ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.5 by root, Tue Oct 30 23:54:38 2007 UTC vs.
Revision 1.68 by root, Mon Nov 5 20:19:00 2007 UTC

1/*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are
9 * met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * * Redistributions in binary form must reproduce the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer in the documentation and/or other materials provided
17 * with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31#ifndef EV_STANDALONE
32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
55#endif
56
1#include <math.h> 57#include <math.h>
2#include <stdlib.h> 58#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h>
3 63
4#include <stdio.h> 64#include <stdio.h>
5 65
6#include <assert.h> 66#include <assert.h>
7#include <errno.h> 67#include <errno.h>
68#include <sys/types.h>
69#ifndef WIN32
70# include <sys/wait.h>
71#endif
8#include <sys/time.h> 72#include <sys/time.h>
9#include <time.h> 73#include <time.h>
10 74
75/**/
76
77#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1
79#endif
80
81#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1
83#endif
84
85#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87#endif
88
89#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0
91#endif
92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
103#endif
104
105#ifndef EV_USE_REALTIME
106# define EV_USE_REALTIME 1
107#endif
108
109/**/
110
11#ifdef CLOCK_MONOTONIC 111#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC
12# define HAVE_MONOTONIC 1 113# define EV_USE_MONOTONIC 0
13#endif 114#endif
14 115
15#define HAVE_EPOLL 1 116#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME
16#define HAVE_REALTIME 1 118# define EV_USE_REALTIME 0
17#define HAVE_SELECT 1 119#endif
120
121/**/
18 122
19#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
20#define MAX_BLOCKTIME 60. 124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
21 127
22#include "ev.h" 128#include "ev.h"
23 129
130#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline
133#else
134# define expect(expr,value) (expr)
135# define inline static
136#endif
137
138#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1)
140
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI)
143
24struct ev_watcher { 144typedef struct ev_watcher *W;
25 EV_WATCHER (ev_watcher); 145typedef struct ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT;
147
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149
150#if WIN32
151/* note: the comment below could not be substantiated, but what would I care */
152/* MSDN says this is required to handle SIGFPE */
153volatile double SIGFPE_REQ = 0.0f;
154#endif
155
156/*****************************************************************************/
157
158typedef struct
159{
160 WL head;
161 unsigned char events;
162 unsigned char reify;
163} ANFD;
164
165typedef struct
166{
167 W w;
168 int events;
169} ANPENDING;
170
171#if EV_MULTIPLICITY
172
173struct ev_loop
174{
175# define VAR(name,decl) decl;
176# include "ev_vars.h"
26}; 177};
178# undef VAR
179# include "ev_wrap.h"
27 180
28struct ev_watcher_list { 181#else
29 EV_WATCHER_LIST (ev_watcher_list);
30};
31 182
32static ev_tstamp now, diff; /* monotonic clock */ 183# define VAR(name,decl) static decl;
33ev_tstamp ev_now; 184# include "ev_vars.h"
34int ev_method; 185# undef VAR
35 186
36static int have_monotonic; /* runtime */ 187#endif
37 188
38static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 189/*****************************************************************************/
39static void (*method_modify)(int fd, int oev, int nev);
40static void (*method_poll)(ev_tstamp timeout);
41 190
42ev_tstamp 191inline ev_tstamp
43ev_time (void) 192ev_time (void)
44{ 193{
45#if HAVE_REALTIME 194#if EV_USE_REALTIME
46 struct timespec ts; 195 struct timespec ts;
47 clock_gettime (CLOCK_REALTIME, &ts); 196 clock_gettime (CLOCK_REALTIME, &ts);
48 return ts.tv_sec + ts.tv_nsec * 1e-9; 197 return ts.tv_sec + ts.tv_nsec * 1e-9;
49#else 198#else
50 struct timeval tv; 199 struct timeval tv;
51 gettimeofday (&tv, 0); 200 gettimeofday (&tv, 0);
52 return tv.tv_sec + tv.tv_usec * 1e-6; 201 return tv.tv_sec + tv.tv_usec * 1e-6;
53#endif 202#endif
54} 203}
55 204
56static ev_tstamp 205inline ev_tstamp
57get_clock (void) 206get_clock (void)
58{ 207{
59#if HAVE_MONOTONIC 208#if EV_USE_MONOTONIC
60 if (have_monotonic) 209 if (expect_true (have_monotonic))
61 { 210 {
62 struct timespec ts; 211 struct timespec ts;
63 clock_gettime (CLOCK_MONOTONIC, &ts); 212 clock_gettime (CLOCK_MONOTONIC, &ts);
64 return ts.tv_sec + ts.tv_nsec * 1e-9; 213 return ts.tv_sec + ts.tv_nsec * 1e-9;
65 } 214 }
66#endif 215#endif
67 216
68 return ev_time (); 217 return ev_time ();
69} 218}
70 219
220ev_tstamp
221ev_now (EV_P)
222{
223 return rt_now;
224}
225
226#define array_roundsize(base,n) ((n) | 4 & ~3)
227
71#define array_needsize(base,cur,cnt,init) \ 228#define array_needsize(base,cur,cnt,init) \
72 if ((cnt) > cur) \ 229 if (expect_false ((cnt) > cur)) \
73 { \ 230 { \
74 int newcnt = cur ? cur << 1 : 16; \ 231 int newcnt = cur; \
75 fprintf (stderr, "resize(" # base ") from %d to %d\n", cur, newcnt);\ 232 do \
233 { \
234 newcnt = array_roundsize (base, newcnt << 1); \
235 } \
236 while ((cnt) > newcnt); \
237 \
76 base = realloc (base, sizeof (*base) * (newcnt)); \ 238 base = realloc (base, sizeof (*base) * (newcnt)); \
77 init (base + cur, newcnt - cur); \ 239 init (base + cur, newcnt - cur); \
78 cur = newcnt; \ 240 cur = newcnt; \
79 } 241 }
80 242
81typedef struct 243#define array_slim(stem) \
82{ 244 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
83 struct ev_io *head; 245 { \
84 unsigned char wev, rev; /* want, received event set */ 246 stem ## max = array_roundsize (stem ## cnt >> 1); \
85} ANFD; 247 base = realloc (base, sizeof (*base) * (stem ## max)); \
248 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
249 }
86 250
87static ANFD *anfds; 251#define array_free(stem, idx) \
88static int anfdmax; 252 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
89 253
90static int *fdchanges; 254/*****************************************************************************/
91static int fdchangemax, fdchangecnt;
92 255
93static void 256static void
94anfds_init (ANFD *base, int count) 257anfds_init (ANFD *base, int count)
95{ 258{
96 while (count--) 259 while (count--)
97 { 260 {
98 base->head = 0; 261 base->head = 0;
99 base->wev = base->rev = EV_NONE; 262 base->events = EV_NONE;
263 base->reify = 0;
264
100 ++base; 265 ++base;
101 } 266 }
102} 267}
103 268
104typedef struct
105{
106 struct ev_watcher *w;
107 int events;
108} ANPENDING;
109
110static ANPENDING *pendings;
111static int pendingmax, pendingcnt;
112
113static void 269static void
114event (struct ev_watcher *w, int events) 270event (EV_P_ W w, int events)
115{ 271{
272 if (w->pending)
273 {
274 pendings [ABSPRI (w)][w->pending - 1].events |= events;
275 return;
276 }
277
116 w->pending = ++pendingcnt; 278 w->pending = ++pendingcnt [ABSPRI (w)];
117 array_needsize (pendings, pendingmax, pendingcnt, ); 279 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
118 pendings [pendingcnt - 1].w = w; 280 pendings [ABSPRI (w)][w->pending - 1].w = w;
119 pendings [pendingcnt - 1].events = events; 281 pendings [ABSPRI (w)][w->pending - 1].events = events;
120} 282}
121 283
122static void 284static void
285queue_events (EV_P_ W *events, int eventcnt, int type)
286{
287 int i;
288
289 for (i = 0; i < eventcnt; ++i)
290 event (EV_A_ events [i], type);
291}
292
293static void
123fd_event (int fd, int events) 294fd_event (EV_P_ int fd, int events)
124{ 295{
125 ANFD *anfd = anfds + fd; 296 ANFD *anfd = anfds + fd;
126 struct ev_io *w; 297 struct ev_io *w;
127 298
128 for (w = anfd->head; w; w = w->next) 299 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
129 { 300 {
130 int ev = w->events & events; 301 int ev = w->events & events;
131 302
132 if (ev) 303 if (ev)
133 event ((struct ev_watcher *)w, ev); 304 event (EV_A_ (W)w, ev);
134 }
135}
136
137static struct ev_timer **atimers;
138static int atimermax, atimercnt;
139
140static struct ev_timer **rtimers;
141static int rtimermax, rtimercnt;
142
143static void
144upheap (struct ev_timer **timers, int k)
145{
146 struct ev_timer *w = timers [k];
147
148 while (k && timers [k >> 1]->at > w->at)
149 { 305 }
150 timers [k] = timers [k >> 1];
151 timers [k]->active = k + 1;
152 k >>= 1;
153 }
154
155 timers [k] = w;
156 timers [k]->active = k + 1;
157
158} 306}
159 307
160static void 308/*****************************************************************************/
161downheap (struct ev_timer **timers, int N, int k)
162{
163 struct ev_timer *w = timers [k];
164 309
165 while (k < (N >> 1))
166 {
167 int j = k << 1;
168
169 if (j + 1 < N && timers [j]->at > timers [j + 1]->at)
170 ++j;
171
172 if (w->at <= timers [j]->at)
173 break;
174
175 timers [k] = timers [j];
176 timers [k]->active = k + 1;
177 k = j;
178 }
179
180 timers [k] = w;
181 timers [k]->active = k + 1;
182}
183
184static struct ev_signal **signals;
185static int signalmax;
186
187static void 310static void
188signals_init (struct ev_signal **base, int count) 311fd_reify (EV_P)
189{
190 while (count--)
191 *base++ = 0;
192}
193
194#if HAVE_EPOLL
195# include "ev_epoll.c"
196#endif
197#if HAVE_SELECT
198# include "ev_select.c"
199#endif
200
201int ev_init (int flags)
202{
203#if HAVE_MONOTONIC
204 {
205 struct timespec ts;
206 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
207 have_monotonic = 1;
208 }
209#endif
210
211 ev_now = ev_time ();
212 now = get_clock ();
213 diff = ev_now - now;
214
215#if HAVE_EPOLL
216 if (epoll_init (flags))
217 return ev_method;
218#endif
219#if HAVE_SELECT
220 if (select_init (flags))
221 return ev_method;
222#endif
223
224 ev_method = EVMETHOD_NONE;
225 return ev_method;
226}
227
228void ev_prefork (void)
229{
230}
231
232void ev_postfork_parent (void)
233{
234}
235
236void ev_postfork_child (void)
237{
238#if HAVE_EPOLL
239 if (ev_method == EVMETHOD_EPOLL)
240 epoll_postfork_child ();
241#endif
242}
243
244static void
245fd_reify (void)
246{ 312{
247 int i; 313 int i;
248 314
249 for (i = 0; i < fdchangecnt; ++i) 315 for (i = 0; i < fdchangecnt; ++i)
250 { 316 {
251 int fd = fdchanges [i]; 317 int fd = fdchanges [i];
252 ANFD *anfd = anfds + fd; 318 ANFD *anfd = anfds + fd;
253 struct ev_io *w; 319 struct ev_io *w;
254 320
255 int wev = 0; 321 int events = 0;
256 322
257 for (w = anfd->head; w; w = w->next) 323 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
258 wev |= w->events; 324 events |= w->events;
259 325
260 if (anfd->wev != wev) 326 anfd->reify = 0;
327
328 method_modify (EV_A_ fd, anfd->events, events);
329 anfd->events = events;
330 }
331
332 fdchangecnt = 0;
333}
334
335static void
336fd_change (EV_P_ int fd)
337{
338 if (anfds [fd].reify || fdchangecnt < 0)
339 return;
340
341 anfds [fd].reify = 1;
342
343 ++fdchangecnt;
344 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
345 fdchanges [fdchangecnt - 1] = fd;
346}
347
348static void
349fd_kill (EV_P_ int fd)
350{
351 struct ev_io *w;
352
353 while ((w = (struct ev_io *)anfds [fd].head))
354 {
355 ev_io_stop (EV_A_ w);
356 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
357 }
358}
359
360/* called on EBADF to verify fds */
361static void
362fd_ebadf (EV_P)
363{
364 int fd;
365
366 for (fd = 0; fd < anfdmax; ++fd)
367 if (anfds [fd].events)
368 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
369 fd_kill (EV_A_ fd);
370}
371
372/* called on ENOMEM in select/poll to kill some fds and retry */
373static void
374fd_enomem (EV_P)
375{
376 int fd;
377
378 for (fd = anfdmax; fd--; )
379 if (anfds [fd].events)
380 {
381 fd_kill (EV_A_ fd);
382 return;
383 }
384}
385
386/* susually called after fork if method needs to re-arm all fds from scratch */
387static void
388fd_rearm_all (EV_P)
389{
390 int fd;
391
392 /* this should be highly optimised to not do anything but set a flag */
393 for (fd = 0; fd < anfdmax; ++fd)
394 if (anfds [fd].events)
395 {
396 anfds [fd].events = 0;
397 fd_change (EV_A_ fd);
398 }
399}
400
401/*****************************************************************************/
402
403static void
404upheap (WT *heap, int k)
405{
406 WT w = heap [k];
407
408 while (k && heap [k >> 1]->at > w->at)
409 {
410 heap [k] = heap [k >> 1];
411 ((W)heap [k])->active = k + 1;
412 k >>= 1;
413 }
414
415 heap [k] = w;
416 ((W)heap [k])->active = k + 1;
417
418}
419
420static void
421downheap (WT *heap, int N, int k)
422{
423 WT w = heap [k];
424
425 while (k < (N >> 1))
426 {
427 int j = k << 1;
428
429 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
430 ++j;
431
432 if (w->at <= heap [j]->at)
433 break;
434
435 heap [k] = heap [j];
436 ((W)heap [k])->active = k + 1;
437 k = j;
438 }
439
440 heap [k] = w;
441 ((W)heap [k])->active = k + 1;
442}
443
444/*****************************************************************************/
445
446typedef struct
447{
448 WL head;
449 sig_atomic_t volatile gotsig;
450} ANSIG;
451
452static ANSIG *signals;
453static int signalmax;
454
455static int sigpipe [2];
456static sig_atomic_t volatile gotsig;
457static struct ev_io sigev;
458
459static void
460signals_init (ANSIG *base, int count)
461{
462 while (count--)
463 {
464 base->head = 0;
465 base->gotsig = 0;
466
467 ++base;
468 }
469}
470
471static void
472sighandler (int signum)
473{
474#if WIN32
475 signal (signum, sighandler);
476#endif
477
478 signals [signum - 1].gotsig = 1;
479
480 if (!gotsig)
481 {
482 int old_errno = errno;
483 gotsig = 1;
484 write (sigpipe [1], &signum, 1);
485 errno = old_errno;
486 }
487}
488
489static void
490sigcb (EV_P_ struct ev_io *iow, int revents)
491{
492 WL w;
493 int signum;
494
495 read (sigpipe [0], &revents, 1);
496 gotsig = 0;
497
498 for (signum = signalmax; signum--; )
499 if (signals [signum].gotsig)
500 {
501 signals [signum].gotsig = 0;
502
503 for (w = signals [signum].head; w; w = w->next)
504 event (EV_A_ (W)w, EV_SIGNAL);
505 }
506}
507
508static void
509siginit (EV_P)
510{
511#ifndef WIN32
512 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
513 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
514
515 /* rather than sort out wether we really need nb, set it */
516 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
517 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
518#endif
519
520 ev_io_set (&sigev, sigpipe [0], EV_READ);
521 ev_io_start (EV_A_ &sigev);
522 ev_unref (EV_A); /* child watcher should not keep loop alive */
523}
524
525/*****************************************************************************/
526
527#ifndef WIN32
528
529static struct ev_child *childs [PID_HASHSIZE];
530static struct ev_signal childev;
531
532#ifndef WCONTINUED
533# define WCONTINUED 0
534#endif
535
536static void
537child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
538{
539 struct ev_child *w;
540
541 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
542 if (w->pid == pid || !w->pid)
543 {
544 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
545 w->rpid = pid;
546 w->rstatus = status;
547 event (EV_A_ (W)w, EV_CHILD);
548 }
549}
550
551static void
552childcb (EV_P_ struct ev_signal *sw, int revents)
553{
554 int pid, status;
555
556 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
557 {
558 /* make sure we are called again until all childs have been reaped */
559 event (EV_A_ (W)sw, EV_SIGNAL);
560
561 child_reap (EV_A_ sw, pid, pid, status);
562 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
563 }
564}
565
566#endif
567
568/*****************************************************************************/
569
570#if EV_USE_KQUEUE
571# include "ev_kqueue.c"
572#endif
573#if EV_USE_EPOLL
574# include "ev_epoll.c"
575#endif
576#if EV_USE_POLL
577# include "ev_poll.c"
578#endif
579#if EV_USE_SELECT
580# include "ev_select.c"
581#endif
582
583int
584ev_version_major (void)
585{
586 return EV_VERSION_MAJOR;
587}
588
589int
590ev_version_minor (void)
591{
592 return EV_VERSION_MINOR;
593}
594
595/* return true if we are running with elevated privileges and should ignore env variables */
596static int
597enable_secure (void)
598{
599#ifdef WIN32
600 return 0;
601#else
602 return getuid () != geteuid ()
603 || getgid () != getegid ();
604#endif
605}
606
607int
608ev_method (EV_P)
609{
610 return method;
611}
612
613static void
614loop_init (EV_P_ int methods)
615{
616 if (!method)
617 {
618#if EV_USE_MONOTONIC
619 {
620 struct timespec ts;
621 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
622 have_monotonic = 1;
623 }
624#endif
625
626 rt_now = ev_time ();
627 mn_now = get_clock ();
628 now_floor = mn_now;
629 rtmn_diff = rt_now - mn_now;
630
631 if (methods == EVMETHOD_AUTO)
632 if (!enable_secure () && getenv ("LIBEV_METHODS"))
633 methods = atoi (getenv ("LIBEV_METHODS"));
634 else
635 methods = EVMETHOD_ANY;
636
637 method = 0;
638#if EV_USE_WIN32
639 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
640#endif
641#if EV_USE_KQUEUE
642 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
643#endif
644#if EV_USE_EPOLL
645 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
646#endif
647#if EV_USE_POLL
648 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
649#endif
650#if EV_USE_SELECT
651 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
652#endif
653 }
654}
655
656void
657loop_destroy (EV_P)
658{
659 int i;
660
661#if EV_USE_WIN32
662 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
663#endif
664#if EV_USE_KQUEUE
665 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
666#endif
667#if EV_USE_EPOLL
668 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
669#endif
670#if EV_USE_POLL
671 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
672#endif
673#if EV_USE_SELECT
674 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
675#endif
676
677 for (i = NUMPRI; i--; )
678 array_free (pending, [i]);
679
680 array_free (fdchange, );
681 array_free (timer, );
682 array_free (periodic, );
683 array_free (idle, );
684 array_free (prepare, );
685 array_free (check, );
686
687 method = 0;
688 /*TODO*/
689}
690
691void
692loop_fork (EV_P)
693{
694 /*TODO*/
695#if EV_USE_EPOLL
696 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
697#endif
698#if EV_USE_KQUEUE
699 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
700#endif
701}
702
703#if EV_MULTIPLICITY
704struct ev_loop *
705ev_loop_new (int methods)
706{
707 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
708
709 loop_init (EV_A_ methods);
710
711 if (ev_method (EV_A))
712 return loop;
713
714 return 0;
715}
716
717void
718ev_loop_destroy (EV_P)
719{
720 loop_destroy (EV_A);
721 free (loop);
722}
723
724void
725ev_loop_fork (EV_P)
726{
727 loop_fork (EV_A);
728}
729
730#endif
731
732#if EV_MULTIPLICITY
733struct ev_loop default_loop_struct;
734static struct ev_loop *default_loop;
735
736struct ev_loop *
737#else
738static int default_loop;
739
740int
741#endif
742ev_default_loop (int methods)
743{
744 if (sigpipe [0] == sigpipe [1])
745 if (pipe (sigpipe))
746 return 0;
747
748 if (!default_loop)
749 {
750#if EV_MULTIPLICITY
751 struct ev_loop *loop = default_loop = &default_loop_struct;
752#else
753 default_loop = 1;
754#endif
755
756 loop_init (EV_A_ methods);
757
758 if (ev_method (EV_A))
261 { 759 {
262 method_modify (fd, anfd->wev, wev); 760 ev_watcher_init (&sigev, sigcb);
263 anfd->wev = wev; 761 ev_set_priority (&sigev, EV_MAXPRI);
762 siginit (EV_A);
763
764#ifndef WIN32
765 ev_signal_init (&childev, childcb, SIGCHLD);
766 ev_set_priority (&childev, EV_MAXPRI);
767 ev_signal_start (EV_A_ &childev);
768 ev_unref (EV_A); /* child watcher should not keep loop alive */
769#endif
264 } 770 }
771 else
772 default_loop = 0;
265 } 773 }
266 774
267 fdchangecnt = 0; 775 return default_loop;
268} 776}
269 777
778void
779ev_default_destroy (void)
780{
781#if EV_MULTIPLICITY
782 struct ev_loop *loop = default_loop;
783#endif
784
785 ev_ref (EV_A); /* child watcher */
786 ev_signal_stop (EV_A_ &childev);
787
788 ev_ref (EV_A); /* signal watcher */
789 ev_io_stop (EV_A_ &sigev);
790
791 close (sigpipe [0]); sigpipe [0] = 0;
792 close (sigpipe [1]); sigpipe [1] = 0;
793
794 loop_destroy (EV_A);
795}
796
797void
798ev_default_fork (void)
799{
800#if EV_MULTIPLICITY
801 struct ev_loop *loop = default_loop;
802#endif
803
804 loop_fork (EV_A);
805
806 ev_io_stop (EV_A_ &sigev);
807 close (sigpipe [0]);
808 close (sigpipe [1]);
809 pipe (sigpipe);
810
811 ev_ref (EV_A); /* signal watcher */
812 siginit (EV_A);
813}
814
815/*****************************************************************************/
816
270static void 817static void
271call_pending () 818call_pending (EV_P)
272{ 819{
273 int i; 820 int pri;
274 821
275 for (i = 0; i < pendingcnt; ++i) 822 for (pri = NUMPRI; pri--; )
823 while (pendingcnt [pri])
276 { 824 {
277 ANPENDING *p = pendings + i; 825 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
278 826
279 if (p->w) 827 if (p->w)
280 { 828 {
281 p->w->pending = 0; 829 p->w->pending = 0;
282 p->w->cb (p->w, p->events); 830 p->w->cb (EV_A_ p->w, p->events);
283 } 831 }
284 } 832 }
285
286 pendingcnt = 0;
287} 833}
288 834
289static void 835static void
290timers_reify (struct ev_timer **timers, int timercnt, ev_tstamp now) 836timers_reify (EV_P)
291{ 837{
292 while (timercnt && timers [0]->at <= now) 838 while (timercnt && ((WT)timers [0])->at <= mn_now)
293 { 839 {
294 struct ev_timer *w = timers [0]; 840 struct ev_timer *w = timers [0];
841
842 assert (("inactive timer on timer heap detected", ev_is_active (w)));
295 843
296 /* first reschedule or stop timer */ 844 /* first reschedule or stop timer */
297 if (w->repeat) 845 if (w->repeat)
298 { 846 {
299 if (w->is_abs) 847 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
300 w->at += floor ((now - w->at) / w->repeat + 1.) * w->repeat;
301 else
302 w->at = now + w->repeat; 848 ((WT)w)->at = mn_now + w->repeat;
303
304 assert (w->at > now);
305
306 downheap (timers, timercnt, 0); 849 downheap ((WT *)timers, timercnt, 0);
307 } 850 }
308 else 851 else
852 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
853
854 event (EV_A_ (W)w, EV_TIMEOUT);
855 }
856}
857
858static void
859periodics_reify (EV_P)
860{
861 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
862 {
863 struct ev_periodic *w = periodics [0];
864
865 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
866
867 /* first reschedule or stop timer */
868 if (w->interval)
309 { 869 {
310 evtimer_stop (w); /* nonrepeating: stop timer */ 870 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
311 --timercnt; /* maybe pass by reference instead? */ 871 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
872 downheap ((WT *)periodics, periodiccnt, 0);
312 } 873 }
874 else
875 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
313 876
314 event ((struct ev_watcher *)w, EV_TIMEOUT); 877 event (EV_A_ (W)w, EV_PERIODIC);
315 } 878 }
316} 879}
317 880
318static void 881static void
319time_update () 882periodics_reschedule (EV_P)
320{ 883{
321 int i; 884 int i;
322 ev_now = ev_time ();
323 885
324 if (have_monotonic) 886 /* adjust periodics after time jump */
887 for (i = 0; i < periodiccnt; ++i)
325 { 888 {
326 ev_tstamp odiff = diff; 889 struct ev_periodic *w = periodics [i];
327 890
328 /* detecting time jumps is much more difficult */ 891 if (w->interval)
329 for (i = 2; --i; ) /* loop a few times, before making important decisions */
330 { 892 {
331 now = get_clock (); 893 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
332 diff = ev_now - now;
333 894
334 if (fabs (odiff - diff) < MIN_TIMEJUMP) 895 if (fabs (diff) >= 1e-4)
335 return; /* all is well */ 896 {
897 ev_periodic_stop (EV_A_ w);
898 ev_periodic_start (EV_A_ w);
336 899
337 ev_now = ev_time (); 900 i = 0; /* restart loop, inefficient, but time jumps should be rare */
901 }
338 } 902 }
903 }
904}
339 905
340 /* time jump detected, reschedule atimers */ 906inline int
341 for (i = 0; i < atimercnt; ++i) 907time_update_monotonic (EV_P)
908{
909 mn_now = get_clock ();
910
911 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
912 {
913 rt_now = rtmn_diff + mn_now;
914 return 0;
915 }
916 else
917 {
918 now_floor = mn_now;
919 rt_now = ev_time ();
920 return 1;
921 }
922}
923
924static void
925time_update (EV_P)
926{
927 int i;
928
929#if EV_USE_MONOTONIC
930 if (expect_true (have_monotonic))
931 {
932 if (time_update_monotonic (EV_A))
342 { 933 {
343 struct ev_timer *w = atimers [i]; 934 ev_tstamp odiff = rtmn_diff;
344 w->at += ceil ((ev_now - w->at) / w->repeat + 1.) * w->repeat; 935
936 for (i = 4; --i; ) /* loop a few times, before making important decisions */
937 {
938 rtmn_diff = rt_now - mn_now;
939
940 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
941 return; /* all is well */
942
943 rt_now = ev_time ();
944 mn_now = get_clock ();
945 now_floor = mn_now;
946 }
947
948 periodics_reschedule (EV_A);
949 /* no timer adjustment, as the monotonic clock doesn't jump */
950 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
345 } 951 }
346 } 952 }
347 else 953 else
954#endif
348 { 955 {
349 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 956 rt_now = ev_time ();
350 /* time jump detected, adjust rtimers */ 957
958 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
959 {
960 periodics_reschedule (EV_A);
961
962 /* adjust timers. this is easy, as the offset is the same for all */
351 for (i = 0; i < rtimercnt; ++i) 963 for (i = 0; i < timercnt; ++i)
352 rtimers [i]->at += ev_now - now; 964 ((WT)timers [i])->at += rt_now - mn_now;
965 }
353 966
354 now = ev_now; 967 mn_now = rt_now;
355 } 968 }
356} 969}
357 970
358int ev_loop_done; 971void
972ev_ref (EV_P)
973{
974 ++activecnt;
975}
359 976
977void
978ev_unref (EV_P)
979{
980 --activecnt;
981}
982
983static int loop_done;
984
985void
360void ev_loop (int flags) 986ev_loop (EV_P_ int flags)
361{ 987{
362 double block; 988 double block;
363 ev_loop_done = flags & EVLOOP_ONESHOT; 989 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
364 990
365 do 991 do
366 { 992 {
993 /* queue check watchers (and execute them) */
994 if (expect_false (preparecnt))
995 {
996 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
997 call_pending (EV_A);
998 }
999
367 /* update fd-related kernel structures */ 1000 /* update fd-related kernel structures */
368 fd_reify (); 1001 fd_reify (EV_A);
369 1002
370 /* calculate blocking time */ 1003 /* calculate blocking time */
1004
1005 /* we only need this for !monotonic clockor timers, but as we basically
1006 always have timers, we just calculate it always */
1007#if EV_USE_MONOTONIC
1008 if (expect_true (have_monotonic))
1009 time_update_monotonic (EV_A);
1010 else
1011#endif
1012 {
1013 rt_now = ev_time ();
1014 mn_now = rt_now;
1015 }
1016
371 if (flags & EVLOOP_NONBLOCK) 1017 if (flags & EVLOOP_NONBLOCK || idlecnt)
372 block = 0.; 1018 block = 0.;
373 else 1019 else
374 { 1020 {
375 block = MAX_BLOCKTIME; 1021 block = MAX_BLOCKTIME;
376 1022
377 if (rtimercnt) 1023 if (timercnt)
378 { 1024 {
379 ev_tstamp to = rtimers [0]->at - get_clock () + method_fudge; 1025 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
380 if (block > to) block = to; 1026 if (block > to) block = to;
381 } 1027 }
382 1028
383 if (atimercnt) 1029 if (periodiccnt)
384 { 1030 {
385 ev_tstamp to = atimers [0]->at - ev_time () + method_fudge; 1031 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
386 if (block > to) block = to; 1032 if (block > to) block = to;
387 } 1033 }
388 1034
389 if (block < 0.) block = 0.; 1035 if (block < 0.) block = 0.;
390 } 1036 }
391 1037
392 method_poll (block); 1038 method_poll (EV_A_ block);
393 1039
394 /* update ev_now, do magic */ 1040 /* update rt_now, do magic */
395 time_update (); 1041 time_update (EV_A);
396 1042
397 /* put pending timers into pendign queue and reschedule them */ 1043 /* queue pending timers and reschedule them */
398 /* absolute timers first */ 1044 timers_reify (EV_A); /* relative timers called last */
399 timers_reify (atimers, atimercnt, ev_now); 1045 periodics_reify (EV_A); /* absolute timers called first */
400 /* relative timers second */
401 timers_reify (rtimers, rtimercnt, now);
402 1046
1047 /* queue idle watchers unless io or timers are pending */
1048 if (!pendingcnt)
1049 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1050
1051 /* queue check watchers, to be executed first */
1052 if (checkcnt)
1053 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1054
403 call_pending (); 1055 call_pending (EV_A);
404 } 1056 }
405 while (!ev_loop_done); 1057 while (activecnt && !loop_done);
406}
407 1058
408static void 1059 if (loop_done != 2)
409wlist_add (struct ev_watcher_list **head, struct ev_watcher_list *elem) 1060 loop_done = 0;
1061}
1062
1063void
1064ev_unloop (EV_P_ int how)
1065{
1066 loop_done = how;
1067}
1068
1069/*****************************************************************************/
1070
1071inline void
1072wlist_add (WL *head, WL elem)
410{ 1073{
411 elem->next = *head; 1074 elem->next = *head;
412 *head = elem; 1075 *head = elem;
413} 1076}
414 1077
415static void 1078inline void
416wlist_del (struct ev_watcher_list **head, struct ev_watcher_list *elem) 1079wlist_del (WL *head, WL elem)
417{ 1080{
418 while (*head) 1081 while (*head)
419 { 1082 {
420 if (*head == elem) 1083 if (*head == elem)
421 { 1084 {
425 1088
426 head = &(*head)->next; 1089 head = &(*head)->next;
427 } 1090 }
428} 1091}
429 1092
430static void 1093inline void
431ev_start (struct ev_watcher *w, int active) 1094ev_clear_pending (EV_P_ W w)
432{ 1095{
1096 if (w->pending)
1097 {
1098 pendings [ABSPRI (w)][w->pending - 1].w = 0;
433 w->pending = 0; 1099 w->pending = 0;
1100 }
1101}
1102
1103inline void
1104ev_start (EV_P_ W w, int active)
1105{
1106 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1107 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1108
434 w->active = active; 1109 w->active = active;
1110 ev_ref (EV_A);
435} 1111}
436 1112
437static void 1113inline void
438ev_stop (struct ev_watcher *w) 1114ev_stop (EV_P_ W w)
439{ 1115{
440 if (w->pending) 1116 ev_unref (EV_A);
441 pendings [w->pending - 1].w = 0;
442
443 w->active = 0; 1117 w->active = 0;
444 /* nop */
445} 1118}
446 1119
1120/*****************************************************************************/
1121
447void 1122void
448evio_start (struct ev_io *w) 1123ev_io_start (EV_P_ struct ev_io *w)
449{ 1124{
1125 int fd = w->fd;
1126
450 if (ev_is_active (w)) 1127 if (ev_is_active (w))
451 return; 1128 return;
452 1129
453 int fd = w->fd; 1130 assert (("ev_io_start called with negative fd", fd >= 0));
454 1131
455 ev_start ((struct ev_watcher *)w, 1); 1132 ev_start (EV_A_ (W)w, 1);
456 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1133 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
457 wlist_add ((struct ev_watcher_list **)&anfds[fd].head, (struct ev_watcher_list *)w); 1134 wlist_add ((WL *)&anfds[fd].head, (WL)w);
458 1135
459 ++fdchangecnt; 1136 fd_change (EV_A_ fd);
460 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
461 fdchanges [fdchangecnt - 1] = fd;
462} 1137}
463 1138
464void 1139void
465evio_stop (struct ev_io *w) 1140ev_io_stop (EV_P_ struct ev_io *w)
466{ 1141{
1142 ev_clear_pending (EV_A_ (W)w);
467 if (!ev_is_active (w)) 1143 if (!ev_is_active (w))
468 return; 1144 return;
469 1145
470 wlist_del ((struct ev_watcher_list **)&anfds[w->fd].head, (struct ev_watcher_list *)w); 1146 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
471 ev_stop ((struct ev_watcher *)w); 1147 ev_stop (EV_A_ (W)w);
472 1148
473 ++fdchangecnt; 1149 fd_change (EV_A_ w->fd);
474 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
475 fdchanges [fdchangecnt - 1] = w->fd;
476} 1150}
477 1151
478void 1152void
479evtimer_start (struct ev_timer *w) 1153ev_timer_start (EV_P_ struct ev_timer *w)
480{ 1154{
481 if (ev_is_active (w)) 1155 if (ev_is_active (w))
482 return; 1156 return;
483 1157
484 if (w->is_abs) 1158 ((WT)w)->at += mn_now;
1159
1160 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1161
1162 ev_start (EV_A_ (W)w, ++timercnt);
1163 array_needsize (timers, timermax, timercnt, );
1164 timers [timercnt - 1] = w;
1165 upheap ((WT *)timers, timercnt - 1);
1166
1167 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1168}
1169
1170void
1171ev_timer_stop (EV_P_ struct ev_timer *w)
1172{
1173 ev_clear_pending (EV_A_ (W)w);
1174 if (!ev_is_active (w))
1175 return;
1176
1177 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1178
1179 if (((W)w)->active < timercnt--)
1180 {
1181 timers [((W)w)->active - 1] = timers [timercnt];
1182 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
485 { 1183 }
486 /* this formula differs from the one in timer_reify becuse we do not round up */ 1184
1185 ((WT)w)->at = w->repeat;
1186
1187 ev_stop (EV_A_ (W)w);
1188}
1189
1190void
1191ev_timer_again (EV_P_ struct ev_timer *w)
1192{
1193 if (ev_is_active (w))
1194 {
487 if (w->repeat) 1195 if (w->repeat)
488 w->at += ceil ((ev_now - w->at) / w->repeat) * w->repeat; 1196 {
1197 ((WT)w)->at = mn_now + w->repeat;
1198 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1199 }
1200 else
1201 ev_timer_stop (EV_A_ w);
1202 }
1203 else if (w->repeat)
1204 ev_timer_start (EV_A_ w);
1205}
489 1206
490 ev_start ((struct ev_watcher *)w, ++atimercnt); 1207void
491 array_needsize (atimers, atimermax, atimercnt, ); 1208ev_periodic_start (EV_P_ struct ev_periodic *w)
492 atimers [atimercnt - 1] = w; 1209{
493 upheap (atimers, atimercnt - 1); 1210 if (ev_is_active (w))
1211 return;
1212
1213 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1214
1215 /* this formula differs from the one in periodic_reify because we do not always round up */
1216 if (w->interval)
1217 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1218
1219 ev_start (EV_A_ (W)w, ++periodiccnt);
1220 array_needsize (periodics, periodicmax, periodiccnt, );
1221 periodics [periodiccnt - 1] = w;
1222 upheap ((WT *)periodics, periodiccnt - 1);
1223
1224 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1225}
1226
1227void
1228ev_periodic_stop (EV_P_ struct ev_periodic *w)
1229{
1230 ev_clear_pending (EV_A_ (W)w);
1231 if (!ev_is_active (w))
1232 return;
1233
1234 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1235
1236 if (((W)w)->active < periodiccnt--)
494 } 1237 {
1238 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1239 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1240 }
1241
1242 ev_stop (EV_A_ (W)w);
1243}
1244
1245void
1246ev_idle_start (EV_P_ struct ev_idle *w)
1247{
1248 if (ev_is_active (w))
1249 return;
1250
1251 ev_start (EV_A_ (W)w, ++idlecnt);
1252 array_needsize (idles, idlemax, idlecnt, );
1253 idles [idlecnt - 1] = w;
1254}
1255
1256void
1257ev_idle_stop (EV_P_ struct ev_idle *w)
1258{
1259 ev_clear_pending (EV_A_ (W)w);
1260 if (ev_is_active (w))
1261 return;
1262
1263 idles [((W)w)->active - 1] = idles [--idlecnt];
1264 ev_stop (EV_A_ (W)w);
1265}
1266
1267void
1268ev_prepare_start (EV_P_ struct ev_prepare *w)
1269{
1270 if (ev_is_active (w))
1271 return;
1272
1273 ev_start (EV_A_ (W)w, ++preparecnt);
1274 array_needsize (prepares, preparemax, preparecnt, );
1275 prepares [preparecnt - 1] = w;
1276}
1277
1278void
1279ev_prepare_stop (EV_P_ struct ev_prepare *w)
1280{
1281 ev_clear_pending (EV_A_ (W)w);
1282 if (ev_is_active (w))
1283 return;
1284
1285 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1286 ev_stop (EV_A_ (W)w);
1287}
1288
1289void
1290ev_check_start (EV_P_ struct ev_check *w)
1291{
1292 if (ev_is_active (w))
1293 return;
1294
1295 ev_start (EV_A_ (W)w, ++checkcnt);
1296 array_needsize (checks, checkmax, checkcnt, );
1297 checks [checkcnt - 1] = w;
1298}
1299
1300void
1301ev_check_stop (EV_P_ struct ev_check *w)
1302{
1303 ev_clear_pending (EV_A_ (W)w);
1304 if (ev_is_active (w))
1305 return;
1306
1307 checks [((W)w)->active - 1] = checks [--checkcnt];
1308 ev_stop (EV_A_ (W)w);
1309}
1310
1311#ifndef SA_RESTART
1312# define SA_RESTART 0
1313#endif
1314
1315void
1316ev_signal_start (EV_P_ struct ev_signal *w)
1317{
1318#if EV_MULTIPLICITY
1319 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1320#endif
1321 if (ev_is_active (w))
1322 return;
1323
1324 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1325
1326 ev_start (EV_A_ (W)w, 1);
1327 array_needsize (signals, signalmax, w->signum, signals_init);
1328 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1329
1330 if (!((WL)w)->next)
1331 {
1332#if WIN32
1333 signal (w->signum, sighandler);
1334#else
1335 struct sigaction sa;
1336 sa.sa_handler = sighandler;
1337 sigfillset (&sa.sa_mask);
1338 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1339 sigaction (w->signum, &sa, 0);
1340#endif
1341 }
1342}
1343
1344void
1345ev_signal_stop (EV_P_ struct ev_signal *w)
1346{
1347 ev_clear_pending (EV_A_ (W)w);
1348 if (!ev_is_active (w))
1349 return;
1350
1351 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1352 ev_stop (EV_A_ (W)w);
1353
1354 if (!signals [w->signum - 1].head)
1355 signal (w->signum, SIG_DFL);
1356}
1357
1358void
1359ev_child_start (EV_P_ struct ev_child *w)
1360{
1361#if EV_MULTIPLICITY
1362 assert (("child watchers are only supported in the default loop", loop == default_loop));
1363#endif
1364 if (ev_is_active (w))
1365 return;
1366
1367 ev_start (EV_A_ (W)w, 1);
1368 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1369}
1370
1371void
1372ev_child_stop (EV_P_ struct ev_child *w)
1373{
1374 ev_clear_pending (EV_A_ (W)w);
1375 if (ev_is_active (w))
1376 return;
1377
1378 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1379 ev_stop (EV_A_ (W)w);
1380}
1381
1382/*****************************************************************************/
1383
1384struct ev_once
1385{
1386 struct ev_io io;
1387 struct ev_timer to;
1388 void (*cb)(int revents, void *arg);
1389 void *arg;
1390};
1391
1392static void
1393once_cb (EV_P_ struct ev_once *once, int revents)
1394{
1395 void (*cb)(int revents, void *arg) = once->cb;
1396 void *arg = once->arg;
1397
1398 ev_io_stop (EV_A_ &once->io);
1399 ev_timer_stop (EV_A_ &once->to);
1400 free (once);
1401
1402 cb (revents, arg);
1403}
1404
1405static void
1406once_cb_io (EV_P_ struct ev_io *w, int revents)
1407{
1408 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1409}
1410
1411static void
1412once_cb_to (EV_P_ struct ev_timer *w, int revents)
1413{
1414 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1415}
1416
1417void
1418ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1419{
1420 struct ev_once *once = malloc (sizeof (struct ev_once));
1421
1422 if (!once)
1423 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
495 else 1424 else
496 { 1425 {
497 w->at += now; 1426 once->cb = cb;
1427 once->arg = arg;
498 1428
499 ev_start ((struct ev_watcher *)w, ++rtimercnt); 1429 ev_watcher_init (&once->io, once_cb_io);
500 array_needsize (rtimers, rtimermax, rtimercnt, ); 1430 if (fd >= 0)
501 rtimers [rtimercnt - 1] = w;
502 upheap (rtimers, rtimercnt - 1);
503 }
504
505}
506
507void
508evtimer_stop (struct ev_timer *w)
509{
510 if (!ev_is_active (w))
511 return;
512
513 if (w->is_abs)
514 {
515 if (w->active < atimercnt--)
516 { 1431 {
517 atimers [w->active - 1] = atimers [atimercnt]; 1432 ev_io_set (&once->io, fd, events);
518 downheap (atimers, atimercnt, w->active - 1); 1433 ev_io_start (EV_A_ &once->io);
519 } 1434 }
520 } 1435
521 else 1436 ev_watcher_init (&once->to, once_cb_to);
522 { 1437 if (timeout >= 0.)
523 if (w->active < rtimercnt--)
524 { 1438 {
525 rtimers [w->active - 1] = rtimers [rtimercnt]; 1439 ev_timer_set (&once->to, timeout, 0.);
526 downheap (rtimers, rtimercnt, w->active - 1); 1440 ev_timer_start (EV_A_ &once->to);
527 } 1441 }
528 } 1442 }
529
530 ev_stop ((struct ev_watcher *)w);
531} 1443}
532 1444
533void
534evsignal_start (struct ev_signal *w)
535{
536 if (ev_is_active (w))
537 return;
538
539 ev_start ((struct ev_watcher *)w, 1);
540 array_needsize (signals, signalmax, w->signum, signals_init);
541 wlist_add ((struct ev_watcher_list **)&signals [w->signum - 1], (struct ev_watcher_list *)w);
542}
543
544void
545evsignal_stop (struct ev_signal *w)
546{
547 if (!ev_is_active (w))
548 return;
549
550 wlist_del ((struct ev_watcher_list **)&signals [w->signum - 1], (struct ev_watcher_list *)w);
551 ev_stop ((struct ev_watcher *)w);
552}
553
554/*****************************************************************************/
555#if 1
556
557static void
558sin_cb (struct ev_io *w, int revents)
559{
560 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
561}
562
563static void
564ocb (struct ev_timer *w, int revents)
565{
566 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
567 evtimer_stop (w);
568 evtimer_start (w);
569}
570
571int main (void)
572{
573 struct ev_io sin;
574
575 ev_init (0);
576
577 evw_init (&sin, sin_cb, 55);
578 evio_set (&sin, 0, EV_READ);
579 evio_start (&sin);
580
581 struct ev_timer t[10000];
582
583#if 1
584 int i;
585 for (i = 0; i < 10000; ++i)
586 {
587 struct ev_timer *w = t + i;
588 evw_init (w, ocb, i);
589 evtimer_set_abs (w, drand48 (), 0.99775533);
590 evtimer_start (w);
591 if (drand48 () < 0.5)
592 evtimer_stop (w);
593 }
594#endif
595
596 struct ev_timer t1;
597 evw_init (&t1, ocb, 0);
598 evtimer_set_abs (&t1, 5, 10);
599 evtimer_start (&t1);
600
601 ev_loop (0);
602
603 return 0;
604}
605
606#endif
607
608
609
610

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines