ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.188 by root, Thu Dec 20 07:12:57 2007 UTC vs.
Revision 1.498 by root, Wed Jun 26 00:01:46 2019 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
43# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
46# endif 71# endif
47# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
49# endif 74# endif
50# else 75# else
51# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
53# endif 78# endif
54# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
56# endif 81# endif
57# endif 82# endif
58 83
84# if HAVE_NANOSLEEP
59# ifndef EV_USE_SELECT 85# ifndef EV_USE_NANOSLEEP
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif 87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
65# endif 91# endif
66 92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
67# ifndef EV_USE_POLL 94# ifndef EV_USE_SELECT
68# if HAVE_POLL && HAVE_POLL_H 95# define EV_USE_SELECT EV_FEATURE_BACKENDS
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
73# endif 109# endif
74 110
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
78# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
79# define EV_USE_EPOLL 0
80# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
81# endif 118# endif
82 119
83# ifndef EV_USE_KQUEUE 120# if HAVE_LINUX_AIO_ABI_H
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 121# ifndef EV_USE_LINUXAIO
85# define EV_USE_KQUEUE 1 122# define EV_USE_LINUXAIO EV_FEATURE_BACKENDS
86# else
87# define EV_USE_KQUEUE 0
88# endif 123# endif
124# else
125# undef EV_USE_LINUXAIO
126# define EV_USE_LINUXAIO 0
89# endif 127# endif
90 128
91# ifndef EV_USE_PORT 129# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
92# if HAVE_PORT_H && HAVE_PORT_CREATE 130# ifndef EV_USE_KQUEUE
93# define EV_USE_PORT 1 131# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
94# else
95# define EV_USE_PORT 0
96# endif 132# endif
133# else
134# undef EV_USE_KQUEUE
135# define EV_USE_KQUEUE 0
97# endif 136# endif
98 137
138# if HAVE_PORT_H && HAVE_PORT_CREATE
99# ifndef EV_USE_INOTIFY 139# ifndef EV_USE_PORT
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 140# define EV_USE_PORT EV_FEATURE_BACKENDS
101# define EV_USE_INOTIFY 1
102# else
103# define EV_USE_INOTIFY 0
104# endif 141# endif
142# else
143# undef EV_USE_PORT
144# define EV_USE_PORT 0
105# endif 145# endif
106 146
147# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
148# ifndef EV_USE_INOTIFY
149# define EV_USE_INOTIFY EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_INOTIFY
153# define EV_USE_INOTIFY 0
107#endif 154# endif
108 155
109#include <math.h> 156# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
157# ifndef EV_USE_SIGNALFD
158# define EV_USE_SIGNALFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_SIGNALFD
162# define EV_USE_SIGNALFD 0
163# endif
164
165# if HAVE_EVENTFD
166# ifndef EV_USE_EVENTFD
167# define EV_USE_EVENTFD EV_FEATURE_OS
168# endif
169# else
170# undef EV_USE_EVENTFD
171# define EV_USE_EVENTFD 0
172# endif
173
174#endif
175
176/* OS X, in its infinite idiocy, actually HARDCODES
177 * a limit of 1024 into their select. Where people have brains,
178 * OS X engineers apparently have a vacuum. Or maybe they were
179 * ordered to have a vacuum, or they do anything for money.
180 * This might help. Or not.
181 * Note that this must be defined early, as other include files
182 * will rely on this define as well.
183 */
184#define _DARWIN_UNLIMITED_SELECT 1
185
110#include <stdlib.h> 186#include <stdlib.h>
187#include <string.h>
111#include <fcntl.h> 188#include <fcntl.h>
112#include <stddef.h> 189#include <stddef.h>
113 190
114#include <stdio.h> 191#include <stdio.h>
115 192
116#include <assert.h> 193#include <assert.h>
117#include <errno.h> 194#include <errno.h>
118#include <sys/types.h> 195#include <sys/types.h>
119#include <time.h> 196#include <time.h>
197#include <limits.h>
120 198
121#include <signal.h> 199#include <signal.h>
122 200
123#ifdef EV_H 201#ifdef EV_H
124# include EV_H 202# include EV_H
125#else 203#else
126# include "ev.h" 204# include "ev.h"
205#endif
206
207#if EV_NO_THREADS
208# undef EV_NO_SMP
209# define EV_NO_SMP 1
210# undef ECB_NO_THREADS
211# define ECB_NO_THREADS 1
212#endif
213#if EV_NO_SMP
214# undef EV_NO_SMP
215# define ECB_NO_SMP 1
127#endif 216#endif
128 217
129#ifndef _WIN32 218#ifndef _WIN32
130# include <sys/time.h> 219# include <sys/time.h>
131# include <sys/wait.h> 220# include <sys/wait.h>
132# include <unistd.h> 221# include <unistd.h>
133#else 222#else
223# include <io.h>
134# define WIN32_LEAN_AND_MEAN 224# define WIN32_LEAN_AND_MEAN
225# include <winsock2.h>
135# include <windows.h> 226# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 227# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 228# define EV_SELECT_IS_WINSOCKET 1
138# endif 229# endif
230# undef EV_AVOID_STDIO
231#endif
232
233/* this block tries to deduce configuration from header-defined symbols and defaults */
234
235/* try to deduce the maximum number of signals on this platform */
236#if defined EV_NSIG
237/* use what's provided */
238#elif defined NSIG
239# define EV_NSIG (NSIG)
240#elif defined _NSIG
241# define EV_NSIG (_NSIG)
242#elif defined SIGMAX
243# define EV_NSIG (SIGMAX+1)
244#elif defined SIG_MAX
245# define EV_NSIG (SIG_MAX+1)
246#elif defined _SIG_MAX
247# define EV_NSIG (_SIG_MAX+1)
248#elif defined MAXSIG
249# define EV_NSIG (MAXSIG+1)
250#elif defined MAX_SIG
251# define EV_NSIG (MAX_SIG+1)
252#elif defined SIGARRAYSIZE
253# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
254#elif defined _sys_nsig
255# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
256#else
257# define EV_NSIG (8 * sizeof (sigset_t) + 1)
258#endif
259
260#ifndef EV_USE_FLOOR
261# define EV_USE_FLOOR 0
262#endif
263
264#ifndef EV_USE_CLOCK_SYSCALL
265# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
266# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
267# else
268# define EV_USE_CLOCK_SYSCALL 0
139#endif 269# endif
270#endif
140 271
141/**/ 272#if !(_POSIX_TIMERS > 0)
273# ifndef EV_USE_MONOTONIC
274# define EV_USE_MONOTONIC 0
275# endif
276# ifndef EV_USE_REALTIME
277# define EV_USE_REALTIME 0
278# endif
279#endif
142 280
143#ifndef EV_USE_MONOTONIC 281#ifndef EV_USE_MONOTONIC
282# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
283# define EV_USE_MONOTONIC EV_FEATURE_OS
284# else
144# define EV_USE_MONOTONIC 0 285# define EV_USE_MONOTONIC 0
286# endif
145#endif 287#endif
146 288
147#ifndef EV_USE_REALTIME 289#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 290# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
291#endif
292
293#ifndef EV_USE_NANOSLEEP
294# if _POSIX_C_SOURCE >= 199309L
295# define EV_USE_NANOSLEEP EV_FEATURE_OS
296# else
297# define EV_USE_NANOSLEEP 0
298# endif
149#endif 299#endif
150 300
151#ifndef EV_USE_SELECT 301#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 302# define EV_USE_SELECT EV_FEATURE_BACKENDS
153#endif 303#endif
154 304
155#ifndef EV_USE_POLL 305#ifndef EV_USE_POLL
156# ifdef _WIN32 306# ifdef _WIN32
157# define EV_USE_POLL 0 307# define EV_USE_POLL 0
158# else 308# else
159# define EV_USE_POLL 1 309# define EV_USE_POLL EV_FEATURE_BACKENDS
160# endif 310# endif
161#endif 311#endif
162 312
163#ifndef EV_USE_EPOLL 313#ifndef EV_USE_EPOLL
314# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
315# define EV_USE_EPOLL EV_FEATURE_BACKENDS
316# else
164# define EV_USE_EPOLL 0 317# define EV_USE_EPOLL 0
318# endif
165#endif 319#endif
166 320
167#ifndef EV_USE_KQUEUE 321#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 322# define EV_USE_KQUEUE 0
169#endif 323#endif
170 324
171#ifndef EV_USE_PORT 325#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 326# define EV_USE_PORT 0
173#endif 327#endif
174 328
329#ifndef EV_USE_LINUXAIO
330# if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
331# define EV_USE_LINUXAIO 1
332# else
333# define EV_USE_LINUXAIO 0
334# endif
335#endif
336
175#ifndef EV_USE_INOTIFY 337#ifndef EV_USE_INOTIFY
338# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
339# define EV_USE_INOTIFY EV_FEATURE_OS
340# else
176# define EV_USE_INOTIFY 0 341# define EV_USE_INOTIFY 0
342# endif
177#endif 343#endif
178 344
179#ifndef EV_PID_HASHSIZE 345#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 346# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
181# define EV_PID_HASHSIZE 1 347#endif
348
349#ifndef EV_INOTIFY_HASHSIZE
350# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
351#endif
352
353#ifndef EV_USE_EVENTFD
354# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
355# define EV_USE_EVENTFD EV_FEATURE_OS
182# else 356# else
183# define EV_PID_HASHSIZE 16 357# define EV_USE_EVENTFD 0
184# endif 358# endif
185#endif 359#endif
186 360
187#ifndef EV_INOTIFY_HASHSIZE 361#ifndef EV_USE_SIGNALFD
188# if EV_MINIMAL 362# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
189# define EV_INOTIFY_HASHSIZE 1 363# define EV_USE_SIGNALFD EV_FEATURE_OS
190# else 364# else
191# define EV_INOTIFY_HASHSIZE 16 365# define EV_USE_SIGNALFD 0
192# endif 366# endif
193#endif 367#endif
194 368
195/**/ 369#if 0 /* debugging */
370# define EV_VERIFY 3
371# define EV_USE_4HEAP 1
372# define EV_HEAP_CACHE_AT 1
373#endif
374
375#ifndef EV_VERIFY
376# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
377#endif
378
379#ifndef EV_USE_4HEAP
380# define EV_USE_4HEAP EV_FEATURE_DATA
381#endif
382
383#ifndef EV_HEAP_CACHE_AT
384# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
385#endif
386
387#ifdef __ANDROID__
388/* supposedly, android doesn't typedef fd_mask */
389# undef EV_USE_SELECT
390# define EV_USE_SELECT 0
391/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
392# undef EV_USE_CLOCK_SYSCALL
393# define EV_USE_CLOCK_SYSCALL 0
394#endif
395
396/* aix's poll.h seems to cause lots of trouble */
397#ifdef _AIX
398/* AIX has a completely broken poll.h header */
399# undef EV_USE_POLL
400# define EV_USE_POLL 0
401#endif
402
403/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
404/* which makes programs even slower. might work on other unices, too. */
405#if EV_USE_CLOCK_SYSCALL
406# include <sys/syscall.h>
407# ifdef SYS_clock_gettime
408# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
409# undef EV_USE_MONOTONIC
410# define EV_USE_MONOTONIC 1
411# else
412# undef EV_USE_CLOCK_SYSCALL
413# define EV_USE_CLOCK_SYSCALL 0
414# endif
415#endif
416
417/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 418
197#ifndef CLOCK_MONOTONIC 419#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 420# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 421# define EV_USE_MONOTONIC 0
200#endif 422#endif
207#if !EV_STAT_ENABLE 429#if !EV_STAT_ENABLE
208# undef EV_USE_INOTIFY 430# undef EV_USE_INOTIFY
209# define EV_USE_INOTIFY 0 431# define EV_USE_INOTIFY 0
210#endif 432#endif
211 433
434#if !EV_USE_NANOSLEEP
435/* hp-ux has it in sys/time.h, which we unconditionally include above */
436# if !defined _WIN32 && !defined __hpux
437# include <sys/select.h>
438# endif
439#endif
440
441#if EV_USE_LINUXAIO
442# include <sys/syscall.h>
443# if !SYS_io_getevents || !EV_USE_EPOLL /* ev_linxaio uses ev_poll.c:ev_epoll_create */
444# undef EV_USE_LINUXAIO
445# define EV_USE_LINUXAIO 0
446# endif
447#endif
448
212#if EV_USE_INOTIFY 449#if EV_USE_INOTIFY
450# include <sys/statfs.h>
213# include <sys/inotify.h> 451# include <sys/inotify.h>
452/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
453# ifndef IN_DONT_FOLLOW
454# undef EV_USE_INOTIFY
455# define EV_USE_INOTIFY 0
214#endif 456# endif
457#endif
215 458
216#if EV_SELECT_IS_WINSOCKET 459#if EV_USE_EVENTFD
460/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
217# include <winsock.h> 461# include <stdint.h>
462# ifndef EFD_NONBLOCK
463# define EFD_NONBLOCK O_NONBLOCK
464# endif
465# ifndef EFD_CLOEXEC
466# ifdef O_CLOEXEC
467# define EFD_CLOEXEC O_CLOEXEC
468# else
469# define EFD_CLOEXEC 02000000
470# endif
471# endif
472EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
473#endif
474
475#if EV_USE_SIGNALFD
476/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
477# include <stdint.h>
478# ifndef SFD_NONBLOCK
479# define SFD_NONBLOCK O_NONBLOCK
480# endif
481# ifndef SFD_CLOEXEC
482# ifdef O_CLOEXEC
483# define SFD_CLOEXEC O_CLOEXEC
484# else
485# define SFD_CLOEXEC 02000000
486# endif
487# endif
488EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
489
490struct signalfd_siginfo
491{
492 uint32_t ssi_signo;
493 char pad[128 - sizeof (uint32_t)];
494};
218#endif 495#endif
219 496
220/**/ 497/**/
221 498
499#if EV_VERIFY >= 3
500# define EV_FREQUENT_CHECK ev_verify (EV_A)
501#else
502# define EV_FREQUENT_CHECK do { } while (0)
503#endif
504
222/* 505/*
223 * This is used to avoid floating point rounding problems. 506 * This is used to work around floating point rounding problems.
224 * It is added to ev_rt_now when scheduling periodics
225 * to ensure progress, time-wise, even when rounding
226 * errors are against us.
227 * This value is good at least till the year 4000. 507 * This value is good at least till the year 4000.
228 * Better solutions welcome.
229 */ 508 */
230#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 509#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
510/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
231 511
232#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 512#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
233#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 513#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
234/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
235 514
515#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
516#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
517
518/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
519/* ECB.H BEGIN */
520/*
521 * libecb - http://software.schmorp.de/pkg/libecb
522 *
523 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
524 * Copyright (©) 2011 Emanuele Giaquinta
525 * All rights reserved.
526 *
527 * Redistribution and use in source and binary forms, with or without modifica-
528 * tion, are permitted provided that the following conditions are met:
529 *
530 * 1. Redistributions of source code must retain the above copyright notice,
531 * this list of conditions and the following disclaimer.
532 *
533 * 2. Redistributions in binary form must reproduce the above copyright
534 * notice, this list of conditions and the following disclaimer in the
535 * documentation and/or other materials provided with the distribution.
536 *
537 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
538 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
539 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
540 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
541 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
542 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
543 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
544 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
545 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
546 * OF THE POSSIBILITY OF SUCH DAMAGE.
547 *
548 * Alternatively, the contents of this file may be used under the terms of
549 * the GNU General Public License ("GPL") version 2 or any later version,
550 * in which case the provisions of the GPL are applicable instead of
551 * the above. If you wish to allow the use of your version of this file
552 * only under the terms of the GPL and not to allow others to use your
553 * version of this file under the BSD license, indicate your decision
554 * by deleting the provisions above and replace them with the notice
555 * and other provisions required by the GPL. If you do not delete the
556 * provisions above, a recipient may use your version of this file under
557 * either the BSD or the GPL.
558 */
559
560#ifndef ECB_H
561#define ECB_H
562
563/* 16 bits major, 16 bits minor */
564#define ECB_VERSION 0x00010006
565
566#ifdef _WIN32
567 typedef signed char int8_t;
568 typedef unsigned char uint8_t;
569 typedef signed short int16_t;
570 typedef unsigned short uint16_t;
571 typedef signed int int32_t;
572 typedef unsigned int uint32_t;
236#if __GNUC__ >= 4 573 #if __GNUC__
237# define expect(expr,value) __builtin_expect ((expr),(value)) 574 typedef signed long long int64_t;
238# define noinline __attribute__ ((noinline)) 575 typedef unsigned long long uint64_t;
576 #else /* _MSC_VER || __BORLANDC__ */
577 typedef signed __int64 int64_t;
578 typedef unsigned __int64 uint64_t;
579 #endif
580 #ifdef _WIN64
581 #define ECB_PTRSIZE 8
582 typedef uint64_t uintptr_t;
583 typedef int64_t intptr_t;
584 #else
585 #define ECB_PTRSIZE 4
586 typedef uint32_t uintptr_t;
587 typedef int32_t intptr_t;
588 #endif
239#else 589#else
240# define expect(expr,value) (expr) 590 #include <inttypes.h>
241# define noinline 591 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
242# if __STDC_VERSION__ < 199901L 592 #define ECB_PTRSIZE 8
243# define inline 593 #else
594 #define ECB_PTRSIZE 4
595 #endif
244# endif 596#endif
597
598#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
599#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
600
601/* work around x32 idiocy by defining proper macros */
602#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
603 #if _ILP32
604 #define ECB_AMD64_X32 1
605 #else
606 #define ECB_AMD64 1
245#endif 607 #endif
608#endif
246 609
247#define expect_false(expr) expect ((expr) != 0, 0) 610/* many compilers define _GNUC_ to some versions but then only implement
248#define expect_true(expr) expect ((expr) != 0, 1) 611 * what their idiot authors think are the "more important" extensions,
249#define inline_size static inline 612 * causing enormous grief in return for some better fake benchmark numbers.
250 613 * or so.
251#if EV_MINIMAL 614 * we try to detect these and simply assume they are not gcc - if they have
252# define inline_speed static noinline 615 * an issue with that they should have done it right in the first place.
616 */
617#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
618 #define ECB_GCC_VERSION(major,minor) 0
253#else 619#else
620 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
621#endif
622
623#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
624
625#if __clang__ && defined __has_builtin
626 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
627#else
628 #define ECB_CLANG_BUILTIN(x) 0
629#endif
630
631#if __clang__ && defined __has_extension
632 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
633#else
634 #define ECB_CLANG_EXTENSION(x) 0
635#endif
636
637#define ECB_CPP (__cplusplus+0)
638#define ECB_CPP11 (__cplusplus >= 201103L)
639#define ECB_CPP14 (__cplusplus >= 201402L)
640#define ECB_CPP17 (__cplusplus >= 201703L)
641
642#if ECB_CPP
643 #define ECB_C 0
644 #define ECB_STDC_VERSION 0
645#else
646 #define ECB_C 1
647 #define ECB_STDC_VERSION __STDC_VERSION__
648#endif
649
650#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
651#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
652#define ECB_C17 (ECB_STDC_VERSION >= 201710L)
653
654#if ECB_CPP
655 #define ECB_EXTERN_C extern "C"
656 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
657 #define ECB_EXTERN_C_END }
658#else
659 #define ECB_EXTERN_C extern
660 #define ECB_EXTERN_C_BEG
661 #define ECB_EXTERN_C_END
662#endif
663
664/*****************************************************************************/
665
666/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
667/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
668
669#if ECB_NO_THREADS
670 #define ECB_NO_SMP 1
671#endif
672
673#if ECB_NO_SMP
674 #define ECB_MEMORY_FENCE do { } while (0)
675#endif
676
677/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
678#if __xlC__ && ECB_CPP
679 #include <builtins.h>
680#endif
681
682#if 1400 <= _MSC_VER
683 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
684#endif
685
686#ifndef ECB_MEMORY_FENCE
687 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
688 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
689 #if __i386 || __i386__
690 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
691 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
692 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
693 #elif ECB_GCC_AMD64
694 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
695 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
696 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
697 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
698 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
699 #elif defined __ARM_ARCH_2__ \
700 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
701 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
702 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
703 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
704 || defined __ARM_ARCH_5TEJ__
705 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
706 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
707 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
708 || defined __ARM_ARCH_6T2__
709 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
710 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
711 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
712 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
713 #elif __aarch64__
714 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
715 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
716 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
717 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
718 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
719 #elif defined __s390__ || defined __s390x__
720 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
721 #elif defined __mips__
722 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
723 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
724 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
725 #elif defined __alpha__
726 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
727 #elif defined __hppa__
728 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
729 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
730 #elif defined __ia64__
731 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
732 #elif defined __m68k__
733 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
734 #elif defined __m88k__
735 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
736 #elif defined __sh__
737 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
738 #endif
739 #endif
740#endif
741
742#ifndef ECB_MEMORY_FENCE
743 #if ECB_GCC_VERSION(4,7)
744 /* see comment below (stdatomic.h) about the C11 memory model. */
745 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
746 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
747 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
748 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
749
750 #elif ECB_CLANG_EXTENSION(c_atomic)
751 /* see comment below (stdatomic.h) about the C11 memory model. */
752 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
753 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
754 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
755 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
756
757 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
758 #define ECB_MEMORY_FENCE __sync_synchronize ()
759 #elif _MSC_VER >= 1500 /* VC++ 2008 */
760 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
761 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
762 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
763 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
764 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
765 #elif _MSC_VER >= 1400 /* VC++ 2005 */
766 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
767 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
768 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
769 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
770 #elif defined _WIN32
771 #include <WinNT.h>
772 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
773 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
774 #include <mbarrier.h>
775 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
776 #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
777 #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
778 #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
779 #elif __xlC__
780 #define ECB_MEMORY_FENCE __sync ()
781 #endif
782#endif
783
784#ifndef ECB_MEMORY_FENCE
785 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
786 /* we assume that these memory fences work on all variables/all memory accesses, */
787 /* not just C11 atomics and atomic accesses */
788 #include <stdatomic.h>
789 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
790 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
791 #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
792 #endif
793#endif
794
795#ifndef ECB_MEMORY_FENCE
796 #if !ECB_AVOID_PTHREADS
797 /*
798 * if you get undefined symbol references to pthread_mutex_lock,
799 * or failure to find pthread.h, then you should implement
800 * the ECB_MEMORY_FENCE operations for your cpu/compiler
801 * OR provide pthread.h and link against the posix thread library
802 * of your system.
803 */
804 #include <pthread.h>
805 #define ECB_NEEDS_PTHREADS 1
806 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
807
808 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
809 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
810 #endif
811#endif
812
813#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
814 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
815#endif
816
817#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
818 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
819#endif
820
821#if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
822 #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
823#endif
824
825/*****************************************************************************/
826
827#if ECB_CPP
828 #define ecb_inline static inline
829#elif ECB_GCC_VERSION(2,5)
830 #define ecb_inline static __inline__
831#elif ECB_C99
832 #define ecb_inline static inline
833#else
834 #define ecb_inline static
835#endif
836
837#if ECB_GCC_VERSION(3,3)
838 #define ecb_restrict __restrict__
839#elif ECB_C99
840 #define ecb_restrict restrict
841#else
842 #define ecb_restrict
843#endif
844
845typedef int ecb_bool;
846
847#define ECB_CONCAT_(a, b) a ## b
848#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
849#define ECB_STRINGIFY_(a) # a
850#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
851#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
852
853#define ecb_function_ ecb_inline
854
855#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
856 #define ecb_attribute(attrlist) __attribute__ (attrlist)
857#else
858 #define ecb_attribute(attrlist)
859#endif
860
861#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
862 #define ecb_is_constant(expr) __builtin_constant_p (expr)
863#else
864 /* possible C11 impl for integral types
865 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
866 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
867
868 #define ecb_is_constant(expr) 0
869#endif
870
871#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
872 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
873#else
874 #define ecb_expect(expr,value) (expr)
875#endif
876
877#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
878 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
879#else
880 #define ecb_prefetch(addr,rw,locality)
881#endif
882
883/* no emulation for ecb_decltype */
884#if ECB_CPP11
885 // older implementations might have problems with decltype(x)::type, work around it
886 template<class T> struct ecb_decltype_t { typedef T type; };
887 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
888#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
889 #define ecb_decltype(x) __typeof__ (x)
890#endif
891
892#if _MSC_VER >= 1300
893 #define ecb_deprecated __declspec (deprecated)
894#else
895 #define ecb_deprecated ecb_attribute ((__deprecated__))
896#endif
897
898#if _MSC_VER >= 1500
899 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
900#elif ECB_GCC_VERSION(4,5)
901 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
902#else
903 #define ecb_deprecated_message(msg) ecb_deprecated
904#endif
905
906#if _MSC_VER >= 1400
907 #define ecb_noinline __declspec (noinline)
908#else
909 #define ecb_noinline ecb_attribute ((__noinline__))
910#endif
911
912#define ecb_unused ecb_attribute ((__unused__))
913#define ecb_const ecb_attribute ((__const__))
914#define ecb_pure ecb_attribute ((__pure__))
915
916#if ECB_C11 || __IBMC_NORETURN
917 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
918 #define ecb_noreturn _Noreturn
919#elif ECB_CPP11
920 #define ecb_noreturn [[noreturn]]
921#elif _MSC_VER >= 1200
922 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
923 #define ecb_noreturn __declspec (noreturn)
924#else
925 #define ecb_noreturn ecb_attribute ((__noreturn__))
926#endif
927
928#if ECB_GCC_VERSION(4,3)
929 #define ecb_artificial ecb_attribute ((__artificial__))
930 #define ecb_hot ecb_attribute ((__hot__))
931 #define ecb_cold ecb_attribute ((__cold__))
932#else
933 #define ecb_artificial
934 #define ecb_hot
935 #define ecb_cold
936#endif
937
938/* put around conditional expressions if you are very sure that the */
939/* expression is mostly true or mostly false. note that these return */
940/* booleans, not the expression. */
941#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
942#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
943/* for compatibility to the rest of the world */
944#define ecb_likely(expr) ecb_expect_true (expr)
945#define ecb_unlikely(expr) ecb_expect_false (expr)
946
947/* count trailing zero bits and count # of one bits */
948#if ECB_GCC_VERSION(3,4) \
949 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
950 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
951 && ECB_CLANG_BUILTIN(__builtin_popcount))
952 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
953 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
954 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
955 #define ecb_ctz32(x) __builtin_ctz (x)
956 #define ecb_ctz64(x) __builtin_ctzll (x)
957 #define ecb_popcount32(x) __builtin_popcount (x)
958 /* no popcountll */
959#else
960 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
961 ecb_function_ ecb_const int
962 ecb_ctz32 (uint32_t x)
963 {
964#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
965 unsigned long r;
966 _BitScanForward (&r, x);
967 return (int)r;
968#else
969 int r = 0;
970
971 x &= ~x + 1; /* this isolates the lowest bit */
972
973#if ECB_branchless_on_i386
974 r += !!(x & 0xaaaaaaaa) << 0;
975 r += !!(x & 0xcccccccc) << 1;
976 r += !!(x & 0xf0f0f0f0) << 2;
977 r += !!(x & 0xff00ff00) << 3;
978 r += !!(x & 0xffff0000) << 4;
979#else
980 if (x & 0xaaaaaaaa) r += 1;
981 if (x & 0xcccccccc) r += 2;
982 if (x & 0xf0f0f0f0) r += 4;
983 if (x & 0xff00ff00) r += 8;
984 if (x & 0xffff0000) r += 16;
985#endif
986
987 return r;
988#endif
989 }
990
991 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
992 ecb_function_ ecb_const int
993 ecb_ctz64 (uint64_t x)
994 {
995#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
996 unsigned long r;
997 _BitScanForward64 (&r, x);
998 return (int)r;
999#else
1000 int shift = x & 0xffffffff ? 0 : 32;
1001 return ecb_ctz32 (x >> shift) + shift;
1002#endif
1003 }
1004
1005 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1006 ecb_function_ ecb_const int
1007 ecb_popcount32 (uint32_t x)
1008 {
1009 x -= (x >> 1) & 0x55555555;
1010 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1011 x = ((x >> 4) + x) & 0x0f0f0f0f;
1012 x *= 0x01010101;
1013
1014 return x >> 24;
1015 }
1016
1017 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1018 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1019 {
1020#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1021 unsigned long r;
1022 _BitScanReverse (&r, x);
1023 return (int)r;
1024#else
1025 int r = 0;
1026
1027 if (x >> 16) { x >>= 16; r += 16; }
1028 if (x >> 8) { x >>= 8; r += 8; }
1029 if (x >> 4) { x >>= 4; r += 4; }
1030 if (x >> 2) { x >>= 2; r += 2; }
1031 if (x >> 1) { r += 1; }
1032
1033 return r;
1034#endif
1035 }
1036
1037 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1038 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1039 {
1040#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1041 unsigned long r;
1042 _BitScanReverse64 (&r, x);
1043 return (int)r;
1044#else
1045 int r = 0;
1046
1047 if (x >> 32) { x >>= 32; r += 32; }
1048
1049 return r + ecb_ld32 (x);
1050#endif
1051 }
1052#endif
1053
1054ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1055ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1056ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1057ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1058
1059ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1060ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1061{
1062 return ( (x * 0x0802U & 0x22110U)
1063 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1064}
1065
1066ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1067ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1068{
1069 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1070 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1071 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1072 x = ( x >> 8 ) | ( x << 8);
1073
1074 return x;
1075}
1076
1077ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1078ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1079{
1080 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1081 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1082 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1083 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1084 x = ( x >> 16 ) | ( x << 16);
1085
1086 return x;
1087}
1088
1089/* popcount64 is only available on 64 bit cpus as gcc builtin */
1090/* so for this version we are lazy */
1091ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1092ecb_function_ ecb_const int
1093ecb_popcount64 (uint64_t x)
1094{
1095 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1096}
1097
1098ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1099ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1100ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1101ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1102ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1103ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1104ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1105ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1106
1107ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1108ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1109ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1110ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1111ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1112ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1113ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1114ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1115
1116#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1117 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1118 #define ecb_bswap16(x) __builtin_bswap16 (x)
1119 #else
1120 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1121 #endif
1122 #define ecb_bswap32(x) __builtin_bswap32 (x)
1123 #define ecb_bswap64(x) __builtin_bswap64 (x)
1124#elif _MSC_VER
1125 #include <stdlib.h>
1126 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1127 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1128 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1129#else
1130 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1131 ecb_function_ ecb_const uint16_t
1132 ecb_bswap16 (uint16_t x)
1133 {
1134 return ecb_rotl16 (x, 8);
1135 }
1136
1137 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1138 ecb_function_ ecb_const uint32_t
1139 ecb_bswap32 (uint32_t x)
1140 {
1141 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1142 }
1143
1144 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1145 ecb_function_ ecb_const uint64_t
1146 ecb_bswap64 (uint64_t x)
1147 {
1148 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1149 }
1150#endif
1151
1152#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1153 #define ecb_unreachable() __builtin_unreachable ()
1154#else
1155 /* this seems to work fine, but gcc always emits a warning for it :/ */
1156 ecb_inline ecb_noreturn void ecb_unreachable (void);
1157 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1158#endif
1159
1160/* try to tell the compiler that some condition is definitely true */
1161#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1162
1163ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1164ecb_inline ecb_const uint32_t
1165ecb_byteorder_helper (void)
1166{
1167 /* the union code still generates code under pressure in gcc, */
1168 /* but less than using pointers, and always seems to */
1169 /* successfully return a constant. */
1170 /* the reason why we have this horrible preprocessor mess */
1171 /* is to avoid it in all cases, at least on common architectures */
1172 /* or when using a recent enough gcc version (>= 4.6) */
1173#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1174 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1175 #define ECB_LITTLE_ENDIAN 1
1176 return 0x44332211;
1177#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1178 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1179 #define ECB_BIG_ENDIAN 1
1180 return 0x11223344;
1181#else
1182 union
1183 {
1184 uint8_t c[4];
1185 uint32_t u;
1186 } u = { 0x11, 0x22, 0x33, 0x44 };
1187 return u.u;
1188#endif
1189}
1190
1191ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1192ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1193ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1194ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1195
1196#if ECB_GCC_VERSION(3,0) || ECB_C99
1197 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1198#else
1199 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1200#endif
1201
1202#if ECB_CPP
1203 template<typename T>
1204 static inline T ecb_div_rd (T val, T div)
1205 {
1206 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1207 }
1208 template<typename T>
1209 static inline T ecb_div_ru (T val, T div)
1210 {
1211 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1212 }
1213#else
1214 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1215 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1216#endif
1217
1218#if ecb_cplusplus_does_not_suck
1219 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1220 template<typename T, int N>
1221 static inline int ecb_array_length (const T (&arr)[N])
1222 {
1223 return N;
1224 }
1225#else
1226 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1227#endif
1228
1229ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1230ecb_function_ ecb_const uint32_t
1231ecb_binary16_to_binary32 (uint32_t x)
1232{
1233 unsigned int s = (x & 0x8000) << (31 - 15);
1234 int e = (x >> 10) & 0x001f;
1235 unsigned int m = x & 0x03ff;
1236
1237 if (ecb_expect_false (e == 31))
1238 /* infinity or NaN */
1239 e = 255 - (127 - 15);
1240 else if (ecb_expect_false (!e))
1241 {
1242 if (ecb_expect_true (!m))
1243 /* zero, handled by code below by forcing e to 0 */
1244 e = 0 - (127 - 15);
1245 else
1246 {
1247 /* subnormal, renormalise */
1248 unsigned int s = 10 - ecb_ld32 (m);
1249
1250 m = (m << s) & 0x3ff; /* mask implicit bit */
1251 e -= s - 1;
1252 }
1253 }
1254
1255 /* e and m now are normalised, or zero, (or inf or nan) */
1256 e += 127 - 15;
1257
1258 return s | (e << 23) | (m << (23 - 10));
1259}
1260
1261ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1262ecb_function_ ecb_const uint16_t
1263ecb_binary32_to_binary16 (uint32_t x)
1264{
1265 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1266 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1267 unsigned int m = x & 0x007fffff;
1268
1269 x &= 0x7fffffff;
1270
1271 /* if it's within range of binary16 normals, use fast path */
1272 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1273 {
1274 /* mantissa round-to-even */
1275 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1276
1277 /* handle overflow */
1278 if (ecb_expect_false (m >= 0x00800000))
1279 {
1280 m >>= 1;
1281 e += 1;
1282 }
1283
1284 return s | (e << 10) | (m >> (23 - 10));
1285 }
1286
1287 /* handle large numbers and infinity */
1288 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1289 return s | 0x7c00;
1290
1291 /* handle zero, subnormals and small numbers */
1292 if (ecb_expect_true (x < 0x38800000))
1293 {
1294 /* zero */
1295 if (ecb_expect_true (!x))
1296 return s;
1297
1298 /* handle subnormals */
1299
1300 /* too small, will be zero */
1301 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1302 return s;
1303
1304 m |= 0x00800000; /* make implicit bit explicit */
1305
1306 /* very tricky - we need to round to the nearest e (+10) bit value */
1307 {
1308 unsigned int bits = 14 - e;
1309 unsigned int half = (1 << (bits - 1)) - 1;
1310 unsigned int even = (m >> bits) & 1;
1311
1312 /* if this overflows, we will end up with a normalised number */
1313 m = (m + half + even) >> bits;
1314 }
1315
1316 return s | m;
1317 }
1318
1319 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1320 m >>= 13;
1321
1322 return s | 0x7c00 | m | !m;
1323}
1324
1325/*******************************************************************************/
1326/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1327
1328/* basically, everything uses "ieee pure-endian" floating point numbers */
1329/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1330#if 0 \
1331 || __i386 || __i386__ \
1332 || ECB_GCC_AMD64 \
1333 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1334 || defined __s390__ || defined __s390x__ \
1335 || defined __mips__ \
1336 || defined __alpha__ \
1337 || defined __hppa__ \
1338 || defined __ia64__ \
1339 || defined __m68k__ \
1340 || defined __m88k__ \
1341 || defined __sh__ \
1342 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1343 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1344 || defined __aarch64__
1345 #define ECB_STDFP 1
1346 #include <string.h> /* for memcpy */
1347#else
1348 #define ECB_STDFP 0
1349#endif
1350
1351#ifndef ECB_NO_LIBM
1352
1353 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1354
1355 /* only the oldest of old doesn't have this one. solaris. */
1356 #ifdef INFINITY
1357 #define ECB_INFINITY INFINITY
1358 #else
1359 #define ECB_INFINITY HUGE_VAL
1360 #endif
1361
1362 #ifdef NAN
1363 #define ECB_NAN NAN
1364 #else
1365 #define ECB_NAN ECB_INFINITY
1366 #endif
1367
1368 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1369 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1370 #define ecb_frexpf(x,e) frexpf ((x), (e))
1371 #else
1372 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1373 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1374 #endif
1375
1376 /* convert a float to ieee single/binary32 */
1377 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1378 ecb_function_ ecb_const uint32_t
1379 ecb_float_to_binary32 (float x)
1380 {
1381 uint32_t r;
1382
1383 #if ECB_STDFP
1384 memcpy (&r, &x, 4);
1385 #else
1386 /* slow emulation, works for anything but -0 */
1387 uint32_t m;
1388 int e;
1389
1390 if (x == 0e0f ) return 0x00000000U;
1391 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1392 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1393 if (x != x ) return 0x7fbfffffU;
1394
1395 m = ecb_frexpf (x, &e) * 0x1000000U;
1396
1397 r = m & 0x80000000U;
1398
1399 if (r)
1400 m = -m;
1401
1402 if (e <= -126)
1403 {
1404 m &= 0xffffffU;
1405 m >>= (-125 - e);
1406 e = -126;
1407 }
1408
1409 r |= (e + 126) << 23;
1410 r |= m & 0x7fffffU;
1411 #endif
1412
1413 return r;
1414 }
1415
1416 /* converts an ieee single/binary32 to a float */
1417 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1418 ecb_function_ ecb_const float
1419 ecb_binary32_to_float (uint32_t x)
1420 {
1421 float r;
1422
1423 #if ECB_STDFP
1424 memcpy (&r, &x, 4);
1425 #else
1426 /* emulation, only works for normals and subnormals and +0 */
1427 int neg = x >> 31;
1428 int e = (x >> 23) & 0xffU;
1429
1430 x &= 0x7fffffU;
1431
1432 if (e)
1433 x |= 0x800000U;
1434 else
1435 e = 1;
1436
1437 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1438 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1439
1440 r = neg ? -r : r;
1441 #endif
1442
1443 return r;
1444 }
1445
1446 /* convert a double to ieee double/binary64 */
1447 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1448 ecb_function_ ecb_const uint64_t
1449 ecb_double_to_binary64 (double x)
1450 {
1451 uint64_t r;
1452
1453 #if ECB_STDFP
1454 memcpy (&r, &x, 8);
1455 #else
1456 /* slow emulation, works for anything but -0 */
1457 uint64_t m;
1458 int e;
1459
1460 if (x == 0e0 ) return 0x0000000000000000U;
1461 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1462 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1463 if (x != x ) return 0X7ff7ffffffffffffU;
1464
1465 m = frexp (x, &e) * 0x20000000000000U;
1466
1467 r = m & 0x8000000000000000;;
1468
1469 if (r)
1470 m = -m;
1471
1472 if (e <= -1022)
1473 {
1474 m &= 0x1fffffffffffffU;
1475 m >>= (-1021 - e);
1476 e = -1022;
1477 }
1478
1479 r |= ((uint64_t)(e + 1022)) << 52;
1480 r |= m & 0xfffffffffffffU;
1481 #endif
1482
1483 return r;
1484 }
1485
1486 /* converts an ieee double/binary64 to a double */
1487 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1488 ecb_function_ ecb_const double
1489 ecb_binary64_to_double (uint64_t x)
1490 {
1491 double r;
1492
1493 #if ECB_STDFP
1494 memcpy (&r, &x, 8);
1495 #else
1496 /* emulation, only works for normals and subnormals and +0 */
1497 int neg = x >> 63;
1498 int e = (x >> 52) & 0x7ffU;
1499
1500 x &= 0xfffffffffffffU;
1501
1502 if (e)
1503 x |= 0x10000000000000U;
1504 else
1505 e = 1;
1506
1507 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1508 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1509
1510 r = neg ? -r : r;
1511 #endif
1512
1513 return r;
1514 }
1515
1516 /* convert a float to ieee half/binary16 */
1517 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1518 ecb_function_ ecb_const uint16_t
1519 ecb_float_to_binary16 (float x)
1520 {
1521 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1522 }
1523
1524 /* convert an ieee half/binary16 to float */
1525 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1526 ecb_function_ ecb_const float
1527 ecb_binary16_to_float (uint16_t x)
1528 {
1529 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1530 }
1531
1532#endif
1533
1534#endif
1535
1536/* ECB.H END */
1537
1538#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1539/* if your architecture doesn't need memory fences, e.g. because it is
1540 * single-cpu/core, or if you use libev in a project that doesn't use libev
1541 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1542 * libev, in which cases the memory fences become nops.
1543 * alternatively, you can remove this #error and link against libpthread,
1544 * which will then provide the memory fences.
1545 */
1546# error "memory fences not defined for your architecture, please report"
1547#endif
1548
1549#ifndef ECB_MEMORY_FENCE
1550# define ECB_MEMORY_FENCE do { } while (0)
1551# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1552# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1553#endif
1554
1555#define expect_false(cond) ecb_expect_false (cond)
1556#define expect_true(cond) ecb_expect_true (cond)
1557#define noinline ecb_noinline
1558
1559#define inline_size ecb_inline
1560
1561#if EV_FEATURE_CODE
254# define inline_speed static inline 1562# define inline_speed ecb_inline
1563#else
1564# define inline_speed noinline static
255#endif 1565#endif
256 1566
257#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1567#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1568
1569#if EV_MINPRI == EV_MAXPRI
1570# define ABSPRI(w) (((W)w), 0)
1571#else
258#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1572# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1573#endif
259 1574
260#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1575#define EMPTY /* required for microsofts broken pseudo-c compiler */
261#define EMPTY2(a,b) /* used to suppress some warnings */
262 1576
263typedef ev_watcher *W; 1577typedef ev_watcher *W;
264typedef ev_watcher_list *WL; 1578typedef ev_watcher_list *WL;
265typedef ev_watcher_time *WT; 1579typedef ev_watcher_time *WT;
266 1580
1581#define ev_active(w) ((W)(w))->active
1582#define ev_at(w) ((WT)(w))->at
1583
1584#if EV_USE_REALTIME
1585/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1586/* giving it a reasonably high chance of working on typical architectures */
1587static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1588#endif
1589
1590#if EV_USE_MONOTONIC
267static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1591static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1592#endif
1593
1594#ifndef EV_FD_TO_WIN32_HANDLE
1595# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1596#endif
1597#ifndef EV_WIN32_HANDLE_TO_FD
1598# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1599#endif
1600#ifndef EV_WIN32_CLOSE_FD
1601# define EV_WIN32_CLOSE_FD(fd) close (fd)
1602#endif
268 1603
269#ifdef _WIN32 1604#ifdef _WIN32
270# include "ev_win32.c" 1605# include "ev_win32.c"
271#endif 1606#endif
272 1607
273/*****************************************************************************/ 1608/*****************************************************************************/
274 1609
1610#if EV_USE_LINUXAIO
1611# include <linux/aio_abi.h> /* probably only needed for aio_context_t */
1612#endif
1613
1614/* define a suitable floor function (only used by periodics atm) */
1615
1616#if EV_USE_FLOOR
1617# include <math.h>
1618# define ev_floor(v) floor (v)
1619#else
1620
1621#include <float.h>
1622
1623/* a floor() replacement function, should be independent of ev_tstamp type */
1624noinline
1625static ev_tstamp
1626ev_floor (ev_tstamp v)
1627{
1628 /* the choice of shift factor is not terribly important */
1629#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1630 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1631#else
1632 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1633#endif
1634
1635 /* argument too large for an unsigned long? */
1636 if (expect_false (v >= shift))
1637 {
1638 ev_tstamp f;
1639
1640 if (v == v - 1.)
1641 return v; /* very large number */
1642
1643 f = shift * ev_floor (v * (1. / shift));
1644 return f + ev_floor (v - f);
1645 }
1646
1647 /* special treatment for negative args? */
1648 if (expect_false (v < 0.))
1649 {
1650 ev_tstamp f = -ev_floor (-v);
1651
1652 return f - (f == v ? 0 : 1);
1653 }
1654
1655 /* fits into an unsigned long */
1656 return (unsigned long)v;
1657}
1658
1659#endif
1660
1661/*****************************************************************************/
1662
1663#ifdef __linux
1664# include <sys/utsname.h>
1665#endif
1666
1667noinline ecb_cold
1668static unsigned int
1669ev_linux_version (void)
1670{
1671#ifdef __linux
1672 unsigned int v = 0;
1673 struct utsname buf;
1674 int i;
1675 char *p = buf.release;
1676
1677 if (uname (&buf))
1678 return 0;
1679
1680 for (i = 3+1; --i; )
1681 {
1682 unsigned int c = 0;
1683
1684 for (;;)
1685 {
1686 if (*p >= '0' && *p <= '9')
1687 c = c * 10 + *p++ - '0';
1688 else
1689 {
1690 p += *p == '.';
1691 break;
1692 }
1693 }
1694
1695 v = (v << 8) | c;
1696 }
1697
1698 return v;
1699#else
1700 return 0;
1701#endif
1702}
1703
1704/*****************************************************************************/
1705
1706#if EV_AVOID_STDIO
1707noinline ecb_cold
1708static void
1709ev_printerr (const char *msg)
1710{
1711 write (STDERR_FILENO, msg, strlen (msg));
1712}
1713#endif
1714
275static void (*syserr_cb)(const char *msg); 1715static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
276 1716
1717ecb_cold
277void 1718void
278ev_set_syserr_cb (void (*cb)(const char *msg)) 1719ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
279{ 1720{
280 syserr_cb = cb; 1721 syserr_cb = cb;
281} 1722}
282 1723
283static void noinline 1724noinline ecb_cold
1725static void
284syserr (const char *msg) 1726ev_syserr (const char *msg)
285{ 1727{
286 if (!msg) 1728 if (!msg)
287 msg = "(libev) system error"; 1729 msg = "(libev) system error";
288 1730
289 if (syserr_cb) 1731 if (syserr_cb)
290 syserr_cb (msg); 1732 syserr_cb (msg);
291 else 1733 else
292 { 1734 {
1735#if EV_AVOID_STDIO
1736 ev_printerr (msg);
1737 ev_printerr (": ");
1738 ev_printerr (strerror (errno));
1739 ev_printerr ("\n");
1740#else
293 perror (msg); 1741 perror (msg);
1742#endif
294 abort (); 1743 abort ();
295 } 1744 }
296} 1745}
297 1746
298static void *(*alloc)(void *ptr, long size); 1747static void *
1748ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
1749{
1750 /* some systems, notably openbsd and darwin, fail to properly
1751 * implement realloc (x, 0) (as required by both ansi c-89 and
1752 * the single unix specification, so work around them here.
1753 * recently, also (at least) fedora and debian started breaking it,
1754 * despite documenting it otherwise.
1755 */
299 1756
1757 if (size)
1758 return realloc (ptr, size);
1759
1760 free (ptr);
1761 return 0;
1762}
1763
1764static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
1765
1766ecb_cold
300void 1767void
301ev_set_allocator (void *(*cb)(void *ptr, long size)) 1768ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
302{ 1769{
303 alloc = cb; 1770 alloc = cb;
304} 1771}
305 1772
306inline_speed void * 1773inline_speed void *
307ev_realloc (void *ptr, long size) 1774ev_realloc (void *ptr, long size)
308{ 1775{
309 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1776 ptr = alloc (ptr, size);
310 1777
311 if (!ptr && size) 1778 if (!ptr && size)
312 { 1779 {
1780#if EV_AVOID_STDIO
1781 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1782#else
313 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1783 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1784#endif
314 abort (); 1785 abort ();
315 } 1786 }
316 1787
317 return ptr; 1788 return ptr;
318} 1789}
320#define ev_malloc(size) ev_realloc (0, (size)) 1791#define ev_malloc(size) ev_realloc (0, (size))
321#define ev_free(ptr) ev_realloc ((ptr), 0) 1792#define ev_free(ptr) ev_realloc ((ptr), 0)
322 1793
323/*****************************************************************************/ 1794/*****************************************************************************/
324 1795
1796/* set in reify when reification needed */
1797#define EV_ANFD_REIFY 1
1798
1799/* file descriptor info structure */
325typedef struct 1800typedef struct
326{ 1801{
327 WL head; 1802 WL head;
328 unsigned char events; 1803 unsigned char events; /* the events watched for */
1804 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1805 unsigned char emask; /* some backends store the actual kernel mask in here */
329 unsigned char reify; 1806 unsigned char unused;
1807#if EV_USE_EPOLL
1808 unsigned int egen; /* generation counter to counter epoll bugs */
1809#endif
330#if EV_SELECT_IS_WINSOCKET 1810#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
331 SOCKET handle; 1811 SOCKET handle;
332#endif 1812#endif
1813#if EV_USE_IOCP
1814 OVERLAPPED or, ow;
1815#endif
333} ANFD; 1816} ANFD;
334 1817
1818/* stores the pending event set for a given watcher */
335typedef struct 1819typedef struct
336{ 1820{
337 W w; 1821 W w;
338 int events; 1822 int events; /* the pending event set for the given watcher */
339} ANPENDING; 1823} ANPENDING;
340 1824
341#if EV_USE_INOTIFY 1825#if EV_USE_INOTIFY
1826/* hash table entry per inotify-id */
342typedef struct 1827typedef struct
343{ 1828{
344 WL head; 1829 WL head;
345} ANFS; 1830} ANFS;
1831#endif
1832
1833/* Heap Entry */
1834#if EV_HEAP_CACHE_AT
1835 /* a heap element */
1836 typedef struct {
1837 ev_tstamp at;
1838 WT w;
1839 } ANHE;
1840
1841 #define ANHE_w(he) (he).w /* access watcher, read-write */
1842 #define ANHE_at(he) (he).at /* access cached at, read-only */
1843 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1844#else
1845 /* a heap element */
1846 typedef WT ANHE;
1847
1848 #define ANHE_w(he) (he)
1849 #define ANHE_at(he) (he)->at
1850 #define ANHE_at_cache(he)
346#endif 1851#endif
347 1852
348#if EV_MULTIPLICITY 1853#if EV_MULTIPLICITY
349 1854
350 struct ev_loop 1855 struct ev_loop
356 #undef VAR 1861 #undef VAR
357 }; 1862 };
358 #include "ev_wrap.h" 1863 #include "ev_wrap.h"
359 1864
360 static struct ev_loop default_loop_struct; 1865 static struct ev_loop default_loop_struct;
361 struct ev_loop *ev_default_loop_ptr; 1866 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
362 1867
363#else 1868#else
364 1869
365 ev_tstamp ev_rt_now; 1870 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
366 #define VAR(name,decl) static decl; 1871 #define VAR(name,decl) static decl;
367 #include "ev_vars.h" 1872 #include "ev_vars.h"
368 #undef VAR 1873 #undef VAR
369 1874
370 static int ev_default_loop_ptr; 1875 static int ev_default_loop_ptr;
371 1876
372#endif 1877#endif
373 1878
1879#if EV_FEATURE_API
1880# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1881# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1882# define EV_INVOKE_PENDING invoke_cb (EV_A)
1883#else
1884# define EV_RELEASE_CB (void)0
1885# define EV_ACQUIRE_CB (void)0
1886# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1887#endif
1888
1889#define EVBREAK_RECURSE 0x80
1890
374/*****************************************************************************/ 1891/*****************************************************************************/
375 1892
1893#ifndef EV_HAVE_EV_TIME
376ev_tstamp 1894ev_tstamp
377ev_time (void) 1895ev_time (void) EV_NOEXCEPT
378{ 1896{
379#if EV_USE_REALTIME 1897#if EV_USE_REALTIME
1898 if (expect_true (have_realtime))
1899 {
380 struct timespec ts; 1900 struct timespec ts;
381 clock_gettime (CLOCK_REALTIME, &ts); 1901 clock_gettime (CLOCK_REALTIME, &ts);
382 return ts.tv_sec + ts.tv_nsec * 1e-9; 1902 return ts.tv_sec + ts.tv_nsec * 1e-9;
383#else 1903 }
1904#endif
1905
384 struct timeval tv; 1906 struct timeval tv;
385 gettimeofday (&tv, 0); 1907 gettimeofday (&tv, 0);
386 return tv.tv_sec + tv.tv_usec * 1e-6; 1908 return tv.tv_sec + tv.tv_usec * 1e-6;
387#endif
388} 1909}
1910#endif
389 1911
390ev_tstamp inline_size 1912inline_size ev_tstamp
391get_clock (void) 1913get_clock (void)
392{ 1914{
393#if EV_USE_MONOTONIC 1915#if EV_USE_MONOTONIC
394 if (expect_true (have_monotonic)) 1916 if (expect_true (have_monotonic))
395 { 1917 {
402 return ev_time (); 1924 return ev_time ();
403} 1925}
404 1926
405#if EV_MULTIPLICITY 1927#if EV_MULTIPLICITY
406ev_tstamp 1928ev_tstamp
407ev_now (EV_P) 1929ev_now (EV_P) EV_NOEXCEPT
408{ 1930{
409 return ev_rt_now; 1931 return ev_rt_now;
410} 1932}
411#endif 1933#endif
412 1934
413int inline_size 1935void
1936ev_sleep (ev_tstamp delay) EV_NOEXCEPT
1937{
1938 if (delay > 0.)
1939 {
1940#if EV_USE_NANOSLEEP
1941 struct timespec ts;
1942
1943 EV_TS_SET (ts, delay);
1944 nanosleep (&ts, 0);
1945#elif defined _WIN32
1946 /* maybe this should round up, as ms is very low resolution */
1947 /* compared to select (µs) or nanosleep (ns) */
1948 Sleep ((unsigned long)(delay * 1e3));
1949#else
1950 struct timeval tv;
1951
1952 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1953 /* something not guaranteed by newer posix versions, but guaranteed */
1954 /* by older ones */
1955 EV_TV_SET (tv, delay);
1956 select (0, 0, 0, 0, &tv);
1957#endif
1958 }
1959}
1960
1961/*****************************************************************************/
1962
1963#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1964
1965/* find a suitable new size for the given array, */
1966/* hopefully by rounding to a nice-to-malloc size */
1967inline_size int
414array_nextsize (int elem, int cur, int cnt) 1968array_nextsize (int elem, int cur, int cnt)
415{ 1969{
416 int ncur = cur + 1; 1970 int ncur = cur + 1;
417 1971
418 do 1972 do
419 ncur <<= 1; 1973 ncur <<= 1;
420 while (cnt > ncur); 1974 while (cnt > ncur);
421 1975
422 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 1976 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
423 if (elem * ncur > 4096) 1977 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
424 { 1978 {
425 ncur *= elem; 1979 ncur *= elem;
426 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 1980 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
427 ncur = ncur - sizeof (void *) * 4; 1981 ncur = ncur - sizeof (void *) * 4;
428 ncur /= elem; 1982 ncur /= elem;
429 } 1983 }
430 1984
431 return ncur; 1985 return ncur;
432} 1986}
433 1987
434static noinline void * 1988noinline ecb_cold
1989static void *
435array_realloc (int elem, void *base, int *cur, int cnt) 1990array_realloc (int elem, void *base, int *cur, int cnt)
436{ 1991{
437 *cur = array_nextsize (elem, *cur, cnt); 1992 *cur = array_nextsize (elem, *cur, cnt);
438 return ev_realloc (base, elem * *cur); 1993 return ev_realloc (base, elem * *cur);
439} 1994}
1995
1996#define array_needsize_noinit(base,offset,count)
1997
1998#define array_needsize_zerofill(base,offset,count) \
1999 memset ((void *)(base + offset), 0, sizeof (*(base)) * (count))
440 2000
441#define array_needsize(type,base,cur,cnt,init) \ 2001#define array_needsize(type,base,cur,cnt,init) \
442 if (expect_false ((cnt) > (cur))) \ 2002 if (expect_false ((cnt) > (cur))) \
443 { \ 2003 { \
444 int ocur_ = (cur); \ 2004 ecb_unused int ocur_ = (cur); \
445 (base) = (type *)array_realloc \ 2005 (base) = (type *)array_realloc \
446 (sizeof (type), (base), &(cur), (cnt)); \ 2006 (sizeof (type), (base), &(cur), (cnt)); \
447 init ((base) + (ocur_), (cur) - ocur_); \ 2007 init ((base), ocur_, ((cur) - ocur_)); \
448 } 2008 }
449 2009
450#if 0 2010#if 0
451#define array_slim(type,stem) \ 2011#define array_slim(type,stem) \
452 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 2012 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
456 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 2016 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
457 } 2017 }
458#endif 2018#endif
459 2019
460#define array_free(stem, idx) \ 2020#define array_free(stem, idx) \
461 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 2021 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
462 2022
463/*****************************************************************************/ 2023/*****************************************************************************/
464 2024
2025/* dummy callback for pending events */
465void noinline 2026noinline
2027static void
2028pendingcb (EV_P_ ev_prepare *w, int revents)
2029{
2030}
2031
2032noinline
2033void
466ev_feed_event (EV_P_ void *w, int revents) 2034ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
467{ 2035{
468 W w_ = (W)w; 2036 W w_ = (W)w;
469 int pri = ABSPRI (w_); 2037 int pri = ABSPRI (w_);
470 2038
471 if (expect_false (w_->pending)) 2039 if (expect_false (w_->pending))
472 pendings [pri][w_->pending - 1].events |= revents; 2040 pendings [pri][w_->pending - 1].events |= revents;
473 else 2041 else
474 { 2042 {
475 w_->pending = ++pendingcnt [pri]; 2043 w_->pending = ++pendingcnt [pri];
476 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 2044 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
477 pendings [pri][w_->pending - 1].w = w_; 2045 pendings [pri][w_->pending - 1].w = w_;
478 pendings [pri][w_->pending - 1].events = revents; 2046 pendings [pri][w_->pending - 1].events = revents;
479 } 2047 }
480}
481 2048
482void inline_speed 2049 pendingpri = NUMPRI - 1;
2050}
2051
2052inline_speed void
2053feed_reverse (EV_P_ W w)
2054{
2055 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2056 rfeeds [rfeedcnt++] = w;
2057}
2058
2059inline_size void
2060feed_reverse_done (EV_P_ int revents)
2061{
2062 do
2063 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2064 while (rfeedcnt);
2065}
2066
2067inline_speed void
483queue_events (EV_P_ W *events, int eventcnt, int type) 2068queue_events (EV_P_ W *events, int eventcnt, int type)
484{ 2069{
485 int i; 2070 int i;
486 2071
487 for (i = 0; i < eventcnt; ++i) 2072 for (i = 0; i < eventcnt; ++i)
488 ev_feed_event (EV_A_ events [i], type); 2073 ev_feed_event (EV_A_ events [i], type);
489} 2074}
490 2075
491/*****************************************************************************/ 2076/*****************************************************************************/
492 2077
493void inline_size 2078inline_speed void
494anfds_init (ANFD *base, int count)
495{
496 while (count--)
497 {
498 base->head = 0;
499 base->events = EV_NONE;
500 base->reify = 0;
501
502 ++base;
503 }
504}
505
506void inline_speed
507fd_event (EV_P_ int fd, int revents) 2079fd_event_nocheck (EV_P_ int fd, int revents)
508{ 2080{
509 ANFD *anfd = anfds + fd; 2081 ANFD *anfd = anfds + fd;
510 ev_io *w; 2082 ev_io *w;
511 2083
512 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2084 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
516 if (ev) 2088 if (ev)
517 ev_feed_event (EV_A_ (W)w, ev); 2089 ev_feed_event (EV_A_ (W)w, ev);
518 } 2090 }
519} 2091}
520 2092
521void 2093/* do not submit kernel events for fds that have reify set */
2094/* because that means they changed while we were polling for new events */
2095inline_speed void
522ev_feed_fd_event (EV_P_ int fd, int revents) 2096fd_event (EV_P_ int fd, int revents)
2097{
2098 ANFD *anfd = anfds + fd;
2099
2100 if (expect_true (!anfd->reify))
2101 fd_event_nocheck (EV_A_ fd, revents);
2102}
2103
2104void
2105ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
523{ 2106{
524 if (fd >= 0 && fd < anfdmax) 2107 if (fd >= 0 && fd < anfdmax)
525 fd_event (EV_A_ fd, revents); 2108 fd_event_nocheck (EV_A_ fd, revents);
526} 2109}
527 2110
528void inline_size 2111/* make sure the external fd watch events are in-sync */
2112/* with the kernel/libev internal state */
2113inline_size void
529fd_reify (EV_P) 2114fd_reify (EV_P)
530{ 2115{
531 int i; 2116 int i;
2117
2118#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2119 for (i = 0; i < fdchangecnt; ++i)
2120 {
2121 int fd = fdchanges [i];
2122 ANFD *anfd = anfds + fd;
2123
2124 if (anfd->reify & EV__IOFDSET && anfd->head)
2125 {
2126 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2127
2128 if (handle != anfd->handle)
2129 {
2130 unsigned long arg;
2131
2132 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2133
2134 /* handle changed, but fd didn't - we need to do it in two steps */
2135 backend_modify (EV_A_ fd, anfd->events, 0);
2136 anfd->events = 0;
2137 anfd->handle = handle;
2138 }
2139 }
2140 }
2141#endif
532 2142
533 for (i = 0; i < fdchangecnt; ++i) 2143 for (i = 0; i < fdchangecnt; ++i)
534 { 2144 {
535 int fd = fdchanges [i]; 2145 int fd = fdchanges [i];
536 ANFD *anfd = anfds + fd; 2146 ANFD *anfd = anfds + fd;
537 ev_io *w; 2147 ev_io *w;
538 2148
539 unsigned char events = 0; 2149 unsigned char o_events = anfd->events;
2150 unsigned char o_reify = anfd->reify;
540 2151
541 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2152 anfd->reify = 0;
542 events |= (unsigned char)w->events;
543 2153
544#if EV_SELECT_IS_WINSOCKET 2154 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
545 if (events)
546 { 2155 {
547 unsigned long argp; 2156 anfd->events = 0;
548 anfd->handle = _get_osfhandle (fd); 2157
549 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 2158 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2159 anfd->events |= (unsigned char)w->events;
2160
2161 if (o_events != anfd->events)
2162 o_reify = EV__IOFDSET; /* actually |= */
550 } 2163 }
551#endif
552 2164
553 { 2165 if (o_reify & EV__IOFDSET)
554 unsigned char o_events = anfd->events;
555 unsigned char o_reify = anfd->reify;
556
557 anfd->reify = 0;
558 anfd->events = events;
559
560 if (o_events != events || o_reify & EV_IOFDSET)
561 backend_modify (EV_A_ fd, o_events, events); 2166 backend_modify (EV_A_ fd, o_events, anfd->events);
562 }
563 } 2167 }
564 2168
565 fdchangecnt = 0; 2169 fdchangecnt = 0;
566} 2170}
567 2171
2172/* something about the given fd changed */
568void inline_size 2173inline_size
2174void
569fd_change (EV_P_ int fd, int flags) 2175fd_change (EV_P_ int fd, int flags)
570{ 2176{
571 unsigned char reify = anfds [fd].reify; 2177 unsigned char reify = anfds [fd].reify;
572 anfds [fd].reify |= flags; 2178 anfds [fd].reify |= flags;
573 2179
574 if (expect_true (!reify)) 2180 if (expect_true (!reify))
575 { 2181 {
576 ++fdchangecnt; 2182 ++fdchangecnt;
577 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 2183 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
578 fdchanges [fdchangecnt - 1] = fd; 2184 fdchanges [fdchangecnt - 1] = fd;
579 } 2185 }
580} 2186}
581 2187
582void inline_speed 2188/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2189inline_speed ecb_cold void
583fd_kill (EV_P_ int fd) 2190fd_kill (EV_P_ int fd)
584{ 2191{
585 ev_io *w; 2192 ev_io *w;
586 2193
587 while ((w = (ev_io *)anfds [fd].head)) 2194 while ((w = (ev_io *)anfds [fd].head))
589 ev_io_stop (EV_A_ w); 2196 ev_io_stop (EV_A_ w);
590 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2197 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
591 } 2198 }
592} 2199}
593 2200
594int inline_size 2201/* check whether the given fd is actually valid, for error recovery */
2202inline_size ecb_cold int
595fd_valid (int fd) 2203fd_valid (int fd)
596{ 2204{
597#ifdef _WIN32 2205#ifdef _WIN32
598 return _get_osfhandle (fd) != -1; 2206 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
599#else 2207#else
600 return fcntl (fd, F_GETFD) != -1; 2208 return fcntl (fd, F_GETFD) != -1;
601#endif 2209#endif
602} 2210}
603 2211
604/* called on EBADF to verify fds */ 2212/* called on EBADF to verify fds */
605static void noinline 2213noinline ecb_cold
2214static void
606fd_ebadf (EV_P) 2215fd_ebadf (EV_P)
607{ 2216{
608 int fd; 2217 int fd;
609 2218
610 for (fd = 0; fd < anfdmax; ++fd) 2219 for (fd = 0; fd < anfdmax; ++fd)
611 if (anfds [fd].events) 2220 if (anfds [fd].events)
612 if (!fd_valid (fd) == -1 && errno == EBADF) 2221 if (!fd_valid (fd) && errno == EBADF)
613 fd_kill (EV_A_ fd); 2222 fd_kill (EV_A_ fd);
614} 2223}
615 2224
616/* called on ENOMEM in select/poll to kill some fds and retry */ 2225/* called on ENOMEM in select/poll to kill some fds and retry */
617static void noinline 2226noinline ecb_cold
2227static void
618fd_enomem (EV_P) 2228fd_enomem (EV_P)
619{ 2229{
620 int fd; 2230 int fd;
621 2231
622 for (fd = anfdmax; fd--; ) 2232 for (fd = anfdmax; fd--; )
623 if (anfds [fd].events) 2233 if (anfds [fd].events)
624 { 2234 {
625 fd_kill (EV_A_ fd); 2235 fd_kill (EV_A_ fd);
626 return; 2236 break;
627 } 2237 }
628} 2238}
629 2239
630/* usually called after fork if backend needs to re-arm all fds from scratch */ 2240/* usually called after fork if backend needs to re-arm all fds from scratch */
631static void noinline 2241noinline
2242static void
632fd_rearm_all (EV_P) 2243fd_rearm_all (EV_P)
633{ 2244{
634 int fd; 2245 int fd;
635 2246
636 for (fd = 0; fd < anfdmax; ++fd) 2247 for (fd = 0; fd < anfdmax; ++fd)
637 if (anfds [fd].events) 2248 if (anfds [fd].events)
638 { 2249 {
639 anfds [fd].events = 0; 2250 anfds [fd].events = 0;
2251 anfds [fd].emask = 0;
640 fd_change (EV_A_ fd, EV_IOFDSET | 1); 2252 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
641 } 2253 }
642} 2254}
643 2255
644/*****************************************************************************/ 2256/* used to prepare libev internal fd's */
645 2257/* this is not fork-safe */
646void inline_speed 2258inline_speed void
647upheap (WT *heap, int k)
648{
649 WT w = heap [k];
650
651 while (k)
652 {
653 int p = (k - 1) >> 1;
654
655 if (heap [p]->at <= w->at)
656 break;
657
658 heap [k] = heap [p];
659 ((W)heap [k])->active = k + 1;
660 k = p;
661 }
662
663 heap [k] = w;
664 ((W)heap [k])->active = k + 1;
665}
666
667void inline_speed
668downheap (WT *heap, int N, int k)
669{
670 WT w = heap [k];
671
672 for (;;)
673 {
674 int c = (k << 1) + 1;
675
676 if (c >= N)
677 break;
678
679 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
680 ? 1 : 0;
681
682 if (w->at <= heap [c]->at)
683 break;
684
685 heap [k] = heap [c];
686 ((W)heap [k])->active = k + 1;
687
688 k = c;
689 }
690
691 heap [k] = w;
692 ((W)heap [k])->active = k + 1;
693}
694
695void inline_size
696adjustheap (WT *heap, int N, int k)
697{
698 upheap (heap, k);
699 downheap (heap, N, k);
700}
701
702/*****************************************************************************/
703
704typedef struct
705{
706 WL head;
707 sig_atomic_t volatile gotsig;
708} ANSIG;
709
710static ANSIG *signals;
711static int signalmax;
712
713static int sigpipe [2];
714static sig_atomic_t volatile gotsig;
715static ev_io sigev;
716
717void inline_size
718signals_init (ANSIG *base, int count)
719{
720 while (count--)
721 {
722 base->head = 0;
723 base->gotsig = 0;
724
725 ++base;
726 }
727}
728
729static void
730sighandler (int signum)
731{
732#if _WIN32
733 signal (signum, sighandler);
734#endif
735
736 signals [signum - 1].gotsig = 1;
737
738 if (!gotsig)
739 {
740 int old_errno = errno;
741 gotsig = 1;
742 write (sigpipe [1], &signum, 1);
743 errno = old_errno;
744 }
745}
746
747void noinline
748ev_feed_signal_event (EV_P_ int signum)
749{
750 WL w;
751
752#if EV_MULTIPLICITY
753 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
754#endif
755
756 --signum;
757
758 if (signum < 0 || signum >= signalmax)
759 return;
760
761 signals [signum].gotsig = 0;
762
763 for (w = signals [signum].head; w; w = w->next)
764 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
765}
766
767static void
768sigcb (EV_P_ ev_io *iow, int revents)
769{
770 int signum;
771
772 read (sigpipe [0], &revents, 1);
773 gotsig = 0;
774
775 for (signum = signalmax; signum--; )
776 if (signals [signum].gotsig)
777 ev_feed_signal_event (EV_A_ signum + 1);
778}
779
780void inline_speed
781fd_intern (int fd) 2259fd_intern (int fd)
782{ 2260{
783#ifdef _WIN32 2261#ifdef _WIN32
784 int arg = 1; 2262 unsigned long arg = 1;
785 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 2263 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
786#else 2264#else
787 fcntl (fd, F_SETFD, FD_CLOEXEC); 2265 fcntl (fd, F_SETFD, FD_CLOEXEC);
788 fcntl (fd, F_SETFL, O_NONBLOCK); 2266 fcntl (fd, F_SETFL, O_NONBLOCK);
789#endif 2267#endif
790} 2268}
791 2269
792static void noinline
793siginit (EV_P)
794{
795 fd_intern (sigpipe [0]);
796 fd_intern (sigpipe [1]);
797
798 ev_io_set (&sigev, sigpipe [0], EV_READ);
799 ev_io_start (EV_A_ &sigev);
800 ev_unref (EV_A); /* child watcher should not keep loop alive */
801}
802
803/*****************************************************************************/ 2270/*****************************************************************************/
804 2271
2272/*
2273 * the heap functions want a real array index. array index 0 is guaranteed to not
2274 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2275 * the branching factor of the d-tree.
2276 */
2277
2278/*
2279 * at the moment we allow libev the luxury of two heaps,
2280 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2281 * which is more cache-efficient.
2282 * the difference is about 5% with 50000+ watchers.
2283 */
2284#if EV_USE_4HEAP
2285
2286#define DHEAP 4
2287#define HEAP0 (DHEAP - 1) /* index of first element in heap */
2288#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2289#define UPHEAP_DONE(p,k) ((p) == (k))
2290
2291/* away from the root */
2292inline_speed void
2293downheap (ANHE *heap, int N, int k)
2294{
2295 ANHE he = heap [k];
2296 ANHE *E = heap + N + HEAP0;
2297
2298 for (;;)
2299 {
2300 ev_tstamp minat;
2301 ANHE *minpos;
2302 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2303
2304 /* find minimum child */
2305 if (expect_true (pos + DHEAP - 1 < E))
2306 {
2307 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2308 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2309 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2310 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2311 }
2312 else if (pos < E)
2313 {
2314 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2315 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2316 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2317 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2318 }
2319 else
2320 break;
2321
2322 if (ANHE_at (he) <= minat)
2323 break;
2324
2325 heap [k] = *minpos;
2326 ev_active (ANHE_w (*minpos)) = k;
2327
2328 k = minpos - heap;
2329 }
2330
2331 heap [k] = he;
2332 ev_active (ANHE_w (he)) = k;
2333}
2334
2335#else /* 4HEAP */
2336
2337#define HEAP0 1
2338#define HPARENT(k) ((k) >> 1)
2339#define UPHEAP_DONE(p,k) (!(p))
2340
2341/* away from the root */
2342inline_speed void
2343downheap (ANHE *heap, int N, int k)
2344{
2345 ANHE he = heap [k];
2346
2347 for (;;)
2348 {
2349 int c = k << 1;
2350
2351 if (c >= N + HEAP0)
2352 break;
2353
2354 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2355 ? 1 : 0;
2356
2357 if (ANHE_at (he) <= ANHE_at (heap [c]))
2358 break;
2359
2360 heap [k] = heap [c];
2361 ev_active (ANHE_w (heap [k])) = k;
2362
2363 k = c;
2364 }
2365
2366 heap [k] = he;
2367 ev_active (ANHE_w (he)) = k;
2368}
2369#endif
2370
2371/* towards the root */
2372inline_speed void
2373upheap (ANHE *heap, int k)
2374{
2375 ANHE he = heap [k];
2376
2377 for (;;)
2378 {
2379 int p = HPARENT (k);
2380
2381 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2382 break;
2383
2384 heap [k] = heap [p];
2385 ev_active (ANHE_w (heap [k])) = k;
2386 k = p;
2387 }
2388
2389 heap [k] = he;
2390 ev_active (ANHE_w (he)) = k;
2391}
2392
2393/* move an element suitably so it is in a correct place */
2394inline_size void
2395adjustheap (ANHE *heap, int N, int k)
2396{
2397 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2398 upheap (heap, k);
2399 else
2400 downheap (heap, N, k);
2401}
2402
2403/* rebuild the heap: this function is used only once and executed rarely */
2404inline_size void
2405reheap (ANHE *heap, int N)
2406{
2407 int i;
2408
2409 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2410 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2411 for (i = 0; i < N; ++i)
2412 upheap (heap, i + HEAP0);
2413}
2414
2415/*****************************************************************************/
2416
2417/* associate signal watchers to a signal signal */
2418typedef struct
2419{
2420 EV_ATOMIC_T pending;
2421#if EV_MULTIPLICITY
2422 EV_P;
2423#endif
2424 WL head;
2425} ANSIG;
2426
2427static ANSIG signals [EV_NSIG - 1];
2428
2429/*****************************************************************************/
2430
2431#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2432
2433noinline ecb_cold
2434static void
2435evpipe_init (EV_P)
2436{
2437 if (!ev_is_active (&pipe_w))
2438 {
2439 int fds [2];
2440
2441# if EV_USE_EVENTFD
2442 fds [0] = -1;
2443 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2444 if (fds [1] < 0 && errno == EINVAL)
2445 fds [1] = eventfd (0, 0);
2446
2447 if (fds [1] < 0)
2448# endif
2449 {
2450 while (pipe (fds))
2451 ev_syserr ("(libev) error creating signal/async pipe");
2452
2453 fd_intern (fds [0]);
2454 }
2455
2456 evpipe [0] = fds [0];
2457
2458 if (evpipe [1] < 0)
2459 evpipe [1] = fds [1]; /* first call, set write fd */
2460 else
2461 {
2462 /* on subsequent calls, do not change evpipe [1] */
2463 /* so that evpipe_write can always rely on its value. */
2464 /* this branch does not do anything sensible on windows, */
2465 /* so must not be executed on windows */
2466
2467 dup2 (fds [1], evpipe [1]);
2468 close (fds [1]);
2469 }
2470
2471 fd_intern (evpipe [1]);
2472
2473 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2474 ev_io_start (EV_A_ &pipe_w);
2475 ev_unref (EV_A); /* watcher should not keep loop alive */
2476 }
2477}
2478
2479inline_speed void
2480evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2481{
2482 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2483
2484 if (expect_true (*flag))
2485 return;
2486
2487 *flag = 1;
2488 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2489
2490 pipe_write_skipped = 1;
2491
2492 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2493
2494 if (pipe_write_wanted)
2495 {
2496 int old_errno;
2497
2498 pipe_write_skipped = 0;
2499 ECB_MEMORY_FENCE_RELEASE;
2500
2501 old_errno = errno; /* save errno because write will clobber it */
2502
2503#if EV_USE_EVENTFD
2504 if (evpipe [0] < 0)
2505 {
2506 uint64_t counter = 1;
2507 write (evpipe [1], &counter, sizeof (uint64_t));
2508 }
2509 else
2510#endif
2511 {
2512#ifdef _WIN32
2513 WSABUF buf;
2514 DWORD sent;
2515 buf.buf = (char *)&buf;
2516 buf.len = 1;
2517 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2518#else
2519 write (evpipe [1], &(evpipe [1]), 1);
2520#endif
2521 }
2522
2523 errno = old_errno;
2524 }
2525}
2526
2527/* called whenever the libev signal pipe */
2528/* got some events (signal, async) */
2529static void
2530pipecb (EV_P_ ev_io *iow, int revents)
2531{
2532 int i;
2533
2534 if (revents & EV_READ)
2535 {
2536#if EV_USE_EVENTFD
2537 if (evpipe [0] < 0)
2538 {
2539 uint64_t counter;
2540 read (evpipe [1], &counter, sizeof (uint64_t));
2541 }
2542 else
2543#endif
2544 {
2545 char dummy[4];
2546#ifdef _WIN32
2547 WSABUF buf;
2548 DWORD recvd;
2549 DWORD flags = 0;
2550 buf.buf = dummy;
2551 buf.len = sizeof (dummy);
2552 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2553#else
2554 read (evpipe [0], &dummy, sizeof (dummy));
2555#endif
2556 }
2557 }
2558
2559 pipe_write_skipped = 0;
2560
2561 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2562
2563#if EV_SIGNAL_ENABLE
2564 if (sig_pending)
2565 {
2566 sig_pending = 0;
2567
2568 ECB_MEMORY_FENCE;
2569
2570 for (i = EV_NSIG - 1; i--; )
2571 if (expect_false (signals [i].pending))
2572 ev_feed_signal_event (EV_A_ i + 1);
2573 }
2574#endif
2575
2576#if EV_ASYNC_ENABLE
2577 if (async_pending)
2578 {
2579 async_pending = 0;
2580
2581 ECB_MEMORY_FENCE;
2582
2583 for (i = asynccnt; i--; )
2584 if (asyncs [i]->sent)
2585 {
2586 asyncs [i]->sent = 0;
2587 ECB_MEMORY_FENCE_RELEASE;
2588 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2589 }
2590 }
2591#endif
2592}
2593
2594/*****************************************************************************/
2595
2596void
2597ev_feed_signal (int signum) EV_NOEXCEPT
2598{
2599#if EV_MULTIPLICITY
2600 EV_P;
2601 ECB_MEMORY_FENCE_ACQUIRE;
2602 EV_A = signals [signum - 1].loop;
2603
2604 if (!EV_A)
2605 return;
2606#endif
2607
2608 signals [signum - 1].pending = 1;
2609 evpipe_write (EV_A_ &sig_pending);
2610}
2611
2612static void
2613ev_sighandler (int signum)
2614{
2615#ifdef _WIN32
2616 signal (signum, ev_sighandler);
2617#endif
2618
2619 ev_feed_signal (signum);
2620}
2621
2622noinline
2623void
2624ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2625{
2626 WL w;
2627
2628 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2629 return;
2630
2631 --signum;
2632
2633#if EV_MULTIPLICITY
2634 /* it is permissible to try to feed a signal to the wrong loop */
2635 /* or, likely more useful, feeding a signal nobody is waiting for */
2636
2637 if (expect_false (signals [signum].loop != EV_A))
2638 return;
2639#endif
2640
2641 signals [signum].pending = 0;
2642 ECB_MEMORY_FENCE_RELEASE;
2643
2644 for (w = signals [signum].head; w; w = w->next)
2645 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2646}
2647
2648#if EV_USE_SIGNALFD
2649static void
2650sigfdcb (EV_P_ ev_io *iow, int revents)
2651{
2652 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2653
2654 for (;;)
2655 {
2656 ssize_t res = read (sigfd, si, sizeof (si));
2657
2658 /* not ISO-C, as res might be -1, but works with SuS */
2659 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2660 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2661
2662 if (res < (ssize_t)sizeof (si))
2663 break;
2664 }
2665}
2666#endif
2667
2668#endif
2669
2670/*****************************************************************************/
2671
2672#if EV_CHILD_ENABLE
805static WL childs [EV_PID_HASHSIZE]; 2673static WL childs [EV_PID_HASHSIZE];
806 2674
807#ifndef _WIN32
808
809static ev_signal childev; 2675static ev_signal childev;
810 2676
811void inline_speed 2677#ifndef WIFCONTINUED
2678# define WIFCONTINUED(status) 0
2679#endif
2680
2681/* handle a single child status event */
2682inline_speed void
812child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 2683child_reap (EV_P_ int chain, int pid, int status)
813{ 2684{
814 ev_child *w; 2685 ev_child *w;
2686 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
815 2687
816 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2688 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2689 {
817 if (w->pid == pid || !w->pid) 2690 if ((w->pid == pid || !w->pid)
2691 && (!traced || (w->flags & 1)))
818 { 2692 {
819 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 2693 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
820 w->rpid = pid; 2694 w->rpid = pid;
821 w->rstatus = status; 2695 w->rstatus = status;
822 ev_feed_event (EV_A_ (W)w, EV_CHILD); 2696 ev_feed_event (EV_A_ (W)w, EV_CHILD);
823 } 2697 }
2698 }
824} 2699}
825 2700
826#ifndef WCONTINUED 2701#ifndef WCONTINUED
827# define WCONTINUED 0 2702# define WCONTINUED 0
828#endif 2703#endif
829 2704
2705/* called on sigchld etc., calls waitpid */
830static void 2706static void
831childcb (EV_P_ ev_signal *sw, int revents) 2707childcb (EV_P_ ev_signal *sw, int revents)
832{ 2708{
833 int pid, status; 2709 int pid, status;
834 2710
837 if (!WCONTINUED 2713 if (!WCONTINUED
838 || errno != EINVAL 2714 || errno != EINVAL
839 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 2715 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
840 return; 2716 return;
841 2717
842 /* make sure we are called again until all childs have been reaped */ 2718 /* make sure we are called again until all children have been reaped */
843 /* we need to do it this way so that the callback gets called before we continue */ 2719 /* we need to do it this way so that the callback gets called before we continue */
844 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2720 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
845 2721
846 child_reap (EV_A_ sw, pid, pid, status); 2722 child_reap (EV_A_ pid, pid, status);
847 if (EV_PID_HASHSIZE > 1) 2723 if ((EV_PID_HASHSIZE) > 1)
848 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2724 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
849} 2725}
850 2726
851#endif 2727#endif
852 2728
853/*****************************************************************************/ 2729/*****************************************************************************/
854 2730
2731#if EV_USE_IOCP
2732# include "ev_iocp.c"
2733#endif
855#if EV_USE_PORT 2734#if EV_USE_PORT
856# include "ev_port.c" 2735# include "ev_port.c"
857#endif 2736#endif
858#if EV_USE_KQUEUE 2737#if EV_USE_KQUEUE
859# include "ev_kqueue.c" 2738# include "ev_kqueue.c"
860#endif 2739#endif
861#if EV_USE_EPOLL 2740#if EV_USE_EPOLL
862# include "ev_epoll.c" 2741# include "ev_epoll.c"
863#endif 2742#endif
2743#if EV_USE_LINUXAIO
2744# include "ev_linuxaio.c"
2745#endif
864#if EV_USE_POLL 2746#if EV_USE_POLL
865# include "ev_poll.c" 2747# include "ev_poll.c"
866#endif 2748#endif
867#if EV_USE_SELECT 2749#if EV_USE_SELECT
868# include "ev_select.c" 2750# include "ev_select.c"
869#endif 2751#endif
870 2752
871int 2753ecb_cold int
872ev_version_major (void) 2754ev_version_major (void) EV_NOEXCEPT
873{ 2755{
874 return EV_VERSION_MAJOR; 2756 return EV_VERSION_MAJOR;
875} 2757}
876 2758
877int 2759ecb_cold int
878ev_version_minor (void) 2760ev_version_minor (void) EV_NOEXCEPT
879{ 2761{
880 return EV_VERSION_MINOR; 2762 return EV_VERSION_MINOR;
881} 2763}
882 2764
883/* return true if we are running with elevated privileges and should ignore env variables */ 2765/* return true if we are running with elevated privileges and should ignore env variables */
884int inline_size 2766inline_size ecb_cold int
885enable_secure (void) 2767enable_secure (void)
886{ 2768{
887#ifdef _WIN32 2769#ifdef _WIN32
888 return 0; 2770 return 0;
889#else 2771#else
890 return getuid () != geteuid () 2772 return getuid () != geteuid ()
891 || getgid () != getegid (); 2773 || getgid () != getegid ();
892#endif 2774#endif
893} 2775}
894 2776
2777ecb_cold
895unsigned int 2778unsigned int
896ev_supported_backends (void) 2779ev_supported_backends (void) EV_NOEXCEPT
897{ 2780{
898 unsigned int flags = 0; 2781 unsigned int flags = 0;
899 2782
900 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2783 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
901 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2784 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
902 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL; 2785 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2786 if (EV_USE_LINUXAIO) flags |= EVBACKEND_LINUXAIO;
903 if (EV_USE_POLL ) flags |= EVBACKEND_POLL; 2787 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
904 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2788 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
905 2789
906 return flags; 2790 return flags;
907} 2791}
908 2792
2793ecb_cold
909unsigned int 2794unsigned int
910ev_recommended_backends (void) 2795ev_recommended_backends (void) EV_NOEXCEPT
911{ 2796{
912 unsigned int flags = ev_supported_backends (); 2797 unsigned int flags = ev_supported_backends ();
913 2798
914#ifndef __NetBSD__ 2799#ifndef __NetBSD__
915 /* kqueue is borked on everything but netbsd apparently */ 2800 /* kqueue is borked on everything but netbsd apparently */
916 /* it usually doesn't work correctly on anything but sockets and pipes */ 2801 /* it usually doesn't work correctly on anything but sockets and pipes */
917 flags &= ~EVBACKEND_KQUEUE; 2802 flags &= ~EVBACKEND_KQUEUE;
918#endif 2803#endif
919#ifdef __APPLE__ 2804#ifdef __APPLE__
920 // flags &= ~EVBACKEND_KQUEUE; for documentation 2805 /* only select works correctly on that "unix-certified" platform */
2806 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2807 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2808#endif
2809#ifdef __FreeBSD__
2810 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2811#endif
2812
2813 /* TODO: linuxaio is very experimental */
2814#if !EV_RECOMMEND_LINUXAIO
921 flags &= ~EVBACKEND_POLL; 2815 flags &= ~EVBACKEND_LINUXAIO;
922#endif 2816#endif
923 2817
924 return flags; 2818 return flags;
925} 2819}
926 2820
2821ecb_cold
927unsigned int 2822unsigned int
928ev_embeddable_backends (void) 2823ev_embeddable_backends (void) EV_NOEXCEPT
929{ 2824{
930 return EVBACKEND_EPOLL 2825 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
931 | EVBACKEND_KQUEUE 2826
932 | EVBACKEND_PORT; 2827 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2828 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2829 flags &= ~EVBACKEND_EPOLL;
2830
2831 return flags;
933} 2832}
934 2833
935unsigned int 2834unsigned int
936ev_backend (EV_P) 2835ev_backend (EV_P) EV_NOEXCEPT
937{ 2836{
938 return backend; 2837 return backend;
939} 2838}
940 2839
2840#if EV_FEATURE_API
941unsigned int 2841unsigned int
942ev_loop_count (EV_P) 2842ev_iteration (EV_P) EV_NOEXCEPT
943{ 2843{
944 return loop_count; 2844 return loop_count;
945} 2845}
946 2846
947static void noinline 2847unsigned int
2848ev_depth (EV_P) EV_NOEXCEPT
2849{
2850 return loop_depth;
2851}
2852
2853void
2854ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2855{
2856 io_blocktime = interval;
2857}
2858
2859void
2860ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2861{
2862 timeout_blocktime = interval;
2863}
2864
2865void
2866ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
2867{
2868 userdata = data;
2869}
2870
2871void *
2872ev_userdata (EV_P) EV_NOEXCEPT
2873{
2874 return userdata;
2875}
2876
2877void
2878ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
2879{
2880 invoke_cb = invoke_pending_cb;
2881}
2882
2883void
2884ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
2885{
2886 release_cb = release;
2887 acquire_cb = acquire;
2888}
2889#endif
2890
2891/* initialise a loop structure, must be zero-initialised */
2892noinline ecb_cold
2893static void
948loop_init (EV_P_ unsigned int flags) 2894loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
949{ 2895{
950 if (!backend) 2896 if (!backend)
951 { 2897 {
2898 origflags = flags;
2899
2900#if EV_USE_REALTIME
2901 if (!have_realtime)
2902 {
2903 struct timespec ts;
2904
2905 if (!clock_gettime (CLOCK_REALTIME, &ts))
2906 have_realtime = 1;
2907 }
2908#endif
2909
952#if EV_USE_MONOTONIC 2910#if EV_USE_MONOTONIC
2911 if (!have_monotonic)
953 { 2912 {
954 struct timespec ts; 2913 struct timespec ts;
2914
955 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2915 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
956 have_monotonic = 1; 2916 have_monotonic = 1;
957 } 2917 }
958#endif 2918#endif
959
960 ev_rt_now = ev_time ();
961 mn_now = get_clock ();
962 now_floor = mn_now;
963 rtmn_diff = ev_rt_now - mn_now;
964 2919
965 /* pid check not overridable via env */ 2920 /* pid check not overridable via env */
966#ifndef _WIN32 2921#ifndef _WIN32
967 if (flags & EVFLAG_FORKCHECK) 2922 if (flags & EVFLAG_FORKCHECK)
968 curpid = getpid (); 2923 curpid = getpid ();
971 if (!(flags & EVFLAG_NOENV) 2926 if (!(flags & EVFLAG_NOENV)
972 && !enable_secure () 2927 && !enable_secure ()
973 && getenv ("LIBEV_FLAGS")) 2928 && getenv ("LIBEV_FLAGS"))
974 flags = atoi (getenv ("LIBEV_FLAGS")); 2929 flags = atoi (getenv ("LIBEV_FLAGS"));
975 2930
976 if (!(flags & 0x0000ffffUL)) 2931 ev_rt_now = ev_time ();
2932 mn_now = get_clock ();
2933 now_floor = mn_now;
2934 rtmn_diff = ev_rt_now - mn_now;
2935#if EV_FEATURE_API
2936 invoke_cb = ev_invoke_pending;
2937#endif
2938
2939 io_blocktime = 0.;
2940 timeout_blocktime = 0.;
2941 backend = 0;
2942 backend_fd = -1;
2943 sig_pending = 0;
2944#if EV_ASYNC_ENABLE
2945 async_pending = 0;
2946#endif
2947 pipe_write_skipped = 0;
2948 pipe_write_wanted = 0;
2949 evpipe [0] = -1;
2950 evpipe [1] = -1;
2951#if EV_USE_INOTIFY
2952 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2953#endif
2954#if EV_USE_SIGNALFD
2955 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2956#endif
2957
2958 if (!(flags & EVBACKEND_MASK))
977 flags |= ev_recommended_backends (); 2959 flags |= ev_recommended_backends ();
978 2960
979 backend = 0;
980 backend_fd = -1;
981#if EV_USE_INOTIFY 2961#if EV_USE_IOCP
982 fs_fd = -2; 2962 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
983#endif 2963#endif
984
985#if EV_USE_PORT 2964#if EV_USE_PORT
986 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2965 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
987#endif 2966#endif
988#if EV_USE_KQUEUE 2967#if EV_USE_KQUEUE
989 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2968 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
2969#endif
2970#if EV_USE_LINUXAIO
2971 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
990#endif 2972#endif
991#if EV_USE_EPOLL 2973#if EV_USE_EPOLL
992 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags); 2974 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
993#endif 2975#endif
994#if EV_USE_POLL 2976#if EV_USE_POLL
995 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags); 2977 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
996#endif 2978#endif
997#if EV_USE_SELECT 2979#if EV_USE_SELECT
998 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2980 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
999#endif 2981#endif
1000 2982
2983 ev_prepare_init (&pending_w, pendingcb);
2984
2985#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1001 ev_init (&sigev, sigcb); 2986 ev_init (&pipe_w, pipecb);
1002 ev_set_priority (&sigev, EV_MAXPRI); 2987 ev_set_priority (&pipe_w, EV_MAXPRI);
2988#endif
1003 } 2989 }
1004} 2990}
1005 2991
1006static void noinline 2992/* free up a loop structure */
2993ecb_cold
2994void
1007loop_destroy (EV_P) 2995ev_loop_destroy (EV_P)
1008{ 2996{
1009 int i; 2997 int i;
2998
2999#if EV_MULTIPLICITY
3000 /* mimic free (0) */
3001 if (!EV_A)
3002 return;
3003#endif
3004
3005#if EV_CLEANUP_ENABLE
3006 /* queue cleanup watchers (and execute them) */
3007 if (expect_false (cleanupcnt))
3008 {
3009 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3010 EV_INVOKE_PENDING;
3011 }
3012#endif
3013
3014#if EV_CHILD_ENABLE
3015 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3016 {
3017 ev_ref (EV_A); /* child watcher */
3018 ev_signal_stop (EV_A_ &childev);
3019 }
3020#endif
3021
3022 if (ev_is_active (&pipe_w))
3023 {
3024 /*ev_ref (EV_A);*/
3025 /*ev_io_stop (EV_A_ &pipe_w);*/
3026
3027 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3028 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3029 }
3030
3031#if EV_USE_SIGNALFD
3032 if (ev_is_active (&sigfd_w))
3033 close (sigfd);
3034#endif
1010 3035
1011#if EV_USE_INOTIFY 3036#if EV_USE_INOTIFY
1012 if (fs_fd >= 0) 3037 if (fs_fd >= 0)
1013 close (fs_fd); 3038 close (fs_fd);
1014#endif 3039#endif
1015 3040
1016 if (backend_fd >= 0) 3041 if (backend_fd >= 0)
1017 close (backend_fd); 3042 close (backend_fd);
1018 3043
3044#if EV_USE_IOCP
3045 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3046#endif
1019#if EV_USE_PORT 3047#if EV_USE_PORT
1020 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 3048 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1021#endif 3049#endif
1022#if EV_USE_KQUEUE 3050#if EV_USE_KQUEUE
1023 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 3051 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3052#endif
3053#if EV_USE_LINUXAIO
3054 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
1024#endif 3055#endif
1025#if EV_USE_EPOLL 3056#if EV_USE_EPOLL
1026 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A); 3057 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1027#endif 3058#endif
1028#if EV_USE_POLL 3059#if EV_USE_POLL
1029 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A); 3060 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1030#endif 3061#endif
1031#if EV_USE_SELECT 3062#if EV_USE_SELECT
1032 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 3063 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
1033#endif 3064#endif
1034 3065
1035 for (i = NUMPRI; i--; ) 3066 for (i = NUMPRI; i--; )
1036 { 3067 {
1037 array_free (pending, [i]); 3068 array_free (pending, [i]);
1038#if EV_IDLE_ENABLE 3069#if EV_IDLE_ENABLE
1039 array_free (idle, [i]); 3070 array_free (idle, [i]);
1040#endif 3071#endif
1041 } 3072 }
1042 3073
1043 ev_free (anfds); anfdmax = 0; 3074 ev_free (anfds); anfds = 0; anfdmax = 0;
1044 3075
1045 /* have to use the microsoft-never-gets-it-right macro */ 3076 /* have to use the microsoft-never-gets-it-right macro */
3077 array_free (rfeed, EMPTY);
1046 array_free (fdchange, EMPTY); 3078 array_free (fdchange, EMPTY);
1047 array_free (timer, EMPTY); 3079 array_free (timer, EMPTY);
1048#if EV_PERIODIC_ENABLE 3080#if EV_PERIODIC_ENABLE
1049 array_free (periodic, EMPTY); 3081 array_free (periodic, EMPTY);
1050#endif 3082#endif
1051#if EV_FORK_ENABLE 3083#if EV_FORK_ENABLE
1052 array_free (fork, EMPTY); 3084 array_free (fork, EMPTY);
1053#endif 3085#endif
3086#if EV_CLEANUP_ENABLE
3087 array_free (cleanup, EMPTY);
3088#endif
1054 array_free (prepare, EMPTY); 3089 array_free (prepare, EMPTY);
1055 array_free (check, EMPTY); 3090 array_free (check, EMPTY);
3091#if EV_ASYNC_ENABLE
3092 array_free (async, EMPTY);
3093#endif
1056 3094
1057 backend = 0; 3095 backend = 0;
1058}
1059 3096
3097#if EV_MULTIPLICITY
3098 if (ev_is_default_loop (EV_A))
3099#endif
3100 ev_default_loop_ptr = 0;
3101#if EV_MULTIPLICITY
3102 else
3103 ev_free (EV_A);
3104#endif
3105}
3106
3107#if EV_USE_INOTIFY
1060void inline_size infy_fork (EV_P); 3108inline_size void infy_fork (EV_P);
3109#endif
1061 3110
1062void inline_size 3111inline_size void
1063loop_fork (EV_P) 3112loop_fork (EV_P)
1064{ 3113{
1065#if EV_USE_PORT 3114#if EV_USE_PORT
1066 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 3115 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1067#endif 3116#endif
1068#if EV_USE_KQUEUE 3117#if EV_USE_KQUEUE
1069 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 3118 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3119#endif
3120#if EV_USE_LINUXAIO
3121 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
1070#endif 3122#endif
1071#if EV_USE_EPOLL 3123#if EV_USE_EPOLL
1072 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 3124 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1073#endif 3125#endif
1074#if EV_USE_INOTIFY 3126#if EV_USE_INOTIFY
1075 infy_fork (EV_A); 3127 infy_fork (EV_A);
1076#endif 3128#endif
1077 3129
1078 if (ev_is_active (&sigev)) 3130#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3131 if (ev_is_active (&pipe_w) && postfork != 2)
1079 { 3132 {
1080 /* default loop */ 3133 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1081 3134
1082 ev_ref (EV_A); 3135 ev_ref (EV_A);
1083 ev_io_stop (EV_A_ &sigev); 3136 ev_io_stop (EV_A_ &pipe_w);
1084 close (sigpipe [0]);
1085 close (sigpipe [1]);
1086 3137
1087 while (pipe (sigpipe)) 3138 if (evpipe [0] >= 0)
1088 syserr ("(libev) error creating pipe"); 3139 EV_WIN32_CLOSE_FD (evpipe [0]);
1089 3140
1090 siginit (EV_A); 3141 evpipe_init (EV_A);
3142 /* iterate over everything, in case we missed something before */
3143 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1091 } 3144 }
3145#endif
1092 3146
1093 postfork = 0; 3147 postfork = 0;
1094} 3148}
1095 3149
1096#if EV_MULTIPLICITY 3150#if EV_MULTIPLICITY
3151
3152ecb_cold
1097struct ev_loop * 3153struct ev_loop *
1098ev_loop_new (unsigned int flags) 3154ev_loop_new (unsigned int flags) EV_NOEXCEPT
1099{ 3155{
1100 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 3156 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1101 3157
1102 memset (loop, 0, sizeof (struct ev_loop)); 3158 memset (EV_A, 0, sizeof (struct ev_loop));
1103
1104 loop_init (EV_A_ flags); 3159 loop_init (EV_A_ flags);
1105 3160
1106 if (ev_backend (EV_A)) 3161 if (ev_backend (EV_A))
1107 return loop; 3162 return EV_A;
1108 3163
3164 ev_free (EV_A);
1109 return 0; 3165 return 0;
1110} 3166}
1111 3167
1112void 3168#endif /* multiplicity */
1113ev_loop_destroy (EV_P)
1114{
1115 loop_destroy (EV_A);
1116 ev_free (loop);
1117}
1118 3169
1119void 3170#if EV_VERIFY
1120ev_loop_fork (EV_P) 3171noinline ecb_cold
3172static void
3173verify_watcher (EV_P_ W w)
1121{ 3174{
1122 postfork = 1; 3175 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1123}
1124 3176
3177 if (w->pending)
3178 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3179}
3180
3181noinline ecb_cold
3182static void
3183verify_heap (EV_P_ ANHE *heap, int N)
3184{
3185 int i;
3186
3187 for (i = HEAP0; i < N + HEAP0; ++i)
3188 {
3189 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3190 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3191 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3192
3193 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3194 }
3195}
3196
3197noinline ecb_cold
3198static void
3199array_verify (EV_P_ W *ws, int cnt)
3200{
3201 while (cnt--)
3202 {
3203 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3204 verify_watcher (EV_A_ ws [cnt]);
3205 }
3206}
3207#endif
3208
3209#if EV_FEATURE_API
3210void ecb_cold
3211ev_verify (EV_P) EV_NOEXCEPT
3212{
3213#if EV_VERIFY
3214 int i;
3215 WL w, w2;
3216
3217 assert (activecnt >= -1);
3218
3219 assert (fdchangemax >= fdchangecnt);
3220 for (i = 0; i < fdchangecnt; ++i)
3221 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3222
3223 assert (anfdmax >= 0);
3224 for (i = 0; i < anfdmax; ++i)
3225 {
3226 int j = 0;
3227
3228 for (w = w2 = anfds [i].head; w; w = w->next)
3229 {
3230 verify_watcher (EV_A_ (W)w);
3231
3232 if (j++ & 1)
3233 {
3234 assert (("libev: io watcher list contains a loop", w != w2));
3235 w2 = w2->next;
3236 }
3237
3238 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3239 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3240 }
3241 }
3242
3243 assert (timermax >= timercnt);
3244 verify_heap (EV_A_ timers, timercnt);
3245
3246#if EV_PERIODIC_ENABLE
3247 assert (periodicmax >= periodiccnt);
3248 verify_heap (EV_A_ periodics, periodiccnt);
3249#endif
3250
3251 for (i = NUMPRI; i--; )
3252 {
3253 assert (pendingmax [i] >= pendingcnt [i]);
3254#if EV_IDLE_ENABLE
3255 assert (idleall >= 0);
3256 assert (idlemax [i] >= idlecnt [i]);
3257 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3258#endif
3259 }
3260
3261#if EV_FORK_ENABLE
3262 assert (forkmax >= forkcnt);
3263 array_verify (EV_A_ (W *)forks, forkcnt);
3264#endif
3265
3266#if EV_CLEANUP_ENABLE
3267 assert (cleanupmax >= cleanupcnt);
3268 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3269#endif
3270
3271#if EV_ASYNC_ENABLE
3272 assert (asyncmax >= asynccnt);
3273 array_verify (EV_A_ (W *)asyncs, asynccnt);
3274#endif
3275
3276#if EV_PREPARE_ENABLE
3277 assert (preparemax >= preparecnt);
3278 array_verify (EV_A_ (W *)prepares, preparecnt);
3279#endif
3280
3281#if EV_CHECK_ENABLE
3282 assert (checkmax >= checkcnt);
3283 array_verify (EV_A_ (W *)checks, checkcnt);
3284#endif
3285
3286# if 0
3287#if EV_CHILD_ENABLE
3288 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3289 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3290#endif
3291# endif
3292#endif
3293}
1125#endif 3294#endif
1126 3295
1127#if EV_MULTIPLICITY 3296#if EV_MULTIPLICITY
3297ecb_cold
1128struct ev_loop * 3298struct ev_loop *
1129ev_default_loop_init (unsigned int flags)
1130#else 3299#else
1131int 3300int
3301#endif
1132ev_default_loop (unsigned int flags) 3302ev_default_loop (unsigned int flags) EV_NOEXCEPT
1133#endif
1134{ 3303{
1135 if (sigpipe [0] == sigpipe [1])
1136 if (pipe (sigpipe))
1137 return 0;
1138
1139 if (!ev_default_loop_ptr) 3304 if (!ev_default_loop_ptr)
1140 { 3305 {
1141#if EV_MULTIPLICITY 3306#if EV_MULTIPLICITY
1142 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3307 EV_P = ev_default_loop_ptr = &default_loop_struct;
1143#else 3308#else
1144 ev_default_loop_ptr = 1; 3309 ev_default_loop_ptr = 1;
1145#endif 3310#endif
1146 3311
1147 loop_init (EV_A_ flags); 3312 loop_init (EV_A_ flags);
1148 3313
1149 if (ev_backend (EV_A)) 3314 if (ev_backend (EV_A))
1150 { 3315 {
1151 siginit (EV_A); 3316#if EV_CHILD_ENABLE
1152
1153#ifndef _WIN32
1154 ev_signal_init (&childev, childcb, SIGCHLD); 3317 ev_signal_init (&childev, childcb, SIGCHLD);
1155 ev_set_priority (&childev, EV_MAXPRI); 3318 ev_set_priority (&childev, EV_MAXPRI);
1156 ev_signal_start (EV_A_ &childev); 3319 ev_signal_start (EV_A_ &childev);
1157 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3320 ev_unref (EV_A); /* child watcher should not keep loop alive */
1158#endif 3321#endif
1163 3326
1164 return ev_default_loop_ptr; 3327 return ev_default_loop_ptr;
1165} 3328}
1166 3329
1167void 3330void
1168ev_default_destroy (void) 3331ev_loop_fork (EV_P) EV_NOEXCEPT
1169{ 3332{
1170#if EV_MULTIPLICITY
1171 struct ev_loop *loop = ev_default_loop_ptr;
1172#endif
1173
1174#ifndef _WIN32
1175 ev_ref (EV_A); /* child watcher */
1176 ev_signal_stop (EV_A_ &childev);
1177#endif
1178
1179 ev_ref (EV_A); /* signal watcher */
1180 ev_io_stop (EV_A_ &sigev);
1181
1182 close (sigpipe [0]); sigpipe [0] = 0;
1183 close (sigpipe [1]); sigpipe [1] = 0;
1184
1185 loop_destroy (EV_A);
1186}
1187
1188void
1189ev_default_fork (void)
1190{
1191#if EV_MULTIPLICITY
1192 struct ev_loop *loop = ev_default_loop_ptr;
1193#endif
1194
1195 if (backend)
1196 postfork = 1; 3333 postfork = 1;
1197} 3334}
1198 3335
1199/*****************************************************************************/ 3336/*****************************************************************************/
1200 3337
1201void 3338void
1202ev_invoke (EV_P_ void *w, int revents) 3339ev_invoke (EV_P_ void *w, int revents)
1203{ 3340{
1204 EV_CB_INVOKE ((W)w, revents); 3341 EV_CB_INVOKE ((W)w, revents);
1205} 3342}
1206 3343
1207void inline_speed 3344unsigned int
1208call_pending (EV_P) 3345ev_pending_count (EV_P) EV_NOEXCEPT
1209{ 3346{
1210 int pri; 3347 int pri;
3348 unsigned int count = 0;
1211 3349
1212 for (pri = NUMPRI; pri--; ) 3350 for (pri = NUMPRI; pri--; )
3351 count += pendingcnt [pri];
3352
3353 return count;
3354}
3355
3356noinline
3357void
3358ev_invoke_pending (EV_P)
3359{
3360 pendingpri = NUMPRI;
3361
3362 do
3363 {
3364 --pendingpri;
3365
3366 /* pendingpri possibly gets modified in the inner loop */
1213 while (pendingcnt [pri]) 3367 while (pendingcnt [pendingpri])
1214 {
1215 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1216
1217 if (expect_true (p->w))
1218 {
1219 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1220
1221 p->w->pending = 0;
1222 EV_CB_INVOKE (p->w, p->events);
1223 }
1224 }
1225}
1226
1227void inline_size
1228timers_reify (EV_P)
1229{
1230 while (timercnt && ((WT)timers [0])->at <= mn_now)
1231 {
1232 ev_timer *w = (ev_timer *)timers [0];
1233
1234 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1235
1236 /* first reschedule or stop timer */
1237 if (w->repeat)
1238 { 3368 {
1239 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3369 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1240 3370
1241 ((WT)w)->at += w->repeat; 3371 p->w->pending = 0;
1242 if (((WT)w)->at < mn_now) 3372 EV_CB_INVOKE (p->w, p->events);
1243 ((WT)w)->at = mn_now; 3373 EV_FREQUENT_CHECK;
1244
1245 downheap (timers, timercnt, 0);
1246 } 3374 }
1247 else
1248 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1249
1250 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1251 }
1252}
1253
1254#if EV_PERIODIC_ENABLE
1255void inline_size
1256periodics_reify (EV_P)
1257{
1258 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1259 { 3375 }
1260 ev_periodic *w = (ev_periodic *)periodics [0]; 3376 while (pendingpri);
1261
1262 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1263
1264 /* first reschedule or stop timer */
1265 if (w->reschedule_cb)
1266 {
1267 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1268 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1269 downheap (periodics, periodiccnt, 0);
1270 }
1271 else if (w->interval)
1272 {
1273 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1274 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1275 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1276 downheap (periodics, periodiccnt, 0);
1277 }
1278 else
1279 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1280
1281 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1282 }
1283} 3377}
1284
1285static void noinline
1286periodics_reschedule (EV_P)
1287{
1288 int i;
1289
1290 /* adjust periodics after time jump */
1291 for (i = 0; i < periodiccnt; ++i)
1292 {
1293 ev_periodic *w = (ev_periodic *)periodics [i];
1294
1295 if (w->reschedule_cb)
1296 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1297 else if (w->interval)
1298 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1299 }
1300
1301 /* now rebuild the heap */
1302 for (i = periodiccnt >> 1; i--; )
1303 downheap (periodics, periodiccnt, i);
1304}
1305#endif
1306 3378
1307#if EV_IDLE_ENABLE 3379#if EV_IDLE_ENABLE
1308void inline_size 3380/* make idle watchers pending. this handles the "call-idle */
3381/* only when higher priorities are idle" logic */
3382inline_size void
1309idle_reify (EV_P) 3383idle_reify (EV_P)
1310{ 3384{
1311 if (expect_false (idleall)) 3385 if (expect_false (idleall))
1312 { 3386 {
1313 int pri; 3387 int pri;
1325 } 3399 }
1326 } 3400 }
1327} 3401}
1328#endif 3402#endif
1329 3403
1330void inline_speed 3404/* make timers pending */
3405inline_size void
3406timers_reify (EV_P)
3407{
3408 EV_FREQUENT_CHECK;
3409
3410 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3411 {
3412 do
3413 {
3414 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3415
3416 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3417
3418 /* first reschedule or stop timer */
3419 if (w->repeat)
3420 {
3421 ev_at (w) += w->repeat;
3422 if (ev_at (w) < mn_now)
3423 ev_at (w) = mn_now;
3424
3425 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3426
3427 ANHE_at_cache (timers [HEAP0]);
3428 downheap (timers, timercnt, HEAP0);
3429 }
3430 else
3431 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3432
3433 EV_FREQUENT_CHECK;
3434 feed_reverse (EV_A_ (W)w);
3435 }
3436 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3437
3438 feed_reverse_done (EV_A_ EV_TIMER);
3439 }
3440}
3441
3442#if EV_PERIODIC_ENABLE
3443
3444noinline
3445static void
3446periodic_recalc (EV_P_ ev_periodic *w)
3447{
3448 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3449 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3450
3451 /* the above almost always errs on the low side */
3452 while (at <= ev_rt_now)
3453 {
3454 ev_tstamp nat = at + w->interval;
3455
3456 /* when resolution fails us, we use ev_rt_now */
3457 if (expect_false (nat == at))
3458 {
3459 at = ev_rt_now;
3460 break;
3461 }
3462
3463 at = nat;
3464 }
3465
3466 ev_at (w) = at;
3467}
3468
3469/* make periodics pending */
3470inline_size void
3471periodics_reify (EV_P)
3472{
3473 EV_FREQUENT_CHECK;
3474
3475 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3476 {
3477 do
3478 {
3479 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3480
3481 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3482
3483 /* first reschedule or stop timer */
3484 if (w->reschedule_cb)
3485 {
3486 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3487
3488 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3489
3490 ANHE_at_cache (periodics [HEAP0]);
3491 downheap (periodics, periodiccnt, HEAP0);
3492 }
3493 else if (w->interval)
3494 {
3495 periodic_recalc (EV_A_ w);
3496 ANHE_at_cache (periodics [HEAP0]);
3497 downheap (periodics, periodiccnt, HEAP0);
3498 }
3499 else
3500 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3501
3502 EV_FREQUENT_CHECK;
3503 feed_reverse (EV_A_ (W)w);
3504 }
3505 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3506
3507 feed_reverse_done (EV_A_ EV_PERIODIC);
3508 }
3509}
3510
3511/* simply recalculate all periodics */
3512/* TODO: maybe ensure that at least one event happens when jumping forward? */
3513noinline ecb_cold
3514static void
3515periodics_reschedule (EV_P)
3516{
3517 int i;
3518
3519 /* adjust periodics after time jump */
3520 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3521 {
3522 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3523
3524 if (w->reschedule_cb)
3525 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3526 else if (w->interval)
3527 periodic_recalc (EV_A_ w);
3528
3529 ANHE_at_cache (periodics [i]);
3530 }
3531
3532 reheap (periodics, periodiccnt);
3533}
3534#endif
3535
3536/* adjust all timers by a given offset */
3537noinline ecb_cold
3538static void
3539timers_reschedule (EV_P_ ev_tstamp adjust)
3540{
3541 int i;
3542
3543 for (i = 0; i < timercnt; ++i)
3544 {
3545 ANHE *he = timers + i + HEAP0;
3546 ANHE_w (*he)->at += adjust;
3547 ANHE_at_cache (*he);
3548 }
3549}
3550
3551/* fetch new monotonic and realtime times from the kernel */
3552/* also detect if there was a timejump, and act accordingly */
3553inline_speed void
1331time_update (EV_P_ ev_tstamp max_block) 3554time_update (EV_P_ ev_tstamp max_block)
1332{ 3555{
1333 int i;
1334
1335#if EV_USE_MONOTONIC 3556#if EV_USE_MONOTONIC
1336 if (expect_true (have_monotonic)) 3557 if (expect_true (have_monotonic))
1337 { 3558 {
3559 int i;
1338 ev_tstamp odiff = rtmn_diff; 3560 ev_tstamp odiff = rtmn_diff;
1339 3561
1340 mn_now = get_clock (); 3562 mn_now = get_clock ();
1341 3563
1342 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3564 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1358 * doesn't hurt either as we only do this on time-jumps or 3580 * doesn't hurt either as we only do this on time-jumps or
1359 * in the unlikely event of having been preempted here. 3581 * in the unlikely event of having been preempted here.
1360 */ 3582 */
1361 for (i = 4; --i; ) 3583 for (i = 4; --i; )
1362 { 3584 {
3585 ev_tstamp diff;
1363 rtmn_diff = ev_rt_now - mn_now; 3586 rtmn_diff = ev_rt_now - mn_now;
1364 3587
1365 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 3588 diff = odiff - rtmn_diff;
3589
3590 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1366 return; /* all is well */ 3591 return; /* all is well */
1367 3592
1368 ev_rt_now = ev_time (); 3593 ev_rt_now = ev_time ();
1369 mn_now = get_clock (); 3594 mn_now = get_clock ();
1370 now_floor = mn_now; 3595 now_floor = mn_now;
1371 } 3596 }
1372 3597
3598 /* no timer adjustment, as the monotonic clock doesn't jump */
3599 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1373# if EV_PERIODIC_ENABLE 3600# if EV_PERIODIC_ENABLE
1374 periodics_reschedule (EV_A); 3601 periodics_reschedule (EV_A);
1375# endif 3602# endif
1376 /* no timer adjustment, as the monotonic clock doesn't jump */
1377 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1378 } 3603 }
1379 else 3604 else
1380#endif 3605#endif
1381 { 3606 {
1382 ev_rt_now = ev_time (); 3607 ev_rt_now = ev_time ();
1383 3608
1384 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3609 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1385 { 3610 {
3611 /* adjust timers. this is easy, as the offset is the same for all of them */
3612 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1386#if EV_PERIODIC_ENABLE 3613#if EV_PERIODIC_ENABLE
1387 periodics_reschedule (EV_A); 3614 periodics_reschedule (EV_A);
1388#endif 3615#endif
1389 /* adjust timers. this is easy, as the offset is the same for all of them */
1390 for (i = 0; i < timercnt; ++i)
1391 ((WT)timers [i])->at += ev_rt_now - mn_now;
1392 } 3616 }
1393 3617
1394 mn_now = ev_rt_now; 3618 mn_now = ev_rt_now;
1395 } 3619 }
1396} 3620}
1397 3621
1398void 3622int
1399ev_ref (EV_P)
1400{
1401 ++activecnt;
1402}
1403
1404void
1405ev_unref (EV_P)
1406{
1407 --activecnt;
1408}
1409
1410static int loop_done;
1411
1412void
1413ev_loop (EV_P_ int flags) 3623ev_run (EV_P_ int flags)
1414{ 3624{
1415 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 3625#if EV_FEATURE_API
1416 ? EVUNLOOP_ONE 3626 ++loop_depth;
1417 : EVUNLOOP_CANCEL; 3627#endif
1418 3628
3629 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3630
3631 loop_done = EVBREAK_CANCEL;
3632
1419 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3633 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1420 3634
1421 do 3635 do
1422 { 3636 {
3637#if EV_VERIFY >= 2
3638 ev_verify (EV_A);
3639#endif
3640
1423#ifndef _WIN32 3641#ifndef _WIN32
1424 if (expect_false (curpid)) /* penalise the forking check even more */ 3642 if (expect_false (curpid)) /* penalise the forking check even more */
1425 if (expect_false (getpid () != curpid)) 3643 if (expect_false (getpid () != curpid))
1426 { 3644 {
1427 curpid = getpid (); 3645 curpid = getpid ();
1433 /* we might have forked, so queue fork handlers */ 3651 /* we might have forked, so queue fork handlers */
1434 if (expect_false (postfork)) 3652 if (expect_false (postfork))
1435 if (forkcnt) 3653 if (forkcnt)
1436 { 3654 {
1437 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3655 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1438 call_pending (EV_A); 3656 EV_INVOKE_PENDING;
1439 } 3657 }
1440#endif 3658#endif
1441 3659
3660#if EV_PREPARE_ENABLE
1442 /* queue prepare watchers (and execute them) */ 3661 /* queue prepare watchers (and execute them) */
1443 if (expect_false (preparecnt)) 3662 if (expect_false (preparecnt))
1444 { 3663 {
1445 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3664 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1446 call_pending (EV_A); 3665 EV_INVOKE_PENDING;
1447 } 3666 }
3667#endif
1448 3668
1449 if (expect_false (!activecnt)) 3669 if (expect_false (loop_done))
1450 break; 3670 break;
1451 3671
1452 /* we might have forked, so reify kernel state if necessary */ 3672 /* we might have forked, so reify kernel state if necessary */
1453 if (expect_false (postfork)) 3673 if (expect_false (postfork))
1454 loop_fork (EV_A); 3674 loop_fork (EV_A);
1456 /* update fd-related kernel structures */ 3676 /* update fd-related kernel structures */
1457 fd_reify (EV_A); 3677 fd_reify (EV_A);
1458 3678
1459 /* calculate blocking time */ 3679 /* calculate blocking time */
1460 { 3680 {
1461 ev_tstamp block; 3681 ev_tstamp waittime = 0.;
3682 ev_tstamp sleeptime = 0.;
1462 3683
1463 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 3684 /* remember old timestamp for io_blocktime calculation */
1464 block = 0.; /* do not block at all */ 3685 ev_tstamp prev_mn_now = mn_now;
1465 else 3686
3687 /* update time to cancel out callback processing overhead */
3688 time_update (EV_A_ 1e100);
3689
3690 /* from now on, we want a pipe-wake-up */
3691 pipe_write_wanted = 1;
3692
3693 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3694
3695 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1466 { 3696 {
1467 /* update time to cancel out callback processing overhead */
1468 time_update (EV_A_ 1e100);
1469
1470 block = MAX_BLOCKTIME; 3697 waittime = MAX_BLOCKTIME;
1471 3698
1472 if (timercnt) 3699 if (timercnt)
1473 { 3700 {
1474 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 3701 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1475 if (block > to) block = to; 3702 if (waittime > to) waittime = to;
1476 } 3703 }
1477 3704
1478#if EV_PERIODIC_ENABLE 3705#if EV_PERIODIC_ENABLE
1479 if (periodiccnt) 3706 if (periodiccnt)
1480 { 3707 {
1481 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 3708 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1482 if (block > to) block = to; 3709 if (waittime > to) waittime = to;
1483 } 3710 }
1484#endif 3711#endif
1485 3712
3713 /* don't let timeouts decrease the waittime below timeout_blocktime */
3714 if (expect_false (waittime < timeout_blocktime))
3715 waittime = timeout_blocktime;
3716
3717 /* at this point, we NEED to wait, so we have to ensure */
3718 /* to pass a minimum nonzero value to the backend */
3719 if (expect_false (waittime < backend_mintime))
3720 waittime = backend_mintime;
3721
3722 /* extra check because io_blocktime is commonly 0 */
1486 if (expect_false (block < 0.)) block = 0.; 3723 if (expect_false (io_blocktime))
3724 {
3725 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3726
3727 if (sleeptime > waittime - backend_mintime)
3728 sleeptime = waittime - backend_mintime;
3729
3730 if (expect_true (sleeptime > 0.))
3731 {
3732 ev_sleep (sleeptime);
3733 waittime -= sleeptime;
3734 }
3735 }
1487 } 3736 }
1488 3737
3738#if EV_FEATURE_API
1489 ++loop_count; 3739 ++loop_count;
3740#endif
3741 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1490 backend_poll (EV_A_ block); 3742 backend_poll (EV_A_ waittime);
3743 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3744
3745 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3746
3747 ECB_MEMORY_FENCE_ACQUIRE;
3748 if (pipe_write_skipped)
3749 {
3750 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3751 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3752 }
3753
1491 3754
1492 /* update ev_rt_now, do magic */ 3755 /* update ev_rt_now, do magic */
1493 time_update (EV_A_ block); 3756 time_update (EV_A_ waittime + sleeptime);
1494 } 3757 }
1495 3758
1496 /* queue pending timers and reschedule them */ 3759 /* queue pending timers and reschedule them */
1497 timers_reify (EV_A); /* relative timers called last */ 3760 timers_reify (EV_A); /* relative timers called last */
1498#if EV_PERIODIC_ENABLE 3761#if EV_PERIODIC_ENABLE
1502#if EV_IDLE_ENABLE 3765#if EV_IDLE_ENABLE
1503 /* queue idle watchers unless other events are pending */ 3766 /* queue idle watchers unless other events are pending */
1504 idle_reify (EV_A); 3767 idle_reify (EV_A);
1505#endif 3768#endif
1506 3769
3770#if EV_CHECK_ENABLE
1507 /* queue check watchers, to be executed first */ 3771 /* queue check watchers, to be executed first */
1508 if (expect_false (checkcnt)) 3772 if (expect_false (checkcnt))
1509 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3773 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3774#endif
1510 3775
1511 call_pending (EV_A); 3776 EV_INVOKE_PENDING;
1512
1513 } 3777 }
1514 while (expect_true (activecnt && !loop_done)); 3778 while (expect_true (
3779 activecnt
3780 && !loop_done
3781 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3782 ));
1515 3783
1516 if (loop_done == EVUNLOOP_ONE) 3784 if (loop_done == EVBREAK_ONE)
1517 loop_done = EVUNLOOP_CANCEL; 3785 loop_done = EVBREAK_CANCEL;
1518}
1519 3786
3787#if EV_FEATURE_API
3788 --loop_depth;
3789#endif
3790
3791 return activecnt;
3792}
3793
1520void 3794void
1521ev_unloop (EV_P_ int how) 3795ev_break (EV_P_ int how) EV_NOEXCEPT
1522{ 3796{
1523 loop_done = how; 3797 loop_done = how;
1524} 3798}
1525 3799
3800void
3801ev_ref (EV_P) EV_NOEXCEPT
3802{
3803 ++activecnt;
3804}
3805
3806void
3807ev_unref (EV_P) EV_NOEXCEPT
3808{
3809 --activecnt;
3810}
3811
3812void
3813ev_now_update (EV_P) EV_NOEXCEPT
3814{
3815 time_update (EV_A_ 1e100);
3816}
3817
3818void
3819ev_suspend (EV_P) EV_NOEXCEPT
3820{
3821 ev_now_update (EV_A);
3822}
3823
3824void
3825ev_resume (EV_P) EV_NOEXCEPT
3826{
3827 ev_tstamp mn_prev = mn_now;
3828
3829 ev_now_update (EV_A);
3830 timers_reschedule (EV_A_ mn_now - mn_prev);
3831#if EV_PERIODIC_ENABLE
3832 /* TODO: really do this? */
3833 periodics_reschedule (EV_A);
3834#endif
3835}
3836
1526/*****************************************************************************/ 3837/*****************************************************************************/
3838/* singly-linked list management, used when the expected list length is short */
1527 3839
1528void inline_size 3840inline_size void
1529wlist_add (WL *head, WL elem) 3841wlist_add (WL *head, WL elem)
1530{ 3842{
1531 elem->next = *head; 3843 elem->next = *head;
1532 *head = elem; 3844 *head = elem;
1533} 3845}
1534 3846
1535void inline_size 3847inline_size void
1536wlist_del (WL *head, WL elem) 3848wlist_del (WL *head, WL elem)
1537{ 3849{
1538 while (*head) 3850 while (*head)
1539 { 3851 {
1540 if (*head == elem) 3852 if (expect_true (*head == elem))
1541 { 3853 {
1542 *head = elem->next; 3854 *head = elem->next;
1543 return; 3855 break;
1544 } 3856 }
1545 3857
1546 head = &(*head)->next; 3858 head = &(*head)->next;
1547 } 3859 }
1548} 3860}
1549 3861
1550void inline_speed 3862/* internal, faster, version of ev_clear_pending */
3863inline_speed void
1551clear_pending (EV_P_ W w) 3864clear_pending (EV_P_ W w)
1552{ 3865{
1553 if (w->pending) 3866 if (w->pending)
1554 { 3867 {
1555 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3868 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1556 w->pending = 0; 3869 w->pending = 0;
1557 } 3870 }
1558} 3871}
1559 3872
1560int 3873int
1561ev_clear_pending (EV_P_ void *w) 3874ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
1562{ 3875{
1563 W w_ = (W)w; 3876 W w_ = (W)w;
1564 int pending = w_->pending; 3877 int pending = w_->pending;
1565 3878
1566 if (expect_true (pending)) 3879 if (expect_true (pending))
1567 { 3880 {
1568 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3881 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3882 p->w = (W)&pending_w;
1569 w_->pending = 0; 3883 w_->pending = 0;
1570 p->w = 0;
1571 return p->events; 3884 return p->events;
1572 } 3885 }
1573 else 3886 else
1574 return 0; 3887 return 0;
1575} 3888}
1576 3889
1577void inline_size 3890inline_size void
1578pri_adjust (EV_P_ W w) 3891pri_adjust (EV_P_ W w)
1579{ 3892{
1580 int pri = w->priority; 3893 int pri = ev_priority (w);
1581 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3894 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1582 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3895 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1583 w->priority = pri; 3896 ev_set_priority (w, pri);
1584} 3897}
1585 3898
1586void inline_speed 3899inline_speed void
1587ev_start (EV_P_ W w, int active) 3900ev_start (EV_P_ W w, int active)
1588{ 3901{
1589 pri_adjust (EV_A_ w); 3902 pri_adjust (EV_A_ w);
1590 w->active = active; 3903 w->active = active;
1591 ev_ref (EV_A); 3904 ev_ref (EV_A);
1592} 3905}
1593 3906
1594void inline_size 3907inline_size void
1595ev_stop (EV_P_ W w) 3908ev_stop (EV_P_ W w)
1596{ 3909{
1597 ev_unref (EV_A); 3910 ev_unref (EV_A);
1598 w->active = 0; 3911 w->active = 0;
1599} 3912}
1600 3913
1601/*****************************************************************************/ 3914/*****************************************************************************/
1602 3915
1603void noinline 3916noinline
3917void
1604ev_io_start (EV_P_ ev_io *w) 3918ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
1605{ 3919{
1606 int fd = w->fd; 3920 int fd = w->fd;
1607 3921
1608 if (expect_false (ev_is_active (w))) 3922 if (expect_false (ev_is_active (w)))
1609 return; 3923 return;
1610 3924
1611 assert (("ev_io_start called with negative fd", fd >= 0)); 3925 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3926 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3927
3928#if EV_VERIFY >= 2
3929 assert (("libev: ev_io_start called on watcher with invalid fd", fd_valid (fd)));
3930#endif
3931 EV_FREQUENT_CHECK;
1612 3932
1613 ev_start (EV_A_ (W)w, 1); 3933 ev_start (EV_A_ (W)w, 1);
1614 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3934 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
1615 wlist_add (&anfds[fd].head, (WL)w); 3935 wlist_add (&anfds[fd].head, (WL)w);
1616 3936
3937 /* common bug, apparently */
3938 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3939
1617 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3940 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1618 w->events &= ~EV_IOFDSET; 3941 w->events &= ~EV__IOFDSET;
1619}
1620 3942
3943 EV_FREQUENT_CHECK;
3944}
3945
1621void noinline 3946noinline
3947void
1622ev_io_stop (EV_P_ ev_io *w) 3948ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
1623{ 3949{
1624 clear_pending (EV_A_ (W)w); 3950 clear_pending (EV_A_ (W)w);
1625 if (expect_false (!ev_is_active (w))) 3951 if (expect_false (!ev_is_active (w)))
1626 return; 3952 return;
1627 3953
1628 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3954 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3955
3956#if EV_VERIFY >= 2
3957 assert (("libev: ev_io_stop called on watcher with invalid fd", fd_valid (w->fd)));
3958#endif
3959 EV_FREQUENT_CHECK;
1629 3960
1630 wlist_del (&anfds[w->fd].head, (WL)w); 3961 wlist_del (&anfds[w->fd].head, (WL)w);
1631 ev_stop (EV_A_ (W)w); 3962 ev_stop (EV_A_ (W)w);
1632 3963
1633 fd_change (EV_A_ w->fd, 1); 3964 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1634}
1635 3965
3966 EV_FREQUENT_CHECK;
3967}
3968
1636void noinline 3969noinline
3970void
1637ev_timer_start (EV_P_ ev_timer *w) 3971ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
1638{ 3972{
1639 if (expect_false (ev_is_active (w))) 3973 if (expect_false (ev_is_active (w)))
1640 return; 3974 return;
1641 3975
1642 ((WT)w)->at += mn_now; 3976 ev_at (w) += mn_now;
1643 3977
1644 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3978 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1645 3979
3980 EV_FREQUENT_CHECK;
3981
3982 ++timercnt;
1646 ev_start (EV_A_ (W)w, ++timercnt); 3983 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1647 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 3984 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
1648 timers [timercnt - 1] = (WT)w; 3985 ANHE_w (timers [ev_active (w)]) = (WT)w;
1649 upheap (timers, timercnt - 1); 3986 ANHE_at_cache (timers [ev_active (w)]);
3987 upheap (timers, ev_active (w));
1650 3988
3989 EV_FREQUENT_CHECK;
3990
1651 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 3991 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1652} 3992}
1653 3993
1654void noinline 3994noinline
3995void
1655ev_timer_stop (EV_P_ ev_timer *w) 3996ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
1656{ 3997{
1657 clear_pending (EV_A_ (W)w); 3998 clear_pending (EV_A_ (W)w);
1658 if (expect_false (!ev_is_active (w))) 3999 if (expect_false (!ev_is_active (w)))
1659 return; 4000 return;
1660 4001
1661 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 4002 EV_FREQUENT_CHECK;
1662 4003
1663 { 4004 {
1664 int active = ((W)w)->active; 4005 int active = ev_active (w);
1665 4006
4007 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
4008
4009 --timercnt;
4010
1666 if (expect_true (--active < --timercnt)) 4011 if (expect_true (active < timercnt + HEAP0))
1667 { 4012 {
1668 timers [active] = timers [timercnt]; 4013 timers [active] = timers [timercnt + HEAP0];
1669 adjustheap (timers, timercnt, active); 4014 adjustheap (timers, timercnt, active);
1670 } 4015 }
1671 } 4016 }
1672 4017
1673 ((WT)w)->at -= mn_now; 4018 ev_at (w) -= mn_now;
1674 4019
1675 ev_stop (EV_A_ (W)w); 4020 ev_stop (EV_A_ (W)w);
1676}
1677 4021
4022 EV_FREQUENT_CHECK;
4023}
4024
1678void noinline 4025noinline
4026void
1679ev_timer_again (EV_P_ ev_timer *w) 4027ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
1680{ 4028{
4029 EV_FREQUENT_CHECK;
4030
4031 clear_pending (EV_A_ (W)w);
4032
1681 if (ev_is_active (w)) 4033 if (ev_is_active (w))
1682 { 4034 {
1683 if (w->repeat) 4035 if (w->repeat)
1684 { 4036 {
1685 ((WT)w)->at = mn_now + w->repeat; 4037 ev_at (w) = mn_now + w->repeat;
4038 ANHE_at_cache (timers [ev_active (w)]);
1686 adjustheap (timers, timercnt, ((W)w)->active - 1); 4039 adjustheap (timers, timercnt, ev_active (w));
1687 } 4040 }
1688 else 4041 else
1689 ev_timer_stop (EV_A_ w); 4042 ev_timer_stop (EV_A_ w);
1690 } 4043 }
1691 else if (w->repeat) 4044 else if (w->repeat)
1692 { 4045 {
1693 w->at = w->repeat; 4046 ev_at (w) = w->repeat;
1694 ev_timer_start (EV_A_ w); 4047 ev_timer_start (EV_A_ w);
1695 } 4048 }
4049
4050 EV_FREQUENT_CHECK;
4051}
4052
4053ev_tstamp
4054ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4055{
4056 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1696} 4057}
1697 4058
1698#if EV_PERIODIC_ENABLE 4059#if EV_PERIODIC_ENABLE
1699void noinline 4060noinline
4061void
1700ev_periodic_start (EV_P_ ev_periodic *w) 4062ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
1701{ 4063{
1702 if (expect_false (ev_is_active (w))) 4064 if (expect_false (ev_is_active (w)))
1703 return; 4065 return;
1704 4066
1705 if (w->reschedule_cb) 4067 if (w->reschedule_cb)
1706 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 4068 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1707 else if (w->interval) 4069 else if (w->interval)
1708 { 4070 {
1709 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 4071 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1710 /* this formula differs from the one in periodic_reify because we do not always round up */ 4072 periodic_recalc (EV_A_ w);
1711 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1712 } 4073 }
1713 else 4074 else
1714 ((WT)w)->at = w->offset; 4075 ev_at (w) = w->offset;
1715 4076
4077 EV_FREQUENT_CHECK;
4078
4079 ++periodiccnt;
1716 ev_start (EV_A_ (W)w, ++periodiccnt); 4080 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1717 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 4081 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
1718 periodics [periodiccnt - 1] = (WT)w; 4082 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1719 upheap (periodics, periodiccnt - 1); 4083 ANHE_at_cache (periodics [ev_active (w)]);
4084 upheap (periodics, ev_active (w));
1720 4085
4086 EV_FREQUENT_CHECK;
4087
1721 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 4088 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1722} 4089}
1723 4090
1724void noinline 4091noinline
4092void
1725ev_periodic_stop (EV_P_ ev_periodic *w) 4093ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
1726{ 4094{
1727 clear_pending (EV_A_ (W)w); 4095 clear_pending (EV_A_ (W)w);
1728 if (expect_false (!ev_is_active (w))) 4096 if (expect_false (!ev_is_active (w)))
1729 return; 4097 return;
1730 4098
1731 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 4099 EV_FREQUENT_CHECK;
1732 4100
1733 { 4101 {
1734 int active = ((W)w)->active; 4102 int active = ev_active (w);
1735 4103
4104 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
4105
4106 --periodiccnt;
4107
1736 if (expect_true (--active < --periodiccnt)) 4108 if (expect_true (active < periodiccnt + HEAP0))
1737 { 4109 {
1738 periodics [active] = periodics [periodiccnt]; 4110 periodics [active] = periodics [periodiccnt + HEAP0];
1739 adjustheap (periodics, periodiccnt, active); 4111 adjustheap (periodics, periodiccnt, active);
1740 } 4112 }
1741 } 4113 }
1742 4114
1743 ev_stop (EV_A_ (W)w); 4115 ev_stop (EV_A_ (W)w);
1744}
1745 4116
4117 EV_FREQUENT_CHECK;
4118}
4119
1746void noinline 4120noinline
4121void
1747ev_periodic_again (EV_P_ ev_periodic *w) 4122ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
1748{ 4123{
1749 /* TODO: use adjustheap and recalculation */ 4124 /* TODO: use adjustheap and recalculation */
1750 ev_periodic_stop (EV_A_ w); 4125 ev_periodic_stop (EV_A_ w);
1751 ev_periodic_start (EV_A_ w); 4126 ev_periodic_start (EV_A_ w);
1752} 4127}
1754 4129
1755#ifndef SA_RESTART 4130#ifndef SA_RESTART
1756# define SA_RESTART 0 4131# define SA_RESTART 0
1757#endif 4132#endif
1758 4133
4134#if EV_SIGNAL_ENABLE
4135
1759void noinline 4136noinline
4137void
1760ev_signal_start (EV_P_ ev_signal *w) 4138ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
1761{ 4139{
1762#if EV_MULTIPLICITY
1763 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1764#endif
1765 if (expect_false (ev_is_active (w))) 4140 if (expect_false (ev_is_active (w)))
1766 return; 4141 return;
1767 4142
1768 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 4143 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1769 4144
4145#if EV_MULTIPLICITY
4146 assert (("libev: a signal must not be attached to two different loops",
4147 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4148
4149 signals [w->signum - 1].loop = EV_A;
4150 ECB_MEMORY_FENCE_RELEASE;
4151#endif
4152
4153 EV_FREQUENT_CHECK;
4154
4155#if EV_USE_SIGNALFD
4156 if (sigfd == -2)
1770 { 4157 {
1771#ifndef _WIN32 4158 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1772 sigset_t full, prev; 4159 if (sigfd < 0 && errno == EINVAL)
1773 sigfillset (&full); 4160 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1774 sigprocmask (SIG_SETMASK, &full, &prev);
1775#endif
1776 4161
1777 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 4162 if (sigfd >= 0)
4163 {
4164 fd_intern (sigfd); /* doing it twice will not hurt */
1778 4165
1779#ifndef _WIN32 4166 sigemptyset (&sigfd_set);
1780 sigprocmask (SIG_SETMASK, &prev, 0); 4167
1781#endif 4168 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4169 ev_set_priority (&sigfd_w, EV_MAXPRI);
4170 ev_io_start (EV_A_ &sigfd_w);
4171 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4172 }
1782 } 4173 }
4174
4175 if (sigfd >= 0)
4176 {
4177 /* TODO: check .head */
4178 sigaddset (&sigfd_set, w->signum);
4179 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4180
4181 signalfd (sigfd, &sigfd_set, 0);
4182 }
4183#endif
1783 4184
1784 ev_start (EV_A_ (W)w, 1); 4185 ev_start (EV_A_ (W)w, 1);
1785 wlist_add (&signals [w->signum - 1].head, (WL)w); 4186 wlist_add (&signals [w->signum - 1].head, (WL)w);
1786 4187
1787 if (!((WL)w)->next) 4188 if (!((WL)w)->next)
4189# if EV_USE_SIGNALFD
4190 if (sigfd < 0) /*TODO*/
4191# endif
1788 { 4192 {
1789#if _WIN32 4193# ifdef _WIN32
4194 evpipe_init (EV_A);
4195
1790 signal (w->signum, sighandler); 4196 signal (w->signum, ev_sighandler);
1791#else 4197# else
1792 struct sigaction sa; 4198 struct sigaction sa;
4199
4200 evpipe_init (EV_A);
4201
1793 sa.sa_handler = sighandler; 4202 sa.sa_handler = ev_sighandler;
1794 sigfillset (&sa.sa_mask); 4203 sigfillset (&sa.sa_mask);
1795 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 4204 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1796 sigaction (w->signum, &sa, 0); 4205 sigaction (w->signum, &sa, 0);
4206
4207 if (origflags & EVFLAG_NOSIGMASK)
4208 {
4209 sigemptyset (&sa.sa_mask);
4210 sigaddset (&sa.sa_mask, w->signum);
4211 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4212 }
1797#endif 4213#endif
1798 } 4214 }
1799}
1800 4215
4216 EV_FREQUENT_CHECK;
4217}
4218
1801void noinline 4219noinline
4220void
1802ev_signal_stop (EV_P_ ev_signal *w) 4221ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
1803{ 4222{
1804 clear_pending (EV_A_ (W)w); 4223 clear_pending (EV_A_ (W)w);
1805 if (expect_false (!ev_is_active (w))) 4224 if (expect_false (!ev_is_active (w)))
1806 return; 4225 return;
1807 4226
4227 EV_FREQUENT_CHECK;
4228
1808 wlist_del (&signals [w->signum - 1].head, (WL)w); 4229 wlist_del (&signals [w->signum - 1].head, (WL)w);
1809 ev_stop (EV_A_ (W)w); 4230 ev_stop (EV_A_ (W)w);
1810 4231
1811 if (!signals [w->signum - 1].head) 4232 if (!signals [w->signum - 1].head)
1812 signal (w->signum, SIG_DFL); 4233 {
1813}
1814
1815void
1816ev_child_start (EV_P_ ev_child *w)
1817{
1818#if EV_MULTIPLICITY 4234#if EV_MULTIPLICITY
4235 signals [w->signum - 1].loop = 0; /* unattach from signal */
4236#endif
4237#if EV_USE_SIGNALFD
4238 if (sigfd >= 0)
4239 {
4240 sigset_t ss;
4241
4242 sigemptyset (&ss);
4243 sigaddset (&ss, w->signum);
4244 sigdelset (&sigfd_set, w->signum);
4245
4246 signalfd (sigfd, &sigfd_set, 0);
4247 sigprocmask (SIG_UNBLOCK, &ss, 0);
4248 }
4249 else
4250#endif
4251 signal (w->signum, SIG_DFL);
4252 }
4253
4254 EV_FREQUENT_CHECK;
4255}
4256
4257#endif
4258
4259#if EV_CHILD_ENABLE
4260
4261void
4262ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4263{
4264#if EV_MULTIPLICITY
1819 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4265 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1820#endif 4266#endif
1821 if (expect_false (ev_is_active (w))) 4267 if (expect_false (ev_is_active (w)))
1822 return; 4268 return;
1823 4269
4270 EV_FREQUENT_CHECK;
4271
1824 ev_start (EV_A_ (W)w, 1); 4272 ev_start (EV_A_ (W)w, 1);
1825 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4273 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1826}
1827 4274
4275 EV_FREQUENT_CHECK;
4276}
4277
1828void 4278void
1829ev_child_stop (EV_P_ ev_child *w) 4279ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
1830{ 4280{
1831 clear_pending (EV_A_ (W)w); 4281 clear_pending (EV_A_ (W)w);
1832 if (expect_false (!ev_is_active (w))) 4282 if (expect_false (!ev_is_active (w)))
1833 return; 4283 return;
1834 4284
4285 EV_FREQUENT_CHECK;
4286
1835 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4287 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1836 ev_stop (EV_A_ (W)w); 4288 ev_stop (EV_A_ (W)w);
4289
4290 EV_FREQUENT_CHECK;
1837} 4291}
4292
4293#endif
1838 4294
1839#if EV_STAT_ENABLE 4295#if EV_STAT_ENABLE
1840 4296
1841# ifdef _WIN32 4297# ifdef _WIN32
1842# undef lstat 4298# undef lstat
1843# define lstat(a,b) _stati64 (a,b) 4299# define lstat(a,b) _stati64 (a,b)
1844# endif 4300# endif
1845 4301
1846#define DEF_STAT_INTERVAL 5.0074891 4302#define DEF_STAT_INTERVAL 5.0074891
4303#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1847#define MIN_STAT_INTERVAL 0.1074891 4304#define MIN_STAT_INTERVAL 0.1074891
1848 4305
1849static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 4306noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1850 4307
1851#if EV_USE_INOTIFY 4308#if EV_USE_INOTIFY
1852# define EV_INOTIFY_BUFSIZE 8192
1853 4309
1854static void noinline 4310/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4311# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4312
4313noinline
4314static void
1855infy_add (EV_P_ ev_stat *w) 4315infy_add (EV_P_ ev_stat *w)
1856{ 4316{
1857 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 4317 w->wd = inotify_add_watch (fs_fd, w->path,
4318 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4319 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4320 | IN_DONT_FOLLOW | IN_MASK_ADD);
1858 4321
1859 if (w->wd < 0) 4322 if (w->wd >= 0)
4323 {
4324 struct statfs sfs;
4325
4326 /* now local changes will be tracked by inotify, but remote changes won't */
4327 /* unless the filesystem is known to be local, we therefore still poll */
4328 /* also do poll on <2.6.25, but with normal frequency */
4329
4330 if (!fs_2625)
4331 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4332 else if (!statfs (w->path, &sfs)
4333 && (sfs.f_type == 0x1373 /* devfs */
4334 || sfs.f_type == 0x4006 /* fat */
4335 || sfs.f_type == 0x4d44 /* msdos */
4336 || sfs.f_type == 0xEF53 /* ext2/3 */
4337 || sfs.f_type == 0x72b6 /* jffs2 */
4338 || sfs.f_type == 0x858458f6 /* ramfs */
4339 || sfs.f_type == 0x5346544e /* ntfs */
4340 || sfs.f_type == 0x3153464a /* jfs */
4341 || sfs.f_type == 0x9123683e /* btrfs */
4342 || sfs.f_type == 0x52654973 /* reiser3 */
4343 || sfs.f_type == 0x01021994 /* tmpfs */
4344 || sfs.f_type == 0x58465342 /* xfs */))
4345 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4346 else
4347 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1860 { 4348 }
1861 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 4349 else
4350 {
4351 /* can't use inotify, continue to stat */
4352 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1862 4353
1863 /* monitor some parent directory for speedup hints */ 4354 /* if path is not there, monitor some parent directory for speedup hints */
4355 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4356 /* but an efficiency issue only */
1864 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4357 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1865 { 4358 {
1866 char path [4096]; 4359 char path [4096];
1867 strcpy (path, w->path); 4360 strcpy (path, w->path);
1868 4361
1871 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 4364 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1872 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 4365 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1873 4366
1874 char *pend = strrchr (path, '/'); 4367 char *pend = strrchr (path, '/');
1875 4368
1876 if (!pend) 4369 if (!pend || pend == path)
1877 break; /* whoops, no '/', complain to your admin */ 4370 break;
1878 4371
1879 *pend = 0; 4372 *pend = 0;
1880 w->wd = inotify_add_watch (fs_fd, path, mask); 4373 w->wd = inotify_add_watch (fs_fd, path, mask);
1881 } 4374 }
1882 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4375 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1883 } 4376 }
1884 } 4377 }
1885 else
1886 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1887 4378
1888 if (w->wd >= 0) 4379 if (w->wd >= 0)
1889 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4380 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
1890}
1891 4381
1892static void noinline 4382 /* now re-arm timer, if required */
4383 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4384 ev_timer_again (EV_A_ &w->timer);
4385 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4386}
4387
4388noinline
4389static void
1893infy_del (EV_P_ ev_stat *w) 4390infy_del (EV_P_ ev_stat *w)
1894{ 4391{
1895 int slot; 4392 int slot;
1896 int wd = w->wd; 4393 int wd = w->wd;
1897 4394
1898 if (wd < 0) 4395 if (wd < 0)
1899 return; 4396 return;
1900 4397
1901 w->wd = -2; 4398 w->wd = -2;
1902 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4399 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1903 wlist_del (&fs_hash [slot].head, (WL)w); 4400 wlist_del (&fs_hash [slot].head, (WL)w);
1904 4401
1905 /* remove this watcher, if others are watching it, they will rearm */ 4402 /* remove this watcher, if others are watching it, they will rearm */
1906 inotify_rm_watch (fs_fd, wd); 4403 inotify_rm_watch (fs_fd, wd);
1907} 4404}
1908 4405
1909static void noinline 4406noinline
4407static void
1910infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4408infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1911{ 4409{
1912 if (slot < 0) 4410 if (slot < 0)
1913 /* overflow, need to check for all hahs slots */ 4411 /* overflow, need to check for all hash slots */
1914 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4412 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1915 infy_wd (EV_A_ slot, wd, ev); 4413 infy_wd (EV_A_ slot, wd, ev);
1916 else 4414 else
1917 { 4415 {
1918 WL w_; 4416 WL w_;
1919 4417
1920 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4418 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
1921 { 4419 {
1922 ev_stat *w = (ev_stat *)w_; 4420 ev_stat *w = (ev_stat *)w_;
1923 w_ = w_->next; /* lets us remove this watcher and all before it */ 4421 w_ = w_->next; /* lets us remove this watcher and all before it */
1924 4422
1925 if (w->wd == wd || wd == -1) 4423 if (w->wd == wd || wd == -1)
1926 { 4424 {
1927 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4425 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1928 { 4426 {
4427 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
1929 w->wd = -1; 4428 w->wd = -1;
1930 infy_add (EV_A_ w); /* re-add, no matter what */ 4429 infy_add (EV_A_ w); /* re-add, no matter what */
1931 } 4430 }
1932 4431
1933 stat_timer_cb (EV_A_ &w->timer, 0); 4432 stat_timer_cb (EV_A_ &w->timer, 0);
1938 4437
1939static void 4438static void
1940infy_cb (EV_P_ ev_io *w, int revents) 4439infy_cb (EV_P_ ev_io *w, int revents)
1941{ 4440{
1942 char buf [EV_INOTIFY_BUFSIZE]; 4441 char buf [EV_INOTIFY_BUFSIZE];
1943 struct inotify_event *ev = (struct inotify_event *)buf;
1944 int ofs; 4442 int ofs;
1945 int len = read (fs_fd, buf, sizeof (buf)); 4443 int len = read (fs_fd, buf, sizeof (buf));
1946 4444
1947 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4445 for (ofs = 0; ofs < len; )
4446 {
4447 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
1948 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4448 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4449 ofs += sizeof (struct inotify_event) + ev->len;
4450 }
1949} 4451}
1950 4452
1951void inline_size 4453inline_size ecb_cold
4454void
4455ev_check_2625 (EV_P)
4456{
4457 /* kernels < 2.6.25 are borked
4458 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4459 */
4460 if (ev_linux_version () < 0x020619)
4461 return;
4462
4463 fs_2625 = 1;
4464}
4465
4466inline_size int
4467infy_newfd (void)
4468{
4469#if defined IN_CLOEXEC && defined IN_NONBLOCK
4470 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4471 if (fd >= 0)
4472 return fd;
4473#endif
4474 return inotify_init ();
4475}
4476
4477inline_size void
1952infy_init (EV_P) 4478infy_init (EV_P)
1953{ 4479{
1954 if (fs_fd != -2) 4480 if (fs_fd != -2)
1955 return; 4481 return;
1956 4482
4483 fs_fd = -1;
4484
4485 ev_check_2625 (EV_A);
4486
1957 fs_fd = inotify_init (); 4487 fs_fd = infy_newfd ();
1958 4488
1959 if (fs_fd >= 0) 4489 if (fs_fd >= 0)
1960 { 4490 {
4491 fd_intern (fs_fd);
1961 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4492 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1962 ev_set_priority (&fs_w, EV_MAXPRI); 4493 ev_set_priority (&fs_w, EV_MAXPRI);
1963 ev_io_start (EV_A_ &fs_w); 4494 ev_io_start (EV_A_ &fs_w);
4495 ev_unref (EV_A);
1964 } 4496 }
1965} 4497}
1966 4498
1967void inline_size 4499inline_size void
1968infy_fork (EV_P) 4500infy_fork (EV_P)
1969{ 4501{
1970 int slot; 4502 int slot;
1971 4503
1972 if (fs_fd < 0) 4504 if (fs_fd < 0)
1973 return; 4505 return;
1974 4506
4507 ev_ref (EV_A);
4508 ev_io_stop (EV_A_ &fs_w);
1975 close (fs_fd); 4509 close (fs_fd);
1976 fs_fd = inotify_init (); 4510 fs_fd = infy_newfd ();
1977 4511
4512 if (fs_fd >= 0)
4513 {
4514 fd_intern (fs_fd);
4515 ev_io_set (&fs_w, fs_fd, EV_READ);
4516 ev_io_start (EV_A_ &fs_w);
4517 ev_unref (EV_A);
4518 }
4519
1978 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4520 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1979 { 4521 {
1980 WL w_ = fs_hash [slot].head; 4522 WL w_ = fs_hash [slot].head;
1981 fs_hash [slot].head = 0; 4523 fs_hash [slot].head = 0;
1982 4524
1983 while (w_) 4525 while (w_)
1988 w->wd = -1; 4530 w->wd = -1;
1989 4531
1990 if (fs_fd >= 0) 4532 if (fs_fd >= 0)
1991 infy_add (EV_A_ w); /* re-add, no matter what */ 4533 infy_add (EV_A_ w); /* re-add, no matter what */
1992 else 4534 else
4535 {
4536 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4537 if (ev_is_active (&w->timer)) ev_ref (EV_A);
1993 ev_timer_start (EV_A_ &w->timer); 4538 ev_timer_again (EV_A_ &w->timer);
4539 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4540 }
1994 } 4541 }
1995
1996 } 4542 }
1997} 4543}
1998 4544
1999#endif 4545#endif
2000 4546
4547#ifdef _WIN32
4548# define EV_LSTAT(p,b) _stati64 (p, b)
4549#else
4550# define EV_LSTAT(p,b) lstat (p, b)
4551#endif
4552
2001void 4553void
2002ev_stat_stat (EV_P_ ev_stat *w) 4554ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
2003{ 4555{
2004 if (lstat (w->path, &w->attr) < 0) 4556 if (lstat (w->path, &w->attr) < 0)
2005 w->attr.st_nlink = 0; 4557 w->attr.st_nlink = 0;
2006 else if (!w->attr.st_nlink) 4558 else if (!w->attr.st_nlink)
2007 w->attr.st_nlink = 1; 4559 w->attr.st_nlink = 1;
2008} 4560}
2009 4561
2010static void noinline 4562noinline
4563static void
2011stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4564stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2012{ 4565{
2013 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4566 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2014 4567
2015 /* we copy this here each the time so that */ 4568 ev_statdata prev = w->attr;
2016 /* prev has the old value when the callback gets invoked */
2017 w->prev = w->attr;
2018 ev_stat_stat (EV_A_ w); 4569 ev_stat_stat (EV_A_ w);
2019 4570
2020 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4571 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2021 if ( 4572 if (
2022 w->prev.st_dev != w->attr.st_dev 4573 prev.st_dev != w->attr.st_dev
2023 || w->prev.st_ino != w->attr.st_ino 4574 || prev.st_ino != w->attr.st_ino
2024 || w->prev.st_mode != w->attr.st_mode 4575 || prev.st_mode != w->attr.st_mode
2025 || w->prev.st_nlink != w->attr.st_nlink 4576 || prev.st_nlink != w->attr.st_nlink
2026 || w->prev.st_uid != w->attr.st_uid 4577 || prev.st_uid != w->attr.st_uid
2027 || w->prev.st_gid != w->attr.st_gid 4578 || prev.st_gid != w->attr.st_gid
2028 || w->prev.st_rdev != w->attr.st_rdev 4579 || prev.st_rdev != w->attr.st_rdev
2029 || w->prev.st_size != w->attr.st_size 4580 || prev.st_size != w->attr.st_size
2030 || w->prev.st_atime != w->attr.st_atime 4581 || prev.st_atime != w->attr.st_atime
2031 || w->prev.st_mtime != w->attr.st_mtime 4582 || prev.st_mtime != w->attr.st_mtime
2032 || w->prev.st_ctime != w->attr.st_ctime 4583 || prev.st_ctime != w->attr.st_ctime
2033 ) { 4584 ) {
4585 /* we only update w->prev on actual differences */
4586 /* in case we test more often than invoke the callback, */
4587 /* to ensure that prev is always different to attr */
4588 w->prev = prev;
4589
2034 #if EV_USE_INOTIFY 4590 #if EV_USE_INOTIFY
4591 if (fs_fd >= 0)
4592 {
2035 infy_del (EV_A_ w); 4593 infy_del (EV_A_ w);
2036 infy_add (EV_A_ w); 4594 infy_add (EV_A_ w);
2037 ev_stat_stat (EV_A_ w); /* avoid race... */ 4595 ev_stat_stat (EV_A_ w); /* avoid race... */
4596 }
2038 #endif 4597 #endif
2039 4598
2040 ev_feed_event (EV_A_ w, EV_STAT); 4599 ev_feed_event (EV_A_ w, EV_STAT);
2041 } 4600 }
2042} 4601}
2043 4602
2044void 4603void
2045ev_stat_start (EV_P_ ev_stat *w) 4604ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
2046{ 4605{
2047 if (expect_false (ev_is_active (w))) 4606 if (expect_false (ev_is_active (w)))
2048 return; 4607 return;
2049 4608
2050 /* since we use memcmp, we need to clear any padding data etc. */
2051 memset (&w->prev, 0, sizeof (ev_statdata));
2052 memset (&w->attr, 0, sizeof (ev_statdata));
2053
2054 ev_stat_stat (EV_A_ w); 4609 ev_stat_stat (EV_A_ w);
2055 4610
4611 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2056 if (w->interval < MIN_STAT_INTERVAL) 4612 w->interval = MIN_STAT_INTERVAL;
2057 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2058 4613
2059 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4614 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2060 ev_set_priority (&w->timer, ev_priority (w)); 4615 ev_set_priority (&w->timer, ev_priority (w));
2061 4616
2062#if EV_USE_INOTIFY 4617#if EV_USE_INOTIFY
2063 infy_init (EV_A); 4618 infy_init (EV_A);
2064 4619
2065 if (fs_fd >= 0) 4620 if (fs_fd >= 0)
2066 infy_add (EV_A_ w); 4621 infy_add (EV_A_ w);
2067 else 4622 else
2068#endif 4623#endif
4624 {
2069 ev_timer_start (EV_A_ &w->timer); 4625 ev_timer_again (EV_A_ &w->timer);
4626 ev_unref (EV_A);
4627 }
2070 4628
2071 ev_start (EV_A_ (W)w, 1); 4629 ev_start (EV_A_ (W)w, 1);
2072}
2073 4630
4631 EV_FREQUENT_CHECK;
4632}
4633
2074void 4634void
2075ev_stat_stop (EV_P_ ev_stat *w) 4635ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
2076{ 4636{
2077 clear_pending (EV_A_ (W)w); 4637 clear_pending (EV_A_ (W)w);
2078 if (expect_false (!ev_is_active (w))) 4638 if (expect_false (!ev_is_active (w)))
2079 return; 4639 return;
2080 4640
4641 EV_FREQUENT_CHECK;
4642
2081#if EV_USE_INOTIFY 4643#if EV_USE_INOTIFY
2082 infy_del (EV_A_ w); 4644 infy_del (EV_A_ w);
2083#endif 4645#endif
4646
4647 if (ev_is_active (&w->timer))
4648 {
4649 ev_ref (EV_A);
2084 ev_timer_stop (EV_A_ &w->timer); 4650 ev_timer_stop (EV_A_ &w->timer);
4651 }
2085 4652
2086 ev_stop (EV_A_ (W)w); 4653 ev_stop (EV_A_ (W)w);
4654
4655 EV_FREQUENT_CHECK;
2087} 4656}
2088#endif 4657#endif
2089 4658
2090#if EV_IDLE_ENABLE 4659#if EV_IDLE_ENABLE
2091void 4660void
2092ev_idle_start (EV_P_ ev_idle *w) 4661ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
2093{ 4662{
2094 if (expect_false (ev_is_active (w))) 4663 if (expect_false (ev_is_active (w)))
2095 return; 4664 return;
2096 4665
2097 pri_adjust (EV_A_ (W)w); 4666 pri_adjust (EV_A_ (W)w);
2098 4667
4668 EV_FREQUENT_CHECK;
4669
2099 { 4670 {
2100 int active = ++idlecnt [ABSPRI (w)]; 4671 int active = ++idlecnt [ABSPRI (w)];
2101 4672
2102 ++idleall; 4673 ++idleall;
2103 ev_start (EV_A_ (W)w, active); 4674 ev_start (EV_A_ (W)w, active);
2104 4675
2105 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 4676 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
2106 idles [ABSPRI (w)][active - 1] = w; 4677 idles [ABSPRI (w)][active - 1] = w;
2107 } 4678 }
2108}
2109 4679
4680 EV_FREQUENT_CHECK;
4681}
4682
2110void 4683void
2111ev_idle_stop (EV_P_ ev_idle *w) 4684ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
2112{ 4685{
2113 clear_pending (EV_A_ (W)w); 4686 clear_pending (EV_A_ (W)w);
2114 if (expect_false (!ev_is_active (w))) 4687 if (expect_false (!ev_is_active (w)))
2115 return; 4688 return;
2116 4689
4690 EV_FREQUENT_CHECK;
4691
2117 { 4692 {
2118 int active = ((W)w)->active; 4693 int active = ev_active (w);
2119 4694
2120 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 4695 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2121 ((W)idles [ABSPRI (w)][active - 1])->active = active; 4696 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2122 4697
2123 ev_stop (EV_A_ (W)w); 4698 ev_stop (EV_A_ (W)w);
2124 --idleall; 4699 --idleall;
2125 } 4700 }
2126}
2127#endif
2128 4701
4702 EV_FREQUENT_CHECK;
4703}
4704#endif
4705
4706#if EV_PREPARE_ENABLE
2129void 4707void
2130ev_prepare_start (EV_P_ ev_prepare *w) 4708ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
2131{ 4709{
2132 if (expect_false (ev_is_active (w))) 4710 if (expect_false (ev_is_active (w)))
2133 return; 4711 return;
2134 4712
4713 EV_FREQUENT_CHECK;
4714
2135 ev_start (EV_A_ (W)w, ++preparecnt); 4715 ev_start (EV_A_ (W)w, ++preparecnt);
2136 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4716 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
2137 prepares [preparecnt - 1] = w; 4717 prepares [preparecnt - 1] = w;
2138}
2139 4718
4719 EV_FREQUENT_CHECK;
4720}
4721
2140void 4722void
2141ev_prepare_stop (EV_P_ ev_prepare *w) 4723ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
2142{ 4724{
2143 clear_pending (EV_A_ (W)w); 4725 clear_pending (EV_A_ (W)w);
2144 if (expect_false (!ev_is_active (w))) 4726 if (expect_false (!ev_is_active (w)))
2145 return; 4727 return;
2146 4728
4729 EV_FREQUENT_CHECK;
4730
2147 { 4731 {
2148 int active = ((W)w)->active; 4732 int active = ev_active (w);
4733
2149 prepares [active - 1] = prepares [--preparecnt]; 4734 prepares [active - 1] = prepares [--preparecnt];
2150 ((W)prepares [active - 1])->active = active; 4735 ev_active (prepares [active - 1]) = active;
2151 } 4736 }
2152 4737
2153 ev_stop (EV_A_ (W)w); 4738 ev_stop (EV_A_ (W)w);
2154}
2155 4739
4740 EV_FREQUENT_CHECK;
4741}
4742#endif
4743
4744#if EV_CHECK_ENABLE
2156void 4745void
2157ev_check_start (EV_P_ ev_check *w) 4746ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
2158{ 4747{
2159 if (expect_false (ev_is_active (w))) 4748 if (expect_false (ev_is_active (w)))
2160 return; 4749 return;
2161 4750
4751 EV_FREQUENT_CHECK;
4752
2162 ev_start (EV_A_ (W)w, ++checkcnt); 4753 ev_start (EV_A_ (W)w, ++checkcnt);
2163 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4754 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
2164 checks [checkcnt - 1] = w; 4755 checks [checkcnt - 1] = w;
2165}
2166 4756
4757 EV_FREQUENT_CHECK;
4758}
4759
2167void 4760void
2168ev_check_stop (EV_P_ ev_check *w) 4761ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
2169{ 4762{
2170 clear_pending (EV_A_ (W)w); 4763 clear_pending (EV_A_ (W)w);
2171 if (expect_false (!ev_is_active (w))) 4764 if (expect_false (!ev_is_active (w)))
2172 return; 4765 return;
2173 4766
4767 EV_FREQUENT_CHECK;
4768
2174 { 4769 {
2175 int active = ((W)w)->active; 4770 int active = ev_active (w);
4771
2176 checks [active - 1] = checks [--checkcnt]; 4772 checks [active - 1] = checks [--checkcnt];
2177 ((W)checks [active - 1])->active = active; 4773 ev_active (checks [active - 1]) = active;
2178 } 4774 }
2179 4775
2180 ev_stop (EV_A_ (W)w); 4776 ev_stop (EV_A_ (W)w);
4777
4778 EV_FREQUENT_CHECK;
2181} 4779}
4780#endif
2182 4781
2183#if EV_EMBED_ENABLE 4782#if EV_EMBED_ENABLE
2184void noinline 4783noinline
4784void
2185ev_embed_sweep (EV_P_ ev_embed *w) 4785ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
2186{ 4786{
2187 ev_loop (w->other, EVLOOP_NONBLOCK); 4787 ev_run (w->other, EVRUN_NOWAIT);
2188} 4788}
2189 4789
2190static void 4790static void
2191embed_cb (EV_P_ ev_io *io, int revents) 4791embed_io_cb (EV_P_ ev_io *io, int revents)
2192{ 4792{
2193 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4793 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2194 4794
2195 if (ev_cb (w)) 4795 if (ev_cb (w))
2196 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4796 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2197 else 4797 else
2198 ev_embed_sweep (loop, w); 4798 ev_run (w->other, EVRUN_NOWAIT);
2199} 4799}
2200 4800
4801static void
4802embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4803{
4804 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4805
4806 {
4807 EV_P = w->other;
4808
4809 while (fdchangecnt)
4810 {
4811 fd_reify (EV_A);
4812 ev_run (EV_A_ EVRUN_NOWAIT);
4813 }
4814 }
4815}
4816
4817static void
4818embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4819{
4820 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4821
4822 ev_embed_stop (EV_A_ w);
4823
4824 {
4825 EV_P = w->other;
4826
4827 ev_loop_fork (EV_A);
4828 ev_run (EV_A_ EVRUN_NOWAIT);
4829 }
4830
4831 ev_embed_start (EV_A_ w);
4832}
4833
4834#if 0
4835static void
4836embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4837{
4838 ev_idle_stop (EV_A_ idle);
4839}
4840#endif
4841
2201void 4842void
2202ev_embed_start (EV_P_ ev_embed *w) 4843ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
2203{ 4844{
2204 if (expect_false (ev_is_active (w))) 4845 if (expect_false (ev_is_active (w)))
2205 return; 4846 return;
2206 4847
2207 { 4848 {
2208 struct ev_loop *loop = w->other; 4849 EV_P = w->other;
2209 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4850 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2210 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 4851 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2211 } 4852 }
4853
4854 EV_FREQUENT_CHECK;
2212 4855
2213 ev_set_priority (&w->io, ev_priority (w)); 4856 ev_set_priority (&w->io, ev_priority (w));
2214 ev_io_start (EV_A_ &w->io); 4857 ev_io_start (EV_A_ &w->io);
2215 4858
4859 ev_prepare_init (&w->prepare, embed_prepare_cb);
4860 ev_set_priority (&w->prepare, EV_MINPRI);
4861 ev_prepare_start (EV_A_ &w->prepare);
4862
4863 ev_fork_init (&w->fork, embed_fork_cb);
4864 ev_fork_start (EV_A_ &w->fork);
4865
4866 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4867
2216 ev_start (EV_A_ (W)w, 1); 4868 ev_start (EV_A_ (W)w, 1);
2217}
2218 4869
4870 EV_FREQUENT_CHECK;
4871}
4872
2219void 4873void
2220ev_embed_stop (EV_P_ ev_embed *w) 4874ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
2221{ 4875{
2222 clear_pending (EV_A_ (W)w); 4876 clear_pending (EV_A_ (W)w);
2223 if (expect_false (!ev_is_active (w))) 4877 if (expect_false (!ev_is_active (w)))
2224 return; 4878 return;
2225 4879
4880 EV_FREQUENT_CHECK;
4881
2226 ev_io_stop (EV_A_ &w->io); 4882 ev_io_stop (EV_A_ &w->io);
4883 ev_prepare_stop (EV_A_ &w->prepare);
4884 ev_fork_stop (EV_A_ &w->fork);
2227 4885
2228 ev_stop (EV_A_ (W)w); 4886 ev_stop (EV_A_ (W)w);
4887
4888 EV_FREQUENT_CHECK;
2229} 4889}
2230#endif 4890#endif
2231 4891
2232#if EV_FORK_ENABLE 4892#if EV_FORK_ENABLE
2233void 4893void
2234ev_fork_start (EV_P_ ev_fork *w) 4894ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
2235{ 4895{
2236 if (expect_false (ev_is_active (w))) 4896 if (expect_false (ev_is_active (w)))
2237 return; 4897 return;
2238 4898
4899 EV_FREQUENT_CHECK;
4900
2239 ev_start (EV_A_ (W)w, ++forkcnt); 4901 ev_start (EV_A_ (W)w, ++forkcnt);
2240 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4902 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
2241 forks [forkcnt - 1] = w; 4903 forks [forkcnt - 1] = w;
2242}
2243 4904
4905 EV_FREQUENT_CHECK;
4906}
4907
2244void 4908void
2245ev_fork_stop (EV_P_ ev_fork *w) 4909ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
2246{ 4910{
2247 clear_pending (EV_A_ (W)w); 4911 clear_pending (EV_A_ (W)w);
2248 if (expect_false (!ev_is_active (w))) 4912 if (expect_false (!ev_is_active (w)))
2249 return; 4913 return;
2250 4914
4915 EV_FREQUENT_CHECK;
4916
2251 { 4917 {
2252 int active = ((W)w)->active; 4918 int active = ev_active (w);
4919
2253 forks [active - 1] = forks [--forkcnt]; 4920 forks [active - 1] = forks [--forkcnt];
2254 ((W)forks [active - 1])->active = active; 4921 ev_active (forks [active - 1]) = active;
2255 } 4922 }
2256 4923
2257 ev_stop (EV_A_ (W)w); 4924 ev_stop (EV_A_ (W)w);
4925
4926 EV_FREQUENT_CHECK;
4927}
4928#endif
4929
4930#if EV_CLEANUP_ENABLE
4931void
4932ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
4933{
4934 if (expect_false (ev_is_active (w)))
4935 return;
4936
4937 EV_FREQUENT_CHECK;
4938
4939 ev_start (EV_A_ (W)w, ++cleanupcnt);
4940 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
4941 cleanups [cleanupcnt - 1] = w;
4942
4943 /* cleanup watchers should never keep a refcount on the loop */
4944 ev_unref (EV_A);
4945 EV_FREQUENT_CHECK;
4946}
4947
4948void
4949ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
4950{
4951 clear_pending (EV_A_ (W)w);
4952 if (expect_false (!ev_is_active (w)))
4953 return;
4954
4955 EV_FREQUENT_CHECK;
4956 ev_ref (EV_A);
4957
4958 {
4959 int active = ev_active (w);
4960
4961 cleanups [active - 1] = cleanups [--cleanupcnt];
4962 ev_active (cleanups [active - 1]) = active;
4963 }
4964
4965 ev_stop (EV_A_ (W)w);
4966
4967 EV_FREQUENT_CHECK;
4968}
4969#endif
4970
4971#if EV_ASYNC_ENABLE
4972void
4973ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
4974{
4975 if (expect_false (ev_is_active (w)))
4976 return;
4977
4978 w->sent = 0;
4979
4980 evpipe_init (EV_A);
4981
4982 EV_FREQUENT_CHECK;
4983
4984 ev_start (EV_A_ (W)w, ++asynccnt);
4985 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
4986 asyncs [asynccnt - 1] = w;
4987
4988 EV_FREQUENT_CHECK;
4989}
4990
4991void
4992ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
4993{
4994 clear_pending (EV_A_ (W)w);
4995 if (expect_false (!ev_is_active (w)))
4996 return;
4997
4998 EV_FREQUENT_CHECK;
4999
5000 {
5001 int active = ev_active (w);
5002
5003 asyncs [active - 1] = asyncs [--asynccnt];
5004 ev_active (asyncs [active - 1]) = active;
5005 }
5006
5007 ev_stop (EV_A_ (W)w);
5008
5009 EV_FREQUENT_CHECK;
5010}
5011
5012void
5013ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
5014{
5015 w->sent = 1;
5016 evpipe_write (EV_A_ &async_pending);
2258} 5017}
2259#endif 5018#endif
2260 5019
2261/*****************************************************************************/ 5020/*****************************************************************************/
2262 5021
2272once_cb (EV_P_ struct ev_once *once, int revents) 5031once_cb (EV_P_ struct ev_once *once, int revents)
2273{ 5032{
2274 void (*cb)(int revents, void *arg) = once->cb; 5033 void (*cb)(int revents, void *arg) = once->cb;
2275 void *arg = once->arg; 5034 void *arg = once->arg;
2276 5035
2277 ev_io_stop (EV_A_ &once->io); 5036 ev_io_stop (EV_A_ &once->io);
2278 ev_timer_stop (EV_A_ &once->to); 5037 ev_timer_stop (EV_A_ &once->to);
2279 ev_free (once); 5038 ev_free (once);
2280 5039
2281 cb (revents, arg); 5040 cb (revents, arg);
2282} 5041}
2283 5042
2284static void 5043static void
2285once_cb_io (EV_P_ ev_io *w, int revents) 5044once_cb_io (EV_P_ ev_io *w, int revents)
2286{ 5045{
2287 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 5046 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
5047
5048 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2288} 5049}
2289 5050
2290static void 5051static void
2291once_cb_to (EV_P_ ev_timer *w, int revents) 5052once_cb_to (EV_P_ ev_timer *w, int revents)
2292{ 5053{
2293 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 5054 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
2294}
2295 5055
5056 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
5057}
5058
2296void 5059void
2297ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 5060ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
2298{ 5061{
2299 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 5062 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2300
2301 if (expect_false (!once))
2302 {
2303 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
2304 return;
2305 }
2306 5063
2307 once->cb = cb; 5064 once->cb = cb;
2308 once->arg = arg; 5065 once->arg = arg;
2309 5066
2310 ev_init (&once->io, once_cb_io); 5067 ev_init (&once->io, once_cb_io);
2320 ev_timer_set (&once->to, timeout, 0.); 5077 ev_timer_set (&once->to, timeout, 0.);
2321 ev_timer_start (EV_A_ &once->to); 5078 ev_timer_start (EV_A_ &once->to);
2322 } 5079 }
2323} 5080}
2324 5081
5082/*****************************************************************************/
5083
5084#if EV_WALK_ENABLE
5085ecb_cold
5086void
5087ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5088{
5089 int i, j;
5090 ev_watcher_list *wl, *wn;
5091
5092 if (types & (EV_IO | EV_EMBED))
5093 for (i = 0; i < anfdmax; ++i)
5094 for (wl = anfds [i].head; wl; )
5095 {
5096 wn = wl->next;
5097
5098#if EV_EMBED_ENABLE
5099 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5100 {
5101 if (types & EV_EMBED)
5102 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5103 }
5104 else
5105#endif
5106#if EV_USE_INOTIFY
5107 if (ev_cb ((ev_io *)wl) == infy_cb)
5108 ;
5109 else
5110#endif
5111 if ((ev_io *)wl != &pipe_w)
5112 if (types & EV_IO)
5113 cb (EV_A_ EV_IO, wl);
5114
5115 wl = wn;
5116 }
5117
5118 if (types & (EV_TIMER | EV_STAT))
5119 for (i = timercnt + HEAP0; i-- > HEAP0; )
5120#if EV_STAT_ENABLE
5121 /*TODO: timer is not always active*/
5122 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5123 {
5124 if (types & EV_STAT)
5125 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5126 }
5127 else
5128#endif
5129 if (types & EV_TIMER)
5130 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5131
5132#if EV_PERIODIC_ENABLE
5133 if (types & EV_PERIODIC)
5134 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5135 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5136#endif
5137
5138#if EV_IDLE_ENABLE
5139 if (types & EV_IDLE)
5140 for (j = NUMPRI; j--; )
5141 for (i = idlecnt [j]; i--; )
5142 cb (EV_A_ EV_IDLE, idles [j][i]);
5143#endif
5144
5145#if EV_FORK_ENABLE
5146 if (types & EV_FORK)
5147 for (i = forkcnt; i--; )
5148 if (ev_cb (forks [i]) != embed_fork_cb)
5149 cb (EV_A_ EV_FORK, forks [i]);
5150#endif
5151
5152#if EV_ASYNC_ENABLE
5153 if (types & EV_ASYNC)
5154 for (i = asynccnt; i--; )
5155 cb (EV_A_ EV_ASYNC, asyncs [i]);
5156#endif
5157
5158#if EV_PREPARE_ENABLE
5159 if (types & EV_PREPARE)
5160 for (i = preparecnt; i--; )
5161# if EV_EMBED_ENABLE
5162 if (ev_cb (prepares [i]) != embed_prepare_cb)
5163# endif
5164 cb (EV_A_ EV_PREPARE, prepares [i]);
5165#endif
5166
5167#if EV_CHECK_ENABLE
5168 if (types & EV_CHECK)
5169 for (i = checkcnt; i--; )
5170 cb (EV_A_ EV_CHECK, checks [i]);
5171#endif
5172
5173#if EV_SIGNAL_ENABLE
5174 if (types & EV_SIGNAL)
5175 for (i = 0; i < EV_NSIG - 1; ++i)
5176 for (wl = signals [i].head; wl; )
5177 {
5178 wn = wl->next;
5179 cb (EV_A_ EV_SIGNAL, wl);
5180 wl = wn;
5181 }
5182#endif
5183
5184#if EV_CHILD_ENABLE
5185 if (types & EV_CHILD)
5186 for (i = (EV_PID_HASHSIZE); i--; )
5187 for (wl = childs [i]; wl; )
5188 {
5189 wn = wl->next;
5190 cb (EV_A_ EV_CHILD, wl);
5191 wl = wn;
5192 }
5193#endif
5194/* EV_STAT 0x00001000 /* stat data changed */
5195/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5196}
5197#endif
5198
2325#if EV_MULTIPLICITY 5199#if EV_MULTIPLICITY
2326 #include "ev_wrap.h" 5200 #include "ev_wrap.h"
2327#endif 5201#endif
2328 5202
2329#ifdef __cplusplus
2330}
2331#endif
2332

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines