ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.98 by root, Sun Nov 11 02:05:20 2007 UTC vs.
Revision 1.498 by root, Wed Jun 26 00:01:46 2019 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
37# include "config.h" 45# include "config.h"
46# endif
47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
38 67
39# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
42# endif 71# endif
43# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
74# endif
75# else
76# ifndef EV_USE_MONOTONIC
77# define EV_USE_MONOTONIC 0
78# endif
79# ifndef EV_USE_REALTIME
80# define EV_USE_REALTIME 0
45# endif 81# endif
46# endif 82# endif
47 83
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 84# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
50# endif 91# endif
51 92
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
53# define EV_USE_POLL 1 99# define EV_USE_SELECT 0
54# endif 100# endif
55 101
56# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
57# define EV_USE_EPOLL 1 108# define EV_USE_POLL 0
58# endif 109# endif
59 110
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
62# endif 118# endif
63 119
120# if HAVE_LINUX_AIO_ABI_H
121# ifndef EV_USE_LINUXAIO
122# define EV_USE_LINUXAIO EV_FEATURE_BACKENDS
123# endif
124# else
125# undef EV_USE_LINUXAIO
126# define EV_USE_LINUXAIO 0
64#endif 127# endif
128
129# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
130# ifndef EV_USE_KQUEUE
131# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
132# endif
133# else
134# undef EV_USE_KQUEUE
135# define EV_USE_KQUEUE 0
136# endif
137
138# if HAVE_PORT_H && HAVE_PORT_CREATE
139# ifndef EV_USE_PORT
140# define EV_USE_PORT EV_FEATURE_BACKENDS
141# endif
142# else
143# undef EV_USE_PORT
144# define EV_USE_PORT 0
145# endif
65 146
66#include <math.h> 147# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
148# ifndef EV_USE_INOTIFY
149# define EV_USE_INOTIFY EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_INOTIFY
153# define EV_USE_INOTIFY 0
154# endif
155
156# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
157# ifndef EV_USE_SIGNALFD
158# define EV_USE_SIGNALFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_SIGNALFD
162# define EV_USE_SIGNALFD 0
163# endif
164
165# if HAVE_EVENTFD
166# ifndef EV_USE_EVENTFD
167# define EV_USE_EVENTFD EV_FEATURE_OS
168# endif
169# else
170# undef EV_USE_EVENTFD
171# define EV_USE_EVENTFD 0
172# endif
173
174#endif
175
176/* OS X, in its infinite idiocy, actually HARDCODES
177 * a limit of 1024 into their select. Where people have brains,
178 * OS X engineers apparently have a vacuum. Or maybe they were
179 * ordered to have a vacuum, or they do anything for money.
180 * This might help. Or not.
181 * Note that this must be defined early, as other include files
182 * will rely on this define as well.
183 */
184#define _DARWIN_UNLIMITED_SELECT 1
185
67#include <stdlib.h> 186#include <stdlib.h>
187#include <string.h>
68#include <fcntl.h> 188#include <fcntl.h>
69#include <stddef.h> 189#include <stddef.h>
70 190
71#include <stdio.h> 191#include <stdio.h>
72 192
73#include <assert.h> 193#include <assert.h>
74#include <errno.h> 194#include <errno.h>
75#include <sys/types.h> 195#include <sys/types.h>
76#include <time.h> 196#include <time.h>
197#include <limits.h>
77 198
78#include <signal.h> 199#include <signal.h>
79
80#ifndef WIN32
81# include <unistd.h>
82# include <sys/time.h>
83# include <sys/wait.h>
84#endif
85/**/
86
87#ifndef EV_USE_MONOTONIC
88# define EV_USE_MONOTONIC 1
89#endif
90
91#ifndef EV_USE_SELECT
92# define EV_USE_SELECT 1
93#endif
94
95#ifndef EV_USE_POLL
96# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
97#endif
98
99#ifndef EV_USE_EPOLL
100# define EV_USE_EPOLL 0
101#endif
102
103#ifndef EV_USE_KQUEUE
104# define EV_USE_KQUEUE 0
105#endif
106
107#ifndef EV_USE_WIN32
108# ifdef WIN32
109# define EV_USE_WIN32 0 /* it does not exist, use select */
110# undef EV_USE_SELECT
111# define EV_USE_SELECT 1
112# else
113# define EV_USE_WIN32 0
114# endif
115#endif
116
117#ifndef EV_USE_REALTIME
118# define EV_USE_REALTIME 1
119#endif
120
121/**/
122
123#ifndef CLOCK_MONOTONIC
124# undef EV_USE_MONOTONIC
125# define EV_USE_MONOTONIC 0
126#endif
127
128#ifndef CLOCK_REALTIME
129# undef EV_USE_REALTIME
130# define EV_USE_REALTIME 0
131#endif
132
133/**/
134
135#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
136#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
137#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
138/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
139 200
140#ifdef EV_H 201#ifdef EV_H
141# include EV_H 202# include EV_H
142#else 203#else
143# include "ev.h" 204# include "ev.h"
144#endif 205#endif
145 206
146#if __GNUC__ >= 3 207#if EV_NO_THREADS
147# define expect(expr,value) __builtin_expect ((expr),(value)) 208# undef EV_NO_SMP
148# define inline inline 209# define EV_NO_SMP 1
210# undef ECB_NO_THREADS
211# define ECB_NO_THREADS 1
212#endif
213#if EV_NO_SMP
214# undef EV_NO_SMP
215# define ECB_NO_SMP 1
216#endif
217
218#ifndef _WIN32
219# include <sys/time.h>
220# include <sys/wait.h>
221# include <unistd.h>
149#else 222#else
150# define expect(expr,value) (expr) 223# include <io.h>
151# define inline static 224# define WIN32_LEAN_AND_MEAN
225# include <winsock2.h>
226# include <windows.h>
227# ifndef EV_SELECT_IS_WINSOCKET
228# define EV_SELECT_IS_WINSOCKET 1
152#endif 229# endif
230# undef EV_AVOID_STDIO
231#endif
153 232
233/* this block tries to deduce configuration from header-defined symbols and defaults */
234
235/* try to deduce the maximum number of signals on this platform */
236#if defined EV_NSIG
237/* use what's provided */
238#elif defined NSIG
239# define EV_NSIG (NSIG)
240#elif defined _NSIG
241# define EV_NSIG (_NSIG)
242#elif defined SIGMAX
243# define EV_NSIG (SIGMAX+1)
244#elif defined SIG_MAX
245# define EV_NSIG (SIG_MAX+1)
246#elif defined _SIG_MAX
247# define EV_NSIG (_SIG_MAX+1)
248#elif defined MAXSIG
249# define EV_NSIG (MAXSIG+1)
250#elif defined MAX_SIG
251# define EV_NSIG (MAX_SIG+1)
252#elif defined SIGARRAYSIZE
253# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
254#elif defined _sys_nsig
255# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
256#else
257# define EV_NSIG (8 * sizeof (sigset_t) + 1)
258#endif
259
260#ifndef EV_USE_FLOOR
261# define EV_USE_FLOOR 0
262#endif
263
264#ifndef EV_USE_CLOCK_SYSCALL
265# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
266# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
267# else
268# define EV_USE_CLOCK_SYSCALL 0
269# endif
270#endif
271
272#if !(_POSIX_TIMERS > 0)
273# ifndef EV_USE_MONOTONIC
274# define EV_USE_MONOTONIC 0
275# endif
276# ifndef EV_USE_REALTIME
277# define EV_USE_REALTIME 0
278# endif
279#endif
280
281#ifndef EV_USE_MONOTONIC
282# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
283# define EV_USE_MONOTONIC EV_FEATURE_OS
284# else
285# define EV_USE_MONOTONIC 0
286# endif
287#endif
288
289#ifndef EV_USE_REALTIME
290# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
291#endif
292
293#ifndef EV_USE_NANOSLEEP
294# if _POSIX_C_SOURCE >= 199309L
295# define EV_USE_NANOSLEEP EV_FEATURE_OS
296# else
297# define EV_USE_NANOSLEEP 0
298# endif
299#endif
300
301#ifndef EV_USE_SELECT
302# define EV_USE_SELECT EV_FEATURE_BACKENDS
303#endif
304
305#ifndef EV_USE_POLL
306# ifdef _WIN32
307# define EV_USE_POLL 0
308# else
309# define EV_USE_POLL EV_FEATURE_BACKENDS
310# endif
311#endif
312
313#ifndef EV_USE_EPOLL
314# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
315# define EV_USE_EPOLL EV_FEATURE_BACKENDS
316# else
317# define EV_USE_EPOLL 0
318# endif
319#endif
320
321#ifndef EV_USE_KQUEUE
322# define EV_USE_KQUEUE 0
323#endif
324
325#ifndef EV_USE_PORT
326# define EV_USE_PORT 0
327#endif
328
329#ifndef EV_USE_LINUXAIO
330# if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
331# define EV_USE_LINUXAIO 1
332# else
333# define EV_USE_LINUXAIO 0
334# endif
335#endif
336
337#ifndef EV_USE_INOTIFY
338# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
339# define EV_USE_INOTIFY EV_FEATURE_OS
340# else
341# define EV_USE_INOTIFY 0
342# endif
343#endif
344
345#ifndef EV_PID_HASHSIZE
346# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
347#endif
348
349#ifndef EV_INOTIFY_HASHSIZE
350# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
351#endif
352
353#ifndef EV_USE_EVENTFD
354# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
355# define EV_USE_EVENTFD EV_FEATURE_OS
356# else
357# define EV_USE_EVENTFD 0
358# endif
359#endif
360
361#ifndef EV_USE_SIGNALFD
362# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
363# define EV_USE_SIGNALFD EV_FEATURE_OS
364# else
365# define EV_USE_SIGNALFD 0
366# endif
367#endif
368
369#if 0 /* debugging */
370# define EV_VERIFY 3
371# define EV_USE_4HEAP 1
372# define EV_HEAP_CACHE_AT 1
373#endif
374
375#ifndef EV_VERIFY
376# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
377#endif
378
379#ifndef EV_USE_4HEAP
380# define EV_USE_4HEAP EV_FEATURE_DATA
381#endif
382
383#ifndef EV_HEAP_CACHE_AT
384# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
385#endif
386
387#ifdef __ANDROID__
388/* supposedly, android doesn't typedef fd_mask */
389# undef EV_USE_SELECT
390# define EV_USE_SELECT 0
391/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
392# undef EV_USE_CLOCK_SYSCALL
393# define EV_USE_CLOCK_SYSCALL 0
394#endif
395
396/* aix's poll.h seems to cause lots of trouble */
397#ifdef _AIX
398/* AIX has a completely broken poll.h header */
399# undef EV_USE_POLL
400# define EV_USE_POLL 0
401#endif
402
403/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
404/* which makes programs even slower. might work on other unices, too. */
405#if EV_USE_CLOCK_SYSCALL
406# include <sys/syscall.h>
407# ifdef SYS_clock_gettime
408# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
409# undef EV_USE_MONOTONIC
410# define EV_USE_MONOTONIC 1
411# else
412# undef EV_USE_CLOCK_SYSCALL
413# define EV_USE_CLOCK_SYSCALL 0
414# endif
415#endif
416
417/* this block fixes any misconfiguration where we know we run into trouble otherwise */
418
419#ifndef CLOCK_MONOTONIC
420# undef EV_USE_MONOTONIC
421# define EV_USE_MONOTONIC 0
422#endif
423
424#ifndef CLOCK_REALTIME
425# undef EV_USE_REALTIME
426# define EV_USE_REALTIME 0
427#endif
428
429#if !EV_STAT_ENABLE
430# undef EV_USE_INOTIFY
431# define EV_USE_INOTIFY 0
432#endif
433
434#if !EV_USE_NANOSLEEP
435/* hp-ux has it in sys/time.h, which we unconditionally include above */
436# if !defined _WIN32 && !defined __hpux
437# include <sys/select.h>
438# endif
439#endif
440
441#if EV_USE_LINUXAIO
442# include <sys/syscall.h>
443# if !SYS_io_getevents || !EV_USE_EPOLL /* ev_linxaio uses ev_poll.c:ev_epoll_create */
444# undef EV_USE_LINUXAIO
445# define EV_USE_LINUXAIO 0
446# endif
447#endif
448
449#if EV_USE_INOTIFY
450# include <sys/statfs.h>
451# include <sys/inotify.h>
452/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
453# ifndef IN_DONT_FOLLOW
454# undef EV_USE_INOTIFY
455# define EV_USE_INOTIFY 0
456# endif
457#endif
458
459#if EV_USE_EVENTFD
460/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
461# include <stdint.h>
462# ifndef EFD_NONBLOCK
463# define EFD_NONBLOCK O_NONBLOCK
464# endif
465# ifndef EFD_CLOEXEC
466# ifdef O_CLOEXEC
467# define EFD_CLOEXEC O_CLOEXEC
468# else
469# define EFD_CLOEXEC 02000000
470# endif
471# endif
472EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
473#endif
474
475#if EV_USE_SIGNALFD
476/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
477# include <stdint.h>
478# ifndef SFD_NONBLOCK
479# define SFD_NONBLOCK O_NONBLOCK
480# endif
481# ifndef SFD_CLOEXEC
482# ifdef O_CLOEXEC
483# define SFD_CLOEXEC O_CLOEXEC
484# else
485# define SFD_CLOEXEC 02000000
486# endif
487# endif
488EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
489
490struct signalfd_siginfo
491{
492 uint32_t ssi_signo;
493 char pad[128 - sizeof (uint32_t)];
494};
495#endif
496
497/**/
498
499#if EV_VERIFY >= 3
500# define EV_FREQUENT_CHECK ev_verify (EV_A)
501#else
502# define EV_FREQUENT_CHECK do { } while (0)
503#endif
504
505/*
506 * This is used to work around floating point rounding problems.
507 * This value is good at least till the year 4000.
508 */
509#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
510/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
511
512#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
513#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
514
515#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
516#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
517
518/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
519/* ECB.H BEGIN */
520/*
521 * libecb - http://software.schmorp.de/pkg/libecb
522 *
523 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
524 * Copyright (©) 2011 Emanuele Giaquinta
525 * All rights reserved.
526 *
527 * Redistribution and use in source and binary forms, with or without modifica-
528 * tion, are permitted provided that the following conditions are met:
529 *
530 * 1. Redistributions of source code must retain the above copyright notice,
531 * this list of conditions and the following disclaimer.
532 *
533 * 2. Redistributions in binary form must reproduce the above copyright
534 * notice, this list of conditions and the following disclaimer in the
535 * documentation and/or other materials provided with the distribution.
536 *
537 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
538 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
539 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
540 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
541 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
542 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
543 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
544 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
545 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
546 * OF THE POSSIBILITY OF SUCH DAMAGE.
547 *
548 * Alternatively, the contents of this file may be used under the terms of
549 * the GNU General Public License ("GPL") version 2 or any later version,
550 * in which case the provisions of the GPL are applicable instead of
551 * the above. If you wish to allow the use of your version of this file
552 * only under the terms of the GPL and not to allow others to use your
553 * version of this file under the BSD license, indicate your decision
554 * by deleting the provisions above and replace them with the notice
555 * and other provisions required by the GPL. If you do not delete the
556 * provisions above, a recipient may use your version of this file under
557 * either the BSD or the GPL.
558 */
559
560#ifndef ECB_H
561#define ECB_H
562
563/* 16 bits major, 16 bits minor */
564#define ECB_VERSION 0x00010006
565
566#ifdef _WIN32
567 typedef signed char int8_t;
568 typedef unsigned char uint8_t;
569 typedef signed short int16_t;
570 typedef unsigned short uint16_t;
571 typedef signed int int32_t;
572 typedef unsigned int uint32_t;
573 #if __GNUC__
574 typedef signed long long int64_t;
575 typedef unsigned long long uint64_t;
576 #else /* _MSC_VER || __BORLANDC__ */
577 typedef signed __int64 int64_t;
578 typedef unsigned __int64 uint64_t;
579 #endif
580 #ifdef _WIN64
581 #define ECB_PTRSIZE 8
582 typedef uint64_t uintptr_t;
583 typedef int64_t intptr_t;
584 #else
585 #define ECB_PTRSIZE 4
586 typedef uint32_t uintptr_t;
587 typedef int32_t intptr_t;
588 #endif
589#else
590 #include <inttypes.h>
591 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
592 #define ECB_PTRSIZE 8
593 #else
594 #define ECB_PTRSIZE 4
595 #endif
596#endif
597
598#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
599#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
600
601/* work around x32 idiocy by defining proper macros */
602#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
603 #if _ILP32
604 #define ECB_AMD64_X32 1
605 #else
606 #define ECB_AMD64 1
607 #endif
608#endif
609
610/* many compilers define _GNUC_ to some versions but then only implement
611 * what their idiot authors think are the "more important" extensions,
612 * causing enormous grief in return for some better fake benchmark numbers.
613 * or so.
614 * we try to detect these and simply assume they are not gcc - if they have
615 * an issue with that they should have done it right in the first place.
616 */
617#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
618 #define ECB_GCC_VERSION(major,minor) 0
619#else
620 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
621#endif
622
623#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
624
625#if __clang__ && defined __has_builtin
626 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
627#else
628 #define ECB_CLANG_BUILTIN(x) 0
629#endif
630
631#if __clang__ && defined __has_extension
632 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
633#else
634 #define ECB_CLANG_EXTENSION(x) 0
635#endif
636
637#define ECB_CPP (__cplusplus+0)
638#define ECB_CPP11 (__cplusplus >= 201103L)
639#define ECB_CPP14 (__cplusplus >= 201402L)
640#define ECB_CPP17 (__cplusplus >= 201703L)
641
642#if ECB_CPP
643 #define ECB_C 0
644 #define ECB_STDC_VERSION 0
645#else
646 #define ECB_C 1
647 #define ECB_STDC_VERSION __STDC_VERSION__
648#endif
649
650#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
651#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
652#define ECB_C17 (ECB_STDC_VERSION >= 201710L)
653
654#if ECB_CPP
655 #define ECB_EXTERN_C extern "C"
656 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
657 #define ECB_EXTERN_C_END }
658#else
659 #define ECB_EXTERN_C extern
660 #define ECB_EXTERN_C_BEG
661 #define ECB_EXTERN_C_END
662#endif
663
664/*****************************************************************************/
665
666/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
667/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
668
669#if ECB_NO_THREADS
670 #define ECB_NO_SMP 1
671#endif
672
673#if ECB_NO_SMP
674 #define ECB_MEMORY_FENCE do { } while (0)
675#endif
676
677/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
678#if __xlC__ && ECB_CPP
679 #include <builtins.h>
680#endif
681
682#if 1400 <= _MSC_VER
683 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
684#endif
685
686#ifndef ECB_MEMORY_FENCE
687 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
688 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
689 #if __i386 || __i386__
690 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
691 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
692 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
693 #elif ECB_GCC_AMD64
694 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
695 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
696 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
697 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
698 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
699 #elif defined __ARM_ARCH_2__ \
700 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
701 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
702 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
703 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
704 || defined __ARM_ARCH_5TEJ__
705 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
706 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
707 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
708 || defined __ARM_ARCH_6T2__
709 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
710 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
711 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
712 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
713 #elif __aarch64__
714 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
715 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
716 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
717 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
718 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
719 #elif defined __s390__ || defined __s390x__
720 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
721 #elif defined __mips__
722 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
723 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
724 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
725 #elif defined __alpha__
726 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
727 #elif defined __hppa__
728 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
729 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
730 #elif defined __ia64__
731 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
732 #elif defined __m68k__
733 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
734 #elif defined __m88k__
735 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
736 #elif defined __sh__
737 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
738 #endif
739 #endif
740#endif
741
742#ifndef ECB_MEMORY_FENCE
743 #if ECB_GCC_VERSION(4,7)
744 /* see comment below (stdatomic.h) about the C11 memory model. */
745 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
746 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
747 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
748 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
749
750 #elif ECB_CLANG_EXTENSION(c_atomic)
751 /* see comment below (stdatomic.h) about the C11 memory model. */
752 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
753 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
754 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
755 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
756
757 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
758 #define ECB_MEMORY_FENCE __sync_synchronize ()
759 #elif _MSC_VER >= 1500 /* VC++ 2008 */
760 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
761 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
762 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
763 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
764 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
765 #elif _MSC_VER >= 1400 /* VC++ 2005 */
766 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
767 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
768 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
769 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
770 #elif defined _WIN32
771 #include <WinNT.h>
772 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
773 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
774 #include <mbarrier.h>
775 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
776 #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
777 #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
778 #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
779 #elif __xlC__
780 #define ECB_MEMORY_FENCE __sync ()
781 #endif
782#endif
783
784#ifndef ECB_MEMORY_FENCE
785 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
786 /* we assume that these memory fences work on all variables/all memory accesses, */
787 /* not just C11 atomics and atomic accesses */
788 #include <stdatomic.h>
789 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
790 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
791 #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
792 #endif
793#endif
794
795#ifndef ECB_MEMORY_FENCE
796 #if !ECB_AVOID_PTHREADS
797 /*
798 * if you get undefined symbol references to pthread_mutex_lock,
799 * or failure to find pthread.h, then you should implement
800 * the ECB_MEMORY_FENCE operations for your cpu/compiler
801 * OR provide pthread.h and link against the posix thread library
802 * of your system.
803 */
804 #include <pthread.h>
805 #define ECB_NEEDS_PTHREADS 1
806 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
807
808 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
809 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
810 #endif
811#endif
812
813#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
814 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
815#endif
816
817#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
818 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
819#endif
820
821#if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
822 #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
823#endif
824
825/*****************************************************************************/
826
827#if ECB_CPP
828 #define ecb_inline static inline
829#elif ECB_GCC_VERSION(2,5)
830 #define ecb_inline static __inline__
831#elif ECB_C99
832 #define ecb_inline static inline
833#else
834 #define ecb_inline static
835#endif
836
837#if ECB_GCC_VERSION(3,3)
838 #define ecb_restrict __restrict__
839#elif ECB_C99
840 #define ecb_restrict restrict
841#else
842 #define ecb_restrict
843#endif
844
845typedef int ecb_bool;
846
847#define ECB_CONCAT_(a, b) a ## b
848#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
849#define ECB_STRINGIFY_(a) # a
850#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
851#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
852
853#define ecb_function_ ecb_inline
854
855#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
856 #define ecb_attribute(attrlist) __attribute__ (attrlist)
857#else
858 #define ecb_attribute(attrlist)
859#endif
860
861#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
862 #define ecb_is_constant(expr) __builtin_constant_p (expr)
863#else
864 /* possible C11 impl for integral types
865 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
866 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
867
868 #define ecb_is_constant(expr) 0
869#endif
870
871#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
872 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
873#else
874 #define ecb_expect(expr,value) (expr)
875#endif
876
877#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
878 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
879#else
880 #define ecb_prefetch(addr,rw,locality)
881#endif
882
883/* no emulation for ecb_decltype */
884#if ECB_CPP11
885 // older implementations might have problems with decltype(x)::type, work around it
886 template<class T> struct ecb_decltype_t { typedef T type; };
887 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
888#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
889 #define ecb_decltype(x) __typeof__ (x)
890#endif
891
892#if _MSC_VER >= 1300
893 #define ecb_deprecated __declspec (deprecated)
894#else
895 #define ecb_deprecated ecb_attribute ((__deprecated__))
896#endif
897
898#if _MSC_VER >= 1500
899 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
900#elif ECB_GCC_VERSION(4,5)
901 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
902#else
903 #define ecb_deprecated_message(msg) ecb_deprecated
904#endif
905
906#if _MSC_VER >= 1400
907 #define ecb_noinline __declspec (noinline)
908#else
909 #define ecb_noinline ecb_attribute ((__noinline__))
910#endif
911
912#define ecb_unused ecb_attribute ((__unused__))
913#define ecb_const ecb_attribute ((__const__))
914#define ecb_pure ecb_attribute ((__pure__))
915
916#if ECB_C11 || __IBMC_NORETURN
917 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
918 #define ecb_noreturn _Noreturn
919#elif ECB_CPP11
920 #define ecb_noreturn [[noreturn]]
921#elif _MSC_VER >= 1200
922 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
923 #define ecb_noreturn __declspec (noreturn)
924#else
925 #define ecb_noreturn ecb_attribute ((__noreturn__))
926#endif
927
928#if ECB_GCC_VERSION(4,3)
929 #define ecb_artificial ecb_attribute ((__artificial__))
930 #define ecb_hot ecb_attribute ((__hot__))
931 #define ecb_cold ecb_attribute ((__cold__))
932#else
933 #define ecb_artificial
934 #define ecb_hot
935 #define ecb_cold
936#endif
937
938/* put around conditional expressions if you are very sure that the */
939/* expression is mostly true or mostly false. note that these return */
940/* booleans, not the expression. */
154#define expect_false(expr) expect ((expr) != 0, 0) 941#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
155#define expect_true(expr) expect ((expr) != 0, 1) 942#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
943/* for compatibility to the rest of the world */
944#define ecb_likely(expr) ecb_expect_true (expr)
945#define ecb_unlikely(expr) ecb_expect_false (expr)
156 946
947/* count trailing zero bits and count # of one bits */
948#if ECB_GCC_VERSION(3,4) \
949 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
950 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
951 && ECB_CLANG_BUILTIN(__builtin_popcount))
952 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
953 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
954 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
955 #define ecb_ctz32(x) __builtin_ctz (x)
956 #define ecb_ctz64(x) __builtin_ctzll (x)
957 #define ecb_popcount32(x) __builtin_popcount (x)
958 /* no popcountll */
959#else
960 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
961 ecb_function_ ecb_const int
962 ecb_ctz32 (uint32_t x)
963 {
964#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
965 unsigned long r;
966 _BitScanForward (&r, x);
967 return (int)r;
968#else
969 int r = 0;
970
971 x &= ~x + 1; /* this isolates the lowest bit */
972
973#if ECB_branchless_on_i386
974 r += !!(x & 0xaaaaaaaa) << 0;
975 r += !!(x & 0xcccccccc) << 1;
976 r += !!(x & 0xf0f0f0f0) << 2;
977 r += !!(x & 0xff00ff00) << 3;
978 r += !!(x & 0xffff0000) << 4;
979#else
980 if (x & 0xaaaaaaaa) r += 1;
981 if (x & 0xcccccccc) r += 2;
982 if (x & 0xf0f0f0f0) r += 4;
983 if (x & 0xff00ff00) r += 8;
984 if (x & 0xffff0000) r += 16;
985#endif
986
987 return r;
988#endif
989 }
990
991 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
992 ecb_function_ ecb_const int
993 ecb_ctz64 (uint64_t x)
994 {
995#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
996 unsigned long r;
997 _BitScanForward64 (&r, x);
998 return (int)r;
999#else
1000 int shift = x & 0xffffffff ? 0 : 32;
1001 return ecb_ctz32 (x >> shift) + shift;
1002#endif
1003 }
1004
1005 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1006 ecb_function_ ecb_const int
1007 ecb_popcount32 (uint32_t x)
1008 {
1009 x -= (x >> 1) & 0x55555555;
1010 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1011 x = ((x >> 4) + x) & 0x0f0f0f0f;
1012 x *= 0x01010101;
1013
1014 return x >> 24;
1015 }
1016
1017 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1018 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1019 {
1020#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1021 unsigned long r;
1022 _BitScanReverse (&r, x);
1023 return (int)r;
1024#else
1025 int r = 0;
1026
1027 if (x >> 16) { x >>= 16; r += 16; }
1028 if (x >> 8) { x >>= 8; r += 8; }
1029 if (x >> 4) { x >>= 4; r += 4; }
1030 if (x >> 2) { x >>= 2; r += 2; }
1031 if (x >> 1) { r += 1; }
1032
1033 return r;
1034#endif
1035 }
1036
1037 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1038 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1039 {
1040#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1041 unsigned long r;
1042 _BitScanReverse64 (&r, x);
1043 return (int)r;
1044#else
1045 int r = 0;
1046
1047 if (x >> 32) { x >>= 32; r += 32; }
1048
1049 return r + ecb_ld32 (x);
1050#endif
1051 }
1052#endif
1053
1054ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1055ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1056ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1057ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1058
1059ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1060ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1061{
1062 return ( (x * 0x0802U & 0x22110U)
1063 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1064}
1065
1066ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1067ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1068{
1069 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1070 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1071 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1072 x = ( x >> 8 ) | ( x << 8);
1073
1074 return x;
1075}
1076
1077ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1078ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1079{
1080 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1081 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1082 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1083 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1084 x = ( x >> 16 ) | ( x << 16);
1085
1086 return x;
1087}
1088
1089/* popcount64 is only available on 64 bit cpus as gcc builtin */
1090/* so for this version we are lazy */
1091ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1092ecb_function_ ecb_const int
1093ecb_popcount64 (uint64_t x)
1094{
1095 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1096}
1097
1098ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1099ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1100ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1101ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1102ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1103ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1104ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1105ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1106
1107ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1108ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1109ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1110ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1111ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1112ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1113ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1114ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1115
1116#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1117 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1118 #define ecb_bswap16(x) __builtin_bswap16 (x)
1119 #else
1120 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1121 #endif
1122 #define ecb_bswap32(x) __builtin_bswap32 (x)
1123 #define ecb_bswap64(x) __builtin_bswap64 (x)
1124#elif _MSC_VER
1125 #include <stdlib.h>
1126 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1127 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1128 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1129#else
1130 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1131 ecb_function_ ecb_const uint16_t
1132 ecb_bswap16 (uint16_t x)
1133 {
1134 return ecb_rotl16 (x, 8);
1135 }
1136
1137 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1138 ecb_function_ ecb_const uint32_t
1139 ecb_bswap32 (uint32_t x)
1140 {
1141 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1142 }
1143
1144 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1145 ecb_function_ ecb_const uint64_t
1146 ecb_bswap64 (uint64_t x)
1147 {
1148 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1149 }
1150#endif
1151
1152#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1153 #define ecb_unreachable() __builtin_unreachable ()
1154#else
1155 /* this seems to work fine, but gcc always emits a warning for it :/ */
1156 ecb_inline ecb_noreturn void ecb_unreachable (void);
1157 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1158#endif
1159
1160/* try to tell the compiler that some condition is definitely true */
1161#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1162
1163ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1164ecb_inline ecb_const uint32_t
1165ecb_byteorder_helper (void)
1166{
1167 /* the union code still generates code under pressure in gcc, */
1168 /* but less than using pointers, and always seems to */
1169 /* successfully return a constant. */
1170 /* the reason why we have this horrible preprocessor mess */
1171 /* is to avoid it in all cases, at least on common architectures */
1172 /* or when using a recent enough gcc version (>= 4.6) */
1173#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1174 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1175 #define ECB_LITTLE_ENDIAN 1
1176 return 0x44332211;
1177#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1178 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1179 #define ECB_BIG_ENDIAN 1
1180 return 0x11223344;
1181#else
1182 union
1183 {
1184 uint8_t c[4];
1185 uint32_t u;
1186 } u = { 0x11, 0x22, 0x33, 0x44 };
1187 return u.u;
1188#endif
1189}
1190
1191ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1192ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1193ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1194ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1195
1196#if ECB_GCC_VERSION(3,0) || ECB_C99
1197 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1198#else
1199 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1200#endif
1201
1202#if ECB_CPP
1203 template<typename T>
1204 static inline T ecb_div_rd (T val, T div)
1205 {
1206 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1207 }
1208 template<typename T>
1209 static inline T ecb_div_ru (T val, T div)
1210 {
1211 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1212 }
1213#else
1214 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1215 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1216#endif
1217
1218#if ecb_cplusplus_does_not_suck
1219 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1220 template<typename T, int N>
1221 static inline int ecb_array_length (const T (&arr)[N])
1222 {
1223 return N;
1224 }
1225#else
1226 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1227#endif
1228
1229ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1230ecb_function_ ecb_const uint32_t
1231ecb_binary16_to_binary32 (uint32_t x)
1232{
1233 unsigned int s = (x & 0x8000) << (31 - 15);
1234 int e = (x >> 10) & 0x001f;
1235 unsigned int m = x & 0x03ff;
1236
1237 if (ecb_expect_false (e == 31))
1238 /* infinity or NaN */
1239 e = 255 - (127 - 15);
1240 else if (ecb_expect_false (!e))
1241 {
1242 if (ecb_expect_true (!m))
1243 /* zero, handled by code below by forcing e to 0 */
1244 e = 0 - (127 - 15);
1245 else
1246 {
1247 /* subnormal, renormalise */
1248 unsigned int s = 10 - ecb_ld32 (m);
1249
1250 m = (m << s) & 0x3ff; /* mask implicit bit */
1251 e -= s - 1;
1252 }
1253 }
1254
1255 /* e and m now are normalised, or zero, (or inf or nan) */
1256 e += 127 - 15;
1257
1258 return s | (e << 23) | (m << (23 - 10));
1259}
1260
1261ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1262ecb_function_ ecb_const uint16_t
1263ecb_binary32_to_binary16 (uint32_t x)
1264{
1265 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1266 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1267 unsigned int m = x & 0x007fffff;
1268
1269 x &= 0x7fffffff;
1270
1271 /* if it's within range of binary16 normals, use fast path */
1272 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1273 {
1274 /* mantissa round-to-even */
1275 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1276
1277 /* handle overflow */
1278 if (ecb_expect_false (m >= 0x00800000))
1279 {
1280 m >>= 1;
1281 e += 1;
1282 }
1283
1284 return s | (e << 10) | (m >> (23 - 10));
1285 }
1286
1287 /* handle large numbers and infinity */
1288 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1289 return s | 0x7c00;
1290
1291 /* handle zero, subnormals and small numbers */
1292 if (ecb_expect_true (x < 0x38800000))
1293 {
1294 /* zero */
1295 if (ecb_expect_true (!x))
1296 return s;
1297
1298 /* handle subnormals */
1299
1300 /* too small, will be zero */
1301 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1302 return s;
1303
1304 m |= 0x00800000; /* make implicit bit explicit */
1305
1306 /* very tricky - we need to round to the nearest e (+10) bit value */
1307 {
1308 unsigned int bits = 14 - e;
1309 unsigned int half = (1 << (bits - 1)) - 1;
1310 unsigned int even = (m >> bits) & 1;
1311
1312 /* if this overflows, we will end up with a normalised number */
1313 m = (m + half + even) >> bits;
1314 }
1315
1316 return s | m;
1317 }
1318
1319 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1320 m >>= 13;
1321
1322 return s | 0x7c00 | m | !m;
1323}
1324
1325/*******************************************************************************/
1326/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1327
1328/* basically, everything uses "ieee pure-endian" floating point numbers */
1329/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1330#if 0 \
1331 || __i386 || __i386__ \
1332 || ECB_GCC_AMD64 \
1333 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1334 || defined __s390__ || defined __s390x__ \
1335 || defined __mips__ \
1336 || defined __alpha__ \
1337 || defined __hppa__ \
1338 || defined __ia64__ \
1339 || defined __m68k__ \
1340 || defined __m88k__ \
1341 || defined __sh__ \
1342 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1343 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1344 || defined __aarch64__
1345 #define ECB_STDFP 1
1346 #include <string.h> /* for memcpy */
1347#else
1348 #define ECB_STDFP 0
1349#endif
1350
1351#ifndef ECB_NO_LIBM
1352
1353 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1354
1355 /* only the oldest of old doesn't have this one. solaris. */
1356 #ifdef INFINITY
1357 #define ECB_INFINITY INFINITY
1358 #else
1359 #define ECB_INFINITY HUGE_VAL
1360 #endif
1361
1362 #ifdef NAN
1363 #define ECB_NAN NAN
1364 #else
1365 #define ECB_NAN ECB_INFINITY
1366 #endif
1367
1368 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1369 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1370 #define ecb_frexpf(x,e) frexpf ((x), (e))
1371 #else
1372 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1373 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1374 #endif
1375
1376 /* convert a float to ieee single/binary32 */
1377 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1378 ecb_function_ ecb_const uint32_t
1379 ecb_float_to_binary32 (float x)
1380 {
1381 uint32_t r;
1382
1383 #if ECB_STDFP
1384 memcpy (&r, &x, 4);
1385 #else
1386 /* slow emulation, works for anything but -0 */
1387 uint32_t m;
1388 int e;
1389
1390 if (x == 0e0f ) return 0x00000000U;
1391 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1392 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1393 if (x != x ) return 0x7fbfffffU;
1394
1395 m = ecb_frexpf (x, &e) * 0x1000000U;
1396
1397 r = m & 0x80000000U;
1398
1399 if (r)
1400 m = -m;
1401
1402 if (e <= -126)
1403 {
1404 m &= 0xffffffU;
1405 m >>= (-125 - e);
1406 e = -126;
1407 }
1408
1409 r |= (e + 126) << 23;
1410 r |= m & 0x7fffffU;
1411 #endif
1412
1413 return r;
1414 }
1415
1416 /* converts an ieee single/binary32 to a float */
1417 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1418 ecb_function_ ecb_const float
1419 ecb_binary32_to_float (uint32_t x)
1420 {
1421 float r;
1422
1423 #if ECB_STDFP
1424 memcpy (&r, &x, 4);
1425 #else
1426 /* emulation, only works for normals and subnormals and +0 */
1427 int neg = x >> 31;
1428 int e = (x >> 23) & 0xffU;
1429
1430 x &= 0x7fffffU;
1431
1432 if (e)
1433 x |= 0x800000U;
1434 else
1435 e = 1;
1436
1437 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1438 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1439
1440 r = neg ? -r : r;
1441 #endif
1442
1443 return r;
1444 }
1445
1446 /* convert a double to ieee double/binary64 */
1447 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1448 ecb_function_ ecb_const uint64_t
1449 ecb_double_to_binary64 (double x)
1450 {
1451 uint64_t r;
1452
1453 #if ECB_STDFP
1454 memcpy (&r, &x, 8);
1455 #else
1456 /* slow emulation, works for anything but -0 */
1457 uint64_t m;
1458 int e;
1459
1460 if (x == 0e0 ) return 0x0000000000000000U;
1461 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1462 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1463 if (x != x ) return 0X7ff7ffffffffffffU;
1464
1465 m = frexp (x, &e) * 0x20000000000000U;
1466
1467 r = m & 0x8000000000000000;;
1468
1469 if (r)
1470 m = -m;
1471
1472 if (e <= -1022)
1473 {
1474 m &= 0x1fffffffffffffU;
1475 m >>= (-1021 - e);
1476 e = -1022;
1477 }
1478
1479 r |= ((uint64_t)(e + 1022)) << 52;
1480 r |= m & 0xfffffffffffffU;
1481 #endif
1482
1483 return r;
1484 }
1485
1486 /* converts an ieee double/binary64 to a double */
1487 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1488 ecb_function_ ecb_const double
1489 ecb_binary64_to_double (uint64_t x)
1490 {
1491 double r;
1492
1493 #if ECB_STDFP
1494 memcpy (&r, &x, 8);
1495 #else
1496 /* emulation, only works for normals and subnormals and +0 */
1497 int neg = x >> 63;
1498 int e = (x >> 52) & 0x7ffU;
1499
1500 x &= 0xfffffffffffffU;
1501
1502 if (e)
1503 x |= 0x10000000000000U;
1504 else
1505 e = 1;
1506
1507 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1508 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1509
1510 r = neg ? -r : r;
1511 #endif
1512
1513 return r;
1514 }
1515
1516 /* convert a float to ieee half/binary16 */
1517 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1518 ecb_function_ ecb_const uint16_t
1519 ecb_float_to_binary16 (float x)
1520 {
1521 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1522 }
1523
1524 /* convert an ieee half/binary16 to float */
1525 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1526 ecb_function_ ecb_const float
1527 ecb_binary16_to_float (uint16_t x)
1528 {
1529 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1530 }
1531
1532#endif
1533
1534#endif
1535
1536/* ECB.H END */
1537
1538#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1539/* if your architecture doesn't need memory fences, e.g. because it is
1540 * single-cpu/core, or if you use libev in a project that doesn't use libev
1541 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1542 * libev, in which cases the memory fences become nops.
1543 * alternatively, you can remove this #error and link against libpthread,
1544 * which will then provide the memory fences.
1545 */
1546# error "memory fences not defined for your architecture, please report"
1547#endif
1548
1549#ifndef ECB_MEMORY_FENCE
1550# define ECB_MEMORY_FENCE do { } while (0)
1551# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1552# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1553#endif
1554
1555#define expect_false(cond) ecb_expect_false (cond)
1556#define expect_true(cond) ecb_expect_true (cond)
1557#define noinline ecb_noinline
1558
1559#define inline_size ecb_inline
1560
1561#if EV_FEATURE_CODE
1562# define inline_speed ecb_inline
1563#else
1564# define inline_speed noinline static
1565#endif
1566
157#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1567#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1568
1569#if EV_MINPRI == EV_MAXPRI
1570# define ABSPRI(w) (((W)w), 0)
1571#else
158#define ABSPRI(w) ((w)->priority - EV_MINPRI) 1572# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1573#endif
159 1574
1575#define EMPTY /* required for microsofts broken pseudo-c compiler */
1576
160typedef struct ev_watcher *W; 1577typedef ev_watcher *W;
161typedef struct ev_watcher_list *WL; 1578typedef ev_watcher_list *WL;
162typedef struct ev_watcher_time *WT; 1579typedef ev_watcher_time *WT;
163 1580
1581#define ev_active(w) ((W)(w))->active
1582#define ev_at(w) ((WT)(w))->at
1583
1584#if EV_USE_REALTIME
1585/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1586/* giving it a reasonably high chance of working on typical architectures */
1587static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1588#endif
1589
1590#if EV_USE_MONOTONIC
164static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1591static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1592#endif
165 1593
1594#ifndef EV_FD_TO_WIN32_HANDLE
1595# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1596#endif
1597#ifndef EV_WIN32_HANDLE_TO_FD
1598# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1599#endif
1600#ifndef EV_WIN32_CLOSE_FD
1601# define EV_WIN32_CLOSE_FD(fd) close (fd)
1602#endif
1603
166#ifdef WIN32 1604#ifdef _WIN32
167# include "ev_win32.c" 1605# include "ev_win32.c"
168#endif 1606#endif
169 1607
170/*****************************************************************************/ 1608/*****************************************************************************/
171 1609
1610#if EV_USE_LINUXAIO
1611# include <linux/aio_abi.h> /* probably only needed for aio_context_t */
1612#endif
1613
1614/* define a suitable floor function (only used by periodics atm) */
1615
1616#if EV_USE_FLOOR
1617# include <math.h>
1618# define ev_floor(v) floor (v)
1619#else
1620
1621#include <float.h>
1622
1623/* a floor() replacement function, should be independent of ev_tstamp type */
1624noinline
1625static ev_tstamp
1626ev_floor (ev_tstamp v)
1627{
1628 /* the choice of shift factor is not terribly important */
1629#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1630 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1631#else
1632 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1633#endif
1634
1635 /* argument too large for an unsigned long? */
1636 if (expect_false (v >= shift))
1637 {
1638 ev_tstamp f;
1639
1640 if (v == v - 1.)
1641 return v; /* very large number */
1642
1643 f = shift * ev_floor (v * (1. / shift));
1644 return f + ev_floor (v - f);
1645 }
1646
1647 /* special treatment for negative args? */
1648 if (expect_false (v < 0.))
1649 {
1650 ev_tstamp f = -ev_floor (-v);
1651
1652 return f - (f == v ? 0 : 1);
1653 }
1654
1655 /* fits into an unsigned long */
1656 return (unsigned long)v;
1657}
1658
1659#endif
1660
1661/*****************************************************************************/
1662
1663#ifdef __linux
1664# include <sys/utsname.h>
1665#endif
1666
1667noinline ecb_cold
1668static unsigned int
1669ev_linux_version (void)
1670{
1671#ifdef __linux
1672 unsigned int v = 0;
1673 struct utsname buf;
1674 int i;
1675 char *p = buf.release;
1676
1677 if (uname (&buf))
1678 return 0;
1679
1680 for (i = 3+1; --i; )
1681 {
1682 unsigned int c = 0;
1683
1684 for (;;)
1685 {
1686 if (*p >= '0' && *p <= '9')
1687 c = c * 10 + *p++ - '0';
1688 else
1689 {
1690 p += *p == '.';
1691 break;
1692 }
1693 }
1694
1695 v = (v << 8) | c;
1696 }
1697
1698 return v;
1699#else
1700 return 0;
1701#endif
1702}
1703
1704/*****************************************************************************/
1705
1706#if EV_AVOID_STDIO
1707noinline ecb_cold
1708static void
1709ev_printerr (const char *msg)
1710{
1711 write (STDERR_FILENO, msg, strlen (msg));
1712}
1713#endif
1714
172static void (*syserr_cb)(const char *msg); 1715static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
173 1716
1717ecb_cold
1718void
174void ev_set_syserr_cb (void (*cb)(const char *msg)) 1719ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
175{ 1720{
176 syserr_cb = cb; 1721 syserr_cb = cb;
177} 1722}
178 1723
1724noinline ecb_cold
179static void 1725static void
180syserr (const char *msg) 1726ev_syserr (const char *msg)
181{ 1727{
182 if (!msg) 1728 if (!msg)
183 msg = "(libev) system error"; 1729 msg = "(libev) system error";
184 1730
185 if (syserr_cb) 1731 if (syserr_cb)
186 syserr_cb (msg); 1732 syserr_cb (msg);
187 else 1733 else
188 { 1734 {
1735#if EV_AVOID_STDIO
1736 ev_printerr (msg);
1737 ev_printerr (": ");
1738 ev_printerr (strerror (errno));
1739 ev_printerr ("\n");
1740#else
189 perror (msg); 1741 perror (msg);
1742#endif
190 abort (); 1743 abort ();
191 } 1744 }
192} 1745}
193 1746
194static void *(*alloc)(void *ptr, long size); 1747static void *
1748ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
1749{
1750 /* some systems, notably openbsd and darwin, fail to properly
1751 * implement realloc (x, 0) (as required by both ansi c-89 and
1752 * the single unix specification, so work around them here.
1753 * recently, also (at least) fedora and debian started breaking it,
1754 * despite documenting it otherwise.
1755 */
195 1756
1757 if (size)
1758 return realloc (ptr, size);
1759
1760 free (ptr);
1761 return 0;
1762}
1763
1764static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
1765
1766ecb_cold
1767void
196void ev_set_allocator (void *(*cb)(void *ptr, long size)) 1768ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
197{ 1769{
198 alloc = cb; 1770 alloc = cb;
199} 1771}
200 1772
201static void * 1773inline_speed void *
202ev_realloc (void *ptr, long size) 1774ev_realloc (void *ptr, long size)
203{ 1775{
204 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1776 ptr = alloc (ptr, size);
205 1777
206 if (!ptr && size) 1778 if (!ptr && size)
207 { 1779 {
1780#if EV_AVOID_STDIO
1781 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1782#else
208 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1783 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1784#endif
209 abort (); 1785 abort ();
210 } 1786 }
211 1787
212 return ptr; 1788 return ptr;
213} 1789}
215#define ev_malloc(size) ev_realloc (0, (size)) 1791#define ev_malloc(size) ev_realloc (0, (size))
216#define ev_free(ptr) ev_realloc ((ptr), 0) 1792#define ev_free(ptr) ev_realloc ((ptr), 0)
217 1793
218/*****************************************************************************/ 1794/*****************************************************************************/
219 1795
1796/* set in reify when reification needed */
1797#define EV_ANFD_REIFY 1
1798
1799/* file descriptor info structure */
220typedef struct 1800typedef struct
221{ 1801{
222 WL head; 1802 WL head;
223 unsigned char events; 1803 unsigned char events; /* the events watched for */
1804 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1805 unsigned char emask; /* some backends store the actual kernel mask in here */
224 unsigned char reify; 1806 unsigned char unused;
1807#if EV_USE_EPOLL
1808 unsigned int egen; /* generation counter to counter epoll bugs */
1809#endif
1810#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1811 SOCKET handle;
1812#endif
1813#if EV_USE_IOCP
1814 OVERLAPPED or, ow;
1815#endif
225} ANFD; 1816} ANFD;
226 1817
1818/* stores the pending event set for a given watcher */
227typedef struct 1819typedef struct
228{ 1820{
229 W w; 1821 W w;
230 int events; 1822 int events; /* the pending event set for the given watcher */
231} ANPENDING; 1823} ANPENDING;
1824
1825#if EV_USE_INOTIFY
1826/* hash table entry per inotify-id */
1827typedef struct
1828{
1829 WL head;
1830} ANFS;
1831#endif
1832
1833/* Heap Entry */
1834#if EV_HEAP_CACHE_AT
1835 /* a heap element */
1836 typedef struct {
1837 ev_tstamp at;
1838 WT w;
1839 } ANHE;
1840
1841 #define ANHE_w(he) (he).w /* access watcher, read-write */
1842 #define ANHE_at(he) (he).at /* access cached at, read-only */
1843 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1844#else
1845 /* a heap element */
1846 typedef WT ANHE;
1847
1848 #define ANHE_w(he) (he)
1849 #define ANHE_at(he) (he)->at
1850 #define ANHE_at_cache(he)
1851#endif
232 1852
233#if EV_MULTIPLICITY 1853#if EV_MULTIPLICITY
234 1854
235 struct ev_loop 1855 struct ev_loop
236 { 1856 {
237 ev_tstamp ev_rt_now; 1857 ev_tstamp ev_rt_now;
1858 #define ev_rt_now ((loop)->ev_rt_now)
238 #define VAR(name,decl) decl; 1859 #define VAR(name,decl) decl;
239 #include "ev_vars.h" 1860 #include "ev_vars.h"
240 #undef VAR 1861 #undef VAR
241 }; 1862 };
242 #include "ev_wrap.h" 1863 #include "ev_wrap.h"
243 1864
244 struct ev_loop default_loop_struct; 1865 static struct ev_loop default_loop_struct;
245 static struct ev_loop *default_loop; 1866 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
246 1867
247#else 1868#else
248 1869
249 ev_tstamp ev_rt_now; 1870 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
250 #define VAR(name,decl) static decl; 1871 #define VAR(name,decl) static decl;
251 #include "ev_vars.h" 1872 #include "ev_vars.h"
252 #undef VAR 1873 #undef VAR
253 1874
254 static int default_loop; 1875 static int ev_default_loop_ptr;
255 1876
256#endif 1877#endif
1878
1879#if EV_FEATURE_API
1880# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1881# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1882# define EV_INVOKE_PENDING invoke_cb (EV_A)
1883#else
1884# define EV_RELEASE_CB (void)0
1885# define EV_ACQUIRE_CB (void)0
1886# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1887#endif
1888
1889#define EVBREAK_RECURSE 0x80
257 1890
258/*****************************************************************************/ 1891/*****************************************************************************/
259 1892
1893#ifndef EV_HAVE_EV_TIME
260ev_tstamp 1894ev_tstamp
261ev_time (void) 1895ev_time (void) EV_NOEXCEPT
262{ 1896{
263#if EV_USE_REALTIME 1897#if EV_USE_REALTIME
1898 if (expect_true (have_realtime))
1899 {
264 struct timespec ts; 1900 struct timespec ts;
265 clock_gettime (CLOCK_REALTIME, &ts); 1901 clock_gettime (CLOCK_REALTIME, &ts);
266 return ts.tv_sec + ts.tv_nsec * 1e-9; 1902 return ts.tv_sec + ts.tv_nsec * 1e-9;
267#else 1903 }
1904#endif
1905
268 struct timeval tv; 1906 struct timeval tv;
269 gettimeofday (&tv, 0); 1907 gettimeofday (&tv, 0);
270 return tv.tv_sec + tv.tv_usec * 1e-6; 1908 return tv.tv_sec + tv.tv_usec * 1e-6;
271#endif
272} 1909}
1910#endif
273 1911
274inline ev_tstamp 1912inline_size ev_tstamp
275get_clock (void) 1913get_clock (void)
276{ 1914{
277#if EV_USE_MONOTONIC 1915#if EV_USE_MONOTONIC
278 if (expect_true (have_monotonic)) 1916 if (expect_true (have_monotonic))
279 { 1917 {
286 return ev_time (); 1924 return ev_time ();
287} 1925}
288 1926
289#if EV_MULTIPLICITY 1927#if EV_MULTIPLICITY
290ev_tstamp 1928ev_tstamp
291ev_now (EV_P) 1929ev_now (EV_P) EV_NOEXCEPT
292{ 1930{
293 return ev_rt_now; 1931 return ev_rt_now;
294} 1932}
295#endif 1933#endif
296 1934
297#define array_roundsize(type,n) ((n) | 4 & ~3) 1935void
1936ev_sleep (ev_tstamp delay) EV_NOEXCEPT
1937{
1938 if (delay > 0.)
1939 {
1940#if EV_USE_NANOSLEEP
1941 struct timespec ts;
1942
1943 EV_TS_SET (ts, delay);
1944 nanosleep (&ts, 0);
1945#elif defined _WIN32
1946 /* maybe this should round up, as ms is very low resolution */
1947 /* compared to select (µs) or nanosleep (ns) */
1948 Sleep ((unsigned long)(delay * 1e3));
1949#else
1950 struct timeval tv;
1951
1952 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1953 /* something not guaranteed by newer posix versions, but guaranteed */
1954 /* by older ones */
1955 EV_TV_SET (tv, delay);
1956 select (0, 0, 0, 0, &tv);
1957#endif
1958 }
1959}
1960
1961/*****************************************************************************/
1962
1963#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1964
1965/* find a suitable new size for the given array, */
1966/* hopefully by rounding to a nice-to-malloc size */
1967inline_size int
1968array_nextsize (int elem, int cur, int cnt)
1969{
1970 int ncur = cur + 1;
1971
1972 do
1973 ncur <<= 1;
1974 while (cnt > ncur);
1975
1976 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1977 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1978 {
1979 ncur *= elem;
1980 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1981 ncur = ncur - sizeof (void *) * 4;
1982 ncur /= elem;
1983 }
1984
1985 return ncur;
1986}
1987
1988noinline ecb_cold
1989static void *
1990array_realloc (int elem, void *base, int *cur, int cnt)
1991{
1992 *cur = array_nextsize (elem, *cur, cnt);
1993 return ev_realloc (base, elem * *cur);
1994}
1995
1996#define array_needsize_noinit(base,offset,count)
1997
1998#define array_needsize_zerofill(base,offset,count) \
1999 memset ((void *)(base + offset), 0, sizeof (*(base)) * (count))
298 2000
299#define array_needsize(type,base,cur,cnt,init) \ 2001#define array_needsize(type,base,cur,cnt,init) \
300 if (expect_false ((cnt) > cur)) \ 2002 if (expect_false ((cnt) > (cur))) \
301 { \ 2003 { \
302 int newcnt = cur; \ 2004 ecb_unused int ocur_ = (cur); \
303 do \ 2005 (base) = (type *)array_realloc \
304 { \ 2006 (sizeof (type), (base), &(cur), (cnt)); \
305 newcnt = array_roundsize (type, newcnt << 1); \ 2007 init ((base), ocur_, ((cur) - ocur_)); \
306 } \
307 while ((cnt) > newcnt); \
308 \
309 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
310 init (base + cur, newcnt - cur); \
311 cur = newcnt; \
312 } 2008 }
313 2009
2010#if 0
314#define array_slim(type,stem) \ 2011#define array_slim(type,stem) \
315 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 2012 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
316 { \ 2013 { \
317 stem ## max = array_roundsize (stem ## cnt >> 1); \ 2014 stem ## max = array_roundsize (stem ## cnt >> 1); \
318 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 2015 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
319 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 2016 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
320 } 2017 }
321 2018#endif
322/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
323/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
324#define array_free_microshit(stem) \
325 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
326 2019
327#define array_free(stem, idx) \ 2020#define array_free(stem, idx) \
328 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 2021 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
329 2022
330/*****************************************************************************/ 2023/*****************************************************************************/
331 2024
2025/* dummy callback for pending events */
2026noinline
332static void 2027static void
333anfds_init (ANFD *base, int count) 2028pendingcb (EV_P_ ev_prepare *w, int revents)
334{ 2029{
335 while (count--)
336 {
337 base->head = 0;
338 base->events = EV_NONE;
339 base->reify = 0;
340
341 ++base;
342 }
343} 2030}
344 2031
2032noinline
345void 2033void
346ev_feed_event (EV_P_ void *w, int revents) 2034ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
347{ 2035{
348 W w_ = (W)w; 2036 W w_ = (W)w;
2037 int pri = ABSPRI (w_);
349 2038
350 if (w_->pending) 2039 if (expect_false (w_->pending))
2040 pendings [pri][w_->pending - 1].events |= revents;
2041 else
351 { 2042 {
2043 w_->pending = ++pendingcnt [pri];
2044 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
2045 pendings [pri][w_->pending - 1].w = w_;
352 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 2046 pendings [pri][w_->pending - 1].events = revents;
353 return;
354 } 2047 }
355 2048
356 w_->pending = ++pendingcnt [ABSPRI (w_)]; 2049 pendingpri = NUMPRI - 1;
357 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
358 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
359 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
360} 2050}
361 2051
362static void 2052inline_speed void
2053feed_reverse (EV_P_ W w)
2054{
2055 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2056 rfeeds [rfeedcnt++] = w;
2057}
2058
2059inline_size void
2060feed_reverse_done (EV_P_ int revents)
2061{
2062 do
2063 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2064 while (rfeedcnt);
2065}
2066
2067inline_speed void
363queue_events (EV_P_ W *events, int eventcnt, int type) 2068queue_events (EV_P_ W *events, int eventcnt, int type)
364{ 2069{
365 int i; 2070 int i;
366 2071
367 for (i = 0; i < eventcnt; ++i) 2072 for (i = 0; i < eventcnt; ++i)
368 ev_feed_event (EV_A_ events [i], type); 2073 ev_feed_event (EV_A_ events [i], type);
369} 2074}
370 2075
2076/*****************************************************************************/
2077
371inline void 2078inline_speed void
372fd_event (EV_P_ int fd, int revents) 2079fd_event_nocheck (EV_P_ int fd, int revents)
373{ 2080{
374 ANFD *anfd = anfds + fd; 2081 ANFD *anfd = anfds + fd;
375 struct ev_io *w; 2082 ev_io *w;
376 2083
377 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 2084 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
378 { 2085 {
379 int ev = w->events & revents; 2086 int ev = w->events & revents;
380 2087
381 if (ev) 2088 if (ev)
382 ev_feed_event (EV_A_ (W)w, ev); 2089 ev_feed_event (EV_A_ (W)w, ev);
383 } 2090 }
384} 2091}
385 2092
386void 2093/* do not submit kernel events for fds that have reify set */
2094/* because that means they changed while we were polling for new events */
2095inline_speed void
387ev_feed_fd_event (EV_P_ int fd, int revents) 2096fd_event (EV_P_ int fd, int revents)
388{ 2097{
2098 ANFD *anfd = anfds + fd;
2099
2100 if (expect_true (!anfd->reify))
389 fd_event (EV_A_ fd, revents); 2101 fd_event_nocheck (EV_A_ fd, revents);
390} 2102}
391 2103
392/*****************************************************************************/ 2104void
2105ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
2106{
2107 if (fd >= 0 && fd < anfdmax)
2108 fd_event_nocheck (EV_A_ fd, revents);
2109}
393 2110
394static void 2111/* make sure the external fd watch events are in-sync */
2112/* with the kernel/libev internal state */
2113inline_size void
395fd_reify (EV_P) 2114fd_reify (EV_P)
396{ 2115{
397 int i; 2116 int i;
398 2117
2118#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
399 for (i = 0; i < fdchangecnt; ++i) 2119 for (i = 0; i < fdchangecnt; ++i)
400 { 2120 {
401 int fd = fdchanges [i]; 2121 int fd = fdchanges [i];
402 ANFD *anfd = anfds + fd; 2122 ANFD *anfd = anfds + fd;
2123
2124 if (anfd->reify & EV__IOFDSET && anfd->head)
2125 {
2126 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2127
2128 if (handle != anfd->handle)
2129 {
2130 unsigned long arg;
2131
2132 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2133
2134 /* handle changed, but fd didn't - we need to do it in two steps */
2135 backend_modify (EV_A_ fd, anfd->events, 0);
2136 anfd->events = 0;
2137 anfd->handle = handle;
2138 }
2139 }
2140 }
2141#endif
2142
2143 for (i = 0; i < fdchangecnt; ++i)
2144 {
2145 int fd = fdchanges [i];
2146 ANFD *anfd = anfds + fd;
403 struct ev_io *w; 2147 ev_io *w;
404 2148
405 int events = 0; 2149 unsigned char o_events = anfd->events;
406 2150 unsigned char o_reify = anfd->reify;
407 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
408 events |= w->events;
409 2151
410 anfd->reify = 0; 2152 anfd->reify = 0;
411 2153
412 method_modify (EV_A_ fd, anfd->events, events); 2154 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
2155 {
413 anfd->events = events; 2156 anfd->events = 0;
2157
2158 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2159 anfd->events |= (unsigned char)w->events;
2160
2161 if (o_events != anfd->events)
2162 o_reify = EV__IOFDSET; /* actually |= */
2163 }
2164
2165 if (o_reify & EV__IOFDSET)
2166 backend_modify (EV_A_ fd, o_events, anfd->events);
414 } 2167 }
415 2168
416 fdchangecnt = 0; 2169 fdchangecnt = 0;
417} 2170}
418 2171
419static void 2172/* something about the given fd changed */
2173inline_size
2174void
420fd_change (EV_P_ int fd) 2175fd_change (EV_P_ int fd, int flags)
421{ 2176{
422 if (anfds [fd].reify) 2177 unsigned char reify = anfds [fd].reify;
423 return;
424
425 anfds [fd].reify = 1; 2178 anfds [fd].reify |= flags;
426 2179
2180 if (expect_true (!reify))
2181 {
427 ++fdchangecnt; 2182 ++fdchangecnt;
428 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 2183 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
429 fdchanges [fdchangecnt - 1] = fd; 2184 fdchanges [fdchangecnt - 1] = fd;
2185 }
430} 2186}
431 2187
432static void 2188/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2189inline_speed ecb_cold void
433fd_kill (EV_P_ int fd) 2190fd_kill (EV_P_ int fd)
434{ 2191{
435 struct ev_io *w; 2192 ev_io *w;
436 2193
437 while ((w = (struct ev_io *)anfds [fd].head)) 2194 while ((w = (ev_io *)anfds [fd].head))
438 { 2195 {
439 ev_io_stop (EV_A_ w); 2196 ev_io_stop (EV_A_ w);
440 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2197 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
441 } 2198 }
442} 2199}
443 2200
444static int 2201/* check whether the given fd is actually valid, for error recovery */
2202inline_size ecb_cold int
445fd_valid (int fd) 2203fd_valid (int fd)
446{ 2204{
447#ifdef WIN32 2205#ifdef _WIN32
448 return !!win32_get_osfhandle (fd); 2206 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
449#else 2207#else
450 return fcntl (fd, F_GETFD) != -1; 2208 return fcntl (fd, F_GETFD) != -1;
451#endif 2209#endif
452} 2210}
453 2211
454/* called on EBADF to verify fds */ 2212/* called on EBADF to verify fds */
2213noinline ecb_cold
455static void 2214static void
456fd_ebadf (EV_P) 2215fd_ebadf (EV_P)
457{ 2216{
458 int fd; 2217 int fd;
459 2218
460 for (fd = 0; fd < anfdmax; ++fd) 2219 for (fd = 0; fd < anfdmax; ++fd)
461 if (anfds [fd].events) 2220 if (anfds [fd].events)
462 if (!fd_valid (fd) == -1 && errno == EBADF) 2221 if (!fd_valid (fd) && errno == EBADF)
463 fd_kill (EV_A_ fd); 2222 fd_kill (EV_A_ fd);
464} 2223}
465 2224
466/* called on ENOMEM in select/poll to kill some fds and retry */ 2225/* called on ENOMEM in select/poll to kill some fds and retry */
2226noinline ecb_cold
467static void 2227static void
468fd_enomem (EV_P) 2228fd_enomem (EV_P)
469{ 2229{
470 int fd; 2230 int fd;
471 2231
472 for (fd = anfdmax; fd--; ) 2232 for (fd = anfdmax; fd--; )
473 if (anfds [fd].events) 2233 if (anfds [fd].events)
474 { 2234 {
475 fd_kill (EV_A_ fd); 2235 fd_kill (EV_A_ fd);
476 return; 2236 break;
477 } 2237 }
478} 2238}
479 2239
480/* usually called after fork if method needs to re-arm all fds from scratch */ 2240/* usually called after fork if backend needs to re-arm all fds from scratch */
2241noinline
481static void 2242static void
482fd_rearm_all (EV_P) 2243fd_rearm_all (EV_P)
483{ 2244{
484 int fd; 2245 int fd;
485 2246
486 /* this should be highly optimised to not do anything but set a flag */
487 for (fd = 0; fd < anfdmax; ++fd) 2247 for (fd = 0; fd < anfdmax; ++fd)
488 if (anfds [fd].events) 2248 if (anfds [fd].events)
489 { 2249 {
490 anfds [fd].events = 0; 2250 anfds [fd].events = 0;
491 fd_change (EV_A_ fd); 2251 anfds [fd].emask = 0;
2252 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
492 } 2253 }
493} 2254}
494 2255
2256/* used to prepare libev internal fd's */
2257/* this is not fork-safe */
2258inline_speed void
2259fd_intern (int fd)
2260{
2261#ifdef _WIN32
2262 unsigned long arg = 1;
2263 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2264#else
2265 fcntl (fd, F_SETFD, FD_CLOEXEC);
2266 fcntl (fd, F_SETFL, O_NONBLOCK);
2267#endif
2268}
2269
495/*****************************************************************************/ 2270/*****************************************************************************/
496 2271
2272/*
2273 * the heap functions want a real array index. array index 0 is guaranteed to not
2274 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2275 * the branching factor of the d-tree.
2276 */
2277
2278/*
2279 * at the moment we allow libev the luxury of two heaps,
2280 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2281 * which is more cache-efficient.
2282 * the difference is about 5% with 50000+ watchers.
2283 */
2284#if EV_USE_4HEAP
2285
2286#define DHEAP 4
2287#define HEAP0 (DHEAP - 1) /* index of first element in heap */
2288#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2289#define UPHEAP_DONE(p,k) ((p) == (k))
2290
2291/* away from the root */
2292inline_speed void
2293downheap (ANHE *heap, int N, int k)
2294{
2295 ANHE he = heap [k];
2296 ANHE *E = heap + N + HEAP0;
2297
2298 for (;;)
2299 {
2300 ev_tstamp minat;
2301 ANHE *minpos;
2302 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2303
2304 /* find minimum child */
2305 if (expect_true (pos + DHEAP - 1 < E))
2306 {
2307 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2308 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2309 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2310 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2311 }
2312 else if (pos < E)
2313 {
2314 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2315 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2316 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2317 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2318 }
2319 else
2320 break;
2321
2322 if (ANHE_at (he) <= minat)
2323 break;
2324
2325 heap [k] = *minpos;
2326 ev_active (ANHE_w (*minpos)) = k;
2327
2328 k = minpos - heap;
2329 }
2330
2331 heap [k] = he;
2332 ev_active (ANHE_w (he)) = k;
2333}
2334
2335#else /* 4HEAP */
2336
2337#define HEAP0 1
2338#define HPARENT(k) ((k) >> 1)
2339#define UPHEAP_DONE(p,k) (!(p))
2340
2341/* away from the root */
2342inline_speed void
2343downheap (ANHE *heap, int N, int k)
2344{
2345 ANHE he = heap [k];
2346
2347 for (;;)
2348 {
2349 int c = k << 1;
2350
2351 if (c >= N + HEAP0)
2352 break;
2353
2354 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2355 ? 1 : 0;
2356
2357 if (ANHE_at (he) <= ANHE_at (heap [c]))
2358 break;
2359
2360 heap [k] = heap [c];
2361 ev_active (ANHE_w (heap [k])) = k;
2362
2363 k = c;
2364 }
2365
2366 heap [k] = he;
2367 ev_active (ANHE_w (he)) = k;
2368}
2369#endif
2370
2371/* towards the root */
2372inline_speed void
2373upheap (ANHE *heap, int k)
2374{
2375 ANHE he = heap [k];
2376
2377 for (;;)
2378 {
2379 int p = HPARENT (k);
2380
2381 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2382 break;
2383
2384 heap [k] = heap [p];
2385 ev_active (ANHE_w (heap [k])) = k;
2386 k = p;
2387 }
2388
2389 heap [k] = he;
2390 ev_active (ANHE_w (he)) = k;
2391}
2392
2393/* move an element suitably so it is in a correct place */
2394inline_size void
2395adjustheap (ANHE *heap, int N, int k)
2396{
2397 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2398 upheap (heap, k);
2399 else
2400 downheap (heap, N, k);
2401}
2402
2403/* rebuild the heap: this function is used only once and executed rarely */
2404inline_size void
2405reheap (ANHE *heap, int N)
2406{
2407 int i;
2408
2409 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2410 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2411 for (i = 0; i < N; ++i)
2412 upheap (heap, i + HEAP0);
2413}
2414
2415/*****************************************************************************/
2416
2417/* associate signal watchers to a signal signal */
2418typedef struct
2419{
2420 EV_ATOMIC_T pending;
2421#if EV_MULTIPLICITY
2422 EV_P;
2423#endif
2424 WL head;
2425} ANSIG;
2426
2427static ANSIG signals [EV_NSIG - 1];
2428
2429/*****************************************************************************/
2430
2431#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2432
2433noinline ecb_cold
497static void 2434static void
498upheap (WT *heap, int k) 2435evpipe_init (EV_P)
499{ 2436{
500 WT w = heap [k]; 2437 if (!ev_is_active (&pipe_w))
501
502 while (k && heap [k >> 1]->at > w->at)
503 {
504 heap [k] = heap [k >> 1];
505 ((W)heap [k])->active = k + 1;
506 k >>= 1;
507 } 2438 {
2439 int fds [2];
508 2440
509 heap [k] = w; 2441# if EV_USE_EVENTFD
510 ((W)heap [k])->active = k + 1; 2442 fds [0] = -1;
2443 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2444 if (fds [1] < 0 && errno == EINVAL)
2445 fds [1] = eventfd (0, 0);
511 2446
512} 2447 if (fds [1] < 0)
2448# endif
2449 {
2450 while (pipe (fds))
2451 ev_syserr ("(libev) error creating signal/async pipe");
513 2452
2453 fd_intern (fds [0]);
2454 }
2455
2456 evpipe [0] = fds [0];
2457
2458 if (evpipe [1] < 0)
2459 evpipe [1] = fds [1]; /* first call, set write fd */
2460 else
2461 {
2462 /* on subsequent calls, do not change evpipe [1] */
2463 /* so that evpipe_write can always rely on its value. */
2464 /* this branch does not do anything sensible on windows, */
2465 /* so must not be executed on windows */
2466
2467 dup2 (fds [1], evpipe [1]);
2468 close (fds [1]);
2469 }
2470
2471 fd_intern (evpipe [1]);
2472
2473 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2474 ev_io_start (EV_A_ &pipe_w);
2475 ev_unref (EV_A); /* watcher should not keep loop alive */
2476 }
2477}
2478
2479inline_speed void
2480evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2481{
2482 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2483
2484 if (expect_true (*flag))
2485 return;
2486
2487 *flag = 1;
2488 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2489
2490 pipe_write_skipped = 1;
2491
2492 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2493
2494 if (pipe_write_wanted)
2495 {
2496 int old_errno;
2497
2498 pipe_write_skipped = 0;
2499 ECB_MEMORY_FENCE_RELEASE;
2500
2501 old_errno = errno; /* save errno because write will clobber it */
2502
2503#if EV_USE_EVENTFD
2504 if (evpipe [0] < 0)
2505 {
2506 uint64_t counter = 1;
2507 write (evpipe [1], &counter, sizeof (uint64_t));
2508 }
2509 else
2510#endif
2511 {
2512#ifdef _WIN32
2513 WSABUF buf;
2514 DWORD sent;
2515 buf.buf = (char *)&buf;
2516 buf.len = 1;
2517 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2518#else
2519 write (evpipe [1], &(evpipe [1]), 1);
2520#endif
2521 }
2522
2523 errno = old_errno;
2524 }
2525}
2526
2527/* called whenever the libev signal pipe */
2528/* got some events (signal, async) */
514static void 2529static void
515downheap (WT *heap, int N, int k) 2530pipecb (EV_P_ ev_io *iow, int revents)
516{ 2531{
517 WT w = heap [k]; 2532 int i;
518 2533
519 while (k < (N >> 1)) 2534 if (revents & EV_READ)
520 {
521 int j = k << 1;
522
523 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
524 ++j;
525
526 if (w->at <= heap [j]->at)
527 break;
528
529 heap [k] = heap [j];
530 ((W)heap [k])->active = k + 1;
531 k = j;
532 } 2535 {
533 2536#if EV_USE_EVENTFD
534 heap [k] = w; 2537 if (evpipe [0] < 0)
535 ((W)heap [k])->active = k + 1; 2538 {
536} 2539 uint64_t counter;
537 2540 read (evpipe [1], &counter, sizeof (uint64_t));
538inline void 2541 }
539adjustheap (WT *heap, int N, int k, ev_tstamp at)
540{
541 ev_tstamp old_at = heap [k]->at;
542 heap [k]->at = at;
543
544 if (old_at < at)
545 downheap (heap, N, k);
546 else 2542 else
547 upheap (heap, k); 2543#endif
2544 {
2545 char dummy[4];
2546#ifdef _WIN32
2547 WSABUF buf;
2548 DWORD recvd;
2549 DWORD flags = 0;
2550 buf.buf = dummy;
2551 buf.len = sizeof (dummy);
2552 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2553#else
2554 read (evpipe [0], &dummy, sizeof (dummy));
2555#endif
2556 }
2557 }
2558
2559 pipe_write_skipped = 0;
2560
2561 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2562
2563#if EV_SIGNAL_ENABLE
2564 if (sig_pending)
2565 {
2566 sig_pending = 0;
2567
2568 ECB_MEMORY_FENCE;
2569
2570 for (i = EV_NSIG - 1; i--; )
2571 if (expect_false (signals [i].pending))
2572 ev_feed_signal_event (EV_A_ i + 1);
2573 }
2574#endif
2575
2576#if EV_ASYNC_ENABLE
2577 if (async_pending)
2578 {
2579 async_pending = 0;
2580
2581 ECB_MEMORY_FENCE;
2582
2583 for (i = asynccnt; i--; )
2584 if (asyncs [i]->sent)
2585 {
2586 asyncs [i]->sent = 0;
2587 ECB_MEMORY_FENCE_RELEASE;
2588 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2589 }
2590 }
2591#endif
548} 2592}
549 2593
550/*****************************************************************************/ 2594/*****************************************************************************/
551 2595
552typedef struct 2596void
2597ev_feed_signal (int signum) EV_NOEXCEPT
553{ 2598{
554 WL head; 2599#if EV_MULTIPLICITY
555 sig_atomic_t volatile gotsig; 2600 EV_P;
556} ANSIG; 2601 ECB_MEMORY_FENCE_ACQUIRE;
2602 EV_A = signals [signum - 1].loop;
557 2603
558static ANSIG *signals; 2604 if (!EV_A)
559static int signalmax; 2605 return;
2606#endif
560 2607
561static int sigpipe [2]; 2608 signals [signum - 1].pending = 1;
562static sig_atomic_t volatile gotsig; 2609 evpipe_write (EV_A_ &sig_pending);
563static struct ev_io sigev; 2610}
564 2611
565static void 2612static void
566signals_init (ANSIG *base, int count)
567{
568 while (count--)
569 {
570 base->head = 0;
571 base->gotsig = 0;
572
573 ++base;
574 }
575}
576
577static void
578sighandler (int signum) 2613ev_sighandler (int signum)
579{ 2614{
580#if WIN32
581 signal (signum, sighandler);
582#endif
583
584 signals [signum - 1].gotsig = 1;
585
586 if (!gotsig)
587 {
588 int old_errno = errno;
589 gotsig = 1;
590#ifdef WIN32 2615#ifdef _WIN32
591 send (sigpipe [1], &signum, 1, MSG_DONTWAIT); 2616 signal (signum, ev_sighandler);
592#else
593 write (sigpipe [1], &signum, 1);
594#endif 2617#endif
595 errno = old_errno;
596 }
597}
598 2618
2619 ev_feed_signal (signum);
2620}
2621
2622noinline
599void 2623void
600ev_feed_signal_event (EV_P_ int signum) 2624ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
601{ 2625{
602 WL w; 2626 WL w;
603 2627
2628 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2629 return;
2630
2631 --signum;
2632
604#if EV_MULTIPLICITY 2633#if EV_MULTIPLICITY
605 assert (("feeding signal events is only supported in the default loop", loop == default_loop)); 2634 /* it is permissible to try to feed a signal to the wrong loop */
606#endif 2635 /* or, likely more useful, feeding a signal nobody is waiting for */
607 2636
608 --signum; 2637 if (expect_false (signals [signum].loop != EV_A))
609
610 if (signum < 0 || signum >= signalmax)
611 return; 2638 return;
2639#endif
612 2640
613 signals [signum].gotsig = 0; 2641 signals [signum].pending = 0;
2642 ECB_MEMORY_FENCE_RELEASE;
614 2643
615 for (w = signals [signum].head; w; w = w->next) 2644 for (w = signals [signum].head; w; w = w->next)
616 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2645 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
617} 2646}
618 2647
2648#if EV_USE_SIGNALFD
619static void 2649static void
620sigcb (EV_P_ struct ev_io *iow, int revents) 2650sigfdcb (EV_P_ ev_io *iow, int revents)
621{ 2651{
622 int signum; 2652 struct signalfd_siginfo si[2], *sip; /* these structs are big */
623 2653
624#ifdef WIN32 2654 for (;;)
625 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT); 2655 {
626#else 2656 ssize_t res = read (sigfd, si, sizeof (si));
627 read (sigpipe [0], &revents, 1);
628#endif
629 gotsig = 0;
630 2657
631 for (signum = signalmax; signum--; ) 2658 /* not ISO-C, as res might be -1, but works with SuS */
632 if (signals [signum].gotsig) 2659 for (sip = si; (char *)sip < (char *)si + res; ++sip)
633 ev_feed_signal_event (EV_A_ signum + 1); 2660 ev_feed_signal_event (EV_A_ sip->ssi_signo);
634}
635 2661
636static void 2662 if (res < (ssize_t)sizeof (si))
637siginit (EV_P) 2663 break;
638{ 2664 }
639#ifndef WIN32
640 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
641 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
642
643 /* rather than sort out wether we really need nb, set it */
644 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
645 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
646#endif
647
648 ev_io_set (&sigev, sigpipe [0], EV_READ);
649 ev_io_start (EV_A_ &sigev);
650 ev_unref (EV_A); /* child watcher should not keep loop alive */
651} 2665}
2666#endif
2667
2668#endif
652 2669
653/*****************************************************************************/ 2670/*****************************************************************************/
654 2671
655static struct ev_child *childs [PID_HASHSIZE]; 2672#if EV_CHILD_ENABLE
2673static WL childs [EV_PID_HASHSIZE];
656 2674
657#ifndef WIN32
658
659static struct ev_signal childev; 2675static ev_signal childev;
2676
2677#ifndef WIFCONTINUED
2678# define WIFCONTINUED(status) 0
2679#endif
2680
2681/* handle a single child status event */
2682inline_speed void
2683child_reap (EV_P_ int chain, int pid, int status)
2684{
2685 ev_child *w;
2686 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2687
2688 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2689 {
2690 if ((w->pid == pid || !w->pid)
2691 && (!traced || (w->flags & 1)))
2692 {
2693 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2694 w->rpid = pid;
2695 w->rstatus = status;
2696 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2697 }
2698 }
2699}
660 2700
661#ifndef WCONTINUED 2701#ifndef WCONTINUED
662# define WCONTINUED 0 2702# define WCONTINUED 0
663#endif 2703#endif
664 2704
2705/* called on sigchld etc., calls waitpid */
665static void 2706static void
666child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
667{
668 struct ev_child *w;
669
670 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
671 if (w->pid == pid || !w->pid)
672 {
673 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
674 w->rpid = pid;
675 w->rstatus = status;
676 ev_feed_event (EV_A_ (W)w, EV_CHILD);
677 }
678}
679
680static void
681childcb (EV_P_ struct ev_signal *sw, int revents) 2707childcb (EV_P_ ev_signal *sw, int revents)
682{ 2708{
683 int pid, status; 2709 int pid, status;
684 2710
2711 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
685 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 2712 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
686 { 2713 if (!WCONTINUED
2714 || errno != EINVAL
2715 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2716 return;
2717
687 /* make sure we are called again until all childs have been reaped */ 2718 /* make sure we are called again until all children have been reaped */
2719 /* we need to do it this way so that the callback gets called before we continue */
688 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2720 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
689 2721
690 child_reap (EV_A_ sw, pid, pid, status); 2722 child_reap (EV_A_ pid, pid, status);
2723 if ((EV_PID_HASHSIZE) > 1)
691 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 2724 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
692 }
693} 2725}
694 2726
695#endif 2727#endif
696 2728
697/*****************************************************************************/ 2729/*****************************************************************************/
698 2730
2731#if EV_USE_IOCP
2732# include "ev_iocp.c"
2733#endif
2734#if EV_USE_PORT
2735# include "ev_port.c"
2736#endif
699#if EV_USE_KQUEUE 2737#if EV_USE_KQUEUE
700# include "ev_kqueue.c" 2738# include "ev_kqueue.c"
701#endif 2739#endif
702#if EV_USE_EPOLL 2740#if EV_USE_EPOLL
703# include "ev_epoll.c" 2741# include "ev_epoll.c"
704#endif 2742#endif
2743#if EV_USE_LINUXAIO
2744# include "ev_linuxaio.c"
2745#endif
705#if EV_USE_POLL 2746#if EV_USE_POLL
706# include "ev_poll.c" 2747# include "ev_poll.c"
707#endif 2748#endif
708#if EV_USE_SELECT 2749#if EV_USE_SELECT
709# include "ev_select.c" 2750# include "ev_select.c"
710#endif 2751#endif
711 2752
712int 2753ecb_cold int
713ev_version_major (void) 2754ev_version_major (void) EV_NOEXCEPT
714{ 2755{
715 return EV_VERSION_MAJOR; 2756 return EV_VERSION_MAJOR;
716} 2757}
717 2758
718int 2759ecb_cold int
719ev_version_minor (void) 2760ev_version_minor (void) EV_NOEXCEPT
720{ 2761{
721 return EV_VERSION_MINOR; 2762 return EV_VERSION_MINOR;
722} 2763}
723 2764
724/* return true if we are running with elevated privileges and should ignore env variables */ 2765/* return true if we are running with elevated privileges and should ignore env variables */
725static int 2766inline_size ecb_cold int
726enable_secure (void) 2767enable_secure (void)
727{ 2768{
728#ifdef WIN32 2769#ifdef _WIN32
729 return 0; 2770 return 0;
730#else 2771#else
731 return getuid () != geteuid () 2772 return getuid () != geteuid ()
732 || getgid () != getegid (); 2773 || getgid () != getegid ();
733#endif 2774#endif
734} 2775}
735 2776
736int 2777ecb_cold
737ev_method (EV_P) 2778unsigned int
2779ev_supported_backends (void) EV_NOEXCEPT
738{ 2780{
739 return method; 2781 unsigned int flags = 0;
740}
741 2782
2783 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2784 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
2785 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2786 if (EV_USE_LINUXAIO) flags |= EVBACKEND_LINUXAIO;
2787 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2788 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
2789
2790 return flags;
2791}
2792
2793ecb_cold
2794unsigned int
2795ev_recommended_backends (void) EV_NOEXCEPT
2796{
2797 unsigned int flags = ev_supported_backends ();
2798
2799#ifndef __NetBSD__
2800 /* kqueue is borked on everything but netbsd apparently */
2801 /* it usually doesn't work correctly on anything but sockets and pipes */
2802 flags &= ~EVBACKEND_KQUEUE;
2803#endif
2804#ifdef __APPLE__
2805 /* only select works correctly on that "unix-certified" platform */
2806 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2807 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2808#endif
2809#ifdef __FreeBSD__
2810 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2811#endif
2812
2813 /* TODO: linuxaio is very experimental */
2814#if !EV_RECOMMEND_LINUXAIO
2815 flags &= ~EVBACKEND_LINUXAIO;
2816#endif
2817
2818 return flags;
2819}
2820
2821ecb_cold
2822unsigned int
2823ev_embeddable_backends (void) EV_NOEXCEPT
2824{
2825 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2826
2827 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2828 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2829 flags &= ~EVBACKEND_EPOLL;
2830
2831 return flags;
2832}
2833
2834unsigned int
2835ev_backend (EV_P) EV_NOEXCEPT
2836{
2837 return backend;
2838}
2839
2840#if EV_FEATURE_API
2841unsigned int
2842ev_iteration (EV_P) EV_NOEXCEPT
2843{
2844 return loop_count;
2845}
2846
2847unsigned int
2848ev_depth (EV_P) EV_NOEXCEPT
2849{
2850 return loop_depth;
2851}
2852
2853void
2854ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2855{
2856 io_blocktime = interval;
2857}
2858
2859void
2860ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2861{
2862 timeout_blocktime = interval;
2863}
2864
2865void
2866ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
2867{
2868 userdata = data;
2869}
2870
2871void *
2872ev_userdata (EV_P) EV_NOEXCEPT
2873{
2874 return userdata;
2875}
2876
2877void
2878ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
2879{
2880 invoke_cb = invoke_pending_cb;
2881}
2882
2883void
2884ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
2885{
2886 release_cb = release;
2887 acquire_cb = acquire;
2888}
2889#endif
2890
2891/* initialise a loop structure, must be zero-initialised */
2892noinline ecb_cold
742static void 2893static void
743loop_init (EV_P_ int methods) 2894loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
744{ 2895{
745 if (!method) 2896 if (!backend)
746 { 2897 {
2898 origflags = flags;
2899
2900#if EV_USE_REALTIME
2901 if (!have_realtime)
2902 {
2903 struct timespec ts;
2904
2905 if (!clock_gettime (CLOCK_REALTIME, &ts))
2906 have_realtime = 1;
2907 }
2908#endif
2909
747#if EV_USE_MONOTONIC 2910#if EV_USE_MONOTONIC
2911 if (!have_monotonic)
748 { 2912 {
749 struct timespec ts; 2913 struct timespec ts;
2914
750 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2915 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
751 have_monotonic = 1; 2916 have_monotonic = 1;
752 } 2917 }
753#endif 2918#endif
754 2919
2920 /* pid check not overridable via env */
2921#ifndef _WIN32
2922 if (flags & EVFLAG_FORKCHECK)
2923 curpid = getpid ();
2924#endif
2925
2926 if (!(flags & EVFLAG_NOENV)
2927 && !enable_secure ()
2928 && getenv ("LIBEV_FLAGS"))
2929 flags = atoi (getenv ("LIBEV_FLAGS"));
2930
755 ev_rt_now = ev_time (); 2931 ev_rt_now = ev_time ();
756 mn_now = get_clock (); 2932 mn_now = get_clock ();
757 now_floor = mn_now; 2933 now_floor = mn_now;
758 rtmn_diff = ev_rt_now - mn_now; 2934 rtmn_diff = ev_rt_now - mn_now;
2935#if EV_FEATURE_API
2936 invoke_cb = ev_invoke_pending;
2937#endif
759 2938
760 if (methods == EVMETHOD_AUTO) 2939 io_blocktime = 0.;
761 if (!enable_secure () && getenv ("LIBEV_METHODS")) 2940 timeout_blocktime = 0.;
762 methods = atoi (getenv ("LIBEV_METHODS")); 2941 backend = 0;
763 else 2942 backend_fd = -1;
764 methods = EVMETHOD_ANY; 2943 sig_pending = 0;
2944#if EV_ASYNC_ENABLE
2945 async_pending = 0;
2946#endif
2947 pipe_write_skipped = 0;
2948 pipe_write_wanted = 0;
2949 evpipe [0] = -1;
2950 evpipe [1] = -1;
2951#if EV_USE_INOTIFY
2952 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2953#endif
2954#if EV_USE_SIGNALFD
2955 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2956#endif
765 2957
766 method = 0; 2958 if (!(flags & EVBACKEND_MASK))
2959 flags |= ev_recommended_backends ();
2960
767#if EV_USE_WIN32 2961#if EV_USE_IOCP
768 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 2962 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2963#endif
2964#if EV_USE_PORT
2965 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
769#endif 2966#endif
770#if EV_USE_KQUEUE 2967#if EV_USE_KQUEUE
771 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 2968 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
2969#endif
2970#if EV_USE_LINUXAIO
2971 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
772#endif 2972#endif
773#if EV_USE_EPOLL 2973#if EV_USE_EPOLL
774 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 2974 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
775#endif 2975#endif
776#if EV_USE_POLL 2976#if EV_USE_POLL
777 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 2977 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
778#endif 2978#endif
779#if EV_USE_SELECT 2979#if EV_USE_SELECT
780 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 2980 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
781#endif 2981#endif
782 2982
2983 ev_prepare_init (&pending_w, pendingcb);
2984
2985#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
783 ev_init (&sigev, sigcb); 2986 ev_init (&pipe_w, pipecb);
784 ev_set_priority (&sigev, EV_MAXPRI); 2987 ev_set_priority (&pipe_w, EV_MAXPRI);
2988#endif
785 } 2989 }
786} 2990}
787 2991
2992/* free up a loop structure */
2993ecb_cold
788void 2994void
789loop_destroy (EV_P) 2995ev_loop_destroy (EV_P)
790{ 2996{
791 int i; 2997 int i;
792 2998
2999#if EV_MULTIPLICITY
3000 /* mimic free (0) */
3001 if (!EV_A)
3002 return;
3003#endif
3004
3005#if EV_CLEANUP_ENABLE
3006 /* queue cleanup watchers (and execute them) */
3007 if (expect_false (cleanupcnt))
3008 {
3009 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3010 EV_INVOKE_PENDING;
3011 }
3012#endif
3013
3014#if EV_CHILD_ENABLE
3015 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3016 {
3017 ev_ref (EV_A); /* child watcher */
3018 ev_signal_stop (EV_A_ &childev);
3019 }
3020#endif
3021
3022 if (ev_is_active (&pipe_w))
3023 {
3024 /*ev_ref (EV_A);*/
3025 /*ev_io_stop (EV_A_ &pipe_w);*/
3026
3027 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3028 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3029 }
3030
3031#if EV_USE_SIGNALFD
3032 if (ev_is_active (&sigfd_w))
3033 close (sigfd);
3034#endif
3035
3036#if EV_USE_INOTIFY
3037 if (fs_fd >= 0)
3038 close (fs_fd);
3039#endif
3040
3041 if (backend_fd >= 0)
3042 close (backend_fd);
3043
793#if EV_USE_WIN32 3044#if EV_USE_IOCP
794 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 3045 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3046#endif
3047#if EV_USE_PORT
3048 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
795#endif 3049#endif
796#if EV_USE_KQUEUE 3050#if EV_USE_KQUEUE
797 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 3051 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3052#endif
3053#if EV_USE_LINUXAIO
3054 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
798#endif 3055#endif
799#if EV_USE_EPOLL 3056#if EV_USE_EPOLL
800 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 3057 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
801#endif 3058#endif
802#if EV_USE_POLL 3059#if EV_USE_POLL
803 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 3060 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
804#endif 3061#endif
805#if EV_USE_SELECT 3062#if EV_USE_SELECT
806 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 3063 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
807#endif 3064#endif
808 3065
809 for (i = NUMPRI; i--; ) 3066 for (i = NUMPRI; i--; )
3067 {
810 array_free (pending, [i]); 3068 array_free (pending, [i]);
3069#if EV_IDLE_ENABLE
3070 array_free (idle, [i]);
3071#endif
3072 }
3073
3074 ev_free (anfds); anfds = 0; anfdmax = 0;
811 3075
812 /* have to use the microsoft-never-gets-it-right macro */ 3076 /* have to use the microsoft-never-gets-it-right macro */
813 array_free_microshit (fdchange); 3077 array_free (rfeed, EMPTY);
814 array_free_microshit (timer); 3078 array_free (fdchange, EMPTY);
3079 array_free (timer, EMPTY);
815#if EV_PERIODICS 3080#if EV_PERIODIC_ENABLE
816 array_free_microshit (periodic); 3081 array_free (periodic, EMPTY);
817#endif 3082#endif
818 array_free_microshit (idle); 3083#if EV_FORK_ENABLE
819 array_free_microshit (prepare); 3084 array_free (fork, EMPTY);
820 array_free_microshit (check); 3085#endif
3086#if EV_CLEANUP_ENABLE
3087 array_free (cleanup, EMPTY);
3088#endif
3089 array_free (prepare, EMPTY);
3090 array_free (check, EMPTY);
3091#if EV_ASYNC_ENABLE
3092 array_free (async, EMPTY);
3093#endif
821 3094
822 method = 0; 3095 backend = 0;
823}
824 3096
3097#if EV_MULTIPLICITY
3098 if (ev_is_default_loop (EV_A))
3099#endif
3100 ev_default_loop_ptr = 0;
3101#if EV_MULTIPLICITY
3102 else
3103 ev_free (EV_A);
3104#endif
3105}
3106
3107#if EV_USE_INOTIFY
3108inline_size void infy_fork (EV_P);
3109#endif
3110
3111inline_size void
3112loop_fork (EV_P)
3113{
3114#if EV_USE_PORT
3115 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
3116#endif
3117#if EV_USE_KQUEUE
3118 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3119#endif
3120#if EV_USE_LINUXAIO
3121 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
3122#endif
3123#if EV_USE_EPOLL
3124 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
3125#endif
3126#if EV_USE_INOTIFY
3127 infy_fork (EV_A);
3128#endif
3129
3130#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3131 if (ev_is_active (&pipe_w) && postfork != 2)
3132 {
3133 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3134
3135 ev_ref (EV_A);
3136 ev_io_stop (EV_A_ &pipe_w);
3137
3138 if (evpipe [0] >= 0)
3139 EV_WIN32_CLOSE_FD (evpipe [0]);
3140
3141 evpipe_init (EV_A);
3142 /* iterate over everything, in case we missed something before */
3143 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3144 }
3145#endif
3146
3147 postfork = 0;
3148}
3149
3150#if EV_MULTIPLICITY
3151
3152ecb_cold
3153struct ev_loop *
3154ev_loop_new (unsigned int flags) EV_NOEXCEPT
3155{
3156 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3157
3158 memset (EV_A, 0, sizeof (struct ev_loop));
3159 loop_init (EV_A_ flags);
3160
3161 if (ev_backend (EV_A))
3162 return EV_A;
3163
3164 ev_free (EV_A);
3165 return 0;
3166}
3167
3168#endif /* multiplicity */
3169
3170#if EV_VERIFY
3171noinline ecb_cold
825static void 3172static void
826loop_fork (EV_P) 3173verify_watcher (EV_P_ W w)
827{ 3174{
828#if EV_USE_EPOLL 3175 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
829 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 3176
3177 if (w->pending)
3178 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3179}
3180
3181noinline ecb_cold
3182static void
3183verify_heap (EV_P_ ANHE *heap, int N)
3184{
3185 int i;
3186
3187 for (i = HEAP0; i < N + HEAP0; ++i)
3188 {
3189 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3190 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3191 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3192
3193 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3194 }
3195}
3196
3197noinline ecb_cold
3198static void
3199array_verify (EV_P_ W *ws, int cnt)
3200{
3201 while (cnt--)
3202 {
3203 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3204 verify_watcher (EV_A_ ws [cnt]);
3205 }
3206}
3207#endif
3208
3209#if EV_FEATURE_API
3210void ecb_cold
3211ev_verify (EV_P) EV_NOEXCEPT
3212{
3213#if EV_VERIFY
3214 int i;
3215 WL w, w2;
3216
3217 assert (activecnt >= -1);
3218
3219 assert (fdchangemax >= fdchangecnt);
3220 for (i = 0; i < fdchangecnt; ++i)
3221 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3222
3223 assert (anfdmax >= 0);
3224 for (i = 0; i < anfdmax; ++i)
3225 {
3226 int j = 0;
3227
3228 for (w = w2 = anfds [i].head; w; w = w->next)
3229 {
3230 verify_watcher (EV_A_ (W)w);
3231
3232 if (j++ & 1)
3233 {
3234 assert (("libev: io watcher list contains a loop", w != w2));
3235 w2 = w2->next;
3236 }
3237
3238 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3239 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3240 }
3241 }
3242
3243 assert (timermax >= timercnt);
3244 verify_heap (EV_A_ timers, timercnt);
3245
3246#if EV_PERIODIC_ENABLE
3247 assert (periodicmax >= periodiccnt);
3248 verify_heap (EV_A_ periodics, periodiccnt);
3249#endif
3250
3251 for (i = NUMPRI; i--; )
3252 {
3253 assert (pendingmax [i] >= pendingcnt [i]);
3254#if EV_IDLE_ENABLE
3255 assert (idleall >= 0);
3256 assert (idlemax [i] >= idlecnt [i]);
3257 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3258#endif
3259 }
3260
3261#if EV_FORK_ENABLE
3262 assert (forkmax >= forkcnt);
3263 array_verify (EV_A_ (W *)forks, forkcnt);
3264#endif
3265
3266#if EV_CLEANUP_ENABLE
3267 assert (cleanupmax >= cleanupcnt);
3268 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3269#endif
3270
3271#if EV_ASYNC_ENABLE
3272 assert (asyncmax >= asynccnt);
3273 array_verify (EV_A_ (W *)asyncs, asynccnt);
3274#endif
3275
3276#if EV_PREPARE_ENABLE
3277 assert (preparemax >= preparecnt);
3278 array_verify (EV_A_ (W *)prepares, preparecnt);
3279#endif
3280
3281#if EV_CHECK_ENABLE
3282 assert (checkmax >= checkcnt);
3283 array_verify (EV_A_ (W *)checks, checkcnt);
3284#endif
3285
3286# if 0
3287#if EV_CHILD_ENABLE
3288 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3289 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3290#endif
830#endif 3291# endif
831#if EV_USE_KQUEUE
832 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
833#endif 3292#endif
834
835 if (ev_is_active (&sigev))
836 {
837 /* default loop */
838
839 ev_ref (EV_A);
840 ev_io_stop (EV_A_ &sigev);
841 close (sigpipe [0]);
842 close (sigpipe [1]);
843
844 while (pipe (sigpipe))
845 syserr ("(libev) error creating pipe");
846
847 siginit (EV_A);
848 }
849
850 postfork = 0;
851} 3293}
3294#endif
852 3295
853#if EV_MULTIPLICITY 3296#if EV_MULTIPLICITY
854struct ev_loop * 3297ecb_cold
855ev_loop_new (int methods)
856{
857 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
858
859 memset (loop, 0, sizeof (struct ev_loop));
860
861 loop_init (EV_A_ methods);
862
863 if (ev_method (EV_A))
864 return loop;
865
866 return 0;
867}
868
869void
870ev_loop_destroy (EV_P)
871{
872 loop_destroy (EV_A);
873 ev_free (loop);
874}
875
876void
877ev_loop_fork (EV_P)
878{
879 postfork = 1;
880}
881
882#endif
883
884#if EV_MULTIPLICITY
885struct ev_loop * 3298struct ev_loop *
886#else 3299#else
887int 3300int
888#endif 3301#endif
889ev_default_loop (int methods) 3302ev_default_loop (unsigned int flags) EV_NOEXCEPT
890{ 3303{
891 if (sigpipe [0] == sigpipe [1])
892 if (pipe (sigpipe))
893 return 0;
894
895 if (!default_loop) 3304 if (!ev_default_loop_ptr)
896 { 3305 {
897#if EV_MULTIPLICITY 3306#if EV_MULTIPLICITY
898 struct ev_loop *loop = default_loop = &default_loop_struct; 3307 EV_P = ev_default_loop_ptr = &default_loop_struct;
899#else 3308#else
900 default_loop = 1; 3309 ev_default_loop_ptr = 1;
901#endif 3310#endif
902 3311
903 loop_init (EV_A_ methods); 3312 loop_init (EV_A_ flags);
904 3313
905 if (ev_method (EV_A)) 3314 if (ev_backend (EV_A))
906 { 3315 {
907 siginit (EV_A); 3316#if EV_CHILD_ENABLE
908
909#ifndef WIN32
910 ev_signal_init (&childev, childcb, SIGCHLD); 3317 ev_signal_init (&childev, childcb, SIGCHLD);
911 ev_set_priority (&childev, EV_MAXPRI); 3318 ev_set_priority (&childev, EV_MAXPRI);
912 ev_signal_start (EV_A_ &childev); 3319 ev_signal_start (EV_A_ &childev);
913 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3320 ev_unref (EV_A); /* child watcher should not keep loop alive */
914#endif 3321#endif
915 } 3322 }
916 else 3323 else
917 default_loop = 0; 3324 ev_default_loop_ptr = 0;
918 } 3325 }
919 3326
920 return default_loop; 3327 return ev_default_loop_ptr;
921} 3328}
922 3329
923void 3330void
924ev_default_destroy (void) 3331ev_loop_fork (EV_P) EV_NOEXCEPT
925{ 3332{
926#if EV_MULTIPLICITY
927 struct ev_loop *loop = default_loop;
928#endif
929
930#ifndef WIN32
931 ev_ref (EV_A); /* child watcher */
932 ev_signal_stop (EV_A_ &childev);
933#endif
934
935 ev_ref (EV_A); /* signal watcher */
936 ev_io_stop (EV_A_ &sigev);
937
938 close (sigpipe [0]); sigpipe [0] = 0;
939 close (sigpipe [1]); sigpipe [1] = 0;
940
941 loop_destroy (EV_A);
942}
943
944void
945ev_default_fork (void)
946{
947#if EV_MULTIPLICITY
948 struct ev_loop *loop = default_loop;
949#endif
950
951 if (method)
952 postfork = 1; 3333 postfork = 1;
953} 3334}
954 3335
955/*****************************************************************************/ 3336/*****************************************************************************/
956 3337
957static int 3338void
958any_pending (EV_P) 3339ev_invoke (EV_P_ void *w, int revents)
3340{
3341 EV_CB_INVOKE ((W)w, revents);
3342}
3343
3344unsigned int
3345ev_pending_count (EV_P) EV_NOEXCEPT
959{ 3346{
960 int pri; 3347 int pri;
3348 unsigned int count = 0;
961 3349
962 for (pri = NUMPRI; pri--; ) 3350 for (pri = NUMPRI; pri--; )
3351 count += pendingcnt [pri];
3352
3353 return count;
3354}
3355
3356noinline
3357void
3358ev_invoke_pending (EV_P)
3359{
3360 pendingpri = NUMPRI;
3361
3362 do
3363 {
3364 --pendingpri;
3365
3366 /* pendingpri possibly gets modified in the inner loop */
3367 while (pendingcnt [pendingpri])
3368 {
3369 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3370
3371 p->w->pending = 0;
3372 EV_CB_INVOKE (p->w, p->events);
3373 EV_FREQUENT_CHECK;
3374 }
3375 }
3376 while (pendingpri);
3377}
3378
3379#if EV_IDLE_ENABLE
3380/* make idle watchers pending. this handles the "call-idle */
3381/* only when higher priorities are idle" logic */
3382inline_size void
3383idle_reify (EV_P)
3384{
3385 if (expect_false (idleall))
3386 {
3387 int pri;
3388
3389 for (pri = NUMPRI; pri--; )
3390 {
963 if (pendingcnt [pri]) 3391 if (pendingcnt [pri])
964 return 1; 3392 break;
965 3393
966 return 0; 3394 if (idlecnt [pri])
3395 {
3396 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3397 break;
3398 }
3399 }
3400 }
967} 3401}
3402#endif
968 3403
3404/* make timers pending */
3405inline_size void
3406timers_reify (EV_P)
3407{
3408 EV_FREQUENT_CHECK;
3409
3410 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3411 {
3412 do
3413 {
3414 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3415
3416 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3417
3418 /* first reschedule or stop timer */
3419 if (w->repeat)
3420 {
3421 ev_at (w) += w->repeat;
3422 if (ev_at (w) < mn_now)
3423 ev_at (w) = mn_now;
3424
3425 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3426
3427 ANHE_at_cache (timers [HEAP0]);
3428 downheap (timers, timercnt, HEAP0);
3429 }
3430 else
3431 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3432
3433 EV_FREQUENT_CHECK;
3434 feed_reverse (EV_A_ (W)w);
3435 }
3436 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3437
3438 feed_reverse_done (EV_A_ EV_TIMER);
3439 }
3440}
3441
3442#if EV_PERIODIC_ENABLE
3443
3444noinline
969static void 3445static void
970call_pending (EV_P) 3446periodic_recalc (EV_P_ ev_periodic *w)
971{ 3447{
972 int pri; 3448 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3449 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
973 3450
974 for (pri = NUMPRI; pri--; ) 3451 /* the above almost always errs on the low side */
975 while (pendingcnt [pri]) 3452 while (at <= ev_rt_now)
976 { 3453 {
977 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 3454 ev_tstamp nat = at + w->interval;
978 3455
979 if (p->w) 3456 /* when resolution fails us, we use ev_rt_now */
980 { 3457 if (expect_false (nat == at))
981 p->w->pending = 0;
982 EV_CB_INVOKE (p->w, p->events);
983 }
984 }
985}
986
987static void
988timers_reify (EV_P)
989{
990 while (timercnt && ((WT)timers [0])->at <= mn_now)
991 {
992 struct ev_timer *w = timers [0];
993
994 assert (("inactive timer on timer heap detected", ev_is_active (w)));
995
996 /* first reschedule or stop timer */
997 if (w->repeat)
998 { 3458 {
999 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3459 at = ev_rt_now;
1000 3460 break;
1001 ((WT)w)->at += w->repeat;
1002 if (((WT)w)->at < mn_now)
1003 ((WT)w)->at = mn_now;
1004
1005 downheap ((WT *)timers, timercnt, 0);
1006 } 3461 }
1007 else
1008 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1009 3462
1010 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 3463 at = nat;
1011 } 3464 }
1012}
1013 3465
1014#if EV_PERIODICS 3466 ev_at (w) = at;
1015static void 3467}
3468
3469/* make periodics pending */
3470inline_size void
1016periodics_reify (EV_P) 3471periodics_reify (EV_P)
1017{ 3472{
3473 EV_FREQUENT_CHECK;
3474
1018 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 3475 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1019 { 3476 {
1020 struct ev_periodic *w = periodics [0]; 3477 do
1021
1022 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1023
1024 /* first reschedule or stop timer */
1025 if (w->reschedule_cb)
1026 { 3478 {
3479 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3480
3481 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3482
3483 /* first reschedule or stop timer */
3484 if (w->reschedule_cb)
3485 {
1027 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 3486 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1028 3487
1029 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 3488 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3489
3490 ANHE_at_cache (periodics [HEAP0]);
1030 downheap ((WT *)periodics, periodiccnt, 0); 3491 downheap (periodics, periodiccnt, HEAP0);
3492 }
3493 else if (w->interval)
3494 {
3495 periodic_recalc (EV_A_ w);
3496 ANHE_at_cache (periodics [HEAP0]);
3497 downheap (periodics, periodiccnt, HEAP0);
3498 }
3499 else
3500 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3501
3502 EV_FREQUENT_CHECK;
3503 feed_reverse (EV_A_ (W)w);
1031 } 3504 }
1032 else if (w->interval) 3505 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1033 {
1034 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1035 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1036 downheap ((WT *)periodics, periodiccnt, 0);
1037 }
1038 else
1039 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1040 3506
1041 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 3507 feed_reverse_done (EV_A_ EV_PERIODIC);
1042 } 3508 }
1043} 3509}
1044 3510
3511/* simply recalculate all periodics */
3512/* TODO: maybe ensure that at least one event happens when jumping forward? */
3513noinline ecb_cold
1045static void 3514static void
1046periodics_reschedule (EV_P) 3515periodics_reschedule (EV_P)
1047{ 3516{
1048 int i; 3517 int i;
1049 3518
1050 /* adjust periodics after time jump */ 3519 /* adjust periodics after time jump */
1051 for (i = 0; i < periodiccnt; ++i) 3520 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1052 { 3521 {
1053 struct ev_periodic *w = periodics [i]; 3522 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1054 3523
1055 if (w->reschedule_cb) 3524 if (w->reschedule_cb)
1056 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3525 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1057 else if (w->interval) 3526 else if (w->interval)
1058 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 3527 periodic_recalc (EV_A_ w);
3528
3529 ANHE_at_cache (periodics [i]);
3530 }
3531
3532 reheap (periodics, periodiccnt);
3533}
3534#endif
3535
3536/* adjust all timers by a given offset */
3537noinline ecb_cold
3538static void
3539timers_reschedule (EV_P_ ev_tstamp adjust)
3540{
3541 int i;
3542
3543 for (i = 0; i < timercnt; ++i)
1059 } 3544 {
1060 3545 ANHE *he = timers + i + HEAP0;
1061 /* now rebuild the heap */ 3546 ANHE_w (*he)->at += adjust;
1062 for (i = periodiccnt >> 1; i--; ) 3547 ANHE_at_cache (*he);
1063 downheap ((WT *)periodics, periodiccnt, i); 3548 }
1064} 3549}
1065#endif
1066 3550
1067inline int 3551/* fetch new monotonic and realtime times from the kernel */
1068time_update_monotonic (EV_P) 3552/* also detect if there was a timejump, and act accordingly */
3553inline_speed void
3554time_update (EV_P_ ev_tstamp max_block)
1069{ 3555{
3556#if EV_USE_MONOTONIC
3557 if (expect_true (have_monotonic))
3558 {
3559 int i;
3560 ev_tstamp odiff = rtmn_diff;
3561
1070 mn_now = get_clock (); 3562 mn_now = get_clock ();
1071 3563
3564 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3565 /* interpolate in the meantime */
1072 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 3566 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1073 { 3567 {
1074 ev_rt_now = rtmn_diff + mn_now; 3568 ev_rt_now = rtmn_diff + mn_now;
1075 return 0; 3569 return;
1076 } 3570 }
1077 else 3571
1078 {
1079 now_floor = mn_now; 3572 now_floor = mn_now;
1080 ev_rt_now = ev_time (); 3573 ev_rt_now = ev_time ();
1081 return 1;
1082 }
1083}
1084 3574
1085static void 3575 /* loop a few times, before making important decisions.
1086time_update (EV_P) 3576 * on the choice of "4": one iteration isn't enough,
1087{ 3577 * in case we get preempted during the calls to
1088 int i; 3578 * ev_time and get_clock. a second call is almost guaranteed
1089 3579 * to succeed in that case, though. and looping a few more times
1090#if EV_USE_MONOTONIC 3580 * doesn't hurt either as we only do this on time-jumps or
1091 if (expect_true (have_monotonic)) 3581 * in the unlikely event of having been preempted here.
1092 { 3582 */
1093 if (time_update_monotonic (EV_A)) 3583 for (i = 4; --i; )
1094 { 3584 {
1095 ev_tstamp odiff = rtmn_diff; 3585 ev_tstamp diff;
1096
1097 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1098 {
1099 rtmn_diff = ev_rt_now - mn_now; 3586 rtmn_diff = ev_rt_now - mn_now;
1100 3587
1101 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 3588 diff = odiff - rtmn_diff;
3589
3590 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1102 return; /* all is well */ 3591 return; /* all is well */
1103 3592
1104 ev_rt_now = ev_time (); 3593 ev_rt_now = ev_time ();
1105 mn_now = get_clock (); 3594 mn_now = get_clock ();
1106 now_floor = mn_now; 3595 now_floor = mn_now;
1107 } 3596 }
1108 3597
3598 /* no timer adjustment, as the monotonic clock doesn't jump */
3599 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1109# if EV_PERIODICS 3600# if EV_PERIODIC_ENABLE
3601 periodics_reschedule (EV_A);
3602# endif
3603 }
3604 else
3605#endif
3606 {
3607 ev_rt_now = ev_time ();
3608
3609 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3610 {
3611 /* adjust timers. this is easy, as the offset is the same for all of them */
3612 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3613#if EV_PERIODIC_ENABLE
1110 periodics_reschedule (EV_A); 3614 periodics_reschedule (EV_A);
1111# endif 3615#endif
1112 /* no timer adjustment, as the monotonic clock doesn't jump */
1113 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1114 } 3616 }
1115 }
1116 else
1117#endif
1118 {
1119 ev_rt_now = ev_time ();
1120
1121 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1122 {
1123#if EV_PERIODICS
1124 periodics_reschedule (EV_A);
1125#endif
1126
1127 /* adjust timers. this is easy, as the offset is the same for all */
1128 for (i = 0; i < timercnt; ++i)
1129 ((WT)timers [i])->at += ev_rt_now - mn_now;
1130 }
1131 3617
1132 mn_now = ev_rt_now; 3618 mn_now = ev_rt_now;
1133 } 3619 }
1134} 3620}
1135 3621
1136void 3622int
1137ev_ref (EV_P)
1138{
1139 ++activecnt;
1140}
1141
1142void
1143ev_unref (EV_P)
1144{
1145 --activecnt;
1146}
1147
1148static int loop_done;
1149
1150void
1151ev_loop (EV_P_ int flags) 3623ev_run (EV_P_ int flags)
1152{ 3624{
1153 double block; 3625#if EV_FEATURE_API
1154 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 3626 ++loop_depth;
3627#endif
3628
3629 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3630
3631 loop_done = EVBREAK_CANCEL;
3632
3633 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1155 3634
1156 do 3635 do
1157 { 3636 {
3637#if EV_VERIFY >= 2
3638 ev_verify (EV_A);
3639#endif
3640
3641#ifndef _WIN32
3642 if (expect_false (curpid)) /* penalise the forking check even more */
3643 if (expect_false (getpid () != curpid))
3644 {
3645 curpid = getpid ();
3646 postfork = 1;
3647 }
3648#endif
3649
3650#if EV_FORK_ENABLE
3651 /* we might have forked, so queue fork handlers */
3652 if (expect_false (postfork))
3653 if (forkcnt)
3654 {
3655 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3656 EV_INVOKE_PENDING;
3657 }
3658#endif
3659
3660#if EV_PREPARE_ENABLE
1158 /* queue check watchers (and execute them) */ 3661 /* queue prepare watchers (and execute them) */
1159 if (expect_false (preparecnt)) 3662 if (expect_false (preparecnt))
1160 { 3663 {
1161 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3664 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1162 call_pending (EV_A); 3665 EV_INVOKE_PENDING;
1163 } 3666 }
3667#endif
3668
3669 if (expect_false (loop_done))
3670 break;
1164 3671
1165 /* we might have forked, so reify kernel state if necessary */ 3672 /* we might have forked, so reify kernel state if necessary */
1166 if (expect_false (postfork)) 3673 if (expect_false (postfork))
1167 loop_fork (EV_A); 3674 loop_fork (EV_A);
1168 3675
1169 /* update fd-related kernel structures */ 3676 /* update fd-related kernel structures */
1170 fd_reify (EV_A); 3677 fd_reify (EV_A);
1171 3678
1172 /* calculate blocking time */ 3679 /* calculate blocking time */
3680 {
3681 ev_tstamp waittime = 0.;
3682 ev_tstamp sleeptime = 0.;
1173 3683
1174 /* we only need this for !monotonic clock or timers, but as we basically 3684 /* remember old timestamp for io_blocktime calculation */
1175 always have timers, we just calculate it always */ 3685 ev_tstamp prev_mn_now = mn_now;
1176#if EV_USE_MONOTONIC 3686
1177 if (expect_true (have_monotonic)) 3687 /* update time to cancel out callback processing overhead */
1178 time_update_monotonic (EV_A); 3688 time_update (EV_A_ 1e100);
1179 else 3689
1180#endif 3690 /* from now on, we want a pipe-wake-up */
3691 pipe_write_wanted = 1;
3692
3693 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3694
3695 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1181 { 3696 {
1182 ev_rt_now = ev_time ();
1183 mn_now = ev_rt_now;
1184 }
1185
1186 if (flags & EVLOOP_NONBLOCK || idlecnt)
1187 block = 0.;
1188 else
1189 {
1190 block = MAX_BLOCKTIME; 3697 waittime = MAX_BLOCKTIME;
1191 3698
1192 if (timercnt) 3699 if (timercnt)
1193 { 3700 {
1194 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 3701 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1195 if (block > to) block = to; 3702 if (waittime > to) waittime = to;
1196 } 3703 }
1197 3704
1198#if EV_PERIODICS 3705#if EV_PERIODIC_ENABLE
1199 if (periodiccnt) 3706 if (periodiccnt)
1200 { 3707 {
1201 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 3708 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1202 if (block > to) block = to; 3709 if (waittime > to) waittime = to;
1203 } 3710 }
1204#endif 3711#endif
1205 3712
1206 if (block < 0.) block = 0.; 3713 /* don't let timeouts decrease the waittime below timeout_blocktime */
3714 if (expect_false (waittime < timeout_blocktime))
3715 waittime = timeout_blocktime;
3716
3717 /* at this point, we NEED to wait, so we have to ensure */
3718 /* to pass a minimum nonzero value to the backend */
3719 if (expect_false (waittime < backend_mintime))
3720 waittime = backend_mintime;
3721
3722 /* extra check because io_blocktime is commonly 0 */
3723 if (expect_false (io_blocktime))
3724 {
3725 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3726
3727 if (sleeptime > waittime - backend_mintime)
3728 sleeptime = waittime - backend_mintime;
3729
3730 if (expect_true (sleeptime > 0.))
3731 {
3732 ev_sleep (sleeptime);
3733 waittime -= sleeptime;
3734 }
3735 }
1207 } 3736 }
1208 3737
1209 method_poll (EV_A_ block); 3738#if EV_FEATURE_API
3739 ++loop_count;
3740#endif
3741 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3742 backend_poll (EV_A_ waittime);
3743 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1210 3744
3745 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3746
3747 ECB_MEMORY_FENCE_ACQUIRE;
3748 if (pipe_write_skipped)
3749 {
3750 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3751 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3752 }
3753
3754
1211 /* update ev_rt_now, do magic */ 3755 /* update ev_rt_now, do magic */
1212 time_update (EV_A); 3756 time_update (EV_A_ waittime + sleeptime);
3757 }
1213 3758
1214 /* queue pending timers and reschedule them */ 3759 /* queue pending timers and reschedule them */
1215 timers_reify (EV_A); /* relative timers called last */ 3760 timers_reify (EV_A); /* relative timers called last */
1216#if EV_PERIODICS 3761#if EV_PERIODIC_ENABLE
1217 periodics_reify (EV_A); /* absolute timers called first */ 3762 periodics_reify (EV_A); /* absolute timers called first */
1218#endif 3763#endif
1219 3764
3765#if EV_IDLE_ENABLE
1220 /* queue idle watchers unless io or timers are pending */ 3766 /* queue idle watchers unless other events are pending */
1221 if (idlecnt && !any_pending (EV_A)) 3767 idle_reify (EV_A);
1222 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 3768#endif
1223 3769
3770#if EV_CHECK_ENABLE
1224 /* queue check watchers, to be executed first */ 3771 /* queue check watchers, to be executed first */
1225 if (checkcnt) 3772 if (expect_false (checkcnt))
1226 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3773 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3774#endif
1227 3775
1228 call_pending (EV_A); 3776 EV_INVOKE_PENDING;
1229 } 3777 }
1230 while (activecnt && !loop_done); 3778 while (expect_true (
3779 activecnt
3780 && !loop_done
3781 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3782 ));
1231 3783
1232 if (loop_done != 2) 3784 if (loop_done == EVBREAK_ONE)
1233 loop_done = 0; 3785 loop_done = EVBREAK_CANCEL;
1234}
1235 3786
3787#if EV_FEATURE_API
3788 --loop_depth;
3789#endif
3790
3791 return activecnt;
3792}
3793
1236void 3794void
1237ev_unloop (EV_P_ int how) 3795ev_break (EV_P_ int how) EV_NOEXCEPT
1238{ 3796{
1239 loop_done = how; 3797 loop_done = how;
1240} 3798}
1241 3799
3800void
3801ev_ref (EV_P) EV_NOEXCEPT
3802{
3803 ++activecnt;
3804}
3805
3806void
3807ev_unref (EV_P) EV_NOEXCEPT
3808{
3809 --activecnt;
3810}
3811
3812void
3813ev_now_update (EV_P) EV_NOEXCEPT
3814{
3815 time_update (EV_A_ 1e100);
3816}
3817
3818void
3819ev_suspend (EV_P) EV_NOEXCEPT
3820{
3821 ev_now_update (EV_A);
3822}
3823
3824void
3825ev_resume (EV_P) EV_NOEXCEPT
3826{
3827 ev_tstamp mn_prev = mn_now;
3828
3829 ev_now_update (EV_A);
3830 timers_reschedule (EV_A_ mn_now - mn_prev);
3831#if EV_PERIODIC_ENABLE
3832 /* TODO: really do this? */
3833 periodics_reschedule (EV_A);
3834#endif
3835}
3836
1242/*****************************************************************************/ 3837/*****************************************************************************/
3838/* singly-linked list management, used when the expected list length is short */
1243 3839
1244inline void 3840inline_size void
1245wlist_add (WL *head, WL elem) 3841wlist_add (WL *head, WL elem)
1246{ 3842{
1247 elem->next = *head; 3843 elem->next = *head;
1248 *head = elem; 3844 *head = elem;
1249} 3845}
1250 3846
1251inline void 3847inline_size void
1252wlist_del (WL *head, WL elem) 3848wlist_del (WL *head, WL elem)
1253{ 3849{
1254 while (*head) 3850 while (*head)
1255 { 3851 {
1256 if (*head == elem) 3852 if (expect_true (*head == elem))
1257 { 3853 {
1258 *head = elem->next; 3854 *head = elem->next;
1259 return; 3855 break;
1260 } 3856 }
1261 3857
1262 head = &(*head)->next; 3858 head = &(*head)->next;
1263 } 3859 }
1264} 3860}
1265 3861
3862/* internal, faster, version of ev_clear_pending */
1266inline void 3863inline_speed void
1267ev_clear_pending (EV_P_ W w) 3864clear_pending (EV_P_ W w)
1268{ 3865{
1269 if (w->pending) 3866 if (w->pending)
1270 { 3867 {
1271 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3868 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1272 w->pending = 0; 3869 w->pending = 0;
1273 } 3870 }
1274} 3871}
1275 3872
3873int
3874ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
3875{
3876 W w_ = (W)w;
3877 int pending = w_->pending;
3878
3879 if (expect_true (pending))
3880 {
3881 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3882 p->w = (W)&pending_w;
3883 w_->pending = 0;
3884 return p->events;
3885 }
3886 else
3887 return 0;
3888}
3889
1276inline void 3890inline_size void
3891pri_adjust (EV_P_ W w)
3892{
3893 int pri = ev_priority (w);
3894 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3895 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3896 ev_set_priority (w, pri);
3897}
3898
3899inline_speed void
1277ev_start (EV_P_ W w, int active) 3900ev_start (EV_P_ W w, int active)
1278{ 3901{
1279 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 3902 pri_adjust (EV_A_ w);
1280 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1281
1282 w->active = active; 3903 w->active = active;
1283 ev_ref (EV_A); 3904 ev_ref (EV_A);
1284} 3905}
1285 3906
1286inline void 3907inline_size void
1287ev_stop (EV_P_ W w) 3908ev_stop (EV_P_ W w)
1288{ 3909{
1289 ev_unref (EV_A); 3910 ev_unref (EV_A);
1290 w->active = 0; 3911 w->active = 0;
1291} 3912}
1292 3913
1293/*****************************************************************************/ 3914/*****************************************************************************/
1294 3915
3916noinline
1295void 3917void
1296ev_io_start (EV_P_ struct ev_io *w) 3918ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
1297{ 3919{
1298 int fd = w->fd; 3920 int fd = w->fd;
1299 3921
3922 if (expect_false (ev_is_active (w)))
3923 return;
3924
3925 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3926 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3927
3928#if EV_VERIFY >= 2
3929 assert (("libev: ev_io_start called on watcher with invalid fd", fd_valid (fd)));
3930#endif
3931 EV_FREQUENT_CHECK;
3932
3933 ev_start (EV_A_ (W)w, 1);
3934 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
3935 wlist_add (&anfds[fd].head, (WL)w);
3936
3937 /* common bug, apparently */
3938 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3939
3940 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3941 w->events &= ~EV__IOFDSET;
3942
3943 EV_FREQUENT_CHECK;
3944}
3945
3946noinline
3947void
3948ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
3949{
3950 clear_pending (EV_A_ (W)w);
3951 if (expect_false (!ev_is_active (w)))
3952 return;
3953
3954 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3955
3956#if EV_VERIFY >= 2
3957 assert (("libev: ev_io_stop called on watcher with invalid fd", fd_valid (w->fd)));
3958#endif
3959 EV_FREQUENT_CHECK;
3960
3961 wlist_del (&anfds[w->fd].head, (WL)w);
3962 ev_stop (EV_A_ (W)w);
3963
3964 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3965
3966 EV_FREQUENT_CHECK;
3967}
3968
3969noinline
3970void
3971ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
3972{
3973 if (expect_false (ev_is_active (w)))
3974 return;
3975
3976 ev_at (w) += mn_now;
3977
3978 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3979
3980 EV_FREQUENT_CHECK;
3981
3982 ++timercnt;
3983 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3984 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
3985 ANHE_w (timers [ev_active (w)]) = (WT)w;
3986 ANHE_at_cache (timers [ev_active (w)]);
3987 upheap (timers, ev_active (w));
3988
3989 EV_FREQUENT_CHECK;
3990
3991 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3992}
3993
3994noinline
3995void
3996ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
3997{
3998 clear_pending (EV_A_ (W)w);
3999 if (expect_false (!ev_is_active (w)))
4000 return;
4001
4002 EV_FREQUENT_CHECK;
4003
4004 {
4005 int active = ev_active (w);
4006
4007 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
4008
4009 --timercnt;
4010
4011 if (expect_true (active < timercnt + HEAP0))
4012 {
4013 timers [active] = timers [timercnt + HEAP0];
4014 adjustheap (timers, timercnt, active);
4015 }
4016 }
4017
4018 ev_at (w) -= mn_now;
4019
4020 ev_stop (EV_A_ (W)w);
4021
4022 EV_FREQUENT_CHECK;
4023}
4024
4025noinline
4026void
4027ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
4028{
4029 EV_FREQUENT_CHECK;
4030
4031 clear_pending (EV_A_ (W)w);
4032
1300 if (ev_is_active (w)) 4033 if (ev_is_active (w))
1301 return;
1302
1303 assert (("ev_io_start called with negative fd", fd >= 0));
1304
1305 ev_start (EV_A_ (W)w, 1);
1306 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1307 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1308
1309 fd_change (EV_A_ fd);
1310}
1311
1312void
1313ev_io_stop (EV_P_ struct ev_io *w)
1314{
1315 ev_clear_pending (EV_A_ (W)w);
1316 if (!ev_is_active (w))
1317 return;
1318
1319 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1320
1321 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1322 ev_stop (EV_A_ (W)w);
1323
1324 fd_change (EV_A_ w->fd);
1325}
1326
1327void
1328ev_timer_start (EV_P_ struct ev_timer *w)
1329{
1330 if (ev_is_active (w))
1331 return;
1332
1333 ((WT)w)->at += mn_now;
1334
1335 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1336
1337 ev_start (EV_A_ (W)w, ++timercnt);
1338 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1339 timers [timercnt - 1] = w;
1340 upheap ((WT *)timers, timercnt - 1);
1341
1342 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1343}
1344
1345void
1346ev_timer_stop (EV_P_ struct ev_timer *w)
1347{
1348 ev_clear_pending (EV_A_ (W)w);
1349 if (!ev_is_active (w))
1350 return;
1351
1352 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1353
1354 if (((W)w)->active < timercnt--)
1355 {
1356 timers [((W)w)->active - 1] = timers [timercnt];
1357 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1358 }
1359
1360 ((WT)w)->at -= mn_now;
1361
1362 ev_stop (EV_A_ (W)w);
1363}
1364
1365void
1366ev_timer_again (EV_P_ struct ev_timer *w)
1367{
1368 if (ev_is_active (w))
1369 { 4034 {
1370 if (w->repeat) 4035 if (w->repeat)
1371 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat); 4036 {
4037 ev_at (w) = mn_now + w->repeat;
4038 ANHE_at_cache (timers [ev_active (w)]);
4039 adjustheap (timers, timercnt, ev_active (w));
4040 }
1372 else 4041 else
1373 ev_timer_stop (EV_A_ w); 4042 ev_timer_stop (EV_A_ w);
1374 } 4043 }
1375 else if (w->repeat) 4044 else if (w->repeat)
4045 {
4046 ev_at (w) = w->repeat;
1376 ev_timer_start (EV_A_ w); 4047 ev_timer_start (EV_A_ w);
1377} 4048 }
1378 4049
4050 EV_FREQUENT_CHECK;
4051}
4052
4053ev_tstamp
4054ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4055{
4056 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
4057}
4058
1379#if EV_PERIODICS 4059#if EV_PERIODIC_ENABLE
4060noinline
1380void 4061void
1381ev_periodic_start (EV_P_ struct ev_periodic *w) 4062ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
1382{ 4063{
1383 if (ev_is_active (w)) 4064 if (expect_false (ev_is_active (w)))
1384 return; 4065 return;
1385 4066
1386 if (w->reschedule_cb) 4067 if (w->reschedule_cb)
1387 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 4068 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1388 else if (w->interval) 4069 else if (w->interval)
1389 { 4070 {
1390 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 4071 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1391 /* this formula differs from the one in periodic_reify because we do not always round up */ 4072 periodic_recalc (EV_A_ w);
1392 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1393 } 4073 }
4074 else
4075 ev_at (w) = w->offset;
1394 4076
4077 EV_FREQUENT_CHECK;
4078
4079 ++periodiccnt;
1395 ev_start (EV_A_ (W)w, ++periodiccnt); 4080 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1396 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 4081 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
1397 periodics [periodiccnt - 1] = w; 4082 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1398 upheap ((WT *)periodics, periodiccnt - 1); 4083 ANHE_at_cache (periodics [ev_active (w)]);
4084 upheap (periodics, ev_active (w));
1399 4085
4086 EV_FREQUENT_CHECK;
4087
1400 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 4088 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1401} 4089}
1402 4090
4091noinline
1403void 4092void
1404ev_periodic_stop (EV_P_ struct ev_periodic *w) 4093ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
1405{ 4094{
1406 ev_clear_pending (EV_A_ (W)w); 4095 clear_pending (EV_A_ (W)w);
1407 if (!ev_is_active (w)) 4096 if (expect_false (!ev_is_active (w)))
1408 return; 4097 return;
1409 4098
4099 EV_FREQUENT_CHECK;
4100
4101 {
4102 int active = ev_active (w);
4103
1410 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 4104 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1411 4105
1412 if (((W)w)->active < periodiccnt--) 4106 --periodiccnt;
4107
4108 if (expect_true (active < periodiccnt + HEAP0))
1413 { 4109 {
1414 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 4110 periodics [active] = periodics [periodiccnt + HEAP0];
1415 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 4111 adjustheap (periodics, periodiccnt, active);
1416 } 4112 }
4113 }
1417 4114
1418 ev_stop (EV_A_ (W)w); 4115 ev_stop (EV_A_ (W)w);
1419}
1420 4116
4117 EV_FREQUENT_CHECK;
4118}
4119
4120noinline
1421void 4121void
1422ev_periodic_again (EV_P_ struct ev_periodic *w) 4122ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
1423{ 4123{
1424 /* TODO: use adjustheap and recalculation */ 4124 /* TODO: use adjustheap and recalculation */
1425 ev_periodic_stop (EV_A_ w); 4125 ev_periodic_stop (EV_A_ w);
1426 ev_periodic_start (EV_A_ w); 4126 ev_periodic_start (EV_A_ w);
1427} 4127}
1428#endif 4128#endif
1429 4129
1430void
1431ev_idle_start (EV_P_ struct ev_idle *w)
1432{
1433 if (ev_is_active (w))
1434 return;
1435
1436 ev_start (EV_A_ (W)w, ++idlecnt);
1437 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1438 idles [idlecnt - 1] = w;
1439}
1440
1441void
1442ev_idle_stop (EV_P_ struct ev_idle *w)
1443{
1444 ev_clear_pending (EV_A_ (W)w);
1445 if (ev_is_active (w))
1446 return;
1447
1448 idles [((W)w)->active - 1] = idles [--idlecnt];
1449 ev_stop (EV_A_ (W)w);
1450}
1451
1452void
1453ev_prepare_start (EV_P_ struct ev_prepare *w)
1454{
1455 if (ev_is_active (w))
1456 return;
1457
1458 ev_start (EV_A_ (W)w, ++preparecnt);
1459 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1460 prepares [preparecnt - 1] = w;
1461}
1462
1463void
1464ev_prepare_stop (EV_P_ struct ev_prepare *w)
1465{
1466 ev_clear_pending (EV_A_ (W)w);
1467 if (ev_is_active (w))
1468 return;
1469
1470 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1471 ev_stop (EV_A_ (W)w);
1472}
1473
1474void
1475ev_check_start (EV_P_ struct ev_check *w)
1476{
1477 if (ev_is_active (w))
1478 return;
1479
1480 ev_start (EV_A_ (W)w, ++checkcnt);
1481 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1482 checks [checkcnt - 1] = w;
1483}
1484
1485void
1486ev_check_stop (EV_P_ struct ev_check *w)
1487{
1488 ev_clear_pending (EV_A_ (W)w);
1489 if (!ev_is_active (w))
1490 return;
1491
1492 checks [((W)w)->active - 1] = checks [--checkcnt];
1493 ev_stop (EV_A_ (W)w);
1494}
1495
1496#ifndef SA_RESTART 4130#ifndef SA_RESTART
1497# define SA_RESTART 0 4131# define SA_RESTART 0
1498#endif 4132#endif
1499 4133
4134#if EV_SIGNAL_ENABLE
4135
4136noinline
1500void 4137void
1501ev_signal_start (EV_P_ struct ev_signal *w) 4138ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
1502{ 4139{
4140 if (expect_false (ev_is_active (w)))
4141 return;
4142
4143 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4144
1503#if EV_MULTIPLICITY 4145#if EV_MULTIPLICITY
1504 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 4146 assert (("libev: a signal must not be attached to two different loops",
4147 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4148
4149 signals [w->signum - 1].loop = EV_A;
4150 ECB_MEMORY_FENCE_RELEASE;
4151#endif
4152
4153 EV_FREQUENT_CHECK;
4154
4155#if EV_USE_SIGNALFD
4156 if (sigfd == -2)
4157 {
4158 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
4159 if (sigfd < 0 && errno == EINVAL)
4160 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
4161
4162 if (sigfd >= 0)
4163 {
4164 fd_intern (sigfd); /* doing it twice will not hurt */
4165
4166 sigemptyset (&sigfd_set);
4167
4168 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4169 ev_set_priority (&sigfd_w, EV_MAXPRI);
4170 ev_io_start (EV_A_ &sigfd_w);
4171 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4172 }
4173 }
4174
4175 if (sigfd >= 0)
4176 {
4177 /* TODO: check .head */
4178 sigaddset (&sigfd_set, w->signum);
4179 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4180
4181 signalfd (sigfd, &sigfd_set, 0);
4182 }
4183#endif
4184
4185 ev_start (EV_A_ (W)w, 1);
4186 wlist_add (&signals [w->signum - 1].head, (WL)w);
4187
4188 if (!((WL)w)->next)
4189# if EV_USE_SIGNALFD
4190 if (sigfd < 0) /*TODO*/
1505#endif 4191# endif
1506 if (ev_is_active (w)) 4192 {
4193# ifdef _WIN32
4194 evpipe_init (EV_A);
4195
4196 signal (w->signum, ev_sighandler);
4197# else
4198 struct sigaction sa;
4199
4200 evpipe_init (EV_A);
4201
4202 sa.sa_handler = ev_sighandler;
4203 sigfillset (&sa.sa_mask);
4204 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
4205 sigaction (w->signum, &sa, 0);
4206
4207 if (origflags & EVFLAG_NOSIGMASK)
4208 {
4209 sigemptyset (&sa.sa_mask);
4210 sigaddset (&sa.sa_mask, w->signum);
4211 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4212 }
4213#endif
4214 }
4215
4216 EV_FREQUENT_CHECK;
4217}
4218
4219noinline
4220void
4221ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
4222{
4223 clear_pending (EV_A_ (W)w);
4224 if (expect_false (!ev_is_active (w)))
1507 return; 4225 return;
1508 4226
1509 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 4227 EV_FREQUENT_CHECK;
4228
4229 wlist_del (&signals [w->signum - 1].head, (WL)w);
4230 ev_stop (EV_A_ (W)w);
4231
4232 if (!signals [w->signum - 1].head)
4233 {
4234#if EV_MULTIPLICITY
4235 signals [w->signum - 1].loop = 0; /* unattach from signal */
4236#endif
4237#if EV_USE_SIGNALFD
4238 if (sigfd >= 0)
4239 {
4240 sigset_t ss;
4241
4242 sigemptyset (&ss);
4243 sigaddset (&ss, w->signum);
4244 sigdelset (&sigfd_set, w->signum);
4245
4246 signalfd (sigfd, &sigfd_set, 0);
4247 sigprocmask (SIG_UNBLOCK, &ss, 0);
4248 }
4249 else
4250#endif
4251 signal (w->signum, SIG_DFL);
4252 }
4253
4254 EV_FREQUENT_CHECK;
4255}
4256
4257#endif
4258
4259#if EV_CHILD_ENABLE
4260
4261void
4262ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4263{
4264#if EV_MULTIPLICITY
4265 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
4266#endif
4267 if (expect_false (ev_is_active (w)))
4268 return;
4269
4270 EV_FREQUENT_CHECK;
1510 4271
1511 ev_start (EV_A_ (W)w, 1); 4272 ev_start (EV_A_ (W)w, 1);
1512 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 4273 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1513 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1514 4274
1515 if (!((WL)w)->next) 4275 EV_FREQUENT_CHECK;
4276}
4277
4278void
4279ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
4280{
4281 clear_pending (EV_A_ (W)w);
4282 if (expect_false (!ev_is_active (w)))
4283 return;
4284
4285 EV_FREQUENT_CHECK;
4286
4287 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4288 ev_stop (EV_A_ (W)w);
4289
4290 EV_FREQUENT_CHECK;
4291}
4292
4293#endif
4294
4295#if EV_STAT_ENABLE
4296
4297# ifdef _WIN32
4298# undef lstat
4299# define lstat(a,b) _stati64 (a,b)
4300# endif
4301
4302#define DEF_STAT_INTERVAL 5.0074891
4303#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4304#define MIN_STAT_INTERVAL 0.1074891
4305
4306noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4307
4308#if EV_USE_INOTIFY
4309
4310/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4311# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4312
4313noinline
4314static void
4315infy_add (EV_P_ ev_stat *w)
4316{
4317 w->wd = inotify_add_watch (fs_fd, w->path,
4318 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4319 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4320 | IN_DONT_FOLLOW | IN_MASK_ADD);
4321
4322 if (w->wd >= 0)
4323 {
4324 struct statfs sfs;
4325
4326 /* now local changes will be tracked by inotify, but remote changes won't */
4327 /* unless the filesystem is known to be local, we therefore still poll */
4328 /* also do poll on <2.6.25, but with normal frequency */
4329
4330 if (!fs_2625)
4331 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4332 else if (!statfs (w->path, &sfs)
4333 && (sfs.f_type == 0x1373 /* devfs */
4334 || sfs.f_type == 0x4006 /* fat */
4335 || sfs.f_type == 0x4d44 /* msdos */
4336 || sfs.f_type == 0xEF53 /* ext2/3 */
4337 || sfs.f_type == 0x72b6 /* jffs2 */
4338 || sfs.f_type == 0x858458f6 /* ramfs */
4339 || sfs.f_type == 0x5346544e /* ntfs */
4340 || sfs.f_type == 0x3153464a /* jfs */
4341 || sfs.f_type == 0x9123683e /* btrfs */
4342 || sfs.f_type == 0x52654973 /* reiser3 */
4343 || sfs.f_type == 0x01021994 /* tmpfs */
4344 || sfs.f_type == 0x58465342 /* xfs */))
4345 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4346 else
4347 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1516 { 4348 }
1517#if WIN32 4349 else
1518 signal (w->signum, sighandler); 4350 {
4351 /* can't use inotify, continue to stat */
4352 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4353
4354 /* if path is not there, monitor some parent directory for speedup hints */
4355 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4356 /* but an efficiency issue only */
4357 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4358 {
4359 char path [4096];
4360 strcpy (path, w->path);
4361
4362 do
4363 {
4364 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4365 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4366
4367 char *pend = strrchr (path, '/');
4368
4369 if (!pend || pend == path)
4370 break;
4371
4372 *pend = 0;
4373 w->wd = inotify_add_watch (fs_fd, path, mask);
4374 }
4375 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4376 }
4377 }
4378
4379 if (w->wd >= 0)
4380 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4381
4382 /* now re-arm timer, if required */
4383 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4384 ev_timer_again (EV_A_ &w->timer);
4385 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4386}
4387
4388noinline
4389static void
4390infy_del (EV_P_ ev_stat *w)
4391{
4392 int slot;
4393 int wd = w->wd;
4394
4395 if (wd < 0)
4396 return;
4397
4398 w->wd = -2;
4399 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4400 wlist_del (&fs_hash [slot].head, (WL)w);
4401
4402 /* remove this watcher, if others are watching it, they will rearm */
4403 inotify_rm_watch (fs_fd, wd);
4404}
4405
4406noinline
4407static void
4408infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4409{
4410 if (slot < 0)
4411 /* overflow, need to check for all hash slots */
4412 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4413 infy_wd (EV_A_ slot, wd, ev);
4414 else
4415 {
4416 WL w_;
4417
4418 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4419 {
4420 ev_stat *w = (ev_stat *)w_;
4421 w_ = w_->next; /* lets us remove this watcher and all before it */
4422
4423 if (w->wd == wd || wd == -1)
4424 {
4425 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4426 {
4427 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4428 w->wd = -1;
4429 infy_add (EV_A_ w); /* re-add, no matter what */
4430 }
4431
4432 stat_timer_cb (EV_A_ &w->timer, 0);
4433 }
4434 }
4435 }
4436}
4437
4438static void
4439infy_cb (EV_P_ ev_io *w, int revents)
4440{
4441 char buf [EV_INOTIFY_BUFSIZE];
4442 int ofs;
4443 int len = read (fs_fd, buf, sizeof (buf));
4444
4445 for (ofs = 0; ofs < len; )
4446 {
4447 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4448 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4449 ofs += sizeof (struct inotify_event) + ev->len;
4450 }
4451}
4452
4453inline_size ecb_cold
4454void
4455ev_check_2625 (EV_P)
4456{
4457 /* kernels < 2.6.25 are borked
4458 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4459 */
4460 if (ev_linux_version () < 0x020619)
4461 return;
4462
4463 fs_2625 = 1;
4464}
4465
4466inline_size int
4467infy_newfd (void)
4468{
4469#if defined IN_CLOEXEC && defined IN_NONBLOCK
4470 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4471 if (fd >= 0)
4472 return fd;
4473#endif
4474 return inotify_init ();
4475}
4476
4477inline_size void
4478infy_init (EV_P)
4479{
4480 if (fs_fd != -2)
4481 return;
4482
4483 fs_fd = -1;
4484
4485 ev_check_2625 (EV_A);
4486
4487 fs_fd = infy_newfd ();
4488
4489 if (fs_fd >= 0)
4490 {
4491 fd_intern (fs_fd);
4492 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4493 ev_set_priority (&fs_w, EV_MAXPRI);
4494 ev_io_start (EV_A_ &fs_w);
4495 ev_unref (EV_A);
4496 }
4497}
4498
4499inline_size void
4500infy_fork (EV_P)
4501{
4502 int slot;
4503
4504 if (fs_fd < 0)
4505 return;
4506
4507 ev_ref (EV_A);
4508 ev_io_stop (EV_A_ &fs_w);
4509 close (fs_fd);
4510 fs_fd = infy_newfd ();
4511
4512 if (fs_fd >= 0)
4513 {
4514 fd_intern (fs_fd);
4515 ev_io_set (&fs_w, fs_fd, EV_READ);
4516 ev_io_start (EV_A_ &fs_w);
4517 ev_unref (EV_A);
4518 }
4519
4520 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4521 {
4522 WL w_ = fs_hash [slot].head;
4523 fs_hash [slot].head = 0;
4524
4525 while (w_)
4526 {
4527 ev_stat *w = (ev_stat *)w_;
4528 w_ = w_->next; /* lets us add this watcher */
4529
4530 w->wd = -1;
4531
4532 if (fs_fd >= 0)
4533 infy_add (EV_A_ w); /* re-add, no matter what */
4534 else
4535 {
4536 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4537 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4538 ev_timer_again (EV_A_ &w->timer);
4539 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4540 }
4541 }
4542 }
4543}
4544
4545#endif
4546
4547#ifdef _WIN32
4548# define EV_LSTAT(p,b) _stati64 (p, b)
1519#else 4549#else
1520 struct sigaction sa; 4550# define EV_LSTAT(p,b) lstat (p, b)
1521 sa.sa_handler = sighandler;
1522 sigfillset (&sa.sa_mask);
1523 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1524 sigaction (w->signum, &sa, 0);
1525#endif 4551#endif
1526 }
1527}
1528 4552
1529void 4553void
1530ev_signal_stop (EV_P_ struct ev_signal *w) 4554ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
1531{ 4555{
1532 ev_clear_pending (EV_A_ (W)w); 4556 if (lstat (w->path, &w->attr) < 0)
1533 if (!ev_is_active (w)) 4557 w->attr.st_nlink = 0;
4558 else if (!w->attr.st_nlink)
4559 w->attr.st_nlink = 1;
4560}
4561
4562noinline
4563static void
4564stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4565{
4566 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4567
4568 ev_statdata prev = w->attr;
4569 ev_stat_stat (EV_A_ w);
4570
4571 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4572 if (
4573 prev.st_dev != w->attr.st_dev
4574 || prev.st_ino != w->attr.st_ino
4575 || prev.st_mode != w->attr.st_mode
4576 || prev.st_nlink != w->attr.st_nlink
4577 || prev.st_uid != w->attr.st_uid
4578 || prev.st_gid != w->attr.st_gid
4579 || prev.st_rdev != w->attr.st_rdev
4580 || prev.st_size != w->attr.st_size
4581 || prev.st_atime != w->attr.st_atime
4582 || prev.st_mtime != w->attr.st_mtime
4583 || prev.st_ctime != w->attr.st_ctime
4584 ) {
4585 /* we only update w->prev on actual differences */
4586 /* in case we test more often than invoke the callback, */
4587 /* to ensure that prev is always different to attr */
4588 w->prev = prev;
4589
4590 #if EV_USE_INOTIFY
4591 if (fs_fd >= 0)
4592 {
4593 infy_del (EV_A_ w);
4594 infy_add (EV_A_ w);
4595 ev_stat_stat (EV_A_ w); /* avoid race... */
4596 }
4597 #endif
4598
4599 ev_feed_event (EV_A_ w, EV_STAT);
4600 }
4601}
4602
4603void
4604ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
4605{
4606 if (expect_false (ev_is_active (w)))
1534 return; 4607 return;
1535 4608
1536 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 4609 ev_stat_stat (EV_A_ w);
4610
4611 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4612 w->interval = MIN_STAT_INTERVAL;
4613
4614 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4615 ev_set_priority (&w->timer, ev_priority (w));
4616
4617#if EV_USE_INOTIFY
4618 infy_init (EV_A);
4619
4620 if (fs_fd >= 0)
4621 infy_add (EV_A_ w);
4622 else
4623#endif
4624 {
4625 ev_timer_again (EV_A_ &w->timer);
4626 ev_unref (EV_A);
4627 }
4628
4629 ev_start (EV_A_ (W)w, 1);
4630
4631 EV_FREQUENT_CHECK;
4632}
4633
4634void
4635ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
4636{
4637 clear_pending (EV_A_ (W)w);
4638 if (expect_false (!ev_is_active (w)))
4639 return;
4640
4641 EV_FREQUENT_CHECK;
4642
4643#if EV_USE_INOTIFY
4644 infy_del (EV_A_ w);
4645#endif
4646
4647 if (ev_is_active (&w->timer))
4648 {
4649 ev_ref (EV_A);
4650 ev_timer_stop (EV_A_ &w->timer);
4651 }
4652
1537 ev_stop (EV_A_ (W)w); 4653 ev_stop (EV_A_ (W)w);
1538 4654
1539 if (!signals [w->signum - 1].head) 4655 EV_FREQUENT_CHECK;
1540 signal (w->signum, SIG_DFL);
1541} 4656}
1542
1543void
1544ev_child_start (EV_P_ struct ev_child *w)
1545{
1546#if EV_MULTIPLICITY
1547 assert (("child watchers are only supported in the default loop", loop == default_loop));
1548#endif 4657#endif
4658
4659#if EV_IDLE_ENABLE
4660void
4661ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
4662{
1549 if (ev_is_active (w)) 4663 if (expect_false (ev_is_active (w)))
1550 return; 4664 return;
1551 4665
4666 pri_adjust (EV_A_ (W)w);
4667
4668 EV_FREQUENT_CHECK;
4669
4670 {
4671 int active = ++idlecnt [ABSPRI (w)];
4672
4673 ++idleall;
4674 ev_start (EV_A_ (W)w, active);
4675
4676 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
4677 idles [ABSPRI (w)][active - 1] = w;
4678 }
4679
4680 EV_FREQUENT_CHECK;
4681}
4682
4683void
4684ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
4685{
4686 clear_pending (EV_A_ (W)w);
4687 if (expect_false (!ev_is_active (w)))
4688 return;
4689
4690 EV_FREQUENT_CHECK;
4691
4692 {
4693 int active = ev_active (w);
4694
4695 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4696 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4697
4698 ev_stop (EV_A_ (W)w);
4699 --idleall;
4700 }
4701
4702 EV_FREQUENT_CHECK;
4703}
4704#endif
4705
4706#if EV_PREPARE_ENABLE
4707void
4708ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
4709{
4710 if (expect_false (ev_is_active (w)))
4711 return;
4712
4713 EV_FREQUENT_CHECK;
4714
4715 ev_start (EV_A_ (W)w, ++preparecnt);
4716 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
4717 prepares [preparecnt - 1] = w;
4718
4719 EV_FREQUENT_CHECK;
4720}
4721
4722void
4723ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
4724{
4725 clear_pending (EV_A_ (W)w);
4726 if (expect_false (!ev_is_active (w)))
4727 return;
4728
4729 EV_FREQUENT_CHECK;
4730
4731 {
4732 int active = ev_active (w);
4733
4734 prepares [active - 1] = prepares [--preparecnt];
4735 ev_active (prepares [active - 1]) = active;
4736 }
4737
4738 ev_stop (EV_A_ (W)w);
4739
4740 EV_FREQUENT_CHECK;
4741}
4742#endif
4743
4744#if EV_CHECK_ENABLE
4745void
4746ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
4747{
4748 if (expect_false (ev_is_active (w)))
4749 return;
4750
4751 EV_FREQUENT_CHECK;
4752
4753 ev_start (EV_A_ (W)w, ++checkcnt);
4754 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
4755 checks [checkcnt - 1] = w;
4756
4757 EV_FREQUENT_CHECK;
4758}
4759
4760void
4761ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
4762{
4763 clear_pending (EV_A_ (W)w);
4764 if (expect_false (!ev_is_active (w)))
4765 return;
4766
4767 EV_FREQUENT_CHECK;
4768
4769 {
4770 int active = ev_active (w);
4771
4772 checks [active - 1] = checks [--checkcnt];
4773 ev_active (checks [active - 1]) = active;
4774 }
4775
4776 ev_stop (EV_A_ (W)w);
4777
4778 EV_FREQUENT_CHECK;
4779}
4780#endif
4781
4782#if EV_EMBED_ENABLE
4783noinline
4784void
4785ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
4786{
4787 ev_run (w->other, EVRUN_NOWAIT);
4788}
4789
4790static void
4791embed_io_cb (EV_P_ ev_io *io, int revents)
4792{
4793 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4794
4795 if (ev_cb (w))
4796 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4797 else
4798 ev_run (w->other, EVRUN_NOWAIT);
4799}
4800
4801static void
4802embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4803{
4804 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4805
4806 {
4807 EV_P = w->other;
4808
4809 while (fdchangecnt)
4810 {
4811 fd_reify (EV_A);
4812 ev_run (EV_A_ EVRUN_NOWAIT);
4813 }
4814 }
4815}
4816
4817static void
4818embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4819{
4820 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4821
4822 ev_embed_stop (EV_A_ w);
4823
4824 {
4825 EV_P = w->other;
4826
4827 ev_loop_fork (EV_A);
4828 ev_run (EV_A_ EVRUN_NOWAIT);
4829 }
4830
4831 ev_embed_start (EV_A_ w);
4832}
4833
4834#if 0
4835static void
4836embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4837{
4838 ev_idle_stop (EV_A_ idle);
4839}
4840#endif
4841
4842void
4843ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
4844{
4845 if (expect_false (ev_is_active (w)))
4846 return;
4847
4848 {
4849 EV_P = w->other;
4850 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4851 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4852 }
4853
4854 EV_FREQUENT_CHECK;
4855
4856 ev_set_priority (&w->io, ev_priority (w));
4857 ev_io_start (EV_A_ &w->io);
4858
4859 ev_prepare_init (&w->prepare, embed_prepare_cb);
4860 ev_set_priority (&w->prepare, EV_MINPRI);
4861 ev_prepare_start (EV_A_ &w->prepare);
4862
4863 ev_fork_init (&w->fork, embed_fork_cb);
4864 ev_fork_start (EV_A_ &w->fork);
4865
4866 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4867
1552 ev_start (EV_A_ (W)w, 1); 4868 ev_start (EV_A_ (W)w, 1);
1553 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1554}
1555 4869
4870 EV_FREQUENT_CHECK;
4871}
4872
1556void 4873void
1557ev_child_stop (EV_P_ struct ev_child *w) 4874ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
1558{ 4875{
1559 ev_clear_pending (EV_A_ (W)w); 4876 clear_pending (EV_A_ (W)w);
1560 if (!ev_is_active (w)) 4877 if (expect_false (!ev_is_active (w)))
1561 return; 4878 return;
1562 4879
1563 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4880 EV_FREQUENT_CHECK;
4881
4882 ev_io_stop (EV_A_ &w->io);
4883 ev_prepare_stop (EV_A_ &w->prepare);
4884 ev_fork_stop (EV_A_ &w->fork);
4885
1564 ev_stop (EV_A_ (W)w); 4886 ev_stop (EV_A_ (W)w);
4887
4888 EV_FREQUENT_CHECK;
1565} 4889}
4890#endif
4891
4892#if EV_FORK_ENABLE
4893void
4894ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
4895{
4896 if (expect_false (ev_is_active (w)))
4897 return;
4898
4899 EV_FREQUENT_CHECK;
4900
4901 ev_start (EV_A_ (W)w, ++forkcnt);
4902 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
4903 forks [forkcnt - 1] = w;
4904
4905 EV_FREQUENT_CHECK;
4906}
4907
4908void
4909ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
4910{
4911 clear_pending (EV_A_ (W)w);
4912 if (expect_false (!ev_is_active (w)))
4913 return;
4914
4915 EV_FREQUENT_CHECK;
4916
4917 {
4918 int active = ev_active (w);
4919
4920 forks [active - 1] = forks [--forkcnt];
4921 ev_active (forks [active - 1]) = active;
4922 }
4923
4924 ev_stop (EV_A_ (W)w);
4925
4926 EV_FREQUENT_CHECK;
4927}
4928#endif
4929
4930#if EV_CLEANUP_ENABLE
4931void
4932ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
4933{
4934 if (expect_false (ev_is_active (w)))
4935 return;
4936
4937 EV_FREQUENT_CHECK;
4938
4939 ev_start (EV_A_ (W)w, ++cleanupcnt);
4940 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
4941 cleanups [cleanupcnt - 1] = w;
4942
4943 /* cleanup watchers should never keep a refcount on the loop */
4944 ev_unref (EV_A);
4945 EV_FREQUENT_CHECK;
4946}
4947
4948void
4949ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
4950{
4951 clear_pending (EV_A_ (W)w);
4952 if (expect_false (!ev_is_active (w)))
4953 return;
4954
4955 EV_FREQUENT_CHECK;
4956 ev_ref (EV_A);
4957
4958 {
4959 int active = ev_active (w);
4960
4961 cleanups [active - 1] = cleanups [--cleanupcnt];
4962 ev_active (cleanups [active - 1]) = active;
4963 }
4964
4965 ev_stop (EV_A_ (W)w);
4966
4967 EV_FREQUENT_CHECK;
4968}
4969#endif
4970
4971#if EV_ASYNC_ENABLE
4972void
4973ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
4974{
4975 if (expect_false (ev_is_active (w)))
4976 return;
4977
4978 w->sent = 0;
4979
4980 evpipe_init (EV_A);
4981
4982 EV_FREQUENT_CHECK;
4983
4984 ev_start (EV_A_ (W)w, ++asynccnt);
4985 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
4986 asyncs [asynccnt - 1] = w;
4987
4988 EV_FREQUENT_CHECK;
4989}
4990
4991void
4992ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
4993{
4994 clear_pending (EV_A_ (W)w);
4995 if (expect_false (!ev_is_active (w)))
4996 return;
4997
4998 EV_FREQUENT_CHECK;
4999
5000 {
5001 int active = ev_active (w);
5002
5003 asyncs [active - 1] = asyncs [--asynccnt];
5004 ev_active (asyncs [active - 1]) = active;
5005 }
5006
5007 ev_stop (EV_A_ (W)w);
5008
5009 EV_FREQUENT_CHECK;
5010}
5011
5012void
5013ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
5014{
5015 w->sent = 1;
5016 evpipe_write (EV_A_ &async_pending);
5017}
5018#endif
1566 5019
1567/*****************************************************************************/ 5020/*****************************************************************************/
1568 5021
1569struct ev_once 5022struct ev_once
1570{ 5023{
1571 struct ev_io io; 5024 ev_io io;
1572 struct ev_timer to; 5025 ev_timer to;
1573 void (*cb)(int revents, void *arg); 5026 void (*cb)(int revents, void *arg);
1574 void *arg; 5027 void *arg;
1575}; 5028};
1576 5029
1577static void 5030static void
1578once_cb (EV_P_ struct ev_once *once, int revents) 5031once_cb (EV_P_ struct ev_once *once, int revents)
1579{ 5032{
1580 void (*cb)(int revents, void *arg) = once->cb; 5033 void (*cb)(int revents, void *arg) = once->cb;
1581 void *arg = once->arg; 5034 void *arg = once->arg;
1582 5035
1583 ev_io_stop (EV_A_ &once->io); 5036 ev_io_stop (EV_A_ &once->io);
1584 ev_timer_stop (EV_A_ &once->to); 5037 ev_timer_stop (EV_A_ &once->to);
1585 ev_free (once); 5038 ev_free (once);
1586 5039
1587 cb (revents, arg); 5040 cb (revents, arg);
1588} 5041}
1589 5042
1590static void 5043static void
1591once_cb_io (EV_P_ struct ev_io *w, int revents) 5044once_cb_io (EV_P_ ev_io *w, int revents)
1592{ 5045{
1593 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 5046 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
5047
5048 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1594} 5049}
1595 5050
1596static void 5051static void
1597once_cb_to (EV_P_ struct ev_timer *w, int revents) 5052once_cb_to (EV_P_ ev_timer *w, int revents)
1598{ 5053{
1599 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 5054 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
1600}
1601 5055
5056 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
5057}
5058
1602void 5059void
1603ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 5060ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
1604{ 5061{
1605 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 5062 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1606 5063
1607 if (!once)
1608 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1609 else
1610 {
1611 once->cb = cb; 5064 once->cb = cb;
1612 once->arg = arg; 5065 once->arg = arg;
1613 5066
1614 ev_init (&once->io, once_cb_io); 5067 ev_init (&once->io, once_cb_io);
1615 if (fd >= 0) 5068 if (fd >= 0)
5069 {
5070 ev_io_set (&once->io, fd, events);
5071 ev_io_start (EV_A_ &once->io);
5072 }
5073
5074 ev_init (&once->to, once_cb_to);
5075 if (timeout >= 0.)
5076 {
5077 ev_timer_set (&once->to, timeout, 0.);
5078 ev_timer_start (EV_A_ &once->to);
5079 }
5080}
5081
5082/*****************************************************************************/
5083
5084#if EV_WALK_ENABLE
5085ecb_cold
5086void
5087ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5088{
5089 int i, j;
5090 ev_watcher_list *wl, *wn;
5091
5092 if (types & (EV_IO | EV_EMBED))
5093 for (i = 0; i < anfdmax; ++i)
5094 for (wl = anfds [i].head; wl; )
1616 { 5095 {
1617 ev_io_set (&once->io, fd, events); 5096 wn = wl->next;
1618 ev_io_start (EV_A_ &once->io); 5097
5098#if EV_EMBED_ENABLE
5099 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5100 {
5101 if (types & EV_EMBED)
5102 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5103 }
5104 else
5105#endif
5106#if EV_USE_INOTIFY
5107 if (ev_cb ((ev_io *)wl) == infy_cb)
5108 ;
5109 else
5110#endif
5111 if ((ev_io *)wl != &pipe_w)
5112 if (types & EV_IO)
5113 cb (EV_A_ EV_IO, wl);
5114
5115 wl = wn;
1619 } 5116 }
1620 5117
1621 ev_init (&once->to, once_cb_to); 5118 if (types & (EV_TIMER | EV_STAT))
1622 if (timeout >= 0.) 5119 for (i = timercnt + HEAP0; i-- > HEAP0; )
5120#if EV_STAT_ENABLE
5121 /*TODO: timer is not always active*/
5122 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1623 { 5123 {
1624 ev_timer_set (&once->to, timeout, 0.); 5124 if (types & EV_STAT)
1625 ev_timer_start (EV_A_ &once->to); 5125 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1626 } 5126 }
1627 } 5127 else
1628} 5128#endif
5129 if (types & EV_TIMER)
5130 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1629 5131
1630#ifdef __cplusplus 5132#if EV_PERIODIC_ENABLE
1631} 5133 if (types & EV_PERIODIC)
5134 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5135 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5136#endif
5137
5138#if EV_IDLE_ENABLE
5139 if (types & EV_IDLE)
5140 for (j = NUMPRI; j--; )
5141 for (i = idlecnt [j]; i--; )
5142 cb (EV_A_ EV_IDLE, idles [j][i]);
5143#endif
5144
5145#if EV_FORK_ENABLE
5146 if (types & EV_FORK)
5147 for (i = forkcnt; i--; )
5148 if (ev_cb (forks [i]) != embed_fork_cb)
5149 cb (EV_A_ EV_FORK, forks [i]);
5150#endif
5151
5152#if EV_ASYNC_ENABLE
5153 if (types & EV_ASYNC)
5154 for (i = asynccnt; i--; )
5155 cb (EV_A_ EV_ASYNC, asyncs [i]);
5156#endif
5157
5158#if EV_PREPARE_ENABLE
5159 if (types & EV_PREPARE)
5160 for (i = preparecnt; i--; )
5161# if EV_EMBED_ENABLE
5162 if (ev_cb (prepares [i]) != embed_prepare_cb)
1632#endif 5163# endif
5164 cb (EV_A_ EV_PREPARE, prepares [i]);
5165#endif
1633 5166
5167#if EV_CHECK_ENABLE
5168 if (types & EV_CHECK)
5169 for (i = checkcnt; i--; )
5170 cb (EV_A_ EV_CHECK, checks [i]);
5171#endif
5172
5173#if EV_SIGNAL_ENABLE
5174 if (types & EV_SIGNAL)
5175 for (i = 0; i < EV_NSIG - 1; ++i)
5176 for (wl = signals [i].head; wl; )
5177 {
5178 wn = wl->next;
5179 cb (EV_A_ EV_SIGNAL, wl);
5180 wl = wn;
5181 }
5182#endif
5183
5184#if EV_CHILD_ENABLE
5185 if (types & EV_CHILD)
5186 for (i = (EV_PID_HASHSIZE); i--; )
5187 for (wl = childs [i]; wl; )
5188 {
5189 wn = wl->next;
5190 cb (EV_A_ EV_CHILD, wl);
5191 wl = wn;
5192 }
5193#endif
5194/* EV_STAT 0x00001000 /* stat data changed */
5195/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5196}
5197#endif
5198
5199#if EV_MULTIPLICITY
5200 #include "ev_wrap.h"
5201#endif
5202

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines