ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.50 by root, Sat Nov 3 19:41:55 2007 UTC vs.
Revision 1.63 by root, Sun Nov 4 22:03:17 2007 UTC

28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#ifndef EV_STANDALONE 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h> 59#include <unistd.h>
70 92
71#ifndef EV_USE_KQUEUE 93#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 94# define EV_USE_KQUEUE 0
73#endif 95#endif
74 96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
103#endif
104
75#ifndef EV_USE_REALTIME 105#ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 1 106# define EV_USE_REALTIME 1
77#endif 107#endif
78 108
79/**/ 109/**/
113 143
114typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
115typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
117 147
118static ev_tstamp now_floor, now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
119ev_tstamp ev_now;
120int ev_method;
121
122static int have_monotonic; /* runtime */
123
124static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
125static void (*method_modify)(int fd, int oev, int nev);
126static void (*method_poll)(ev_tstamp timeout);
127 149
128/*****************************************************************************/ 150/*****************************************************************************/
129 151
130ev_tstamp 152typedef struct
153{
154 struct ev_watcher_list *head;
155 unsigned char events;
156 unsigned char reify;
157} ANFD;
158
159typedef struct
160{
161 W w;
162 int events;
163} ANPENDING;
164
165#if EV_MULTIPLICITY
166
167struct ev_loop
168{
169# define VAR(name,decl) decl;
170# include "ev_vars.h"
171};
172# undef VAR
173# include "ev_wrap.h"
174
175#else
176
177# define VAR(name,decl) static decl;
178# include "ev_vars.h"
179# undef VAR
180
181#endif
182
183/*****************************************************************************/
184
185inline ev_tstamp
131ev_time (void) 186ev_time (void)
132{ 187{
133#if EV_USE_REALTIME 188#if EV_USE_REALTIME
134 struct timespec ts; 189 struct timespec ts;
135 clock_gettime (CLOCK_REALTIME, &ts); 190 clock_gettime (CLOCK_REALTIME, &ts);
139 gettimeofday (&tv, 0); 194 gettimeofday (&tv, 0);
140 return tv.tv_sec + tv.tv_usec * 1e-6; 195 return tv.tv_sec + tv.tv_usec * 1e-6;
141#endif 196#endif
142} 197}
143 198
144static ev_tstamp 199inline ev_tstamp
145get_clock (void) 200get_clock (void)
146{ 201{
147#if EV_USE_MONOTONIC 202#if EV_USE_MONOTONIC
148 if (expect_true (have_monotonic)) 203 if (expect_true (have_monotonic))
149 { 204 {
152 return ts.tv_sec + ts.tv_nsec * 1e-9; 207 return ts.tv_sec + ts.tv_nsec * 1e-9;
153 } 208 }
154#endif 209#endif
155 210
156 return ev_time (); 211 return ev_time ();
212}
213
214ev_tstamp
215ev_now (EV_P)
216{
217 return rt_now;
157} 218}
158 219
159#define array_roundsize(base,n) ((n) | 4 & ~3) 220#define array_roundsize(base,n) ((n) | 4 & ~3)
160 221
161#define array_needsize(base,cur,cnt,init) \ 222#define array_needsize(base,cur,cnt,init) \
173 cur = newcnt; \ 234 cur = newcnt; \
174 } 235 }
175 236
176/*****************************************************************************/ 237/*****************************************************************************/
177 238
178typedef struct
179{
180 struct ev_watcher_list *head;
181 unsigned char events;
182 unsigned char reify;
183} ANFD;
184
185static ANFD *anfds;
186static int anfdmax;
187
188static void 239static void
189anfds_init (ANFD *base, int count) 240anfds_init (ANFD *base, int count)
190{ 241{
191 while (count--) 242 while (count--)
192 { 243 {
196 247
197 ++base; 248 ++base;
198 } 249 }
199} 250}
200 251
201typedef struct
202{
203 W w;
204 int events;
205} ANPENDING;
206
207static ANPENDING *pendings [NUMPRI];
208static int pendingmax [NUMPRI], pendingcnt [NUMPRI];
209
210static void 252static void
211event (W w, int events) 253event (EV_P_ W w, int events)
212{ 254{
213 if (w->pending) 255 if (w->pending)
214 { 256 {
215 pendings [ABSPRI (w)][w->pending - 1].events |= events; 257 pendings [ABSPRI (w)][w->pending - 1].events |= events;
216 return; 258 return;
221 pendings [ABSPRI (w)][w->pending - 1].w = w; 263 pendings [ABSPRI (w)][w->pending - 1].w = w;
222 pendings [ABSPRI (w)][w->pending - 1].events = events; 264 pendings [ABSPRI (w)][w->pending - 1].events = events;
223} 265}
224 266
225static void 267static void
226queue_events (W *events, int eventcnt, int type) 268queue_events (EV_P_ W *events, int eventcnt, int type)
227{ 269{
228 int i; 270 int i;
229 271
230 for (i = 0; i < eventcnt; ++i) 272 for (i = 0; i < eventcnt; ++i)
231 event (events [i], type); 273 event (EV_A_ events [i], type);
232} 274}
233 275
234static void 276static void
235fd_event (int fd, int events) 277fd_event (EV_P_ int fd, int events)
236{ 278{
237 ANFD *anfd = anfds + fd; 279 ANFD *anfd = anfds + fd;
238 struct ev_io *w; 280 struct ev_io *w;
239 281
240 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 282 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
241 { 283 {
242 int ev = w->events & events; 284 int ev = w->events & events;
243 285
244 if (ev) 286 if (ev)
245 event ((W)w, ev); 287 event (EV_A_ (W)w, ev);
246 } 288 }
247} 289}
248 290
249/*****************************************************************************/ 291/*****************************************************************************/
250 292
251static int *fdchanges;
252static int fdchangemax, fdchangecnt;
253
254static void 293static void
255fd_reify (void) 294fd_reify (EV_P)
256{ 295{
257 int i; 296 int i;
258 297
259 for (i = 0; i < fdchangecnt; ++i) 298 for (i = 0; i < fdchangecnt; ++i)
260 { 299 {
269 308
270 anfd->reify = 0; 309 anfd->reify = 0;
271 310
272 if (anfd->events != events) 311 if (anfd->events != events)
273 { 312 {
274 method_modify (fd, anfd->events, events); 313 method_modify (EV_A_ fd, anfd->events, events);
275 anfd->events = events; 314 anfd->events = events;
276 } 315 }
277 } 316 }
278 317
279 fdchangecnt = 0; 318 fdchangecnt = 0;
280} 319}
281 320
282static void 321static void
283fd_change (int fd) 322fd_change (EV_P_ int fd)
284{ 323{
285 if (anfds [fd].reify || fdchangecnt < 0) 324 if (anfds [fd].reify || fdchangecnt < 0)
286 return; 325 return;
287 326
288 anfds [fd].reify = 1; 327 anfds [fd].reify = 1;
291 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 330 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
292 fdchanges [fdchangecnt - 1] = fd; 331 fdchanges [fdchangecnt - 1] = fd;
293} 332}
294 333
295static void 334static void
296fd_kill (int fd) 335fd_kill (EV_P_ int fd)
297{ 336{
298 struct ev_io *w; 337 struct ev_io *w;
299 338
300 while ((w = (struct ev_io *)anfds [fd].head)) 339 while ((w = (struct ev_io *)anfds [fd].head))
301 { 340 {
302 ev_io_stop (w); 341 ev_io_stop (EV_A_ w);
303 event ((W)w, EV_ERROR | EV_READ | EV_WRITE); 342 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
304 } 343 }
305} 344}
306 345
307/* called on EBADF to verify fds */ 346/* called on EBADF to verify fds */
308static void 347static void
309fd_ebadf (void) 348fd_ebadf (EV_P)
310{ 349{
311 int fd; 350 int fd;
312 351
313 for (fd = 0; fd < anfdmax; ++fd) 352 for (fd = 0; fd < anfdmax; ++fd)
314 if (anfds [fd].events) 353 if (anfds [fd].events)
315 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 354 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
316 fd_kill (fd); 355 fd_kill (EV_A_ fd);
317} 356}
318 357
319/* called on ENOMEM in select/poll to kill some fds and retry */ 358/* called on ENOMEM in select/poll to kill some fds and retry */
320static void 359static void
321fd_enomem (void) 360fd_enomem (EV_P)
322{ 361{
323 int fd = anfdmax; 362 int fd;
324 363
325 while (fd--) 364 for (fd = anfdmax; fd--; )
326 if (anfds [fd].events) 365 if (anfds [fd].events)
327 { 366 {
328 close (fd); 367 close (fd);
329 fd_kill (fd); 368 fd_kill (EV_A_ fd);
330 return; 369 return;
331 } 370 }
332} 371}
333 372
373/* susually called after fork if method needs to re-arm all fds from scratch */
374static void
375fd_rearm_all (EV_P)
376{
377 int fd;
378
379 /* this should be highly optimised to not do anything but set a flag */
380 for (fd = 0; fd < anfdmax; ++fd)
381 if (anfds [fd].events)
382 {
383 anfds [fd].events = 0;
384 fd_change (EV_A_ fd);
385 }
386}
387
334/*****************************************************************************/ 388/*****************************************************************************/
335 389
336static struct ev_timer **timers;
337static int timermax, timercnt;
338
339static struct ev_periodic **periodics;
340static int periodicmax, periodiccnt;
341
342static void 390static void
343upheap (WT *timers, int k) 391upheap (WT *heap, int k)
344{ 392{
345 WT w = timers [k]; 393 WT w = heap [k];
346 394
347 while (k && timers [k >> 1]->at > w->at) 395 while (k && heap [k >> 1]->at > w->at)
348 { 396 {
349 timers [k] = timers [k >> 1]; 397 heap [k] = heap [k >> 1];
350 timers [k]->active = k + 1; 398 ((W)heap [k])->active = k + 1;
351 k >>= 1; 399 k >>= 1;
352 } 400 }
353 401
354 timers [k] = w; 402 heap [k] = w;
355 timers [k]->active = k + 1; 403 ((W)heap [k])->active = k + 1;
356 404
357} 405}
358 406
359static void 407static void
360downheap (WT *timers, int N, int k) 408downheap (WT *heap, int N, int k)
361{ 409{
362 WT w = timers [k]; 410 WT w = heap [k];
363 411
364 while (k < (N >> 1)) 412 while (k < (N >> 1))
365 { 413 {
366 int j = k << 1; 414 int j = k << 1;
367 415
368 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 416 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
369 ++j; 417 ++j;
370 418
371 if (w->at <= timers [j]->at) 419 if (w->at <= heap [j]->at)
372 break; 420 break;
373 421
374 timers [k] = timers [j]; 422 heap [k] = heap [j];
375 timers [k]->active = k + 1; 423 ((W)heap [k])->active = k + 1;
376 k = j; 424 k = j;
377 } 425 }
378 426
379 timers [k] = w; 427 heap [k] = w;
380 timers [k]->active = k + 1; 428 ((W)heap [k])->active = k + 1;
381} 429}
382 430
383/*****************************************************************************/ 431/*****************************************************************************/
384 432
385typedef struct 433typedef struct
420 errno = old_errno; 468 errno = old_errno;
421 } 469 }
422} 470}
423 471
424static void 472static void
425sigcb (struct ev_io *iow, int revents) 473sigcb (EV_P_ struct ev_io *iow, int revents)
426{ 474{
427 struct ev_watcher_list *w; 475 struct ev_watcher_list *w;
428 int signum; 476 int signum;
429 477
430 read (sigpipe [0], &revents, 1); 478 read (sigpipe [0], &revents, 1);
434 if (signals [signum].gotsig) 482 if (signals [signum].gotsig)
435 { 483 {
436 signals [signum].gotsig = 0; 484 signals [signum].gotsig = 0;
437 485
438 for (w = signals [signum].head; w; w = w->next) 486 for (w = signals [signum].head; w; w = w->next)
439 event ((W)w, EV_SIGNAL); 487 event (EV_A_ (W)w, EV_SIGNAL);
440 } 488 }
441} 489}
442 490
443static void 491static void
444siginit (void) 492siginit (EV_P)
445{ 493{
446#ifndef WIN32 494#ifndef WIN32
447 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 495 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
448 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 496 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
449 497
451 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 499 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
452 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 500 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
453#endif 501#endif
454 502
455 ev_io_set (&sigev, sigpipe [0], EV_READ); 503 ev_io_set (&sigev, sigpipe [0], EV_READ);
456 ev_io_start (&sigev); 504 ev_io_start (EV_A_ &sigev);
505 ev_unref (EV_A); /* child watcher should not keep loop alive */
457} 506}
458 507
459/*****************************************************************************/ 508/*****************************************************************************/
460 509
461static struct ev_idle **idles; 510#ifndef WIN32
462static int idlemax, idlecnt;
463
464static struct ev_prepare **prepares;
465static int preparemax, preparecnt;
466
467static struct ev_check **checks;
468static int checkmax, checkcnt;
469
470/*****************************************************************************/
471 511
472static struct ev_child *childs [PID_HASHSIZE]; 512static struct ev_child *childs [PID_HASHSIZE];
473static struct ev_signal childev; 513static struct ev_signal childev;
474 514
475#ifndef WIN32
476
477#ifndef WCONTINUED 515#ifndef WCONTINUED
478# define WCONTINUED 0 516# define WCONTINUED 0
479#endif 517#endif
480 518
481static void 519static void
482child_reap (struct ev_signal *sw, int chain, int pid, int status) 520child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
483{ 521{
484 struct ev_child *w; 522 struct ev_child *w;
485 523
486 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 524 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
487 if (w->pid == pid || !w->pid) 525 if (w->pid == pid || !w->pid)
488 { 526 {
489 w->priority = sw->priority; /* need to do it *now* */ 527 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
490 w->rpid = pid; 528 w->rpid = pid;
491 w->rstatus = status; 529 w->rstatus = status;
492 event ((W)w, EV_CHILD); 530 event (EV_A_ (W)w, EV_CHILD);
493 } 531 }
494} 532}
495 533
496static void 534static void
497childcb (struct ev_signal *sw, int revents) 535childcb (EV_P_ struct ev_signal *sw, int revents)
498{ 536{
499 int pid, status; 537 int pid, status;
500 538
501 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 539 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
502 { 540 {
503 /* make sure we are called again until all childs have been reaped */ 541 /* make sure we are called again until all childs have been reaped */
504 event ((W)sw, EV_SIGNAL); 542 event (EV_A_ (W)sw, EV_SIGNAL);
505 543
506 child_reap (sw, pid, pid, status); 544 child_reap (EV_A_ sw, pid, pid, status);
507 child_reap (sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 545 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
508 } 546 }
509} 547}
510 548
511#endif 549#endif
512 550
537 return EV_VERSION_MINOR; 575 return EV_VERSION_MINOR;
538} 576}
539 577
540/* return true if we are running with elevated privileges and should ignore env variables */ 578/* return true if we are running with elevated privileges and should ignore env variables */
541static int 579static int
542enable_secure () 580enable_secure (void)
543{ 581{
544#ifdef WIN32 582#ifdef WIN32
545 return 0; 583 return 0;
546#else 584#else
547 return getuid () != geteuid () 585 return getuid () != geteuid ()
548 || getgid () != getegid (); 586 || getgid () != getegid ();
549#endif 587#endif
550} 588}
551 589
552int ev_init (int methods) 590int
591ev_method (EV_P)
553{ 592{
593 return method;
594}
595
596static void
597loop_init (EV_P_ int methods)
598{
554 if (!ev_method) 599 if (!method)
555 { 600 {
556#if EV_USE_MONOTONIC 601#if EV_USE_MONOTONIC
557 { 602 {
558 struct timespec ts; 603 struct timespec ts;
559 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 604 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
560 have_monotonic = 1; 605 have_monotonic = 1;
561 } 606 }
562#endif 607#endif
563 608
564 ev_now = ev_time (); 609 rt_now = ev_time ();
565 now = get_clock (); 610 mn_now = get_clock ();
566 now_floor = now; 611 now_floor = mn_now;
567 diff = ev_now - now; 612 rtmn_diff = rt_now - mn_now;
568
569 if (pipe (sigpipe))
570 return 0;
571 613
572 if (methods == EVMETHOD_AUTO) 614 if (methods == EVMETHOD_AUTO)
573 if (!enable_secure () && getenv ("LIBEV_METHODS")) 615 if (!enable_secure () && getenv ("LIBEV_METHODS"))
574 methods = atoi (getenv ("LIBEV_METHODS")); 616 methods = atoi (getenv ("LIBEV_METHODS"));
575 else 617 else
576 methods = EVMETHOD_ANY; 618 methods = EVMETHOD_ANY;
577 619
578 ev_method = 0; 620 method = 0;
621#if EV_USE_WIN32
622 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
623#endif
579#if EV_USE_KQUEUE 624#if EV_USE_KQUEUE
580 if (!ev_method && (methods & EVMETHOD_KQUEUE)) kqueue_init (methods); 625 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
581#endif 626#endif
582#if EV_USE_EPOLL 627#if EV_USE_EPOLL
583 if (!ev_method && (methods & EVMETHOD_EPOLL )) epoll_init (methods); 628 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
584#endif 629#endif
585#if EV_USE_POLL 630#if EV_USE_POLL
586 if (!ev_method && (methods & EVMETHOD_POLL )) poll_init (methods); 631 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
587#endif 632#endif
588#if EV_USE_SELECT 633#if EV_USE_SELECT
589 if (!ev_method && (methods & EVMETHOD_SELECT)) select_init (methods); 634 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
590#endif 635#endif
636 }
637}
591 638
639void
640loop_destroy (EV_P)
641{
642#if EV_USE_WIN32
643 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
644#endif
645#if EV_USE_KQUEUE
646 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
647#endif
648#if EV_USE_EPOLL
649 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
650#endif
651#if EV_USE_POLL
652 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
653#endif
654#if EV_USE_SELECT
655 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
656#endif
657
658 method = 0;
659 /*TODO*/
660}
661
662void
663loop_fork (EV_P)
664{
665 /*TODO*/
666#if EV_USE_EPOLL
667 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
668#endif
669#if EV_USE_KQUEUE
670 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
671#endif
672}
673
674#if EV_MULTIPLICITY
675struct ev_loop *
676ev_loop_new (int methods)
677{
678 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
679
680 loop_init (EV_A_ methods);
681
682 if (ev_method (EV_A))
683 return loop;
684
685 return 0;
686}
687
688void
689ev_loop_destroy (EV_P)
690{
691 loop_destroy (EV_A);
692 free (loop);
693}
694
695void
696ev_loop_fork (EV_P)
697{
698 loop_fork (EV_A);
699}
700
701#endif
702
703#if EV_MULTIPLICITY
704struct ev_loop default_loop_struct;
705static struct ev_loop *default_loop;
706
707struct ev_loop *
708#else
709static int default_loop;
710
711int
712#endif
713ev_default_loop (int methods)
714{
715 if (sigpipe [0] == sigpipe [1])
716 if (pipe (sigpipe))
717 return 0;
718
719 if (!default_loop)
720 {
721#if EV_MULTIPLICITY
722 struct ev_loop *loop = default_loop = &default_loop_struct;
723#else
724 default_loop = 1;
725#endif
726
727 loop_init (EV_A_ methods);
728
592 if (ev_method) 729 if (ev_method (EV_A))
593 { 730 {
594 ev_watcher_init (&sigev, sigcb); 731 ev_watcher_init (&sigev, sigcb);
595 ev_set_priority (&sigev, EV_MAXPRI); 732 ev_set_priority (&sigev, EV_MAXPRI);
596 siginit (); 733 siginit (EV_A);
597 734
598#ifndef WIN32 735#ifndef WIN32
599 ev_signal_init (&childev, childcb, SIGCHLD); 736 ev_signal_init (&childev, childcb, SIGCHLD);
600 ev_set_priority (&childev, EV_MAXPRI); 737 ev_set_priority (&childev, EV_MAXPRI);
601 ev_signal_start (&childev); 738 ev_signal_start (EV_A_ &childev);
739 ev_unref (EV_A); /* child watcher should not keep loop alive */
602#endif 740#endif
603 } 741 }
742 else
743 default_loop = 0;
604 } 744 }
605 745
606 return ev_method; 746 return default_loop;
607} 747}
608 748
609/*****************************************************************************/
610
611void 749void
612ev_fork_prepare (void) 750ev_default_destroy (void)
613{ 751{
614 /* nop */ 752#if EV_MULTIPLICITY
615} 753 struct ev_loop *loop = default_loop;
616
617void
618ev_fork_parent (void)
619{
620 /* nop */
621}
622
623void
624ev_fork_child (void)
625{
626#if EV_USE_EPOLL
627 if (ev_method == EVMETHOD_EPOLL)
628 epoll_postfork_child ();
629#endif 754#endif
630 755
756 ev_ref (EV_A); /* child watcher */
757 ev_signal_stop (EV_A_ &childev);
758
759 ev_ref (EV_A); /* signal watcher */
631 ev_io_stop (&sigev); 760 ev_io_stop (EV_A_ &sigev);
761
762 close (sigpipe [0]); sigpipe [0] = 0;
763 close (sigpipe [1]); sigpipe [1] = 0;
764
765 loop_destroy (EV_A);
766}
767
768void
769ev_default_fork (void)
770{
771#if EV_MULTIPLICITY
772 struct ev_loop *loop = default_loop;
773#endif
774
775 loop_fork (EV_A);
776
777 ev_io_stop (EV_A_ &sigev);
632 close (sigpipe [0]); 778 close (sigpipe [0]);
633 close (sigpipe [1]); 779 close (sigpipe [1]);
634 pipe (sigpipe); 780 pipe (sigpipe);
781
782 ev_ref (EV_A); /* signal watcher */
635 siginit (); 783 siginit (EV_A);
636} 784}
637 785
638/*****************************************************************************/ 786/*****************************************************************************/
639 787
640static void 788static void
641call_pending (void) 789call_pending (EV_P)
642{ 790{
643 int pri; 791 int pri;
644 792
645 for (pri = NUMPRI; pri--; ) 793 for (pri = NUMPRI; pri--; )
646 while (pendingcnt [pri]) 794 while (pendingcnt [pri])
648 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 796 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
649 797
650 if (p->w) 798 if (p->w)
651 { 799 {
652 p->w->pending = 0; 800 p->w->pending = 0;
653 p->w->cb (p->w, p->events); 801
802 (*(void (**)(EV_P_ W, int))&p->w->cb) (EV_A_ p->w, p->events);
654 } 803 }
655 } 804 }
656} 805}
657 806
658static void 807static void
659timers_reify (void) 808timers_reify (EV_P)
660{ 809{
661 while (timercnt && timers [0]->at <= now) 810 while (timercnt && ((WT)timers [0])->at <= mn_now)
662 { 811 {
663 struct ev_timer *w = timers [0]; 812 struct ev_timer *w = timers [0];
813
814 assert (("inactive timer on timer heap detected", ev_is_active (w)));
664 815
665 /* first reschedule or stop timer */ 816 /* first reschedule or stop timer */
666 if (w->repeat) 817 if (w->repeat)
667 { 818 {
668 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 819 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
669 w->at = now + w->repeat; 820 ((WT)w)->at = mn_now + w->repeat;
670 downheap ((WT *)timers, timercnt, 0); 821 downheap ((WT *)timers, timercnt, 0);
671 } 822 }
672 else 823 else
673 ev_timer_stop (w); /* nonrepeating: stop timer */ 824 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
674 825
675 event ((W)w, EV_TIMEOUT); 826 event (EV_A_ (W)w, EV_TIMEOUT);
676 } 827 }
677} 828}
678 829
679static void 830static void
680periodics_reify (void) 831periodics_reify (EV_P)
681{ 832{
682 while (periodiccnt && periodics [0]->at <= ev_now) 833 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
683 { 834 {
684 struct ev_periodic *w = periodics [0]; 835 struct ev_periodic *w = periodics [0];
836
837 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
685 838
686 /* first reschedule or stop timer */ 839 /* first reschedule or stop timer */
687 if (w->interval) 840 if (w->interval)
688 { 841 {
689 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 842 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
690 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 843 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
691 downheap ((WT *)periodics, periodiccnt, 0); 844 downheap ((WT *)periodics, periodiccnt, 0);
692 } 845 }
693 else 846 else
694 ev_periodic_stop (w); /* nonrepeating: stop timer */ 847 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
695 848
696 event ((W)w, EV_PERIODIC); 849 event (EV_A_ (W)w, EV_PERIODIC);
697 } 850 }
698} 851}
699 852
700static void 853static void
701periodics_reschedule (ev_tstamp diff) 854periodics_reschedule (EV_P)
702{ 855{
703 int i; 856 int i;
704 857
705 /* adjust periodics after time jump */ 858 /* adjust periodics after time jump */
706 for (i = 0; i < periodiccnt; ++i) 859 for (i = 0; i < periodiccnt; ++i)
707 { 860 {
708 struct ev_periodic *w = periodics [i]; 861 struct ev_periodic *w = periodics [i];
709 862
710 if (w->interval) 863 if (w->interval)
711 { 864 {
712 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 865 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
713 866
714 if (fabs (diff) >= 1e-4) 867 if (fabs (diff) >= 1e-4)
715 { 868 {
716 ev_periodic_stop (w); 869 ev_periodic_stop (EV_A_ w);
717 ev_periodic_start (w); 870 ev_periodic_start (EV_A_ w);
718 871
719 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 872 i = 0; /* restart loop, inefficient, but time jumps should be rare */
720 } 873 }
721 } 874 }
722 } 875 }
723} 876}
724 877
725static int 878inline int
726time_update_monotonic (void) 879time_update_monotonic (EV_P)
727{ 880{
728 now = get_clock (); 881 mn_now = get_clock ();
729 882
730 if (expect_true (now - now_floor < MIN_TIMEJUMP * .5)) 883 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
731 { 884 {
732 ev_now = now + diff; 885 rt_now = rtmn_diff + mn_now;
733 return 0; 886 return 0;
734 } 887 }
735 else 888 else
736 { 889 {
737 now_floor = now; 890 now_floor = mn_now;
738 ev_now = ev_time (); 891 rt_now = ev_time ();
739 return 1; 892 return 1;
740 } 893 }
741} 894}
742 895
743static void 896static void
744time_update (void) 897time_update (EV_P)
745{ 898{
746 int i; 899 int i;
747 900
748#if EV_USE_MONOTONIC 901#if EV_USE_MONOTONIC
749 if (expect_true (have_monotonic)) 902 if (expect_true (have_monotonic))
750 { 903 {
751 if (time_update_monotonic ()) 904 if (time_update_monotonic (EV_A))
752 { 905 {
753 ev_tstamp odiff = diff; 906 ev_tstamp odiff = rtmn_diff;
754 907
755 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 908 for (i = 4; --i; ) /* loop a few times, before making important decisions */
756 { 909 {
757 diff = ev_now - now; 910 rtmn_diff = rt_now - mn_now;
758 911
759 if (fabs (odiff - diff) < MIN_TIMEJUMP) 912 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
760 return; /* all is well */ 913 return; /* all is well */
761 914
762 ev_now = ev_time (); 915 rt_now = ev_time ();
763 now = get_clock (); 916 mn_now = get_clock ();
764 now_floor = now; 917 now_floor = mn_now;
765 } 918 }
766 919
767 periodics_reschedule (diff - odiff); 920 periodics_reschedule (EV_A);
768 /* no timer adjustment, as the monotonic clock doesn't jump */ 921 /* no timer adjustment, as the monotonic clock doesn't jump */
922 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
769 } 923 }
770 } 924 }
771 else 925 else
772#endif 926#endif
773 { 927 {
774 ev_now = ev_time (); 928 rt_now = ev_time ();
775 929
776 if (expect_false (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 930 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
777 { 931 {
778 periodics_reschedule (ev_now - now); 932 periodics_reschedule (EV_A);
779 933
780 /* adjust timers. this is easy, as the offset is the same for all */ 934 /* adjust timers. this is easy, as the offset is the same for all */
781 for (i = 0; i < timercnt; ++i) 935 for (i = 0; i < timercnt; ++i)
782 timers [i]->at += diff; 936 ((WT)timers [i])->at += rt_now - mn_now;
783 } 937 }
784 938
785 now = ev_now; 939 mn_now = rt_now;
786 } 940 }
787} 941}
788 942
789int ev_loop_done; 943void
944ev_ref (EV_P)
945{
946 ++activecnt;
947}
790 948
949void
950ev_unref (EV_P)
951{
952 --activecnt;
953}
954
955static int loop_done;
956
957void
791void ev_loop (int flags) 958ev_loop (EV_P_ int flags)
792{ 959{
793 double block; 960 double block;
794 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 961 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
795 962
796 do 963 do
797 { 964 {
798 /* queue check watchers (and execute them) */ 965 /* queue check watchers (and execute them) */
799 if (expect_false (preparecnt)) 966 if (expect_false (preparecnt))
800 { 967 {
801 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 968 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
802 call_pending (); 969 call_pending (EV_A);
803 } 970 }
804 971
805 /* update fd-related kernel structures */ 972 /* update fd-related kernel structures */
806 fd_reify (); 973 fd_reify (EV_A);
807 974
808 /* calculate blocking time */ 975 /* calculate blocking time */
809 976
810 /* we only need this for !monotonic clockor timers, but as we basically 977 /* we only need this for !monotonic clockor timers, but as we basically
811 always have timers, we just calculate it always */ 978 always have timers, we just calculate it always */
812#if EV_USE_MONOTONIC 979#if EV_USE_MONOTONIC
813 if (expect_true (have_monotonic)) 980 if (expect_true (have_monotonic))
814 time_update_monotonic (); 981 time_update_monotonic (EV_A);
815 else 982 else
816#endif 983#endif
817 { 984 {
818 ev_now = ev_time (); 985 rt_now = ev_time ();
819 now = ev_now; 986 mn_now = rt_now;
820 } 987 }
821 988
822 if (flags & EVLOOP_NONBLOCK || idlecnt) 989 if (flags & EVLOOP_NONBLOCK || idlecnt)
823 block = 0.; 990 block = 0.;
824 else 991 else
825 { 992 {
826 block = MAX_BLOCKTIME; 993 block = MAX_BLOCKTIME;
827 994
828 if (timercnt) 995 if (timercnt)
829 { 996 {
830 ev_tstamp to = timers [0]->at - now + method_fudge; 997 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
831 if (block > to) block = to; 998 if (block > to) block = to;
832 } 999 }
833 1000
834 if (periodiccnt) 1001 if (periodiccnt)
835 { 1002 {
836 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1003 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
837 if (block > to) block = to; 1004 if (block > to) block = to;
838 } 1005 }
839 1006
840 if (block < 0.) block = 0.; 1007 if (block < 0.) block = 0.;
841 } 1008 }
842 1009
843 method_poll (block); 1010 method_poll (EV_A_ block);
844 1011
845 /* update ev_now, do magic */ 1012 /* update rt_now, do magic */
846 time_update (); 1013 time_update (EV_A);
847 1014
848 /* queue pending timers and reschedule them */ 1015 /* queue pending timers and reschedule them */
849 timers_reify (); /* relative timers called last */ 1016 timers_reify (EV_A); /* relative timers called last */
850 periodics_reify (); /* absolute timers called first */ 1017 periodics_reify (EV_A); /* absolute timers called first */
851 1018
852 /* queue idle watchers unless io or timers are pending */ 1019 /* queue idle watchers unless io or timers are pending */
853 if (!pendingcnt) 1020 if (!pendingcnt)
854 queue_events ((W *)idles, idlecnt, EV_IDLE); 1021 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
855 1022
856 /* queue check watchers, to be executed first */ 1023 /* queue check watchers, to be executed first */
857 if (checkcnt) 1024 if (checkcnt)
858 queue_events ((W *)checks, checkcnt, EV_CHECK); 1025 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
859 1026
860 call_pending (); 1027 call_pending (EV_A);
861 } 1028 }
862 while (!ev_loop_done); 1029 while (activecnt && !loop_done);
863 1030
864 if (ev_loop_done != 2) 1031 if (loop_done != 2)
865 ev_loop_done = 0; 1032 loop_done = 0;
1033}
1034
1035void
1036ev_unloop (EV_P_ int how)
1037{
1038 loop_done = how;
866} 1039}
867 1040
868/*****************************************************************************/ 1041/*****************************************************************************/
869 1042
870static void 1043inline void
871wlist_add (WL *head, WL elem) 1044wlist_add (WL *head, WL elem)
872{ 1045{
873 elem->next = *head; 1046 elem->next = *head;
874 *head = elem; 1047 *head = elem;
875} 1048}
876 1049
877static void 1050inline void
878wlist_del (WL *head, WL elem) 1051wlist_del (WL *head, WL elem)
879{ 1052{
880 while (*head) 1053 while (*head)
881 { 1054 {
882 if (*head == elem) 1055 if (*head == elem)
887 1060
888 head = &(*head)->next; 1061 head = &(*head)->next;
889 } 1062 }
890} 1063}
891 1064
892static void 1065inline void
893ev_clear_pending (W w) 1066ev_clear_pending (EV_P_ W w)
894{ 1067{
895 if (w->pending) 1068 if (w->pending)
896 { 1069 {
897 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1070 pendings [ABSPRI (w)][w->pending - 1].w = 0;
898 w->pending = 0; 1071 w->pending = 0;
899 } 1072 }
900} 1073}
901 1074
902static void 1075inline void
903ev_start (W w, int active) 1076ev_start (EV_P_ W w, int active)
904{ 1077{
905 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1078 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
906 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 1079 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
907 1080
908 w->active = active; 1081 w->active = active;
1082 ev_ref (EV_A);
909} 1083}
910 1084
911static void 1085inline void
912ev_stop (W w) 1086ev_stop (EV_P_ W w)
913{ 1087{
1088 ev_unref (EV_A);
914 w->active = 0; 1089 w->active = 0;
915} 1090}
916 1091
917/*****************************************************************************/ 1092/*****************************************************************************/
918 1093
919void 1094void
920ev_io_start (struct ev_io *w) 1095ev_io_start (EV_P_ struct ev_io *w)
921{ 1096{
922 int fd = w->fd; 1097 int fd = w->fd;
923 1098
924 if (ev_is_active (w)) 1099 if (ev_is_active (w))
925 return; 1100 return;
926 1101
927 assert (("ev_io_start called with negative fd", fd >= 0)); 1102 assert (("ev_io_start called with negative fd", fd >= 0));
928 1103
929 ev_start ((W)w, 1); 1104 ev_start (EV_A_ (W)w, 1);
930 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1105 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
931 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1106 wlist_add ((WL *)&anfds[fd].head, (WL)w);
932 1107
933 fd_change (fd); 1108 fd_change (EV_A_ fd);
934} 1109}
935 1110
936void 1111void
937ev_io_stop (struct ev_io *w) 1112ev_io_stop (EV_P_ struct ev_io *w)
938{ 1113{
939 ev_clear_pending ((W)w); 1114 ev_clear_pending (EV_A_ (W)w);
940 if (!ev_is_active (w)) 1115 if (!ev_is_active (w))
941 return; 1116 return;
942 1117
943 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1118 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
944 ev_stop ((W)w); 1119 ev_stop (EV_A_ (W)w);
945 1120
946 fd_change (w->fd); 1121 fd_change (EV_A_ w->fd);
947} 1122}
948 1123
949void 1124void
950ev_timer_start (struct ev_timer *w) 1125ev_timer_start (EV_P_ struct ev_timer *w)
951{ 1126{
952 if (ev_is_active (w)) 1127 if (ev_is_active (w))
953 return; 1128 return;
954 1129
955 w->at += now; 1130 ((WT)w)->at += mn_now;
956 1131
957 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1132 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
958 1133
959 ev_start ((W)w, ++timercnt); 1134 ev_start (EV_A_ (W)w, ++timercnt);
960 array_needsize (timers, timermax, timercnt, ); 1135 array_needsize (timers, timermax, timercnt, );
961 timers [timercnt - 1] = w; 1136 timers [timercnt - 1] = w;
962 upheap ((WT *)timers, timercnt - 1); 1137 upheap ((WT *)timers, timercnt - 1);
963}
964 1138
1139 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1140}
1141
965void 1142void
966ev_timer_stop (struct ev_timer *w) 1143ev_timer_stop (EV_P_ struct ev_timer *w)
967{ 1144{
968 ev_clear_pending ((W)w); 1145 ev_clear_pending (EV_A_ (W)w);
969 if (!ev_is_active (w)) 1146 if (!ev_is_active (w))
970 return; 1147 return;
971 1148
1149 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1150
972 if (w->active < timercnt--) 1151 if (((W)w)->active < timercnt--)
973 { 1152 {
974 timers [w->active - 1] = timers [timercnt]; 1153 timers [((W)w)->active - 1] = timers [timercnt];
975 downheap ((WT *)timers, timercnt, w->active - 1); 1154 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
976 } 1155 }
977 1156
978 w->at = w->repeat; 1157 ((WT)w)->at = w->repeat;
979 1158
980 ev_stop ((W)w); 1159 ev_stop (EV_A_ (W)w);
981} 1160}
982 1161
983void 1162void
984ev_timer_again (struct ev_timer *w) 1163ev_timer_again (EV_P_ struct ev_timer *w)
985{ 1164{
986 if (ev_is_active (w)) 1165 if (ev_is_active (w))
987 { 1166 {
988 if (w->repeat) 1167 if (w->repeat)
989 { 1168 {
990 w->at = now + w->repeat; 1169 ((WT)w)->at = mn_now + w->repeat;
991 downheap ((WT *)timers, timercnt, w->active - 1); 1170 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
992 } 1171 }
993 else 1172 else
994 ev_timer_stop (w); 1173 ev_timer_stop (EV_A_ w);
995 } 1174 }
996 else if (w->repeat) 1175 else if (w->repeat)
997 ev_timer_start (w); 1176 ev_timer_start (EV_A_ w);
998} 1177}
999 1178
1000void 1179void
1001ev_periodic_start (struct ev_periodic *w) 1180ev_periodic_start (EV_P_ struct ev_periodic *w)
1002{ 1181{
1003 if (ev_is_active (w)) 1182 if (ev_is_active (w))
1004 return; 1183 return;
1005 1184
1006 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1185 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1007 1186
1008 /* this formula differs from the one in periodic_reify because we do not always round up */ 1187 /* this formula differs from the one in periodic_reify because we do not always round up */
1009 if (w->interval) 1188 if (w->interval)
1010 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1189 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1011 1190
1012 ev_start ((W)w, ++periodiccnt); 1191 ev_start (EV_A_ (W)w, ++periodiccnt);
1013 array_needsize (periodics, periodicmax, periodiccnt, ); 1192 array_needsize (periodics, periodicmax, periodiccnt, );
1014 periodics [periodiccnt - 1] = w; 1193 periodics [periodiccnt - 1] = w;
1015 upheap ((WT *)periodics, periodiccnt - 1); 1194 upheap ((WT *)periodics, periodiccnt - 1);
1016}
1017 1195
1196 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1197}
1198
1018void 1199void
1019ev_periodic_stop (struct ev_periodic *w) 1200ev_periodic_stop (EV_P_ struct ev_periodic *w)
1020{ 1201{
1021 ev_clear_pending ((W)w); 1202 ev_clear_pending (EV_A_ (W)w);
1022 if (!ev_is_active (w)) 1203 if (!ev_is_active (w))
1023 return; 1204 return;
1024 1205
1206 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1207
1025 if (w->active < periodiccnt--) 1208 if (((W)w)->active < periodiccnt--)
1026 { 1209 {
1027 periodics [w->active - 1] = periodics [periodiccnt]; 1210 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1028 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1211 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1029 } 1212 }
1030 1213
1031 ev_stop ((W)w); 1214 ev_stop (EV_A_ (W)w);
1215}
1216
1217void
1218ev_idle_start (EV_P_ struct ev_idle *w)
1219{
1220 if (ev_is_active (w))
1221 return;
1222
1223 ev_start (EV_A_ (W)w, ++idlecnt);
1224 array_needsize (idles, idlemax, idlecnt, );
1225 idles [idlecnt - 1] = w;
1226}
1227
1228void
1229ev_idle_stop (EV_P_ struct ev_idle *w)
1230{
1231 ev_clear_pending (EV_A_ (W)w);
1232 if (ev_is_active (w))
1233 return;
1234
1235 idles [((W)w)->active - 1] = idles [--idlecnt];
1236 ev_stop (EV_A_ (W)w);
1237}
1238
1239void
1240ev_prepare_start (EV_P_ struct ev_prepare *w)
1241{
1242 if (ev_is_active (w))
1243 return;
1244
1245 ev_start (EV_A_ (W)w, ++preparecnt);
1246 array_needsize (prepares, preparemax, preparecnt, );
1247 prepares [preparecnt - 1] = w;
1248}
1249
1250void
1251ev_prepare_stop (EV_P_ struct ev_prepare *w)
1252{
1253 ev_clear_pending (EV_A_ (W)w);
1254 if (ev_is_active (w))
1255 return;
1256
1257 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1258 ev_stop (EV_A_ (W)w);
1259}
1260
1261void
1262ev_check_start (EV_P_ struct ev_check *w)
1263{
1264 if (ev_is_active (w))
1265 return;
1266
1267 ev_start (EV_A_ (W)w, ++checkcnt);
1268 array_needsize (checks, checkmax, checkcnt, );
1269 checks [checkcnt - 1] = w;
1270}
1271
1272void
1273ev_check_stop (EV_P_ struct ev_check *w)
1274{
1275 ev_clear_pending (EV_A_ (W)w);
1276 if (ev_is_active (w))
1277 return;
1278
1279 checks [((W)w)->active - 1] = checks [--checkcnt];
1280 ev_stop (EV_A_ (W)w);
1032} 1281}
1033 1282
1034#ifndef SA_RESTART 1283#ifndef SA_RESTART
1035# define SA_RESTART 0 1284# define SA_RESTART 0
1036#endif 1285#endif
1037 1286
1038void 1287void
1039ev_signal_start (struct ev_signal *w) 1288ev_signal_start (EV_P_ struct ev_signal *w)
1040{ 1289{
1290#if EV_MULTIPLICITY
1291 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1292#endif
1041 if (ev_is_active (w)) 1293 if (ev_is_active (w))
1042 return; 1294 return;
1043 1295
1044 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1296 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1045 1297
1046 ev_start ((W)w, 1); 1298 ev_start (EV_A_ (W)w, 1);
1047 array_needsize (signals, signalmax, w->signum, signals_init); 1299 array_needsize (signals, signalmax, w->signum, signals_init);
1048 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1300 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1049 1301
1050 if (!w->next) 1302 if (!((WL)w)->next)
1051 { 1303 {
1052 struct sigaction sa; 1304 struct sigaction sa;
1053 sa.sa_handler = sighandler; 1305 sa.sa_handler = sighandler;
1054 sigfillset (&sa.sa_mask); 1306 sigfillset (&sa.sa_mask);
1055 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1307 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1056 sigaction (w->signum, &sa, 0); 1308 sigaction (w->signum, &sa, 0);
1057 } 1309 }
1058} 1310}
1059 1311
1060void 1312void
1061ev_signal_stop (struct ev_signal *w) 1313ev_signal_stop (EV_P_ struct ev_signal *w)
1062{ 1314{
1063 ev_clear_pending ((W)w); 1315 ev_clear_pending (EV_A_ (W)w);
1064 if (!ev_is_active (w)) 1316 if (!ev_is_active (w))
1065 return; 1317 return;
1066 1318
1067 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1319 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1068 ev_stop ((W)w); 1320 ev_stop (EV_A_ (W)w);
1069 1321
1070 if (!signals [w->signum - 1].head) 1322 if (!signals [w->signum - 1].head)
1071 signal (w->signum, SIG_DFL); 1323 signal (w->signum, SIG_DFL);
1072} 1324}
1073 1325
1074void 1326void
1075ev_idle_start (struct ev_idle *w) 1327ev_child_start (EV_P_ struct ev_child *w)
1076{ 1328{
1329#if EV_MULTIPLICITY
1330 assert (("child watchers are only supported in the default loop", loop == default_loop));
1331#endif
1077 if (ev_is_active (w)) 1332 if (ev_is_active (w))
1078 return; 1333 return;
1079 1334
1080 ev_start ((W)w, ++idlecnt); 1335 ev_start (EV_A_ (W)w, 1);
1081 array_needsize (idles, idlemax, idlecnt, ); 1336 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1082 idles [idlecnt - 1] = w;
1083} 1337}
1084 1338
1085void 1339void
1086ev_idle_stop (struct ev_idle *w) 1340ev_child_stop (EV_P_ struct ev_child *w)
1087{ 1341{
1088 ev_clear_pending ((W)w); 1342 ev_clear_pending (EV_A_ (W)w);
1089 if (ev_is_active (w)) 1343 if (ev_is_active (w))
1090 return; 1344 return;
1091 1345
1092 idles [w->active - 1] = idles [--idlecnt];
1093 ev_stop ((W)w);
1094}
1095
1096void
1097ev_prepare_start (struct ev_prepare *w)
1098{
1099 if (ev_is_active (w))
1100 return;
1101
1102 ev_start ((W)w, ++preparecnt);
1103 array_needsize (prepares, preparemax, preparecnt, );
1104 prepares [preparecnt - 1] = w;
1105}
1106
1107void
1108ev_prepare_stop (struct ev_prepare *w)
1109{
1110 ev_clear_pending ((W)w);
1111 if (ev_is_active (w))
1112 return;
1113
1114 prepares [w->active - 1] = prepares [--preparecnt];
1115 ev_stop ((W)w);
1116}
1117
1118void
1119ev_check_start (struct ev_check *w)
1120{
1121 if (ev_is_active (w))
1122 return;
1123
1124 ev_start ((W)w, ++checkcnt);
1125 array_needsize (checks, checkmax, checkcnt, );
1126 checks [checkcnt - 1] = w;
1127}
1128
1129void
1130ev_check_stop (struct ev_check *w)
1131{
1132 ev_clear_pending ((W)w);
1133 if (ev_is_active (w))
1134 return;
1135
1136 checks [w->active - 1] = checks [--checkcnt];
1137 ev_stop ((W)w);
1138}
1139
1140void
1141ev_child_start (struct ev_child *w)
1142{
1143 if (ev_is_active (w))
1144 return;
1145
1146 ev_start ((W)w, 1);
1147 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1148}
1149
1150void
1151ev_child_stop (struct ev_child *w)
1152{
1153 ev_clear_pending ((W)w);
1154 if (ev_is_active (w))
1155 return;
1156
1157 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1346 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1158 ev_stop ((W)w); 1347 ev_stop (EV_A_ (W)w);
1159} 1348}
1160 1349
1161/*****************************************************************************/ 1350/*****************************************************************************/
1162 1351
1163struct ev_once 1352struct ev_once
1167 void (*cb)(int revents, void *arg); 1356 void (*cb)(int revents, void *arg);
1168 void *arg; 1357 void *arg;
1169}; 1358};
1170 1359
1171static void 1360static void
1172once_cb (struct ev_once *once, int revents) 1361once_cb (EV_P_ struct ev_once *once, int revents)
1173{ 1362{
1174 void (*cb)(int revents, void *arg) = once->cb; 1363 void (*cb)(int revents, void *arg) = once->cb;
1175 void *arg = once->arg; 1364 void *arg = once->arg;
1176 1365
1177 ev_io_stop (&once->io); 1366 ev_io_stop (EV_A_ &once->io);
1178 ev_timer_stop (&once->to); 1367 ev_timer_stop (EV_A_ &once->to);
1179 free (once); 1368 free (once);
1180 1369
1181 cb (revents, arg); 1370 cb (revents, arg);
1182} 1371}
1183 1372
1184static void 1373static void
1185once_cb_io (struct ev_io *w, int revents) 1374once_cb_io (EV_P_ struct ev_io *w, int revents)
1186{ 1375{
1187 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1376 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1188} 1377}
1189 1378
1190static void 1379static void
1191once_cb_to (struct ev_timer *w, int revents) 1380once_cb_to (EV_P_ struct ev_timer *w, int revents)
1192{ 1381{
1193 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1382 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1194} 1383}
1195 1384
1196void 1385void
1197ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1386ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1198{ 1387{
1199 struct ev_once *once = malloc (sizeof (struct ev_once)); 1388 struct ev_once *once = malloc (sizeof (struct ev_once));
1200 1389
1201 if (!once) 1390 if (!once)
1202 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1391 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1207 1396
1208 ev_watcher_init (&once->io, once_cb_io); 1397 ev_watcher_init (&once->io, once_cb_io);
1209 if (fd >= 0) 1398 if (fd >= 0)
1210 { 1399 {
1211 ev_io_set (&once->io, fd, events); 1400 ev_io_set (&once->io, fd, events);
1212 ev_io_start (&once->io); 1401 ev_io_start (EV_A_ &once->io);
1213 } 1402 }
1214 1403
1215 ev_watcher_init (&once->to, once_cb_to); 1404 ev_watcher_init (&once->to, once_cb_to);
1216 if (timeout >= 0.) 1405 if (timeout >= 0.)
1217 { 1406 {
1218 ev_timer_set (&once->to, timeout, 0.); 1407 ev_timer_set (&once->to, timeout, 0.);
1219 ev_timer_start (&once->to); 1408 ev_timer_start (EV_A_ &once->to);
1220 } 1409 }
1221 } 1410 }
1222} 1411}
1223 1412
1224/*****************************************************************************/
1225
1226#if 0
1227
1228struct ev_io wio;
1229
1230static void
1231sin_cb (struct ev_io *w, int revents)
1232{
1233 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1234}
1235
1236static void
1237ocb (struct ev_timer *w, int revents)
1238{
1239 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1240 ev_timer_stop (w);
1241 ev_timer_start (w);
1242}
1243
1244static void
1245scb (struct ev_signal *w, int revents)
1246{
1247 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1248 ev_io_stop (&wio);
1249 ev_io_start (&wio);
1250}
1251
1252static void
1253gcb (struct ev_signal *w, int revents)
1254{
1255 fprintf (stderr, "generic %x\n", revents);
1256
1257}
1258
1259int main (void)
1260{
1261 ev_init (0);
1262
1263 ev_io_init (&wio, sin_cb, 0, EV_READ);
1264 ev_io_start (&wio);
1265
1266 struct ev_timer t[10000];
1267
1268#if 0
1269 int i;
1270 for (i = 0; i < 10000; ++i)
1271 {
1272 struct ev_timer *w = t + i;
1273 ev_watcher_init (w, ocb, i);
1274 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1275 ev_timer_start (w);
1276 if (drand48 () < 0.5)
1277 ev_timer_stop (w);
1278 }
1279#endif
1280
1281 struct ev_timer t1;
1282 ev_timer_init (&t1, ocb, 5, 10);
1283 ev_timer_start (&t1);
1284
1285 struct ev_signal sig;
1286 ev_signal_init (&sig, scb, SIGQUIT);
1287 ev_signal_start (&sig);
1288
1289 struct ev_check cw;
1290 ev_check_init (&cw, gcb);
1291 ev_check_start (&cw);
1292
1293 struct ev_idle iw;
1294 ev_idle_init (&iw, gcb);
1295 ev_idle_start (&iw);
1296
1297 ev_loop (0);
1298
1299 return 0;
1300}
1301
1302#endif
1303
1304
1305
1306

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines