ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.5 by root, Tue Oct 30 23:54:38 2007 UTC vs.
Revision 1.61 by root, Sun Nov 4 19:45:09 2007 UTC

1/*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are
9 * met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * * Redistributions in binary form must reproduce the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer in the documentation and/or other materials provided
17 * with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31#ifndef EV_STANDALONE
32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
55#endif
56
1#include <math.h> 57#include <math.h>
2#include <stdlib.h> 58#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h>
3 63
4#include <stdio.h> 64#include <stdio.h>
5 65
6#include <assert.h> 66#include <assert.h>
7#include <errno.h> 67#include <errno.h>
68#include <sys/types.h>
69#ifndef WIN32
70# include <sys/wait.h>
71#endif
8#include <sys/time.h> 72#include <sys/time.h>
9#include <time.h> 73#include <time.h>
10 74
75/**/
76
77#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1
79#endif
80
81#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1
83#endif
84
85#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87#endif
88
89#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0
91#endif
92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_REALTIME
98# define EV_USE_REALTIME 1
99#endif
100
101/**/
102
11#ifdef CLOCK_MONOTONIC 103#ifndef CLOCK_MONOTONIC
104# undef EV_USE_MONOTONIC
12# define HAVE_MONOTONIC 1 105# define EV_USE_MONOTONIC 0
13#endif 106#endif
14 107
15#define HAVE_EPOLL 1 108#ifndef CLOCK_REALTIME
109# undef EV_USE_REALTIME
16#define HAVE_REALTIME 1 110# define EV_USE_REALTIME 0
17#define HAVE_SELECT 1 111#endif
112
113/**/
18 114
19#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 115#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
20#define MAX_BLOCKTIME 60. 116#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
117#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
118/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
21 119
22#include "ev.h" 120#include "ev.h"
23 121
122#if __GNUC__ >= 3
123# define expect(expr,value) __builtin_expect ((expr),(value))
124# define inline inline
125#else
126# define expect(expr,value) (expr)
127# define inline static
128#endif
129
130#define expect_false(expr) expect ((expr) != 0, 0)
131#define expect_true(expr) expect ((expr) != 0, 1)
132
133#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
134#define ABSPRI(w) ((w)->priority - EV_MINPRI)
135
24struct ev_watcher { 136typedef struct ev_watcher *W;
25 EV_WATCHER (ev_watcher); 137typedef struct ev_watcher_list *WL;
138typedef struct ev_watcher_time *WT;
139
140static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
141
142/*****************************************************************************/
143
144typedef struct
145{
146 struct ev_watcher_list *head;
147 unsigned char events;
148 unsigned char reify;
149} ANFD;
150
151typedef struct
152{
153 W w;
154 int events;
155} ANPENDING;
156
157#if EV_MULTIPLICITY
158
159struct ev_loop
160{
161# define VAR(name,decl) decl;
162# include "ev_vars.h"
26}; 163};
164# undef VAR
165# include "ev_wrap.h"
27 166
28struct ev_watcher_list { 167#else
29 EV_WATCHER_LIST (ev_watcher_list);
30};
31 168
32static ev_tstamp now, diff; /* monotonic clock */ 169# define VAR(name,decl) static decl;
33ev_tstamp ev_now; 170# include "ev_vars.h"
34int ev_method; 171# undef VAR
35 172
36static int have_monotonic; /* runtime */ 173#endif
37 174
38static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 175/*****************************************************************************/
39static void (*method_modify)(int fd, int oev, int nev);
40static void (*method_poll)(ev_tstamp timeout);
41 176
42ev_tstamp 177inline ev_tstamp
43ev_time (void) 178ev_time (void)
44{ 179{
45#if HAVE_REALTIME 180#if EV_USE_REALTIME
46 struct timespec ts; 181 struct timespec ts;
47 clock_gettime (CLOCK_REALTIME, &ts); 182 clock_gettime (CLOCK_REALTIME, &ts);
48 return ts.tv_sec + ts.tv_nsec * 1e-9; 183 return ts.tv_sec + ts.tv_nsec * 1e-9;
49#else 184#else
50 struct timeval tv; 185 struct timeval tv;
51 gettimeofday (&tv, 0); 186 gettimeofday (&tv, 0);
52 return tv.tv_sec + tv.tv_usec * 1e-6; 187 return tv.tv_sec + tv.tv_usec * 1e-6;
53#endif 188#endif
54} 189}
55 190
56static ev_tstamp 191inline ev_tstamp
57get_clock (void) 192get_clock (void)
58{ 193{
59#if HAVE_MONOTONIC 194#if EV_USE_MONOTONIC
60 if (have_monotonic) 195 if (expect_true (have_monotonic))
61 { 196 {
62 struct timespec ts; 197 struct timespec ts;
63 clock_gettime (CLOCK_MONOTONIC, &ts); 198 clock_gettime (CLOCK_MONOTONIC, &ts);
64 return ts.tv_sec + ts.tv_nsec * 1e-9; 199 return ts.tv_sec + ts.tv_nsec * 1e-9;
65 } 200 }
66#endif 201#endif
67 202
68 return ev_time (); 203 return ev_time ();
69} 204}
70 205
206ev_tstamp
207ev_now (EV_P)
208{
209 return rt_now;
210}
211
212#define array_roundsize(base,n) ((n) | 4 & ~3)
213
71#define array_needsize(base,cur,cnt,init) \ 214#define array_needsize(base,cur,cnt,init) \
72 if ((cnt) > cur) \ 215 if (expect_false ((cnt) > cur)) \
73 { \ 216 { \
74 int newcnt = cur ? cur << 1 : 16; \ 217 int newcnt = cur; \
75 fprintf (stderr, "resize(" # base ") from %d to %d\n", cur, newcnt);\ 218 do \
219 { \
220 newcnt = array_roundsize (base, newcnt << 1); \
221 } \
222 while ((cnt) > newcnt); \
223 \
76 base = realloc (base, sizeof (*base) * (newcnt)); \ 224 base = realloc (base, sizeof (*base) * (newcnt)); \
77 init (base + cur, newcnt - cur); \ 225 init (base + cur, newcnt - cur); \
78 cur = newcnt; \ 226 cur = newcnt; \
79 } 227 }
80 228
81typedef struct 229/*****************************************************************************/
82{
83 struct ev_io *head;
84 unsigned char wev, rev; /* want, received event set */
85} ANFD;
86
87static ANFD *anfds;
88static int anfdmax;
89
90static int *fdchanges;
91static int fdchangemax, fdchangecnt;
92 230
93static void 231static void
94anfds_init (ANFD *base, int count) 232anfds_init (ANFD *base, int count)
95{ 233{
96 while (count--) 234 while (count--)
97 { 235 {
98 base->head = 0; 236 base->head = 0;
99 base->wev = base->rev = EV_NONE; 237 base->events = EV_NONE;
238 base->reify = 0;
239
100 ++base; 240 ++base;
101 } 241 }
102} 242}
103 243
104typedef struct
105{
106 struct ev_watcher *w;
107 int events;
108} ANPENDING;
109
110static ANPENDING *pendings;
111static int pendingmax, pendingcnt;
112
113static void 244static void
114event (struct ev_watcher *w, int events) 245event (EV_P_ W w, int events)
115{ 246{
247 if (w->pending)
248 {
249 pendings [ABSPRI (w)][w->pending - 1].events |= events;
250 return;
251 }
252
116 w->pending = ++pendingcnt; 253 w->pending = ++pendingcnt [ABSPRI (w)];
117 array_needsize (pendings, pendingmax, pendingcnt, ); 254 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
118 pendings [pendingcnt - 1].w = w; 255 pendings [ABSPRI (w)][w->pending - 1].w = w;
119 pendings [pendingcnt - 1].events = events; 256 pendings [ABSPRI (w)][w->pending - 1].events = events;
120} 257}
121 258
122static void 259static void
260queue_events (EV_P_ W *events, int eventcnt, int type)
261{
262 int i;
263
264 for (i = 0; i < eventcnt; ++i)
265 event (EV_A_ events [i], type);
266}
267
268static void
123fd_event (int fd, int events) 269fd_event (EV_P_ int fd, int events)
124{ 270{
125 ANFD *anfd = anfds + fd; 271 ANFD *anfd = anfds + fd;
126 struct ev_io *w; 272 struct ev_io *w;
127 273
128 for (w = anfd->head; w; w = w->next) 274 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
129 { 275 {
130 int ev = w->events & events; 276 int ev = w->events & events;
131 277
132 if (ev) 278 if (ev)
133 event ((struct ev_watcher *)w, ev); 279 event (EV_A_ (W)w, ev);
134 }
135}
136
137static struct ev_timer **atimers;
138static int atimermax, atimercnt;
139
140static struct ev_timer **rtimers;
141static int rtimermax, rtimercnt;
142
143static void
144upheap (struct ev_timer **timers, int k)
145{
146 struct ev_timer *w = timers [k];
147
148 while (k && timers [k >> 1]->at > w->at)
149 { 280 }
150 timers [k] = timers [k >> 1];
151 timers [k]->active = k + 1;
152 k >>= 1;
153 }
154
155 timers [k] = w;
156 timers [k]->active = k + 1;
157
158} 281}
159 282
160static void 283/*****************************************************************************/
161downheap (struct ev_timer **timers, int N, int k)
162{
163 struct ev_timer *w = timers [k];
164 284
165 while (k < (N >> 1))
166 {
167 int j = k << 1;
168
169 if (j + 1 < N && timers [j]->at > timers [j + 1]->at)
170 ++j;
171
172 if (w->at <= timers [j]->at)
173 break;
174
175 timers [k] = timers [j];
176 timers [k]->active = k + 1;
177 k = j;
178 }
179
180 timers [k] = w;
181 timers [k]->active = k + 1;
182}
183
184static struct ev_signal **signals;
185static int signalmax;
186
187static void 285static void
188signals_init (struct ev_signal **base, int count) 286fd_reify (EV_P)
189{
190 while (count--)
191 *base++ = 0;
192}
193
194#if HAVE_EPOLL
195# include "ev_epoll.c"
196#endif
197#if HAVE_SELECT
198# include "ev_select.c"
199#endif
200
201int ev_init (int flags)
202{
203#if HAVE_MONOTONIC
204 {
205 struct timespec ts;
206 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
207 have_monotonic = 1;
208 }
209#endif
210
211 ev_now = ev_time ();
212 now = get_clock ();
213 diff = ev_now - now;
214
215#if HAVE_EPOLL
216 if (epoll_init (flags))
217 return ev_method;
218#endif
219#if HAVE_SELECT
220 if (select_init (flags))
221 return ev_method;
222#endif
223
224 ev_method = EVMETHOD_NONE;
225 return ev_method;
226}
227
228void ev_prefork (void)
229{
230}
231
232void ev_postfork_parent (void)
233{
234}
235
236void ev_postfork_child (void)
237{
238#if HAVE_EPOLL
239 if (ev_method == EVMETHOD_EPOLL)
240 epoll_postfork_child ();
241#endif
242}
243
244static void
245fd_reify (void)
246{ 287{
247 int i; 288 int i;
248 289
249 for (i = 0; i < fdchangecnt; ++i) 290 for (i = 0; i < fdchangecnt; ++i)
250 { 291 {
251 int fd = fdchanges [i]; 292 int fd = fdchanges [i];
252 ANFD *anfd = anfds + fd; 293 ANFD *anfd = anfds + fd;
253 struct ev_io *w; 294 struct ev_io *w;
254 295
255 int wev = 0; 296 int events = 0;
256 297
257 for (w = anfd->head; w; w = w->next) 298 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
258 wev |= w->events; 299 events |= w->events;
259 300
301 anfd->reify = 0;
302
260 if (anfd->wev != wev) 303 if (anfd->events != events)
261 { 304 {
262 method_modify (fd, anfd->wev, wev); 305 method_modify (EV_A_ fd, anfd->events, events);
263 anfd->wev = wev; 306 anfd->events = events;
264 } 307 }
265 } 308 }
266 309
267 fdchangecnt = 0; 310 fdchangecnt = 0;
268} 311}
269 312
270static void 313static void
271call_pending () 314fd_change (EV_P_ int fd)
272{ 315{
316 if (anfds [fd].reify || fdchangecnt < 0)
317 return;
318
319 anfds [fd].reify = 1;
320
321 ++fdchangecnt;
322 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
323 fdchanges [fdchangecnt - 1] = fd;
324}
325
326static void
327fd_kill (EV_P_ int fd)
328{
329 struct ev_io *w;
330
331 while ((w = (struct ev_io *)anfds [fd].head))
332 {
333 ev_io_stop (EV_A_ w);
334 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
335 }
336}
337
338/* called on EBADF to verify fds */
339static void
340fd_ebadf (EV_P)
341{
273 int i; 342 int fd;
274 343
275 for (i = 0; i < pendingcnt; ++i) 344 for (fd = 0; fd < anfdmax; ++fd)
345 if (anfds [fd].events)
346 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
347 fd_kill (EV_A_ fd);
348}
349
350/* called on ENOMEM in select/poll to kill some fds and retry */
351static void
352fd_enomem (EV_P)
353{
354 int fd = anfdmax;
355
356 while (fd--)
357 if (anfds [fd].events)
276 { 358 {
277 ANPENDING *p = pendings + i; 359 close (fd);
360 fd_kill (EV_A_ fd);
361 return;
362 }
363}
278 364
279 if (p->w) 365/* susually called after fork if method needs to re-arm all fds from scratch */
366static void
367fd_rearm_all (EV_P)
368{
369 int fd;
370
371 /* this should be highly optimised to not do anything but set a flag */
372 for (fd = 0; fd < anfdmax; ++fd)
373 if (anfds [fd].events)
374 {
375 anfds [fd].events = 0;
376 fd_change (EV_A_ fd);
377 }
378}
379
380/*****************************************************************************/
381
382static void
383upheap (WT *heap, int k)
384{
385 WT w = heap [k];
386
387 while (k && heap [k >> 1]->at > w->at)
388 {
389 heap [k] = heap [k >> 1];
390 heap [k]->active = k + 1;
391 k >>= 1;
392 }
393
394 heap [k] = w;
395 heap [k]->active = k + 1;
396
397}
398
399static void
400downheap (WT *heap, int N, int k)
401{
402 WT w = heap [k];
403
404 while (k < (N >> 1))
405 {
406 int j = k << 1;
407
408 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
409 ++j;
410
411 if (w->at <= heap [j]->at)
412 break;
413
414 heap [k] = heap [j];
415 heap [k]->active = k + 1;
416 k = j;
417 }
418
419 heap [k] = w;
420 heap [k]->active = k + 1;
421}
422
423/*****************************************************************************/
424
425typedef struct
426{
427 struct ev_watcher_list *head;
428 sig_atomic_t volatile gotsig;
429} ANSIG;
430
431static ANSIG *signals;
432static int signalmax;
433
434static int sigpipe [2];
435static sig_atomic_t volatile gotsig;
436static struct ev_io sigev;
437
438static void
439signals_init (ANSIG *base, int count)
440{
441 while (count--)
442 {
443 base->head = 0;
444 base->gotsig = 0;
445
446 ++base;
447 }
448}
449
450static void
451sighandler (int signum)
452{
453 signals [signum - 1].gotsig = 1;
454
455 if (!gotsig)
456 {
457 int old_errno = errno;
458 gotsig = 1;
459 write (sigpipe [1], &signum, 1);
460 errno = old_errno;
461 }
462}
463
464static void
465sigcb (EV_P_ struct ev_io *iow, int revents)
466{
467 struct ev_watcher_list *w;
468 int signum;
469
470 read (sigpipe [0], &revents, 1);
471 gotsig = 0;
472
473 for (signum = signalmax; signum--; )
474 if (signals [signum].gotsig)
475 {
476 signals [signum].gotsig = 0;
477
478 for (w = signals [signum].head; w; w = w->next)
479 event (EV_A_ (W)w, EV_SIGNAL);
480 }
481}
482
483static void
484siginit (EV_P)
485{
486#ifndef WIN32
487 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
488 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
489
490 /* rather than sort out wether we really need nb, set it */
491 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
492 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
493#endif
494
495 ev_io_set (&sigev, sigpipe [0], EV_READ);
496 ev_io_start (EV_A_ &sigev);
497 ev_unref (EV_A); /* child watcher should not keep loop alive */
498}
499
500/*****************************************************************************/
501
502#ifndef WIN32
503
504static struct ev_child *childs [PID_HASHSIZE];
505static struct ev_signal childev;
506
507#ifndef WCONTINUED
508# define WCONTINUED 0
509#endif
510
511static void
512child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
513{
514 struct ev_child *w;
515
516 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
517 if (w->pid == pid || !w->pid)
518 {
519 w->priority = sw->priority; /* need to do it *now* */
520 w->rpid = pid;
521 w->rstatus = status;
522 event (EV_A_ (W)w, EV_CHILD);
523 }
524}
525
526static void
527childcb (EV_P_ struct ev_signal *sw, int revents)
528{
529 int pid, status;
530
531 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
532 {
533 /* make sure we are called again until all childs have been reaped */
534 event (EV_A_ (W)sw, EV_SIGNAL);
535
536 child_reap (EV_A_ sw, pid, pid, status);
537 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
538 }
539}
540
541#endif
542
543/*****************************************************************************/
544
545#if EV_USE_KQUEUE
546# include "ev_kqueue.c"
547#endif
548#if EV_USE_EPOLL
549# include "ev_epoll.c"
550#endif
551#if EV_USE_POLL
552# include "ev_poll.c"
553#endif
554#if EV_USE_SELECT
555# include "ev_select.c"
556#endif
557
558int
559ev_version_major (void)
560{
561 return EV_VERSION_MAJOR;
562}
563
564int
565ev_version_minor (void)
566{
567 return EV_VERSION_MINOR;
568}
569
570/* return true if we are running with elevated privileges and should ignore env variables */
571static int
572enable_secure (void)
573{
574#ifdef WIN32
575 return 0;
576#else
577 return getuid () != geteuid ()
578 || getgid () != getegid ();
579#endif
580}
581
582int
583ev_method (EV_P)
584{
585 return method;
586}
587
588static void
589loop_init (EV_P_ int methods)
590{
591 if (!method)
592 {
593#if EV_USE_MONOTONIC
594 {
595 struct timespec ts;
596 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
597 have_monotonic = 1;
598 }
599#endif
600
601 rt_now = ev_time ();
602 mn_now = get_clock ();
603 now_floor = mn_now;
604 rtmn_diff = rt_now - mn_now;
605
606 if (methods == EVMETHOD_AUTO)
607 if (!enable_secure () && getenv ("LIBEV_METHODS"))
608 methods = atoi (getenv ("LIBEV_METHODS"));
609 else
610 methods = EVMETHOD_ANY;
611
612 method = 0;
613#if EV_USE_KQUEUE
614 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
615#endif
616#if EV_USE_EPOLL
617 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
618#endif
619#if EV_USE_POLL
620 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
621#endif
622#if EV_USE_SELECT
623 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
624#endif
625 }
626}
627
628void
629loop_destroy (EV_P)
630{
631#if EV_USE_KQUEUE
632 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
633#endif
634#if EV_USE_EPOLL
635 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
636#endif
637#if EV_USE_POLL
638 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
639#endif
640#if EV_USE_SELECT
641 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
642#endif
643
644 method = 0;
645 /*TODO*/
646}
647
648void
649loop_fork (EV_P)
650{
651 /*TODO*/
652#if EV_USE_EPOLL
653 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
654#endif
655#if EV_USE_KQUEUE
656 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
657#endif
658}
659
660#if EV_MULTIPLICITY
661struct ev_loop *
662ev_loop_new (int methods)
663{
664 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
665
666 loop_init (EV_A_ methods);
667
668 if (ev_method (EV_A))
669 return loop;
670
671 return 0;
672}
673
674void
675ev_loop_destroy (EV_P)
676{
677 loop_destroy (EV_A);
678 free (loop);
679}
680
681void
682ev_loop_fork (EV_P)
683{
684 loop_fork (EV_A);
685}
686
687#endif
688
689#if EV_MULTIPLICITY
690struct ev_loop default_loop_struct;
691static struct ev_loop *default_loop;
692
693struct ev_loop *
694#else
695static int default_loop;
696
697int
698#endif
699ev_default_loop (int methods)
700{
701 if (sigpipe [0] == sigpipe [1])
702 if (pipe (sigpipe))
703 return 0;
704
705 if (!default_loop)
706 {
707#if EV_MULTIPLICITY
708 struct ev_loop *loop = default_loop = &default_loop_struct;
709#else
710 default_loop = 1;
711#endif
712
713 loop_init (EV_A_ methods);
714
715 if (ev_method (EV_A))
280 { 716 {
281 p->w->pending = 0; 717 ev_watcher_init (&sigev, sigcb);
282 p->w->cb (p->w, p->events); 718 ev_set_priority (&sigev, EV_MAXPRI);
719 siginit (EV_A);
720
721#ifndef WIN32
722 ev_signal_init (&childev, childcb, SIGCHLD);
723 ev_set_priority (&childev, EV_MAXPRI);
724 ev_signal_start (EV_A_ &childev);
725 ev_unref (EV_A); /* child watcher should not keep loop alive */
726#endif
283 } 727 }
728 else
729 default_loop = 0;
730 }
731
732 return default_loop;
733}
734
735void
736ev_default_destroy (void)
737{
738#if EV_MULTIPLICITY
739 struct ev_loop *loop = default_loop;
740#endif
741
742 ev_ref (EV_A); /* child watcher */
743 ev_signal_stop (EV_A_ &childev);
744
745 ev_ref (EV_A); /* signal watcher */
746 ev_io_stop (EV_A_ &sigev);
747
748 close (sigpipe [0]); sigpipe [0] = 0;
749 close (sigpipe [1]); sigpipe [1] = 0;
750
751 loop_destroy (EV_A);
752}
753
754void
755ev_default_fork (void)
756{
757#if EV_MULTIPLICITY
758 struct ev_loop *loop = default_loop;
759#endif
760
761 loop_fork (EV_A);
762
763 ev_io_stop (EV_A_ &sigev);
764 close (sigpipe [0]);
765 close (sigpipe [1]);
766 pipe (sigpipe);
767
768 ev_ref (EV_A); /* signal watcher */
769 siginit (EV_A);
770}
771
772/*****************************************************************************/
773
774static void
775call_pending (EV_P)
776{
777 int pri;
778
779 for (pri = NUMPRI; pri--; )
780 while (pendingcnt [pri])
781 {
782 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
783
784 if (p->w)
785 {
786 p->w->pending = 0;
787 p->w->cb (EV_A_ p->w, p->events);
788 }
284 } 789 }
285
286 pendingcnt = 0;
287} 790}
288 791
289static void 792static void
290timers_reify (struct ev_timer **timers, int timercnt, ev_tstamp now) 793timers_reify (EV_P)
291{ 794{
292 while (timercnt && timers [0]->at <= now) 795 while (timercnt && timers [0]->at <= mn_now)
293 { 796 {
294 struct ev_timer *w = timers [0]; 797 struct ev_timer *w = timers [0];
798
799 assert (("inactive timer on timer heap detected", ev_is_active (w)));
295 800
296 /* first reschedule or stop timer */ 801 /* first reschedule or stop timer */
297 if (w->repeat) 802 if (w->repeat)
298 { 803 {
299 if (w->is_abs) 804 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
300 w->at += floor ((now - w->at) / w->repeat + 1.) * w->repeat;
301 else
302 w->at = now + w->repeat; 805 w->at = mn_now + w->repeat;
303
304 assert (w->at > now);
305
306 downheap (timers, timercnt, 0); 806 downheap ((WT *)timers, timercnt, 0);
307 } 807 }
308 else 808 else
809 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
810
811 event (EV_A_ (W)w, EV_TIMEOUT);
812 }
813}
814
815static void
816periodics_reify (EV_P)
817{
818 while (periodiccnt && periodics [0]->at <= rt_now)
819 {
820 struct ev_periodic *w = periodics [0];
821
822 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
823
824 /* first reschedule or stop timer */
825 if (w->interval)
309 { 826 {
310 evtimer_stop (w); /* nonrepeating: stop timer */ 827 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
311 --timercnt; /* maybe pass by reference instead? */ 828 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
829 downheap ((WT *)periodics, periodiccnt, 0);
312 } 830 }
831 else
832 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
313 833
314 event ((struct ev_watcher *)w, EV_TIMEOUT); 834 event (EV_A_ (W)w, EV_PERIODIC);
315 } 835 }
316} 836}
317 837
318static void 838static void
319time_update () 839periodics_reschedule (EV_P)
320{ 840{
321 int i; 841 int i;
322 ev_now = ev_time ();
323 842
324 if (have_monotonic) 843 /* adjust periodics after time jump */
844 for (i = 0; i < periodiccnt; ++i)
325 { 845 {
326 ev_tstamp odiff = diff; 846 struct ev_periodic *w = periodics [i];
327 847
328 /* detecting time jumps is much more difficult */ 848 if (w->interval)
329 for (i = 2; --i; ) /* loop a few times, before making important decisions */
330 { 849 {
331 now = get_clock (); 850 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
332 diff = ev_now - now;
333 851
334 if (fabs (odiff - diff) < MIN_TIMEJUMP) 852 if (fabs (diff) >= 1e-4)
335 return; /* all is well */ 853 {
854 ev_periodic_stop (EV_A_ w);
855 ev_periodic_start (EV_A_ w);
336 856
337 ev_now = ev_time (); 857 i = 0; /* restart loop, inefficient, but time jumps should be rare */
858 }
338 } 859 }
860 }
861}
339 862
340 /* time jump detected, reschedule atimers */ 863inline int
341 for (i = 0; i < atimercnt; ++i) 864time_update_monotonic (EV_P)
865{
866 mn_now = get_clock ();
867
868 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
869 {
870 rt_now = rtmn_diff + mn_now;
871 return 0;
872 }
873 else
874 {
875 now_floor = mn_now;
876 rt_now = ev_time ();
877 return 1;
878 }
879}
880
881static void
882time_update (EV_P)
883{
884 int i;
885
886#if EV_USE_MONOTONIC
887 if (expect_true (have_monotonic))
888 {
889 if (time_update_monotonic (EV_A))
342 { 890 {
343 struct ev_timer *w = atimers [i]; 891 ev_tstamp odiff = rtmn_diff;
344 w->at += ceil ((ev_now - w->at) / w->repeat + 1.) * w->repeat; 892
893 for (i = 4; --i; ) /* loop a few times, before making important decisions */
894 {
895 rtmn_diff = rt_now - mn_now;
896
897 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
898 return; /* all is well */
899
900 rt_now = ev_time ();
901 mn_now = get_clock ();
902 now_floor = mn_now;
903 }
904
905 periodics_reschedule (EV_A);
906 /* no timer adjustment, as the monotonic clock doesn't jump */
907 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
345 } 908 }
346 } 909 }
347 else 910 else
911#endif
348 { 912 {
349 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 913 rt_now = ev_time ();
350 /* time jump detected, adjust rtimers */ 914
915 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
916 {
917 periodics_reschedule (EV_A);
918
919 /* adjust timers. this is easy, as the offset is the same for all */
351 for (i = 0; i < rtimercnt; ++i) 920 for (i = 0; i < timercnt; ++i)
352 rtimers [i]->at += ev_now - now; 921 timers [i]->at += rt_now - mn_now;
922 }
353 923
354 now = ev_now; 924 mn_now = rt_now;
355 } 925 }
356} 926}
357 927
358int ev_loop_done; 928void
929ev_ref (EV_P)
930{
931 ++activecnt;
932}
359 933
934void
935ev_unref (EV_P)
936{
937 --activecnt;
938}
939
940static int loop_done;
941
942void
360void ev_loop (int flags) 943ev_loop (EV_P_ int flags)
361{ 944{
362 double block; 945 double block;
363 ev_loop_done = flags & EVLOOP_ONESHOT; 946 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
364 947
365 do 948 do
366 { 949 {
950 /* queue check watchers (and execute them) */
951 if (expect_false (preparecnt))
952 {
953 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
954 call_pending (EV_A);
955 }
956
367 /* update fd-related kernel structures */ 957 /* update fd-related kernel structures */
368 fd_reify (); 958 fd_reify (EV_A);
369 959
370 /* calculate blocking time */ 960 /* calculate blocking time */
961
962 /* we only need this for !monotonic clockor timers, but as we basically
963 always have timers, we just calculate it always */
964#if EV_USE_MONOTONIC
965 if (expect_true (have_monotonic))
966 time_update_monotonic (EV_A);
967 else
968#endif
969 {
970 rt_now = ev_time ();
971 mn_now = rt_now;
972 }
973
371 if (flags & EVLOOP_NONBLOCK) 974 if (flags & EVLOOP_NONBLOCK || idlecnt)
372 block = 0.; 975 block = 0.;
373 else 976 else
374 { 977 {
375 block = MAX_BLOCKTIME; 978 block = MAX_BLOCKTIME;
376 979
377 if (rtimercnt) 980 if (timercnt)
378 { 981 {
379 ev_tstamp to = rtimers [0]->at - get_clock () + method_fudge; 982 ev_tstamp to = timers [0]->at - mn_now + method_fudge;
380 if (block > to) block = to; 983 if (block > to) block = to;
381 } 984 }
382 985
383 if (atimercnt) 986 if (periodiccnt)
384 { 987 {
385 ev_tstamp to = atimers [0]->at - ev_time () + method_fudge; 988 ev_tstamp to = periodics [0]->at - rt_now + method_fudge;
386 if (block > to) block = to; 989 if (block > to) block = to;
387 } 990 }
388 991
389 if (block < 0.) block = 0.; 992 if (block < 0.) block = 0.;
390 } 993 }
391 994
392 method_poll (block); 995 method_poll (EV_A_ block);
393 996
394 /* update ev_now, do magic */ 997 /* update rt_now, do magic */
395 time_update (); 998 time_update (EV_A);
396 999
397 /* put pending timers into pendign queue and reschedule them */ 1000 /* queue pending timers and reschedule them */
398 /* absolute timers first */ 1001 timers_reify (EV_A); /* relative timers called last */
399 timers_reify (atimers, atimercnt, ev_now); 1002 periodics_reify (EV_A); /* absolute timers called first */
400 /* relative timers second */
401 timers_reify (rtimers, rtimercnt, now);
402 1003
1004 /* queue idle watchers unless io or timers are pending */
1005 if (!pendingcnt)
1006 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1007
1008 /* queue check watchers, to be executed first */
1009 if (checkcnt)
1010 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1011
403 call_pending (); 1012 call_pending (EV_A);
404 } 1013 }
405 while (!ev_loop_done); 1014 while (activecnt && !loop_done);
406}
407 1015
408static void 1016 if (loop_done != 2)
409wlist_add (struct ev_watcher_list **head, struct ev_watcher_list *elem) 1017 loop_done = 0;
1018}
1019
1020void
1021ev_unloop (EV_P_ int how)
1022{
1023 loop_done = how;
1024}
1025
1026/*****************************************************************************/
1027
1028inline void
1029wlist_add (WL *head, WL elem)
410{ 1030{
411 elem->next = *head; 1031 elem->next = *head;
412 *head = elem; 1032 *head = elem;
413} 1033}
414 1034
415static void 1035inline void
416wlist_del (struct ev_watcher_list **head, struct ev_watcher_list *elem) 1036wlist_del (WL *head, WL elem)
417{ 1037{
418 while (*head) 1038 while (*head)
419 { 1039 {
420 if (*head == elem) 1040 if (*head == elem)
421 { 1041 {
425 1045
426 head = &(*head)->next; 1046 head = &(*head)->next;
427 } 1047 }
428} 1048}
429 1049
430static void 1050inline void
431ev_start (struct ev_watcher *w, int active) 1051ev_clear_pending (EV_P_ W w)
432{ 1052{
1053 if (w->pending)
1054 {
1055 pendings [ABSPRI (w)][w->pending - 1].w = 0;
433 w->pending = 0; 1056 w->pending = 0;
1057 }
1058}
1059
1060inline void
1061ev_start (EV_P_ W w, int active)
1062{
1063 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1064 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1065
434 w->active = active; 1066 w->active = active;
1067 ev_ref (EV_A);
435} 1068}
436 1069
437static void 1070inline void
438ev_stop (struct ev_watcher *w) 1071ev_stop (EV_P_ W w)
439{ 1072{
440 if (w->pending) 1073 ev_unref (EV_A);
441 pendings [w->pending - 1].w = 0;
442
443 w->active = 0; 1074 w->active = 0;
444 /* nop */
445} 1075}
446 1076
1077/*****************************************************************************/
1078
447void 1079void
448evio_start (struct ev_io *w) 1080ev_io_start (EV_P_ struct ev_io *w)
449{ 1081{
1082 int fd = w->fd;
1083
450 if (ev_is_active (w)) 1084 if (ev_is_active (w))
451 return; 1085 return;
452 1086
453 int fd = w->fd; 1087 assert (("ev_io_start called with negative fd", fd >= 0));
454 1088
455 ev_start ((struct ev_watcher *)w, 1); 1089 ev_start (EV_A_ (W)w, 1);
456 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1090 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
457 wlist_add ((struct ev_watcher_list **)&anfds[fd].head, (struct ev_watcher_list *)w); 1091 wlist_add ((WL *)&anfds[fd].head, (WL)w);
458 1092
459 ++fdchangecnt; 1093 fd_change (EV_A_ fd);
460 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
461 fdchanges [fdchangecnt - 1] = fd;
462} 1094}
463 1095
464void 1096void
465evio_stop (struct ev_io *w) 1097ev_io_stop (EV_P_ struct ev_io *w)
466{ 1098{
1099 ev_clear_pending (EV_A_ (W)w);
467 if (!ev_is_active (w)) 1100 if (!ev_is_active (w))
468 return; 1101 return;
469 1102
470 wlist_del ((struct ev_watcher_list **)&anfds[w->fd].head, (struct ev_watcher_list *)w); 1103 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
471 ev_stop ((struct ev_watcher *)w); 1104 ev_stop (EV_A_ (W)w);
472 1105
473 ++fdchangecnt; 1106 fd_change (EV_A_ w->fd);
474 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
475 fdchanges [fdchangecnt - 1] = w->fd;
476} 1107}
477 1108
478void 1109void
479evtimer_start (struct ev_timer *w) 1110ev_timer_start (EV_P_ struct ev_timer *w)
480{ 1111{
481 if (ev_is_active (w)) 1112 if (ev_is_active (w))
482 return; 1113 return;
483 1114
484 if (w->is_abs) 1115 w->at += mn_now;
1116
1117 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1118
1119 ev_start (EV_A_ (W)w, ++timercnt);
1120 array_needsize (timers, timermax, timercnt, );
1121 timers [timercnt - 1] = w;
1122 upheap ((WT *)timers, timercnt - 1);
1123}
1124
1125void
1126ev_timer_stop (EV_P_ struct ev_timer *w)
1127{
1128 ev_clear_pending (EV_A_ (W)w);
1129 if (!ev_is_active (w))
1130 return;
1131
1132 if (w->active < timercnt--)
1133 {
1134 timers [w->active - 1] = timers [timercnt];
1135 downheap ((WT *)timers, timercnt, w->active - 1);
485 { 1136 }
486 /* this formula differs from the one in timer_reify becuse we do not round up */ 1137
1138 w->at = w->repeat;
1139
1140 ev_stop (EV_A_ (W)w);
1141}
1142
1143void
1144ev_timer_again (EV_P_ struct ev_timer *w)
1145{
1146 if (ev_is_active (w))
1147 {
487 if (w->repeat) 1148 if (w->repeat)
1149 {
1150 w->at = mn_now + w->repeat;
1151 downheap ((WT *)timers, timercnt, w->active - 1);
1152 }
1153 else
1154 ev_timer_stop (EV_A_ w);
1155 }
1156 else if (w->repeat)
1157 ev_timer_start (EV_A_ w);
1158}
1159
1160void
1161ev_periodic_start (EV_P_ struct ev_periodic *w)
1162{
1163 if (ev_is_active (w))
1164 return;
1165
1166 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1167
1168 /* this formula differs from the one in periodic_reify because we do not always round up */
1169 if (w->interval)
488 w->at += ceil ((ev_now - w->at) / w->repeat) * w->repeat; 1170 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval;
489 1171
490 ev_start ((struct ev_watcher *)w, ++atimercnt); 1172 ev_start (EV_A_ (W)w, ++periodiccnt);
491 array_needsize (atimers, atimermax, atimercnt, ); 1173 array_needsize (periodics, periodicmax, periodiccnt, );
492 atimers [atimercnt - 1] = w; 1174 periodics [periodiccnt - 1] = w;
493 upheap (atimers, atimercnt - 1); 1175 upheap ((WT *)periodics, periodiccnt - 1);
1176}
1177
1178void
1179ev_periodic_stop (EV_P_ struct ev_periodic *w)
1180{
1181 ev_clear_pending (EV_A_ (W)w);
1182 if (!ev_is_active (w))
1183 return;
1184
1185 if (w->active < periodiccnt--)
494 } 1186 {
1187 periodics [w->active - 1] = periodics [periodiccnt];
1188 downheap ((WT *)periodics, periodiccnt, w->active - 1);
1189 }
1190
1191 ev_stop (EV_A_ (W)w);
1192}
1193
1194void
1195ev_idle_start (EV_P_ struct ev_idle *w)
1196{
1197 if (ev_is_active (w))
1198 return;
1199
1200 ev_start (EV_A_ (W)w, ++idlecnt);
1201 array_needsize (idles, idlemax, idlecnt, );
1202 idles [idlecnt - 1] = w;
1203}
1204
1205void
1206ev_idle_stop (EV_P_ struct ev_idle *w)
1207{
1208 ev_clear_pending (EV_A_ (W)w);
1209 if (ev_is_active (w))
1210 return;
1211
1212 idles [w->active - 1] = idles [--idlecnt];
1213 ev_stop (EV_A_ (W)w);
1214}
1215
1216void
1217ev_prepare_start (EV_P_ struct ev_prepare *w)
1218{
1219 if (ev_is_active (w))
1220 return;
1221
1222 ev_start (EV_A_ (W)w, ++preparecnt);
1223 array_needsize (prepares, preparemax, preparecnt, );
1224 prepares [preparecnt - 1] = w;
1225}
1226
1227void
1228ev_prepare_stop (EV_P_ struct ev_prepare *w)
1229{
1230 ev_clear_pending (EV_A_ (W)w);
1231 if (ev_is_active (w))
1232 return;
1233
1234 prepares [w->active - 1] = prepares [--preparecnt];
1235 ev_stop (EV_A_ (W)w);
1236}
1237
1238void
1239ev_check_start (EV_P_ struct ev_check *w)
1240{
1241 if (ev_is_active (w))
1242 return;
1243
1244 ev_start (EV_A_ (W)w, ++checkcnt);
1245 array_needsize (checks, checkmax, checkcnt, );
1246 checks [checkcnt - 1] = w;
1247}
1248
1249void
1250ev_check_stop (EV_P_ struct ev_check *w)
1251{
1252 ev_clear_pending (EV_A_ (W)w);
1253 if (ev_is_active (w))
1254 return;
1255
1256 checks [w->active - 1] = checks [--checkcnt];
1257 ev_stop (EV_A_ (W)w);
1258}
1259
1260#ifndef SA_RESTART
1261# define SA_RESTART 0
1262#endif
1263
1264void
1265ev_signal_start (EV_P_ struct ev_signal *w)
1266{
1267#if EV_MULTIPLICITY
1268 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1269#endif
1270 if (ev_is_active (w))
1271 return;
1272
1273 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1274
1275 ev_start (EV_A_ (W)w, 1);
1276 array_needsize (signals, signalmax, w->signum, signals_init);
1277 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1278
1279 if (!w->next)
1280 {
1281 struct sigaction sa;
1282 sa.sa_handler = sighandler;
1283 sigfillset (&sa.sa_mask);
1284 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1285 sigaction (w->signum, &sa, 0);
1286 }
1287}
1288
1289void
1290ev_signal_stop (EV_P_ struct ev_signal *w)
1291{
1292 ev_clear_pending (EV_A_ (W)w);
1293 if (!ev_is_active (w))
1294 return;
1295
1296 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1297 ev_stop (EV_A_ (W)w);
1298
1299 if (!signals [w->signum - 1].head)
1300 signal (w->signum, SIG_DFL);
1301}
1302
1303void
1304ev_child_start (EV_P_ struct ev_child *w)
1305{
1306#if EV_MULTIPLICITY
1307 assert (("child watchers are only supported in the default loop", loop == default_loop));
1308#endif
1309 if (ev_is_active (w))
1310 return;
1311
1312 ev_start (EV_A_ (W)w, 1);
1313 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1314}
1315
1316void
1317ev_child_stop (EV_P_ struct ev_child *w)
1318{
1319 ev_clear_pending (EV_A_ (W)w);
1320 if (ev_is_active (w))
1321 return;
1322
1323 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1324 ev_stop (EV_A_ (W)w);
1325}
1326
1327/*****************************************************************************/
1328
1329struct ev_once
1330{
1331 struct ev_io io;
1332 struct ev_timer to;
1333 void (*cb)(int revents, void *arg);
1334 void *arg;
1335};
1336
1337static void
1338once_cb (EV_P_ struct ev_once *once, int revents)
1339{
1340 void (*cb)(int revents, void *arg) = once->cb;
1341 void *arg = once->arg;
1342
1343 ev_io_stop (EV_A_ &once->io);
1344 ev_timer_stop (EV_A_ &once->to);
1345 free (once);
1346
1347 cb (revents, arg);
1348}
1349
1350static void
1351once_cb_io (EV_P_ struct ev_io *w, int revents)
1352{
1353 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1354}
1355
1356static void
1357once_cb_to (EV_P_ struct ev_timer *w, int revents)
1358{
1359 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1360}
1361
1362void
1363ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1364{
1365 struct ev_once *once = malloc (sizeof (struct ev_once));
1366
1367 if (!once)
1368 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
495 else 1369 else
496 { 1370 {
497 w->at += now; 1371 once->cb = cb;
1372 once->arg = arg;
498 1373
499 ev_start ((struct ev_watcher *)w, ++rtimercnt); 1374 ev_watcher_init (&once->io, once_cb_io);
500 array_needsize (rtimers, rtimermax, rtimercnt, ); 1375 if (fd >= 0)
501 rtimers [rtimercnt - 1] = w;
502 upheap (rtimers, rtimercnt - 1);
503 }
504
505}
506
507void
508evtimer_stop (struct ev_timer *w)
509{
510 if (!ev_is_active (w))
511 return;
512
513 if (w->is_abs)
514 {
515 if (w->active < atimercnt--)
516 { 1376 {
517 atimers [w->active - 1] = atimers [atimercnt]; 1377 ev_io_set (&once->io, fd, events);
518 downheap (atimers, atimercnt, w->active - 1); 1378 ev_io_start (EV_A_ &once->io);
519 } 1379 }
520 } 1380
521 else 1381 ev_watcher_init (&once->to, once_cb_to);
522 { 1382 if (timeout >= 0.)
523 if (w->active < rtimercnt--)
524 { 1383 {
525 rtimers [w->active - 1] = rtimers [rtimercnt]; 1384 ev_timer_set (&once->to, timeout, 0.);
526 downheap (rtimers, rtimercnt, w->active - 1); 1385 ev_timer_start (EV_A_ &once->to);
527 } 1386 }
528 } 1387 }
529
530 ev_stop ((struct ev_watcher *)w);
531} 1388}
532 1389
533void
534evsignal_start (struct ev_signal *w)
535{
536 if (ev_is_active (w))
537 return;
538
539 ev_start ((struct ev_watcher *)w, 1);
540 array_needsize (signals, signalmax, w->signum, signals_init);
541 wlist_add ((struct ev_watcher_list **)&signals [w->signum - 1], (struct ev_watcher_list *)w);
542}
543
544void
545evsignal_stop (struct ev_signal *w)
546{
547 if (!ev_is_active (w))
548 return;
549
550 wlist_del ((struct ev_watcher_list **)&signals [w->signum - 1], (struct ev_watcher_list *)w);
551 ev_stop ((struct ev_watcher *)w);
552}
553
554/*****************************************************************************/
555#if 1
556
557static void
558sin_cb (struct ev_io *w, int revents)
559{
560 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
561}
562
563static void
564ocb (struct ev_timer *w, int revents)
565{
566 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
567 evtimer_stop (w);
568 evtimer_start (w);
569}
570
571int main (void)
572{
573 struct ev_io sin;
574
575 ev_init (0);
576
577 evw_init (&sin, sin_cb, 55);
578 evio_set (&sin, 0, EV_READ);
579 evio_start (&sin);
580
581 struct ev_timer t[10000];
582
583#if 1
584 int i;
585 for (i = 0; i < 10000; ++i)
586 {
587 struct ev_timer *w = t + i;
588 evw_init (w, ocb, i);
589 evtimer_set_abs (w, drand48 (), 0.99775533);
590 evtimer_start (w);
591 if (drand48 () < 0.5)
592 evtimer_stop (w);
593 }
594#endif
595
596 struct ev_timer t1;
597 evw_init (&t1, ocb, 0);
598 evtimer_set_abs (&t1, 5, 10);
599 evtimer_start (&t1);
600
601 ev_loop (0);
602
603 return 0;
604}
605
606#endif
607
608
609
610

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines