ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.50 by root, Sat Nov 3 19:41:55 2007 UTC vs.
Revision 1.64 by root, Sun Nov 4 23:14:11 2007 UTC

28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#ifndef EV_STANDALONE 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h> 59#include <unistd.h>
70 92
71#ifndef EV_USE_KQUEUE 93#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 94# define EV_USE_KQUEUE 0
73#endif 95#endif
74 96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
103#endif
104
75#ifndef EV_USE_REALTIME 105#ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 1 106# define EV_USE_REALTIME 1
77#endif 107#endif
78 108
79/**/ 109/**/
113 143
114typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
115typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
117 147
118static ev_tstamp now_floor, now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
119ev_tstamp ev_now;
120int ev_method;
121
122static int have_monotonic; /* runtime */
123
124static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
125static void (*method_modify)(int fd, int oev, int nev);
126static void (*method_poll)(ev_tstamp timeout);
127 149
128/*****************************************************************************/ 150/*****************************************************************************/
129 151
130ev_tstamp 152typedef struct
153{
154 struct ev_watcher_list *head;
155 unsigned char events;
156 unsigned char reify;
157} ANFD;
158
159typedef struct
160{
161 W w;
162 int events;
163} ANPENDING;
164
165#if EV_MULTIPLICITY
166
167struct ev_loop
168{
169# define VAR(name,decl) decl;
170# include "ev_vars.h"
171};
172# undef VAR
173# include "ev_wrap.h"
174
175#else
176
177# define VAR(name,decl) static decl;
178# include "ev_vars.h"
179# undef VAR
180
181#endif
182
183/*****************************************************************************/
184
185inline ev_tstamp
131ev_time (void) 186ev_time (void)
132{ 187{
133#if EV_USE_REALTIME 188#if EV_USE_REALTIME
134 struct timespec ts; 189 struct timespec ts;
135 clock_gettime (CLOCK_REALTIME, &ts); 190 clock_gettime (CLOCK_REALTIME, &ts);
139 gettimeofday (&tv, 0); 194 gettimeofday (&tv, 0);
140 return tv.tv_sec + tv.tv_usec * 1e-6; 195 return tv.tv_sec + tv.tv_usec * 1e-6;
141#endif 196#endif
142} 197}
143 198
144static ev_tstamp 199inline ev_tstamp
145get_clock (void) 200get_clock (void)
146{ 201{
147#if EV_USE_MONOTONIC 202#if EV_USE_MONOTONIC
148 if (expect_true (have_monotonic)) 203 if (expect_true (have_monotonic))
149 { 204 {
152 return ts.tv_sec + ts.tv_nsec * 1e-9; 207 return ts.tv_sec + ts.tv_nsec * 1e-9;
153 } 208 }
154#endif 209#endif
155 210
156 return ev_time (); 211 return ev_time ();
212}
213
214ev_tstamp
215ev_now (EV_P)
216{
217 return rt_now;
157} 218}
158 219
159#define array_roundsize(base,n) ((n) | 4 & ~3) 220#define array_roundsize(base,n) ((n) | 4 & ~3)
160 221
161#define array_needsize(base,cur,cnt,init) \ 222#define array_needsize(base,cur,cnt,init) \
173 cur = newcnt; \ 234 cur = newcnt; \
174 } 235 }
175 236
176/*****************************************************************************/ 237/*****************************************************************************/
177 238
178typedef struct
179{
180 struct ev_watcher_list *head;
181 unsigned char events;
182 unsigned char reify;
183} ANFD;
184
185static ANFD *anfds;
186static int anfdmax;
187
188static void 239static void
189anfds_init (ANFD *base, int count) 240anfds_init (ANFD *base, int count)
190{ 241{
191 while (count--) 242 while (count--)
192 { 243 {
196 247
197 ++base; 248 ++base;
198 } 249 }
199} 250}
200 251
201typedef struct
202{
203 W w;
204 int events;
205} ANPENDING;
206
207static ANPENDING *pendings [NUMPRI];
208static int pendingmax [NUMPRI], pendingcnt [NUMPRI];
209
210static void 252static void
211event (W w, int events) 253event (EV_P_ W w, int events)
212{ 254{
213 if (w->pending) 255 if (w->pending)
214 { 256 {
215 pendings [ABSPRI (w)][w->pending - 1].events |= events; 257 pendings [ABSPRI (w)][w->pending - 1].events |= events;
216 return; 258 return;
221 pendings [ABSPRI (w)][w->pending - 1].w = w; 263 pendings [ABSPRI (w)][w->pending - 1].w = w;
222 pendings [ABSPRI (w)][w->pending - 1].events = events; 264 pendings [ABSPRI (w)][w->pending - 1].events = events;
223} 265}
224 266
225static void 267static void
226queue_events (W *events, int eventcnt, int type) 268queue_events (EV_P_ W *events, int eventcnt, int type)
227{ 269{
228 int i; 270 int i;
229 271
230 for (i = 0; i < eventcnt; ++i) 272 for (i = 0; i < eventcnt; ++i)
231 event (events [i], type); 273 event (EV_A_ events [i], type);
232} 274}
233 275
234static void 276static void
235fd_event (int fd, int events) 277fd_event (EV_P_ int fd, int events)
236{ 278{
237 ANFD *anfd = anfds + fd; 279 ANFD *anfd = anfds + fd;
238 struct ev_io *w; 280 struct ev_io *w;
239 281
240 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 282 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
241 { 283 {
242 int ev = w->events & events; 284 int ev = w->events & events;
243 285
244 if (ev) 286 if (ev)
245 event ((W)w, ev); 287 event (EV_A_ (W)w, ev);
246 } 288 }
247} 289}
248 290
249/*****************************************************************************/ 291/*****************************************************************************/
250 292
251static int *fdchanges;
252static int fdchangemax, fdchangecnt;
253
254static void 293static void
255fd_reify (void) 294fd_reify (EV_P)
256{ 295{
257 int i; 296 int i;
258 297
259 for (i = 0; i < fdchangecnt; ++i) 298 for (i = 0; i < fdchangecnt; ++i)
260 { 299 {
267 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 306 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
268 events |= w->events; 307 events |= w->events;
269 308
270 anfd->reify = 0; 309 anfd->reify = 0;
271 310
272 if (anfd->events != events)
273 {
274 method_modify (fd, anfd->events, events); 311 method_modify (EV_A_ fd, anfd->events, events);
275 anfd->events = events; 312 anfd->events = events;
276 }
277 } 313 }
278 314
279 fdchangecnt = 0; 315 fdchangecnt = 0;
280} 316}
281 317
282static void 318static void
283fd_change (int fd) 319fd_change (EV_P_ int fd)
284{ 320{
285 if (anfds [fd].reify || fdchangecnt < 0) 321 if (anfds [fd].reify || fdchangecnt < 0)
286 return; 322 return;
287 323
288 anfds [fd].reify = 1; 324 anfds [fd].reify = 1;
291 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 327 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
292 fdchanges [fdchangecnt - 1] = fd; 328 fdchanges [fdchangecnt - 1] = fd;
293} 329}
294 330
295static void 331static void
296fd_kill (int fd) 332fd_kill (EV_P_ int fd)
297{ 333{
298 struct ev_io *w; 334 struct ev_io *w;
299 335
300 while ((w = (struct ev_io *)anfds [fd].head)) 336 while ((w = (struct ev_io *)anfds [fd].head))
301 { 337 {
302 ev_io_stop (w); 338 ev_io_stop (EV_A_ w);
303 event ((W)w, EV_ERROR | EV_READ | EV_WRITE); 339 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
304 } 340 }
305} 341}
306 342
307/* called on EBADF to verify fds */ 343/* called on EBADF to verify fds */
308static void 344static void
309fd_ebadf (void) 345fd_ebadf (EV_P)
310{ 346{
311 int fd; 347 int fd;
312 348
313 for (fd = 0; fd < anfdmax; ++fd) 349 for (fd = 0; fd < anfdmax; ++fd)
314 if (anfds [fd].events) 350 if (anfds [fd].events)
315 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 351 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
316 fd_kill (fd); 352 fd_kill (EV_A_ fd);
317} 353}
318 354
319/* called on ENOMEM in select/poll to kill some fds and retry */ 355/* called on ENOMEM in select/poll to kill some fds and retry */
320static void 356static void
321fd_enomem (void) 357fd_enomem (EV_P)
322{ 358{
323 int fd = anfdmax; 359 int fd;
324 360
325 while (fd--) 361 for (fd = anfdmax; fd--; )
326 if (anfds [fd].events) 362 if (anfds [fd].events)
327 { 363 {
328 close (fd); 364 close (fd);
329 fd_kill (fd); 365 fd_kill (EV_A_ fd);
330 return; 366 return;
331 } 367 }
332} 368}
333 369
370/* susually called after fork if method needs to re-arm all fds from scratch */
371static void
372fd_rearm_all (EV_P)
373{
374 int fd;
375
376 /* this should be highly optimised to not do anything but set a flag */
377 for (fd = 0; fd < anfdmax; ++fd)
378 if (anfds [fd].events)
379 {
380 anfds [fd].events = 0;
381 fd_change (EV_A_ fd);
382 }
383}
384
334/*****************************************************************************/ 385/*****************************************************************************/
335 386
336static struct ev_timer **timers;
337static int timermax, timercnt;
338
339static struct ev_periodic **periodics;
340static int periodicmax, periodiccnt;
341
342static void 387static void
343upheap (WT *timers, int k) 388upheap (WT *heap, int k)
344{ 389{
345 WT w = timers [k]; 390 WT w = heap [k];
346 391
347 while (k && timers [k >> 1]->at > w->at) 392 while (k && heap [k >> 1]->at > w->at)
348 { 393 {
349 timers [k] = timers [k >> 1]; 394 heap [k] = heap [k >> 1];
350 timers [k]->active = k + 1; 395 ((W)heap [k])->active = k + 1;
351 k >>= 1; 396 k >>= 1;
352 } 397 }
353 398
354 timers [k] = w; 399 heap [k] = w;
355 timers [k]->active = k + 1; 400 ((W)heap [k])->active = k + 1;
356 401
357} 402}
358 403
359static void 404static void
360downheap (WT *timers, int N, int k) 405downheap (WT *heap, int N, int k)
361{ 406{
362 WT w = timers [k]; 407 WT w = heap [k];
363 408
364 while (k < (N >> 1)) 409 while (k < (N >> 1))
365 { 410 {
366 int j = k << 1; 411 int j = k << 1;
367 412
368 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 413 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
369 ++j; 414 ++j;
370 415
371 if (w->at <= timers [j]->at) 416 if (w->at <= heap [j]->at)
372 break; 417 break;
373 418
374 timers [k] = timers [j]; 419 heap [k] = heap [j];
375 timers [k]->active = k + 1; 420 ((W)heap [k])->active = k + 1;
376 k = j; 421 k = j;
377 } 422 }
378 423
379 timers [k] = w; 424 heap [k] = w;
380 timers [k]->active = k + 1; 425 ((W)heap [k])->active = k + 1;
381} 426}
382 427
383/*****************************************************************************/ 428/*****************************************************************************/
384 429
385typedef struct 430typedef struct
420 errno = old_errno; 465 errno = old_errno;
421 } 466 }
422} 467}
423 468
424static void 469static void
425sigcb (struct ev_io *iow, int revents) 470sigcb (EV_P_ struct ev_io *iow, int revents)
426{ 471{
427 struct ev_watcher_list *w; 472 struct ev_watcher_list *w;
428 int signum; 473 int signum;
429 474
430 read (sigpipe [0], &revents, 1); 475 read (sigpipe [0], &revents, 1);
434 if (signals [signum].gotsig) 479 if (signals [signum].gotsig)
435 { 480 {
436 signals [signum].gotsig = 0; 481 signals [signum].gotsig = 0;
437 482
438 for (w = signals [signum].head; w; w = w->next) 483 for (w = signals [signum].head; w; w = w->next)
439 event ((W)w, EV_SIGNAL); 484 event (EV_A_ (W)w, EV_SIGNAL);
440 } 485 }
441} 486}
442 487
443static void 488static void
444siginit (void) 489siginit (EV_P)
445{ 490{
446#ifndef WIN32 491#ifndef WIN32
447 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 492 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
448 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 493 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
449 494
451 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 496 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
452 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 497 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
453#endif 498#endif
454 499
455 ev_io_set (&sigev, sigpipe [0], EV_READ); 500 ev_io_set (&sigev, sigpipe [0], EV_READ);
456 ev_io_start (&sigev); 501 ev_io_start (EV_A_ &sigev);
502 ev_unref (EV_A); /* child watcher should not keep loop alive */
457} 503}
458 504
459/*****************************************************************************/ 505/*****************************************************************************/
460 506
461static struct ev_idle **idles; 507#ifndef WIN32
462static int idlemax, idlecnt;
463
464static struct ev_prepare **prepares;
465static int preparemax, preparecnt;
466
467static struct ev_check **checks;
468static int checkmax, checkcnt;
469
470/*****************************************************************************/
471 508
472static struct ev_child *childs [PID_HASHSIZE]; 509static struct ev_child *childs [PID_HASHSIZE];
473static struct ev_signal childev; 510static struct ev_signal childev;
474 511
475#ifndef WIN32
476
477#ifndef WCONTINUED 512#ifndef WCONTINUED
478# define WCONTINUED 0 513# define WCONTINUED 0
479#endif 514#endif
480 515
481static void 516static void
482child_reap (struct ev_signal *sw, int chain, int pid, int status) 517child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
483{ 518{
484 struct ev_child *w; 519 struct ev_child *w;
485 520
486 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 521 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
487 if (w->pid == pid || !w->pid) 522 if (w->pid == pid || !w->pid)
488 { 523 {
489 w->priority = sw->priority; /* need to do it *now* */ 524 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
490 w->rpid = pid; 525 w->rpid = pid;
491 w->rstatus = status; 526 w->rstatus = status;
492 event ((W)w, EV_CHILD); 527 event (EV_A_ (W)w, EV_CHILD);
493 } 528 }
494} 529}
495 530
496static void 531static void
497childcb (struct ev_signal *sw, int revents) 532childcb (EV_P_ struct ev_signal *sw, int revents)
498{ 533{
499 int pid, status; 534 int pid, status;
500 535
501 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 536 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
502 { 537 {
503 /* make sure we are called again until all childs have been reaped */ 538 /* make sure we are called again until all childs have been reaped */
504 event ((W)sw, EV_SIGNAL); 539 event (EV_A_ (W)sw, EV_SIGNAL);
505 540
506 child_reap (sw, pid, pid, status); 541 child_reap (EV_A_ sw, pid, pid, status);
507 child_reap (sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 542 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
508 } 543 }
509} 544}
510 545
511#endif 546#endif
512 547
537 return EV_VERSION_MINOR; 572 return EV_VERSION_MINOR;
538} 573}
539 574
540/* return true if we are running with elevated privileges and should ignore env variables */ 575/* return true if we are running with elevated privileges and should ignore env variables */
541static int 576static int
542enable_secure () 577enable_secure (void)
543{ 578{
544#ifdef WIN32 579#ifdef WIN32
545 return 0; 580 return 0;
546#else 581#else
547 return getuid () != geteuid () 582 return getuid () != geteuid ()
548 || getgid () != getegid (); 583 || getgid () != getegid ();
549#endif 584#endif
550} 585}
551 586
552int ev_init (int methods) 587int
588ev_method (EV_P)
553{ 589{
590 return method;
591}
592
593static void
594loop_init (EV_P_ int methods)
595{
554 if (!ev_method) 596 if (!method)
555 { 597 {
556#if EV_USE_MONOTONIC 598#if EV_USE_MONOTONIC
557 { 599 {
558 struct timespec ts; 600 struct timespec ts;
559 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 601 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
560 have_monotonic = 1; 602 have_monotonic = 1;
561 } 603 }
562#endif 604#endif
563 605
564 ev_now = ev_time (); 606 rt_now = ev_time ();
565 now = get_clock (); 607 mn_now = get_clock ();
566 now_floor = now; 608 now_floor = mn_now;
567 diff = ev_now - now; 609 rtmn_diff = rt_now - mn_now;
568
569 if (pipe (sigpipe))
570 return 0;
571 610
572 if (methods == EVMETHOD_AUTO) 611 if (methods == EVMETHOD_AUTO)
573 if (!enable_secure () && getenv ("LIBEV_METHODS")) 612 if (!enable_secure () && getenv ("LIBEV_METHODS"))
574 methods = atoi (getenv ("LIBEV_METHODS")); 613 methods = atoi (getenv ("LIBEV_METHODS"));
575 else 614 else
576 methods = EVMETHOD_ANY; 615 methods = EVMETHOD_ANY;
577 616
578 ev_method = 0; 617 method = 0;
618#if EV_USE_WIN32
619 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
620#endif
579#if EV_USE_KQUEUE 621#if EV_USE_KQUEUE
580 if (!ev_method && (methods & EVMETHOD_KQUEUE)) kqueue_init (methods); 622 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
581#endif 623#endif
582#if EV_USE_EPOLL 624#if EV_USE_EPOLL
583 if (!ev_method && (methods & EVMETHOD_EPOLL )) epoll_init (methods); 625 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
584#endif 626#endif
585#if EV_USE_POLL 627#if EV_USE_POLL
586 if (!ev_method && (methods & EVMETHOD_POLL )) poll_init (methods); 628 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
587#endif 629#endif
588#if EV_USE_SELECT 630#if EV_USE_SELECT
589 if (!ev_method && (methods & EVMETHOD_SELECT)) select_init (methods); 631 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
590#endif 632#endif
633 }
634}
591 635
636void
637loop_destroy (EV_P)
638{
639#if EV_USE_WIN32
640 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
641#endif
642#if EV_USE_KQUEUE
643 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
644#endif
645#if EV_USE_EPOLL
646 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
647#endif
648#if EV_USE_POLL
649 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
650#endif
651#if EV_USE_SELECT
652 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
653#endif
654
655 method = 0;
656 /*TODO*/
657}
658
659void
660loop_fork (EV_P)
661{
662 /*TODO*/
663#if EV_USE_EPOLL
664 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
665#endif
666#if EV_USE_KQUEUE
667 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
668#endif
669}
670
671#if EV_MULTIPLICITY
672struct ev_loop *
673ev_loop_new (int methods)
674{
675 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
676
677 loop_init (EV_A_ methods);
678
679 if (ev_method (EV_A))
680 return loop;
681
682 return 0;
683}
684
685void
686ev_loop_destroy (EV_P)
687{
688 loop_destroy (EV_A);
689 free (loop);
690}
691
692void
693ev_loop_fork (EV_P)
694{
695 loop_fork (EV_A);
696}
697
698#endif
699
700#if EV_MULTIPLICITY
701struct ev_loop default_loop_struct;
702static struct ev_loop *default_loop;
703
704struct ev_loop *
705#else
706static int default_loop;
707
708int
709#endif
710ev_default_loop (int methods)
711{
712 if (sigpipe [0] == sigpipe [1])
713 if (pipe (sigpipe))
714 return 0;
715
716 if (!default_loop)
717 {
718#if EV_MULTIPLICITY
719 struct ev_loop *loop = default_loop = &default_loop_struct;
720#else
721 default_loop = 1;
722#endif
723
724 loop_init (EV_A_ methods);
725
592 if (ev_method) 726 if (ev_method (EV_A))
593 { 727 {
594 ev_watcher_init (&sigev, sigcb); 728 ev_watcher_init (&sigev, sigcb);
595 ev_set_priority (&sigev, EV_MAXPRI); 729 ev_set_priority (&sigev, EV_MAXPRI);
596 siginit (); 730 siginit (EV_A);
597 731
598#ifndef WIN32 732#ifndef WIN32
599 ev_signal_init (&childev, childcb, SIGCHLD); 733 ev_signal_init (&childev, childcb, SIGCHLD);
600 ev_set_priority (&childev, EV_MAXPRI); 734 ev_set_priority (&childev, EV_MAXPRI);
601 ev_signal_start (&childev); 735 ev_signal_start (EV_A_ &childev);
736 ev_unref (EV_A); /* child watcher should not keep loop alive */
602#endif 737#endif
603 } 738 }
739 else
740 default_loop = 0;
604 } 741 }
605 742
606 return ev_method; 743 return default_loop;
607} 744}
608 745
609/*****************************************************************************/
610
611void 746void
612ev_fork_prepare (void) 747ev_default_destroy (void)
613{ 748{
614 /* nop */ 749#if EV_MULTIPLICITY
615} 750 struct ev_loop *loop = default_loop;
616
617void
618ev_fork_parent (void)
619{
620 /* nop */
621}
622
623void
624ev_fork_child (void)
625{
626#if EV_USE_EPOLL
627 if (ev_method == EVMETHOD_EPOLL)
628 epoll_postfork_child ();
629#endif 751#endif
630 752
753 ev_ref (EV_A); /* child watcher */
754 ev_signal_stop (EV_A_ &childev);
755
756 ev_ref (EV_A); /* signal watcher */
631 ev_io_stop (&sigev); 757 ev_io_stop (EV_A_ &sigev);
758
759 close (sigpipe [0]); sigpipe [0] = 0;
760 close (sigpipe [1]); sigpipe [1] = 0;
761
762 loop_destroy (EV_A);
763}
764
765void
766ev_default_fork (void)
767{
768#if EV_MULTIPLICITY
769 struct ev_loop *loop = default_loop;
770#endif
771
772 loop_fork (EV_A);
773
774 ev_io_stop (EV_A_ &sigev);
632 close (sigpipe [0]); 775 close (sigpipe [0]);
633 close (sigpipe [1]); 776 close (sigpipe [1]);
634 pipe (sigpipe); 777 pipe (sigpipe);
778
779 ev_ref (EV_A); /* signal watcher */
635 siginit (); 780 siginit (EV_A);
636} 781}
637 782
638/*****************************************************************************/ 783/*****************************************************************************/
639 784
640static void 785static void
641call_pending (void) 786call_pending (EV_P)
642{ 787{
643 int pri; 788 int pri;
644 789
645 for (pri = NUMPRI; pri--; ) 790 for (pri = NUMPRI; pri--; )
646 while (pendingcnt [pri]) 791 while (pendingcnt [pri])
648 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 793 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
649 794
650 if (p->w) 795 if (p->w)
651 { 796 {
652 p->w->pending = 0; 797 p->w->pending = 0;
653 p->w->cb (p->w, p->events); 798
799 (*(void (**)(EV_P_ W, int))&p->w->cb) (EV_A_ p->w, p->events);
654 } 800 }
655 } 801 }
656} 802}
657 803
658static void 804static void
659timers_reify (void) 805timers_reify (EV_P)
660{ 806{
661 while (timercnt && timers [0]->at <= now) 807 while (timercnt && ((WT)timers [0])->at <= mn_now)
662 { 808 {
663 struct ev_timer *w = timers [0]; 809 struct ev_timer *w = timers [0];
810
811 assert (("inactive timer on timer heap detected", ev_is_active (w)));
664 812
665 /* first reschedule or stop timer */ 813 /* first reschedule or stop timer */
666 if (w->repeat) 814 if (w->repeat)
667 { 815 {
668 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 816 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
669 w->at = now + w->repeat; 817 ((WT)w)->at = mn_now + w->repeat;
670 downheap ((WT *)timers, timercnt, 0); 818 downheap ((WT *)timers, timercnt, 0);
671 } 819 }
672 else 820 else
673 ev_timer_stop (w); /* nonrepeating: stop timer */ 821 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
674 822
675 event ((W)w, EV_TIMEOUT); 823 event (EV_A_ (W)w, EV_TIMEOUT);
676 } 824 }
677} 825}
678 826
679static void 827static void
680periodics_reify (void) 828periodics_reify (EV_P)
681{ 829{
682 while (periodiccnt && periodics [0]->at <= ev_now) 830 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
683 { 831 {
684 struct ev_periodic *w = periodics [0]; 832 struct ev_periodic *w = periodics [0];
833
834 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
685 835
686 /* first reschedule or stop timer */ 836 /* first reschedule or stop timer */
687 if (w->interval) 837 if (w->interval)
688 { 838 {
689 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 839 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
690 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 840 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
691 downheap ((WT *)periodics, periodiccnt, 0); 841 downheap ((WT *)periodics, periodiccnt, 0);
692 } 842 }
693 else 843 else
694 ev_periodic_stop (w); /* nonrepeating: stop timer */ 844 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
695 845
696 event ((W)w, EV_PERIODIC); 846 event (EV_A_ (W)w, EV_PERIODIC);
697 } 847 }
698} 848}
699 849
700static void 850static void
701periodics_reschedule (ev_tstamp diff) 851periodics_reschedule (EV_P)
702{ 852{
703 int i; 853 int i;
704 854
705 /* adjust periodics after time jump */ 855 /* adjust periodics after time jump */
706 for (i = 0; i < periodiccnt; ++i) 856 for (i = 0; i < periodiccnt; ++i)
707 { 857 {
708 struct ev_periodic *w = periodics [i]; 858 struct ev_periodic *w = periodics [i];
709 859
710 if (w->interval) 860 if (w->interval)
711 { 861 {
712 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 862 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
713 863
714 if (fabs (diff) >= 1e-4) 864 if (fabs (diff) >= 1e-4)
715 { 865 {
716 ev_periodic_stop (w); 866 ev_periodic_stop (EV_A_ w);
717 ev_periodic_start (w); 867 ev_periodic_start (EV_A_ w);
718 868
719 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 869 i = 0; /* restart loop, inefficient, but time jumps should be rare */
720 } 870 }
721 } 871 }
722 } 872 }
723} 873}
724 874
725static int 875inline int
726time_update_monotonic (void) 876time_update_monotonic (EV_P)
727{ 877{
728 now = get_clock (); 878 mn_now = get_clock ();
729 879
730 if (expect_true (now - now_floor < MIN_TIMEJUMP * .5)) 880 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
731 { 881 {
732 ev_now = now + diff; 882 rt_now = rtmn_diff + mn_now;
733 return 0; 883 return 0;
734 } 884 }
735 else 885 else
736 { 886 {
737 now_floor = now; 887 now_floor = mn_now;
738 ev_now = ev_time (); 888 rt_now = ev_time ();
739 return 1; 889 return 1;
740 } 890 }
741} 891}
742 892
743static void 893static void
744time_update (void) 894time_update (EV_P)
745{ 895{
746 int i; 896 int i;
747 897
748#if EV_USE_MONOTONIC 898#if EV_USE_MONOTONIC
749 if (expect_true (have_monotonic)) 899 if (expect_true (have_monotonic))
750 { 900 {
751 if (time_update_monotonic ()) 901 if (time_update_monotonic (EV_A))
752 { 902 {
753 ev_tstamp odiff = diff; 903 ev_tstamp odiff = rtmn_diff;
754 904
755 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 905 for (i = 4; --i; ) /* loop a few times, before making important decisions */
756 { 906 {
757 diff = ev_now - now; 907 rtmn_diff = rt_now - mn_now;
758 908
759 if (fabs (odiff - diff) < MIN_TIMEJUMP) 909 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
760 return; /* all is well */ 910 return; /* all is well */
761 911
762 ev_now = ev_time (); 912 rt_now = ev_time ();
763 now = get_clock (); 913 mn_now = get_clock ();
764 now_floor = now; 914 now_floor = mn_now;
765 } 915 }
766 916
767 periodics_reschedule (diff - odiff); 917 periodics_reschedule (EV_A);
768 /* no timer adjustment, as the monotonic clock doesn't jump */ 918 /* no timer adjustment, as the monotonic clock doesn't jump */
919 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
769 } 920 }
770 } 921 }
771 else 922 else
772#endif 923#endif
773 { 924 {
774 ev_now = ev_time (); 925 rt_now = ev_time ();
775 926
776 if (expect_false (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 927 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
777 { 928 {
778 periodics_reschedule (ev_now - now); 929 periodics_reschedule (EV_A);
779 930
780 /* adjust timers. this is easy, as the offset is the same for all */ 931 /* adjust timers. this is easy, as the offset is the same for all */
781 for (i = 0; i < timercnt; ++i) 932 for (i = 0; i < timercnt; ++i)
782 timers [i]->at += diff; 933 ((WT)timers [i])->at += rt_now - mn_now;
783 } 934 }
784 935
785 now = ev_now; 936 mn_now = rt_now;
786 } 937 }
787} 938}
788 939
789int ev_loop_done; 940void
941ev_ref (EV_P)
942{
943 ++activecnt;
944}
790 945
946void
947ev_unref (EV_P)
948{
949 --activecnt;
950}
951
952static int loop_done;
953
954void
791void ev_loop (int flags) 955ev_loop (EV_P_ int flags)
792{ 956{
793 double block; 957 double block;
794 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 958 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
795 959
796 do 960 do
797 { 961 {
798 /* queue check watchers (and execute them) */ 962 /* queue check watchers (and execute them) */
799 if (expect_false (preparecnt)) 963 if (expect_false (preparecnt))
800 { 964 {
801 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 965 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
802 call_pending (); 966 call_pending (EV_A);
803 } 967 }
804 968
805 /* update fd-related kernel structures */ 969 /* update fd-related kernel structures */
806 fd_reify (); 970 fd_reify (EV_A);
807 971
808 /* calculate blocking time */ 972 /* calculate blocking time */
809 973
810 /* we only need this for !monotonic clockor timers, but as we basically 974 /* we only need this for !monotonic clockor timers, but as we basically
811 always have timers, we just calculate it always */ 975 always have timers, we just calculate it always */
812#if EV_USE_MONOTONIC 976#if EV_USE_MONOTONIC
813 if (expect_true (have_monotonic)) 977 if (expect_true (have_monotonic))
814 time_update_monotonic (); 978 time_update_monotonic (EV_A);
815 else 979 else
816#endif 980#endif
817 { 981 {
818 ev_now = ev_time (); 982 rt_now = ev_time ();
819 now = ev_now; 983 mn_now = rt_now;
820 } 984 }
821 985
822 if (flags & EVLOOP_NONBLOCK || idlecnt) 986 if (flags & EVLOOP_NONBLOCK || idlecnt)
823 block = 0.; 987 block = 0.;
824 else 988 else
825 { 989 {
826 block = MAX_BLOCKTIME; 990 block = MAX_BLOCKTIME;
827 991
828 if (timercnt) 992 if (timercnt)
829 { 993 {
830 ev_tstamp to = timers [0]->at - now + method_fudge; 994 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
831 if (block > to) block = to; 995 if (block > to) block = to;
832 } 996 }
833 997
834 if (periodiccnt) 998 if (periodiccnt)
835 { 999 {
836 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1000 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
837 if (block > to) block = to; 1001 if (block > to) block = to;
838 } 1002 }
839 1003
840 if (block < 0.) block = 0.; 1004 if (block < 0.) block = 0.;
841 } 1005 }
842 1006
843 method_poll (block); 1007 method_poll (EV_A_ block);
844 1008
845 /* update ev_now, do magic */ 1009 /* update rt_now, do magic */
846 time_update (); 1010 time_update (EV_A);
847 1011
848 /* queue pending timers and reschedule them */ 1012 /* queue pending timers and reschedule them */
849 timers_reify (); /* relative timers called last */ 1013 timers_reify (EV_A); /* relative timers called last */
850 periodics_reify (); /* absolute timers called first */ 1014 periodics_reify (EV_A); /* absolute timers called first */
851 1015
852 /* queue idle watchers unless io or timers are pending */ 1016 /* queue idle watchers unless io or timers are pending */
853 if (!pendingcnt) 1017 if (!pendingcnt)
854 queue_events ((W *)idles, idlecnt, EV_IDLE); 1018 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
855 1019
856 /* queue check watchers, to be executed first */ 1020 /* queue check watchers, to be executed first */
857 if (checkcnt) 1021 if (checkcnt)
858 queue_events ((W *)checks, checkcnt, EV_CHECK); 1022 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
859 1023
860 call_pending (); 1024 call_pending (EV_A);
861 } 1025 }
862 while (!ev_loop_done); 1026 while (activecnt && !loop_done);
863 1027
864 if (ev_loop_done != 2) 1028 if (loop_done != 2)
865 ev_loop_done = 0; 1029 loop_done = 0;
1030}
1031
1032void
1033ev_unloop (EV_P_ int how)
1034{
1035 loop_done = how;
866} 1036}
867 1037
868/*****************************************************************************/ 1038/*****************************************************************************/
869 1039
870static void 1040inline void
871wlist_add (WL *head, WL elem) 1041wlist_add (WL *head, WL elem)
872{ 1042{
873 elem->next = *head; 1043 elem->next = *head;
874 *head = elem; 1044 *head = elem;
875} 1045}
876 1046
877static void 1047inline void
878wlist_del (WL *head, WL elem) 1048wlist_del (WL *head, WL elem)
879{ 1049{
880 while (*head) 1050 while (*head)
881 { 1051 {
882 if (*head == elem) 1052 if (*head == elem)
887 1057
888 head = &(*head)->next; 1058 head = &(*head)->next;
889 } 1059 }
890} 1060}
891 1061
892static void 1062inline void
893ev_clear_pending (W w) 1063ev_clear_pending (EV_P_ W w)
894{ 1064{
895 if (w->pending) 1065 if (w->pending)
896 { 1066 {
897 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1067 pendings [ABSPRI (w)][w->pending - 1].w = 0;
898 w->pending = 0; 1068 w->pending = 0;
899 } 1069 }
900} 1070}
901 1071
902static void 1072inline void
903ev_start (W w, int active) 1073ev_start (EV_P_ W w, int active)
904{ 1074{
905 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1075 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
906 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 1076 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
907 1077
908 w->active = active; 1078 w->active = active;
1079 ev_ref (EV_A);
909} 1080}
910 1081
911static void 1082inline void
912ev_stop (W w) 1083ev_stop (EV_P_ W w)
913{ 1084{
1085 ev_unref (EV_A);
914 w->active = 0; 1086 w->active = 0;
915} 1087}
916 1088
917/*****************************************************************************/ 1089/*****************************************************************************/
918 1090
919void 1091void
920ev_io_start (struct ev_io *w) 1092ev_io_start (EV_P_ struct ev_io *w)
921{ 1093{
922 int fd = w->fd; 1094 int fd = w->fd;
923 1095
924 if (ev_is_active (w)) 1096 if (ev_is_active (w))
925 return; 1097 return;
926 1098
927 assert (("ev_io_start called with negative fd", fd >= 0)); 1099 assert (("ev_io_start called with negative fd", fd >= 0));
928 1100
929 ev_start ((W)w, 1); 1101 ev_start (EV_A_ (W)w, 1);
930 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1102 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
931 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1103 wlist_add ((WL *)&anfds[fd].head, (WL)w);
932 1104
933 fd_change (fd); 1105 fd_change (EV_A_ fd);
934} 1106}
935 1107
936void 1108void
937ev_io_stop (struct ev_io *w) 1109ev_io_stop (EV_P_ struct ev_io *w)
938{ 1110{
939 ev_clear_pending ((W)w); 1111 ev_clear_pending (EV_A_ (W)w);
940 if (!ev_is_active (w)) 1112 if (!ev_is_active (w))
941 return; 1113 return;
942 1114
943 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1115 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
944 ev_stop ((W)w); 1116 ev_stop (EV_A_ (W)w);
945 1117
946 fd_change (w->fd); 1118 fd_change (EV_A_ w->fd);
947} 1119}
948 1120
949void 1121void
950ev_timer_start (struct ev_timer *w) 1122ev_timer_start (EV_P_ struct ev_timer *w)
951{ 1123{
952 if (ev_is_active (w)) 1124 if (ev_is_active (w))
953 return; 1125 return;
954 1126
955 w->at += now; 1127 ((WT)w)->at += mn_now;
956 1128
957 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1129 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
958 1130
959 ev_start ((W)w, ++timercnt); 1131 ev_start (EV_A_ (W)w, ++timercnt);
960 array_needsize (timers, timermax, timercnt, ); 1132 array_needsize (timers, timermax, timercnt, );
961 timers [timercnt - 1] = w; 1133 timers [timercnt - 1] = w;
962 upheap ((WT *)timers, timercnt - 1); 1134 upheap ((WT *)timers, timercnt - 1);
963}
964 1135
1136 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1137}
1138
965void 1139void
966ev_timer_stop (struct ev_timer *w) 1140ev_timer_stop (EV_P_ struct ev_timer *w)
967{ 1141{
968 ev_clear_pending ((W)w); 1142 ev_clear_pending (EV_A_ (W)w);
969 if (!ev_is_active (w)) 1143 if (!ev_is_active (w))
970 return; 1144 return;
971 1145
1146 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1147
972 if (w->active < timercnt--) 1148 if (((W)w)->active < timercnt--)
973 { 1149 {
974 timers [w->active - 1] = timers [timercnt]; 1150 timers [((W)w)->active - 1] = timers [timercnt];
975 downheap ((WT *)timers, timercnt, w->active - 1); 1151 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
976 } 1152 }
977 1153
978 w->at = w->repeat; 1154 ((WT)w)->at = w->repeat;
979 1155
980 ev_stop ((W)w); 1156 ev_stop (EV_A_ (W)w);
981} 1157}
982 1158
983void 1159void
984ev_timer_again (struct ev_timer *w) 1160ev_timer_again (EV_P_ struct ev_timer *w)
985{ 1161{
986 if (ev_is_active (w)) 1162 if (ev_is_active (w))
987 { 1163 {
988 if (w->repeat) 1164 if (w->repeat)
989 { 1165 {
990 w->at = now + w->repeat; 1166 ((WT)w)->at = mn_now + w->repeat;
991 downheap ((WT *)timers, timercnt, w->active - 1); 1167 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
992 } 1168 }
993 else 1169 else
994 ev_timer_stop (w); 1170 ev_timer_stop (EV_A_ w);
995 } 1171 }
996 else if (w->repeat) 1172 else if (w->repeat)
997 ev_timer_start (w); 1173 ev_timer_start (EV_A_ w);
998} 1174}
999 1175
1000void 1176void
1001ev_periodic_start (struct ev_periodic *w) 1177ev_periodic_start (EV_P_ struct ev_periodic *w)
1002{ 1178{
1003 if (ev_is_active (w)) 1179 if (ev_is_active (w))
1004 return; 1180 return;
1005 1181
1006 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1182 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1007 1183
1008 /* this formula differs from the one in periodic_reify because we do not always round up */ 1184 /* this formula differs from the one in periodic_reify because we do not always round up */
1009 if (w->interval) 1185 if (w->interval)
1010 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1186 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1011 1187
1012 ev_start ((W)w, ++periodiccnt); 1188 ev_start (EV_A_ (W)w, ++periodiccnt);
1013 array_needsize (periodics, periodicmax, periodiccnt, ); 1189 array_needsize (periodics, periodicmax, periodiccnt, );
1014 periodics [periodiccnt - 1] = w; 1190 periodics [periodiccnt - 1] = w;
1015 upheap ((WT *)periodics, periodiccnt - 1); 1191 upheap ((WT *)periodics, periodiccnt - 1);
1016}
1017 1192
1193 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1194}
1195
1018void 1196void
1019ev_periodic_stop (struct ev_periodic *w) 1197ev_periodic_stop (EV_P_ struct ev_periodic *w)
1020{ 1198{
1021 ev_clear_pending ((W)w); 1199 ev_clear_pending (EV_A_ (W)w);
1022 if (!ev_is_active (w)) 1200 if (!ev_is_active (w))
1023 return; 1201 return;
1024 1202
1203 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1204
1025 if (w->active < periodiccnt--) 1205 if (((W)w)->active < periodiccnt--)
1026 { 1206 {
1027 periodics [w->active - 1] = periodics [periodiccnt]; 1207 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1028 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1208 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1029 } 1209 }
1030 1210
1031 ev_stop ((W)w); 1211 ev_stop (EV_A_ (W)w);
1212}
1213
1214void
1215ev_idle_start (EV_P_ struct ev_idle *w)
1216{
1217 if (ev_is_active (w))
1218 return;
1219
1220 ev_start (EV_A_ (W)w, ++idlecnt);
1221 array_needsize (idles, idlemax, idlecnt, );
1222 idles [idlecnt - 1] = w;
1223}
1224
1225void
1226ev_idle_stop (EV_P_ struct ev_idle *w)
1227{
1228 ev_clear_pending (EV_A_ (W)w);
1229 if (ev_is_active (w))
1230 return;
1231
1232 idles [((W)w)->active - 1] = idles [--idlecnt];
1233 ev_stop (EV_A_ (W)w);
1234}
1235
1236void
1237ev_prepare_start (EV_P_ struct ev_prepare *w)
1238{
1239 if (ev_is_active (w))
1240 return;
1241
1242 ev_start (EV_A_ (W)w, ++preparecnt);
1243 array_needsize (prepares, preparemax, preparecnt, );
1244 prepares [preparecnt - 1] = w;
1245}
1246
1247void
1248ev_prepare_stop (EV_P_ struct ev_prepare *w)
1249{
1250 ev_clear_pending (EV_A_ (W)w);
1251 if (ev_is_active (w))
1252 return;
1253
1254 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1255 ev_stop (EV_A_ (W)w);
1256}
1257
1258void
1259ev_check_start (EV_P_ struct ev_check *w)
1260{
1261 if (ev_is_active (w))
1262 return;
1263
1264 ev_start (EV_A_ (W)w, ++checkcnt);
1265 array_needsize (checks, checkmax, checkcnt, );
1266 checks [checkcnt - 1] = w;
1267}
1268
1269void
1270ev_check_stop (EV_P_ struct ev_check *w)
1271{
1272 ev_clear_pending (EV_A_ (W)w);
1273 if (ev_is_active (w))
1274 return;
1275
1276 checks [((W)w)->active - 1] = checks [--checkcnt];
1277 ev_stop (EV_A_ (W)w);
1032} 1278}
1033 1279
1034#ifndef SA_RESTART 1280#ifndef SA_RESTART
1035# define SA_RESTART 0 1281# define SA_RESTART 0
1036#endif 1282#endif
1037 1283
1038void 1284void
1039ev_signal_start (struct ev_signal *w) 1285ev_signal_start (EV_P_ struct ev_signal *w)
1040{ 1286{
1287#if EV_MULTIPLICITY
1288 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1289#endif
1041 if (ev_is_active (w)) 1290 if (ev_is_active (w))
1042 return; 1291 return;
1043 1292
1044 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1293 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1045 1294
1046 ev_start ((W)w, 1); 1295 ev_start (EV_A_ (W)w, 1);
1047 array_needsize (signals, signalmax, w->signum, signals_init); 1296 array_needsize (signals, signalmax, w->signum, signals_init);
1048 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1297 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1049 1298
1050 if (!w->next) 1299 if (!((WL)w)->next)
1051 { 1300 {
1052 struct sigaction sa; 1301 struct sigaction sa;
1053 sa.sa_handler = sighandler; 1302 sa.sa_handler = sighandler;
1054 sigfillset (&sa.sa_mask); 1303 sigfillset (&sa.sa_mask);
1055 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1304 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1056 sigaction (w->signum, &sa, 0); 1305 sigaction (w->signum, &sa, 0);
1057 } 1306 }
1058} 1307}
1059 1308
1060void 1309void
1061ev_signal_stop (struct ev_signal *w) 1310ev_signal_stop (EV_P_ struct ev_signal *w)
1062{ 1311{
1063 ev_clear_pending ((W)w); 1312 ev_clear_pending (EV_A_ (W)w);
1064 if (!ev_is_active (w)) 1313 if (!ev_is_active (w))
1065 return; 1314 return;
1066 1315
1067 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1316 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1068 ev_stop ((W)w); 1317 ev_stop (EV_A_ (W)w);
1069 1318
1070 if (!signals [w->signum - 1].head) 1319 if (!signals [w->signum - 1].head)
1071 signal (w->signum, SIG_DFL); 1320 signal (w->signum, SIG_DFL);
1072} 1321}
1073 1322
1074void 1323void
1075ev_idle_start (struct ev_idle *w) 1324ev_child_start (EV_P_ struct ev_child *w)
1076{ 1325{
1326#if EV_MULTIPLICITY
1327 assert (("child watchers are only supported in the default loop", loop == default_loop));
1328#endif
1077 if (ev_is_active (w)) 1329 if (ev_is_active (w))
1078 return; 1330 return;
1079 1331
1080 ev_start ((W)w, ++idlecnt); 1332 ev_start (EV_A_ (W)w, 1);
1081 array_needsize (idles, idlemax, idlecnt, ); 1333 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1082 idles [idlecnt - 1] = w;
1083} 1334}
1084 1335
1085void 1336void
1086ev_idle_stop (struct ev_idle *w) 1337ev_child_stop (EV_P_ struct ev_child *w)
1087{ 1338{
1088 ev_clear_pending ((W)w); 1339 ev_clear_pending (EV_A_ (W)w);
1089 if (ev_is_active (w)) 1340 if (ev_is_active (w))
1090 return; 1341 return;
1091 1342
1092 idles [w->active - 1] = idles [--idlecnt];
1093 ev_stop ((W)w);
1094}
1095
1096void
1097ev_prepare_start (struct ev_prepare *w)
1098{
1099 if (ev_is_active (w))
1100 return;
1101
1102 ev_start ((W)w, ++preparecnt);
1103 array_needsize (prepares, preparemax, preparecnt, );
1104 prepares [preparecnt - 1] = w;
1105}
1106
1107void
1108ev_prepare_stop (struct ev_prepare *w)
1109{
1110 ev_clear_pending ((W)w);
1111 if (ev_is_active (w))
1112 return;
1113
1114 prepares [w->active - 1] = prepares [--preparecnt];
1115 ev_stop ((W)w);
1116}
1117
1118void
1119ev_check_start (struct ev_check *w)
1120{
1121 if (ev_is_active (w))
1122 return;
1123
1124 ev_start ((W)w, ++checkcnt);
1125 array_needsize (checks, checkmax, checkcnt, );
1126 checks [checkcnt - 1] = w;
1127}
1128
1129void
1130ev_check_stop (struct ev_check *w)
1131{
1132 ev_clear_pending ((W)w);
1133 if (ev_is_active (w))
1134 return;
1135
1136 checks [w->active - 1] = checks [--checkcnt];
1137 ev_stop ((W)w);
1138}
1139
1140void
1141ev_child_start (struct ev_child *w)
1142{
1143 if (ev_is_active (w))
1144 return;
1145
1146 ev_start ((W)w, 1);
1147 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1148}
1149
1150void
1151ev_child_stop (struct ev_child *w)
1152{
1153 ev_clear_pending ((W)w);
1154 if (ev_is_active (w))
1155 return;
1156
1157 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1343 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1158 ev_stop ((W)w); 1344 ev_stop (EV_A_ (W)w);
1159} 1345}
1160 1346
1161/*****************************************************************************/ 1347/*****************************************************************************/
1162 1348
1163struct ev_once 1349struct ev_once
1167 void (*cb)(int revents, void *arg); 1353 void (*cb)(int revents, void *arg);
1168 void *arg; 1354 void *arg;
1169}; 1355};
1170 1356
1171static void 1357static void
1172once_cb (struct ev_once *once, int revents) 1358once_cb (EV_P_ struct ev_once *once, int revents)
1173{ 1359{
1174 void (*cb)(int revents, void *arg) = once->cb; 1360 void (*cb)(int revents, void *arg) = once->cb;
1175 void *arg = once->arg; 1361 void *arg = once->arg;
1176 1362
1177 ev_io_stop (&once->io); 1363 ev_io_stop (EV_A_ &once->io);
1178 ev_timer_stop (&once->to); 1364 ev_timer_stop (EV_A_ &once->to);
1179 free (once); 1365 free (once);
1180 1366
1181 cb (revents, arg); 1367 cb (revents, arg);
1182} 1368}
1183 1369
1184static void 1370static void
1185once_cb_io (struct ev_io *w, int revents) 1371once_cb_io (EV_P_ struct ev_io *w, int revents)
1186{ 1372{
1187 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1373 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1188} 1374}
1189 1375
1190static void 1376static void
1191once_cb_to (struct ev_timer *w, int revents) 1377once_cb_to (EV_P_ struct ev_timer *w, int revents)
1192{ 1378{
1193 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1379 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1194} 1380}
1195 1381
1196void 1382void
1197ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1383ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1198{ 1384{
1199 struct ev_once *once = malloc (sizeof (struct ev_once)); 1385 struct ev_once *once = malloc (sizeof (struct ev_once));
1200 1386
1201 if (!once) 1387 if (!once)
1202 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1388 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1207 1393
1208 ev_watcher_init (&once->io, once_cb_io); 1394 ev_watcher_init (&once->io, once_cb_io);
1209 if (fd >= 0) 1395 if (fd >= 0)
1210 { 1396 {
1211 ev_io_set (&once->io, fd, events); 1397 ev_io_set (&once->io, fd, events);
1212 ev_io_start (&once->io); 1398 ev_io_start (EV_A_ &once->io);
1213 } 1399 }
1214 1400
1215 ev_watcher_init (&once->to, once_cb_to); 1401 ev_watcher_init (&once->to, once_cb_to);
1216 if (timeout >= 0.) 1402 if (timeout >= 0.)
1217 { 1403 {
1218 ev_timer_set (&once->to, timeout, 0.); 1404 ev_timer_set (&once->to, timeout, 0.);
1219 ev_timer_start (&once->to); 1405 ev_timer_start (EV_A_ &once->to);
1220 } 1406 }
1221 } 1407 }
1222} 1408}
1223 1409
1224/*****************************************************************************/
1225
1226#if 0
1227
1228struct ev_io wio;
1229
1230static void
1231sin_cb (struct ev_io *w, int revents)
1232{
1233 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1234}
1235
1236static void
1237ocb (struct ev_timer *w, int revents)
1238{
1239 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1240 ev_timer_stop (w);
1241 ev_timer_start (w);
1242}
1243
1244static void
1245scb (struct ev_signal *w, int revents)
1246{
1247 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1248 ev_io_stop (&wio);
1249 ev_io_start (&wio);
1250}
1251
1252static void
1253gcb (struct ev_signal *w, int revents)
1254{
1255 fprintf (stderr, "generic %x\n", revents);
1256
1257}
1258
1259int main (void)
1260{
1261 ev_init (0);
1262
1263 ev_io_init (&wio, sin_cb, 0, EV_READ);
1264 ev_io_start (&wio);
1265
1266 struct ev_timer t[10000];
1267
1268#if 0
1269 int i;
1270 for (i = 0; i < 10000; ++i)
1271 {
1272 struct ev_timer *w = t + i;
1273 ev_watcher_init (w, ocb, i);
1274 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1275 ev_timer_start (w);
1276 if (drand48 () < 0.5)
1277 ev_timer_stop (w);
1278 }
1279#endif
1280
1281 struct ev_timer t1;
1282 ev_timer_init (&t1, ocb, 5, 10);
1283 ev_timer_start (&t1);
1284
1285 struct ev_signal sig;
1286 ev_signal_init (&sig, scb, SIGQUIT);
1287 ev_signal_start (&sig);
1288
1289 struct ev_check cw;
1290 ev_check_init (&cw, gcb);
1291 ev_check_start (&cw);
1292
1293 struct ev_idle iw;
1294 ev_idle_init (&iw, gcb);
1295 ev_idle_start (&iw);
1296
1297 ev_loop (0);
1298
1299 return 0;
1300}
1301
1302#endif
1303
1304
1305
1306

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines