
4949 }
4950
4951 ev_stop (EV_A_ (W)w);
4952
4953 EV_FREQUENT_CHECK;
4954}
4955#endif
4956
4957#if EV_ASYNC_ENABLE
4958void
4959ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
4960{
4961 if (expect_false (ev_is_active (w)))
4962 return;
4963
4964 w->sent = 0;
4965
4966 evpipe_init (EV_A);
4967
4968 EV_FREQUENT_CHECK;
4969
4970 ev_start (EV_A_ (W)w, ++asynccnt);
4971 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
4972 asyncs [asynccnt - 1] = w;
4973
4974 EV_FREQUENT_CHECK;
4975}
4976
4977void
4978ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
4979{
4980 clear_pending (EV_A_ (W)w);
4981 if (expect_false (!ev_is_active (w)))
4982 return;
4983
4984 EV_FREQUENT_CHECK;
4985
4986 {
4987 int active = ev_active (w);
4988
4989 asyncs [active - 1] = asyncs [--asynccnt];
4990 ev_active (asyncs [active - 1]) = active;
4991 }
4992
4993 ev_stop (EV_A_ (W)w);
4994
4995 EV_FREQUENT_CHECK;
4996}
4997
4998void
4999ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
5000{
5001 w->sent = 1;
5002 evpipe_write (EV_A_ &async_pending);
5003}
5004#endif
771 5005
772/*****************************************************************************/ 5006/*****************************************************************************/
773 5007
774static void
775wlist_add (WL *head, WL elem)
776{
777 elem->next = *head;
778 *head = elem;
779}
780
781static void
782wlist_del (WL *head, WL elem)
783{
784 while (*head)
785 {
786 if (*head == elem)
787 {
788 *head = elem->next;
789 return;
790 }
791
792 head = &(*head)->next;
793 }
794}
795
796static void
797ev_clear_pending (W w)
798{
799 if (w->pending)
800 {
801 pendings [w->pending - 1].w = 0;
802 w->pending = 0;
803 }
804}
805
806static void
807ev_start (W w, int active)
808{
809 w->active = active;
810}
811
812static void
813ev_stop (W w)
814{
815 w->active = 0;
816}
817
818/*****************************************************************************/
819
820void
821ev_io_start (struct ev_io *w)
822{
823 int fd = w->fd;
824
825 if (ev_is_active (w))
826 return;
827
828 assert (("ev_io_start called with negative fd", fd >= 0));
829
830 ev_start ((W)w, 1);
831 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
832 wlist_add ((WL *)&anfds[fd].head, (WL)w);
833
834 fd_change (fd);
835}
836
837void
838ev_io_stop (struct ev_io *w)
839{
840 ev_clear_pending ((W)w);
841 if (!ev_is_active (w))
842 return;
843
844 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
845 ev_stop ((W)w);
846
847 fd_change (w->fd);
848}
849
850void
851ev_timer_start (struct ev_timer *w)
852{
853 if (ev_is_active (w))
854 return;
855
856 w->at += now;
857
858 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
859
860 ev_start ((W)w, ++timercnt);
861 array_needsize (timers, timermax, timercnt, );
862 timers [timercnt - 1] = w;
863 upheap ((WT *)timers, timercnt - 1);
864}
865
866void
867ev_timer_stop (struct ev_timer *w)
868{
869 ev_clear_pending ((W)w);
870 if (!ev_is_active (w))
871 return;
872
873 if (w->active < timercnt--)
874 {
875 timers [w->active - 1] = timers [timercnt];
876 downheap ((WT *)timers, timercnt, w->active - 1);
877 }
878
879 w->at = w->repeat;
880
881 ev_stop ((W)w);
882}
883
884void
885ev_timer_again (struct ev_timer *w)
886{
887 if (ev_is_active (w))
888 {
889 if (w->repeat)
890 {
891 w->at = now + w->repeat;
892 downheap ((WT *)timers, timercnt, w->active - 1);
893 }
894 else
895 ev_timer_stop (w);
896 }
897 else if (w->repeat)
898 ev_timer_start (w);
899}
900
901void
902ev_periodic_start (struct ev_periodic *w)
903{
904 if (ev_is_active (w))
905 return;
906
907 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
908
909 /* this formula differs from the one in periodic_reify because we do not always round up */
910 if (w->interval)
911 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval;
912
913 ev_start ((W)w, ++periodiccnt);
914 array_needsize (periodics, periodicmax, periodiccnt, );
915 periodics [periodiccnt - 1] = w;
916 upheap ((WT *)periodics, periodiccnt - 1);
917}
918
919void
920ev_periodic_stop (struct ev_periodic *w)
921{
922 ev_clear_pending ((W)w);
923 if (!ev_is_active (w))
924 return;
925
926 if (w->active < periodiccnt--)
927 {
928 periodics [w->active - 1] = periodics [periodiccnt];
929 downheap ((WT *)periodics, periodiccnt, w->active - 1);
930 }
931
932 ev_stop ((W)w);
933}
934
935void
936ev_signal_start (struct ev_signal *w)
937{
938 if (ev_is_active (w))
939 return;
940
941 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
942
943 ev_start ((W)w, 1);
944 array_needsize (signals, signalmax, w->signum, signals_init);
945 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
946
947 if (!w->next)
948 {
949 struct sigaction sa;
950 sa.sa_handler = sighandler;
951 sigfillset (&sa.sa_mask);
952 sa.sa_flags = 0;
953 sigaction (w->signum, &sa, 0);
954 }
955}
956
957void
958ev_signal_stop (struct ev_signal *w)
959{
960 ev_clear_pending ((W)w);
961 if (!ev_is_active (w))
962 return;
963
964 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
965 ev_stop ((W)w);
966
967 if (!signals [w->signum - 1].head)
968 signal (w->signum, SIG_DFL);
969}
970
971void
972ev_idle_start (struct ev_idle *w)
973{
974 if (ev_is_active (w))
975 return;
976
977 ev_start ((W)w, ++idlecnt);
978 array_needsize (idles, idlemax, idlecnt, );
979 idles [idlecnt - 1] = w;
980}
981
982void
983ev_idle_stop (struct ev_idle *w)
984{
985 ev_clear_pending ((W)w);
986 if (ev_is_active (w))
987 return;
988
989 idles [w->active - 1] = idles [--idlecnt];
990 ev_stop ((W)w);
991}
992
993void
994ev_prepare_start (struct ev_prepare *w)
995{
996 if (ev_is_active (w))
997 return;
998
999 ev_start ((W)w, ++preparecnt);
1000 array_needsize (prepares, preparemax, preparecnt, );
1001 prepares [preparecnt - 1] = w;
1002}
1003
1004void
1005ev_prepare_stop (struct ev_prepare *w)
1006{
1007 ev_clear_pending ((W)w);
1008 if (ev_is_active (w))
1009 return;
1010
1011 prepares [w->active - 1] = prepares [--preparecnt];
1012 ev_stop ((W)w);
1013}
1014
1015void
1016ev_check_start (struct ev_check *w)
1017{
1018 if (ev_is_active (w))
1019 return;
1020
1021 ev_start ((W)w, ++checkcnt);
1022 array_needsize (checks, checkmax, checkcnt, );
1023 checks [checkcnt - 1] = w;
1024}
1025
1026void
1027ev_check_stop (struct ev_check *w)
1028{
1029 ev_clear_pending ((W)w);
1030 if (ev_is_active (w))
1031 return;
1032
1033 checks [w->active - 1] = checks [--checkcnt];
1034 ev_stop ((W)w);
1035}
1036
1037void
1038ev_child_start (struct ev_child *w)
1039{
1040 if (ev_is_active (w))
1041 return;
1042
1043 ev_start ((W)w, 1);
1044 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1045}
1046
1047void
1048ev_child_stop (struct ev_child *w)
1049{
1050 ev_clear_pending ((W)w);
1051 if (ev_is_active (w))
1052 return;
1053
1054 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1055 ev_stop ((W)w);
1056}
1057
1058/*****************************************************************************/
1059
1060struct ev_once 5008struct ev_once
1061{ 5009{
1062 struct ev_io io; 5010 ev_io io;
1063 struct ev_timer to; 5011 ev_timer to;
1064 void (*cb)(int revents, void *arg); 5012 void (*cb)(int revents, void *arg);
1065 void *arg; 5013 void *arg;
1066}; 5014};
1067 5015
1068static void 5016static void
1069once_cb (struct ev_once *once, int revents) 5017once_cb (EV_P_ struct ev_once *once, int revents)
1070{ 5018{
1071 void (*cb)(int revents, void *arg) = once->cb; 5019 void (*cb)(int revents, void *arg) = once->cb;
1072 void *arg = once->arg; 5020 void *arg = once->arg;
1073 5021
1074 ev_io_stop (&once->io); 5022 ev_io_stop (EV_A_ &once->io);
1075 ev_timer_stop (&once->to); 5023 ev_timer_stop (EV_A_ &once->to);
1076 free (once); 5024 ev_free (once);
1077 5025
1078 cb (revents, arg); 5026 cb (revents, arg);
1079} 5027}
1080 5028
1081static void 5029static void
1082once_cb_io (struct ev_io *w, int revents) 5030once_cb_io (EV_P_ ev_io *w, int revents)
1083{ 5031{
1084 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 5032 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
5033
5034 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1085} 5035}
1086 5036
1087static void 5037static void
1088once_cb_to (struct ev_timer *w, int revents) 5038once_cb_to (EV_P_ ev_timer *w, int revents)
1089{ 5039{
1090 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 5040 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
1091}
1092 5041
5042 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
5043}
5044
1093void 5045void
1094ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 5046ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
1095{ 5047{
1096 struct ev_once *once = malloc (sizeof (struct ev_once)); 5048 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1097 5049
1098 if (!once)
1099 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1100 else
1101 {
1102 once->cb = cb; 5050 once->cb = cb;
1103 once->arg = arg; 5051 once->arg = arg;
1104 5052
1105 ev_watcher_init (&once->io, once_cb_io); 5053 ev_init (&once->io, once_cb_io);
1106 if (fd >= 0) 5054 if (fd >= 0)
5055 {
5056 ev_io_set (&once->io, fd, events);
5057 ev_io_start (EV_A_ &once->io);
5058 }
5059
5060 ev_init (&once->to, once_cb_to);
5061 if (timeout >= 0.)
5062 {
5063 ev_timer_set (&once->to, timeout, 0.);
5064 ev_timer_start (EV_A_ &once->to);
5065 }
5066}
5067
5068/*****************************************************************************/
5069
5070#if EV_WALK_ENABLE
5071ecb_cold
5072void
5073ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5074{
5075 int i, j;
5076 ev_watcher_list *wl, *wn;
5077
5078 if (types & (EV_IO | EV_EMBED))
5079 for (i = 0; i < anfdmax; ++i)
5080 for (wl = anfds [i].head; wl; )
1107 { 5081 {
1108 ev_io_set (&once->io, fd, events); 5082 wn = wl->next;
1109 ev_io_start (&once->io); 5083
5084#if EV_EMBED_ENABLE
5085 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5086 {
5087 if (types & EV_EMBED)
5088 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5089 }
5090 else
5091#endif
5092#if EV_USE_INOTIFY
5093 if (ev_cb ((ev_io *)wl) == infy_cb)
5094 ;
5095 else
5096#endif
5097 if ((ev_io *)wl != &pipe_w)
5098 if (types & EV_IO)
5099 cb (EV_A_ EV_IO, wl);
5100
5101 wl = wn;
1110 } 5102 }
1111 5103
1112 ev_watcher_init (&once->to, once_cb_to); 5104 if (types & (EV_TIMER | EV_STAT))
1113 if (timeout >= 0.) 5105 for (i = timercnt + HEAP0; i-- > HEAP0; )
5106#if EV_STAT_ENABLE
5107 /*TODO: timer is not always active*/
5108 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1114 { 5109 {
1115 ev_timer_set (&once->to, timeout, 0.); 5110 if (types & EV_STAT)
1116 ev_timer_start (&once->to); 5111 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1117 } 5112 }
1118 } 5113 else
1119} 5114#endif
5115 if (types & EV_TIMER)
5116 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1120 5117
1121/*****************************************************************************/ 5118#if EV_PERIODIC_ENABLE
5119 if (types & EV_PERIODIC)
5120 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5121 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5122#endif
1122 5123
1123#if 0 5124#if EV_IDLE_ENABLE
5125 if (types & EV_IDLE)
5126 for (j = NUMPRI; j--; )
5127 for (i = idlecnt [j]; i--; )
5128 cb (EV_A_ EV_IDLE, idles [j][i]);
5129#endif
1124 5130
1125struct ev_io wio; 5131#if EV_FORK_ENABLE
5132 if (types & EV_FORK)
5133 for (i = forkcnt; i--; )
5134 if (ev_cb (forks [i]) != embed_fork_cb)
5135 cb (EV_A_ EV_FORK, forks [i]);
5136#endif
1126 5137
1127static void 5138#if EV_ASYNC_ENABLE
1128sin_cb (struct ev_io *w, int revents) 5139 if (types & EV_ASYNC)
1129{ 5140 for (i = asynccnt; i--; )
1130 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents); 5141 cb (EV_A_ EV_ASYNC, asyncs [i]);
1131} 5142#endif
1132 5143
1133static void 5144#if EV_PREPARE_ENABLE
1134ocb (struct ev_timer *w, int revents) 5145 if (types & EV_PREPARE)
1135{ 5146 for (i = preparecnt; i--; )
1136 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data); 5147# if EV_EMBED_ENABLE
1137 ev_timer_stop (w); 5148 if (ev_cb (prepares [i]) != embed_prepare_cb)
1138 ev_timer_start (w);
1139}
1140
1141static void
1142scb (struct ev_signal *w, int revents)
1143{
1144 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1145 ev_io_stop (&wio);
1146 ev_io_start (&wio);
1147}
1148
1149static void
1150gcb (struct ev_signal *w, int revents)
1151{
1152 fprintf (stderr, "generic %x\n", revents);
1153
1154}
1155
1156int main (void)
1157{
1158 ev_init (0);
1159
1160 ev_io_init (&wio, sin_cb, 0, EV_READ);
1161 ev_io_start (&wio);
1162
1163 struct ev_timer t[10000];
1164
1165#if 0
1166 int i;
1167 for (i = 0; i < 10000; ++i)
1168 {
1169 struct ev_timer *w = t + i;
1170 ev_watcher_init (w, ocb, i);
1171 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1172 ev_timer_start (w);
1173 if (drand48 () < 0.5)
1174 ev_timer_stop (w);
1175 }
1176#endif 5149# endif
1177 5150 cb (EV_A_ EV_PREPARE, prepares [i]);
1178 struct ev_timer t1;
1179 ev_timer_init (&t1, ocb, 5, 10);
1180 ev_timer_start (&t1);
1181
1182 struct ev_signal sig;
1183 ev_signal_init (&sig, scb, SIGQUIT);
1184 ev_signal_start (&sig);
1185
1186 struct ev_check cw;
1187 ev_check_init (&cw, gcb);
1188 ev_check_start (&cw);
1189
1190 struct ev_idle iw;
1191 ev_idle_init (&iw, gcb);
1192 ev_idle_start (&iw);
1193
1194 ev_loop (0);
1195
1196 return 0;
1197}
1198
1199#endif 5151#endif
1200 5152
5153#if EV_CHECK_ENABLE
5154 if (types & EV_CHECK)
5155 for (i = checkcnt; i--; )
5156 cb (EV_A_ EV_CHECK, checks [i]);
5157#endif
1201 5158
5159#if EV_SIGNAL_ENABLE
5160 if (types & EV_SIGNAL)
5161 for (i = 0; i < EV_NSIG - 1; ++i)
5162 for (wl = signals [i].head; wl; )
5163 {
5164 wn = wl->next;
5165 cb (EV_A_ EV_SIGNAL, wl);
5166 wl = wn;
5167 }
5168#endif
1202 5169
5170#if EV_CHILD_ENABLE
5171 if (types & EV_CHILD)
5172 for (i = (EV_PID_HASHSIZE); i--; )
5173 for (wl = childs [i]; wl; )
5174 {
5175 wn = wl->next;
5176 cb (EV_A_ EV_CHILD, wl);
5177 wl = wn;
5178 }
5179#endif
5180/* EV_STAT 0x00001000 /* stat data changed */
5181/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5182}
5183#endif
1203 5184
5185#if EV_MULTIPLICITY
5186 #include "ev_wrap.h"
5187#endif
5188

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines