ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.34 by root, Thu Nov 1 11:43:11 2007 UTC vs.
Revision 1.494 by root, Sun Jun 23 23:28:45 2019 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
6 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
7 * met:
8 * 9 *
9 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
10 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
11 * 12 *
12 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
13 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
14 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
15 * with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
28 */ 38 */
39
40/* this big block deduces configuration from config.h */
41#ifndef EV_STANDALONE
29#if EV_USE_CONFIG_H 42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
30# include "config.h" 45# include "config.h"
31#endif 46# endif
32 47
33#include <math.h> 48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
68# if HAVE_CLOCK_GETTIME
69# ifndef EV_USE_MONOTONIC
70# define EV_USE_MONOTONIC 1
71# endif
72# ifndef EV_USE_REALTIME
73# define EV_USE_REALTIME 0
74# endif
75# else
76# ifndef EV_USE_MONOTONIC
77# define EV_USE_MONOTONIC 0
78# endif
79# ifndef EV_USE_REALTIME
80# define EV_USE_REALTIME 0
81# endif
82# endif
83
84# if HAVE_NANOSLEEP
85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
109# endif
110
111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
118# endif
119
120# if HAVE_LINUX_AIO_ABI_H
121# ifndef EV_USE_LINUXAIO
122# define EV_USE_LINUXAIO EV_FEATURE_BACKENDS
123# endif
124# else
125# undef EV_USE_LINUXAIO
126# define EV_USE_LINUXAIO 0
127# endif
128
129# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
130# ifndef EV_USE_KQUEUE
131# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
132# endif
133# else
134# undef EV_USE_KQUEUE
135# define EV_USE_KQUEUE 0
136# endif
137
138# if HAVE_PORT_H && HAVE_PORT_CREATE
139# ifndef EV_USE_PORT
140# define EV_USE_PORT EV_FEATURE_BACKENDS
141# endif
142# else
143# undef EV_USE_PORT
144# define EV_USE_PORT 0
145# endif
146
147# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
148# ifndef EV_USE_INOTIFY
149# define EV_USE_INOTIFY EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_INOTIFY
153# define EV_USE_INOTIFY 0
154# endif
155
156# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
157# ifndef EV_USE_SIGNALFD
158# define EV_USE_SIGNALFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_SIGNALFD
162# define EV_USE_SIGNALFD 0
163# endif
164
165# if HAVE_EVENTFD
166# ifndef EV_USE_EVENTFD
167# define EV_USE_EVENTFD EV_FEATURE_OS
168# endif
169# else
170# undef EV_USE_EVENTFD
171# define EV_USE_EVENTFD 0
172# endif
173
174#endif
175
176/* OS X, in its infinite idiocy, actually HARDCODES
177 * a limit of 1024 into their select. Where people have brains,
178 * OS X engineers apparently have a vacuum. Or maybe they were
179 * ordered to have a vacuum, or they do anything for money.
180 * This might help. Or not.
181 * Note that this must be defined early, as other include files
182 * will rely on this define as well.
183 */
184#define _DARWIN_UNLIMITED_SELECT 1
185
34#include <stdlib.h> 186#include <stdlib.h>
35#include <unistd.h> 187#include <string.h>
36#include <fcntl.h> 188#include <fcntl.h>
37#include <signal.h>
38#include <stddef.h> 189#include <stddef.h>
39 190
40#include <stdio.h> 191#include <stdio.h>
41 192
42#include <assert.h> 193#include <assert.h>
43#include <errno.h> 194#include <errno.h>
44#include <sys/types.h> 195#include <sys/types.h>
45#include <sys/wait.h>
46#include <sys/time.h>
47#include <time.h> 196#include <time.h>
197#include <limits.h>
198
199#include <signal.h>
200
201#ifdef EV_H
202# include EV_H
203#else
204# include "ev.h"
205#endif
206
207#if EV_NO_THREADS
208# undef EV_NO_SMP
209# define EV_NO_SMP 1
210# undef ECB_NO_THREADS
211# define ECB_NO_THREADS 1
212#endif
213#if EV_NO_SMP
214# undef EV_NO_SMP
215# define ECB_NO_SMP 1
216#endif
217
218#ifndef _WIN32
219# include <sys/time.h>
220# include <sys/wait.h>
221# include <unistd.h>
222#else
223# include <io.h>
224# define WIN32_LEAN_AND_MEAN
225# include <winsock2.h>
226# include <windows.h>
227# ifndef EV_SELECT_IS_WINSOCKET
228# define EV_SELECT_IS_WINSOCKET 1
229# endif
230# undef EV_AVOID_STDIO
231#endif
232
233/* this block tries to deduce configuration from header-defined symbols and defaults */
234
235/* try to deduce the maximum number of signals on this platform */
236#if defined EV_NSIG
237/* use what's provided */
238#elif defined NSIG
239# define EV_NSIG (NSIG)
240#elif defined _NSIG
241# define EV_NSIG (_NSIG)
242#elif defined SIGMAX
243# define EV_NSIG (SIGMAX+1)
244#elif defined SIG_MAX
245# define EV_NSIG (SIG_MAX+1)
246#elif defined _SIG_MAX
247# define EV_NSIG (_SIG_MAX+1)
248#elif defined MAXSIG
249# define EV_NSIG (MAXSIG+1)
250#elif defined MAX_SIG
251# define EV_NSIG (MAX_SIG+1)
252#elif defined SIGARRAYSIZE
253# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
254#elif defined _sys_nsig
255# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
256#else
257# define EV_NSIG (8 * sizeof (sigset_t) + 1)
258#endif
259
260#ifndef EV_USE_FLOOR
261# define EV_USE_FLOOR 0
262#endif
263
264#ifndef EV_USE_CLOCK_SYSCALL
265# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
266# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
267# else
268# define EV_USE_CLOCK_SYSCALL 0
269# endif
270#endif
271
272#if !(_POSIX_TIMERS > 0)
273# ifndef EV_USE_MONOTONIC
274# define EV_USE_MONOTONIC 0
275# endif
276# ifndef EV_USE_REALTIME
277# define EV_USE_REALTIME 0
278# endif
279#endif
48 280
49#ifndef EV_USE_MONOTONIC 281#ifndef EV_USE_MONOTONIC
50# ifdef CLOCK_MONOTONIC 282# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
283# define EV_USE_MONOTONIC EV_FEATURE_OS
284# else
285# define EV_USE_MONOTONIC 0
286# endif
287#endif
288
289#ifndef EV_USE_REALTIME
290# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
291#endif
292
293#ifndef EV_USE_NANOSLEEP
294# if _POSIX_C_SOURCE >= 199309L
295# define EV_USE_NANOSLEEP EV_FEATURE_OS
296# else
297# define EV_USE_NANOSLEEP 0
298# endif
299#endif
300
301#ifndef EV_USE_SELECT
302# define EV_USE_SELECT EV_FEATURE_BACKENDS
303#endif
304
305#ifndef EV_USE_POLL
306# ifdef _WIN32
307# define EV_USE_POLL 0
308# else
309# define EV_USE_POLL EV_FEATURE_BACKENDS
310# endif
311#endif
312
313#ifndef EV_USE_EPOLL
314# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
315# define EV_USE_EPOLL EV_FEATURE_BACKENDS
316# else
317# define EV_USE_EPOLL 0
318# endif
319#endif
320
321#ifndef EV_USE_KQUEUE
322# define EV_USE_KQUEUE 0
323#endif
324
325#ifndef EV_USE_PORT
326# define EV_USE_PORT 0
327#endif
328
329#ifndef EV_USE_LINUXAIO
330# if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
331# define EV_USE_LINUXAIO 1
332# else
333# define EV_USE_LINUXAIO 0
334# endif
335#endif
336
337#ifndef EV_USE_INOTIFY
338# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
339# define EV_USE_INOTIFY EV_FEATURE_OS
340# else
341# define EV_USE_INOTIFY 0
342# endif
343#endif
344
345#ifndef EV_PID_HASHSIZE
346# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
347#endif
348
349#ifndef EV_INOTIFY_HASHSIZE
350# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
351#endif
352
353#ifndef EV_USE_EVENTFD
354# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
355# define EV_USE_EVENTFD EV_FEATURE_OS
356# else
357# define EV_USE_EVENTFD 0
358# endif
359#endif
360
361#ifndef EV_USE_SIGNALFD
362# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
363# define EV_USE_SIGNALFD EV_FEATURE_OS
364# else
365# define EV_USE_SIGNALFD 0
366# endif
367#endif
368
369#if 0 /* debugging */
370# define EV_VERIFY 3
371# define EV_USE_4HEAP 1
372# define EV_HEAP_CACHE_AT 1
373#endif
374
375#ifndef EV_VERIFY
376# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
377#endif
378
379#ifndef EV_USE_4HEAP
380# define EV_USE_4HEAP EV_FEATURE_DATA
381#endif
382
383#ifndef EV_HEAP_CACHE_AT
384# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
385#endif
386
387#ifdef __ANDROID__
388/* supposedly, android doesn't typedef fd_mask */
389# undef EV_USE_SELECT
390# define EV_USE_SELECT 0
391/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
392# undef EV_USE_CLOCK_SYSCALL
393# define EV_USE_CLOCK_SYSCALL 0
394#endif
395
396/* aix's poll.h seems to cause lots of trouble */
397#ifdef _AIX
398/* AIX has a completely broken poll.h header */
399# undef EV_USE_POLL
400# define EV_USE_POLL 0
401#endif
402
403/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
404/* which makes programs even slower. might work on other unices, too. */
405#if EV_USE_CLOCK_SYSCALL
406# include <sys/syscall.h>
407# ifdef SYS_clock_gettime
408# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
409# undef EV_USE_MONOTONIC
51# define EV_USE_MONOTONIC 1 410# define EV_USE_MONOTONIC 1
411# else
412# undef EV_USE_CLOCK_SYSCALL
413# define EV_USE_CLOCK_SYSCALL 0
52# endif 414# endif
53#endif 415#endif
54 416
55#ifndef EV_USE_SELECT 417/* this block fixes any misconfiguration where we know we run into trouble otherwise */
56# define EV_USE_SELECT 1
57#endif
58 418
59#ifndef EV_USE_EPOLL 419#ifndef CLOCK_MONOTONIC
420# undef EV_USE_MONOTONIC
60# define EV_USE_EPOLL 0 421# define EV_USE_MONOTONIC 0
61#endif 422#endif
62 423
63#ifndef CLOCK_REALTIME 424#ifndef CLOCK_REALTIME
425# undef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 426# define EV_USE_REALTIME 0
65#endif 427#endif
66#ifndef EV_USE_REALTIME 428
67# define EV_USE_REALTIME 1 /* posix requirement, but might be slower */ 429#if !EV_STAT_ENABLE
430# undef EV_USE_INOTIFY
431# define EV_USE_INOTIFY 0
432#endif
433
434#if !EV_USE_NANOSLEEP
435/* hp-ux has it in sys/time.h, which we unconditionally include above */
436# if !defined _WIN32 && !defined __hpux
437# include <sys/select.h>
68#endif 438# endif
439#endif
440
441#if EV_USE_LINUXAIO
442# include <sys/syscall.h>
443# if !SYS_io_getevents || !EV_USE_EPOLL
444# undef EV_USE_LINUXAIO
445# define EV_USE_LINUXAIO 0
446# endif
447#endif
448
449#if EV_USE_INOTIFY
450# include <sys/statfs.h>
451# include <sys/inotify.h>
452/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
453# ifndef IN_DONT_FOLLOW
454# undef EV_USE_INOTIFY
455# define EV_USE_INOTIFY 0
456# endif
457#endif
458
459#if EV_USE_EVENTFD
460/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
461# include <stdint.h>
462# ifndef EFD_NONBLOCK
463# define EFD_NONBLOCK O_NONBLOCK
464# endif
465# ifndef EFD_CLOEXEC
466# ifdef O_CLOEXEC
467# define EFD_CLOEXEC O_CLOEXEC
468# else
469# define EFD_CLOEXEC 02000000
470# endif
471# endif
472EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
473#endif
474
475#if EV_USE_SIGNALFD
476/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
477# include <stdint.h>
478# ifndef SFD_NONBLOCK
479# define SFD_NONBLOCK O_NONBLOCK
480# endif
481# ifndef SFD_CLOEXEC
482# ifdef O_CLOEXEC
483# define SFD_CLOEXEC O_CLOEXEC
484# else
485# define SFD_CLOEXEC 02000000
486# endif
487# endif
488EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
489
490struct signalfd_siginfo
491{
492 uint32_t ssi_signo;
493 char pad[128 - sizeof (uint32_t)];
494};
495#endif
496
497/**/
498
499#if EV_VERIFY >= 3
500# define EV_FREQUENT_CHECK ev_verify (EV_A)
501#else
502# define EV_FREQUENT_CHECK do { } while (0)
503#endif
504
505/*
506 * This is used to work around floating point rounding problems.
507 * This value is good at least till the year 4000.
508 */
509#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
510/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
69 511
70#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 512#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
71#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detetc time jumps) */ 513#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
72#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
73#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
74 514
75#include "ev.h" 515#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
516#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
76 517
77typedef struct ev_watcher *W; 518/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
78typedef struct ev_watcher_list *WL; 519/* ECB.H BEGIN */
79typedef struct ev_watcher_time *WT; 520/*
521 * libecb - http://software.schmorp.de/pkg/libecb
522 *
523 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
524 * Copyright (©) 2011 Emanuele Giaquinta
525 * All rights reserved.
526 *
527 * Redistribution and use in source and binary forms, with or without modifica-
528 * tion, are permitted provided that the following conditions are met:
529 *
530 * 1. Redistributions of source code must retain the above copyright notice,
531 * this list of conditions and the following disclaimer.
532 *
533 * 2. Redistributions in binary form must reproduce the above copyright
534 * notice, this list of conditions and the following disclaimer in the
535 * documentation and/or other materials provided with the distribution.
536 *
537 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
538 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
539 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
540 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
541 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
542 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
543 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
544 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
545 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
546 * OF THE POSSIBILITY OF SUCH DAMAGE.
547 *
548 * Alternatively, the contents of this file may be used under the terms of
549 * the GNU General Public License ("GPL") version 2 or any later version,
550 * in which case the provisions of the GPL are applicable instead of
551 * the above. If you wish to allow the use of your version of this file
552 * only under the terms of the GPL and not to allow others to use your
553 * version of this file under the BSD license, indicate your decision
554 * by deleting the provisions above and replace them with the notice
555 * and other provisions required by the GPL. If you do not delete the
556 * provisions above, a recipient may use your version of this file under
557 * either the BSD or the GPL.
558 */
80 559
81static ev_tstamp now, diff; /* monotonic clock */ 560#ifndef ECB_H
82ev_tstamp ev_now; 561#define ECB_H
83int ev_method;
84 562
85static int have_monotonic; /* runtime */ 563/* 16 bits major, 16 bits minor */
564#define ECB_VERSION 0x00010005
86 565
87static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 566#ifdef _WIN32
88static void (*method_modify)(int fd, int oev, int nev); 567 typedef signed char int8_t;
89static void (*method_poll)(ev_tstamp timeout); 568 typedef unsigned char uint8_t;
569 typedef signed short int16_t;
570 typedef unsigned short uint16_t;
571 typedef signed int int32_t;
572 typedef unsigned int uint32_t;
573 #if __GNUC__
574 typedef signed long long int64_t;
575 typedef unsigned long long uint64_t;
576 #else /* _MSC_VER || __BORLANDC__ */
577 typedef signed __int64 int64_t;
578 typedef unsigned __int64 uint64_t;
579 #endif
580 #ifdef _WIN64
581 #define ECB_PTRSIZE 8
582 typedef uint64_t uintptr_t;
583 typedef int64_t intptr_t;
584 #else
585 #define ECB_PTRSIZE 4
586 typedef uint32_t uintptr_t;
587 typedef int32_t intptr_t;
588 #endif
589#else
590 #include <inttypes.h>
591 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
592 #define ECB_PTRSIZE 8
593 #else
594 #define ECB_PTRSIZE 4
595 #endif
596#endif
597
598#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
599#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
600
601/* work around x32 idiocy by defining proper macros */
602#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
603 #if _ILP32
604 #define ECB_AMD64_X32 1
605 #else
606 #define ECB_AMD64 1
607 #endif
608#endif
609
610/* many compilers define _GNUC_ to some versions but then only implement
611 * what their idiot authors think are the "more important" extensions,
612 * causing enormous grief in return for some better fake benchmark numbers.
613 * or so.
614 * we try to detect these and simply assume they are not gcc - if they have
615 * an issue with that they should have done it right in the first place.
616 */
617#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
618 #define ECB_GCC_VERSION(major,minor) 0
619#else
620 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
621#endif
622
623#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
624
625#if __clang__ && defined __has_builtin
626 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
627#else
628 #define ECB_CLANG_BUILTIN(x) 0
629#endif
630
631#if __clang__ && defined __has_extension
632 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
633#else
634 #define ECB_CLANG_EXTENSION(x) 0
635#endif
636
637#define ECB_CPP (__cplusplus+0)
638#define ECB_CPP11 (__cplusplus >= 201103L)
639#define ECB_CPP14 (__cplusplus >= 201402L)
640#define ECB_CPP17 (__cplusplus >= 201703L)
641
642#if ECB_CPP
643 #define ECB_C 0
644 #define ECB_STDC_VERSION 0
645#else
646 #define ECB_C 1
647 #define ECB_STDC_VERSION __STDC_VERSION__
648#endif
649
650#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
651#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
652#define ECB_C17 (ECB_STDC_VERSION >= 201710L)
653
654#if ECB_CPP
655 #define ECB_EXTERN_C extern "C"
656 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
657 #define ECB_EXTERN_C_END }
658#else
659 #define ECB_EXTERN_C extern
660 #define ECB_EXTERN_C_BEG
661 #define ECB_EXTERN_C_END
662#endif
90 663
91/*****************************************************************************/ 664/*****************************************************************************/
92 665
666/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
667/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
668
669#if ECB_NO_THREADS
670 #define ECB_NO_SMP 1
671#endif
672
673#if ECB_NO_SMP
674 #define ECB_MEMORY_FENCE do { } while (0)
675#endif
676
677/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
678#if __xlC__ && ECB_CPP
679 #include <builtins.h>
680#endif
681
682#if 1400 <= _MSC_VER
683 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
684#endif
685
686#ifndef ECB_MEMORY_FENCE
687 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
688 #if __i386 || __i386__
689 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
690 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
691 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
692 #elif ECB_GCC_AMD64
693 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
694 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
695 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
696 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
697 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
698 #elif defined __ARM_ARCH_2__ \
699 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
700 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
701 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
702 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
703 || defined __ARM_ARCH_5TEJ__
704 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
705 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
706 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
707 || defined __ARM_ARCH_6T2__
708 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
709 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
710 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
711 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
712 #elif __aarch64__
713 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
714 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
715 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
716 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
717 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
718 #elif defined __s390__ || defined __s390x__
719 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
720 #elif defined __mips__
721 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
722 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
723 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
724 #elif defined __alpha__
725 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
726 #elif defined __hppa__
727 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
728 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
729 #elif defined __ia64__
730 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
731 #elif defined __m68k__
732 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
733 #elif defined __m88k__
734 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
735 #elif defined __sh__
736 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
737 #endif
738 #endif
739#endif
740
741#ifndef ECB_MEMORY_FENCE
742 #if ECB_GCC_VERSION(4,7)
743 /* see comment below (stdatomic.h) about the C11 memory model. */
744 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
745 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
746 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
747
748 #elif ECB_CLANG_EXTENSION(c_atomic)
749 /* see comment below (stdatomic.h) about the C11 memory model. */
750 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
751 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
752 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
753
754 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
755 #define ECB_MEMORY_FENCE __sync_synchronize ()
756 #elif _MSC_VER >= 1500 /* VC++ 2008 */
757 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
758 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
759 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
760 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
761 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
762 #elif _MSC_VER >= 1400 /* VC++ 2005 */
763 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
764 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
765 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
766 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
767 #elif defined _WIN32
768 #include <WinNT.h>
769 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
770 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
771 #include <mbarrier.h>
772 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
773 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
774 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
775 #elif __xlC__
776 #define ECB_MEMORY_FENCE __sync ()
777 #endif
778#endif
779
780#ifndef ECB_MEMORY_FENCE
781 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
782 /* we assume that these memory fences work on all variables/all memory accesses, */
783 /* not just C11 atomics and atomic accesses */
784 #include <stdatomic.h>
785 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
786 /* any fence other than seq_cst, which isn't very efficient for us. */
787 /* Why that is, we don't know - either the C11 memory model is quite useless */
788 /* for most usages, or gcc and clang have a bug */
789 /* I *currently* lean towards the latter, and inefficiently implement */
790 /* all three of ecb's fences as a seq_cst fence */
791 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
792 /* for all __atomic_thread_fence's except seq_cst */
793 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
794 #endif
795#endif
796
797#ifndef ECB_MEMORY_FENCE
798 #if !ECB_AVOID_PTHREADS
799 /*
800 * if you get undefined symbol references to pthread_mutex_lock,
801 * or failure to find pthread.h, then you should implement
802 * the ECB_MEMORY_FENCE operations for your cpu/compiler
803 * OR provide pthread.h and link against the posix thread library
804 * of your system.
805 */
806 #include <pthread.h>
807 #define ECB_NEEDS_PTHREADS 1
808 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
809
810 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
811 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
812 #endif
813#endif
814
815#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
816 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
817#endif
818
819#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
820 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
821#endif
822
823/*****************************************************************************/
824
825#if ECB_CPP
826 #define ecb_inline static inline
827#elif ECB_GCC_VERSION(2,5)
828 #define ecb_inline static __inline__
829#elif ECB_C99
830 #define ecb_inline static inline
831#else
832 #define ecb_inline static
833#endif
834
835#if ECB_GCC_VERSION(3,3)
836 #define ecb_restrict __restrict__
837#elif ECB_C99
838 #define ecb_restrict restrict
839#else
840 #define ecb_restrict
841#endif
842
843typedef int ecb_bool;
844
845#define ECB_CONCAT_(a, b) a ## b
846#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
847#define ECB_STRINGIFY_(a) # a
848#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
849#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
850
851#define ecb_function_ ecb_inline
852
853#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
854 #define ecb_attribute(attrlist) __attribute__ (attrlist)
855#else
856 #define ecb_attribute(attrlist)
857#endif
858
859#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
860 #define ecb_is_constant(expr) __builtin_constant_p (expr)
861#else
862 /* possible C11 impl for integral types
863 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
864 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
865
866 #define ecb_is_constant(expr) 0
867#endif
868
869#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
870 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
871#else
872 #define ecb_expect(expr,value) (expr)
873#endif
874
875#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
876 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
877#else
878 #define ecb_prefetch(addr,rw,locality)
879#endif
880
881/* no emulation for ecb_decltype */
882#if ECB_CPP11
883 // older implementations might have problems with decltype(x)::type, work around it
884 template<class T> struct ecb_decltype_t { typedef T type; };
885 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
886#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
887 #define ecb_decltype(x) __typeof__ (x)
888#endif
889
890#if _MSC_VER >= 1300
891 #define ecb_deprecated __declspec (deprecated)
892#else
893 #define ecb_deprecated ecb_attribute ((__deprecated__))
894#endif
895
896#if _MSC_VER >= 1500
897 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
898#elif ECB_GCC_VERSION(4,5)
899 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
900#else
901 #define ecb_deprecated_message(msg) ecb_deprecated
902#endif
903
904#if _MSC_VER >= 1400
905 #define ecb_noinline __declspec (noinline)
906#else
907 #define ecb_noinline ecb_attribute ((__noinline__))
908#endif
909
910#define ecb_unused ecb_attribute ((__unused__))
911#define ecb_const ecb_attribute ((__const__))
912#define ecb_pure ecb_attribute ((__pure__))
913
914#if ECB_C11 || __IBMC_NORETURN
915 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
916 #define ecb_noreturn _Noreturn
917#elif ECB_CPP11
918 #define ecb_noreturn [[noreturn]]
919#elif _MSC_VER >= 1200
920 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
921 #define ecb_noreturn __declspec (noreturn)
922#else
923 #define ecb_noreturn ecb_attribute ((__noreturn__))
924#endif
925
926#if ECB_GCC_VERSION(4,3)
927 #define ecb_artificial ecb_attribute ((__artificial__))
928 #define ecb_hot ecb_attribute ((__hot__))
929 #define ecb_cold ecb_attribute ((__cold__))
930#else
931 #define ecb_artificial
932 #define ecb_hot
933 #define ecb_cold
934#endif
935
936/* put around conditional expressions if you are very sure that the */
937/* expression is mostly true or mostly false. note that these return */
938/* booleans, not the expression. */
939#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
940#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
941/* for compatibility to the rest of the world */
942#define ecb_likely(expr) ecb_expect_true (expr)
943#define ecb_unlikely(expr) ecb_expect_false (expr)
944
945/* count trailing zero bits and count # of one bits */
946#if ECB_GCC_VERSION(3,4) \
947 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
948 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
949 && ECB_CLANG_BUILTIN(__builtin_popcount))
950 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
951 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
952 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
953 #define ecb_ctz32(x) __builtin_ctz (x)
954 #define ecb_ctz64(x) __builtin_ctzll (x)
955 #define ecb_popcount32(x) __builtin_popcount (x)
956 /* no popcountll */
957#else
958 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
959 ecb_function_ ecb_const int
960 ecb_ctz32 (uint32_t x)
961 {
962#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
963 unsigned long r;
964 _BitScanForward (&r, x);
965 return (int)r;
966#else
967 int r = 0;
968
969 x &= ~x + 1; /* this isolates the lowest bit */
970
971#if ECB_branchless_on_i386
972 r += !!(x & 0xaaaaaaaa) << 0;
973 r += !!(x & 0xcccccccc) << 1;
974 r += !!(x & 0xf0f0f0f0) << 2;
975 r += !!(x & 0xff00ff00) << 3;
976 r += !!(x & 0xffff0000) << 4;
977#else
978 if (x & 0xaaaaaaaa) r += 1;
979 if (x & 0xcccccccc) r += 2;
980 if (x & 0xf0f0f0f0) r += 4;
981 if (x & 0xff00ff00) r += 8;
982 if (x & 0xffff0000) r += 16;
983#endif
984
985 return r;
986#endif
987 }
988
989 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
990 ecb_function_ ecb_const int
991 ecb_ctz64 (uint64_t x)
992 {
993#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
994 unsigned long r;
995 _BitScanForward64 (&r, x);
996 return (int)r;
997#else
998 int shift = x & 0xffffffff ? 0 : 32;
999 return ecb_ctz32 (x >> shift) + shift;
1000#endif
1001 }
1002
1003 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1004 ecb_function_ ecb_const int
1005 ecb_popcount32 (uint32_t x)
1006 {
1007 x -= (x >> 1) & 0x55555555;
1008 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1009 x = ((x >> 4) + x) & 0x0f0f0f0f;
1010 x *= 0x01010101;
1011
1012 return x >> 24;
1013 }
1014
1015 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1016 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1017 {
1018#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1019 unsigned long r;
1020 _BitScanReverse (&r, x);
1021 return (int)r;
1022#else
1023 int r = 0;
1024
1025 if (x >> 16) { x >>= 16; r += 16; }
1026 if (x >> 8) { x >>= 8; r += 8; }
1027 if (x >> 4) { x >>= 4; r += 4; }
1028 if (x >> 2) { x >>= 2; r += 2; }
1029 if (x >> 1) { r += 1; }
1030
1031 return r;
1032#endif
1033 }
1034
1035 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1036 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1037 {
1038#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1039 unsigned long r;
1040 _BitScanReverse64 (&r, x);
1041 return (int)r;
1042#else
1043 int r = 0;
1044
1045 if (x >> 32) { x >>= 32; r += 32; }
1046
1047 return r + ecb_ld32 (x);
1048#endif
1049 }
1050#endif
1051
1052ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1053ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1054ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1055ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1056
1057ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1058ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1059{
1060 return ( (x * 0x0802U & 0x22110U)
1061 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1062}
1063
1064ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1065ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1066{
1067 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1068 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1069 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1070 x = ( x >> 8 ) | ( x << 8);
1071
1072 return x;
1073}
1074
1075ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1076ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1077{
1078 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1079 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1080 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1081 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1082 x = ( x >> 16 ) | ( x << 16);
1083
1084 return x;
1085}
1086
1087/* popcount64 is only available on 64 bit cpus as gcc builtin */
1088/* so for this version we are lazy */
1089ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1090ecb_function_ ecb_const int
1091ecb_popcount64 (uint64_t x)
1092{
1093 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1094}
1095
1096ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1097ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1098ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1099ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1100ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1101ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1102ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1103ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1104
1105ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1106ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1107ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1108ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1109ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1110ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1111ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1112ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1113
1114#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1115 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1116 #define ecb_bswap16(x) __builtin_bswap16 (x)
1117 #else
1118 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1119 #endif
1120 #define ecb_bswap32(x) __builtin_bswap32 (x)
1121 #define ecb_bswap64(x) __builtin_bswap64 (x)
1122#elif _MSC_VER
1123 #include <stdlib.h>
1124 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1125 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1126 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1127#else
1128 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1129 ecb_function_ ecb_const uint16_t
1130 ecb_bswap16 (uint16_t x)
1131 {
1132 return ecb_rotl16 (x, 8);
1133 }
1134
1135 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1136 ecb_function_ ecb_const uint32_t
1137 ecb_bswap32 (uint32_t x)
1138 {
1139 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1140 }
1141
1142 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1143 ecb_function_ ecb_const uint64_t
1144 ecb_bswap64 (uint64_t x)
1145 {
1146 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1147 }
1148#endif
1149
1150#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1151 #define ecb_unreachable() __builtin_unreachable ()
1152#else
1153 /* this seems to work fine, but gcc always emits a warning for it :/ */
1154 ecb_inline ecb_noreturn void ecb_unreachable (void);
1155 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1156#endif
1157
1158/* try to tell the compiler that some condition is definitely true */
1159#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1160
1161ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1162ecb_inline ecb_const uint32_t
1163ecb_byteorder_helper (void)
1164{
1165 /* the union code still generates code under pressure in gcc, */
1166 /* but less than using pointers, and always seems to */
1167 /* successfully return a constant. */
1168 /* the reason why we have this horrible preprocessor mess */
1169 /* is to avoid it in all cases, at least on common architectures */
1170 /* or when using a recent enough gcc version (>= 4.6) */
1171#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1172 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1173 #define ECB_LITTLE_ENDIAN 1
1174 return 0x44332211;
1175#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1176 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1177 #define ECB_BIG_ENDIAN 1
1178 return 0x11223344;
1179#else
1180 union
1181 {
1182 uint8_t c[4];
1183 uint32_t u;
1184 } u = { 0x11, 0x22, 0x33, 0x44 };
1185 return u.u;
1186#endif
1187}
1188
1189ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1190ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1191ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1192ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1193
1194#if ECB_GCC_VERSION(3,0) || ECB_C99
1195 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1196#else
1197 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1198#endif
1199
1200#if ECB_CPP
1201 template<typename T>
1202 static inline T ecb_div_rd (T val, T div)
1203 {
1204 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1205 }
1206 template<typename T>
1207 static inline T ecb_div_ru (T val, T div)
1208 {
1209 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1210 }
1211#else
1212 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1213 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1214#endif
1215
1216#if ecb_cplusplus_does_not_suck
1217 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1218 template<typename T, int N>
1219 static inline int ecb_array_length (const T (&arr)[N])
1220 {
1221 return N;
1222 }
1223#else
1224 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1225#endif
1226
1227ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1228ecb_function_ ecb_const uint32_t
1229ecb_binary16_to_binary32 (uint32_t x)
1230{
1231 unsigned int s = (x & 0x8000) << (31 - 15);
1232 int e = (x >> 10) & 0x001f;
1233 unsigned int m = x & 0x03ff;
1234
1235 if (ecb_expect_false (e == 31))
1236 /* infinity or NaN */
1237 e = 255 - (127 - 15);
1238 else if (ecb_expect_false (!e))
1239 {
1240 if (ecb_expect_true (!m))
1241 /* zero, handled by code below by forcing e to 0 */
1242 e = 0 - (127 - 15);
1243 else
1244 {
1245 /* subnormal, renormalise */
1246 unsigned int s = 10 - ecb_ld32 (m);
1247
1248 m = (m << s) & 0x3ff; /* mask implicit bit */
1249 e -= s - 1;
1250 }
1251 }
1252
1253 /* e and m now are normalised, or zero, (or inf or nan) */
1254 e += 127 - 15;
1255
1256 return s | (e << 23) | (m << (23 - 10));
1257}
1258
1259ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1260ecb_function_ ecb_const uint16_t
1261ecb_binary32_to_binary16 (uint32_t x)
1262{
1263 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1264 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1265 unsigned int m = x & 0x007fffff;
1266
1267 x &= 0x7fffffff;
1268
1269 /* if it's within range of binary16 normals, use fast path */
1270 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1271 {
1272 /* mantissa round-to-even */
1273 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1274
1275 /* handle overflow */
1276 if (ecb_expect_false (m >= 0x00800000))
1277 {
1278 m >>= 1;
1279 e += 1;
1280 }
1281
1282 return s | (e << 10) | (m >> (23 - 10));
1283 }
1284
1285 /* handle large numbers and infinity */
1286 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1287 return s | 0x7c00;
1288
1289 /* handle zero, subnormals and small numbers */
1290 if (ecb_expect_true (x < 0x38800000))
1291 {
1292 /* zero */
1293 if (ecb_expect_true (!x))
1294 return s;
1295
1296 /* handle subnormals */
1297
1298 /* too small, will be zero */
1299 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1300 return s;
1301
1302 m |= 0x00800000; /* make implicit bit explicit */
1303
1304 /* very tricky - we need to round to the nearest e (+10) bit value */
1305 {
1306 unsigned int bits = 14 - e;
1307 unsigned int half = (1 << (bits - 1)) - 1;
1308 unsigned int even = (m >> bits) & 1;
1309
1310 /* if this overflows, we will end up with a normalised number */
1311 m = (m + half + even) >> bits;
1312 }
1313
1314 return s | m;
1315 }
1316
1317 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1318 m >>= 13;
1319
1320 return s | 0x7c00 | m | !m;
1321}
1322
1323/*******************************************************************************/
1324/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1325
1326/* basically, everything uses "ieee pure-endian" floating point numbers */
1327/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1328#if 0 \
1329 || __i386 || __i386__ \
1330 || ECB_GCC_AMD64 \
1331 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1332 || defined __s390__ || defined __s390x__ \
1333 || defined __mips__ \
1334 || defined __alpha__ \
1335 || defined __hppa__ \
1336 || defined __ia64__ \
1337 || defined __m68k__ \
1338 || defined __m88k__ \
1339 || defined __sh__ \
1340 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1341 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1342 || defined __aarch64__
1343 #define ECB_STDFP 1
1344 #include <string.h> /* for memcpy */
1345#else
1346 #define ECB_STDFP 0
1347#endif
1348
1349#ifndef ECB_NO_LIBM
1350
1351 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1352
1353 /* only the oldest of old doesn't have this one. solaris. */
1354 #ifdef INFINITY
1355 #define ECB_INFINITY INFINITY
1356 #else
1357 #define ECB_INFINITY HUGE_VAL
1358 #endif
1359
1360 #ifdef NAN
1361 #define ECB_NAN NAN
1362 #else
1363 #define ECB_NAN ECB_INFINITY
1364 #endif
1365
1366 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1367 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1368 #define ecb_frexpf(x,e) frexpf ((x), (e))
1369 #else
1370 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1371 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1372 #endif
1373
1374 /* convert a float to ieee single/binary32 */
1375 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1376 ecb_function_ ecb_const uint32_t
1377 ecb_float_to_binary32 (float x)
1378 {
1379 uint32_t r;
1380
1381 #if ECB_STDFP
1382 memcpy (&r, &x, 4);
1383 #else
1384 /* slow emulation, works for anything but -0 */
1385 uint32_t m;
1386 int e;
1387
1388 if (x == 0e0f ) return 0x00000000U;
1389 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1390 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1391 if (x != x ) return 0x7fbfffffU;
1392
1393 m = ecb_frexpf (x, &e) * 0x1000000U;
1394
1395 r = m & 0x80000000U;
1396
1397 if (r)
1398 m = -m;
1399
1400 if (e <= -126)
1401 {
1402 m &= 0xffffffU;
1403 m >>= (-125 - e);
1404 e = -126;
1405 }
1406
1407 r |= (e + 126) << 23;
1408 r |= m & 0x7fffffU;
1409 #endif
1410
1411 return r;
1412 }
1413
1414 /* converts an ieee single/binary32 to a float */
1415 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1416 ecb_function_ ecb_const float
1417 ecb_binary32_to_float (uint32_t x)
1418 {
1419 float r;
1420
1421 #if ECB_STDFP
1422 memcpy (&r, &x, 4);
1423 #else
1424 /* emulation, only works for normals and subnormals and +0 */
1425 int neg = x >> 31;
1426 int e = (x >> 23) & 0xffU;
1427
1428 x &= 0x7fffffU;
1429
1430 if (e)
1431 x |= 0x800000U;
1432 else
1433 e = 1;
1434
1435 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1436 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1437
1438 r = neg ? -r : r;
1439 #endif
1440
1441 return r;
1442 }
1443
1444 /* convert a double to ieee double/binary64 */
1445 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1446 ecb_function_ ecb_const uint64_t
1447 ecb_double_to_binary64 (double x)
1448 {
1449 uint64_t r;
1450
1451 #if ECB_STDFP
1452 memcpy (&r, &x, 8);
1453 #else
1454 /* slow emulation, works for anything but -0 */
1455 uint64_t m;
1456 int e;
1457
1458 if (x == 0e0 ) return 0x0000000000000000U;
1459 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1460 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1461 if (x != x ) return 0X7ff7ffffffffffffU;
1462
1463 m = frexp (x, &e) * 0x20000000000000U;
1464
1465 r = m & 0x8000000000000000;;
1466
1467 if (r)
1468 m = -m;
1469
1470 if (e <= -1022)
1471 {
1472 m &= 0x1fffffffffffffU;
1473 m >>= (-1021 - e);
1474 e = -1022;
1475 }
1476
1477 r |= ((uint64_t)(e + 1022)) << 52;
1478 r |= m & 0xfffffffffffffU;
1479 #endif
1480
1481 return r;
1482 }
1483
1484 /* converts an ieee double/binary64 to a double */
1485 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1486 ecb_function_ ecb_const double
1487 ecb_binary64_to_double (uint64_t x)
1488 {
1489 double r;
1490
1491 #if ECB_STDFP
1492 memcpy (&r, &x, 8);
1493 #else
1494 /* emulation, only works for normals and subnormals and +0 */
1495 int neg = x >> 63;
1496 int e = (x >> 52) & 0x7ffU;
1497
1498 x &= 0xfffffffffffffU;
1499
1500 if (e)
1501 x |= 0x10000000000000U;
1502 else
1503 e = 1;
1504
1505 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1506 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1507
1508 r = neg ? -r : r;
1509 #endif
1510
1511 return r;
1512 }
1513
1514 /* convert a float to ieee half/binary16 */
1515 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1516 ecb_function_ ecb_const uint16_t
1517 ecb_float_to_binary16 (float x)
1518 {
1519 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1520 }
1521
1522 /* convert an ieee half/binary16 to float */
1523 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1524 ecb_function_ ecb_const float
1525 ecb_binary16_to_float (uint16_t x)
1526 {
1527 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1528 }
1529
1530#endif
1531
1532#endif
1533
1534/* ECB.H END */
1535
1536#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1537/* if your architecture doesn't need memory fences, e.g. because it is
1538 * single-cpu/core, or if you use libev in a project that doesn't use libev
1539 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1540 * libev, in which cases the memory fences become nops.
1541 * alternatively, you can remove this #error and link against libpthread,
1542 * which will then provide the memory fences.
1543 */
1544# error "memory fences not defined for your architecture, please report"
1545#endif
1546
1547#ifndef ECB_MEMORY_FENCE
1548# define ECB_MEMORY_FENCE do { } while (0)
1549# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1550# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1551#endif
1552
1553#define expect_false(cond) ecb_expect_false (cond)
1554#define expect_true(cond) ecb_expect_true (cond)
1555#define noinline ecb_noinline
1556
1557#define inline_size ecb_inline
1558
1559#if EV_FEATURE_CODE
1560# define inline_speed ecb_inline
1561#else
1562# define inline_speed noinline static
1563#endif
1564
1565#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1566
1567#if EV_MINPRI == EV_MAXPRI
1568# define ABSPRI(w) (((W)w), 0)
1569#else
1570# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1571#endif
1572
1573#define EMPTY /* required for microsofts broken pseudo-c compiler */
1574
1575typedef ev_watcher *W;
1576typedef ev_watcher_list *WL;
1577typedef ev_watcher_time *WT;
1578
1579#define ev_active(w) ((W)(w))->active
1580#define ev_at(w) ((WT)(w))->at
1581
1582#if EV_USE_REALTIME
1583/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1584/* giving it a reasonably high chance of working on typical architectures */
1585static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1586#endif
1587
1588#if EV_USE_MONOTONIC
1589static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1590#endif
1591
1592#ifndef EV_FD_TO_WIN32_HANDLE
1593# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1594#endif
1595#ifndef EV_WIN32_HANDLE_TO_FD
1596# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1597#endif
1598#ifndef EV_WIN32_CLOSE_FD
1599# define EV_WIN32_CLOSE_FD(fd) close (fd)
1600#endif
1601
1602#ifdef _WIN32
1603# include "ev_win32.c"
1604#endif
1605
1606/*****************************************************************************/
1607
1608#if EV_USE_LINUXAIO
1609# include <linux/aio_abi.h> /* probably only needed for aio_context_t */
1610#endif
1611
1612/* define a suitable floor function (only used by periodics atm) */
1613
1614#if EV_USE_FLOOR
1615# include <math.h>
1616# define ev_floor(v) floor (v)
1617#else
1618
1619#include <float.h>
1620
1621/* a floor() replacement function, should be independent of ev_tstamp type */
1622noinline
1623static ev_tstamp
1624ev_floor (ev_tstamp v)
1625{
1626 /* the choice of shift factor is not terribly important */
1627#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1628 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1629#else
1630 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1631#endif
1632
1633 /* argument too large for an unsigned long? */
1634 if (expect_false (v >= shift))
1635 {
1636 ev_tstamp f;
1637
1638 if (v == v - 1.)
1639 return v; /* very large number */
1640
1641 f = shift * ev_floor (v * (1. / shift));
1642 return f + ev_floor (v - f);
1643 }
1644
1645 /* special treatment for negative args? */
1646 if (expect_false (v < 0.))
1647 {
1648 ev_tstamp f = -ev_floor (-v);
1649
1650 return f - (f == v ? 0 : 1);
1651 }
1652
1653 /* fits into an unsigned long */
1654 return (unsigned long)v;
1655}
1656
1657#endif
1658
1659/*****************************************************************************/
1660
1661#ifdef __linux
1662# include <sys/utsname.h>
1663#endif
1664
1665noinline ecb_cold
1666static unsigned int
1667ev_linux_version (void)
1668{
1669#ifdef __linux
1670 unsigned int v = 0;
1671 struct utsname buf;
1672 int i;
1673 char *p = buf.release;
1674
1675 if (uname (&buf))
1676 return 0;
1677
1678 for (i = 3+1; --i; )
1679 {
1680 unsigned int c = 0;
1681
1682 for (;;)
1683 {
1684 if (*p >= '0' && *p <= '9')
1685 c = c * 10 + *p++ - '0';
1686 else
1687 {
1688 p += *p == '.';
1689 break;
1690 }
1691 }
1692
1693 v = (v << 8) | c;
1694 }
1695
1696 return v;
1697#else
1698 return 0;
1699#endif
1700}
1701
1702/*****************************************************************************/
1703
1704#if EV_AVOID_STDIO
1705noinline ecb_cold
1706static void
1707ev_printerr (const char *msg)
1708{
1709 write (STDERR_FILENO, msg, strlen (msg));
1710}
1711#endif
1712
1713static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
1714
1715ecb_cold
1716void
1717ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
1718{
1719 syserr_cb = cb;
1720}
1721
1722noinline ecb_cold
1723static void
1724ev_syserr (const char *msg)
1725{
1726 if (!msg)
1727 msg = "(libev) system error";
1728
1729 if (syserr_cb)
1730 syserr_cb (msg);
1731 else
1732 {
1733#if EV_AVOID_STDIO
1734 ev_printerr (msg);
1735 ev_printerr (": ");
1736 ev_printerr (strerror (errno));
1737 ev_printerr ("\n");
1738#else
1739 perror (msg);
1740#endif
1741 abort ();
1742 }
1743}
1744
1745static void *
1746ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
1747{
1748 /* some systems, notably openbsd and darwin, fail to properly
1749 * implement realloc (x, 0) (as required by both ansi c-89 and
1750 * the single unix specification, so work around them here.
1751 * recently, also (at least) fedora and debian started breaking it,
1752 * despite documenting it otherwise.
1753 */
1754
1755 if (size)
1756 return realloc (ptr, size);
1757
1758 free (ptr);
1759 return 0;
1760}
1761
1762static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
1763
1764ecb_cold
1765void
1766ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
1767{
1768 alloc = cb;
1769}
1770
1771inline_speed void *
1772ev_realloc (void *ptr, long size)
1773{
1774 ptr = alloc (ptr, size);
1775
1776 if (!ptr && size)
1777 {
1778#if EV_AVOID_STDIO
1779 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1780#else
1781 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1782#endif
1783 abort ();
1784 }
1785
1786 return ptr;
1787}
1788
1789#define ev_malloc(size) ev_realloc (0, (size))
1790#define ev_free(ptr) ev_realloc ((ptr), 0)
1791
1792/*****************************************************************************/
1793
1794/* set in reify when reification needed */
1795#define EV_ANFD_REIFY 1
1796
1797/* file descriptor info structure */
1798typedef struct
1799{
1800 WL head;
1801 unsigned char events; /* the events watched for */
1802 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1803 unsigned char emask; /* some backends store the actual kernel mask in here */
1804 unsigned char unused;
1805#if EV_USE_EPOLL
1806 unsigned int egen; /* generation counter to counter epoll bugs */
1807#endif
1808#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1809 SOCKET handle;
1810#endif
1811#if EV_USE_IOCP
1812 OVERLAPPED or, ow;
1813#endif
1814} ANFD;
1815
1816/* stores the pending event set for a given watcher */
1817typedef struct
1818{
1819 W w;
1820 int events; /* the pending event set for the given watcher */
1821} ANPENDING;
1822
1823#if EV_USE_INOTIFY
1824/* hash table entry per inotify-id */
1825typedef struct
1826{
1827 WL head;
1828} ANFS;
1829#endif
1830
1831/* Heap Entry */
1832#if EV_HEAP_CACHE_AT
1833 /* a heap element */
1834 typedef struct {
1835 ev_tstamp at;
1836 WT w;
1837 } ANHE;
1838
1839 #define ANHE_w(he) (he).w /* access watcher, read-write */
1840 #define ANHE_at(he) (he).at /* access cached at, read-only */
1841 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1842#else
1843 /* a heap element */
1844 typedef WT ANHE;
1845
1846 #define ANHE_w(he) (he)
1847 #define ANHE_at(he) (he)->at
1848 #define ANHE_at_cache(he)
1849#endif
1850
1851#if EV_MULTIPLICITY
1852
1853 struct ev_loop
1854 {
1855 ev_tstamp ev_rt_now;
1856 #define ev_rt_now ((loop)->ev_rt_now)
1857 #define VAR(name,decl) decl;
1858 #include "ev_vars.h"
1859 #undef VAR
1860 };
1861 #include "ev_wrap.h"
1862
1863 static struct ev_loop default_loop_struct;
1864 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1865
1866#else
1867
1868 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1869 #define VAR(name,decl) static decl;
1870 #include "ev_vars.h"
1871 #undef VAR
1872
1873 static int ev_default_loop_ptr;
1874
1875#endif
1876
1877#if EV_FEATURE_API
1878# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1879# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1880# define EV_INVOKE_PENDING invoke_cb (EV_A)
1881#else
1882# define EV_RELEASE_CB (void)0
1883# define EV_ACQUIRE_CB (void)0
1884# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1885#endif
1886
1887#define EVBREAK_RECURSE 0x80
1888
1889/*****************************************************************************/
1890
1891#ifndef EV_HAVE_EV_TIME
93ev_tstamp 1892ev_tstamp
94ev_time (void) 1893ev_time (void) EV_NOEXCEPT
95{ 1894{
96#if EV_USE_REALTIME 1895#if EV_USE_REALTIME
1896 if (expect_true (have_realtime))
1897 {
97 struct timespec ts; 1898 struct timespec ts;
98 clock_gettime (CLOCK_REALTIME, &ts); 1899 clock_gettime (CLOCK_REALTIME, &ts);
99 return ts.tv_sec + ts.tv_nsec * 1e-9; 1900 return ts.tv_sec + ts.tv_nsec * 1e-9;
100#else 1901 }
1902#endif
1903
101 struct timeval tv; 1904 struct timeval tv;
102 gettimeofday (&tv, 0); 1905 gettimeofday (&tv, 0);
103 return tv.tv_sec + tv.tv_usec * 1e-6; 1906 return tv.tv_sec + tv.tv_usec * 1e-6;
104#endif
105} 1907}
1908#endif
106 1909
107static ev_tstamp 1910inline_size ev_tstamp
108get_clock (void) 1911get_clock (void)
109{ 1912{
110#if EV_USE_MONOTONIC 1913#if EV_USE_MONOTONIC
111 if (have_monotonic) 1914 if (expect_true (have_monotonic))
112 { 1915 {
113 struct timespec ts; 1916 struct timespec ts;
114 clock_gettime (CLOCK_MONOTONIC, &ts); 1917 clock_gettime (CLOCK_MONOTONIC, &ts);
115 return ts.tv_sec + ts.tv_nsec * 1e-9; 1918 return ts.tv_sec + ts.tv_nsec * 1e-9;
116 } 1919 }
117#endif 1920#endif
118 1921
119 return ev_time (); 1922 return ev_time ();
120} 1923}
121 1924
122#define array_roundsize(base,n) ((n) | 4 & ~3) 1925#if EV_MULTIPLICITY
1926ev_tstamp
1927ev_now (EV_P) EV_NOEXCEPT
1928{
1929 return ev_rt_now;
1930}
1931#endif
123 1932
124#define array_needsize(base,cur,cnt,init) \ 1933void
125 if ((cnt) > cur) \ 1934ev_sleep (ev_tstamp delay) EV_NOEXCEPT
126 { \ 1935{
127 int newcnt = cur; \ 1936 if (delay > 0.)
128 do \
129 { \
130 newcnt = array_roundsize (base, newcnt << 1); \
131 } \
132 while ((cnt) > newcnt); \
133 \
134 base = realloc (base, sizeof (*base) * (newcnt)); \
135 init (base + cur, newcnt - cur); \
136 cur = newcnt; \
137 } 1937 {
1938#if EV_USE_NANOSLEEP
1939 struct timespec ts;
1940
1941 EV_TS_SET (ts, delay);
1942 nanosleep (&ts, 0);
1943#elif defined _WIN32
1944 /* maybe this should round up, as ms is very low resolution */
1945 /* compared to select (µs) or nanosleep (ns) */
1946 Sleep ((unsigned long)(delay * 1e3));
1947#else
1948 struct timeval tv;
1949
1950 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1951 /* something not guaranteed by newer posix versions, but guaranteed */
1952 /* by older ones */
1953 EV_TV_SET (tv, delay);
1954 select (0, 0, 0, 0, &tv);
1955#endif
1956 }
1957}
138 1958
139/*****************************************************************************/ 1959/*****************************************************************************/
140 1960
141typedef struct 1961#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
142{
143 struct ev_io *head;
144 unsigned char events;
145 unsigned char reify;
146} ANFD;
147 1962
148static ANFD *anfds; 1963/* find a suitable new size for the given array, */
149static int anfdmax; 1964/* hopefully by rounding to a nice-to-malloc size */
1965inline_size int
1966array_nextsize (int elem, int cur, int cnt)
1967{
1968 int ncur = cur + 1;
150 1969
1970 do
1971 ncur <<= 1;
1972 while (cnt > ncur);
1973
1974 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1975 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1976 {
1977 ncur *= elem;
1978 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1979 ncur = ncur - sizeof (void *) * 4;
1980 ncur /= elem;
1981 }
1982
1983 return ncur;
1984}
1985
1986noinline ecb_cold
1987static void *
1988array_realloc (int elem, void *base, int *cur, int cnt)
1989{
1990 *cur = array_nextsize (elem, *cur, cnt);
1991 return ev_realloc (base, elem * *cur);
1992}
1993
1994#define array_needsize_noinit(base,count)
1995
1996#define array_needsize_zerofill(base,count) \
1997 memset ((void *)(base), 0, sizeof (*(base)) * (count))
1998
1999#define array_needsize(type,base,cur,cnt,init) \
2000 if (expect_false ((cnt) > (cur))) \
2001 { \
2002 ecb_unused int ocur_ = (cur); \
2003 (base) = (type *)array_realloc \
2004 (sizeof (type), (base), &(cur), (cnt)); \
2005 init ((base) + (ocur_), (cur) - ocur_); \
2006 }
2007
2008#if 0
2009#define array_slim(type,stem) \
2010 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
2011 { \
2012 stem ## max = array_roundsize (stem ## cnt >> 1); \
2013 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
2014 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
2015 }
2016#endif
2017
2018#define array_free(stem, idx) \
2019 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
2020
2021/*****************************************************************************/
2022
2023/* dummy callback for pending events */
2024noinline
151static void 2025static void
152anfds_init (ANFD *base, int count) 2026pendingcb (EV_P_ ev_prepare *w, int revents)
153{ 2027{
154 while (count--) 2028}
155 {
156 base->head = 0;
157 base->events = EV_NONE;
158 base->reify = 0;
159 2029
160 ++base; 2030noinline
2031void
2032ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
2033{
2034 W w_ = (W)w;
2035 int pri = ABSPRI (w_);
2036
2037 if (expect_false (w_->pending))
2038 pendings [pri][w_->pending - 1].events |= revents;
2039 else
161 } 2040 {
162} 2041 w_->pending = ++pendingcnt [pri];
163 2042 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
164typedef struct 2043 pendings [pri][w_->pending - 1].w = w_;
165{
166 W w;
167 int events;
168} ANPENDING;
169
170static ANPENDING *pendings;
171static int pendingmax, pendingcnt;
172
173static void
174event (W w, int events)
175{
176 if (w->pending)
177 {
178 pendings [w->pending - 1].events |= events; 2044 pendings [pri][w_->pending - 1].events = revents;
179 return;
180 } 2045 }
181 2046
182 w->pending = ++pendingcnt; 2047 pendingpri = NUMPRI - 1;
183 array_needsize (pendings, pendingmax, pendingcnt, );
184 pendings [pendingcnt - 1].w = w;
185 pendings [pendingcnt - 1].events = events;
186} 2048}
187 2049
188static void 2050inline_speed void
2051feed_reverse (EV_P_ W w)
2052{
2053 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2054 rfeeds [rfeedcnt++] = w;
2055}
2056
2057inline_size void
2058feed_reverse_done (EV_P_ int revents)
2059{
2060 do
2061 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2062 while (rfeedcnt);
2063}
2064
2065inline_speed void
189queue_events (W *events, int eventcnt, int type) 2066queue_events (EV_P_ W *events, int eventcnt, int type)
190{ 2067{
191 int i; 2068 int i;
192 2069
193 for (i = 0; i < eventcnt; ++i) 2070 for (i = 0; i < eventcnt; ++i)
194 event (events [i], type); 2071 ev_feed_event (EV_A_ events [i], type);
195} 2072}
196 2073
197static void 2074/*****************************************************************************/
2075
2076inline_speed void
198fd_event (int fd, int events) 2077fd_event_nocheck (EV_P_ int fd, int revents)
199{ 2078{
200 ANFD *anfd = anfds + fd; 2079 ANFD *anfd = anfds + fd;
201 struct ev_io *w; 2080 ev_io *w;
202 2081
203 for (w = anfd->head; w; w = w->next) 2082 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
204 { 2083 {
205 int ev = w->events & events; 2084 int ev = w->events & revents;
206 2085
207 if (ev) 2086 if (ev)
208 event ((W)w, ev); 2087 ev_feed_event (EV_A_ (W)w, ev);
209 } 2088 }
210} 2089}
211 2090
212/*****************************************************************************/ 2091/* do not submit kernel events for fds that have reify set */
2092/* because that means they changed while we were polling for new events */
2093inline_speed void
2094fd_event (EV_P_ int fd, int revents)
2095{
2096 ANFD *anfd = anfds + fd;
213 2097
214static int *fdchanges; 2098 if (expect_true (!anfd->reify))
215static int fdchangemax, fdchangecnt; 2099 fd_event_nocheck (EV_A_ fd, revents);
2100}
216 2101
217static void 2102void
218fd_reify (void) 2103ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
2104{
2105 if (fd >= 0 && fd < anfdmax)
2106 fd_event_nocheck (EV_A_ fd, revents);
2107}
2108
2109/* make sure the external fd watch events are in-sync */
2110/* with the kernel/libev internal state */
2111inline_size void
2112fd_reify (EV_P)
219{ 2113{
220 int i; 2114 int i;
221 2115
2116#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
222 for (i = 0; i < fdchangecnt; ++i) 2117 for (i = 0; i < fdchangecnt; ++i)
223 { 2118 {
224 int fd = fdchanges [i]; 2119 int fd = fdchanges [i];
225 ANFD *anfd = anfds + fd; 2120 ANFD *anfd = anfds + fd;
226 struct ev_io *w;
227 2121
228 int events = 0; 2122 if (anfd->reify & EV__IOFDSET && anfd->head)
229
230 for (w = anfd->head; w; w = w->next)
231 events |= w->events;
232
233 anfd->reify = 0;
234
235 if (anfd->events != events)
236 { 2123 {
2124 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2125
2126 if (handle != anfd->handle)
2127 {
2128 unsigned long arg;
2129
2130 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2131
2132 /* handle changed, but fd didn't - we need to do it in two steps */
237 method_modify (fd, anfd->events, events); 2133 backend_modify (EV_A_ fd, anfd->events, 0);
238 anfd->events = events; 2134 anfd->events = 0;
2135 anfd->handle = handle;
2136 }
239 } 2137 }
240 } 2138 }
2139#endif
2140
2141 for (i = 0; i < fdchangecnt; ++i)
2142 {
2143 int fd = fdchanges [i];
2144 ANFD *anfd = anfds + fd;
2145 ev_io *w;
2146
2147 unsigned char o_events = anfd->events;
2148 unsigned char o_reify = anfd->reify;
2149
2150 anfd->reify = 0;
2151
2152 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
2153 {
2154 anfd->events = 0;
2155
2156 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2157 anfd->events |= (unsigned char)w->events;
2158
2159 if (o_events != anfd->events)
2160 o_reify = EV__IOFDSET; /* actually |= */
2161 }
2162
2163 if (o_reify & EV__IOFDSET)
2164 backend_modify (EV_A_ fd, o_events, anfd->events);
2165 }
241 2166
242 fdchangecnt = 0; 2167 fdchangecnt = 0;
243} 2168}
244 2169
2170/* something about the given fd changed */
2171inline_size
2172void
2173fd_change (EV_P_ int fd, int flags)
2174{
2175 unsigned char reify = anfds [fd].reify;
2176 anfds [fd].reify |= flags;
2177
2178 if (expect_true (!reify))
2179 {
2180 ++fdchangecnt;
2181 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
2182 fdchanges [fdchangecnt - 1] = fd;
2183 }
2184}
2185
2186/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2187inline_speed ecb_cold void
2188fd_kill (EV_P_ int fd)
2189{
2190 ev_io *w;
2191
2192 while ((w = (ev_io *)anfds [fd].head))
2193 {
2194 ev_io_stop (EV_A_ w);
2195 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
2196 }
2197}
2198
2199/* check whether the given fd is actually valid, for error recovery */
2200inline_size ecb_cold int
2201fd_valid (int fd)
2202{
2203#ifdef _WIN32
2204 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
2205#else
2206 return fcntl (fd, F_GETFD) != -1;
2207#endif
2208}
2209
2210/* called on EBADF to verify fds */
2211noinline ecb_cold
245static void 2212static void
246fd_change (int fd) 2213fd_ebadf (EV_P)
247{
248 if (anfds [fd].reify || fdchangecnt < 0)
249 return;
250
251 anfds [fd].reify = 1;
252
253 ++fdchangecnt;
254 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
255 fdchanges [fdchangecnt - 1] = fd;
256}
257
258/* called on EBADF to verify fds */
259static void
260fd_recheck (void)
261{ 2214{
262 int fd; 2215 int fd;
263 2216
264 for (fd = 0; fd < anfdmax; ++fd) 2217 for (fd = 0; fd < anfdmax; ++fd)
265 if (anfds [fd].events) 2218 if (anfds [fd].events)
266 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 2219 if (!fd_valid (fd) && errno == EBADF)
267 while (anfds [fd].head) 2220 fd_kill (EV_A_ fd);
2221}
2222
2223/* called on ENOMEM in select/poll to kill some fds and retry */
2224noinline ecb_cold
2225static void
2226fd_enomem (EV_P)
2227{
2228 int fd;
2229
2230 for (fd = anfdmax; fd--; )
2231 if (anfds [fd].events)
2232 {
2233 fd_kill (EV_A_ fd);
2234 break;
2235 }
2236}
2237
2238/* usually called after fork if backend needs to re-arm all fds from scratch */
2239noinline
2240static void
2241fd_rearm_all (EV_P)
2242{
2243 int fd;
2244
2245 for (fd = 0; fd < anfdmax; ++fd)
2246 if (anfds [fd].events)
2247 {
2248 anfds [fd].events = 0;
2249 anfds [fd].emask = 0;
2250 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
2251 }
2252}
2253
2254/* used to prepare libev internal fd's */
2255/* this is not fork-safe */
2256inline_speed void
2257fd_intern (int fd)
2258{
2259#ifdef _WIN32
2260 unsigned long arg = 1;
2261 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2262#else
2263 fcntl (fd, F_SETFD, FD_CLOEXEC);
2264 fcntl (fd, F_SETFL, O_NONBLOCK);
2265#endif
2266}
2267
2268/*****************************************************************************/
2269
2270/*
2271 * the heap functions want a real array index. array index 0 is guaranteed to not
2272 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2273 * the branching factor of the d-tree.
2274 */
2275
2276/*
2277 * at the moment we allow libev the luxury of two heaps,
2278 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2279 * which is more cache-efficient.
2280 * the difference is about 5% with 50000+ watchers.
2281 */
2282#if EV_USE_4HEAP
2283
2284#define DHEAP 4
2285#define HEAP0 (DHEAP - 1) /* index of first element in heap */
2286#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2287#define UPHEAP_DONE(p,k) ((p) == (k))
2288
2289/* away from the root */
2290inline_speed void
2291downheap (ANHE *heap, int N, int k)
2292{
2293 ANHE he = heap [k];
2294 ANHE *E = heap + N + HEAP0;
2295
2296 for (;;)
2297 {
2298 ev_tstamp minat;
2299 ANHE *minpos;
2300 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2301
2302 /* find minimum child */
2303 if (expect_true (pos + DHEAP - 1 < E))
2304 {
2305 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2306 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2307 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2308 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2309 }
2310 else if (pos < E)
2311 {
2312 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2313 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2314 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2315 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2316 }
2317 else
2318 break;
2319
2320 if (ANHE_at (he) <= minat)
2321 break;
2322
2323 heap [k] = *minpos;
2324 ev_active (ANHE_w (*minpos)) = k;
2325
2326 k = minpos - heap;
2327 }
2328
2329 heap [k] = he;
2330 ev_active (ANHE_w (he)) = k;
2331}
2332
2333#else /* 4HEAP */
2334
2335#define HEAP0 1
2336#define HPARENT(k) ((k) >> 1)
2337#define UPHEAP_DONE(p,k) (!(p))
2338
2339/* away from the root */
2340inline_speed void
2341downheap (ANHE *heap, int N, int k)
2342{
2343 ANHE he = heap [k];
2344
2345 for (;;)
2346 {
2347 int c = k << 1;
2348
2349 if (c >= N + HEAP0)
2350 break;
2351
2352 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2353 ? 1 : 0;
2354
2355 if (ANHE_at (he) <= ANHE_at (heap [c]))
2356 break;
2357
2358 heap [k] = heap [c];
2359 ev_active (ANHE_w (heap [k])) = k;
2360
2361 k = c;
2362 }
2363
2364 heap [k] = he;
2365 ev_active (ANHE_w (he)) = k;
2366}
2367#endif
2368
2369/* towards the root */
2370inline_speed void
2371upheap (ANHE *heap, int k)
2372{
2373 ANHE he = heap [k];
2374
2375 for (;;)
2376 {
2377 int p = HPARENT (k);
2378
2379 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2380 break;
2381
2382 heap [k] = heap [p];
2383 ev_active (ANHE_w (heap [k])) = k;
2384 k = p;
2385 }
2386
2387 heap [k] = he;
2388 ev_active (ANHE_w (he)) = k;
2389}
2390
2391/* move an element suitably so it is in a correct place */
2392inline_size void
2393adjustheap (ANHE *heap, int N, int k)
2394{
2395 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2396 upheap (heap, k);
2397 else
2398 downheap (heap, N, k);
2399}
2400
2401/* rebuild the heap: this function is used only once and executed rarely */
2402inline_size void
2403reheap (ANHE *heap, int N)
2404{
2405 int i;
2406
2407 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2408 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2409 for (i = 0; i < N; ++i)
2410 upheap (heap, i + HEAP0);
2411}
2412
2413/*****************************************************************************/
2414
2415/* associate signal watchers to a signal signal */
2416typedef struct
2417{
2418 EV_ATOMIC_T pending;
2419#if EV_MULTIPLICITY
2420 EV_P;
2421#endif
2422 WL head;
2423} ANSIG;
2424
2425static ANSIG signals [EV_NSIG - 1];
2426
2427/*****************************************************************************/
2428
2429#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2430
2431noinline ecb_cold
2432static void
2433evpipe_init (EV_P)
2434{
2435 if (!ev_is_active (&pipe_w))
2436 {
2437 int fds [2];
2438
2439# if EV_USE_EVENTFD
2440 fds [0] = -1;
2441 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2442 if (fds [1] < 0 && errno == EINVAL)
2443 fds [1] = eventfd (0, 0);
2444
2445 if (fds [1] < 0)
2446# endif
2447 {
2448 while (pipe (fds))
2449 ev_syserr ("(libev) error creating signal/async pipe");
2450
2451 fd_intern (fds [0]);
2452 }
2453
2454 evpipe [0] = fds [0];
2455
2456 if (evpipe [1] < 0)
2457 evpipe [1] = fds [1]; /* first call, set write fd */
2458 else
2459 {
2460 /* on subsequent calls, do not change evpipe [1] */
2461 /* so that evpipe_write can always rely on its value. */
2462 /* this branch does not do anything sensible on windows, */
2463 /* so must not be executed on windows */
2464
2465 dup2 (fds [1], evpipe [1]);
2466 close (fds [1]);
2467 }
2468
2469 fd_intern (evpipe [1]);
2470
2471 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2472 ev_io_start (EV_A_ &pipe_w);
2473 ev_unref (EV_A); /* watcher should not keep loop alive */
2474 }
2475}
2476
2477inline_speed void
2478evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2479{
2480 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2481
2482 if (expect_true (*flag))
2483 return;
2484
2485 *flag = 1;
2486 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2487
2488 pipe_write_skipped = 1;
2489
2490 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2491
2492 if (pipe_write_wanted)
2493 {
2494 int old_errno;
2495
2496 pipe_write_skipped = 0;
2497 ECB_MEMORY_FENCE_RELEASE;
2498
2499 old_errno = errno; /* save errno because write will clobber it */
2500
2501#if EV_USE_EVENTFD
2502 if (evpipe [0] < 0)
2503 {
2504 uint64_t counter = 1;
2505 write (evpipe [1], &counter, sizeof (uint64_t));
2506 }
2507 else
2508#endif
2509 {
2510#ifdef _WIN32
2511 WSABUF buf;
2512 DWORD sent;
2513 buf.buf = (char *)&buf;
2514 buf.len = 1;
2515 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2516#else
2517 write (evpipe [1], &(evpipe [1]), 1);
2518#endif
2519 }
2520
2521 errno = old_errno;
2522 }
2523}
2524
2525/* called whenever the libev signal pipe */
2526/* got some events (signal, async) */
2527static void
2528pipecb (EV_P_ ev_io *iow, int revents)
2529{
2530 int i;
2531
2532 if (revents & EV_READ)
2533 {
2534#if EV_USE_EVENTFD
2535 if (evpipe [0] < 0)
2536 {
2537 uint64_t counter;
2538 read (evpipe [1], &counter, sizeof (uint64_t));
2539 }
2540 else
2541#endif
2542 {
2543 char dummy[4];
2544#ifdef _WIN32
2545 WSABUF buf;
2546 DWORD recvd;
2547 DWORD flags = 0;
2548 buf.buf = dummy;
2549 buf.len = sizeof (dummy);
2550 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2551#else
2552 read (evpipe [0], &dummy, sizeof (dummy));
2553#endif
2554 }
2555 }
2556
2557 pipe_write_skipped = 0;
2558
2559 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2560
2561#if EV_SIGNAL_ENABLE
2562 if (sig_pending)
2563 {
2564 sig_pending = 0;
2565
2566 ECB_MEMORY_FENCE;
2567
2568 for (i = EV_NSIG - 1; i--; )
2569 if (expect_false (signals [i].pending))
2570 ev_feed_signal_event (EV_A_ i + 1);
2571 }
2572#endif
2573
2574#if EV_ASYNC_ENABLE
2575 if (async_pending)
2576 {
2577 async_pending = 0;
2578
2579 ECB_MEMORY_FENCE;
2580
2581 for (i = asynccnt; i--; )
2582 if (asyncs [i]->sent)
268 { 2583 {
269 ev_io_stop (anfds [fd].head); 2584 asyncs [i]->sent = 0;
270 event ((W)anfds [fd].head, EV_ERROR | EV_READ | EV_WRITE); 2585 ECB_MEMORY_FENCE_RELEASE;
2586 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
271 } 2587 }
2588 }
2589#endif
272} 2590}
273 2591
274/*****************************************************************************/ 2592/*****************************************************************************/
275 2593
276static struct ev_timer **timers; 2594void
277static int timermax, timercnt; 2595ev_feed_signal (int signum) EV_NOEXCEPT
2596{
2597#if EV_MULTIPLICITY
2598 EV_P;
2599 ECB_MEMORY_FENCE_ACQUIRE;
2600 EV_A = signals [signum - 1].loop;
278 2601
279static struct ev_periodic **periodics; 2602 if (!EV_A)
280static int periodicmax, periodiccnt; 2603 return;
2604#endif
2605
2606 signals [signum - 1].pending = 1;
2607 evpipe_write (EV_A_ &sig_pending);
2608}
281 2609
282static void 2610static void
283upheap (WT *timers, int k) 2611ev_sighandler (int signum)
284{ 2612{
285 WT w = timers [k]; 2613#ifdef _WIN32
2614 signal (signum, ev_sighandler);
2615#endif
286 2616
287 while (k && timers [k >> 1]->at > w->at) 2617 ev_feed_signal (signum);
288 {
289 timers [k] = timers [k >> 1];
290 timers [k]->active = k + 1;
291 k >>= 1;
292 }
293
294 timers [k] = w;
295 timers [k]->active = k + 1;
296
297} 2618}
298 2619
2620noinline
2621void
2622ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2623{
2624 WL w;
2625
2626 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2627 return;
2628
2629 --signum;
2630
2631#if EV_MULTIPLICITY
2632 /* it is permissible to try to feed a signal to the wrong loop */
2633 /* or, likely more useful, feeding a signal nobody is waiting for */
2634
2635 if (expect_false (signals [signum].loop != EV_A))
2636 return;
2637#endif
2638
2639 signals [signum].pending = 0;
2640 ECB_MEMORY_FENCE_RELEASE;
2641
2642 for (w = signals [signum].head; w; w = w->next)
2643 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2644}
2645
2646#if EV_USE_SIGNALFD
299static void 2647static void
300downheap (WT *timers, int N, int k) 2648sigfdcb (EV_P_ ev_io *iow, int revents)
301{ 2649{
302 WT w = timers [k]; 2650 struct signalfd_siginfo si[2], *sip; /* these structs are big */
303 2651
304 while (k < (N >> 1)) 2652 for (;;)
305 { 2653 {
306 int j = k << 1; 2654 ssize_t res = read (sigfd, si, sizeof (si));
307 2655
308 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 2656 /* not ISO-C, as res might be -1, but works with SuS */
309 ++j; 2657 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2658 ev_feed_signal_event (EV_A_ sip->ssi_signo);
310 2659
311 if (w->at <= timers [j]->at) 2660 if (res < (ssize_t)sizeof (si))
312 break; 2661 break;
313
314 timers [k] = timers [j];
315 timers [k]->active = k + 1;
316 k = j;
317 } 2662 }
318
319 timers [k] = w;
320 timers [k]->active = k + 1;
321} 2663}
2664#endif
2665
2666#endif
322 2667
323/*****************************************************************************/ 2668/*****************************************************************************/
324 2669
325typedef struct 2670#if EV_CHILD_ENABLE
326{ 2671static WL childs [EV_PID_HASHSIZE];
327 struct ev_signal *head;
328 sig_atomic_t volatile gotsig;
329} ANSIG;
330 2672
331static ANSIG *signals;
332static int signalmax;
333
334static int sigpipe [2];
335static sig_atomic_t volatile gotsig;
336static struct ev_io sigev;
337
338static void
339signals_init (ANSIG *base, int count)
340{
341 while (count--)
342 {
343 base->head = 0;
344 base->gotsig = 0;
345
346 ++base;
347 }
348}
349
350static void
351sighandler (int signum)
352{
353 signals [signum - 1].gotsig = 1;
354
355 if (!gotsig)
356 {
357 gotsig = 1;
358 write (sigpipe [1], &signum, 1);
359 }
360}
361
362static void
363sigcb (struct ev_io *iow, int revents)
364{
365 struct ev_signal *w;
366 int sig;
367
368 read (sigpipe [0], &revents, 1);
369 gotsig = 0;
370
371 for (sig = signalmax; sig--; )
372 if (signals [sig].gotsig)
373 {
374 signals [sig].gotsig = 0;
375
376 for (w = signals [sig].head; w; w = w->next)
377 event ((W)w, EV_SIGNAL);
378 }
379}
380
381static void
382siginit (void)
383{
384 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
385 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
386
387 /* rather than sort out wether we really need nb, set it */
388 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
389 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
390
391 ev_io_set (&sigev, sigpipe [0], EV_READ);
392 ev_io_start (&sigev);
393}
394
395/*****************************************************************************/
396
397static struct ev_idle **idles;
398static int idlemax, idlecnt;
399
400static struct ev_prepare **prepares;
401static int preparemax, preparecnt;
402
403static struct ev_check **checks;
404static int checkmax, checkcnt;
405
406/*****************************************************************************/
407
408static struct ev_child *childs [PID_HASHSIZE];
409static struct ev_signal childev; 2673static ev_signal childev;
2674
2675#ifndef WIFCONTINUED
2676# define WIFCONTINUED(status) 0
2677#endif
2678
2679/* handle a single child status event */
2680inline_speed void
2681child_reap (EV_P_ int chain, int pid, int status)
2682{
2683 ev_child *w;
2684 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2685
2686 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2687 {
2688 if ((w->pid == pid || !w->pid)
2689 && (!traced || (w->flags & 1)))
2690 {
2691 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2692 w->rpid = pid;
2693 w->rstatus = status;
2694 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2695 }
2696 }
2697}
410 2698
411#ifndef WCONTINUED 2699#ifndef WCONTINUED
412# define WCONTINUED 0 2700# define WCONTINUED 0
413#endif 2701#endif
414 2702
2703/* called on sigchld etc., calls waitpid */
415static void 2704static void
416childcb (struct ev_signal *sw, int revents) 2705childcb (EV_P_ ev_signal *sw, int revents)
417{ 2706{
418 struct ev_child *w;
419 int pid, status; 2707 int pid, status;
420 2708
2709 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
421 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 2710 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
422 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 2711 if (!WCONTINUED
423 if (w->pid == pid || w->pid == -1) 2712 || errno != EINVAL
424 { 2713 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
425 w->status = status; 2714 return;
426 event ((W)w, EV_CHILD); 2715
427 } 2716 /* make sure we are called again until all children have been reaped */
2717 /* we need to do it this way so that the callback gets called before we continue */
2718 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2719
2720 child_reap (EV_A_ pid, pid, status);
2721 if ((EV_PID_HASHSIZE) > 1)
2722 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
428} 2723}
2724
2725#endif
429 2726
430/*****************************************************************************/ 2727/*****************************************************************************/
431 2728
2729#if EV_USE_IOCP
2730# include "ev_iocp.c"
2731#endif
2732#if EV_USE_PORT
2733# include "ev_port.c"
2734#endif
2735#if EV_USE_KQUEUE
2736# include "ev_kqueue.c"
2737#endif
432#if EV_USE_EPOLL 2738#if EV_USE_EPOLL
433# include "ev_epoll.c" 2739# include "ev_epoll.c"
434#endif 2740#endif
2741#if EV_USE_LINUXAIO
2742# include "ev_linuxaio.c"
2743#endif
2744#if EV_USE_POLL
2745# include "ev_poll.c"
2746#endif
435#if EV_USE_SELECT 2747#if EV_USE_SELECT
436# include "ev_select.c" 2748# include "ev_select.c"
437#endif 2749#endif
438 2750
2751ecb_cold int
2752ev_version_major (void) EV_NOEXCEPT
2753{
2754 return EV_VERSION_MAJOR;
2755}
2756
2757ecb_cold int
2758ev_version_minor (void) EV_NOEXCEPT
2759{
2760 return EV_VERSION_MINOR;
2761}
2762
2763/* return true if we are running with elevated privileges and should ignore env variables */
2764inline_size ecb_cold int
2765enable_secure (void)
2766{
2767#ifdef _WIN32
2768 return 0;
2769#else
2770 return getuid () != geteuid ()
2771 || getgid () != getegid ();
2772#endif
2773}
2774
2775ecb_cold
2776unsigned int
2777ev_supported_backends (void) EV_NOEXCEPT
2778{
2779 unsigned int flags = 0;
2780
2781 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2782 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
2783 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2784 if (EV_USE_LINUXAIO) flags |= EVBACKEND_LINUXAIO;
2785 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2786 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
2787
2788 return flags;
2789}
2790
2791ecb_cold
2792unsigned int
2793ev_recommended_backends (void) EV_NOEXCEPT
2794{
2795 unsigned int flags = ev_supported_backends ();
2796
2797#ifndef __NetBSD__
2798 /* kqueue is borked on everything but netbsd apparently */
2799 /* it usually doesn't work correctly on anything but sockets and pipes */
2800 flags &= ~EVBACKEND_KQUEUE;
2801#endif
2802#ifdef __APPLE__
2803 /* only select works correctly on that "unix-certified" platform */
2804 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2805 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2806#endif
2807#ifdef __FreeBSD__
2808 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2809#endif
2810
2811 /* TODO: linuxaio is very experimental */
2812#if !EV_RECOMMEND_LINUXAIO
2813 flags &= ~EVBACKEND_LINUXAIO;
2814#endif
2815
2816 return flags;
2817}
2818
2819ecb_cold
2820unsigned int
2821ev_embeddable_backends (void) EV_NOEXCEPT
2822{
2823 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2824
2825 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2826 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2827 flags &= ~EVBACKEND_EPOLL;
2828
2829 return flags;
2830}
2831
2832unsigned int
2833ev_backend (EV_P) EV_NOEXCEPT
2834{
2835 return backend;
2836}
2837
2838#if EV_FEATURE_API
2839unsigned int
2840ev_iteration (EV_P) EV_NOEXCEPT
2841{
2842 return loop_count;
2843}
2844
2845unsigned int
2846ev_depth (EV_P) EV_NOEXCEPT
2847{
2848 return loop_depth;
2849}
2850
2851void
2852ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2853{
2854 io_blocktime = interval;
2855}
2856
2857void
2858ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2859{
2860 timeout_blocktime = interval;
2861}
2862
2863void
2864ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
2865{
2866 userdata = data;
2867}
2868
2869void *
2870ev_userdata (EV_P) EV_NOEXCEPT
2871{
2872 return userdata;
2873}
2874
2875void
2876ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
2877{
2878 invoke_cb = invoke_pending_cb;
2879}
2880
2881void
2882ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
2883{
2884 release_cb = release;
2885 acquire_cb = acquire;
2886}
2887#endif
2888
2889/* initialise a loop structure, must be zero-initialised */
2890noinline ecb_cold
2891static void
2892loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
2893{
2894 if (!backend)
2895 {
2896 origflags = flags;
2897
2898#if EV_USE_REALTIME
2899 if (!have_realtime)
2900 {
2901 struct timespec ts;
2902
2903 if (!clock_gettime (CLOCK_REALTIME, &ts))
2904 have_realtime = 1;
2905 }
2906#endif
2907
2908#if EV_USE_MONOTONIC
2909 if (!have_monotonic)
2910 {
2911 struct timespec ts;
2912
2913 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2914 have_monotonic = 1;
2915 }
2916#endif
2917
2918 /* pid check not overridable via env */
2919#ifndef _WIN32
2920 if (flags & EVFLAG_FORKCHECK)
2921 curpid = getpid ();
2922#endif
2923
2924 if (!(flags & EVFLAG_NOENV)
2925 && !enable_secure ()
2926 && getenv ("LIBEV_FLAGS"))
2927 flags = atoi (getenv ("LIBEV_FLAGS"));
2928
2929 ev_rt_now = ev_time ();
2930 mn_now = get_clock ();
2931 now_floor = mn_now;
2932 rtmn_diff = ev_rt_now - mn_now;
2933#if EV_FEATURE_API
2934 invoke_cb = ev_invoke_pending;
2935#endif
2936
2937 io_blocktime = 0.;
2938 timeout_blocktime = 0.;
2939 backend = 0;
2940 backend_fd = -1;
2941 sig_pending = 0;
2942#if EV_ASYNC_ENABLE
2943 async_pending = 0;
2944#endif
2945 pipe_write_skipped = 0;
2946 pipe_write_wanted = 0;
2947 evpipe [0] = -1;
2948 evpipe [1] = -1;
2949#if EV_USE_INOTIFY
2950 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2951#endif
2952#if EV_USE_SIGNALFD
2953 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2954#endif
2955
2956 if (!(flags & EVBACKEND_MASK))
2957 flags |= ev_recommended_backends ();
2958
2959#if EV_USE_IOCP
2960 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2961#endif
2962#if EV_USE_PORT
2963 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2964#endif
2965#if EV_USE_KQUEUE
2966 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
2967#endif
2968#if EV_USE_LINUXAIO
2969 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
2970#endif
2971#if EV_USE_EPOLL
2972 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2973#endif
2974#if EV_USE_POLL
2975 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2976#endif
2977#if EV_USE_SELECT
2978 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
2979#endif
2980
2981 ev_prepare_init (&pending_w, pendingcb);
2982
2983#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2984 ev_init (&pipe_w, pipecb);
2985 ev_set_priority (&pipe_w, EV_MAXPRI);
2986#endif
2987 }
2988}
2989
2990/* free up a loop structure */
2991ecb_cold
2992void
2993ev_loop_destroy (EV_P)
2994{
2995 int i;
2996
2997#if EV_MULTIPLICITY
2998 /* mimic free (0) */
2999 if (!EV_A)
3000 return;
3001#endif
3002
3003#if EV_CLEANUP_ENABLE
3004 /* queue cleanup watchers (and execute them) */
3005 if (expect_false (cleanupcnt))
3006 {
3007 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3008 EV_INVOKE_PENDING;
3009 }
3010#endif
3011
3012#if EV_CHILD_ENABLE
3013 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3014 {
3015 ev_ref (EV_A); /* child watcher */
3016 ev_signal_stop (EV_A_ &childev);
3017 }
3018#endif
3019
3020 if (ev_is_active (&pipe_w))
3021 {
3022 /*ev_ref (EV_A);*/
3023 /*ev_io_stop (EV_A_ &pipe_w);*/
3024
3025 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3026 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3027 }
3028
3029#if EV_USE_SIGNALFD
3030 if (ev_is_active (&sigfd_w))
3031 close (sigfd);
3032#endif
3033
3034#if EV_USE_INOTIFY
3035 if (fs_fd >= 0)
3036 close (fs_fd);
3037#endif
3038
3039 if (backend_fd >= 0)
3040 close (backend_fd);
3041
3042#if EV_USE_IOCP
3043 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3044#endif
3045#if EV_USE_PORT
3046 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
3047#endif
3048#if EV_USE_KQUEUE
3049 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3050#endif
3051#if EV_USE_LINUXAIO
3052 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
3053#endif
3054#if EV_USE_EPOLL
3055 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
3056#endif
3057#if EV_USE_POLL
3058 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
3059#endif
3060#if EV_USE_SELECT
3061 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
3062#endif
3063
3064 for (i = NUMPRI; i--; )
3065 {
3066 array_free (pending, [i]);
3067#if EV_IDLE_ENABLE
3068 array_free (idle, [i]);
3069#endif
3070 }
3071
3072 ev_free (anfds); anfds = 0; anfdmax = 0;
3073
3074 /* have to use the microsoft-never-gets-it-right macro */
3075 array_free (rfeed, EMPTY);
3076 array_free (fdchange, EMPTY);
3077 array_free (timer, EMPTY);
3078#if EV_PERIODIC_ENABLE
3079 array_free (periodic, EMPTY);
3080#endif
3081#if EV_FORK_ENABLE
3082 array_free (fork, EMPTY);
3083#endif
3084#if EV_CLEANUP_ENABLE
3085 array_free (cleanup, EMPTY);
3086#endif
3087 array_free (prepare, EMPTY);
3088 array_free (check, EMPTY);
3089#if EV_ASYNC_ENABLE
3090 array_free (async, EMPTY);
3091#endif
3092
3093 backend = 0;
3094
3095#if EV_MULTIPLICITY
3096 if (ev_is_default_loop (EV_A))
3097#endif
3098 ev_default_loop_ptr = 0;
3099#if EV_MULTIPLICITY
3100 else
3101 ev_free (EV_A);
3102#endif
3103}
3104
3105#if EV_USE_INOTIFY
3106inline_size void infy_fork (EV_P);
3107#endif
3108
3109inline_size void
3110loop_fork (EV_P)
3111{
3112#if EV_USE_PORT
3113 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
3114#endif
3115#if EV_USE_KQUEUE
3116 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3117#endif
3118#if EV_USE_LINUXAIO
3119 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
3120#endif
3121#if EV_USE_EPOLL
3122 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
3123#endif
3124#if EV_USE_INOTIFY
3125 infy_fork (EV_A);
3126#endif
3127
3128#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3129 if (ev_is_active (&pipe_w) && postfork != 2)
3130 {
3131 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3132
3133 ev_ref (EV_A);
3134 ev_io_stop (EV_A_ &pipe_w);
3135
3136 if (evpipe [0] >= 0)
3137 EV_WIN32_CLOSE_FD (evpipe [0]);
3138
3139 evpipe_init (EV_A);
3140 /* iterate over everything, in case we missed something before */
3141 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3142 }
3143#endif
3144
3145 postfork = 0;
3146}
3147
3148#if EV_MULTIPLICITY
3149
3150ecb_cold
3151struct ev_loop *
3152ev_loop_new (unsigned int flags) EV_NOEXCEPT
3153{
3154 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3155
3156 memset (EV_A, 0, sizeof (struct ev_loop));
3157 loop_init (EV_A_ flags);
3158
3159 if (ev_backend (EV_A))
3160 return EV_A;
3161
3162 ev_free (EV_A);
3163 return 0;
3164}
3165
3166#endif /* multiplicity */
3167
3168#if EV_VERIFY
3169noinline ecb_cold
3170static void
3171verify_watcher (EV_P_ W w)
3172{
3173 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
3174
3175 if (w->pending)
3176 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3177}
3178
3179noinline ecb_cold
3180static void
3181verify_heap (EV_P_ ANHE *heap, int N)
3182{
3183 int i;
3184
3185 for (i = HEAP0; i < N + HEAP0; ++i)
3186 {
3187 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3188 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3189 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3190
3191 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3192 }
3193}
3194
3195noinline ecb_cold
3196static void
3197array_verify (EV_P_ W *ws, int cnt)
3198{
3199 while (cnt--)
3200 {
3201 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3202 verify_watcher (EV_A_ ws [cnt]);
3203 }
3204}
3205#endif
3206
3207#if EV_FEATURE_API
3208void ecb_cold
3209ev_verify (EV_P) EV_NOEXCEPT
3210{
3211#if EV_VERIFY
3212 int i;
3213 WL w, w2;
3214
3215 assert (activecnt >= -1);
3216
3217 assert (fdchangemax >= fdchangecnt);
3218 for (i = 0; i < fdchangecnt; ++i)
3219 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3220
3221 assert (anfdmax >= 0);
3222 for (i = 0; i < anfdmax; ++i)
3223 {
3224 int j = 0;
3225
3226 for (w = w2 = anfds [i].head; w; w = w->next)
3227 {
3228 verify_watcher (EV_A_ (W)w);
3229
3230 if (j++ & 1)
3231 {
3232 assert (("libev: io watcher list contains a loop", w != w2));
3233 w2 = w2->next;
3234 }
3235
3236 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3237 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3238 }
3239 }
3240
3241 assert (timermax >= timercnt);
3242 verify_heap (EV_A_ timers, timercnt);
3243
3244#if EV_PERIODIC_ENABLE
3245 assert (periodicmax >= periodiccnt);
3246 verify_heap (EV_A_ periodics, periodiccnt);
3247#endif
3248
3249 for (i = NUMPRI; i--; )
3250 {
3251 assert (pendingmax [i] >= pendingcnt [i]);
3252#if EV_IDLE_ENABLE
3253 assert (idleall >= 0);
3254 assert (idlemax [i] >= idlecnt [i]);
3255 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3256#endif
3257 }
3258
3259#if EV_FORK_ENABLE
3260 assert (forkmax >= forkcnt);
3261 array_verify (EV_A_ (W *)forks, forkcnt);
3262#endif
3263
3264#if EV_CLEANUP_ENABLE
3265 assert (cleanupmax >= cleanupcnt);
3266 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3267#endif
3268
3269#if EV_ASYNC_ENABLE
3270 assert (asyncmax >= asynccnt);
3271 array_verify (EV_A_ (W *)asyncs, asynccnt);
3272#endif
3273
3274#if EV_PREPARE_ENABLE
3275 assert (preparemax >= preparecnt);
3276 array_verify (EV_A_ (W *)prepares, preparecnt);
3277#endif
3278
3279#if EV_CHECK_ENABLE
3280 assert (checkmax >= checkcnt);
3281 array_verify (EV_A_ (W *)checks, checkcnt);
3282#endif
3283
3284# if 0
3285#if EV_CHILD_ENABLE
3286 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3287 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3288#endif
3289# endif
3290#endif
3291}
3292#endif
3293
3294#if EV_MULTIPLICITY
3295ecb_cold
3296struct ev_loop *
3297#else
439int 3298int
440ev_version_major (void) 3299#endif
3300ev_default_loop (unsigned int flags) EV_NOEXCEPT
441{ 3301{
442 return EV_VERSION_MAJOR; 3302 if (!ev_default_loop_ptr)
3303 {
3304#if EV_MULTIPLICITY
3305 EV_P = ev_default_loop_ptr = &default_loop_struct;
3306#else
3307 ev_default_loop_ptr = 1;
3308#endif
3309
3310 loop_init (EV_A_ flags);
3311
3312 if (ev_backend (EV_A))
3313 {
3314#if EV_CHILD_ENABLE
3315 ev_signal_init (&childev, childcb, SIGCHLD);
3316 ev_set_priority (&childev, EV_MAXPRI);
3317 ev_signal_start (EV_A_ &childev);
3318 ev_unref (EV_A); /* child watcher should not keep loop alive */
3319#endif
3320 }
3321 else
3322 ev_default_loop_ptr = 0;
3323 }
3324
3325 return ev_default_loop_ptr;
3326}
3327
3328void
3329ev_loop_fork (EV_P) EV_NOEXCEPT
3330{
3331 postfork = 1;
3332}
3333
3334/*****************************************************************************/
3335
3336void
3337ev_invoke (EV_P_ void *w, int revents)
3338{
3339 EV_CB_INVOKE ((W)w, revents);
3340}
3341
3342unsigned int
3343ev_pending_count (EV_P) EV_NOEXCEPT
3344{
3345 int pri;
3346 unsigned int count = 0;
3347
3348 for (pri = NUMPRI; pri--; )
3349 count += pendingcnt [pri];
3350
3351 return count;
3352}
3353
3354noinline
3355void
3356ev_invoke_pending (EV_P)
3357{
3358 pendingpri = NUMPRI;
3359
3360 do
3361 {
3362 --pendingpri;
3363
3364 /* pendingpri possibly gets modified in the inner loop */
3365 while (pendingcnt [pendingpri])
3366 {
3367 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3368
3369 p->w->pending = 0;
3370 EV_CB_INVOKE (p->w, p->events);
3371 EV_FREQUENT_CHECK;
3372 }
3373 }
3374 while (pendingpri);
3375}
3376
3377#if EV_IDLE_ENABLE
3378/* make idle watchers pending. this handles the "call-idle */
3379/* only when higher priorities are idle" logic */
3380inline_size void
3381idle_reify (EV_P)
3382{
3383 if (expect_false (idleall))
3384 {
3385 int pri;
3386
3387 for (pri = NUMPRI; pri--; )
3388 {
3389 if (pendingcnt [pri])
3390 break;
3391
3392 if (idlecnt [pri])
3393 {
3394 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3395 break;
3396 }
3397 }
3398 }
3399}
3400#endif
3401
3402/* make timers pending */
3403inline_size void
3404timers_reify (EV_P)
3405{
3406 EV_FREQUENT_CHECK;
3407
3408 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3409 {
3410 do
3411 {
3412 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3413
3414 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3415
3416 /* first reschedule or stop timer */
3417 if (w->repeat)
3418 {
3419 ev_at (w) += w->repeat;
3420 if (ev_at (w) < mn_now)
3421 ev_at (w) = mn_now;
3422
3423 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3424
3425 ANHE_at_cache (timers [HEAP0]);
3426 downheap (timers, timercnt, HEAP0);
3427 }
3428 else
3429 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3430
3431 EV_FREQUENT_CHECK;
3432 feed_reverse (EV_A_ (W)w);
3433 }
3434 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3435
3436 feed_reverse_done (EV_A_ EV_TIMER);
3437 }
3438}
3439
3440#if EV_PERIODIC_ENABLE
3441
3442noinline
3443static void
3444periodic_recalc (EV_P_ ev_periodic *w)
3445{
3446 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3447 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3448
3449 /* the above almost always errs on the low side */
3450 while (at <= ev_rt_now)
3451 {
3452 ev_tstamp nat = at + w->interval;
3453
3454 /* when resolution fails us, we use ev_rt_now */
3455 if (expect_false (nat == at))
3456 {
3457 at = ev_rt_now;
3458 break;
3459 }
3460
3461 at = nat;
3462 }
3463
3464 ev_at (w) = at;
3465}
3466
3467/* make periodics pending */
3468inline_size void
3469periodics_reify (EV_P)
3470{
3471 EV_FREQUENT_CHECK;
3472
3473 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3474 {
3475 do
3476 {
3477 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3478
3479 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3480
3481 /* first reschedule or stop timer */
3482 if (w->reschedule_cb)
3483 {
3484 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3485
3486 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3487
3488 ANHE_at_cache (periodics [HEAP0]);
3489 downheap (periodics, periodiccnt, HEAP0);
3490 }
3491 else if (w->interval)
3492 {
3493 periodic_recalc (EV_A_ w);
3494 ANHE_at_cache (periodics [HEAP0]);
3495 downheap (periodics, periodiccnt, HEAP0);
3496 }
3497 else
3498 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3499
3500 EV_FREQUENT_CHECK;
3501 feed_reverse (EV_A_ (W)w);
3502 }
3503 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3504
3505 feed_reverse_done (EV_A_ EV_PERIODIC);
3506 }
3507}
3508
3509/* simply recalculate all periodics */
3510/* TODO: maybe ensure that at least one event happens when jumping forward? */
3511noinline ecb_cold
3512static void
3513periodics_reschedule (EV_P)
3514{
3515 int i;
3516
3517 /* adjust periodics after time jump */
3518 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3519 {
3520 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3521
3522 if (w->reschedule_cb)
3523 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3524 else if (w->interval)
3525 periodic_recalc (EV_A_ w);
3526
3527 ANHE_at_cache (periodics [i]);
3528 }
3529
3530 reheap (periodics, periodiccnt);
3531}
3532#endif
3533
3534/* adjust all timers by a given offset */
3535noinline ecb_cold
3536static void
3537timers_reschedule (EV_P_ ev_tstamp adjust)
3538{
3539 int i;
3540
3541 for (i = 0; i < timercnt; ++i)
3542 {
3543 ANHE *he = timers + i + HEAP0;
3544 ANHE_w (*he)->at += adjust;
3545 ANHE_at_cache (*he);
3546 }
3547}
3548
3549/* fetch new monotonic and realtime times from the kernel */
3550/* also detect if there was a timejump, and act accordingly */
3551inline_speed void
3552time_update (EV_P_ ev_tstamp max_block)
3553{
3554#if EV_USE_MONOTONIC
3555 if (expect_true (have_monotonic))
3556 {
3557 int i;
3558 ev_tstamp odiff = rtmn_diff;
3559
3560 mn_now = get_clock ();
3561
3562 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3563 /* interpolate in the meantime */
3564 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
3565 {
3566 ev_rt_now = rtmn_diff + mn_now;
3567 return;
3568 }
3569
3570 now_floor = mn_now;
3571 ev_rt_now = ev_time ();
3572
3573 /* loop a few times, before making important decisions.
3574 * on the choice of "4": one iteration isn't enough,
3575 * in case we get preempted during the calls to
3576 * ev_time and get_clock. a second call is almost guaranteed
3577 * to succeed in that case, though. and looping a few more times
3578 * doesn't hurt either as we only do this on time-jumps or
3579 * in the unlikely event of having been preempted here.
3580 */
3581 for (i = 4; --i; )
3582 {
3583 ev_tstamp diff;
3584 rtmn_diff = ev_rt_now - mn_now;
3585
3586 diff = odiff - rtmn_diff;
3587
3588 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
3589 return; /* all is well */
3590
3591 ev_rt_now = ev_time ();
3592 mn_now = get_clock ();
3593 now_floor = mn_now;
3594 }
3595
3596 /* no timer adjustment, as the monotonic clock doesn't jump */
3597 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3598# if EV_PERIODIC_ENABLE
3599 periodics_reschedule (EV_A);
3600# endif
3601 }
3602 else
3603#endif
3604 {
3605 ev_rt_now = ev_time ();
3606
3607 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3608 {
3609 /* adjust timers. this is easy, as the offset is the same for all of them */
3610 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3611#if EV_PERIODIC_ENABLE
3612 periodics_reschedule (EV_A);
3613#endif
3614 }
3615
3616 mn_now = ev_rt_now;
3617 }
443} 3618}
444 3619
445int 3620int
446ev_version_minor (void) 3621ev_run (EV_P_ int flags)
447{ 3622{
448 return EV_VERSION_MINOR; 3623#if EV_FEATURE_API
449} 3624 ++loop_depth;
3625#endif
450 3626
451int ev_init (int flags) 3627 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
452{ 3628
453 if (!ev_method) 3629 loop_done = EVBREAK_CANCEL;
3630
3631 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3632
3633 do
454 { 3634 {
455#if EV_USE_MONOTONIC 3635#if EV_VERIFY >= 2
3636 ev_verify (EV_A);
3637#endif
3638
3639#ifndef _WIN32
3640 if (expect_false (curpid)) /* penalise the forking check even more */
3641 if (expect_false (getpid () != curpid))
3642 {
3643 curpid = getpid ();
3644 postfork = 1;
3645 }
3646#endif
3647
3648#if EV_FORK_ENABLE
3649 /* we might have forked, so queue fork handlers */
3650 if (expect_false (postfork))
3651 if (forkcnt)
3652 {
3653 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3654 EV_INVOKE_PENDING;
3655 }
3656#endif
3657
3658#if EV_PREPARE_ENABLE
3659 /* queue prepare watchers (and execute them) */
3660 if (expect_false (preparecnt))
3661 {
3662 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3663 EV_INVOKE_PENDING;
3664 }
3665#endif
3666
3667 if (expect_false (loop_done))
3668 break;
3669
3670 /* we might have forked, so reify kernel state if necessary */
3671 if (expect_false (postfork))
3672 loop_fork (EV_A);
3673
3674 /* update fd-related kernel structures */
3675 fd_reify (EV_A);
3676
3677 /* calculate blocking time */
456 { 3678 {
457 struct timespec ts; 3679 ev_tstamp waittime = 0.;
458 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 3680 ev_tstamp sleeptime = 0.;
459 have_monotonic = 1; 3681
3682 /* remember old timestamp for io_blocktime calculation */
3683 ev_tstamp prev_mn_now = mn_now;
3684
3685 /* update time to cancel out callback processing overhead */
3686 time_update (EV_A_ 1e100);
3687
3688 /* from now on, we want a pipe-wake-up */
3689 pipe_write_wanted = 1;
3690
3691 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3692
3693 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3694 {
3695 waittime = MAX_BLOCKTIME;
3696
3697 if (timercnt)
3698 {
3699 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3700 if (waittime > to) waittime = to;
3701 }
3702
3703#if EV_PERIODIC_ENABLE
3704 if (periodiccnt)
3705 {
3706 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3707 if (waittime > to) waittime = to;
3708 }
3709#endif
3710
3711 /* don't let timeouts decrease the waittime below timeout_blocktime */
3712 if (expect_false (waittime < timeout_blocktime))
3713 waittime = timeout_blocktime;
3714
3715 /* at this point, we NEED to wait, so we have to ensure */
3716 /* to pass a minimum nonzero value to the backend */
3717 if (expect_false (waittime < backend_mintime))
3718 waittime = backend_mintime;
3719
3720 /* extra check because io_blocktime is commonly 0 */
3721 if (expect_false (io_blocktime))
3722 {
3723 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3724
3725 if (sleeptime > waittime - backend_mintime)
3726 sleeptime = waittime - backend_mintime;
3727
3728 if (expect_true (sleeptime > 0.))
3729 {
3730 ev_sleep (sleeptime);
3731 waittime -= sleeptime;
3732 }
3733 }
3734 }
3735
3736#if EV_FEATURE_API
3737 ++loop_count;
3738#endif
3739 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3740 backend_poll (EV_A_ waittime);
3741 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3742
3743 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3744
3745 ECB_MEMORY_FENCE_ACQUIRE;
3746 if (pipe_write_skipped)
3747 {
3748 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3749 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3750 }
3751
3752
3753 /* update ev_rt_now, do magic */
3754 time_update (EV_A_ waittime + sleeptime);
460 } 3755 }
461#endif
462 3756
463 ev_now = ev_time (); 3757 /* queue pending timers and reschedule them */
464 now = get_clock (); 3758 timers_reify (EV_A); /* relative timers called last */
465 diff = ev_now - now; 3759#if EV_PERIODIC_ENABLE
466 3760 periodics_reify (EV_A); /* absolute timers called first */
467 if (pipe (sigpipe))
468 return 0;
469
470 ev_method = EVMETHOD_NONE;
471#if EV_USE_EPOLL
472 if (ev_method == EVMETHOD_NONE) epoll_init (flags);
473#endif 3761#endif
474#if EV_USE_SELECT
475 if (ev_method == EVMETHOD_NONE) select_init (flags);
476#endif
477 3762
478 if (ev_method) 3763#if EV_IDLE_ENABLE
3764 /* queue idle watchers unless other events are pending */
3765 idle_reify (EV_A);
3766#endif
3767
3768#if EV_CHECK_ENABLE
3769 /* queue check watchers, to be executed first */
3770 if (expect_false (checkcnt))
3771 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3772#endif
3773
3774 EV_INVOKE_PENDING;
3775 }
3776 while (expect_true (
3777 activecnt
3778 && !loop_done
3779 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3780 ));
3781
3782 if (loop_done == EVBREAK_ONE)
3783 loop_done = EVBREAK_CANCEL;
3784
3785#if EV_FEATURE_API
3786 --loop_depth;
3787#endif
3788
3789 return activecnt;
3790}
3791
3792void
3793ev_break (EV_P_ int how) EV_NOEXCEPT
3794{
3795 loop_done = how;
3796}
3797
3798void
3799ev_ref (EV_P) EV_NOEXCEPT
3800{
3801 ++activecnt;
3802}
3803
3804void
3805ev_unref (EV_P) EV_NOEXCEPT
3806{
3807 --activecnt;
3808}
3809
3810void
3811ev_now_update (EV_P) EV_NOEXCEPT
3812{
3813 time_update (EV_A_ 1e100);
3814}
3815
3816void
3817ev_suspend (EV_P) EV_NOEXCEPT
3818{
3819 ev_now_update (EV_A);
3820}
3821
3822void
3823ev_resume (EV_P) EV_NOEXCEPT
3824{
3825 ev_tstamp mn_prev = mn_now;
3826
3827 ev_now_update (EV_A);
3828 timers_reschedule (EV_A_ mn_now - mn_prev);
3829#if EV_PERIODIC_ENABLE
3830 /* TODO: really do this? */
3831 periodics_reschedule (EV_A);
3832#endif
3833}
3834
3835/*****************************************************************************/
3836/* singly-linked list management, used when the expected list length is short */
3837
3838inline_size void
3839wlist_add (WL *head, WL elem)
3840{
3841 elem->next = *head;
3842 *head = elem;
3843}
3844
3845inline_size void
3846wlist_del (WL *head, WL elem)
3847{
3848 while (*head)
3849 {
3850 if (expect_true (*head == elem))
479 { 3851 {
480 ev_watcher_init (&sigev, sigcb); 3852 *head = elem->next;
481 siginit (); 3853 break;
482
483 ev_signal_init (&childev, childcb, SIGCHLD);
484 ev_signal_start (&childev);
485 } 3854 }
3855
3856 head = &(*head)->next;
3857 }
3858}
3859
3860/* internal, faster, version of ev_clear_pending */
3861inline_speed void
3862clear_pending (EV_P_ W w)
3863{
3864 if (w->pending)
486 } 3865 {
3866 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3867 w->pending = 0;
3868 }
3869}
487 3870
488 return ev_method; 3871int
3872ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
3873{
3874 W w_ = (W)w;
3875 int pending = w_->pending;
3876
3877 if (expect_true (pending))
3878 {
3879 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3880 p->w = (W)&pending_w;
3881 w_->pending = 0;
3882 return p->events;
3883 }
3884 else
3885 return 0;
3886}
3887
3888inline_size void
3889pri_adjust (EV_P_ W w)
3890{
3891 int pri = ev_priority (w);
3892 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3893 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3894 ev_set_priority (w, pri);
3895}
3896
3897inline_speed void
3898ev_start (EV_P_ W w, int active)
3899{
3900 pri_adjust (EV_A_ w);
3901 w->active = active;
3902 ev_ref (EV_A);
3903}
3904
3905inline_size void
3906ev_stop (EV_P_ W w)
3907{
3908 ev_unref (EV_A);
3909 w->active = 0;
489} 3910}
490 3911
491/*****************************************************************************/ 3912/*****************************************************************************/
492 3913
3914noinline
493void 3915void
494ev_prefork (void) 3916ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
495{ 3917{
496 /* nop */ 3918 int fd = w->fd;
497}
498 3919
499void 3920 if (expect_false (ev_is_active (w)))
500ev_postfork_parent (void) 3921 return;
501{
502 /* nop */
503}
504 3922
505void 3923 assert (("libev: ev_io_start called with negative fd", fd >= 0));
506ev_postfork_child (void) 3924 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
507{
508#if EV_USE_EPOLL
509 if (ev_method == EVMETHOD_EPOLL)
510 epoll_postfork_child ();
511#endif
512 3925
513 ev_io_stop (&sigev); 3926 EV_FREQUENT_CHECK;
514 close (sigpipe [0]);
515 close (sigpipe [1]);
516 pipe (sigpipe);
517 siginit ();
518}
519 3927
520/*****************************************************************************/ 3928 ev_start (EV_A_ (W)w, 1);
3929 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
3930 wlist_add (&anfds[fd].head, (WL)w);
521 3931
522static void 3932 /* common bug, apparently */
523call_pending (void) 3933 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3934
3935 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3936 w->events &= ~EV__IOFDSET;
3937
3938 EV_FREQUENT_CHECK;
3939}
3940
3941noinline
3942void
3943ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
524{ 3944{
525 while (pendingcnt) 3945 clear_pending (EV_A_ (W)w);
3946 if (expect_false (!ev_is_active (w)))
3947 return;
3948
3949 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3950
3951 EV_FREQUENT_CHECK;
3952
3953 wlist_del (&anfds[w->fd].head, (WL)w);
3954 ev_stop (EV_A_ (W)w);
3955
3956 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3957
3958 EV_FREQUENT_CHECK;
3959}
3960
3961noinline
3962void
3963ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
3964{
3965 if (expect_false (ev_is_active (w)))
3966 return;
3967
3968 ev_at (w) += mn_now;
3969
3970 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3971
3972 EV_FREQUENT_CHECK;
3973
3974 ++timercnt;
3975 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3976 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
3977 ANHE_w (timers [ev_active (w)]) = (WT)w;
3978 ANHE_at_cache (timers [ev_active (w)]);
3979 upheap (timers, ev_active (w));
3980
3981 EV_FREQUENT_CHECK;
3982
3983 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3984}
3985
3986noinline
3987void
3988ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
3989{
3990 clear_pending (EV_A_ (W)w);
3991 if (expect_false (!ev_is_active (w)))
3992 return;
3993
3994 EV_FREQUENT_CHECK;
3995
526 { 3996 {
527 ANPENDING *p = pendings + --pendingcnt; 3997 int active = ev_active (w);
528 3998
529 if (p->w) 3999 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
4000
4001 --timercnt;
4002
4003 if (expect_true (active < timercnt + HEAP0))
530 { 4004 {
531 p->w->pending = 0; 4005 timers [active] = timers [timercnt + HEAP0];
532 p->w->cb (p->w, p->events); 4006 adjustheap (timers, timercnt, active);
533 } 4007 }
4008 }
4009
4010 ev_at (w) -= mn_now;
4011
4012 ev_stop (EV_A_ (W)w);
4013
4014 EV_FREQUENT_CHECK;
4015}
4016
4017noinline
4018void
4019ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
4020{
4021 EV_FREQUENT_CHECK;
4022
4023 clear_pending (EV_A_ (W)w);
4024
4025 if (ev_is_active (w))
534 } 4026 {
535}
536
537static void
538timers_reify (void)
539{
540 while (timercnt && timers [0]->at <= now)
541 {
542 struct ev_timer *w = timers [0];
543
544 /* first reschedule or stop timer */
545 if (w->repeat) 4027 if (w->repeat)
546 { 4028 {
547 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
548 w->at = now + w->repeat; 4029 ev_at (w) = mn_now + w->repeat;
549 downheap ((WT *)timers, timercnt, 0); 4030 ANHE_at_cache (timers [ev_active (w)]);
4031 adjustheap (timers, timercnt, ev_active (w));
550 } 4032 }
551 else 4033 else
552 ev_timer_stop (w); /* nonrepeating: stop timer */ 4034 ev_timer_stop (EV_A_ w);
553
554 event ((W)w, EV_TIMEOUT);
555 }
556}
557
558static void
559periodics_reify (void)
560{
561 while (periodiccnt && periodics [0]->at <= ev_now)
562 { 4035 }
563 struct ev_periodic *w = periodics [0]; 4036 else if (w->repeat)
4037 {
4038 ev_at (w) = w->repeat;
4039 ev_timer_start (EV_A_ w);
4040 }
564 4041
565 /* first reschedule or stop timer */ 4042 EV_FREQUENT_CHECK;
4043}
4044
4045ev_tstamp
4046ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4047{
4048 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
4049}
4050
4051#if EV_PERIODIC_ENABLE
4052noinline
4053void
4054ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
4055{
4056 if (expect_false (ev_is_active (w)))
4057 return;
4058
4059 if (w->reschedule_cb)
4060 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
566 if (w->interval) 4061 else if (w->interval)
4062 {
4063 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
4064 periodic_recalc (EV_A_ w);
4065 }
4066 else
4067 ev_at (w) = w->offset;
4068
4069 EV_FREQUENT_CHECK;
4070
4071 ++periodiccnt;
4072 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
4073 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
4074 ANHE_w (periodics [ev_active (w)]) = (WT)w;
4075 ANHE_at_cache (periodics [ev_active (w)]);
4076 upheap (periodics, ev_active (w));
4077
4078 EV_FREQUENT_CHECK;
4079
4080 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
4081}
4082
4083noinline
4084void
4085ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
4086{
4087 clear_pending (EV_A_ (W)w);
4088 if (expect_false (!ev_is_active (w)))
4089 return;
4090
4091 EV_FREQUENT_CHECK;
4092
4093 {
4094 int active = ev_active (w);
4095
4096 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
4097
4098 --periodiccnt;
4099
4100 if (expect_true (active < periodiccnt + HEAP0))
4101 {
4102 periodics [active] = periodics [periodiccnt + HEAP0];
4103 adjustheap (periodics, periodiccnt, active);
4104 }
4105 }
4106
4107 ev_stop (EV_A_ (W)w);
4108
4109 EV_FREQUENT_CHECK;
4110}
4111
4112noinline
4113void
4114ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
4115{
4116 /* TODO: use adjustheap and recalculation */
4117 ev_periodic_stop (EV_A_ w);
4118 ev_periodic_start (EV_A_ w);
4119}
4120#endif
4121
4122#ifndef SA_RESTART
4123# define SA_RESTART 0
4124#endif
4125
4126#if EV_SIGNAL_ENABLE
4127
4128noinline
4129void
4130ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
4131{
4132 if (expect_false (ev_is_active (w)))
4133 return;
4134
4135 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4136
4137#if EV_MULTIPLICITY
4138 assert (("libev: a signal must not be attached to two different loops",
4139 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4140
4141 signals [w->signum - 1].loop = EV_A;
4142 ECB_MEMORY_FENCE_RELEASE;
4143#endif
4144
4145 EV_FREQUENT_CHECK;
4146
4147#if EV_USE_SIGNALFD
4148 if (sigfd == -2)
4149 {
4150 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
4151 if (sigfd < 0 && errno == EINVAL)
4152 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
4153
4154 if (sigfd >= 0)
567 { 4155 {
568 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 4156 fd_intern (sigfd); /* doing it twice will not hurt */
569 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 4157
570 downheap ((WT *)periodics, periodiccnt, 0); 4158 sigemptyset (&sigfd_set);
4159
4160 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4161 ev_set_priority (&sigfd_w, EV_MAXPRI);
4162 ev_io_start (EV_A_ &sigfd_w);
4163 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4164 }
4165 }
4166
4167 if (sigfd >= 0)
4168 {
4169 /* TODO: check .head */
4170 sigaddset (&sigfd_set, w->signum);
4171 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4172
4173 signalfd (sigfd, &sigfd_set, 0);
4174 }
4175#endif
4176
4177 ev_start (EV_A_ (W)w, 1);
4178 wlist_add (&signals [w->signum - 1].head, (WL)w);
4179
4180 if (!((WL)w)->next)
4181# if EV_USE_SIGNALFD
4182 if (sigfd < 0) /*TODO*/
4183# endif
4184 {
4185# ifdef _WIN32
4186 evpipe_init (EV_A);
4187
4188 signal (w->signum, ev_sighandler);
4189# else
4190 struct sigaction sa;
4191
4192 evpipe_init (EV_A);
4193
4194 sa.sa_handler = ev_sighandler;
4195 sigfillset (&sa.sa_mask);
4196 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
4197 sigaction (w->signum, &sa, 0);
4198
4199 if (origflags & EVFLAG_NOSIGMASK)
4200 {
4201 sigemptyset (&sa.sa_mask);
4202 sigaddset (&sa.sa_mask, w->signum);
4203 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4204 }
4205#endif
4206 }
4207
4208 EV_FREQUENT_CHECK;
4209}
4210
4211noinline
4212void
4213ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
4214{
4215 clear_pending (EV_A_ (W)w);
4216 if (expect_false (!ev_is_active (w)))
4217 return;
4218
4219 EV_FREQUENT_CHECK;
4220
4221 wlist_del (&signals [w->signum - 1].head, (WL)w);
4222 ev_stop (EV_A_ (W)w);
4223
4224 if (!signals [w->signum - 1].head)
4225 {
4226#if EV_MULTIPLICITY
4227 signals [w->signum - 1].loop = 0; /* unattach from signal */
4228#endif
4229#if EV_USE_SIGNALFD
4230 if (sigfd >= 0)
4231 {
4232 sigset_t ss;
4233
4234 sigemptyset (&ss);
4235 sigaddset (&ss, w->signum);
4236 sigdelset (&sigfd_set, w->signum);
4237
4238 signalfd (sigfd, &sigfd_set, 0);
4239 sigprocmask (SIG_UNBLOCK, &ss, 0);
571 } 4240 }
572 else 4241 else
573 ev_periodic_stop (w); /* nonrepeating: stop timer */ 4242#endif
574 4243 signal (w->signum, SIG_DFL);
575 event ((W)w, EV_PERIODIC);
576 } 4244 }
577}
578 4245
4246 EV_FREQUENT_CHECK;
4247}
4248
4249#endif
4250
4251#if EV_CHILD_ENABLE
4252
4253void
4254ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4255{
4256#if EV_MULTIPLICITY
4257 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
4258#endif
4259 if (expect_false (ev_is_active (w)))
4260 return;
4261
4262 EV_FREQUENT_CHECK;
4263
4264 ev_start (EV_A_ (W)w, 1);
4265 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4266
4267 EV_FREQUENT_CHECK;
4268}
4269
4270void
4271ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
4272{
4273 clear_pending (EV_A_ (W)w);
4274 if (expect_false (!ev_is_active (w)))
4275 return;
4276
4277 EV_FREQUENT_CHECK;
4278
4279 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4280 ev_stop (EV_A_ (W)w);
4281
4282 EV_FREQUENT_CHECK;
4283}
4284
4285#endif
4286
4287#if EV_STAT_ENABLE
4288
4289# ifdef _WIN32
4290# undef lstat
4291# define lstat(a,b) _stati64 (a,b)
4292# endif
4293
4294#define DEF_STAT_INTERVAL 5.0074891
4295#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4296#define MIN_STAT_INTERVAL 0.1074891
4297
4298noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4299
4300#if EV_USE_INOTIFY
4301
4302/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4303# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4304
4305noinline
579static void 4306static void
580periodics_reschedule (ev_tstamp diff) 4307infy_add (EV_P_ ev_stat *w)
581{ 4308{
582 int i; 4309 w->wd = inotify_add_watch (fs_fd, w->path,
4310 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4311 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4312 | IN_DONT_FOLLOW | IN_MASK_ADD);
583 4313
584 /* adjust periodics after time jump */ 4314 if (w->wd >= 0)
585 for (i = 0; i < periodiccnt; ++i) 4315 {
4316 struct statfs sfs;
4317
4318 /* now local changes will be tracked by inotify, but remote changes won't */
4319 /* unless the filesystem is known to be local, we therefore still poll */
4320 /* also do poll on <2.6.25, but with normal frequency */
4321
4322 if (!fs_2625)
4323 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4324 else if (!statfs (w->path, &sfs)
4325 && (sfs.f_type == 0x1373 /* devfs */
4326 || sfs.f_type == 0x4006 /* fat */
4327 || sfs.f_type == 0x4d44 /* msdos */
4328 || sfs.f_type == 0xEF53 /* ext2/3 */
4329 || sfs.f_type == 0x72b6 /* jffs2 */
4330 || sfs.f_type == 0x858458f6 /* ramfs */
4331 || sfs.f_type == 0x5346544e /* ntfs */
4332 || sfs.f_type == 0x3153464a /* jfs */
4333 || sfs.f_type == 0x9123683e /* btrfs */
4334 || sfs.f_type == 0x52654973 /* reiser3 */
4335 || sfs.f_type == 0x01021994 /* tmpfs */
4336 || sfs.f_type == 0x58465342 /* xfs */))
4337 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4338 else
4339 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
586 { 4340 }
587 struct ev_periodic *w = periodics [i]; 4341 else
4342 {
4343 /* can't use inotify, continue to stat */
4344 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
588 4345
589 if (w->interval) 4346 /* if path is not there, monitor some parent directory for speedup hints */
4347 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4348 /* but an efficiency issue only */
4349 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
590 { 4350 {
591 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 4351 char path [4096];
4352 strcpy (path, w->path);
592 4353
593 if (fabs (diff) >= 1e-4) 4354 do
594 { 4355 {
595 ev_periodic_stop (w); 4356 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
596 ev_periodic_start (w); 4357 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
597 4358
598 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 4359 char *pend = strrchr (path, '/');
4360
4361 if (!pend || pend == path)
4362 break;
4363
4364 *pend = 0;
4365 w->wd = inotify_add_watch (fs_fd, path, mask);
4366 }
4367 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4368 }
4369 }
4370
4371 if (w->wd >= 0)
4372 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4373
4374 /* now re-arm timer, if required */
4375 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4376 ev_timer_again (EV_A_ &w->timer);
4377 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4378}
4379
4380noinline
4381static void
4382infy_del (EV_P_ ev_stat *w)
4383{
4384 int slot;
4385 int wd = w->wd;
4386
4387 if (wd < 0)
4388 return;
4389
4390 w->wd = -2;
4391 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4392 wlist_del (&fs_hash [slot].head, (WL)w);
4393
4394 /* remove this watcher, if others are watching it, they will rearm */
4395 inotify_rm_watch (fs_fd, wd);
4396}
4397
4398noinline
4399static void
4400infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4401{
4402 if (slot < 0)
4403 /* overflow, need to check for all hash slots */
4404 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4405 infy_wd (EV_A_ slot, wd, ev);
4406 else
4407 {
4408 WL w_;
4409
4410 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4411 {
4412 ev_stat *w = (ev_stat *)w_;
4413 w_ = w_->next; /* lets us remove this watcher and all before it */
4414
4415 if (w->wd == wd || wd == -1)
4416 {
4417 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4418 {
4419 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4420 w->wd = -1;
4421 infy_add (EV_A_ w); /* re-add, no matter what */
4422 }
4423
4424 stat_timer_cb (EV_A_ &w->timer, 0);
599 } 4425 }
600 } 4426 }
601 } 4427 }
602} 4428}
603 4429
604static void 4430static void
605time_update (void) 4431infy_cb (EV_P_ ev_io *w, int revents)
606{ 4432{
4433 char buf [EV_INOTIFY_BUFSIZE];
607 int i; 4434 int ofs;
4435 int len = read (fs_fd, buf, sizeof (buf));
608 4436
609 ev_now = ev_time (); 4437 for (ofs = 0; ofs < len; )
610 4438 {
611 if (have_monotonic) 4439 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4440 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4441 ofs += sizeof (struct inotify_event) + ev->len;
612 { 4442 }
613 ev_tstamp odiff = diff; 4443}
614 4444
615 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 4445inline_size ecb_cold
4446void
4447ev_check_2625 (EV_P)
4448{
4449 /* kernels < 2.6.25 are borked
4450 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4451 */
4452 if (ev_linux_version () < 0x020619)
4453 return;
4454
4455 fs_2625 = 1;
4456}
4457
4458inline_size int
4459infy_newfd (void)
4460{
4461#if defined IN_CLOEXEC && defined IN_NONBLOCK
4462 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4463 if (fd >= 0)
4464 return fd;
4465#endif
4466 return inotify_init ();
4467}
4468
4469inline_size void
4470infy_init (EV_P)
4471{
4472 if (fs_fd != -2)
4473 return;
4474
4475 fs_fd = -1;
4476
4477 ev_check_2625 (EV_A);
4478
4479 fs_fd = infy_newfd ();
4480
4481 if (fs_fd >= 0)
4482 {
4483 fd_intern (fs_fd);
4484 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4485 ev_set_priority (&fs_w, EV_MAXPRI);
4486 ev_io_start (EV_A_ &fs_w);
4487 ev_unref (EV_A);
4488 }
4489}
4490
4491inline_size void
4492infy_fork (EV_P)
4493{
4494 int slot;
4495
4496 if (fs_fd < 0)
4497 return;
4498
4499 ev_ref (EV_A);
4500 ev_io_stop (EV_A_ &fs_w);
4501 close (fs_fd);
4502 fs_fd = infy_newfd ();
4503
4504 if (fs_fd >= 0)
4505 {
4506 fd_intern (fs_fd);
4507 ev_io_set (&fs_w, fs_fd, EV_READ);
4508 ev_io_start (EV_A_ &fs_w);
4509 ev_unref (EV_A);
4510 }
4511
4512 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4513 {
4514 WL w_ = fs_hash [slot].head;
4515 fs_hash [slot].head = 0;
4516
4517 while (w_)
616 { 4518 {
617 now = get_clock (); 4519 ev_stat *w = (ev_stat *)w_;
618 diff = ev_now - now; 4520 w_ = w_->next; /* lets us add this watcher */
619 4521
620 if (fabs (odiff - diff) < MIN_TIMEJUMP) 4522 w->wd = -1;
621 return; /* all is well */
622 4523
623 ev_now = ev_time (); 4524 if (fs_fd >= 0)
4525 infy_add (EV_A_ w); /* re-add, no matter what */
4526 else
4527 {
4528 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4529 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4530 ev_timer_again (EV_A_ &w->timer);
4531 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4532 }
624 } 4533 }
625
626 periodics_reschedule (diff - odiff);
627 /* no timer adjustment, as the monotonic clock doesn't jump */
628 } 4534 }
4535}
4536
4537#endif
4538
4539#ifdef _WIN32
4540# define EV_LSTAT(p,b) _stati64 (p, b)
4541#else
4542# define EV_LSTAT(p,b) lstat (p, b)
4543#endif
4544
4545void
4546ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
4547{
4548 if (lstat (w->path, &w->attr) < 0)
4549 w->attr.st_nlink = 0;
4550 else if (!w->attr.st_nlink)
4551 w->attr.st_nlink = 1;
4552}
4553
4554noinline
4555static void
4556stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4557{
4558 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4559
4560 ev_statdata prev = w->attr;
4561 ev_stat_stat (EV_A_ w);
4562
4563 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4564 if (
4565 prev.st_dev != w->attr.st_dev
4566 || prev.st_ino != w->attr.st_ino
4567 || prev.st_mode != w->attr.st_mode
4568 || prev.st_nlink != w->attr.st_nlink
4569 || prev.st_uid != w->attr.st_uid
4570 || prev.st_gid != w->attr.st_gid
4571 || prev.st_rdev != w->attr.st_rdev
4572 || prev.st_size != w->attr.st_size
4573 || prev.st_atime != w->attr.st_atime
4574 || prev.st_mtime != w->attr.st_mtime
4575 || prev.st_ctime != w->attr.st_ctime
4576 ) {
4577 /* we only update w->prev on actual differences */
4578 /* in case we test more often than invoke the callback, */
4579 /* to ensure that prev is always different to attr */
4580 w->prev = prev;
4581
4582 #if EV_USE_INOTIFY
4583 if (fs_fd >= 0)
4584 {
4585 infy_del (EV_A_ w);
4586 infy_add (EV_A_ w);
4587 ev_stat_stat (EV_A_ w); /* avoid race... */
4588 }
4589 #endif
4590
4591 ev_feed_event (EV_A_ w, EV_STAT);
4592 }
4593}
4594
4595void
4596ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
4597{
4598 if (expect_false (ev_is_active (w)))
4599 return;
4600
4601 ev_stat_stat (EV_A_ w);
4602
4603 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4604 w->interval = MIN_STAT_INTERVAL;
4605
4606 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4607 ev_set_priority (&w->timer, ev_priority (w));
4608
4609#if EV_USE_INOTIFY
4610 infy_init (EV_A);
4611
4612 if (fs_fd >= 0)
4613 infy_add (EV_A_ w);
629 else 4614 else
4615#endif
4616 {
4617 ev_timer_again (EV_A_ &w->timer);
4618 ev_unref (EV_A);
630 { 4619 }
631 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 4620
4621 ev_start (EV_A_ (W)w, 1);
4622
4623 EV_FREQUENT_CHECK;
4624}
4625
4626void
4627ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
4628{
4629 clear_pending (EV_A_ (W)w);
4630 if (expect_false (!ev_is_active (w)))
4631 return;
4632
4633 EV_FREQUENT_CHECK;
4634
4635#if EV_USE_INOTIFY
4636 infy_del (EV_A_ w);
4637#endif
4638
4639 if (ev_is_active (&w->timer))
4640 {
4641 ev_ref (EV_A);
4642 ev_timer_stop (EV_A_ &w->timer);
4643 }
4644
4645 ev_stop (EV_A_ (W)w);
4646
4647 EV_FREQUENT_CHECK;
4648}
4649#endif
4650
4651#if EV_IDLE_ENABLE
4652void
4653ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
4654{
4655 if (expect_false (ev_is_active (w)))
4656 return;
4657
4658 pri_adjust (EV_A_ (W)w);
4659
4660 EV_FREQUENT_CHECK;
4661
4662 {
4663 int active = ++idlecnt [ABSPRI (w)];
4664
4665 ++idleall;
4666 ev_start (EV_A_ (W)w, active);
4667
4668 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
4669 idles [ABSPRI (w)][active - 1] = w;
4670 }
4671
4672 EV_FREQUENT_CHECK;
4673}
4674
4675void
4676ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
4677{
4678 clear_pending (EV_A_ (W)w);
4679 if (expect_false (!ev_is_active (w)))
4680 return;
4681
4682 EV_FREQUENT_CHECK;
4683
4684 {
4685 int active = ev_active (w);
4686
4687 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4688 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4689
4690 ev_stop (EV_A_ (W)w);
4691 --idleall;
4692 }
4693
4694 EV_FREQUENT_CHECK;
4695}
4696#endif
4697
4698#if EV_PREPARE_ENABLE
4699void
4700ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
4701{
4702 if (expect_false (ev_is_active (w)))
4703 return;
4704
4705 EV_FREQUENT_CHECK;
4706
4707 ev_start (EV_A_ (W)w, ++preparecnt);
4708 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
4709 prepares [preparecnt - 1] = w;
4710
4711 EV_FREQUENT_CHECK;
4712}
4713
4714void
4715ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
4716{
4717 clear_pending (EV_A_ (W)w);
4718 if (expect_false (!ev_is_active (w)))
4719 return;
4720
4721 EV_FREQUENT_CHECK;
4722
4723 {
4724 int active = ev_active (w);
4725
4726 prepares [active - 1] = prepares [--preparecnt];
4727 ev_active (prepares [active - 1]) = active;
4728 }
4729
4730 ev_stop (EV_A_ (W)w);
4731
4732 EV_FREQUENT_CHECK;
4733}
4734#endif
4735
4736#if EV_CHECK_ENABLE
4737void
4738ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
4739{
4740 if (expect_false (ev_is_active (w)))
4741 return;
4742
4743 EV_FREQUENT_CHECK;
4744
4745 ev_start (EV_A_ (W)w, ++checkcnt);
4746 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
4747 checks [checkcnt - 1] = w;
4748
4749 EV_FREQUENT_CHECK;
4750}
4751
4752void
4753ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
4754{
4755 clear_pending (EV_A_ (W)w);
4756 if (expect_false (!ev_is_active (w)))
4757 return;
4758
4759 EV_FREQUENT_CHECK;
4760
4761 {
4762 int active = ev_active (w);
4763
4764 checks [active - 1] = checks [--checkcnt];
4765 ev_active (checks [active - 1]) = active;
4766 }
4767
4768 ev_stop (EV_A_ (W)w);
4769
4770 EV_FREQUENT_CHECK;
4771}
4772#endif
4773
4774#if EV_EMBED_ENABLE
4775noinline
4776void
4777ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
4778{
4779 ev_run (w->other, EVRUN_NOWAIT);
4780}
4781
4782static void
4783embed_io_cb (EV_P_ ev_io *io, int revents)
4784{
4785 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4786
4787 if (ev_cb (w))
4788 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4789 else
4790 ev_run (w->other, EVRUN_NOWAIT);
4791}
4792
4793static void
4794embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4795{
4796 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4797
4798 {
4799 EV_P = w->other;
4800
4801 while (fdchangecnt)
632 { 4802 {
633 periodics_reschedule (ev_now - now); 4803 fd_reify (EV_A);
634 4804 ev_run (EV_A_ EVRUN_NOWAIT);
635 /* adjust timers. this is easy, as the offset is the same for all */
636 for (i = 0; i < timercnt; ++i)
637 timers [i]->at += diff;
638 } 4805 }
639
640 now = ev_now;
641 } 4806 }
642} 4807}
643 4808
644int ev_loop_done; 4809static void
645 4810embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
646void ev_loop (int flags)
647{ 4811{
648 double block; 4812 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
649 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
650 4813
651 do 4814 ev_embed_stop (EV_A_ w);
4815
652 { 4816 {
653 /* queue check watchers (and execute them) */ 4817 EV_P = w->other;
654 if (preparecnt)
655 {
656 queue_events ((W *)prepares, preparecnt, EV_PREPARE);
657 call_pending ();
658 }
659 4818
660 /* update fd-related kernel structures */ 4819 ev_loop_fork (EV_A);
661 fd_reify (); 4820 ev_run (EV_A_ EVRUN_NOWAIT);
662
663 /* calculate blocking time */
664
665 /* we only need this for !monotonic clockor timers, but as we basically
666 always have timers, we just calculate it always */
667 ev_now = ev_time ();
668
669 if (flags & EVLOOP_NONBLOCK || idlecnt)
670 block = 0.;
671 else
672 {
673 block = MAX_BLOCKTIME;
674
675 if (timercnt)
676 {
677 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge;
678 if (block > to) block = to;
679 }
680
681 if (periodiccnt)
682 {
683 ev_tstamp to = periodics [0]->at - ev_now + method_fudge;
684 if (block > to) block = to;
685 }
686
687 if (block < 0.) block = 0.;
688 }
689
690 method_poll (block);
691
692 /* update ev_now, do magic */
693 time_update ();
694
695 /* queue pending timers and reschedule them */
696 timers_reify (); /* relative timers called last */
697 periodics_reify (); /* absolute timers called first */
698
699 /* queue idle watchers unless io or timers are pending */
700 if (!pendingcnt)
701 queue_events ((W *)idles, idlecnt, EV_IDLE);
702
703 /* queue check watchers, to be executed first */
704 if (checkcnt)
705 queue_events ((W *)checks, checkcnt, EV_CHECK);
706
707 call_pending ();
708 } 4821 }
709 while (!ev_loop_done);
710 4822
711 if (ev_loop_done != 2) 4823 ev_embed_start (EV_A_ w);
712 ev_loop_done = 0;
713} 4824}
4825
4826#if 0
4827static void
4828embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4829{
4830 ev_idle_stop (EV_A_ idle);
4831}
4832#endif
4833
4834void
4835ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
4836{
4837 if (expect_false (ev_is_active (w)))
4838 return;
4839
4840 {
4841 EV_P = w->other;
4842 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4843 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4844 }
4845
4846 EV_FREQUENT_CHECK;
4847
4848 ev_set_priority (&w->io, ev_priority (w));
4849 ev_io_start (EV_A_ &w->io);
4850
4851 ev_prepare_init (&w->prepare, embed_prepare_cb);
4852 ev_set_priority (&w->prepare, EV_MINPRI);
4853 ev_prepare_start (EV_A_ &w->prepare);
4854
4855 ev_fork_init (&w->fork, embed_fork_cb);
4856 ev_fork_start (EV_A_ &w->fork);
4857
4858 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4859
4860 ev_start (EV_A_ (W)w, 1);
4861
4862 EV_FREQUENT_CHECK;
4863}
4864
4865void
4866ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
4867{
4868 clear_pending (EV_A_ (W)w);
4869 if (expect_false (!ev_is_active (w)))
4870 return;
4871
4872 EV_FREQUENT_CHECK;
4873
4874 ev_io_stop (EV_A_ &w->io);
4875 ev_prepare_stop (EV_A_ &w->prepare);
4876 ev_fork_stop (EV_A_ &w->fork);
4877
4878 ev_stop (EV_A_ (W)w);
4879
4880 EV_FREQUENT_CHECK;
4881}
4882#endif
4883
4884#if EV_FORK_ENABLE
4885void
4886ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
4887{
4888 if (expect_false (ev_is_active (w)))
4889 return;
4890
4891 EV_FREQUENT_CHECK;
4892
4893 ev_start (EV_A_ (W)w, ++forkcnt);
4894 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
4895 forks [forkcnt - 1] = w;
4896
4897 EV_FREQUENT_CHECK;
4898}
4899
4900void
4901ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
4902{
4903 clear_pending (EV_A_ (W)w);
4904 if (expect_false (!ev_is_active (w)))
4905 return;
4906
4907 EV_FREQUENT_CHECK;
4908
4909 {
4910 int active = ev_active (w);
4911
4912 forks [active - 1] = forks [--forkcnt];
4913 ev_active (forks [active - 1]) = active;
4914 }
4915
4916 ev_stop (EV_A_ (W)w);
4917
4918 EV_FREQUENT_CHECK;
4919}
4920#endif
4921
4922#if EV_CLEANUP_ENABLE
4923void
4924ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
4925{
4926 if (expect_false (ev_is_active (w)))
4927 return;
4928
4929 EV_FREQUENT_CHECK;
4930
4931 ev_start (EV_A_ (W)w, ++cleanupcnt);
4932 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
4933 cleanups [cleanupcnt - 1] = w;
4934
4935 /* cleanup watchers should never keep a refcount on the loop */
4936 ev_unref (EV_A);
4937 EV_FREQUENT_CHECK;
4938}
4939
4940void
4941ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
4942{
4943 clear_pending (EV_A_ (W)w);
4944 if (expect_false (!ev_is_active (w)))
4945 return;
4946
4947 EV_FREQUENT_CHECK;
4948 ev_ref (EV_A);
4949
4950 {
4951 int active = ev_active (w);
4952
4953 cleanups [active - 1] = cleanups [--cleanupcnt];
4954 ev_active (cleanups [active - 1]) = active;
4955 }
4956
4957 ev_stop (EV_A_ (W)w);
4958
4959 EV_FREQUENT_CHECK;
4960}
4961#endif
4962
4963#if EV_ASYNC_ENABLE
4964void
4965ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
4966{
4967 if (expect_false (ev_is_active (w)))
4968 return;
4969
4970 w->sent = 0;
4971
4972 evpipe_init (EV_A);
4973
4974 EV_FREQUENT_CHECK;
4975
4976 ev_start (EV_A_ (W)w, ++asynccnt);
4977 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
4978 asyncs [asynccnt - 1] = w;
4979
4980 EV_FREQUENT_CHECK;
4981}
4982
4983void
4984ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
4985{
4986 clear_pending (EV_A_ (W)w);
4987 if (expect_false (!ev_is_active (w)))
4988 return;
4989
4990 EV_FREQUENT_CHECK;
4991
4992 {
4993 int active = ev_active (w);
4994
4995 asyncs [active - 1] = asyncs [--asynccnt];
4996 ev_active (asyncs [active - 1]) = active;
4997 }
4998
4999 ev_stop (EV_A_ (W)w);
5000
5001 EV_FREQUENT_CHECK;
5002}
5003
5004void
5005ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
5006{
5007 w->sent = 1;
5008 evpipe_write (EV_A_ &async_pending);
5009}
5010#endif
714 5011
715/*****************************************************************************/ 5012/*****************************************************************************/
716 5013
717static void
718wlist_add (WL *head, WL elem)
719{
720 elem->next = *head;
721 *head = elem;
722}
723
724static void
725wlist_del (WL *head, WL elem)
726{
727 while (*head)
728 {
729 if (*head == elem)
730 {
731 *head = elem->next;
732 return;
733 }
734
735 head = &(*head)->next;
736 }
737}
738
739static void
740ev_clear_pending (W w)
741{
742 if (w->pending)
743 {
744 pendings [w->pending - 1].w = 0;
745 w->pending = 0;
746 }
747}
748
749static void
750ev_start (W w, int active)
751{
752 w->active = active;
753}
754
755static void
756ev_stop (W w)
757{
758 w->active = 0;
759}
760
761/*****************************************************************************/
762
763void
764ev_io_start (struct ev_io *w)
765{
766 if (ev_is_active (w))
767 return;
768
769 int fd = w->fd;
770
771 assert (("ev_io_start called with negative fd", fd >= 0));
772
773 ev_start ((W)w, 1);
774 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
775 wlist_add ((WL *)&anfds[fd].head, (WL)w);
776
777 fd_change (fd);
778}
779
780void
781ev_io_stop (struct ev_io *w)
782{
783 ev_clear_pending ((W)w);
784 if (!ev_is_active (w))
785 return;
786
787 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
788 ev_stop ((W)w);
789
790 fd_change (w->fd);
791}
792
793void
794ev_timer_start (struct ev_timer *w)
795{
796 if (ev_is_active (w))
797 return;
798
799 w->at += now;
800
801 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
802
803 ev_start ((W)w, ++timercnt);
804 array_needsize (timers, timermax, timercnt, );
805 timers [timercnt - 1] = w;
806 upheap ((WT *)timers, timercnt - 1);
807}
808
809void
810ev_timer_stop (struct ev_timer *w)
811{
812 ev_clear_pending ((W)w);
813 if (!ev_is_active (w))
814 return;
815
816 if (w->active < timercnt--)
817 {
818 timers [w->active - 1] = timers [timercnt];
819 downheap ((WT *)timers, timercnt, w->active - 1);
820 }
821
822 w->at = w->repeat;
823
824 ev_stop ((W)w);
825}
826
827void
828ev_timer_again (struct ev_timer *w)
829{
830 if (ev_is_active (w))
831 {
832 if (w->repeat)
833 {
834 w->at = now + w->repeat;
835 downheap ((WT *)timers, timercnt, w->active - 1);
836 }
837 else
838 ev_timer_stop (w);
839 }
840 else if (w->repeat)
841 ev_timer_start (w);
842}
843
844void
845ev_periodic_start (struct ev_periodic *w)
846{
847 if (ev_is_active (w))
848 return;
849
850 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
851
852 /* this formula differs from the one in periodic_reify because we do not always round up */
853 if (w->interval)
854 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval;
855
856 ev_start ((W)w, ++periodiccnt);
857 array_needsize (periodics, periodicmax, periodiccnt, );
858 periodics [periodiccnt - 1] = w;
859 upheap ((WT *)periodics, periodiccnt - 1);
860}
861
862void
863ev_periodic_stop (struct ev_periodic *w)
864{
865 ev_clear_pending ((W)w);
866 if (!ev_is_active (w))
867 return;
868
869 if (w->active < periodiccnt--)
870 {
871 periodics [w->active - 1] = periodics [periodiccnt];
872 downheap ((WT *)periodics, periodiccnt, w->active - 1);
873 }
874
875 ev_stop ((W)w);
876}
877
878void
879ev_signal_start (struct ev_signal *w)
880{
881 if (ev_is_active (w))
882 return;
883
884 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
885
886 ev_start ((W)w, 1);
887 array_needsize (signals, signalmax, w->signum, signals_init);
888 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
889
890 if (!w->next)
891 {
892 struct sigaction sa;
893 sa.sa_handler = sighandler;
894 sigfillset (&sa.sa_mask);
895 sa.sa_flags = 0;
896 sigaction (w->signum, &sa, 0);
897 }
898}
899
900void
901ev_signal_stop (struct ev_signal *w)
902{
903 ev_clear_pending ((W)w);
904 if (!ev_is_active (w))
905 return;
906
907 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
908 ev_stop ((W)w);
909
910 if (!signals [w->signum - 1].head)
911 signal (w->signum, SIG_DFL);
912}
913
914void
915ev_idle_start (struct ev_idle *w)
916{
917 if (ev_is_active (w))
918 return;
919
920 ev_start ((W)w, ++idlecnt);
921 array_needsize (idles, idlemax, idlecnt, );
922 idles [idlecnt - 1] = w;
923}
924
925void
926ev_idle_stop (struct ev_idle *w)
927{
928 ev_clear_pending ((W)w);
929 if (ev_is_active (w))
930 return;
931
932 idles [w->active - 1] = idles [--idlecnt];
933 ev_stop ((W)w);
934}
935
936void
937ev_prepare_start (struct ev_prepare *w)
938{
939 if (ev_is_active (w))
940 return;
941
942 ev_start ((W)w, ++preparecnt);
943 array_needsize (prepares, preparemax, preparecnt, );
944 prepares [preparecnt - 1] = w;
945}
946
947void
948ev_prepare_stop (struct ev_prepare *w)
949{
950 ev_clear_pending ((W)w);
951 if (ev_is_active (w))
952 return;
953
954 prepares [w->active - 1] = prepares [--preparecnt];
955 ev_stop ((W)w);
956}
957
958void
959ev_check_start (struct ev_check *w)
960{
961 if (ev_is_active (w))
962 return;
963
964 ev_start ((W)w, ++checkcnt);
965 array_needsize (checks, checkmax, checkcnt, );
966 checks [checkcnt - 1] = w;
967}
968
969void
970ev_check_stop (struct ev_check *w)
971{
972 ev_clear_pending ((W)w);
973 if (ev_is_active (w))
974 return;
975
976 checks [w->active - 1] = checks [--checkcnt];
977 ev_stop ((W)w);
978}
979
980void
981ev_child_start (struct ev_child *w)
982{
983 if (ev_is_active (w))
984 return;
985
986 ev_start ((W)w, 1);
987 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
988}
989
990void
991ev_child_stop (struct ev_child *w)
992{
993 ev_clear_pending ((W)w);
994 if (ev_is_active (w))
995 return;
996
997 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
998 ev_stop ((W)w);
999}
1000
1001/*****************************************************************************/
1002
1003struct ev_once 5014struct ev_once
1004{ 5015{
1005 struct ev_io io; 5016 ev_io io;
1006 struct ev_timer to; 5017 ev_timer to;
1007 void (*cb)(int revents, void *arg); 5018 void (*cb)(int revents, void *arg);
1008 void *arg; 5019 void *arg;
1009}; 5020};
1010 5021
1011static void 5022static void
1012once_cb (struct ev_once *once, int revents) 5023once_cb (EV_P_ struct ev_once *once, int revents)
1013{ 5024{
1014 void (*cb)(int revents, void *arg) = once->cb; 5025 void (*cb)(int revents, void *arg) = once->cb;
1015 void *arg = once->arg; 5026 void *arg = once->arg;
1016 5027
1017 ev_io_stop (&once->io); 5028 ev_io_stop (EV_A_ &once->io);
1018 ev_timer_stop (&once->to); 5029 ev_timer_stop (EV_A_ &once->to);
1019 free (once); 5030 ev_free (once);
1020 5031
1021 cb (revents, arg); 5032 cb (revents, arg);
1022} 5033}
1023 5034
1024static void 5035static void
1025once_cb_io (struct ev_io *w, int revents) 5036once_cb_io (EV_P_ ev_io *w, int revents)
1026{ 5037{
1027 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 5038 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
5039
5040 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1028} 5041}
1029 5042
1030static void 5043static void
1031once_cb_to (struct ev_timer *w, int revents) 5044once_cb_to (EV_P_ ev_timer *w, int revents)
1032{ 5045{
1033 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 5046 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
1034}
1035 5047
5048 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
5049}
5050
1036void 5051void
1037ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 5052ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
1038{ 5053{
1039 struct ev_once *once = malloc (sizeof (struct ev_once)); 5054 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1040 5055
1041 if (!once)
1042 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1043 else
1044 {
1045 once->cb = cb; 5056 once->cb = cb;
1046 once->arg = arg; 5057 once->arg = arg;
1047 5058
1048 ev_watcher_init (&once->io, once_cb_io); 5059 ev_init (&once->io, once_cb_io);
1049 if (fd >= 0) 5060 if (fd >= 0)
5061 {
5062 ev_io_set (&once->io, fd, events);
5063 ev_io_start (EV_A_ &once->io);
5064 }
5065
5066 ev_init (&once->to, once_cb_to);
5067 if (timeout >= 0.)
5068 {
5069 ev_timer_set (&once->to, timeout, 0.);
5070 ev_timer_start (EV_A_ &once->to);
5071 }
5072}
5073
5074/*****************************************************************************/
5075
5076#if EV_WALK_ENABLE
5077ecb_cold
5078void
5079ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5080{
5081 int i, j;
5082 ev_watcher_list *wl, *wn;
5083
5084 if (types & (EV_IO | EV_EMBED))
5085 for (i = 0; i < anfdmax; ++i)
5086 for (wl = anfds [i].head; wl; )
1050 { 5087 {
1051 ev_io_set (&once->io, fd, events); 5088 wn = wl->next;
1052 ev_io_start (&once->io); 5089
5090#if EV_EMBED_ENABLE
5091 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5092 {
5093 if (types & EV_EMBED)
5094 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5095 }
5096 else
5097#endif
5098#if EV_USE_INOTIFY
5099 if (ev_cb ((ev_io *)wl) == infy_cb)
5100 ;
5101 else
5102#endif
5103 if ((ev_io *)wl != &pipe_w)
5104 if (types & EV_IO)
5105 cb (EV_A_ EV_IO, wl);
5106
5107 wl = wn;
1053 } 5108 }
1054 5109
1055 ev_watcher_init (&once->to, once_cb_to); 5110 if (types & (EV_TIMER | EV_STAT))
1056 if (timeout >= 0.) 5111 for (i = timercnt + HEAP0; i-- > HEAP0; )
5112#if EV_STAT_ENABLE
5113 /*TODO: timer is not always active*/
5114 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1057 { 5115 {
1058 ev_timer_set (&once->to, timeout, 0.); 5116 if (types & EV_STAT)
1059 ev_timer_start (&once->to); 5117 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1060 } 5118 }
1061 } 5119 else
1062} 5120#endif
5121 if (types & EV_TIMER)
5122 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1063 5123
1064/*****************************************************************************/ 5124#if EV_PERIODIC_ENABLE
5125 if (types & EV_PERIODIC)
5126 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5127 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5128#endif
1065 5129
1066#if 0 5130#if EV_IDLE_ENABLE
5131 if (types & EV_IDLE)
5132 for (j = NUMPRI; j--; )
5133 for (i = idlecnt [j]; i--; )
5134 cb (EV_A_ EV_IDLE, idles [j][i]);
5135#endif
1067 5136
1068struct ev_io wio; 5137#if EV_FORK_ENABLE
5138 if (types & EV_FORK)
5139 for (i = forkcnt; i--; )
5140 if (ev_cb (forks [i]) != embed_fork_cb)
5141 cb (EV_A_ EV_FORK, forks [i]);
5142#endif
1069 5143
1070static void 5144#if EV_ASYNC_ENABLE
1071sin_cb (struct ev_io *w, int revents) 5145 if (types & EV_ASYNC)
1072{ 5146 for (i = asynccnt; i--; )
1073 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents); 5147 cb (EV_A_ EV_ASYNC, asyncs [i]);
1074} 5148#endif
1075 5149
1076static void 5150#if EV_PREPARE_ENABLE
1077ocb (struct ev_timer *w, int revents) 5151 if (types & EV_PREPARE)
1078{ 5152 for (i = preparecnt; i--; )
1079 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data); 5153# if EV_EMBED_ENABLE
1080 ev_timer_stop (w); 5154 if (ev_cb (prepares [i]) != embed_prepare_cb)
1081 ev_timer_start (w);
1082}
1083
1084static void
1085scb (struct ev_signal *w, int revents)
1086{
1087 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1088 ev_io_stop (&wio);
1089 ev_io_start (&wio);
1090}
1091
1092static void
1093gcb (struct ev_signal *w, int revents)
1094{
1095 fprintf (stderr, "generic %x\n", revents);
1096
1097}
1098
1099int main (void)
1100{
1101 ev_init (0);
1102
1103 ev_io_init (&wio, sin_cb, 0, EV_READ);
1104 ev_io_start (&wio);
1105
1106 struct ev_timer t[10000];
1107
1108#if 0
1109 int i;
1110 for (i = 0; i < 10000; ++i)
1111 {
1112 struct ev_timer *w = t + i;
1113 ev_watcher_init (w, ocb, i);
1114 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1115 ev_timer_start (w);
1116 if (drand48 () < 0.5)
1117 ev_timer_stop (w);
1118 }
1119#endif 5155# endif
1120 5156 cb (EV_A_ EV_PREPARE, prepares [i]);
1121 struct ev_timer t1;
1122 ev_timer_init (&t1, ocb, 5, 10);
1123 ev_timer_start (&t1);
1124
1125 struct ev_signal sig;
1126 ev_signal_init (&sig, scb, SIGQUIT);
1127 ev_signal_start (&sig);
1128
1129 struct ev_check cw;
1130 ev_check_init (&cw, gcb);
1131 ev_check_start (&cw);
1132
1133 struct ev_idle iw;
1134 ev_idle_init (&iw, gcb);
1135 ev_idle_start (&iw);
1136
1137 ev_loop (0);
1138
1139 return 0;
1140}
1141
1142#endif 5157#endif
1143 5158
5159#if EV_CHECK_ENABLE
5160 if (types & EV_CHECK)
5161 for (i = checkcnt; i--; )
5162 cb (EV_A_ EV_CHECK, checks [i]);
5163#endif
1144 5164
5165#if EV_SIGNAL_ENABLE
5166 if (types & EV_SIGNAL)
5167 for (i = 0; i < EV_NSIG - 1; ++i)
5168 for (wl = signals [i].head; wl; )
5169 {
5170 wn = wl->next;
5171 cb (EV_A_ EV_SIGNAL, wl);
5172 wl = wn;
5173 }
5174#endif
1145 5175
5176#if EV_CHILD_ENABLE
5177 if (types & EV_CHILD)
5178 for (i = (EV_PID_HASHSIZE); i--; )
5179 for (wl = childs [i]; wl; )
5180 {
5181 wn = wl->next;
5182 cb (EV_A_ EV_CHILD, wl);
5183 wl = wn;
5184 }
5185#endif
5186/* EV_STAT 0x00001000 /* stat data changed */
5187/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5188}
5189#endif
1146 5190
5191#if EV_MULTIPLICITY
5192 #include "ev_wrap.h"
5193#endif
5194

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines