ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.264 by root, Mon Oct 13 23:20:12 2008 UTC vs.
Revision 1.500 by root, Mon Jul 1 20:47:37 2019 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
100# ifndef EV_USE_KQUEUE 120# if HAVE_LINUX_AIO_ABI_H
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 121# ifndef EV_USE_LINUXAIO
102# define EV_USE_KQUEUE 1 122# define EV_USE_LINUXAIO EV_FEATURE_BACKENDS
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_LINUXAIO
126# define EV_USE_LINUXAIO 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT 129# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
109# if HAVE_PORT_H && HAVE_PORT_CREATE 130# ifndef EV_USE_KQUEUE
110# define EV_USE_PORT 1 131# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
111# else
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_KQUEUE
135# define EV_USE_KQUEUE 0
114# endif 136# endif
115 137
138# if HAVE_PORT_H && HAVE_PORT_CREATE
116# ifndef EV_USE_INOTIFY 139# ifndef EV_USE_PORT
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 140# define EV_USE_PORT EV_FEATURE_BACKENDS
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif 141# endif
142# else
143# undef EV_USE_PORT
144# define EV_USE_PORT 0
122# endif 145# endif
123 146
147# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_INOTIFY
125# if HAVE_EVENTFD 149# define EV_USE_INOTIFY EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_INOTIFY
153# define EV_USE_INOTIFY 0
154# endif
155
156# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
157# ifndef EV_USE_SIGNALFD
158# define EV_USE_SIGNALFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_SIGNALFD
162# define EV_USE_SIGNALFD 0
163# endif
164
165# if HAVE_EVENTFD
166# ifndef EV_USE_EVENTFD
167# define EV_USE_EVENTFD EV_FEATURE_OS
168# endif
169# else
170# undef EV_USE_EVENTFD
171# define EV_USE_EVENTFD 0
130# endif 172# endif
131 173
132#endif 174#endif
133 175
134#include <math.h> 176/* OS X, in its infinite idiocy, actually HARDCODES
177 * a limit of 1024 into their select. Where people have brains,
178 * OS X engineers apparently have a vacuum. Or maybe they were
179 * ordered to have a vacuum, or they do anything for money.
180 * This might help. Or not.
181 * Note that this must be defined early, as other include files
182 * will rely on this define as well.
183 */
184#define _DARWIN_UNLIMITED_SELECT 1
185
135#include <stdlib.h> 186#include <stdlib.h>
187#include <string.h>
136#include <fcntl.h> 188#include <fcntl.h>
137#include <stddef.h> 189#include <stddef.h>
138 190
139#include <stdio.h> 191#include <stdio.h>
140 192
141#include <assert.h> 193#include <assert.h>
142#include <errno.h> 194#include <errno.h>
143#include <sys/types.h> 195#include <sys/types.h>
144#include <time.h> 196#include <time.h>
197#include <limits.h>
145 198
146#include <signal.h> 199#include <signal.h>
147 200
148#ifdef EV_H 201#ifdef EV_H
149# include EV_H 202# include EV_H
150#else 203#else
151# include "ev.h" 204# include "ev.h"
205#endif
206
207#if EV_NO_THREADS
208# undef EV_NO_SMP
209# define EV_NO_SMP 1
210# undef ECB_NO_THREADS
211# define ECB_NO_THREADS 1
212#endif
213#if EV_NO_SMP
214# undef EV_NO_SMP
215# define ECB_NO_SMP 1
152#endif 216#endif
153 217
154#ifndef _WIN32 218#ifndef _WIN32
155# include <sys/time.h> 219# include <sys/time.h>
156# include <sys/wait.h> 220# include <sys/wait.h>
157# include <unistd.h> 221# include <unistd.h>
158#else 222#else
159# include <io.h> 223# include <io.h>
160# define WIN32_LEAN_AND_MEAN 224# define WIN32_LEAN_AND_MEAN
225# include <winsock2.h>
161# include <windows.h> 226# include <windows.h>
162# ifndef EV_SELECT_IS_WINSOCKET 227# ifndef EV_SELECT_IS_WINSOCKET
163# define EV_SELECT_IS_WINSOCKET 1 228# define EV_SELECT_IS_WINSOCKET 1
164# endif 229# endif
230# undef EV_AVOID_STDIO
165#endif 231#endif
166 232
167/* this block tries to deduce configuration from header-defined symbols and defaults */ 233/* this block tries to deduce configuration from header-defined symbols and defaults */
168 234
235/* try to deduce the maximum number of signals on this platform */
236#if defined EV_NSIG
237/* use what's provided */
238#elif defined NSIG
239# define EV_NSIG (NSIG)
240#elif defined _NSIG
241# define EV_NSIG (_NSIG)
242#elif defined SIGMAX
243# define EV_NSIG (SIGMAX+1)
244#elif defined SIG_MAX
245# define EV_NSIG (SIG_MAX+1)
246#elif defined _SIG_MAX
247# define EV_NSIG (_SIG_MAX+1)
248#elif defined MAXSIG
249# define EV_NSIG (MAXSIG+1)
250#elif defined MAX_SIG
251# define EV_NSIG (MAX_SIG+1)
252#elif defined SIGARRAYSIZE
253# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
254#elif defined _sys_nsig
255# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
256#else
257# define EV_NSIG (8 * sizeof (sigset_t) + 1)
258#endif
259
260#ifndef EV_USE_FLOOR
261# define EV_USE_FLOOR 0
262#endif
263
264#ifndef EV_USE_CLOCK_SYSCALL
265# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
266# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
267# else
268# define EV_USE_CLOCK_SYSCALL 0
269# endif
270#endif
271
272#if !(_POSIX_TIMERS > 0)
273# ifndef EV_USE_MONOTONIC
274# define EV_USE_MONOTONIC 0
275# endif
276# ifndef EV_USE_REALTIME
277# define EV_USE_REALTIME 0
278# endif
279#endif
280
169#ifndef EV_USE_MONOTONIC 281#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 282# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1 283# define EV_USE_MONOTONIC EV_FEATURE_OS
172# else 284# else
173# define EV_USE_MONOTONIC 0 285# define EV_USE_MONOTONIC 0
174# endif 286# endif
175#endif 287#endif
176 288
177#ifndef EV_USE_REALTIME 289#ifndef EV_USE_REALTIME
178# define EV_USE_REALTIME 0 290# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
179#endif 291#endif
180 292
181#ifndef EV_USE_NANOSLEEP 293#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L 294# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1 295# define EV_USE_NANOSLEEP EV_FEATURE_OS
184# else 296# else
185# define EV_USE_NANOSLEEP 0 297# define EV_USE_NANOSLEEP 0
186# endif 298# endif
187#endif 299#endif
188 300
189#ifndef EV_USE_SELECT 301#ifndef EV_USE_SELECT
190# define EV_USE_SELECT 1 302# define EV_USE_SELECT EV_FEATURE_BACKENDS
191#endif 303#endif
192 304
193#ifndef EV_USE_POLL 305#ifndef EV_USE_POLL
194# ifdef _WIN32 306# ifdef _WIN32
195# define EV_USE_POLL 0 307# define EV_USE_POLL 0
196# else 308# else
197# define EV_USE_POLL 1 309# define EV_USE_POLL EV_FEATURE_BACKENDS
198# endif 310# endif
199#endif 311#endif
200 312
201#ifndef EV_USE_EPOLL 313#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 314# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1 315# define EV_USE_EPOLL EV_FEATURE_BACKENDS
204# else 316# else
205# define EV_USE_EPOLL 0 317# define EV_USE_EPOLL 0
206# endif 318# endif
207#endif 319#endif
208 320
212 324
213#ifndef EV_USE_PORT 325#ifndef EV_USE_PORT
214# define EV_USE_PORT 0 326# define EV_USE_PORT 0
215#endif 327#endif
216 328
329#ifndef EV_USE_LINUXAIO
330# if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
331# define EV_USE_LINUXAIO 1
332# else
333# define EV_USE_LINUXAIO 0
334# endif
335#endif
336
217#ifndef EV_USE_INOTIFY 337#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 338# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1 339# define EV_USE_INOTIFY EV_FEATURE_OS
220# else 340# else
221# define EV_USE_INOTIFY 0 341# define EV_USE_INOTIFY 0
222# endif 342# endif
223#endif 343#endif
224 344
225#ifndef EV_PID_HASHSIZE 345#ifndef EV_PID_HASHSIZE
226# if EV_MINIMAL 346# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
227# define EV_PID_HASHSIZE 1
228# else
229# define EV_PID_HASHSIZE 16
230# endif
231#endif 347#endif
232 348
233#ifndef EV_INOTIFY_HASHSIZE 349#ifndef EV_INOTIFY_HASHSIZE
234# if EV_MINIMAL 350# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
235# define EV_INOTIFY_HASHSIZE 1
236# else
237# define EV_INOTIFY_HASHSIZE 16
238# endif
239#endif 351#endif
240 352
241#ifndef EV_USE_EVENTFD 353#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 354# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1 355# define EV_USE_EVENTFD EV_FEATURE_OS
244# else 356# else
245# define EV_USE_EVENTFD 0 357# define EV_USE_EVENTFD 0
358# endif
359#endif
360
361#ifndef EV_USE_SIGNALFD
362# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
363# define EV_USE_SIGNALFD EV_FEATURE_OS
364# else
365# define EV_USE_SIGNALFD 0
246# endif 366# endif
247#endif 367#endif
248 368
249#if 0 /* debugging */ 369#if 0 /* debugging */
250# define EV_VERIFY 3 370# define EV_VERIFY 3
251# define EV_USE_4HEAP 1 371# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1 372# define EV_HEAP_CACHE_AT 1
253#endif 373#endif
254 374
255#ifndef EV_VERIFY 375#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL 376# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
257#endif 377#endif
258 378
259#ifndef EV_USE_4HEAP 379#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL 380# define EV_USE_4HEAP EV_FEATURE_DATA
261#endif 381#endif
262 382
263#ifndef EV_HEAP_CACHE_AT 383#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL 384# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
385#endif
386
387#ifdef __ANDROID__
388/* supposedly, android doesn't typedef fd_mask */
389# undef EV_USE_SELECT
390# define EV_USE_SELECT 0
391/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
392# undef EV_USE_CLOCK_SYSCALL
393# define EV_USE_CLOCK_SYSCALL 0
394#endif
395
396/* aix's poll.h seems to cause lots of trouble */
397#ifdef _AIX
398/* AIX has a completely broken poll.h header */
399# undef EV_USE_POLL
400# define EV_USE_POLL 0
401#endif
402
403/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
404/* which makes programs even slower. might work on other unices, too. */
405#if EV_USE_CLOCK_SYSCALL
406# include <sys/syscall.h>
407# ifdef SYS_clock_gettime
408# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
409# undef EV_USE_MONOTONIC
410# define EV_USE_MONOTONIC 1
411# else
412# undef EV_USE_CLOCK_SYSCALL
413# define EV_USE_CLOCK_SYSCALL 0
414# endif
265#endif 415#endif
266 416
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 417/* this block fixes any misconfiguration where we know we run into trouble otherwise */
268 418
269#ifndef CLOCK_MONOTONIC 419#ifndef CLOCK_MONOTONIC
280# undef EV_USE_INOTIFY 430# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0 431# define EV_USE_INOTIFY 0
282#endif 432#endif
283 433
284#if !EV_USE_NANOSLEEP 434#if !EV_USE_NANOSLEEP
285# ifndef _WIN32 435/* hp-ux has it in sys/time.h, which we unconditionally include above */
436# if !defined _WIN32 && !defined __hpux
286# include <sys/select.h> 437# include <sys/select.h>
287# endif 438# endif
288#endif 439#endif
289 440
441#if EV_USE_LINUXAIO
442# include <sys/syscall.h>
443# if !SYS_io_getevents || !EV_USE_EPOLL /* ev_linxaio uses ev_poll.c:ev_epoll_create */
444# undef EV_USE_LINUXAIO
445# define EV_USE_LINUXAIO 0
446# endif
447#endif
448
290#if EV_USE_INOTIFY 449#if EV_USE_INOTIFY
291# include <sys/utsname.h> 450# include <sys/statfs.h>
292# include <sys/inotify.h> 451# include <sys/inotify.h>
293/* some very old inotify.h headers don't have IN_DONT_FOLLOW */ 452/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
294# ifndef IN_DONT_FOLLOW 453# ifndef IN_DONT_FOLLOW
295# undef EV_USE_INOTIFY 454# undef EV_USE_INOTIFY
296# define EV_USE_INOTIFY 0 455# define EV_USE_INOTIFY 0
297# endif 456# endif
298#endif 457#endif
299 458
300#if EV_SELECT_IS_WINSOCKET
301# include <winsock.h>
302#endif
303
304#if EV_USE_EVENTFD 459#if EV_USE_EVENTFD
305/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 460/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
306# include <stdint.h> 461# include <stdint.h>
307# ifdef __cplusplus 462# ifndef EFD_NONBLOCK
308extern "C" { 463# define EFD_NONBLOCK O_NONBLOCK
309# endif 464# endif
310int eventfd (unsigned int initval, int flags); 465# ifndef EFD_CLOEXEC
311# ifdef __cplusplus 466# ifdef O_CLOEXEC
312} 467# define EFD_CLOEXEC O_CLOEXEC
468# else
469# define EFD_CLOEXEC 02000000
470# endif
313# endif 471# endif
472EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
473#endif
474
475#if EV_USE_SIGNALFD
476/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
477# include <stdint.h>
478# ifndef SFD_NONBLOCK
479# define SFD_NONBLOCK O_NONBLOCK
480# endif
481# ifndef SFD_CLOEXEC
482# ifdef O_CLOEXEC
483# define SFD_CLOEXEC O_CLOEXEC
484# else
485# define SFD_CLOEXEC 02000000
486# endif
487# endif
488EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
489
490struct signalfd_siginfo
491{
492 uint32_t ssi_signo;
493 char pad[128 - sizeof (uint32_t)];
494};
314#endif 495#endif
315 496
316/**/ 497/**/
317 498
318#if EV_VERIFY >= 3 499#if EV_VERIFY >= 3
319# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 500# define EV_FREQUENT_CHECK ev_verify (EV_A)
320#else 501#else
321# define EV_FREQUENT_CHECK do { } while (0) 502# define EV_FREQUENT_CHECK do { } while (0)
322#endif 503#endif
323 504
324/* 505/*
325 * This is used to avoid floating point rounding problems. 506 * This is used to work around floating point rounding problems.
326 * It is added to ev_rt_now when scheduling periodics
327 * to ensure progress, time-wise, even when rounding
328 * errors are against us.
329 * This value is good at least till the year 4000. 507 * This value is good at least till the year 4000.
330 * Better solutions welcome.
331 */ 508 */
332#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 509#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
510/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
333 511
334#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 512#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
335#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 513#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
336/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
337 514
515#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
516#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
517
518/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
519/* ECB.H BEGIN */
520/*
521 * libecb - http://software.schmorp.de/pkg/libecb
522 *
523 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
524 * Copyright (©) 2011 Emanuele Giaquinta
525 * All rights reserved.
526 *
527 * Redistribution and use in source and binary forms, with or without modifica-
528 * tion, are permitted provided that the following conditions are met:
529 *
530 * 1. Redistributions of source code must retain the above copyright notice,
531 * this list of conditions and the following disclaimer.
532 *
533 * 2. Redistributions in binary form must reproduce the above copyright
534 * notice, this list of conditions and the following disclaimer in the
535 * documentation and/or other materials provided with the distribution.
536 *
537 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
538 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
539 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
540 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
541 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
542 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
543 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
544 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
545 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
546 * OF THE POSSIBILITY OF SUCH DAMAGE.
547 *
548 * Alternatively, the contents of this file may be used under the terms of
549 * the GNU General Public License ("GPL") version 2 or any later version,
550 * in which case the provisions of the GPL are applicable instead of
551 * the above. If you wish to allow the use of your version of this file
552 * only under the terms of the GPL and not to allow others to use your
553 * version of this file under the BSD license, indicate your decision
554 * by deleting the provisions above and replace them with the notice
555 * and other provisions required by the GPL. If you do not delete the
556 * provisions above, a recipient may use your version of this file under
557 * either the BSD or the GPL.
558 */
559
560#ifndef ECB_H
561#define ECB_H
562
563/* 16 bits major, 16 bits minor */
564#define ECB_VERSION 0x00010006
565
566#ifdef _WIN32
567 typedef signed char int8_t;
568 typedef unsigned char uint8_t;
569 typedef signed short int16_t;
570 typedef unsigned short uint16_t;
571 typedef signed int int32_t;
572 typedef unsigned int uint32_t;
338#if __GNUC__ >= 4 573 #if __GNUC__
574 typedef signed long long int64_t;
575 typedef unsigned long long uint64_t;
576 #else /* _MSC_VER || __BORLANDC__ */
577 typedef signed __int64 int64_t;
578 typedef unsigned __int64 uint64_t;
579 #endif
580 #ifdef _WIN64
581 #define ECB_PTRSIZE 8
582 typedef uint64_t uintptr_t;
583 typedef int64_t intptr_t;
584 #else
585 #define ECB_PTRSIZE 4
586 typedef uint32_t uintptr_t;
587 typedef int32_t intptr_t;
588 #endif
589#else
590 #include <inttypes.h>
591 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
592 #define ECB_PTRSIZE 8
593 #else
594 #define ECB_PTRSIZE 4
595 #endif
596#endif
597
598#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
599#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
600
601/* work around x32 idiocy by defining proper macros */
602#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
603 #if _ILP32
604 #define ECB_AMD64_X32 1
605 #else
606 #define ECB_AMD64 1
607 #endif
608#endif
609
610/* many compilers define _GNUC_ to some versions but then only implement
611 * what their idiot authors think are the "more important" extensions,
612 * causing enormous grief in return for some better fake benchmark numbers.
613 * or so.
614 * we try to detect these and simply assume they are not gcc - if they have
615 * an issue with that they should have done it right in the first place.
616 */
617#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
618 #define ECB_GCC_VERSION(major,minor) 0
619#else
620 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
621#endif
622
623#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
624
625#if __clang__ && defined __has_builtin
626 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
627#else
628 #define ECB_CLANG_BUILTIN(x) 0
629#endif
630
631#if __clang__ && defined __has_extension
632 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
633#else
634 #define ECB_CLANG_EXTENSION(x) 0
635#endif
636
637#define ECB_CPP (__cplusplus+0)
638#define ECB_CPP11 (__cplusplus >= 201103L)
639#define ECB_CPP14 (__cplusplus >= 201402L)
640#define ECB_CPP17 (__cplusplus >= 201703L)
641
642#if ECB_CPP
643 #define ECB_C 0
644 #define ECB_STDC_VERSION 0
645#else
646 #define ECB_C 1
647 #define ECB_STDC_VERSION __STDC_VERSION__
648#endif
649
650#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
651#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
652#define ECB_C17 (ECB_STDC_VERSION >= 201710L)
653
654#if ECB_CPP
655 #define ECB_EXTERN_C extern "C"
656 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
657 #define ECB_EXTERN_C_END }
658#else
659 #define ECB_EXTERN_C extern
660 #define ECB_EXTERN_C_BEG
661 #define ECB_EXTERN_C_END
662#endif
663
664/*****************************************************************************/
665
666/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
667/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
668
669#if ECB_NO_THREADS
670 #define ECB_NO_SMP 1
671#endif
672
673#if ECB_NO_SMP
674 #define ECB_MEMORY_FENCE do { } while (0)
675#endif
676
677/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
678#if __xlC__ && ECB_CPP
679 #include <builtins.h>
680#endif
681
682#if 1400 <= _MSC_VER
683 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
684#endif
685
686#ifndef ECB_MEMORY_FENCE
687 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
688 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
689 #if __i386 || __i386__
690 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
691 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
692 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
693 #elif ECB_GCC_AMD64
694 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
695 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
696 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
697 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
698 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
699 #elif defined __ARM_ARCH_2__ \
700 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
701 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
702 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
703 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
704 || defined __ARM_ARCH_5TEJ__
705 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
706 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
707 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
708 || defined __ARM_ARCH_6T2__
709 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
710 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
711 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
712 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
713 #elif __aarch64__
714 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
715 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
716 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
717 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
718 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
719 #elif defined __s390__ || defined __s390x__
720 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
721 #elif defined __mips__
722 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
723 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
724 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
725 #elif defined __alpha__
726 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
727 #elif defined __hppa__
728 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
729 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
730 #elif defined __ia64__
731 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
732 #elif defined __m68k__
733 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
734 #elif defined __m88k__
735 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
736 #elif defined __sh__
737 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
738 #endif
739 #endif
740#endif
741
742#ifndef ECB_MEMORY_FENCE
743 #if ECB_GCC_VERSION(4,7)
744 /* see comment below (stdatomic.h) about the C11 memory model. */
745 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
746 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
747 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
748 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
749
750 #elif ECB_CLANG_EXTENSION(c_atomic)
751 /* see comment below (stdatomic.h) about the C11 memory model. */
752 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
753 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
754 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
755 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
756
757 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
758 #define ECB_MEMORY_FENCE __sync_synchronize ()
759 #elif _MSC_VER >= 1500 /* VC++ 2008 */
760 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
761 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
762 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
763 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
764 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
765 #elif _MSC_VER >= 1400 /* VC++ 2005 */
766 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
767 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
768 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
769 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
770 #elif defined _WIN32
771 #include <WinNT.h>
772 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
773 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
774 #include <mbarrier.h>
775 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
776 #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
777 #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
778 #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
779 #elif __xlC__
780 #define ECB_MEMORY_FENCE __sync ()
781 #endif
782#endif
783
784#ifndef ECB_MEMORY_FENCE
785 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
786 /* we assume that these memory fences work on all variables/all memory accesses, */
787 /* not just C11 atomics and atomic accesses */
788 #include <stdatomic.h>
789 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
790 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
791 #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
792 #endif
793#endif
794
795#ifndef ECB_MEMORY_FENCE
796 #if !ECB_AVOID_PTHREADS
797 /*
798 * if you get undefined symbol references to pthread_mutex_lock,
799 * or failure to find pthread.h, then you should implement
800 * the ECB_MEMORY_FENCE operations for your cpu/compiler
801 * OR provide pthread.h and link against the posix thread library
802 * of your system.
803 */
804 #include <pthread.h>
805 #define ECB_NEEDS_PTHREADS 1
806 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
807
808 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
809 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
810 #endif
811#endif
812
813#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
814 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
815#endif
816
817#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
818 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
819#endif
820
821#if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
822 #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
823#endif
824
825/*****************************************************************************/
826
827#if ECB_CPP
828 #define ecb_inline static inline
829#elif ECB_GCC_VERSION(2,5)
830 #define ecb_inline static __inline__
831#elif ECB_C99
832 #define ecb_inline static inline
833#else
834 #define ecb_inline static
835#endif
836
837#if ECB_GCC_VERSION(3,3)
838 #define ecb_restrict __restrict__
839#elif ECB_C99
840 #define ecb_restrict restrict
841#else
842 #define ecb_restrict
843#endif
844
845typedef int ecb_bool;
846
847#define ECB_CONCAT_(a, b) a ## b
848#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
849#define ECB_STRINGIFY_(a) # a
850#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
851#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
852
853#define ecb_function_ ecb_inline
854
855#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
856 #define ecb_attribute(attrlist) __attribute__ (attrlist)
857#else
858 #define ecb_attribute(attrlist)
859#endif
860
861#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
862 #define ecb_is_constant(expr) __builtin_constant_p (expr)
863#else
864 /* possible C11 impl for integral types
865 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
866 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
867
868 #define ecb_is_constant(expr) 0
869#endif
870
871#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
339# define expect(expr,value) __builtin_expect ((expr),(value)) 872 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
340# define noinline __attribute__ ((noinline))
341#else 873#else
342# define expect(expr,value) (expr) 874 #define ecb_expect(expr,value) (expr)
343# define noinline
344# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
345# define inline
346# endif 875#endif
347#endif
348 876
877#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
878 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
879#else
880 #define ecb_prefetch(addr,rw,locality)
881#endif
882
883/* no emulation for ecb_decltype */
884#if ECB_CPP11
885 // older implementations might have problems with decltype(x)::type, work around it
886 template<class T> struct ecb_decltype_t { typedef T type; };
887 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
888#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
889 #define ecb_decltype(x) __typeof__ (x)
890#endif
891
892#if _MSC_VER >= 1300
893 #define ecb_deprecated __declspec (deprecated)
894#else
895 #define ecb_deprecated ecb_attribute ((__deprecated__))
896#endif
897
898#if _MSC_VER >= 1500
899 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
900#elif ECB_GCC_VERSION(4,5)
901 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
902#else
903 #define ecb_deprecated_message(msg) ecb_deprecated
904#endif
905
906#if _MSC_VER >= 1400
907 #define ecb_noinline __declspec (noinline)
908#else
909 #define ecb_noinline ecb_attribute ((__noinline__))
910#endif
911
912#define ecb_unused ecb_attribute ((__unused__))
913#define ecb_const ecb_attribute ((__const__))
914#define ecb_pure ecb_attribute ((__pure__))
915
916#if ECB_C11 || __IBMC_NORETURN
917 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
918 #define ecb_noreturn _Noreturn
919#elif ECB_CPP11
920 #define ecb_noreturn [[noreturn]]
921#elif _MSC_VER >= 1200
922 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
923 #define ecb_noreturn __declspec (noreturn)
924#else
925 #define ecb_noreturn ecb_attribute ((__noreturn__))
926#endif
927
928#if ECB_GCC_VERSION(4,3)
929 #define ecb_artificial ecb_attribute ((__artificial__))
930 #define ecb_hot ecb_attribute ((__hot__))
931 #define ecb_cold ecb_attribute ((__cold__))
932#else
933 #define ecb_artificial
934 #define ecb_hot
935 #define ecb_cold
936#endif
937
938/* put around conditional expressions if you are very sure that the */
939/* expression is mostly true or mostly false. note that these return */
940/* booleans, not the expression. */
349#define expect_false(expr) expect ((expr) != 0, 0) 941#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
350#define expect_true(expr) expect ((expr) != 0, 1) 942#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
943/* for compatibility to the rest of the world */
944#define ecb_likely(expr) ecb_expect_true (expr)
945#define ecb_unlikely(expr) ecb_expect_false (expr)
946
947/* count trailing zero bits and count # of one bits */
948#if ECB_GCC_VERSION(3,4) \
949 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
950 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
951 && ECB_CLANG_BUILTIN(__builtin_popcount))
952 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
953 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
954 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
955 #define ecb_ctz32(x) __builtin_ctz (x)
956 #define ecb_ctz64(x) __builtin_ctzll (x)
957 #define ecb_popcount32(x) __builtin_popcount (x)
958 /* no popcountll */
959#else
960 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
961 ecb_function_ ecb_const int
962 ecb_ctz32 (uint32_t x)
963 {
964#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
965 unsigned long r;
966 _BitScanForward (&r, x);
967 return (int)r;
968#else
969 int r = 0;
970
971 x &= ~x + 1; /* this isolates the lowest bit */
972
973#if ECB_branchless_on_i386
974 r += !!(x & 0xaaaaaaaa) << 0;
975 r += !!(x & 0xcccccccc) << 1;
976 r += !!(x & 0xf0f0f0f0) << 2;
977 r += !!(x & 0xff00ff00) << 3;
978 r += !!(x & 0xffff0000) << 4;
979#else
980 if (x & 0xaaaaaaaa) r += 1;
981 if (x & 0xcccccccc) r += 2;
982 if (x & 0xf0f0f0f0) r += 4;
983 if (x & 0xff00ff00) r += 8;
984 if (x & 0xffff0000) r += 16;
985#endif
986
987 return r;
988#endif
989 }
990
991 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
992 ecb_function_ ecb_const int
993 ecb_ctz64 (uint64_t x)
994 {
995#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
996 unsigned long r;
997 _BitScanForward64 (&r, x);
998 return (int)r;
999#else
1000 int shift = x & 0xffffffff ? 0 : 32;
1001 return ecb_ctz32 (x >> shift) + shift;
1002#endif
1003 }
1004
1005 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1006 ecb_function_ ecb_const int
1007 ecb_popcount32 (uint32_t x)
1008 {
1009 x -= (x >> 1) & 0x55555555;
1010 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1011 x = ((x >> 4) + x) & 0x0f0f0f0f;
1012 x *= 0x01010101;
1013
1014 return x >> 24;
1015 }
1016
1017 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1018 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1019 {
1020#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1021 unsigned long r;
1022 _BitScanReverse (&r, x);
1023 return (int)r;
1024#else
1025 int r = 0;
1026
1027 if (x >> 16) { x >>= 16; r += 16; }
1028 if (x >> 8) { x >>= 8; r += 8; }
1029 if (x >> 4) { x >>= 4; r += 4; }
1030 if (x >> 2) { x >>= 2; r += 2; }
1031 if (x >> 1) { r += 1; }
1032
1033 return r;
1034#endif
1035 }
1036
1037 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1038 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1039 {
1040#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1041 unsigned long r;
1042 _BitScanReverse64 (&r, x);
1043 return (int)r;
1044#else
1045 int r = 0;
1046
1047 if (x >> 32) { x >>= 32; r += 32; }
1048
1049 return r + ecb_ld32 (x);
1050#endif
1051 }
1052#endif
1053
1054ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1055ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1056ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1057ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1058
1059ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1060ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1061{
1062 return ( (x * 0x0802U & 0x22110U)
1063 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1064}
1065
1066ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1067ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1068{
1069 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1070 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1071 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1072 x = ( x >> 8 ) | ( x << 8);
1073
1074 return x;
1075}
1076
1077ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1078ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1079{
1080 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1081 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1082 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1083 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1084 x = ( x >> 16 ) | ( x << 16);
1085
1086 return x;
1087}
1088
1089/* popcount64 is only available on 64 bit cpus as gcc builtin */
1090/* so for this version we are lazy */
1091ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1092ecb_function_ ecb_const int
1093ecb_popcount64 (uint64_t x)
1094{
1095 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1096}
1097
1098ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1099ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1100ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1101ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1102ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1103ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1104ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1105ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1106
1107ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1108ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1109ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1110ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1111ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1112ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1113ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1114ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1115
1116#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1117 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1118 #define ecb_bswap16(x) __builtin_bswap16 (x)
1119 #else
1120 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1121 #endif
1122 #define ecb_bswap32(x) __builtin_bswap32 (x)
1123 #define ecb_bswap64(x) __builtin_bswap64 (x)
1124#elif _MSC_VER
1125 #include <stdlib.h>
1126 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1127 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1128 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1129#else
1130 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1131 ecb_function_ ecb_const uint16_t
1132 ecb_bswap16 (uint16_t x)
1133 {
1134 return ecb_rotl16 (x, 8);
1135 }
1136
1137 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1138 ecb_function_ ecb_const uint32_t
1139 ecb_bswap32 (uint32_t x)
1140 {
1141 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1142 }
1143
1144 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1145 ecb_function_ ecb_const uint64_t
1146 ecb_bswap64 (uint64_t x)
1147 {
1148 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1149 }
1150#endif
1151
1152#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1153 #define ecb_unreachable() __builtin_unreachable ()
1154#else
1155 /* this seems to work fine, but gcc always emits a warning for it :/ */
1156 ecb_inline ecb_noreturn void ecb_unreachable (void);
1157 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1158#endif
1159
1160/* try to tell the compiler that some condition is definitely true */
1161#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1162
1163ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1164ecb_inline ecb_const uint32_t
1165ecb_byteorder_helper (void)
1166{
1167 /* the union code still generates code under pressure in gcc, */
1168 /* but less than using pointers, and always seems to */
1169 /* successfully return a constant. */
1170 /* the reason why we have this horrible preprocessor mess */
1171 /* is to avoid it in all cases, at least on common architectures */
1172 /* or when using a recent enough gcc version (>= 4.6) */
1173#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1174 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1175 #define ECB_LITTLE_ENDIAN 1
1176 return 0x44332211;
1177#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1178 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1179 #define ECB_BIG_ENDIAN 1
1180 return 0x11223344;
1181#else
1182 union
1183 {
1184 uint8_t c[4];
1185 uint32_t u;
1186 } u = { 0x11, 0x22, 0x33, 0x44 };
1187 return u.u;
1188#endif
1189}
1190
1191ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1192ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1193ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1194ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1195
1196#if ECB_GCC_VERSION(3,0) || ECB_C99
1197 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1198#else
1199 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1200#endif
1201
1202#if ECB_CPP
1203 template<typename T>
1204 static inline T ecb_div_rd (T val, T div)
1205 {
1206 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1207 }
1208 template<typename T>
1209 static inline T ecb_div_ru (T val, T div)
1210 {
1211 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1212 }
1213#else
1214 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1215 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1216#endif
1217
1218#if ecb_cplusplus_does_not_suck
1219 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1220 template<typename T, int N>
1221 static inline int ecb_array_length (const T (&arr)[N])
1222 {
1223 return N;
1224 }
1225#else
1226 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1227#endif
1228
1229ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1230ecb_function_ ecb_const uint32_t
1231ecb_binary16_to_binary32 (uint32_t x)
1232{
1233 unsigned int s = (x & 0x8000) << (31 - 15);
1234 int e = (x >> 10) & 0x001f;
1235 unsigned int m = x & 0x03ff;
1236
1237 if (ecb_expect_false (e == 31))
1238 /* infinity or NaN */
1239 e = 255 - (127 - 15);
1240 else if (ecb_expect_false (!e))
1241 {
1242 if (ecb_expect_true (!m))
1243 /* zero, handled by code below by forcing e to 0 */
1244 e = 0 - (127 - 15);
1245 else
1246 {
1247 /* subnormal, renormalise */
1248 unsigned int s = 10 - ecb_ld32 (m);
1249
1250 m = (m << s) & 0x3ff; /* mask implicit bit */
1251 e -= s - 1;
1252 }
1253 }
1254
1255 /* e and m now are normalised, or zero, (or inf or nan) */
1256 e += 127 - 15;
1257
1258 return s | (e << 23) | (m << (23 - 10));
1259}
1260
1261ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1262ecb_function_ ecb_const uint16_t
1263ecb_binary32_to_binary16 (uint32_t x)
1264{
1265 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1266 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1267 unsigned int m = x & 0x007fffff;
1268
1269 x &= 0x7fffffff;
1270
1271 /* if it's within range of binary16 normals, use fast path */
1272 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1273 {
1274 /* mantissa round-to-even */
1275 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1276
1277 /* handle overflow */
1278 if (ecb_expect_false (m >= 0x00800000))
1279 {
1280 m >>= 1;
1281 e += 1;
1282 }
1283
1284 return s | (e << 10) | (m >> (23 - 10));
1285 }
1286
1287 /* handle large numbers and infinity */
1288 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1289 return s | 0x7c00;
1290
1291 /* handle zero, subnormals and small numbers */
1292 if (ecb_expect_true (x < 0x38800000))
1293 {
1294 /* zero */
1295 if (ecb_expect_true (!x))
1296 return s;
1297
1298 /* handle subnormals */
1299
1300 /* too small, will be zero */
1301 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1302 return s;
1303
1304 m |= 0x00800000; /* make implicit bit explicit */
1305
1306 /* very tricky - we need to round to the nearest e (+10) bit value */
1307 {
1308 unsigned int bits = 14 - e;
1309 unsigned int half = (1 << (bits - 1)) - 1;
1310 unsigned int even = (m >> bits) & 1;
1311
1312 /* if this overflows, we will end up with a normalised number */
1313 m = (m + half + even) >> bits;
1314 }
1315
1316 return s | m;
1317 }
1318
1319 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1320 m >>= 13;
1321
1322 return s | 0x7c00 | m | !m;
1323}
1324
1325/*******************************************************************************/
1326/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1327
1328/* basically, everything uses "ieee pure-endian" floating point numbers */
1329/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1330#if 0 \
1331 || __i386 || __i386__ \
1332 || ECB_GCC_AMD64 \
1333 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1334 || defined __s390__ || defined __s390x__ \
1335 || defined __mips__ \
1336 || defined __alpha__ \
1337 || defined __hppa__ \
1338 || defined __ia64__ \
1339 || defined __m68k__ \
1340 || defined __m88k__ \
1341 || defined __sh__ \
1342 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1343 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1344 || defined __aarch64__
1345 #define ECB_STDFP 1
1346 #include <string.h> /* for memcpy */
1347#else
1348 #define ECB_STDFP 0
1349#endif
1350
1351#ifndef ECB_NO_LIBM
1352
1353 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1354
1355 /* only the oldest of old doesn't have this one. solaris. */
1356 #ifdef INFINITY
1357 #define ECB_INFINITY INFINITY
1358 #else
1359 #define ECB_INFINITY HUGE_VAL
1360 #endif
1361
1362 #ifdef NAN
1363 #define ECB_NAN NAN
1364 #else
1365 #define ECB_NAN ECB_INFINITY
1366 #endif
1367
1368 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1369 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1370 #define ecb_frexpf(x,e) frexpf ((x), (e))
1371 #else
1372 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1373 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1374 #endif
1375
1376 /* convert a float to ieee single/binary32 */
1377 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1378 ecb_function_ ecb_const uint32_t
1379 ecb_float_to_binary32 (float x)
1380 {
1381 uint32_t r;
1382
1383 #if ECB_STDFP
1384 memcpy (&r, &x, 4);
1385 #else
1386 /* slow emulation, works for anything but -0 */
1387 uint32_t m;
1388 int e;
1389
1390 if (x == 0e0f ) return 0x00000000U;
1391 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1392 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1393 if (x != x ) return 0x7fbfffffU;
1394
1395 m = ecb_frexpf (x, &e) * 0x1000000U;
1396
1397 r = m & 0x80000000U;
1398
1399 if (r)
1400 m = -m;
1401
1402 if (e <= -126)
1403 {
1404 m &= 0xffffffU;
1405 m >>= (-125 - e);
1406 e = -126;
1407 }
1408
1409 r |= (e + 126) << 23;
1410 r |= m & 0x7fffffU;
1411 #endif
1412
1413 return r;
1414 }
1415
1416 /* converts an ieee single/binary32 to a float */
1417 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1418 ecb_function_ ecb_const float
1419 ecb_binary32_to_float (uint32_t x)
1420 {
1421 float r;
1422
1423 #if ECB_STDFP
1424 memcpy (&r, &x, 4);
1425 #else
1426 /* emulation, only works for normals and subnormals and +0 */
1427 int neg = x >> 31;
1428 int e = (x >> 23) & 0xffU;
1429
1430 x &= 0x7fffffU;
1431
1432 if (e)
1433 x |= 0x800000U;
1434 else
1435 e = 1;
1436
1437 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1438 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1439
1440 r = neg ? -r : r;
1441 #endif
1442
1443 return r;
1444 }
1445
1446 /* convert a double to ieee double/binary64 */
1447 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1448 ecb_function_ ecb_const uint64_t
1449 ecb_double_to_binary64 (double x)
1450 {
1451 uint64_t r;
1452
1453 #if ECB_STDFP
1454 memcpy (&r, &x, 8);
1455 #else
1456 /* slow emulation, works for anything but -0 */
1457 uint64_t m;
1458 int e;
1459
1460 if (x == 0e0 ) return 0x0000000000000000U;
1461 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1462 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1463 if (x != x ) return 0X7ff7ffffffffffffU;
1464
1465 m = frexp (x, &e) * 0x20000000000000U;
1466
1467 r = m & 0x8000000000000000;;
1468
1469 if (r)
1470 m = -m;
1471
1472 if (e <= -1022)
1473 {
1474 m &= 0x1fffffffffffffU;
1475 m >>= (-1021 - e);
1476 e = -1022;
1477 }
1478
1479 r |= ((uint64_t)(e + 1022)) << 52;
1480 r |= m & 0xfffffffffffffU;
1481 #endif
1482
1483 return r;
1484 }
1485
1486 /* converts an ieee double/binary64 to a double */
1487 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1488 ecb_function_ ecb_const double
1489 ecb_binary64_to_double (uint64_t x)
1490 {
1491 double r;
1492
1493 #if ECB_STDFP
1494 memcpy (&r, &x, 8);
1495 #else
1496 /* emulation, only works for normals and subnormals and +0 */
1497 int neg = x >> 63;
1498 int e = (x >> 52) & 0x7ffU;
1499
1500 x &= 0xfffffffffffffU;
1501
1502 if (e)
1503 x |= 0x10000000000000U;
1504 else
1505 e = 1;
1506
1507 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1508 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1509
1510 r = neg ? -r : r;
1511 #endif
1512
1513 return r;
1514 }
1515
1516 /* convert a float to ieee half/binary16 */
1517 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1518 ecb_function_ ecb_const uint16_t
1519 ecb_float_to_binary16 (float x)
1520 {
1521 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1522 }
1523
1524 /* convert an ieee half/binary16 to float */
1525 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1526 ecb_function_ ecb_const float
1527 ecb_binary16_to_float (uint16_t x)
1528 {
1529 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1530 }
1531
1532#endif
1533
1534#endif
1535
1536/* ECB.H END */
1537
1538#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1539/* if your architecture doesn't need memory fences, e.g. because it is
1540 * single-cpu/core, or if you use libev in a project that doesn't use libev
1541 * from multiple threads, then you can define ECB_NO_THREADS when compiling
1542 * libev, in which cases the memory fences become nops.
1543 * alternatively, you can remove this #error and link against libpthread,
1544 * which will then provide the memory fences.
1545 */
1546# error "memory fences not defined for your architecture, please report"
1547#endif
1548
1549#ifndef ECB_MEMORY_FENCE
1550# define ECB_MEMORY_FENCE do { } while (0)
1551# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1552# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1553#endif
1554
351#define inline_size static inline 1555#define inline_size ecb_inline
352 1556
353#if EV_MINIMAL 1557#if EV_FEATURE_CODE
354# define inline_speed static noinline
355#else
356# define inline_speed static inline 1558# define inline_speed ecb_inline
1559#else
1560# define inline_speed ecb_noinline static
357#endif 1561#endif
358 1562
359#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1563#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1564
1565#if EV_MINPRI == EV_MAXPRI
1566# define ABSPRI(w) (((W)w), 0)
1567#else
360#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1568# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1569#endif
361 1570
362#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1571#define EMPTY /* required for microsofts broken pseudo-c compiler */
363#define EMPTY2(a,b) /* used to suppress some warnings */
364 1572
365typedef ev_watcher *W; 1573typedef ev_watcher *W;
366typedef ev_watcher_list *WL; 1574typedef ev_watcher_list *WL;
367typedef ev_watcher_time *WT; 1575typedef ev_watcher_time *WT;
368 1576
369#define ev_active(w) ((W)(w))->active 1577#define ev_active(w) ((W)(w))->active
370#define ev_at(w) ((WT)(w))->at 1578#define ev_at(w) ((WT)(w))->at
371 1579
1580#if EV_USE_REALTIME
1581/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1582/* giving it a reasonably high chance of working on typical architectures */
1583static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1584#endif
1585
372#if EV_USE_MONOTONIC 1586#if EV_USE_MONOTONIC
373/* sig_atomic_t is used to avoid per-thread variables or locking but still */
374/* giving it a reasonably high chance of working on typical architetcures */
375static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1587static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1588#endif
1589
1590#ifndef EV_FD_TO_WIN32_HANDLE
1591# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1592#endif
1593#ifndef EV_WIN32_HANDLE_TO_FD
1594# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1595#endif
1596#ifndef EV_WIN32_CLOSE_FD
1597# define EV_WIN32_CLOSE_FD(fd) close (fd)
376#endif 1598#endif
377 1599
378#ifdef _WIN32 1600#ifdef _WIN32
379# include "ev_win32.c" 1601# include "ev_win32.c"
380#endif 1602#endif
381 1603
382/*****************************************************************************/ 1604/*****************************************************************************/
383 1605
1606#if EV_USE_LINUXAIO
1607# include <linux/aio_abi.h> /* probably only needed for aio_context_t */
1608#endif
1609
1610/* define a suitable floor function (only used by periodics atm) */
1611
1612#if EV_USE_FLOOR
1613# include <math.h>
1614# define ev_floor(v) floor (v)
1615#else
1616
1617#include <float.h>
1618
1619/* a floor() replacement function, should be independent of ev_tstamp type */
1620ecb_noinline
1621static ev_tstamp
1622ev_floor (ev_tstamp v)
1623{
1624 /* the choice of shift factor is not terribly important */
1625#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1626 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1627#else
1628 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1629#endif
1630
1631 /* argument too large for an unsigned long? */
1632 if (ecb_expect_false (v >= shift))
1633 {
1634 ev_tstamp f;
1635
1636 if (v == v - 1.)
1637 return v; /* very large number */
1638
1639 f = shift * ev_floor (v * (1. / shift));
1640 return f + ev_floor (v - f);
1641 }
1642
1643 /* special treatment for negative args? */
1644 if (ecb_expect_false (v < 0.))
1645 {
1646 ev_tstamp f = -ev_floor (-v);
1647
1648 return f - (f == v ? 0 : 1);
1649 }
1650
1651 /* fits into an unsigned long */
1652 return (unsigned long)v;
1653}
1654
1655#endif
1656
1657/*****************************************************************************/
1658
1659#ifdef __linux
1660# include <sys/utsname.h>
1661#endif
1662
1663ecb_noinline ecb_cold
1664static unsigned int
1665ev_linux_version (void)
1666{
1667#ifdef __linux
1668 unsigned int v = 0;
1669 struct utsname buf;
1670 int i;
1671 char *p = buf.release;
1672
1673 if (uname (&buf))
1674 return 0;
1675
1676 for (i = 3+1; --i; )
1677 {
1678 unsigned int c = 0;
1679
1680 for (;;)
1681 {
1682 if (*p >= '0' && *p <= '9')
1683 c = c * 10 + *p++ - '0';
1684 else
1685 {
1686 p += *p == '.';
1687 break;
1688 }
1689 }
1690
1691 v = (v << 8) | c;
1692 }
1693
1694 return v;
1695#else
1696 return 0;
1697#endif
1698}
1699
1700/*****************************************************************************/
1701
1702#if EV_AVOID_STDIO
1703ecb_noinline ecb_cold
1704static void
1705ev_printerr (const char *msg)
1706{
1707 write (STDERR_FILENO, msg, strlen (msg));
1708}
1709#endif
1710
384static void (*syserr_cb)(const char *msg); 1711static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
385 1712
1713ecb_cold
386void 1714void
387ev_set_syserr_cb (void (*cb)(const char *msg)) 1715ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
388{ 1716{
389 syserr_cb = cb; 1717 syserr_cb = cb;
390} 1718}
391 1719
392static void noinline 1720ecb_noinline ecb_cold
1721static void
393syserr (const char *msg) 1722ev_syserr (const char *msg)
394{ 1723{
395 if (!msg) 1724 if (!msg)
396 msg = "(libev) system error"; 1725 msg = "(libev) system error";
397 1726
398 if (syserr_cb) 1727 if (syserr_cb)
399 syserr_cb (msg); 1728 syserr_cb (msg);
400 else 1729 else
401 { 1730 {
1731#if EV_AVOID_STDIO
1732 ev_printerr (msg);
1733 ev_printerr (": ");
1734 ev_printerr (strerror (errno));
1735 ev_printerr ("\n");
1736#else
402 perror (msg); 1737 perror (msg);
1738#endif
403 abort (); 1739 abort ();
404 } 1740 }
405} 1741}
406 1742
407static void * 1743static void *
408ev_realloc_emul (void *ptr, long size) 1744ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
409{ 1745{
410 /* some systems, notably openbsd and darwin, fail to properly 1746 /* some systems, notably openbsd and darwin, fail to properly
411 * implement realloc (x, 0) (as required by both ansi c-98 and 1747 * implement realloc (x, 0) (as required by both ansi c-89 and
412 * the single unix specification, so work around them here. 1748 * the single unix specification, so work around them here.
1749 * recently, also (at least) fedora and debian started breaking it,
1750 * despite documenting it otherwise.
413 */ 1751 */
414 1752
415 if (size) 1753 if (size)
416 return realloc (ptr, size); 1754 return realloc (ptr, size);
417 1755
418 free (ptr); 1756 free (ptr);
419 return 0; 1757 return 0;
420} 1758}
421 1759
422static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1760static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
423 1761
1762ecb_cold
424void 1763void
425ev_set_allocator (void *(*cb)(void *ptr, long size)) 1764ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
426{ 1765{
427 alloc = cb; 1766 alloc = cb;
428} 1767}
429 1768
430inline_speed void * 1769inline_speed void *
432{ 1771{
433 ptr = alloc (ptr, size); 1772 ptr = alloc (ptr, size);
434 1773
435 if (!ptr && size) 1774 if (!ptr && size)
436 { 1775 {
1776#if EV_AVOID_STDIO
1777 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1778#else
437 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1779 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1780#endif
438 abort (); 1781 abort ();
439 } 1782 }
440 1783
441 return ptr; 1784 return ptr;
442} 1785}
444#define ev_malloc(size) ev_realloc (0, (size)) 1787#define ev_malloc(size) ev_realloc (0, (size))
445#define ev_free(ptr) ev_realloc ((ptr), 0) 1788#define ev_free(ptr) ev_realloc ((ptr), 0)
446 1789
447/*****************************************************************************/ 1790/*****************************************************************************/
448 1791
1792/* set in reify when reification needed */
1793#define EV_ANFD_REIFY 1
1794
1795/* file descriptor info structure */
449typedef struct 1796typedef struct
450{ 1797{
451 WL head; 1798 WL head;
452 unsigned char events; 1799 unsigned char events; /* the events watched for */
1800 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1801 unsigned char emask; /* some backends store the actual kernel mask in here */
453 unsigned char reify; 1802 unsigned char unused;
1803#if EV_USE_EPOLL
1804 unsigned int egen; /* generation counter to counter epoll bugs */
1805#endif
454#if EV_SELECT_IS_WINSOCKET 1806#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
455 SOCKET handle; 1807 SOCKET handle;
456#endif 1808#endif
1809#if EV_USE_IOCP
1810 OVERLAPPED or, ow;
1811#endif
457} ANFD; 1812} ANFD;
458 1813
1814/* stores the pending event set for a given watcher */
459typedef struct 1815typedef struct
460{ 1816{
461 W w; 1817 W w;
462 int events; 1818 int events; /* the pending event set for the given watcher */
463} ANPENDING; 1819} ANPENDING;
464 1820
465#if EV_USE_INOTIFY 1821#if EV_USE_INOTIFY
466/* hash table entry per inotify-id */ 1822/* hash table entry per inotify-id */
467typedef struct 1823typedef struct
470} ANFS; 1826} ANFS;
471#endif 1827#endif
472 1828
473/* Heap Entry */ 1829/* Heap Entry */
474#if EV_HEAP_CACHE_AT 1830#if EV_HEAP_CACHE_AT
1831 /* a heap element */
475 typedef struct { 1832 typedef struct {
476 ev_tstamp at; 1833 ev_tstamp at;
477 WT w; 1834 WT w;
478 } ANHE; 1835 } ANHE;
479 1836
480 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1837 #define ANHE_w(he) (he).w /* access watcher, read-write */
481 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1838 #define ANHE_at(he) (he).at /* access cached at, read-only */
482 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 1839 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
483#else 1840#else
1841 /* a heap element */
484 typedef WT ANHE; 1842 typedef WT ANHE;
485 1843
486 #define ANHE_w(he) (he) 1844 #define ANHE_w(he) (he)
487 #define ANHE_at(he) (he)->at 1845 #define ANHE_at(he) (he)->at
488 #define ANHE_at_cache(he) 1846 #define ANHE_at_cache(he)
499 #undef VAR 1857 #undef VAR
500 }; 1858 };
501 #include "ev_wrap.h" 1859 #include "ev_wrap.h"
502 1860
503 static struct ev_loop default_loop_struct; 1861 static struct ev_loop default_loop_struct;
504 struct ev_loop *ev_default_loop_ptr; 1862 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
505 1863
506#else 1864#else
507 1865
508 ev_tstamp ev_rt_now; 1866 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
509 #define VAR(name,decl) static decl; 1867 #define VAR(name,decl) static decl;
510 #include "ev_vars.h" 1868 #include "ev_vars.h"
511 #undef VAR 1869 #undef VAR
512 1870
513 static int ev_default_loop_ptr; 1871 static int ev_default_loop_ptr;
514 1872
515#endif 1873#endif
516 1874
1875#if EV_FEATURE_API
1876# define EV_RELEASE_CB if (ecb_expect_false (release_cb)) release_cb (EV_A)
1877# define EV_ACQUIRE_CB if (ecb_expect_false (acquire_cb)) acquire_cb (EV_A)
1878# define EV_INVOKE_PENDING invoke_cb (EV_A)
1879#else
1880# define EV_RELEASE_CB (void)0
1881# define EV_ACQUIRE_CB (void)0
1882# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1883#endif
1884
1885#define EVBREAK_RECURSE 0x80
1886
517/*****************************************************************************/ 1887/*****************************************************************************/
518 1888
1889#ifndef EV_HAVE_EV_TIME
519ev_tstamp 1890ev_tstamp
520ev_time (void) 1891ev_time (void) EV_NOEXCEPT
521{ 1892{
522#if EV_USE_REALTIME 1893#if EV_USE_REALTIME
1894 if (ecb_expect_true (have_realtime))
1895 {
523 struct timespec ts; 1896 struct timespec ts;
524 clock_gettime (CLOCK_REALTIME, &ts); 1897 clock_gettime (CLOCK_REALTIME, &ts);
525 return ts.tv_sec + ts.tv_nsec * 1e-9; 1898 return ts.tv_sec + ts.tv_nsec * 1e-9;
526#else 1899 }
1900#endif
1901
527 struct timeval tv; 1902 struct timeval tv;
528 gettimeofday (&tv, 0); 1903 gettimeofday (&tv, 0);
529 return tv.tv_sec + tv.tv_usec * 1e-6; 1904 return tv.tv_sec + tv.tv_usec * 1e-6;
530#endif
531} 1905}
1906#endif
532 1907
533ev_tstamp inline_size 1908inline_size ev_tstamp
534get_clock (void) 1909get_clock (void)
535{ 1910{
536#if EV_USE_MONOTONIC 1911#if EV_USE_MONOTONIC
537 if (expect_true (have_monotonic)) 1912 if (ecb_expect_true (have_monotonic))
538 { 1913 {
539 struct timespec ts; 1914 struct timespec ts;
540 clock_gettime (CLOCK_MONOTONIC, &ts); 1915 clock_gettime (CLOCK_MONOTONIC, &ts);
541 return ts.tv_sec + ts.tv_nsec * 1e-9; 1916 return ts.tv_sec + ts.tv_nsec * 1e-9;
542 } 1917 }
545 return ev_time (); 1920 return ev_time ();
546} 1921}
547 1922
548#if EV_MULTIPLICITY 1923#if EV_MULTIPLICITY
549ev_tstamp 1924ev_tstamp
550ev_now (EV_P) 1925ev_now (EV_P) EV_NOEXCEPT
551{ 1926{
552 return ev_rt_now; 1927 return ev_rt_now;
553} 1928}
554#endif 1929#endif
555 1930
556void 1931void
557ev_sleep (ev_tstamp delay) 1932ev_sleep (ev_tstamp delay) EV_NOEXCEPT
558{ 1933{
559 if (delay > 0.) 1934 if (delay > 0.)
560 { 1935 {
561#if EV_USE_NANOSLEEP 1936#if EV_USE_NANOSLEEP
562 struct timespec ts; 1937 struct timespec ts;
563 1938
564 ts.tv_sec = (time_t)delay; 1939 EV_TS_SET (ts, delay);
565 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
566
567 nanosleep (&ts, 0); 1940 nanosleep (&ts, 0);
568#elif defined(_WIN32) 1941#elif defined _WIN32
1942 /* maybe this should round up, as ms is very low resolution */
1943 /* compared to select (µs) or nanosleep (ns) */
569 Sleep ((unsigned long)(delay * 1e3)); 1944 Sleep ((unsigned long)(delay * 1e3));
570#else 1945#else
571 struct timeval tv; 1946 struct timeval tv;
572 1947
573 tv.tv_sec = (time_t)delay;
574 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
575
576 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 1948 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
577 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 1949 /* something not guaranteed by newer posix versions, but guaranteed */
578 /* by older ones */ 1950 /* by older ones */
1951 EV_TV_SET (tv, delay);
579 select (0, 0, 0, 0, &tv); 1952 select (0, 0, 0, 0, &tv);
580#endif 1953#endif
581 } 1954 }
582} 1955}
583 1956
584/*****************************************************************************/ 1957/*****************************************************************************/
585 1958
586#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1959#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
587 1960
588int inline_size 1961/* find a suitable new size for the given array, */
1962/* hopefully by rounding to a nice-to-malloc size */
1963inline_size int
589array_nextsize (int elem, int cur, int cnt) 1964array_nextsize (int elem, int cur, int cnt)
590{ 1965{
591 int ncur = cur + 1; 1966 int ncur = cur + 1;
592 1967
593 do 1968 do
594 ncur <<= 1; 1969 ncur <<= 1;
595 while (cnt > ncur); 1970 while (cnt > ncur);
596 1971
597 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 1972 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
598 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 1973 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
599 { 1974 {
600 ncur *= elem; 1975 ncur *= elem;
601 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 1976 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
602 ncur = ncur - sizeof (void *) * 4; 1977 ncur = ncur - sizeof (void *) * 4;
604 } 1979 }
605 1980
606 return ncur; 1981 return ncur;
607} 1982}
608 1983
609static noinline void * 1984ecb_noinline ecb_cold
1985static void *
610array_realloc (int elem, void *base, int *cur, int cnt) 1986array_realloc (int elem, void *base, int *cur, int cnt)
611{ 1987{
612 *cur = array_nextsize (elem, *cur, cnt); 1988 *cur = array_nextsize (elem, *cur, cnt);
613 return ev_realloc (base, elem * *cur); 1989 return ev_realloc (base, elem * *cur);
614} 1990}
615 1991
1992#define array_needsize_noinit(base,offset,count)
1993
1994#define array_needsize_zerofill(base,offset,count) \
1995 memset ((void *)(base + offset), 0, sizeof (*(base)) * (count))
1996
616#define array_needsize(type,base,cur,cnt,init) \ 1997#define array_needsize(type,base,cur,cnt,init) \
617 if (expect_false ((cnt) > (cur))) \ 1998 if (ecb_expect_false ((cnt) > (cur))) \
618 { \ 1999 { \
619 int ocur_ = (cur); \ 2000 ecb_unused int ocur_ = (cur); \
620 (base) = (type *)array_realloc \ 2001 (base) = (type *)array_realloc \
621 (sizeof (type), (base), &(cur), (cnt)); \ 2002 (sizeof (type), (base), &(cur), (cnt)); \
622 init ((base) + (ocur_), (cur) - ocur_); \ 2003 init ((base), ocur_, ((cur) - ocur_)); \
623 } 2004 }
624 2005
625#if 0 2006#if 0
626#define array_slim(type,stem) \ 2007#define array_slim(type,stem) \
627 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 2008 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
631 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 2012 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
632 } 2013 }
633#endif 2014#endif
634 2015
635#define array_free(stem, idx) \ 2016#define array_free(stem, idx) \
636 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 2017 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
637 2018
638/*****************************************************************************/ 2019/*****************************************************************************/
639 2020
640void noinline 2021/* dummy callback for pending events */
2022ecb_noinline
2023static void
2024pendingcb (EV_P_ ev_prepare *w, int revents)
2025{
2026}
2027
2028ecb_noinline
2029void
641ev_feed_event (EV_P_ void *w, int revents) 2030ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
642{ 2031{
643 W w_ = (W)w; 2032 W w_ = (W)w;
644 int pri = ABSPRI (w_); 2033 int pri = ABSPRI (w_);
645 2034
646 if (expect_false (w_->pending)) 2035 if (ecb_expect_false (w_->pending))
647 pendings [pri][w_->pending - 1].events |= revents; 2036 pendings [pri][w_->pending - 1].events |= revents;
648 else 2037 else
649 { 2038 {
650 w_->pending = ++pendingcnt [pri]; 2039 w_->pending = ++pendingcnt [pri];
651 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 2040 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
652 pendings [pri][w_->pending - 1].w = w_; 2041 pendings [pri][w_->pending - 1].w = w_;
653 pendings [pri][w_->pending - 1].events = revents; 2042 pendings [pri][w_->pending - 1].events = revents;
654 } 2043 }
655}
656 2044
657void inline_speed 2045 pendingpri = NUMPRI - 1;
2046}
2047
2048inline_speed void
2049feed_reverse (EV_P_ W w)
2050{
2051 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2052 rfeeds [rfeedcnt++] = w;
2053}
2054
2055inline_size void
2056feed_reverse_done (EV_P_ int revents)
2057{
2058 do
2059 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2060 while (rfeedcnt);
2061}
2062
2063inline_speed void
658queue_events (EV_P_ W *events, int eventcnt, int type) 2064queue_events (EV_P_ W *events, int eventcnt, int type)
659{ 2065{
660 int i; 2066 int i;
661 2067
662 for (i = 0; i < eventcnt; ++i) 2068 for (i = 0; i < eventcnt; ++i)
663 ev_feed_event (EV_A_ events [i], type); 2069 ev_feed_event (EV_A_ events [i], type);
664} 2070}
665 2071
666/*****************************************************************************/ 2072/*****************************************************************************/
667 2073
668void inline_size 2074inline_speed void
669anfds_init (ANFD *base, int count)
670{
671 while (count--)
672 {
673 base->head = 0;
674 base->events = EV_NONE;
675 base->reify = 0;
676
677 ++base;
678 }
679}
680
681void inline_speed
682fd_event (EV_P_ int fd, int revents) 2075fd_event_nocheck (EV_P_ int fd, int revents)
683{ 2076{
684 ANFD *anfd = anfds + fd; 2077 ANFD *anfd = anfds + fd;
685 ev_io *w; 2078 ev_io *w;
686 2079
687 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2080 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
691 if (ev) 2084 if (ev)
692 ev_feed_event (EV_A_ (W)w, ev); 2085 ev_feed_event (EV_A_ (W)w, ev);
693 } 2086 }
694} 2087}
695 2088
696void 2089/* do not submit kernel events for fds that have reify set */
2090/* because that means they changed while we were polling for new events */
2091inline_speed void
697ev_feed_fd_event (EV_P_ int fd, int revents) 2092fd_event (EV_P_ int fd, int revents)
2093{
2094 ANFD *anfd = anfds + fd;
2095
2096 if (ecb_expect_true (!anfd->reify))
2097 fd_event_nocheck (EV_A_ fd, revents);
2098}
2099
2100void
2101ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
698{ 2102{
699 if (fd >= 0 && fd < anfdmax) 2103 if (fd >= 0 && fd < anfdmax)
700 fd_event (EV_A_ fd, revents); 2104 fd_event_nocheck (EV_A_ fd, revents);
701} 2105}
702 2106
703void inline_size 2107/* make sure the external fd watch events are in-sync */
2108/* with the kernel/libev internal state */
2109inline_size void
704fd_reify (EV_P) 2110fd_reify (EV_P)
705{ 2111{
706 int i; 2112 int i;
2113
2114#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2115 for (i = 0; i < fdchangecnt; ++i)
2116 {
2117 int fd = fdchanges [i];
2118 ANFD *anfd = anfds + fd;
2119
2120 if (anfd->reify & EV__IOFDSET && anfd->head)
2121 {
2122 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2123
2124 if (handle != anfd->handle)
2125 {
2126 unsigned long arg;
2127
2128 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2129
2130 /* handle changed, but fd didn't - we need to do it in two steps */
2131 backend_modify (EV_A_ fd, anfd->events, 0);
2132 anfd->events = 0;
2133 anfd->handle = handle;
2134 }
2135 }
2136 }
2137#endif
707 2138
708 for (i = 0; i < fdchangecnt; ++i) 2139 for (i = 0; i < fdchangecnt; ++i)
709 { 2140 {
710 int fd = fdchanges [i]; 2141 int fd = fdchanges [i];
711 ANFD *anfd = anfds + fd; 2142 ANFD *anfd = anfds + fd;
712 ev_io *w; 2143 ev_io *w;
713 2144
714 unsigned char events = 0; 2145 unsigned char o_events = anfd->events;
2146 unsigned char o_reify = anfd->reify;
715 2147
716 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2148 anfd->reify = 0;
717 events |= (unsigned char)w->events;
718 2149
719#if EV_SELECT_IS_WINSOCKET 2150 /*if (ecb_expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
720 if (events)
721 { 2151 {
722 unsigned long arg; 2152 anfd->events = 0;
723 #ifdef EV_FD_TO_WIN32_HANDLE 2153
724 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 2154 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
725 #else 2155 anfd->events |= (unsigned char)w->events;
726 anfd->handle = _get_osfhandle (fd); 2156
727 #endif 2157 if (o_events != anfd->events)
728 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 2158 o_reify = EV__IOFDSET; /* actually |= */
729 } 2159 }
730#endif
731 2160
732 { 2161 if (o_reify & EV__IOFDSET)
733 unsigned char o_events = anfd->events;
734 unsigned char o_reify = anfd->reify;
735
736 anfd->reify = 0;
737 anfd->events = events;
738
739 if (o_events != events || o_reify & EV_IOFDSET)
740 backend_modify (EV_A_ fd, o_events, events); 2162 backend_modify (EV_A_ fd, o_events, anfd->events);
741 }
742 } 2163 }
743 2164
744 fdchangecnt = 0; 2165 fdchangecnt = 0;
745} 2166}
746 2167
2168/* something about the given fd changed */
747void inline_size 2169inline_size
2170void
748fd_change (EV_P_ int fd, int flags) 2171fd_change (EV_P_ int fd, int flags)
749{ 2172{
750 unsigned char reify = anfds [fd].reify; 2173 unsigned char reify = anfds [fd].reify;
751 anfds [fd].reify |= flags; 2174 anfds [fd].reify |= flags;
752 2175
753 if (expect_true (!reify)) 2176 if (ecb_expect_true (!reify))
754 { 2177 {
755 ++fdchangecnt; 2178 ++fdchangecnt;
756 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 2179 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
757 fdchanges [fdchangecnt - 1] = fd; 2180 fdchanges [fdchangecnt - 1] = fd;
758 } 2181 }
759} 2182}
760 2183
761void inline_speed 2184/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2185inline_speed ecb_cold void
762fd_kill (EV_P_ int fd) 2186fd_kill (EV_P_ int fd)
763{ 2187{
764 ev_io *w; 2188 ev_io *w;
765 2189
766 while ((w = (ev_io *)anfds [fd].head)) 2190 while ((w = (ev_io *)anfds [fd].head))
768 ev_io_stop (EV_A_ w); 2192 ev_io_stop (EV_A_ w);
769 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2193 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
770 } 2194 }
771} 2195}
772 2196
773int inline_size 2197/* check whether the given fd is actually valid, for error recovery */
2198inline_size ecb_cold int
774fd_valid (int fd) 2199fd_valid (int fd)
775{ 2200{
776#ifdef _WIN32 2201#ifdef _WIN32
777 return _get_osfhandle (fd) != -1; 2202 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
778#else 2203#else
779 return fcntl (fd, F_GETFD) != -1; 2204 return fcntl (fd, F_GETFD) != -1;
780#endif 2205#endif
781} 2206}
782 2207
783/* called on EBADF to verify fds */ 2208/* called on EBADF to verify fds */
784static void noinline 2209ecb_noinline ecb_cold
2210static void
785fd_ebadf (EV_P) 2211fd_ebadf (EV_P)
786{ 2212{
787 int fd; 2213 int fd;
788 2214
789 for (fd = 0; fd < anfdmax; ++fd) 2215 for (fd = 0; fd < anfdmax; ++fd)
791 if (!fd_valid (fd) && errno == EBADF) 2217 if (!fd_valid (fd) && errno == EBADF)
792 fd_kill (EV_A_ fd); 2218 fd_kill (EV_A_ fd);
793} 2219}
794 2220
795/* called on ENOMEM in select/poll to kill some fds and retry */ 2221/* called on ENOMEM in select/poll to kill some fds and retry */
796static void noinline 2222ecb_noinline ecb_cold
2223static void
797fd_enomem (EV_P) 2224fd_enomem (EV_P)
798{ 2225{
799 int fd; 2226 int fd;
800 2227
801 for (fd = anfdmax; fd--; ) 2228 for (fd = anfdmax; fd--; )
802 if (anfds [fd].events) 2229 if (anfds [fd].events)
803 { 2230 {
804 fd_kill (EV_A_ fd); 2231 fd_kill (EV_A_ fd);
805 return; 2232 break;
806 } 2233 }
807} 2234}
808 2235
809/* usually called after fork if backend needs to re-arm all fds from scratch */ 2236/* usually called after fork if backend needs to re-arm all fds from scratch */
810static void noinline 2237ecb_noinline
2238static void
811fd_rearm_all (EV_P) 2239fd_rearm_all (EV_P)
812{ 2240{
813 int fd; 2241 int fd;
814 2242
815 for (fd = 0; fd < anfdmax; ++fd) 2243 for (fd = 0; fd < anfdmax; ++fd)
816 if (anfds [fd].events) 2244 if (anfds [fd].events)
817 { 2245 {
818 anfds [fd].events = 0; 2246 anfds [fd].events = 0;
2247 anfds [fd].emask = 0;
819 fd_change (EV_A_ fd, EV_IOFDSET | 1); 2248 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
820 } 2249 }
821} 2250}
822 2251
2252/* used to prepare libev internal fd's */
2253/* this is not fork-safe */
2254inline_speed void
2255fd_intern (int fd)
2256{
2257#ifdef _WIN32
2258 unsigned long arg = 1;
2259 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2260#else
2261 fcntl (fd, F_SETFD, FD_CLOEXEC);
2262 fcntl (fd, F_SETFL, O_NONBLOCK);
2263#endif
2264}
2265
823/*****************************************************************************/ 2266/*****************************************************************************/
824 2267
825/* 2268/*
826 * the heap functions want a real array index. array index 0 uis guaranteed to not 2269 * the heap functions want a real array index. array index 0 is guaranteed to not
827 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 2270 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
828 * the branching factor of the d-tree. 2271 * the branching factor of the d-tree.
829 */ 2272 */
830 2273
831/* 2274/*
840#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 2283#define HEAP0 (DHEAP - 1) /* index of first element in heap */
841#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 2284#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
842#define UPHEAP_DONE(p,k) ((p) == (k)) 2285#define UPHEAP_DONE(p,k) ((p) == (k))
843 2286
844/* away from the root */ 2287/* away from the root */
845void inline_speed 2288inline_speed void
846downheap (ANHE *heap, int N, int k) 2289downheap (ANHE *heap, int N, int k)
847{ 2290{
848 ANHE he = heap [k]; 2291 ANHE he = heap [k];
849 ANHE *E = heap + N + HEAP0; 2292 ANHE *E = heap + N + HEAP0;
850 2293
853 ev_tstamp minat; 2296 ev_tstamp minat;
854 ANHE *minpos; 2297 ANHE *minpos;
855 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1; 2298 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
856 2299
857 /* find minimum child */ 2300 /* find minimum child */
858 if (expect_true (pos + DHEAP - 1 < E)) 2301 if (ecb_expect_true (pos + DHEAP - 1 < E))
859 { 2302 {
860 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 2303 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
861 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 2304 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
862 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 2305 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
863 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); 2306 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
890#define HEAP0 1 2333#define HEAP0 1
891#define HPARENT(k) ((k) >> 1) 2334#define HPARENT(k) ((k) >> 1)
892#define UPHEAP_DONE(p,k) (!(p)) 2335#define UPHEAP_DONE(p,k) (!(p))
893 2336
894/* away from the root */ 2337/* away from the root */
895void inline_speed 2338inline_speed void
896downheap (ANHE *heap, int N, int k) 2339downheap (ANHE *heap, int N, int k)
897{ 2340{
898 ANHE he = heap [k]; 2341 ANHE he = heap [k];
899 2342
900 for (;;) 2343 for (;;)
901 { 2344 {
902 int c = k << 1; 2345 int c = k << 1;
903 2346
904 if (c > N + HEAP0 - 1) 2347 if (c >= N + HEAP0)
905 break; 2348 break;
906 2349
907 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 2350 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
908 ? 1 : 0; 2351 ? 1 : 0;
909 2352
920 ev_active (ANHE_w (he)) = k; 2363 ev_active (ANHE_w (he)) = k;
921} 2364}
922#endif 2365#endif
923 2366
924/* towards the root */ 2367/* towards the root */
925void inline_speed 2368inline_speed void
926upheap (ANHE *heap, int k) 2369upheap (ANHE *heap, int k)
927{ 2370{
928 ANHE he = heap [k]; 2371 ANHE he = heap [k];
929 2372
930 for (;;) 2373 for (;;)
941 2384
942 heap [k] = he; 2385 heap [k] = he;
943 ev_active (ANHE_w (he)) = k; 2386 ev_active (ANHE_w (he)) = k;
944} 2387}
945 2388
946void inline_size 2389/* move an element suitably so it is in a correct place */
2390inline_size void
947adjustheap (ANHE *heap, int N, int k) 2391adjustheap (ANHE *heap, int N, int k)
948{ 2392{
949 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 2393 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
950 upheap (heap, k); 2394 upheap (heap, k);
951 else 2395 else
952 downheap (heap, N, k); 2396 downheap (heap, N, k);
953} 2397}
954 2398
955/* rebuild the heap: this function is used only once and executed rarely */ 2399/* rebuild the heap: this function is used only once and executed rarely */
956void inline_size 2400inline_size void
957reheap (ANHE *heap, int N) 2401reheap (ANHE *heap, int N)
958{ 2402{
959 int i; 2403 int i;
960 2404
961 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 2405 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
964 upheap (heap, i + HEAP0); 2408 upheap (heap, i + HEAP0);
965} 2409}
966 2410
967/*****************************************************************************/ 2411/*****************************************************************************/
968 2412
2413/* associate signal watchers to a signal signal */
969typedef struct 2414typedef struct
970{ 2415{
2416 EV_ATOMIC_T pending;
2417#if EV_MULTIPLICITY
2418 EV_P;
2419#endif
971 WL head; 2420 WL head;
972 EV_ATOMIC_T gotsig;
973} ANSIG; 2421} ANSIG;
974 2422
975static ANSIG *signals; 2423static ANSIG signals [EV_NSIG - 1];
976static int signalmax;
977
978static EV_ATOMIC_T gotsig;
979
980void inline_size
981signals_init (ANSIG *base, int count)
982{
983 while (count--)
984 {
985 base->head = 0;
986 base->gotsig = 0;
987
988 ++base;
989 }
990}
991 2424
992/*****************************************************************************/ 2425/*****************************************************************************/
993 2426
994void inline_speed 2427#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
995fd_intern (int fd)
996{
997#ifdef _WIN32
998 unsigned long arg = 1;
999 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1000#else
1001 fcntl (fd, F_SETFD, FD_CLOEXEC);
1002 fcntl (fd, F_SETFL, O_NONBLOCK);
1003#endif
1004}
1005 2428
1006static void noinline 2429ecb_noinline ecb_cold
2430static void
1007evpipe_init (EV_P) 2431evpipe_init (EV_P)
1008{ 2432{
1009 if (!ev_is_active (&pipeev)) 2433 if (!ev_is_active (&pipe_w))
2434 {
2435 int fds [2];
2436
2437# if EV_USE_EVENTFD
2438 fds [0] = -1;
2439 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2440 if (fds [1] < 0 && errno == EINVAL)
2441 fds [1] = eventfd (0, 0);
2442
2443 if (fds [1] < 0)
2444# endif
2445 {
2446 while (pipe (fds))
2447 ev_syserr ("(libev) error creating signal/async pipe");
2448
2449 fd_intern (fds [0]);
2450 }
2451
2452 evpipe [0] = fds [0];
2453
2454 if (evpipe [1] < 0)
2455 evpipe [1] = fds [1]; /* first call, set write fd */
2456 else
2457 {
2458 /* on subsequent calls, do not change evpipe [1] */
2459 /* so that evpipe_write can always rely on its value. */
2460 /* this branch does not do anything sensible on windows, */
2461 /* so must not be executed on windows */
2462
2463 dup2 (fds [1], evpipe [1]);
2464 close (fds [1]);
2465 }
2466
2467 fd_intern (evpipe [1]);
2468
2469 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2470 ev_io_start (EV_A_ &pipe_w);
2471 ev_unref (EV_A); /* watcher should not keep loop alive */
1010 { 2472 }
2473}
2474
2475inline_speed void
2476evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2477{
2478 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2479
2480 if (ecb_expect_true (*flag))
2481 return;
2482
2483 *flag = 1;
2484 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2485
2486 pipe_write_skipped = 1;
2487
2488 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2489
2490 if (pipe_write_wanted)
2491 {
2492 int old_errno;
2493
2494 pipe_write_skipped = 0;
2495 ECB_MEMORY_FENCE_RELEASE;
2496
2497 old_errno = errno; /* save errno because write will clobber it */
2498
1011#if EV_USE_EVENTFD 2499#if EV_USE_EVENTFD
1012 if ((evfd = eventfd (0, 0)) >= 0) 2500 if (evpipe [0] < 0)
1013 { 2501 {
1014 evpipe [0] = -1; 2502 uint64_t counter = 1;
1015 fd_intern (evfd); 2503 write (evpipe [1], &counter, sizeof (uint64_t));
1016 ev_io_set (&pipeev, evfd, EV_READ);
1017 } 2504 }
1018 else 2505 else
1019#endif 2506#endif
1020 { 2507 {
1021 while (pipe (evpipe)) 2508#ifdef _WIN32
1022 syserr ("(libev) error creating signal/async pipe"); 2509 WSABUF buf;
1023 2510 DWORD sent;
1024 fd_intern (evpipe [0]); 2511 buf.buf = (char *)&buf;
1025 fd_intern (evpipe [1]); 2512 buf.len = 1;
1026 ev_io_set (&pipeev, evpipe [0], EV_READ); 2513 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2514#else
2515 write (evpipe [1], &(evpipe [1]), 1);
2516#endif
1027 } 2517 }
1028 2518
1029 ev_io_start (EV_A_ &pipeev); 2519 errno = old_errno;
1030 ev_unref (EV_A); /* watcher should not keep loop alive */
1031 }
1032}
1033
1034void inline_size
1035evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1036{
1037 if (!*flag)
1038 { 2520 }
1039 int old_errno = errno; /* save errno because write might clobber it */ 2521}
1040 2522
1041 *flag = 1; 2523/* called whenever the libev signal pipe */
2524/* got some events (signal, async) */
2525static void
2526pipecb (EV_P_ ev_io *iow, int revents)
2527{
2528 int i;
1042 2529
2530 if (revents & EV_READ)
2531 {
1043#if EV_USE_EVENTFD 2532#if EV_USE_EVENTFD
1044 if (evfd >= 0) 2533 if (evpipe [0] < 0)
1045 { 2534 {
1046 uint64_t counter = 1; 2535 uint64_t counter;
1047 write (evfd, &counter, sizeof (uint64_t)); 2536 read (evpipe [1], &counter, sizeof (uint64_t));
1048 } 2537 }
1049 else 2538 else
1050#endif 2539#endif
1051 write (evpipe [1], &old_errno, 1); 2540 {
1052
1053 errno = old_errno;
1054 }
1055}
1056
1057static void
1058pipecb (EV_P_ ev_io *iow, int revents)
1059{
1060#if EV_USE_EVENTFD
1061 if (evfd >= 0)
1062 {
1063 uint64_t counter;
1064 read (evfd, &counter, sizeof (uint64_t));
1065 }
1066 else
1067#endif
1068 {
1069 char dummy; 2541 char dummy[4];
2542#ifdef _WIN32
2543 WSABUF buf;
2544 DWORD recvd;
2545 DWORD flags = 0;
2546 buf.buf = dummy;
2547 buf.len = sizeof (dummy);
2548 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2549#else
1070 read (evpipe [0], &dummy, 1); 2550 read (evpipe [0], &dummy, sizeof (dummy));
2551#endif
2552 }
2553 }
2554
2555 pipe_write_skipped = 0;
2556
2557 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2558
2559#if EV_SIGNAL_ENABLE
2560 if (sig_pending)
1071 } 2561 {
2562 sig_pending = 0;
1072 2563
1073 if (gotsig && ev_is_default_loop (EV_A)) 2564 ECB_MEMORY_FENCE;
1074 {
1075 int signum;
1076 gotsig = 0;
1077 2565
1078 for (signum = signalmax; signum--; ) 2566 for (i = EV_NSIG - 1; i--; )
1079 if (signals [signum].gotsig) 2567 if (ecb_expect_false (signals [i].pending))
1080 ev_feed_signal_event (EV_A_ signum + 1); 2568 ev_feed_signal_event (EV_A_ i + 1);
1081 } 2569 }
2570#endif
1082 2571
1083#if EV_ASYNC_ENABLE 2572#if EV_ASYNC_ENABLE
1084 if (gotasync) 2573 if (async_pending)
1085 { 2574 {
1086 int i; 2575 async_pending = 0;
1087 gotasync = 0; 2576
2577 ECB_MEMORY_FENCE;
1088 2578
1089 for (i = asynccnt; i--; ) 2579 for (i = asynccnt; i--; )
1090 if (asyncs [i]->sent) 2580 if (asyncs [i]->sent)
1091 { 2581 {
1092 asyncs [i]->sent = 0; 2582 asyncs [i]->sent = 0;
2583 ECB_MEMORY_FENCE_RELEASE;
1093 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2584 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1094 } 2585 }
1095 } 2586 }
1096#endif 2587#endif
1097} 2588}
1098 2589
1099/*****************************************************************************/ 2590/*****************************************************************************/
1100 2591
2592void
2593ev_feed_signal (int signum) EV_NOEXCEPT
2594{
2595#if EV_MULTIPLICITY
2596 EV_P;
2597 ECB_MEMORY_FENCE_ACQUIRE;
2598 EV_A = signals [signum - 1].loop;
2599
2600 if (!EV_A)
2601 return;
2602#endif
2603
2604 signals [signum - 1].pending = 1;
2605 evpipe_write (EV_A_ &sig_pending);
2606}
2607
1101static void 2608static void
1102ev_sighandler (int signum) 2609ev_sighandler (int signum)
1103{ 2610{
2611#ifdef _WIN32
2612 signal (signum, ev_sighandler);
2613#endif
2614
2615 ev_feed_signal (signum);
2616}
2617
2618ecb_noinline
2619void
2620ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2621{
2622 WL w;
2623
2624 if (ecb_expect_false (signum <= 0 || signum >= EV_NSIG))
2625 return;
2626
2627 --signum;
2628
1104#if EV_MULTIPLICITY 2629#if EV_MULTIPLICITY
1105 struct ev_loop *loop = &default_loop_struct; 2630 /* it is permissible to try to feed a signal to the wrong loop */
1106#endif 2631 /* or, likely more useful, feeding a signal nobody is waiting for */
1107 2632
1108#if _WIN32 2633 if (ecb_expect_false (signals [signum].loop != EV_A))
1109 signal (signum, ev_sighandler);
1110#endif
1111
1112 signals [signum - 1].gotsig = 1;
1113 evpipe_write (EV_A_ &gotsig);
1114}
1115
1116void noinline
1117ev_feed_signal_event (EV_P_ int signum)
1118{
1119 WL w;
1120
1121#if EV_MULTIPLICITY
1122 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1123#endif
1124
1125 --signum;
1126
1127 if (signum < 0 || signum >= signalmax)
1128 return; 2634 return;
2635#endif
1129 2636
1130 signals [signum].gotsig = 0; 2637 signals [signum].pending = 0;
2638 ECB_MEMORY_FENCE_RELEASE;
1131 2639
1132 for (w = signals [signum].head; w; w = w->next) 2640 for (w = signals [signum].head; w; w = w->next)
1133 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2641 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1134} 2642}
1135 2643
2644#if EV_USE_SIGNALFD
2645static void
2646sigfdcb (EV_P_ ev_io *iow, int revents)
2647{
2648 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2649
2650 for (;;)
2651 {
2652 ssize_t res = read (sigfd, si, sizeof (si));
2653
2654 /* not ISO-C, as res might be -1, but works with SuS */
2655 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2656 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2657
2658 if (res < (ssize_t)sizeof (si))
2659 break;
2660 }
2661}
2662#endif
2663
2664#endif
2665
1136/*****************************************************************************/ 2666/*****************************************************************************/
1137 2667
2668#if EV_CHILD_ENABLE
1138static WL childs [EV_PID_HASHSIZE]; 2669static WL childs [EV_PID_HASHSIZE];
1139
1140#ifndef _WIN32
1141 2670
1142static ev_signal childev; 2671static ev_signal childev;
1143 2672
1144#ifndef WIFCONTINUED 2673#ifndef WIFCONTINUED
1145# define WIFCONTINUED(status) 0 2674# define WIFCONTINUED(status) 0
1146#endif 2675#endif
1147 2676
1148void inline_speed 2677/* handle a single child status event */
2678inline_speed void
1149child_reap (EV_P_ int chain, int pid, int status) 2679child_reap (EV_P_ int chain, int pid, int status)
1150{ 2680{
1151 ev_child *w; 2681 ev_child *w;
1152 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2682 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1153 2683
1154 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2684 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1155 { 2685 {
1156 if ((w->pid == pid || !w->pid) 2686 if ((w->pid == pid || !w->pid)
1157 && (!traced || (w->flags & 1))) 2687 && (!traced || (w->flags & 1)))
1158 { 2688 {
1159 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2689 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1166 2696
1167#ifndef WCONTINUED 2697#ifndef WCONTINUED
1168# define WCONTINUED 0 2698# define WCONTINUED 0
1169#endif 2699#endif
1170 2700
2701/* called on sigchld etc., calls waitpid */
1171static void 2702static void
1172childcb (EV_P_ ev_signal *sw, int revents) 2703childcb (EV_P_ ev_signal *sw, int revents)
1173{ 2704{
1174 int pid, status; 2705 int pid, status;
1175 2706
1183 /* make sure we are called again until all children have been reaped */ 2714 /* make sure we are called again until all children have been reaped */
1184 /* we need to do it this way so that the callback gets called before we continue */ 2715 /* we need to do it this way so that the callback gets called before we continue */
1185 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2716 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1186 2717
1187 child_reap (EV_A_ pid, pid, status); 2718 child_reap (EV_A_ pid, pid, status);
1188 if (EV_PID_HASHSIZE > 1) 2719 if ((EV_PID_HASHSIZE) > 1)
1189 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2720 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1190} 2721}
1191 2722
1192#endif 2723#endif
1193 2724
1194/*****************************************************************************/ 2725/*****************************************************************************/
1195 2726
2727#if EV_USE_IOCP
2728# include "ev_iocp.c"
2729#endif
1196#if EV_USE_PORT 2730#if EV_USE_PORT
1197# include "ev_port.c" 2731# include "ev_port.c"
1198#endif 2732#endif
1199#if EV_USE_KQUEUE 2733#if EV_USE_KQUEUE
1200# include "ev_kqueue.c" 2734# include "ev_kqueue.c"
1201#endif 2735#endif
1202#if EV_USE_EPOLL 2736#if EV_USE_EPOLL
1203# include "ev_epoll.c" 2737# include "ev_epoll.c"
1204#endif 2738#endif
2739#if EV_USE_LINUXAIO
2740# include "ev_linuxaio.c"
2741#endif
1205#if EV_USE_POLL 2742#if EV_USE_POLL
1206# include "ev_poll.c" 2743# include "ev_poll.c"
1207#endif 2744#endif
1208#if EV_USE_SELECT 2745#if EV_USE_SELECT
1209# include "ev_select.c" 2746# include "ev_select.c"
1210#endif 2747#endif
1211 2748
1212int 2749ecb_cold int
1213ev_version_major (void) 2750ev_version_major (void) EV_NOEXCEPT
1214{ 2751{
1215 return EV_VERSION_MAJOR; 2752 return EV_VERSION_MAJOR;
1216} 2753}
1217 2754
1218int 2755ecb_cold int
1219ev_version_minor (void) 2756ev_version_minor (void) EV_NOEXCEPT
1220{ 2757{
1221 return EV_VERSION_MINOR; 2758 return EV_VERSION_MINOR;
1222} 2759}
1223 2760
1224/* return true if we are running with elevated privileges and should ignore env variables */ 2761/* return true if we are running with elevated privileges and should ignore env variables */
1225int inline_size 2762inline_size ecb_cold int
1226enable_secure (void) 2763enable_secure (void)
1227{ 2764{
1228#ifdef _WIN32 2765#ifdef _WIN32
1229 return 0; 2766 return 0;
1230#else 2767#else
1231 return getuid () != geteuid () 2768 return getuid () != geteuid ()
1232 || getgid () != getegid (); 2769 || getgid () != getegid ();
1233#endif 2770#endif
1234} 2771}
1235 2772
2773ecb_cold
1236unsigned int 2774unsigned int
1237ev_supported_backends (void) 2775ev_supported_backends (void) EV_NOEXCEPT
1238{ 2776{
1239 unsigned int flags = 0; 2777 unsigned int flags = 0;
1240 2778
1241 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2779 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1242 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2780 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
1243 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL; 2781 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2782 if (EV_USE_LINUXAIO) flags |= EVBACKEND_LINUXAIO;
1244 if (EV_USE_POLL ) flags |= EVBACKEND_POLL; 2783 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1245 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2784 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
1246 2785
1247 return flags; 2786 return flags;
1248} 2787}
1249 2788
2789ecb_cold
1250unsigned int 2790unsigned int
1251ev_recommended_backends (void) 2791ev_recommended_backends (void) EV_NOEXCEPT
1252{ 2792{
1253 unsigned int flags = ev_supported_backends (); 2793 unsigned int flags = ev_supported_backends ();
1254 2794
1255#ifndef __NetBSD__ 2795#ifndef __NetBSD__
1256 /* kqueue is borked on everything but netbsd apparently */ 2796 /* kqueue is borked on everything but netbsd apparently */
1257 /* it usually doesn't work correctly on anything but sockets and pipes */ 2797 /* it usually doesn't work correctly on anything but sockets and pipes */
1258 flags &= ~EVBACKEND_KQUEUE; 2798 flags &= ~EVBACKEND_KQUEUE;
1259#endif 2799#endif
1260#ifdef __APPLE__ 2800#ifdef __APPLE__
1261 // flags &= ~EVBACKEND_KQUEUE; for documentation 2801 /* only select works correctly on that "unix-certified" platform */
2802 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2803 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2804#endif
2805#ifdef __FreeBSD__
2806 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2807#endif
2808
2809 /* TODO: linuxaio is very experimental */
2810#if !EV_RECOMMEND_LINUXAIO
1262 flags &= ~EVBACKEND_POLL; 2811 flags &= ~EVBACKEND_LINUXAIO;
1263#endif 2812#endif
1264 2813
1265 return flags; 2814 return flags;
1266} 2815}
1267 2816
2817ecb_cold
1268unsigned int 2818unsigned int
1269ev_embeddable_backends (void) 2819ev_embeddable_backends (void) EV_NOEXCEPT
1270{ 2820{
1271 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2821 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1272 2822
1273 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 2823 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1274 /* please fix it and tell me how to detect the fix */ 2824 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1275 flags &= ~EVBACKEND_EPOLL; 2825 flags &= ~EVBACKEND_EPOLL;
1276 2826
1277 return flags; 2827 return flags;
1278} 2828}
1279 2829
1280unsigned int 2830unsigned int
1281ev_backend (EV_P) 2831ev_backend (EV_P) EV_NOEXCEPT
1282{ 2832{
1283 return backend; 2833 return backend;
1284} 2834}
1285 2835
2836#if EV_FEATURE_API
1286unsigned int 2837unsigned int
1287ev_loop_count (EV_P) 2838ev_iteration (EV_P) EV_NOEXCEPT
1288{ 2839{
1289 return loop_count; 2840 return loop_count;
1290} 2841}
1291 2842
2843unsigned int
2844ev_depth (EV_P) EV_NOEXCEPT
2845{
2846 return loop_depth;
2847}
2848
1292void 2849void
1293ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2850ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
1294{ 2851{
1295 io_blocktime = interval; 2852 io_blocktime = interval;
1296} 2853}
1297 2854
1298void 2855void
1299ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2856ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
1300{ 2857{
1301 timeout_blocktime = interval; 2858 timeout_blocktime = interval;
1302} 2859}
1303 2860
1304static void noinline 2861void
2862ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
2863{
2864 userdata = data;
2865}
2866
2867void *
2868ev_userdata (EV_P) EV_NOEXCEPT
2869{
2870 return userdata;
2871}
2872
2873void
2874ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
2875{
2876 invoke_cb = invoke_pending_cb;
2877}
2878
2879void
2880ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
2881{
2882 release_cb = release;
2883 acquire_cb = acquire;
2884}
2885#endif
2886
2887/* initialise a loop structure, must be zero-initialised */
2888ecb_noinline ecb_cold
2889static void
1305loop_init (EV_P_ unsigned int flags) 2890loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
1306{ 2891{
1307 if (!backend) 2892 if (!backend)
1308 { 2893 {
2894 origflags = flags;
2895
2896#if EV_USE_REALTIME
2897 if (!have_realtime)
2898 {
2899 struct timespec ts;
2900
2901 if (!clock_gettime (CLOCK_REALTIME, &ts))
2902 have_realtime = 1;
2903 }
2904#endif
2905
1309#if EV_USE_MONOTONIC 2906#if EV_USE_MONOTONIC
2907 if (!have_monotonic)
1310 { 2908 {
1311 struct timespec ts; 2909 struct timespec ts;
2910
1312 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2911 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1313 have_monotonic = 1; 2912 have_monotonic = 1;
1314 } 2913 }
1315#endif
1316
1317 ev_rt_now = ev_time ();
1318 mn_now = get_clock ();
1319 now_floor = mn_now;
1320 rtmn_diff = ev_rt_now - mn_now;
1321
1322 io_blocktime = 0.;
1323 timeout_blocktime = 0.;
1324 backend = 0;
1325 backend_fd = -1;
1326 gotasync = 0;
1327#if EV_USE_INOTIFY
1328 fs_fd = -2;
1329#endif 2914#endif
1330 2915
1331 /* pid check not overridable via env */ 2916 /* pid check not overridable via env */
1332#ifndef _WIN32 2917#ifndef _WIN32
1333 if (flags & EVFLAG_FORKCHECK) 2918 if (flags & EVFLAG_FORKCHECK)
1337 if (!(flags & EVFLAG_NOENV) 2922 if (!(flags & EVFLAG_NOENV)
1338 && !enable_secure () 2923 && !enable_secure ()
1339 && getenv ("LIBEV_FLAGS")) 2924 && getenv ("LIBEV_FLAGS"))
1340 flags = atoi (getenv ("LIBEV_FLAGS")); 2925 flags = atoi (getenv ("LIBEV_FLAGS"));
1341 2926
1342 if (!(flags & 0x0000ffffU)) 2927 ev_rt_now = ev_time ();
2928 mn_now = get_clock ();
2929 now_floor = mn_now;
2930 rtmn_diff = ev_rt_now - mn_now;
2931#if EV_FEATURE_API
2932 invoke_cb = ev_invoke_pending;
2933#endif
2934
2935 io_blocktime = 0.;
2936 timeout_blocktime = 0.;
2937 backend = 0;
2938 backend_fd = -1;
2939 sig_pending = 0;
2940#if EV_ASYNC_ENABLE
2941 async_pending = 0;
2942#endif
2943 pipe_write_skipped = 0;
2944 pipe_write_wanted = 0;
2945 evpipe [0] = -1;
2946 evpipe [1] = -1;
2947#if EV_USE_INOTIFY
2948 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2949#endif
2950#if EV_USE_SIGNALFD
2951 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2952#endif
2953
2954 if (!(flags & EVBACKEND_MASK))
1343 flags |= ev_recommended_backends (); 2955 flags |= ev_recommended_backends ();
1344 2956
2957#if EV_USE_IOCP
2958 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2959#endif
1345#if EV_USE_PORT 2960#if EV_USE_PORT
1346 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2961 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1347#endif 2962#endif
1348#if EV_USE_KQUEUE 2963#if EV_USE_KQUEUE
1349 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2964 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
2965#endif
2966#if EV_USE_LINUXAIO
2967 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
1350#endif 2968#endif
1351#if EV_USE_EPOLL 2969#if EV_USE_EPOLL
1352 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags); 2970 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1353#endif 2971#endif
1354#if EV_USE_POLL 2972#if EV_USE_POLL
1355 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags); 2973 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1356#endif 2974#endif
1357#if EV_USE_SELECT 2975#if EV_USE_SELECT
1358 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2976 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
1359#endif 2977#endif
1360 2978
2979 ev_prepare_init (&pending_w, pendingcb);
2980
2981#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1361 ev_init (&pipeev, pipecb); 2982 ev_init (&pipe_w, pipecb);
1362 ev_set_priority (&pipeev, EV_MAXPRI); 2983 ev_set_priority (&pipe_w, EV_MAXPRI);
2984#endif
1363 } 2985 }
1364} 2986}
1365 2987
1366static void noinline 2988/* free up a loop structure */
2989ecb_cold
2990void
1367loop_destroy (EV_P) 2991ev_loop_destroy (EV_P)
1368{ 2992{
1369 int i; 2993 int i;
1370 2994
2995#if EV_MULTIPLICITY
2996 /* mimic free (0) */
2997 if (!EV_A)
2998 return;
2999#endif
3000
3001#if EV_CLEANUP_ENABLE
3002 /* queue cleanup watchers (and execute them) */
3003 if (ecb_expect_false (cleanupcnt))
3004 {
3005 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3006 EV_INVOKE_PENDING;
3007 }
3008#endif
3009
3010#if EV_CHILD_ENABLE
3011 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3012 {
3013 ev_ref (EV_A); /* child watcher */
3014 ev_signal_stop (EV_A_ &childev);
3015 }
3016#endif
3017
1371 if (ev_is_active (&pipeev)) 3018 if (ev_is_active (&pipe_w))
1372 { 3019 {
1373 ev_ref (EV_A); /* signal watcher */ 3020 /*ev_ref (EV_A);*/
1374 ev_io_stop (EV_A_ &pipeev); 3021 /*ev_io_stop (EV_A_ &pipe_w);*/
1375 3022
3023 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3024 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3025 }
3026
1376#if EV_USE_EVENTFD 3027#if EV_USE_SIGNALFD
1377 if (evfd >= 0) 3028 if (ev_is_active (&sigfd_w))
1378 close (evfd); 3029 close (sigfd);
1379#endif 3030#endif
1380
1381 if (evpipe [0] >= 0)
1382 {
1383 close (evpipe [0]);
1384 close (evpipe [1]);
1385 }
1386 }
1387 3031
1388#if EV_USE_INOTIFY 3032#if EV_USE_INOTIFY
1389 if (fs_fd >= 0) 3033 if (fs_fd >= 0)
1390 close (fs_fd); 3034 close (fs_fd);
1391#endif 3035#endif
1392 3036
1393 if (backend_fd >= 0) 3037 if (backend_fd >= 0)
1394 close (backend_fd); 3038 close (backend_fd);
1395 3039
3040#if EV_USE_IOCP
3041 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3042#endif
1396#if EV_USE_PORT 3043#if EV_USE_PORT
1397 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 3044 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1398#endif 3045#endif
1399#if EV_USE_KQUEUE 3046#if EV_USE_KQUEUE
1400 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 3047 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3048#endif
3049#if EV_USE_LINUXAIO
3050 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
1401#endif 3051#endif
1402#if EV_USE_EPOLL 3052#if EV_USE_EPOLL
1403 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A); 3053 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1404#endif 3054#endif
1405#if EV_USE_POLL 3055#if EV_USE_POLL
1406 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A); 3056 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1407#endif 3057#endif
1408#if EV_USE_SELECT 3058#if EV_USE_SELECT
1409 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 3059 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
1410#endif 3060#endif
1411 3061
1412 for (i = NUMPRI; i--; ) 3062 for (i = NUMPRI; i--; )
1413 { 3063 {
1414 array_free (pending, [i]); 3064 array_free (pending, [i]);
1415#if EV_IDLE_ENABLE 3065#if EV_IDLE_ENABLE
1416 array_free (idle, [i]); 3066 array_free (idle, [i]);
1417#endif 3067#endif
1418 } 3068 }
1419 3069
1420 ev_free (anfds); anfdmax = 0; 3070 ev_free (anfds); anfds = 0; anfdmax = 0;
1421 3071
1422 /* have to use the microsoft-never-gets-it-right macro */ 3072 /* have to use the microsoft-never-gets-it-right macro */
3073 array_free (rfeed, EMPTY);
1423 array_free (fdchange, EMPTY); 3074 array_free (fdchange, EMPTY);
1424 array_free (timer, EMPTY); 3075 array_free (timer, EMPTY);
1425#if EV_PERIODIC_ENABLE 3076#if EV_PERIODIC_ENABLE
1426 array_free (periodic, EMPTY); 3077 array_free (periodic, EMPTY);
1427#endif 3078#endif
1428#if EV_FORK_ENABLE 3079#if EV_FORK_ENABLE
1429 array_free (fork, EMPTY); 3080 array_free (fork, EMPTY);
1430#endif 3081#endif
3082#if EV_CLEANUP_ENABLE
3083 array_free (cleanup, EMPTY);
3084#endif
1431 array_free (prepare, EMPTY); 3085 array_free (prepare, EMPTY);
1432 array_free (check, EMPTY); 3086 array_free (check, EMPTY);
1433#if EV_ASYNC_ENABLE 3087#if EV_ASYNC_ENABLE
1434 array_free (async, EMPTY); 3088 array_free (async, EMPTY);
1435#endif 3089#endif
1436 3090
1437 backend = 0; 3091 backend = 0;
3092
3093#if EV_MULTIPLICITY
3094 if (ev_is_default_loop (EV_A))
3095#endif
3096 ev_default_loop_ptr = 0;
3097#if EV_MULTIPLICITY
3098 else
3099 ev_free (EV_A);
3100#endif
1438} 3101}
1439 3102
1440#if EV_USE_INOTIFY 3103#if EV_USE_INOTIFY
1441void inline_size infy_fork (EV_P); 3104inline_size void infy_fork (EV_P);
1442#endif 3105#endif
1443 3106
1444void inline_size 3107inline_size void
1445loop_fork (EV_P) 3108loop_fork (EV_P)
1446{ 3109{
1447#if EV_USE_PORT 3110#if EV_USE_PORT
1448 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 3111 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1449#endif 3112#endif
1450#if EV_USE_KQUEUE 3113#if EV_USE_KQUEUE
1451 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 3114 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3115#endif
3116#if EV_USE_LINUXAIO
3117 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
1452#endif 3118#endif
1453#if EV_USE_EPOLL 3119#if EV_USE_EPOLL
1454 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 3120 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1455#endif 3121#endif
1456#if EV_USE_INOTIFY 3122#if EV_USE_INOTIFY
1457 infy_fork (EV_A); 3123 infy_fork (EV_A);
1458#endif 3124#endif
1459 3125
1460 if (ev_is_active (&pipeev)) 3126#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3127 if (ev_is_active (&pipe_w) && postfork != 2)
1461 { 3128 {
1462 /* this "locks" the handlers against writing to the pipe */ 3129 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1463 /* while we modify the fd vars */
1464 gotsig = 1;
1465#if EV_ASYNC_ENABLE
1466 gotasync = 1;
1467#endif
1468 3130
1469 ev_ref (EV_A); 3131 ev_ref (EV_A);
1470 ev_io_stop (EV_A_ &pipeev); 3132 ev_io_stop (EV_A_ &pipe_w);
1471
1472#if EV_USE_EVENTFD
1473 if (evfd >= 0)
1474 close (evfd);
1475#endif
1476 3133
1477 if (evpipe [0] >= 0) 3134 if (evpipe [0] >= 0)
1478 { 3135 EV_WIN32_CLOSE_FD (evpipe [0]);
1479 close (evpipe [0]);
1480 close (evpipe [1]);
1481 }
1482 3136
1483 evpipe_init (EV_A); 3137 evpipe_init (EV_A);
1484 /* now iterate over everything, in case we missed something */ 3138 /* iterate over everything, in case we missed something before */
1485 pipecb (EV_A_ &pipeev, EV_READ); 3139 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1486 } 3140 }
3141#endif
1487 3142
1488 postfork = 0; 3143 postfork = 0;
1489} 3144}
1490 3145
1491#if EV_MULTIPLICITY 3146#if EV_MULTIPLICITY
1492 3147
3148ecb_cold
1493struct ev_loop * 3149struct ev_loop *
1494ev_loop_new (unsigned int flags) 3150ev_loop_new (unsigned int flags) EV_NOEXCEPT
1495{ 3151{
1496 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 3152 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1497 3153
1498 memset (loop, 0, sizeof (struct ev_loop)); 3154 memset (EV_A, 0, sizeof (struct ev_loop));
1499
1500 loop_init (EV_A_ flags); 3155 loop_init (EV_A_ flags);
1501 3156
1502 if (ev_backend (EV_A)) 3157 if (ev_backend (EV_A))
1503 return loop; 3158 return EV_A;
1504 3159
3160 ev_free (EV_A);
1505 return 0; 3161 return 0;
1506} 3162}
1507 3163
1508void 3164#endif /* multiplicity */
1509ev_loop_destroy (EV_P)
1510{
1511 loop_destroy (EV_A);
1512 ev_free (loop);
1513}
1514
1515void
1516ev_loop_fork (EV_P)
1517{
1518 postfork = 1; /* must be in line with ev_default_fork */
1519}
1520 3165
1521#if EV_VERIFY 3166#if EV_VERIFY
1522static void noinline 3167ecb_noinline ecb_cold
3168static void
1523verify_watcher (EV_P_ W w) 3169verify_watcher (EV_P_ W w)
1524{ 3170{
1525 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 3171 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1526 3172
1527 if (w->pending) 3173 if (w->pending)
1528 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 3174 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1529} 3175}
1530 3176
1531static void noinline 3177ecb_noinline ecb_cold
3178static void
1532verify_heap (EV_P_ ANHE *heap, int N) 3179verify_heap (EV_P_ ANHE *heap, int N)
1533{ 3180{
1534 int i; 3181 int i;
1535 3182
1536 for (i = HEAP0; i < N + HEAP0; ++i) 3183 for (i = HEAP0; i < N + HEAP0; ++i)
1537 { 3184 {
1538 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 3185 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1539 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 3186 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1540 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 3187 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1541 3188
1542 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 3189 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1543 } 3190 }
1544} 3191}
1545 3192
1546static void noinline 3193ecb_noinline ecb_cold
3194static void
1547array_verify (EV_P_ W *ws, int cnt) 3195array_verify (EV_P_ W *ws, int cnt)
1548{ 3196{
1549 while (cnt--) 3197 while (cnt--)
1550 { 3198 {
1551 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 3199 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1552 verify_watcher (EV_A_ ws [cnt]); 3200 verify_watcher (EV_A_ ws [cnt]);
1553 } 3201 }
1554} 3202}
1555#endif 3203#endif
1556 3204
1557void 3205#if EV_FEATURE_API
1558ev_loop_verify (EV_P) 3206void ecb_cold
3207ev_verify (EV_P) EV_NOEXCEPT
1559{ 3208{
1560#if EV_VERIFY 3209#if EV_VERIFY
1561 int i; 3210 int i;
1562 WL w; 3211 WL w, w2;
1563 3212
1564 assert (activecnt >= -1); 3213 assert (activecnt >= -1);
1565 3214
1566 assert (fdchangemax >= fdchangecnt); 3215 assert (fdchangemax >= fdchangecnt);
1567 for (i = 0; i < fdchangecnt; ++i) 3216 for (i = 0; i < fdchangecnt; ++i)
1568 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 3217 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1569 3218
1570 assert (anfdmax >= 0); 3219 assert (anfdmax >= 0);
1571 for (i = 0; i < anfdmax; ++i) 3220 for (i = 0; i < anfdmax; ++i)
3221 {
3222 int j = 0;
3223
1572 for (w = anfds [i].head; w; w = w->next) 3224 for (w = w2 = anfds [i].head; w; w = w->next)
1573 { 3225 {
1574 verify_watcher (EV_A_ (W)w); 3226 verify_watcher (EV_A_ (W)w);
3227
3228 if (j++ & 1)
3229 {
3230 assert (("libev: io watcher list contains a loop", w != w2));
3231 w2 = w2->next;
3232 }
3233
1575 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 3234 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1576 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 3235 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1577 } 3236 }
3237 }
1578 3238
1579 assert (timermax >= timercnt); 3239 assert (timermax >= timercnt);
1580 verify_heap (EV_A_ timers, timercnt); 3240 verify_heap (EV_A_ timers, timercnt);
1581 3241
1582#if EV_PERIODIC_ENABLE 3242#if EV_PERIODIC_ENABLE
1597#if EV_FORK_ENABLE 3257#if EV_FORK_ENABLE
1598 assert (forkmax >= forkcnt); 3258 assert (forkmax >= forkcnt);
1599 array_verify (EV_A_ (W *)forks, forkcnt); 3259 array_verify (EV_A_ (W *)forks, forkcnt);
1600#endif 3260#endif
1601 3261
3262#if EV_CLEANUP_ENABLE
3263 assert (cleanupmax >= cleanupcnt);
3264 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3265#endif
3266
1602#if EV_ASYNC_ENABLE 3267#if EV_ASYNC_ENABLE
1603 assert (asyncmax >= asynccnt); 3268 assert (asyncmax >= asynccnt);
1604 array_verify (EV_A_ (W *)asyncs, asynccnt); 3269 array_verify (EV_A_ (W *)asyncs, asynccnt);
1605#endif 3270#endif
1606 3271
3272#if EV_PREPARE_ENABLE
1607 assert (preparemax >= preparecnt); 3273 assert (preparemax >= preparecnt);
1608 array_verify (EV_A_ (W *)prepares, preparecnt); 3274 array_verify (EV_A_ (W *)prepares, preparecnt);
3275#endif
1609 3276
3277#if EV_CHECK_ENABLE
1610 assert (checkmax >= checkcnt); 3278 assert (checkmax >= checkcnt);
1611 array_verify (EV_A_ (W *)checks, checkcnt); 3279 array_verify (EV_A_ (W *)checks, checkcnt);
3280#endif
1612 3281
1613# if 0 3282# if 0
3283#if EV_CHILD_ENABLE
1614 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 3284 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1615 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 3285 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3286#endif
1616# endif 3287# endif
1617#endif 3288#endif
1618} 3289}
1619 3290#endif
1620#endif /* multiplicity */
1621 3291
1622#if EV_MULTIPLICITY 3292#if EV_MULTIPLICITY
3293ecb_cold
1623struct ev_loop * 3294struct ev_loop *
1624ev_default_loop_init (unsigned int flags)
1625#else 3295#else
1626int 3296int
3297#endif
1627ev_default_loop (unsigned int flags) 3298ev_default_loop (unsigned int flags) EV_NOEXCEPT
1628#endif
1629{ 3299{
1630 if (!ev_default_loop_ptr) 3300 if (!ev_default_loop_ptr)
1631 { 3301 {
1632#if EV_MULTIPLICITY 3302#if EV_MULTIPLICITY
1633 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3303 EV_P = ev_default_loop_ptr = &default_loop_struct;
1634#else 3304#else
1635 ev_default_loop_ptr = 1; 3305 ev_default_loop_ptr = 1;
1636#endif 3306#endif
1637 3307
1638 loop_init (EV_A_ flags); 3308 loop_init (EV_A_ flags);
1639 3309
1640 if (ev_backend (EV_A)) 3310 if (ev_backend (EV_A))
1641 { 3311 {
1642#ifndef _WIN32 3312#if EV_CHILD_ENABLE
1643 ev_signal_init (&childev, childcb, SIGCHLD); 3313 ev_signal_init (&childev, childcb, SIGCHLD);
1644 ev_set_priority (&childev, EV_MAXPRI); 3314 ev_set_priority (&childev, EV_MAXPRI);
1645 ev_signal_start (EV_A_ &childev); 3315 ev_signal_start (EV_A_ &childev);
1646 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3316 ev_unref (EV_A); /* child watcher should not keep loop alive */
1647#endif 3317#endif
1652 3322
1653 return ev_default_loop_ptr; 3323 return ev_default_loop_ptr;
1654} 3324}
1655 3325
1656void 3326void
1657ev_default_destroy (void) 3327ev_loop_fork (EV_P) EV_NOEXCEPT
1658{ 3328{
1659#if EV_MULTIPLICITY 3329 postfork = 1;
1660 struct ev_loop *loop = ev_default_loop_ptr;
1661#endif
1662
1663#ifndef _WIN32
1664 ev_ref (EV_A); /* child watcher */
1665 ev_signal_stop (EV_A_ &childev);
1666#endif
1667
1668 loop_destroy (EV_A);
1669}
1670
1671void
1672ev_default_fork (void)
1673{
1674#if EV_MULTIPLICITY
1675 struct ev_loop *loop = ev_default_loop_ptr;
1676#endif
1677
1678 if (backend)
1679 postfork = 1; /* must be in line with ev_loop_fork */
1680} 3330}
1681 3331
1682/*****************************************************************************/ 3332/*****************************************************************************/
1683 3333
1684void 3334void
1685ev_invoke (EV_P_ void *w, int revents) 3335ev_invoke (EV_P_ void *w, int revents)
1686{ 3336{
1687 EV_CB_INVOKE ((W)w, revents); 3337 EV_CB_INVOKE ((W)w, revents);
1688} 3338}
1689 3339
1690void inline_speed 3340unsigned int
1691call_pending (EV_P) 3341ev_pending_count (EV_P) EV_NOEXCEPT
1692{ 3342{
1693 int pri; 3343 int pri;
3344 unsigned int count = 0;
1694 3345
1695 for (pri = NUMPRI; pri--; ) 3346 for (pri = NUMPRI; pri--; )
3347 count += pendingcnt [pri];
3348
3349 return count;
3350}
3351
3352ecb_noinline
3353void
3354ev_invoke_pending (EV_P)
3355{
3356 pendingpri = NUMPRI;
3357
3358 do
3359 {
3360 --pendingpri;
3361
3362 /* pendingpri possibly gets modified in the inner loop */
1696 while (pendingcnt [pri]) 3363 while (pendingcnt [pendingpri])
1697 {
1698 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1699
1700 if (expect_true (p->w))
1701 { 3364 {
1702 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 3365 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1703 3366
1704 p->w->pending = 0; 3367 p->w->pending = 0;
1705 EV_CB_INVOKE (p->w, p->events); 3368 EV_CB_INVOKE (p->w, p->events);
1706 EV_FREQUENT_CHECK; 3369 EV_FREQUENT_CHECK;
1707 } 3370 }
1708 } 3371 }
3372 while (pendingpri);
1709} 3373}
1710 3374
1711#if EV_IDLE_ENABLE 3375#if EV_IDLE_ENABLE
1712void inline_size 3376/* make idle watchers pending. this handles the "call-idle */
3377/* only when higher priorities are idle" logic */
3378inline_size void
1713idle_reify (EV_P) 3379idle_reify (EV_P)
1714{ 3380{
1715 if (expect_false (idleall)) 3381 if (ecb_expect_false (idleall))
1716 { 3382 {
1717 int pri; 3383 int pri;
1718 3384
1719 for (pri = NUMPRI; pri--; ) 3385 for (pri = NUMPRI; pri--; )
1720 { 3386 {
1729 } 3395 }
1730 } 3396 }
1731} 3397}
1732#endif 3398#endif
1733 3399
1734void inline_size 3400/* make timers pending */
3401inline_size void
1735timers_reify (EV_P) 3402timers_reify (EV_P)
1736{ 3403{
1737 EV_FREQUENT_CHECK; 3404 EV_FREQUENT_CHECK;
1738 3405
1739 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 3406 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1740 { 3407 {
1741 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 3408 do
1742
1743 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1744
1745 /* first reschedule or stop timer */
1746 if (w->repeat)
1747 { 3409 {
3410 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3411
3412 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3413
3414 /* first reschedule or stop timer */
3415 if (w->repeat)
3416 {
1748 ev_at (w) += w->repeat; 3417 ev_at (w) += w->repeat;
1749 if (ev_at (w) < mn_now) 3418 if (ev_at (w) < mn_now)
1750 ev_at (w) = mn_now; 3419 ev_at (w) = mn_now;
1751 3420
1752 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3421 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1753 3422
1754 ANHE_at_cache (timers [HEAP0]); 3423 ANHE_at_cache (timers [HEAP0]);
1755 downheap (timers, timercnt, HEAP0); 3424 downheap (timers, timercnt, HEAP0);
3425 }
3426 else
3427 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3428
3429 EV_FREQUENT_CHECK;
3430 feed_reverse (EV_A_ (W)w);
1756 } 3431 }
1757 else 3432 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1758 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1759 3433
1760 EV_FREQUENT_CHECK; 3434 feed_reverse_done (EV_A_ EV_TIMER);
1761 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1762 } 3435 }
1763} 3436}
1764 3437
1765#if EV_PERIODIC_ENABLE 3438#if EV_PERIODIC_ENABLE
1766void inline_size 3439
3440ecb_noinline
3441static void
3442periodic_recalc (EV_P_ ev_periodic *w)
3443{
3444 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3445 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3446
3447 /* the above almost always errs on the low side */
3448 while (at <= ev_rt_now)
3449 {
3450 ev_tstamp nat = at + w->interval;
3451
3452 /* when resolution fails us, we use ev_rt_now */
3453 if (ecb_expect_false (nat == at))
3454 {
3455 at = ev_rt_now;
3456 break;
3457 }
3458
3459 at = nat;
3460 }
3461
3462 ev_at (w) = at;
3463}
3464
3465/* make periodics pending */
3466inline_size void
1767periodics_reify (EV_P) 3467periodics_reify (EV_P)
1768{ 3468{
1769 EV_FREQUENT_CHECK; 3469 EV_FREQUENT_CHECK;
1770 3470
1771 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 3471 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1772 { 3472 {
1773 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 3473 do
1774
1775 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1776
1777 /* first reschedule or stop timer */
1778 if (w->reschedule_cb)
1779 { 3474 {
3475 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3476
3477 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3478
3479 /* first reschedule or stop timer */
3480 if (w->reschedule_cb)
3481 {
1780 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3482 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1781 3483
1782 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 3484 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1783 3485
1784 ANHE_at_cache (periodics [HEAP0]); 3486 ANHE_at_cache (periodics [HEAP0]);
1785 downheap (periodics, periodiccnt, HEAP0); 3487 downheap (periodics, periodiccnt, HEAP0);
3488 }
3489 else if (w->interval)
3490 {
3491 periodic_recalc (EV_A_ w);
3492 ANHE_at_cache (periodics [HEAP0]);
3493 downheap (periodics, periodiccnt, HEAP0);
3494 }
3495 else
3496 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3497
3498 EV_FREQUENT_CHECK;
3499 feed_reverse (EV_A_ (W)w);
1786 } 3500 }
1787 else if (w->interval) 3501 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1788 {
1789 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1790 /* if next trigger time is not sufficiently in the future, put it there */
1791 /* this might happen because of floating point inexactness */
1792 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1793 {
1794 ev_at (w) += w->interval;
1795 3502
1796 /* if interval is unreasonably low we might still have a time in the past */
1797 /* so correct this. this will make the periodic very inexact, but the user */
1798 /* has effectively asked to get triggered more often than possible */
1799 if (ev_at (w) < ev_rt_now)
1800 ev_at (w) = ev_rt_now;
1801 }
1802
1803 ANHE_at_cache (periodics [HEAP0]);
1804 downheap (periodics, periodiccnt, HEAP0);
1805 }
1806 else
1807 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1808
1809 EV_FREQUENT_CHECK;
1810 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 3503 feed_reverse_done (EV_A_ EV_PERIODIC);
1811 } 3504 }
1812} 3505}
1813 3506
1814static void noinline 3507/* simply recalculate all periodics */
3508/* TODO: maybe ensure that at least one event happens when jumping forward? */
3509ecb_noinline ecb_cold
3510static void
1815periodics_reschedule (EV_P) 3511periodics_reschedule (EV_P)
1816{ 3512{
1817 int i; 3513 int i;
1818 3514
1819 /* adjust periodics after time jump */ 3515 /* adjust periodics after time jump */
1822 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 3518 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1823 3519
1824 if (w->reschedule_cb) 3520 if (w->reschedule_cb)
1825 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3521 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1826 else if (w->interval) 3522 else if (w->interval)
1827 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 3523 periodic_recalc (EV_A_ w);
1828 3524
1829 ANHE_at_cache (periodics [i]); 3525 ANHE_at_cache (periodics [i]);
1830 } 3526 }
1831 3527
1832 reheap (periodics, periodiccnt); 3528 reheap (periodics, periodiccnt);
1833} 3529}
1834#endif 3530#endif
1835 3531
1836void inline_speed 3532/* adjust all timers by a given offset */
3533ecb_noinline ecb_cold
3534static void
3535timers_reschedule (EV_P_ ev_tstamp adjust)
3536{
3537 int i;
3538
3539 for (i = 0; i < timercnt; ++i)
3540 {
3541 ANHE *he = timers + i + HEAP0;
3542 ANHE_w (*he)->at += adjust;
3543 ANHE_at_cache (*he);
3544 }
3545}
3546
3547/* fetch new monotonic and realtime times from the kernel */
3548/* also detect if there was a timejump, and act accordingly */
3549inline_speed void
1837time_update (EV_P_ ev_tstamp max_block) 3550time_update (EV_P_ ev_tstamp max_block)
1838{ 3551{
1839 int i;
1840
1841#if EV_USE_MONOTONIC 3552#if EV_USE_MONOTONIC
1842 if (expect_true (have_monotonic)) 3553 if (ecb_expect_true (have_monotonic))
1843 { 3554 {
3555 int i;
1844 ev_tstamp odiff = rtmn_diff; 3556 ev_tstamp odiff = rtmn_diff;
1845 3557
1846 mn_now = get_clock (); 3558 mn_now = get_clock ();
1847 3559
1848 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3560 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1849 /* interpolate in the meantime */ 3561 /* interpolate in the meantime */
1850 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 3562 if (ecb_expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1851 { 3563 {
1852 ev_rt_now = rtmn_diff + mn_now; 3564 ev_rt_now = rtmn_diff + mn_now;
1853 return; 3565 return;
1854 } 3566 }
1855 3567
1864 * doesn't hurt either as we only do this on time-jumps or 3576 * doesn't hurt either as we only do this on time-jumps or
1865 * in the unlikely event of having been preempted here. 3577 * in the unlikely event of having been preempted here.
1866 */ 3578 */
1867 for (i = 4; --i; ) 3579 for (i = 4; --i; )
1868 { 3580 {
3581 ev_tstamp diff;
1869 rtmn_diff = ev_rt_now - mn_now; 3582 rtmn_diff = ev_rt_now - mn_now;
1870 3583
3584 diff = odiff - rtmn_diff;
3585
1871 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 3586 if (ecb_expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1872 return; /* all is well */ 3587 return; /* all is well */
1873 3588
1874 ev_rt_now = ev_time (); 3589 ev_rt_now = ev_time ();
1875 mn_now = get_clock (); 3590 mn_now = get_clock ();
1876 now_floor = mn_now; 3591 now_floor = mn_now;
1877 } 3592 }
1878 3593
3594 /* no timer adjustment, as the monotonic clock doesn't jump */
3595 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1879# if EV_PERIODIC_ENABLE 3596# if EV_PERIODIC_ENABLE
1880 periodics_reschedule (EV_A); 3597 periodics_reschedule (EV_A);
1881# endif 3598# endif
1882 /* no timer adjustment, as the monotonic clock doesn't jump */
1883 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1884 } 3599 }
1885 else 3600 else
1886#endif 3601#endif
1887 { 3602 {
1888 ev_rt_now = ev_time (); 3603 ev_rt_now = ev_time ();
1889 3604
1890 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3605 if (ecb_expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1891 { 3606 {
3607 /* adjust timers. this is easy, as the offset is the same for all of them */
3608 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1892#if EV_PERIODIC_ENABLE 3609#if EV_PERIODIC_ENABLE
1893 periodics_reschedule (EV_A); 3610 periodics_reschedule (EV_A);
1894#endif 3611#endif
1895 /* adjust timers. this is easy, as the offset is the same for all of them */
1896 for (i = 0; i < timercnt; ++i)
1897 {
1898 ANHE *he = timers + i + HEAP0;
1899 ANHE_w (*he)->at += ev_rt_now - mn_now;
1900 ANHE_at_cache (*he);
1901 }
1902 } 3612 }
1903 3613
1904 mn_now = ev_rt_now; 3614 mn_now = ev_rt_now;
1905 } 3615 }
1906} 3616}
1907 3617
1908void 3618int
1909ev_ref (EV_P)
1910{
1911 ++activecnt;
1912}
1913
1914void
1915ev_unref (EV_P)
1916{
1917 --activecnt;
1918}
1919
1920void
1921ev_now_update (EV_P)
1922{
1923 time_update (EV_A_ 1e100);
1924}
1925
1926static int loop_done;
1927
1928void
1929ev_loop (EV_P_ int flags) 3619ev_run (EV_P_ int flags)
1930{ 3620{
3621#if EV_FEATURE_API
3622 ++loop_depth;
3623#endif
3624
3625 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3626
1931 loop_done = EVUNLOOP_CANCEL; 3627 loop_done = EVBREAK_CANCEL;
1932 3628
1933 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3629 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1934 3630
1935 do 3631 do
1936 { 3632 {
1937#if EV_VERIFY >= 2 3633#if EV_VERIFY >= 2
1938 ev_loop_verify (EV_A); 3634 ev_verify (EV_A);
1939#endif 3635#endif
1940 3636
1941#ifndef _WIN32 3637#ifndef _WIN32
1942 if (expect_false (curpid)) /* penalise the forking check even more */ 3638 if (ecb_expect_false (curpid)) /* penalise the forking check even more */
1943 if (expect_false (getpid () != curpid)) 3639 if (ecb_expect_false (getpid () != curpid))
1944 { 3640 {
1945 curpid = getpid (); 3641 curpid = getpid ();
1946 postfork = 1; 3642 postfork = 1;
1947 } 3643 }
1948#endif 3644#endif
1949 3645
1950#if EV_FORK_ENABLE 3646#if EV_FORK_ENABLE
1951 /* we might have forked, so queue fork handlers */ 3647 /* we might have forked, so queue fork handlers */
1952 if (expect_false (postfork)) 3648 if (ecb_expect_false (postfork))
1953 if (forkcnt) 3649 if (forkcnt)
1954 { 3650 {
1955 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3651 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1956 call_pending (EV_A); 3652 EV_INVOKE_PENDING;
1957 } 3653 }
1958#endif 3654#endif
1959 3655
3656#if EV_PREPARE_ENABLE
1960 /* queue prepare watchers (and execute them) */ 3657 /* queue prepare watchers (and execute them) */
1961 if (expect_false (preparecnt)) 3658 if (ecb_expect_false (preparecnt))
1962 { 3659 {
1963 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3660 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1964 call_pending (EV_A); 3661 EV_INVOKE_PENDING;
1965 } 3662 }
3663#endif
1966 3664
1967 if (expect_false (!activecnt)) 3665 if (ecb_expect_false (loop_done))
1968 break; 3666 break;
1969 3667
1970 /* we might have forked, so reify kernel state if necessary */ 3668 /* we might have forked, so reify kernel state if necessary */
1971 if (expect_false (postfork)) 3669 if (ecb_expect_false (postfork))
1972 loop_fork (EV_A); 3670 loop_fork (EV_A);
1973 3671
1974 /* update fd-related kernel structures */ 3672 /* update fd-related kernel structures */
1975 fd_reify (EV_A); 3673 fd_reify (EV_A);
1976 3674
1977 /* calculate blocking time */ 3675 /* calculate blocking time */
1978 { 3676 {
1979 ev_tstamp waittime = 0.; 3677 ev_tstamp waittime = 0.;
1980 ev_tstamp sleeptime = 0.; 3678 ev_tstamp sleeptime = 0.;
1981 3679
3680 /* remember old timestamp for io_blocktime calculation */
3681 ev_tstamp prev_mn_now = mn_now;
3682
3683 /* update time to cancel out callback processing overhead */
3684 time_update (EV_A_ 1e100);
3685
3686 /* from now on, we want a pipe-wake-up */
3687 pipe_write_wanted = 1;
3688
3689 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3690
1982 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3691 if (ecb_expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1983 { 3692 {
1984 /* update time to cancel out callback processing overhead */
1985 time_update (EV_A_ 1e100);
1986
1987 waittime = MAX_BLOCKTIME; 3693 waittime = MAX_BLOCKTIME;
1988 3694
1989 if (timercnt) 3695 if (timercnt)
1990 { 3696 {
1991 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 3697 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1992 if (waittime > to) waittime = to; 3698 if (waittime > to) waittime = to;
1993 } 3699 }
1994 3700
1995#if EV_PERIODIC_ENABLE 3701#if EV_PERIODIC_ENABLE
1996 if (periodiccnt) 3702 if (periodiccnt)
1997 { 3703 {
1998 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3704 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1999 if (waittime > to) waittime = to; 3705 if (waittime > to) waittime = to;
2000 } 3706 }
2001#endif 3707#endif
2002 3708
3709 /* don't let timeouts decrease the waittime below timeout_blocktime */
2003 if (expect_false (waittime < timeout_blocktime)) 3710 if (ecb_expect_false (waittime < timeout_blocktime))
2004 waittime = timeout_blocktime; 3711 waittime = timeout_blocktime;
2005 3712
2006 sleeptime = waittime - backend_fudge; 3713 /* at this point, we NEED to wait, so we have to ensure */
3714 /* to pass a minimum nonzero value to the backend */
3715 if (ecb_expect_false (waittime < backend_mintime))
3716 waittime = backend_mintime;
2007 3717
3718 /* extra check because io_blocktime is commonly 0 */
2008 if (expect_true (sleeptime > io_blocktime)) 3719 if (ecb_expect_false (io_blocktime))
2009 sleeptime = io_blocktime;
2010
2011 if (sleeptime)
2012 { 3720 {
3721 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3722
3723 if (sleeptime > waittime - backend_mintime)
3724 sleeptime = waittime - backend_mintime;
3725
3726 if (ecb_expect_true (sleeptime > 0.))
3727 {
2013 ev_sleep (sleeptime); 3728 ev_sleep (sleeptime);
2014 waittime -= sleeptime; 3729 waittime -= sleeptime;
3730 }
2015 } 3731 }
2016 } 3732 }
2017 3733
3734#if EV_FEATURE_API
2018 ++loop_count; 3735 ++loop_count;
3736#endif
3737 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2019 backend_poll (EV_A_ waittime); 3738 backend_poll (EV_A_ waittime);
3739 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3740
3741 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3742
3743 ECB_MEMORY_FENCE_ACQUIRE;
3744 if (pipe_write_skipped)
3745 {
3746 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3747 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3748 }
2020 3749
2021 /* update ev_rt_now, do magic */ 3750 /* update ev_rt_now, do magic */
2022 time_update (EV_A_ waittime + sleeptime); 3751 time_update (EV_A_ waittime + sleeptime);
2023 } 3752 }
2024 3753
2031#if EV_IDLE_ENABLE 3760#if EV_IDLE_ENABLE
2032 /* queue idle watchers unless other events are pending */ 3761 /* queue idle watchers unless other events are pending */
2033 idle_reify (EV_A); 3762 idle_reify (EV_A);
2034#endif 3763#endif
2035 3764
3765#if EV_CHECK_ENABLE
2036 /* queue check watchers, to be executed first */ 3766 /* queue check watchers, to be executed first */
2037 if (expect_false (checkcnt)) 3767 if (ecb_expect_false (checkcnt))
2038 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3768 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3769#endif
2039 3770
2040 call_pending (EV_A); 3771 EV_INVOKE_PENDING;
2041 } 3772 }
2042 while (expect_true ( 3773 while (ecb_expect_true (
2043 activecnt 3774 activecnt
2044 && !loop_done 3775 && !loop_done
2045 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3776 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2046 )); 3777 ));
2047 3778
2048 if (loop_done == EVUNLOOP_ONE) 3779 if (loop_done == EVBREAK_ONE)
2049 loop_done = EVUNLOOP_CANCEL; 3780 loop_done = EVBREAK_CANCEL;
2050}
2051 3781
3782#if EV_FEATURE_API
3783 --loop_depth;
3784#endif
3785
3786 return activecnt;
3787}
3788
2052void 3789void
2053ev_unloop (EV_P_ int how) 3790ev_break (EV_P_ int how) EV_NOEXCEPT
2054{ 3791{
2055 loop_done = how; 3792 loop_done = how;
2056} 3793}
2057 3794
3795void
3796ev_ref (EV_P) EV_NOEXCEPT
3797{
3798 ++activecnt;
3799}
3800
3801void
3802ev_unref (EV_P) EV_NOEXCEPT
3803{
3804 --activecnt;
3805}
3806
3807void
3808ev_now_update (EV_P) EV_NOEXCEPT
3809{
3810 time_update (EV_A_ 1e100);
3811}
3812
3813void
3814ev_suspend (EV_P) EV_NOEXCEPT
3815{
3816 ev_now_update (EV_A);
3817}
3818
3819void
3820ev_resume (EV_P) EV_NOEXCEPT
3821{
3822 ev_tstamp mn_prev = mn_now;
3823
3824 ev_now_update (EV_A);
3825 timers_reschedule (EV_A_ mn_now - mn_prev);
3826#if EV_PERIODIC_ENABLE
3827 /* TODO: really do this? */
3828 periodics_reschedule (EV_A);
3829#endif
3830}
3831
2058/*****************************************************************************/ 3832/*****************************************************************************/
3833/* singly-linked list management, used when the expected list length is short */
2059 3834
2060void inline_size 3835inline_size void
2061wlist_add (WL *head, WL elem) 3836wlist_add (WL *head, WL elem)
2062{ 3837{
2063 elem->next = *head; 3838 elem->next = *head;
2064 *head = elem; 3839 *head = elem;
2065} 3840}
2066 3841
2067void inline_size 3842inline_size void
2068wlist_del (WL *head, WL elem) 3843wlist_del (WL *head, WL elem)
2069{ 3844{
2070 while (*head) 3845 while (*head)
2071 { 3846 {
2072 if (*head == elem) 3847 if (ecb_expect_true (*head == elem))
2073 { 3848 {
2074 *head = elem->next; 3849 *head = elem->next;
2075 return; 3850 break;
2076 } 3851 }
2077 3852
2078 head = &(*head)->next; 3853 head = &(*head)->next;
2079 } 3854 }
2080} 3855}
2081 3856
2082void inline_speed 3857/* internal, faster, version of ev_clear_pending */
3858inline_speed void
2083clear_pending (EV_P_ W w) 3859clear_pending (EV_P_ W w)
2084{ 3860{
2085 if (w->pending) 3861 if (w->pending)
2086 { 3862 {
2087 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3863 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2088 w->pending = 0; 3864 w->pending = 0;
2089 } 3865 }
2090} 3866}
2091 3867
2092int 3868int
2093ev_clear_pending (EV_P_ void *w) 3869ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
2094{ 3870{
2095 W w_ = (W)w; 3871 W w_ = (W)w;
2096 int pending = w_->pending; 3872 int pending = w_->pending;
2097 3873
2098 if (expect_true (pending)) 3874 if (ecb_expect_true (pending))
2099 { 3875 {
2100 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3876 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3877 p->w = (W)&pending_w;
2101 w_->pending = 0; 3878 w_->pending = 0;
2102 p->w = 0;
2103 return p->events; 3879 return p->events;
2104 } 3880 }
2105 else 3881 else
2106 return 0; 3882 return 0;
2107} 3883}
2108 3884
2109void inline_size 3885inline_size void
2110pri_adjust (EV_P_ W w) 3886pri_adjust (EV_P_ W w)
2111{ 3887{
2112 int pri = w->priority; 3888 int pri = ev_priority (w);
2113 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3889 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2114 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3890 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2115 w->priority = pri; 3891 ev_set_priority (w, pri);
2116} 3892}
2117 3893
2118void inline_speed 3894inline_speed void
2119ev_start (EV_P_ W w, int active) 3895ev_start (EV_P_ W w, int active)
2120{ 3896{
2121 pri_adjust (EV_A_ w); 3897 pri_adjust (EV_A_ w);
2122 w->active = active; 3898 w->active = active;
2123 ev_ref (EV_A); 3899 ev_ref (EV_A);
2124} 3900}
2125 3901
2126void inline_size 3902inline_size void
2127ev_stop (EV_P_ W w) 3903ev_stop (EV_P_ W w)
2128{ 3904{
2129 ev_unref (EV_A); 3905 ev_unref (EV_A);
2130 w->active = 0; 3906 w->active = 0;
2131} 3907}
2132 3908
2133/*****************************************************************************/ 3909/*****************************************************************************/
2134 3910
2135void noinline 3911ecb_noinline
3912void
2136ev_io_start (EV_P_ ev_io *w) 3913ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
2137{ 3914{
2138 int fd = w->fd; 3915 int fd = w->fd;
2139 3916
2140 if (expect_false (ev_is_active (w))) 3917 if (ecb_expect_false (ev_is_active (w)))
2141 return; 3918 return;
2142 3919
2143 assert (("ev_io_start called with negative fd", fd >= 0)); 3920 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3921 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2144 3922
3923#if EV_VERIFY >= 2
3924 assert (("libev: ev_io_start called on watcher with invalid fd", fd_valid (fd)));
3925#endif
2145 EV_FREQUENT_CHECK; 3926 EV_FREQUENT_CHECK;
2146 3927
2147 ev_start (EV_A_ (W)w, 1); 3928 ev_start (EV_A_ (W)w, 1);
2148 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3929 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
2149 wlist_add (&anfds[fd].head, (WL)w); 3930 wlist_add (&anfds[fd].head, (WL)w);
2150 3931
3932 /* common bug, apparently */
3933 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3934
2151 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3935 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2152 w->events &= ~EV_IOFDSET; 3936 w->events &= ~EV__IOFDSET;
2153 3937
2154 EV_FREQUENT_CHECK; 3938 EV_FREQUENT_CHECK;
2155} 3939}
2156 3940
2157void noinline 3941ecb_noinline
3942void
2158ev_io_stop (EV_P_ ev_io *w) 3943ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
2159{ 3944{
2160 clear_pending (EV_A_ (W)w); 3945 clear_pending (EV_A_ (W)w);
2161 if (expect_false (!ev_is_active (w))) 3946 if (ecb_expect_false (!ev_is_active (w)))
2162 return; 3947 return;
2163 3948
2164 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3949 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2165 3950
3951#if EV_VERIFY >= 2
3952 assert (("libev: ev_io_stop called on watcher with invalid fd", fd_valid (w->fd)));
3953#endif
2166 EV_FREQUENT_CHECK; 3954 EV_FREQUENT_CHECK;
2167 3955
2168 wlist_del (&anfds[w->fd].head, (WL)w); 3956 wlist_del (&anfds[w->fd].head, (WL)w);
2169 ev_stop (EV_A_ (W)w); 3957 ev_stop (EV_A_ (W)w);
2170 3958
2171 fd_change (EV_A_ w->fd, 1); 3959 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2172 3960
2173 EV_FREQUENT_CHECK; 3961 EV_FREQUENT_CHECK;
2174} 3962}
2175 3963
2176void noinline 3964ecb_noinline
3965void
2177ev_timer_start (EV_P_ ev_timer *w) 3966ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
2178{ 3967{
2179 if (expect_false (ev_is_active (w))) 3968 if (ecb_expect_false (ev_is_active (w)))
2180 return; 3969 return;
2181 3970
2182 ev_at (w) += mn_now; 3971 ev_at (w) += mn_now;
2183 3972
2184 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3973 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2185 3974
2186 EV_FREQUENT_CHECK; 3975 EV_FREQUENT_CHECK;
2187 3976
2188 ++timercnt; 3977 ++timercnt;
2189 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 3978 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2190 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 3979 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
2191 ANHE_w (timers [ev_active (w)]) = (WT)w; 3980 ANHE_w (timers [ev_active (w)]) = (WT)w;
2192 ANHE_at_cache (timers [ev_active (w)]); 3981 ANHE_at_cache (timers [ev_active (w)]);
2193 upheap (timers, ev_active (w)); 3982 upheap (timers, ev_active (w));
2194 3983
2195 EV_FREQUENT_CHECK; 3984 EV_FREQUENT_CHECK;
2196 3985
2197 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 3986 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2198} 3987}
2199 3988
2200void noinline 3989ecb_noinline
3990void
2201ev_timer_stop (EV_P_ ev_timer *w) 3991ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
2202{ 3992{
2203 clear_pending (EV_A_ (W)w); 3993 clear_pending (EV_A_ (W)w);
2204 if (expect_false (!ev_is_active (w))) 3994 if (ecb_expect_false (!ev_is_active (w)))
2205 return; 3995 return;
2206 3996
2207 EV_FREQUENT_CHECK; 3997 EV_FREQUENT_CHECK;
2208 3998
2209 { 3999 {
2210 int active = ev_active (w); 4000 int active = ev_active (w);
2211 4001
2212 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 4002 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2213 4003
2214 --timercnt; 4004 --timercnt;
2215 4005
2216 if (expect_true (active < timercnt + HEAP0)) 4006 if (ecb_expect_true (active < timercnt + HEAP0))
2217 { 4007 {
2218 timers [active] = timers [timercnt + HEAP0]; 4008 timers [active] = timers [timercnt + HEAP0];
2219 adjustheap (timers, timercnt, active); 4009 adjustheap (timers, timercnt, active);
2220 } 4010 }
2221 } 4011 }
2222 4012
2223 EV_FREQUENT_CHECK;
2224
2225 ev_at (w) -= mn_now; 4013 ev_at (w) -= mn_now;
2226 4014
2227 ev_stop (EV_A_ (W)w); 4015 ev_stop (EV_A_ (W)w);
2228}
2229 4016
2230void noinline 4017 EV_FREQUENT_CHECK;
4018}
4019
4020ecb_noinline
4021void
2231ev_timer_again (EV_P_ ev_timer *w) 4022ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
2232{ 4023{
2233 EV_FREQUENT_CHECK; 4024 EV_FREQUENT_CHECK;
4025
4026 clear_pending (EV_A_ (W)w);
2234 4027
2235 if (ev_is_active (w)) 4028 if (ev_is_active (w))
2236 { 4029 {
2237 if (w->repeat) 4030 if (w->repeat)
2238 { 4031 {
2250 } 4043 }
2251 4044
2252 EV_FREQUENT_CHECK; 4045 EV_FREQUENT_CHECK;
2253} 4046}
2254 4047
4048ev_tstamp
4049ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4050{
4051 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
4052}
4053
2255#if EV_PERIODIC_ENABLE 4054#if EV_PERIODIC_ENABLE
2256void noinline 4055ecb_noinline
4056void
2257ev_periodic_start (EV_P_ ev_periodic *w) 4057ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
2258{ 4058{
2259 if (expect_false (ev_is_active (w))) 4059 if (ecb_expect_false (ev_is_active (w)))
2260 return; 4060 return;
2261 4061
2262 if (w->reschedule_cb) 4062 if (w->reschedule_cb)
2263 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 4063 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2264 else if (w->interval) 4064 else if (w->interval)
2265 { 4065 {
2266 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 4066 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2267 /* this formula differs from the one in periodic_reify because we do not always round up */ 4067 periodic_recalc (EV_A_ w);
2268 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2269 } 4068 }
2270 else 4069 else
2271 ev_at (w) = w->offset; 4070 ev_at (w) = w->offset;
2272 4071
2273 EV_FREQUENT_CHECK; 4072 EV_FREQUENT_CHECK;
2274 4073
2275 ++periodiccnt; 4074 ++periodiccnt;
2276 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1); 4075 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2277 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 4076 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
2278 ANHE_w (periodics [ev_active (w)]) = (WT)w; 4077 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2279 ANHE_at_cache (periodics [ev_active (w)]); 4078 ANHE_at_cache (periodics [ev_active (w)]);
2280 upheap (periodics, ev_active (w)); 4079 upheap (periodics, ev_active (w));
2281 4080
2282 EV_FREQUENT_CHECK; 4081 EV_FREQUENT_CHECK;
2283 4082
2284 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 4083 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2285} 4084}
2286 4085
2287void noinline 4086ecb_noinline
4087void
2288ev_periodic_stop (EV_P_ ev_periodic *w) 4088ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
2289{ 4089{
2290 clear_pending (EV_A_ (W)w); 4090 clear_pending (EV_A_ (W)w);
2291 if (expect_false (!ev_is_active (w))) 4091 if (ecb_expect_false (!ev_is_active (w)))
2292 return; 4092 return;
2293 4093
2294 EV_FREQUENT_CHECK; 4094 EV_FREQUENT_CHECK;
2295 4095
2296 { 4096 {
2297 int active = ev_active (w); 4097 int active = ev_active (w);
2298 4098
2299 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 4099 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2300 4100
2301 --periodiccnt; 4101 --periodiccnt;
2302 4102
2303 if (expect_true (active < periodiccnt + HEAP0)) 4103 if (ecb_expect_true (active < periodiccnt + HEAP0))
2304 { 4104 {
2305 periodics [active] = periodics [periodiccnt + HEAP0]; 4105 periodics [active] = periodics [periodiccnt + HEAP0];
2306 adjustheap (periodics, periodiccnt, active); 4106 adjustheap (periodics, periodiccnt, active);
2307 } 4107 }
2308 } 4108 }
2309 4109
2310 EV_FREQUENT_CHECK;
2311
2312 ev_stop (EV_A_ (W)w); 4110 ev_stop (EV_A_ (W)w);
2313}
2314 4111
2315void noinline 4112 EV_FREQUENT_CHECK;
4113}
4114
4115ecb_noinline
4116void
2316ev_periodic_again (EV_P_ ev_periodic *w) 4117ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
2317{ 4118{
2318 /* TODO: use adjustheap and recalculation */ 4119 /* TODO: use adjustheap and recalculation */
2319 ev_periodic_stop (EV_A_ w); 4120 ev_periodic_stop (EV_A_ w);
2320 ev_periodic_start (EV_A_ w); 4121 ev_periodic_start (EV_A_ w);
2321} 4122}
2323 4124
2324#ifndef SA_RESTART 4125#ifndef SA_RESTART
2325# define SA_RESTART 0 4126# define SA_RESTART 0
2326#endif 4127#endif
2327 4128
2328void noinline 4129#if EV_SIGNAL_ENABLE
4130
4131ecb_noinline
4132void
2329ev_signal_start (EV_P_ ev_signal *w) 4133ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
2330{ 4134{
4135 if (ecb_expect_false (ev_is_active (w)))
4136 return;
4137
4138 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4139
2331#if EV_MULTIPLICITY 4140#if EV_MULTIPLICITY
2332 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4141 assert (("libev: a signal must not be attached to two different loops",
2333#endif 4142 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2334 if (expect_false (ev_is_active (w)))
2335 return;
2336 4143
2337 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 4144 signals [w->signum - 1].loop = EV_A;
4145 ECB_MEMORY_FENCE_RELEASE;
4146#endif
2338 4147
2339 evpipe_init (EV_A);
2340
2341 EV_FREQUENT_CHECK; 4148 EV_FREQUENT_CHECK;
2342 4149
4150#if EV_USE_SIGNALFD
4151 if (sigfd == -2)
2343 { 4152 {
2344#ifndef _WIN32 4153 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2345 sigset_t full, prev; 4154 if (sigfd < 0 && errno == EINVAL)
2346 sigfillset (&full); 4155 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2347 sigprocmask (SIG_SETMASK, &full, &prev);
2348#endif
2349 4156
2350 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 4157 if (sigfd >= 0)
4158 {
4159 fd_intern (sigfd); /* doing it twice will not hurt */
2351 4160
2352#ifndef _WIN32 4161 sigemptyset (&sigfd_set);
2353 sigprocmask (SIG_SETMASK, &prev, 0); 4162
2354#endif 4163 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4164 ev_set_priority (&sigfd_w, EV_MAXPRI);
4165 ev_io_start (EV_A_ &sigfd_w);
4166 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4167 }
2355 } 4168 }
4169
4170 if (sigfd >= 0)
4171 {
4172 /* TODO: check .head */
4173 sigaddset (&sigfd_set, w->signum);
4174 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4175
4176 signalfd (sigfd, &sigfd_set, 0);
4177 }
4178#endif
2356 4179
2357 ev_start (EV_A_ (W)w, 1); 4180 ev_start (EV_A_ (W)w, 1);
2358 wlist_add (&signals [w->signum - 1].head, (WL)w); 4181 wlist_add (&signals [w->signum - 1].head, (WL)w);
2359 4182
2360 if (!((WL)w)->next) 4183 if (!((WL)w)->next)
4184# if EV_USE_SIGNALFD
4185 if (sigfd < 0) /*TODO*/
4186# endif
2361 { 4187 {
2362#if _WIN32 4188# ifdef _WIN32
4189 evpipe_init (EV_A);
4190
2363 signal (w->signum, ev_sighandler); 4191 signal (w->signum, ev_sighandler);
2364#else 4192# else
2365 struct sigaction sa; 4193 struct sigaction sa;
4194
4195 evpipe_init (EV_A);
4196
2366 sa.sa_handler = ev_sighandler; 4197 sa.sa_handler = ev_sighandler;
2367 sigfillset (&sa.sa_mask); 4198 sigfillset (&sa.sa_mask);
2368 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 4199 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2369 sigaction (w->signum, &sa, 0); 4200 sigaction (w->signum, &sa, 0);
4201
4202 if (origflags & EVFLAG_NOSIGMASK)
4203 {
4204 sigemptyset (&sa.sa_mask);
4205 sigaddset (&sa.sa_mask, w->signum);
4206 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4207 }
2370#endif 4208#endif
2371 } 4209 }
2372 4210
2373 EV_FREQUENT_CHECK; 4211 EV_FREQUENT_CHECK;
2374} 4212}
2375 4213
2376void noinline 4214ecb_noinline
4215void
2377ev_signal_stop (EV_P_ ev_signal *w) 4216ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
2378{ 4217{
2379 clear_pending (EV_A_ (W)w); 4218 clear_pending (EV_A_ (W)w);
2380 if (expect_false (!ev_is_active (w))) 4219 if (ecb_expect_false (!ev_is_active (w)))
2381 return; 4220 return;
2382 4221
2383 EV_FREQUENT_CHECK; 4222 EV_FREQUENT_CHECK;
2384 4223
2385 wlist_del (&signals [w->signum - 1].head, (WL)w); 4224 wlist_del (&signals [w->signum - 1].head, (WL)w);
2386 ev_stop (EV_A_ (W)w); 4225 ev_stop (EV_A_ (W)w);
2387 4226
2388 if (!signals [w->signum - 1].head) 4227 if (!signals [w->signum - 1].head)
2389 signal (w->signum, SIG_DFL); 4228 {
2390
2391 EV_FREQUENT_CHECK;
2392}
2393
2394void
2395ev_child_start (EV_P_ ev_child *w)
2396{
2397#if EV_MULTIPLICITY 4229#if EV_MULTIPLICITY
4230 signals [w->signum - 1].loop = 0; /* unattach from signal */
4231#endif
4232#if EV_USE_SIGNALFD
4233 if (sigfd >= 0)
4234 {
4235 sigset_t ss;
4236
4237 sigemptyset (&ss);
4238 sigaddset (&ss, w->signum);
4239 sigdelset (&sigfd_set, w->signum);
4240
4241 signalfd (sigfd, &sigfd_set, 0);
4242 sigprocmask (SIG_UNBLOCK, &ss, 0);
4243 }
4244 else
4245#endif
4246 signal (w->signum, SIG_DFL);
4247 }
4248
4249 EV_FREQUENT_CHECK;
4250}
4251
4252#endif
4253
4254#if EV_CHILD_ENABLE
4255
4256void
4257ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4258{
4259#if EV_MULTIPLICITY
2398 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4260 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2399#endif 4261#endif
2400 if (expect_false (ev_is_active (w))) 4262 if (ecb_expect_false (ev_is_active (w)))
2401 return; 4263 return;
2402 4264
2403 EV_FREQUENT_CHECK; 4265 EV_FREQUENT_CHECK;
2404 4266
2405 ev_start (EV_A_ (W)w, 1); 4267 ev_start (EV_A_ (W)w, 1);
2406 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4268 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2407 4269
2408 EV_FREQUENT_CHECK; 4270 EV_FREQUENT_CHECK;
2409} 4271}
2410 4272
2411void 4273void
2412ev_child_stop (EV_P_ ev_child *w) 4274ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
2413{ 4275{
2414 clear_pending (EV_A_ (W)w); 4276 clear_pending (EV_A_ (W)w);
2415 if (expect_false (!ev_is_active (w))) 4277 if (ecb_expect_false (!ev_is_active (w)))
2416 return; 4278 return;
2417 4279
2418 EV_FREQUENT_CHECK; 4280 EV_FREQUENT_CHECK;
2419 4281
2420 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4282 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2421 ev_stop (EV_A_ (W)w); 4283 ev_stop (EV_A_ (W)w);
2422 4284
2423 EV_FREQUENT_CHECK; 4285 EV_FREQUENT_CHECK;
2424} 4286}
4287
4288#endif
2425 4289
2426#if EV_STAT_ENABLE 4290#if EV_STAT_ENABLE
2427 4291
2428# ifdef _WIN32 4292# ifdef _WIN32
2429# undef lstat 4293# undef lstat
2430# define lstat(a,b) _stati64 (a,b) 4294# define lstat(a,b) _stati64 (a,b)
2431# endif 4295# endif
2432 4296
2433#define DEF_STAT_INTERVAL 5.0074891 4297#define DEF_STAT_INTERVAL 5.0074891
4298#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2434#define MIN_STAT_INTERVAL 0.1074891 4299#define MIN_STAT_INTERVAL 0.1074891
2435 4300
2436static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 4301ecb_noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2437 4302
2438#if EV_USE_INOTIFY 4303#if EV_USE_INOTIFY
2439# define EV_INOTIFY_BUFSIZE 8192
2440 4304
2441static void noinline 4305/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4306# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4307
4308ecb_noinline
4309static void
2442infy_add (EV_P_ ev_stat *w) 4310infy_add (EV_P_ ev_stat *w)
2443{ 4311{
2444 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 4312 w->wd = inotify_add_watch (fs_fd, w->path,
4313 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4314 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4315 | IN_DONT_FOLLOW | IN_MASK_ADD);
2445 4316
2446 if (w->wd < 0) 4317 if (w->wd >= 0)
4318 {
4319 struct statfs sfs;
4320
4321 /* now local changes will be tracked by inotify, but remote changes won't */
4322 /* unless the filesystem is known to be local, we therefore still poll */
4323 /* also do poll on <2.6.25, but with normal frequency */
4324
4325 if (!fs_2625)
4326 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4327 else if (!statfs (w->path, &sfs)
4328 && (sfs.f_type == 0x1373 /* devfs */
4329 || sfs.f_type == 0x4006 /* fat */
4330 || sfs.f_type == 0x4d44 /* msdos */
4331 || sfs.f_type == 0xEF53 /* ext2/3 */
4332 || sfs.f_type == 0x72b6 /* jffs2 */
4333 || sfs.f_type == 0x858458f6 /* ramfs */
4334 || sfs.f_type == 0x5346544e /* ntfs */
4335 || sfs.f_type == 0x3153464a /* jfs */
4336 || sfs.f_type == 0x9123683e /* btrfs */
4337 || sfs.f_type == 0x52654973 /* reiser3 */
4338 || sfs.f_type == 0x01021994 /* tmpfs */
4339 || sfs.f_type == 0x58465342 /* xfs */))
4340 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4341 else
4342 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2447 { 4343 }
2448 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 4344 else
4345 {
4346 /* can't use inotify, continue to stat */
4347 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2449 4348
2450 /* monitor some parent directory for speedup hints */ 4349 /* if path is not there, monitor some parent directory for speedup hints */
2451 /* note that exceeding the hardcoded limit is not a correctness issue, */ 4350 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2452 /* but an efficiency issue only */ 4351 /* but an efficiency issue only */
2453 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4352 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2454 { 4353 {
2455 char path [4096]; 4354 char path [4096];
2456 strcpy (path, w->path); 4355 strcpy (path, w->path);
2460 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 4359 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2461 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 4360 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2462 4361
2463 char *pend = strrchr (path, '/'); 4362 char *pend = strrchr (path, '/');
2464 4363
2465 if (!pend) 4364 if (!pend || pend == path)
2466 break; /* whoops, no '/', complain to your admin */ 4365 break;
2467 4366
2468 *pend = 0; 4367 *pend = 0;
2469 w->wd = inotify_add_watch (fs_fd, path, mask); 4368 w->wd = inotify_add_watch (fs_fd, path, mask);
2470 } 4369 }
2471 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4370 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2472 } 4371 }
2473 } 4372 }
2474 else
2475 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2476 4373
2477 if (w->wd >= 0) 4374 if (w->wd >= 0)
2478 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4375 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2479}
2480 4376
2481static void noinline 4377 /* now re-arm timer, if required */
4378 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4379 ev_timer_again (EV_A_ &w->timer);
4380 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4381}
4382
4383ecb_noinline
4384static void
2482infy_del (EV_P_ ev_stat *w) 4385infy_del (EV_P_ ev_stat *w)
2483{ 4386{
2484 int slot; 4387 int slot;
2485 int wd = w->wd; 4388 int wd = w->wd;
2486 4389
2487 if (wd < 0) 4390 if (wd < 0)
2488 return; 4391 return;
2489 4392
2490 w->wd = -2; 4393 w->wd = -2;
2491 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4394 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2492 wlist_del (&fs_hash [slot].head, (WL)w); 4395 wlist_del (&fs_hash [slot].head, (WL)w);
2493 4396
2494 /* remove this watcher, if others are watching it, they will rearm */ 4397 /* remove this watcher, if others are watching it, they will rearm */
2495 inotify_rm_watch (fs_fd, wd); 4398 inotify_rm_watch (fs_fd, wd);
2496} 4399}
2497 4400
2498static void noinline 4401ecb_noinline
4402static void
2499infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4403infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2500{ 4404{
2501 if (slot < 0) 4405 if (slot < 0)
2502 /* overflow, need to check for all hash slots */ 4406 /* overflow, need to check for all hash slots */
2503 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4407 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2504 infy_wd (EV_A_ slot, wd, ev); 4408 infy_wd (EV_A_ slot, wd, ev);
2505 else 4409 else
2506 { 4410 {
2507 WL w_; 4411 WL w_;
2508 4412
2509 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4413 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2510 { 4414 {
2511 ev_stat *w = (ev_stat *)w_; 4415 ev_stat *w = (ev_stat *)w_;
2512 w_ = w_->next; /* lets us remove this watcher and all before it */ 4416 w_ = w_->next; /* lets us remove this watcher and all before it */
2513 4417
2514 if (w->wd == wd || wd == -1) 4418 if (w->wd == wd || wd == -1)
2515 { 4419 {
2516 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4420 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2517 { 4421 {
4422 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2518 w->wd = -1; 4423 w->wd = -1;
2519 infy_add (EV_A_ w); /* re-add, no matter what */ 4424 infy_add (EV_A_ w); /* re-add, no matter what */
2520 } 4425 }
2521 4426
2522 stat_timer_cb (EV_A_ &w->timer, 0); 4427 stat_timer_cb (EV_A_ &w->timer, 0);
2527 4432
2528static void 4433static void
2529infy_cb (EV_P_ ev_io *w, int revents) 4434infy_cb (EV_P_ ev_io *w, int revents)
2530{ 4435{
2531 char buf [EV_INOTIFY_BUFSIZE]; 4436 char buf [EV_INOTIFY_BUFSIZE];
2532 struct inotify_event *ev = (struct inotify_event *)buf;
2533 int ofs; 4437 int ofs;
2534 int len = read (fs_fd, buf, sizeof (buf)); 4438 int len = read (fs_fd, buf, sizeof (buf));
2535 4439
2536 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4440 for (ofs = 0; ofs < len; )
4441 {
4442 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2537 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4443 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4444 ofs += sizeof (struct inotify_event) + ev->len;
4445 }
2538} 4446}
2539 4447
2540void inline_size 4448inline_size ecb_cold
2541infy_init (EV_P) 4449void
4450ev_check_2625 (EV_P)
2542{ 4451{
2543 if (fs_fd != -2)
2544 return;
2545
2546 /* kernels < 2.6.25 are borked 4452 /* kernels < 2.6.25 are borked
2547 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 4453 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2548 */ 4454 */
2549 { 4455 if (ev_linux_version () < 0x020619)
2550 struct utsname buf; 4456 return;
2551 int major, minor, micro;
2552 4457
4458 fs_2625 = 1;
4459}
4460
4461inline_size int
4462infy_newfd (void)
4463{
4464#if defined IN_CLOEXEC && defined IN_NONBLOCK
4465 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4466 if (fd >= 0)
4467 return fd;
4468#endif
4469 return inotify_init ();
4470}
4471
4472inline_size void
4473infy_init (EV_P)
4474{
4475 if (fs_fd != -2)
4476 return;
4477
2553 fs_fd = -1; 4478 fs_fd = -1;
2554 4479
2555 if (uname (&buf)) 4480 ev_check_2625 (EV_A);
2556 return;
2557 4481
2558 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2559 return;
2560
2561 if (major < 2
2562 || (major == 2 && minor < 6)
2563 || (major == 2 && minor == 6 && micro < 25))
2564 return;
2565 }
2566
2567 fs_fd = inotify_init (); 4482 fs_fd = infy_newfd ();
2568 4483
2569 if (fs_fd >= 0) 4484 if (fs_fd >= 0)
2570 { 4485 {
4486 fd_intern (fs_fd);
2571 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4487 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2572 ev_set_priority (&fs_w, EV_MAXPRI); 4488 ev_set_priority (&fs_w, EV_MAXPRI);
2573 ev_io_start (EV_A_ &fs_w); 4489 ev_io_start (EV_A_ &fs_w);
4490 ev_unref (EV_A);
2574 } 4491 }
2575} 4492}
2576 4493
2577void inline_size 4494inline_size void
2578infy_fork (EV_P) 4495infy_fork (EV_P)
2579{ 4496{
2580 int slot; 4497 int slot;
2581 4498
2582 if (fs_fd < 0) 4499 if (fs_fd < 0)
2583 return; 4500 return;
2584 4501
4502 ev_ref (EV_A);
4503 ev_io_stop (EV_A_ &fs_w);
2585 close (fs_fd); 4504 close (fs_fd);
2586 fs_fd = inotify_init (); 4505 fs_fd = infy_newfd ();
2587 4506
4507 if (fs_fd >= 0)
4508 {
4509 fd_intern (fs_fd);
4510 ev_io_set (&fs_w, fs_fd, EV_READ);
4511 ev_io_start (EV_A_ &fs_w);
4512 ev_unref (EV_A);
4513 }
4514
2588 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4515 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2589 { 4516 {
2590 WL w_ = fs_hash [slot].head; 4517 WL w_ = fs_hash [slot].head;
2591 fs_hash [slot].head = 0; 4518 fs_hash [slot].head = 0;
2592 4519
2593 while (w_) 4520 while (w_)
2598 w->wd = -1; 4525 w->wd = -1;
2599 4526
2600 if (fs_fd >= 0) 4527 if (fs_fd >= 0)
2601 infy_add (EV_A_ w); /* re-add, no matter what */ 4528 infy_add (EV_A_ w); /* re-add, no matter what */
2602 else 4529 else
4530 {
4531 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4532 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2603 ev_timer_start (EV_A_ &w->timer); 4533 ev_timer_again (EV_A_ &w->timer);
4534 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4535 }
2604 } 4536 }
2605 } 4537 }
2606} 4538}
2607 4539
2608#endif 4540#endif
2612#else 4544#else
2613# define EV_LSTAT(p,b) lstat (p, b) 4545# define EV_LSTAT(p,b) lstat (p, b)
2614#endif 4546#endif
2615 4547
2616void 4548void
2617ev_stat_stat (EV_P_ ev_stat *w) 4549ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
2618{ 4550{
2619 if (lstat (w->path, &w->attr) < 0) 4551 if (lstat (w->path, &w->attr) < 0)
2620 w->attr.st_nlink = 0; 4552 w->attr.st_nlink = 0;
2621 else if (!w->attr.st_nlink) 4553 else if (!w->attr.st_nlink)
2622 w->attr.st_nlink = 1; 4554 w->attr.st_nlink = 1;
2623} 4555}
2624 4556
2625static void noinline 4557ecb_noinline
4558static void
2626stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4559stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2627{ 4560{
2628 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4561 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2629 4562
2630 /* we copy this here each the time so that */ 4563 ev_statdata prev = w->attr;
2631 /* prev has the old value when the callback gets invoked */
2632 w->prev = w->attr;
2633 ev_stat_stat (EV_A_ w); 4564 ev_stat_stat (EV_A_ w);
2634 4565
2635 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4566 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2636 if ( 4567 if (
2637 w->prev.st_dev != w->attr.st_dev 4568 prev.st_dev != w->attr.st_dev
2638 || w->prev.st_ino != w->attr.st_ino 4569 || prev.st_ino != w->attr.st_ino
2639 || w->prev.st_mode != w->attr.st_mode 4570 || prev.st_mode != w->attr.st_mode
2640 || w->prev.st_nlink != w->attr.st_nlink 4571 || prev.st_nlink != w->attr.st_nlink
2641 || w->prev.st_uid != w->attr.st_uid 4572 || prev.st_uid != w->attr.st_uid
2642 || w->prev.st_gid != w->attr.st_gid 4573 || prev.st_gid != w->attr.st_gid
2643 || w->prev.st_rdev != w->attr.st_rdev 4574 || prev.st_rdev != w->attr.st_rdev
2644 || w->prev.st_size != w->attr.st_size 4575 || prev.st_size != w->attr.st_size
2645 || w->prev.st_atime != w->attr.st_atime 4576 || prev.st_atime != w->attr.st_atime
2646 || w->prev.st_mtime != w->attr.st_mtime 4577 || prev.st_mtime != w->attr.st_mtime
2647 || w->prev.st_ctime != w->attr.st_ctime 4578 || prev.st_ctime != w->attr.st_ctime
2648 ) { 4579 ) {
4580 /* we only update w->prev on actual differences */
4581 /* in case we test more often than invoke the callback, */
4582 /* to ensure that prev is always different to attr */
4583 w->prev = prev;
4584
2649 #if EV_USE_INOTIFY 4585 #if EV_USE_INOTIFY
2650 if (fs_fd >= 0) 4586 if (fs_fd >= 0)
2651 { 4587 {
2652 infy_del (EV_A_ w); 4588 infy_del (EV_A_ w);
2653 infy_add (EV_A_ w); 4589 infy_add (EV_A_ w);
2658 ev_feed_event (EV_A_ w, EV_STAT); 4594 ev_feed_event (EV_A_ w, EV_STAT);
2659 } 4595 }
2660} 4596}
2661 4597
2662void 4598void
2663ev_stat_start (EV_P_ ev_stat *w) 4599ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
2664{ 4600{
2665 if (expect_false (ev_is_active (w))) 4601 if (ecb_expect_false (ev_is_active (w)))
2666 return; 4602 return;
2667 4603
2668 /* since we use memcmp, we need to clear any padding data etc. */
2669 memset (&w->prev, 0, sizeof (ev_statdata));
2670 memset (&w->attr, 0, sizeof (ev_statdata));
2671
2672 ev_stat_stat (EV_A_ w); 4604 ev_stat_stat (EV_A_ w);
2673 4605
4606 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2674 if (w->interval < MIN_STAT_INTERVAL) 4607 w->interval = MIN_STAT_INTERVAL;
2675 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2676 4608
2677 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4609 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2678 ev_set_priority (&w->timer, ev_priority (w)); 4610 ev_set_priority (&w->timer, ev_priority (w));
2679 4611
2680#if EV_USE_INOTIFY 4612#if EV_USE_INOTIFY
2681 infy_init (EV_A); 4613 infy_init (EV_A);
2682 4614
2683 if (fs_fd >= 0) 4615 if (fs_fd >= 0)
2684 infy_add (EV_A_ w); 4616 infy_add (EV_A_ w);
2685 else 4617 else
2686#endif 4618#endif
4619 {
2687 ev_timer_start (EV_A_ &w->timer); 4620 ev_timer_again (EV_A_ &w->timer);
4621 ev_unref (EV_A);
4622 }
2688 4623
2689 ev_start (EV_A_ (W)w, 1); 4624 ev_start (EV_A_ (W)w, 1);
2690 4625
2691 EV_FREQUENT_CHECK; 4626 EV_FREQUENT_CHECK;
2692} 4627}
2693 4628
2694void 4629void
2695ev_stat_stop (EV_P_ ev_stat *w) 4630ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
2696{ 4631{
2697 clear_pending (EV_A_ (W)w); 4632 clear_pending (EV_A_ (W)w);
2698 if (expect_false (!ev_is_active (w))) 4633 if (ecb_expect_false (!ev_is_active (w)))
2699 return; 4634 return;
2700 4635
2701 EV_FREQUENT_CHECK; 4636 EV_FREQUENT_CHECK;
2702 4637
2703#if EV_USE_INOTIFY 4638#if EV_USE_INOTIFY
2704 infy_del (EV_A_ w); 4639 infy_del (EV_A_ w);
2705#endif 4640#endif
4641
4642 if (ev_is_active (&w->timer))
4643 {
4644 ev_ref (EV_A);
2706 ev_timer_stop (EV_A_ &w->timer); 4645 ev_timer_stop (EV_A_ &w->timer);
4646 }
2707 4647
2708 ev_stop (EV_A_ (W)w); 4648 ev_stop (EV_A_ (W)w);
2709 4649
2710 EV_FREQUENT_CHECK; 4650 EV_FREQUENT_CHECK;
2711} 4651}
2712#endif 4652#endif
2713 4653
2714#if EV_IDLE_ENABLE 4654#if EV_IDLE_ENABLE
2715void 4655void
2716ev_idle_start (EV_P_ ev_idle *w) 4656ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
2717{ 4657{
2718 if (expect_false (ev_is_active (w))) 4658 if (ecb_expect_false (ev_is_active (w)))
2719 return; 4659 return;
2720 4660
2721 pri_adjust (EV_A_ (W)w); 4661 pri_adjust (EV_A_ (W)w);
2722 4662
2723 EV_FREQUENT_CHECK; 4663 EV_FREQUENT_CHECK;
2726 int active = ++idlecnt [ABSPRI (w)]; 4666 int active = ++idlecnt [ABSPRI (w)];
2727 4667
2728 ++idleall; 4668 ++idleall;
2729 ev_start (EV_A_ (W)w, active); 4669 ev_start (EV_A_ (W)w, active);
2730 4670
2731 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 4671 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
2732 idles [ABSPRI (w)][active - 1] = w; 4672 idles [ABSPRI (w)][active - 1] = w;
2733 } 4673 }
2734 4674
2735 EV_FREQUENT_CHECK; 4675 EV_FREQUENT_CHECK;
2736} 4676}
2737 4677
2738void 4678void
2739ev_idle_stop (EV_P_ ev_idle *w) 4679ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
2740{ 4680{
2741 clear_pending (EV_A_ (W)w); 4681 clear_pending (EV_A_ (W)w);
2742 if (expect_false (!ev_is_active (w))) 4682 if (ecb_expect_false (!ev_is_active (w)))
2743 return; 4683 return;
2744 4684
2745 EV_FREQUENT_CHECK; 4685 EV_FREQUENT_CHECK;
2746 4686
2747 { 4687 {
2756 4696
2757 EV_FREQUENT_CHECK; 4697 EV_FREQUENT_CHECK;
2758} 4698}
2759#endif 4699#endif
2760 4700
4701#if EV_PREPARE_ENABLE
2761void 4702void
2762ev_prepare_start (EV_P_ ev_prepare *w) 4703ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
2763{ 4704{
2764 if (expect_false (ev_is_active (w))) 4705 if (ecb_expect_false (ev_is_active (w)))
2765 return; 4706 return;
2766 4707
2767 EV_FREQUENT_CHECK; 4708 EV_FREQUENT_CHECK;
2768 4709
2769 ev_start (EV_A_ (W)w, ++preparecnt); 4710 ev_start (EV_A_ (W)w, ++preparecnt);
2770 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4711 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
2771 prepares [preparecnt - 1] = w; 4712 prepares [preparecnt - 1] = w;
2772 4713
2773 EV_FREQUENT_CHECK; 4714 EV_FREQUENT_CHECK;
2774} 4715}
2775 4716
2776void 4717void
2777ev_prepare_stop (EV_P_ ev_prepare *w) 4718ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
2778{ 4719{
2779 clear_pending (EV_A_ (W)w); 4720 clear_pending (EV_A_ (W)w);
2780 if (expect_false (!ev_is_active (w))) 4721 if (ecb_expect_false (!ev_is_active (w)))
2781 return; 4722 return;
2782 4723
2783 EV_FREQUENT_CHECK; 4724 EV_FREQUENT_CHECK;
2784 4725
2785 { 4726 {
2791 4732
2792 ev_stop (EV_A_ (W)w); 4733 ev_stop (EV_A_ (W)w);
2793 4734
2794 EV_FREQUENT_CHECK; 4735 EV_FREQUENT_CHECK;
2795} 4736}
4737#endif
2796 4738
4739#if EV_CHECK_ENABLE
2797void 4740void
2798ev_check_start (EV_P_ ev_check *w) 4741ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
2799{ 4742{
2800 if (expect_false (ev_is_active (w))) 4743 if (ecb_expect_false (ev_is_active (w)))
2801 return; 4744 return;
2802 4745
2803 EV_FREQUENT_CHECK; 4746 EV_FREQUENT_CHECK;
2804 4747
2805 ev_start (EV_A_ (W)w, ++checkcnt); 4748 ev_start (EV_A_ (W)w, ++checkcnt);
2806 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4749 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
2807 checks [checkcnt - 1] = w; 4750 checks [checkcnt - 1] = w;
2808 4751
2809 EV_FREQUENT_CHECK; 4752 EV_FREQUENT_CHECK;
2810} 4753}
2811 4754
2812void 4755void
2813ev_check_stop (EV_P_ ev_check *w) 4756ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
2814{ 4757{
2815 clear_pending (EV_A_ (W)w); 4758 clear_pending (EV_A_ (W)w);
2816 if (expect_false (!ev_is_active (w))) 4759 if (ecb_expect_false (!ev_is_active (w)))
2817 return; 4760 return;
2818 4761
2819 EV_FREQUENT_CHECK; 4762 EV_FREQUENT_CHECK;
2820 4763
2821 { 4764 {
2827 4770
2828 ev_stop (EV_A_ (W)w); 4771 ev_stop (EV_A_ (W)w);
2829 4772
2830 EV_FREQUENT_CHECK; 4773 EV_FREQUENT_CHECK;
2831} 4774}
4775#endif
2832 4776
2833#if EV_EMBED_ENABLE 4777#if EV_EMBED_ENABLE
2834void noinline 4778ecb_noinline
4779void
2835ev_embed_sweep (EV_P_ ev_embed *w) 4780ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
2836{ 4781{
2837 ev_loop (w->other, EVLOOP_NONBLOCK); 4782 ev_run (w->other, EVRUN_NOWAIT);
2838} 4783}
2839 4784
2840static void 4785static void
2841embed_io_cb (EV_P_ ev_io *io, int revents) 4786embed_io_cb (EV_P_ ev_io *io, int revents)
2842{ 4787{
2843 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4788 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2844 4789
2845 if (ev_cb (w)) 4790 if (ev_cb (w))
2846 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4791 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2847 else 4792 else
2848 ev_loop (w->other, EVLOOP_NONBLOCK); 4793 ev_run (w->other, EVRUN_NOWAIT);
2849} 4794}
2850 4795
2851static void 4796static void
2852embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4797embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2853{ 4798{
2854 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4799 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2855 4800
2856 { 4801 {
2857 struct ev_loop *loop = w->other; 4802 EV_P = w->other;
2858 4803
2859 while (fdchangecnt) 4804 while (fdchangecnt)
2860 { 4805 {
2861 fd_reify (EV_A); 4806 fd_reify (EV_A);
2862 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4807 ev_run (EV_A_ EVRUN_NOWAIT);
2863 } 4808 }
2864 } 4809 }
2865} 4810}
2866 4811
2867static void 4812static void
2868embed_fork_cb (EV_P_ ev_fork *fork_w, int revents) 4813embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2869{ 4814{
2870 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 4815 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2871 4816
4817 ev_embed_stop (EV_A_ w);
4818
2872 { 4819 {
2873 struct ev_loop *loop = w->other; 4820 EV_P = w->other;
2874 4821
2875 ev_loop_fork (EV_A); 4822 ev_loop_fork (EV_A);
4823 ev_run (EV_A_ EVRUN_NOWAIT);
2876 } 4824 }
4825
4826 ev_embed_start (EV_A_ w);
2877} 4827}
2878 4828
2879#if 0 4829#if 0
2880static void 4830static void
2881embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4831embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2883 ev_idle_stop (EV_A_ idle); 4833 ev_idle_stop (EV_A_ idle);
2884} 4834}
2885#endif 4835#endif
2886 4836
2887void 4837void
2888ev_embed_start (EV_P_ ev_embed *w) 4838ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
2889{ 4839{
2890 if (expect_false (ev_is_active (w))) 4840 if (ecb_expect_false (ev_is_active (w)))
2891 return; 4841 return;
2892 4842
2893 { 4843 {
2894 struct ev_loop *loop = w->other; 4844 EV_P = w->other;
2895 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4845 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2896 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4846 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2897 } 4847 }
2898 4848
2899 EV_FREQUENT_CHECK; 4849 EV_FREQUENT_CHECK;
2900 4850
2914 4864
2915 EV_FREQUENT_CHECK; 4865 EV_FREQUENT_CHECK;
2916} 4866}
2917 4867
2918void 4868void
2919ev_embed_stop (EV_P_ ev_embed *w) 4869ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
2920{ 4870{
2921 clear_pending (EV_A_ (W)w); 4871 clear_pending (EV_A_ (W)w);
2922 if (expect_false (!ev_is_active (w))) 4872 if (ecb_expect_false (!ev_is_active (w)))
2923 return; 4873 return;
2924 4874
2925 EV_FREQUENT_CHECK; 4875 EV_FREQUENT_CHECK;
2926 4876
2927 ev_io_stop (EV_A_ &w->io); 4877 ev_io_stop (EV_A_ &w->io);
2928 ev_prepare_stop (EV_A_ &w->prepare); 4878 ev_prepare_stop (EV_A_ &w->prepare);
2929 ev_fork_stop (EV_A_ &w->fork); 4879 ev_fork_stop (EV_A_ &w->fork);
2930 4880
4881 ev_stop (EV_A_ (W)w);
4882
2931 EV_FREQUENT_CHECK; 4883 EV_FREQUENT_CHECK;
2932} 4884}
2933#endif 4885#endif
2934 4886
2935#if EV_FORK_ENABLE 4887#if EV_FORK_ENABLE
2936void 4888void
2937ev_fork_start (EV_P_ ev_fork *w) 4889ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
2938{ 4890{
2939 if (expect_false (ev_is_active (w))) 4891 if (ecb_expect_false (ev_is_active (w)))
2940 return; 4892 return;
2941 4893
2942 EV_FREQUENT_CHECK; 4894 EV_FREQUENT_CHECK;
2943 4895
2944 ev_start (EV_A_ (W)w, ++forkcnt); 4896 ev_start (EV_A_ (W)w, ++forkcnt);
2945 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4897 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
2946 forks [forkcnt - 1] = w; 4898 forks [forkcnt - 1] = w;
2947 4899
2948 EV_FREQUENT_CHECK; 4900 EV_FREQUENT_CHECK;
2949} 4901}
2950 4902
2951void 4903void
2952ev_fork_stop (EV_P_ ev_fork *w) 4904ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
2953{ 4905{
2954 clear_pending (EV_A_ (W)w); 4906 clear_pending (EV_A_ (W)w);
2955 if (expect_false (!ev_is_active (w))) 4907 if (ecb_expect_false (!ev_is_active (w)))
2956 return; 4908 return;
2957 4909
2958 EV_FREQUENT_CHECK; 4910 EV_FREQUENT_CHECK;
2959 4911
2960 { 4912 {
2968 4920
2969 EV_FREQUENT_CHECK; 4921 EV_FREQUENT_CHECK;
2970} 4922}
2971#endif 4923#endif
2972 4924
4925#if EV_CLEANUP_ENABLE
4926void
4927ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
4928{
4929 if (ecb_expect_false (ev_is_active (w)))
4930 return;
4931
4932 EV_FREQUENT_CHECK;
4933
4934 ev_start (EV_A_ (W)w, ++cleanupcnt);
4935 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
4936 cleanups [cleanupcnt - 1] = w;
4937
4938 /* cleanup watchers should never keep a refcount on the loop */
4939 ev_unref (EV_A);
4940 EV_FREQUENT_CHECK;
4941}
4942
4943void
4944ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
4945{
4946 clear_pending (EV_A_ (W)w);
4947 if (ecb_expect_false (!ev_is_active (w)))
4948 return;
4949
4950 EV_FREQUENT_CHECK;
4951 ev_ref (EV_A);
4952
4953 {
4954 int active = ev_active (w);
4955
4956 cleanups [active - 1] = cleanups [--cleanupcnt];
4957 ev_active (cleanups [active - 1]) = active;
4958 }
4959
4960 ev_stop (EV_A_ (W)w);
4961
4962 EV_FREQUENT_CHECK;
4963}
4964#endif
4965
2973#if EV_ASYNC_ENABLE 4966#if EV_ASYNC_ENABLE
2974void 4967void
2975ev_async_start (EV_P_ ev_async *w) 4968ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
2976{ 4969{
2977 if (expect_false (ev_is_active (w))) 4970 if (ecb_expect_false (ev_is_active (w)))
2978 return; 4971 return;
2979 4972
4973 w->sent = 0;
4974
2980 evpipe_init (EV_A); 4975 evpipe_init (EV_A);
2981 4976
2982 EV_FREQUENT_CHECK; 4977 EV_FREQUENT_CHECK;
2983 4978
2984 ev_start (EV_A_ (W)w, ++asynccnt); 4979 ev_start (EV_A_ (W)w, ++asynccnt);
2985 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 4980 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
2986 asyncs [asynccnt - 1] = w; 4981 asyncs [asynccnt - 1] = w;
2987 4982
2988 EV_FREQUENT_CHECK; 4983 EV_FREQUENT_CHECK;
2989} 4984}
2990 4985
2991void 4986void
2992ev_async_stop (EV_P_ ev_async *w) 4987ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
2993{ 4988{
2994 clear_pending (EV_A_ (W)w); 4989 clear_pending (EV_A_ (W)w);
2995 if (expect_false (!ev_is_active (w))) 4990 if (ecb_expect_false (!ev_is_active (w)))
2996 return; 4991 return;
2997 4992
2998 EV_FREQUENT_CHECK; 4993 EV_FREQUENT_CHECK;
2999 4994
3000 { 4995 {
3008 5003
3009 EV_FREQUENT_CHECK; 5004 EV_FREQUENT_CHECK;
3010} 5005}
3011 5006
3012void 5007void
3013ev_async_send (EV_P_ ev_async *w) 5008ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
3014{ 5009{
3015 w->sent = 1; 5010 w->sent = 1;
3016 evpipe_write (EV_A_ &gotasync); 5011 evpipe_write (EV_A_ &async_pending);
3017} 5012}
3018#endif 5013#endif
3019 5014
3020/*****************************************************************************/ 5015/*****************************************************************************/
3021 5016
3055 5050
3056 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io)); 5051 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3057} 5052}
3058 5053
3059void 5054void
3060ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 5055ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
3061{ 5056{
3062 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 5057 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3063
3064 if (expect_false (!once))
3065 {
3066 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
3067 return;
3068 }
3069 5058
3070 once->cb = cb; 5059 once->cb = cb;
3071 once->arg = arg; 5060 once->arg = arg;
3072 5061
3073 ev_init (&once->io, once_cb_io); 5062 ev_init (&once->io, once_cb_io);
3083 ev_timer_set (&once->to, timeout, 0.); 5072 ev_timer_set (&once->to, timeout, 0.);
3084 ev_timer_start (EV_A_ &once->to); 5073 ev_timer_start (EV_A_ &once->to);
3085 } 5074 }
3086} 5075}
3087 5076
5077/*****************************************************************************/
5078
5079#if EV_WALK_ENABLE
5080ecb_cold
5081void
5082ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5083{
5084 int i, j;
5085 ev_watcher_list *wl, *wn;
5086
5087 if (types & (EV_IO | EV_EMBED))
5088 for (i = 0; i < anfdmax; ++i)
5089 for (wl = anfds [i].head; wl; )
5090 {
5091 wn = wl->next;
5092
5093#if EV_EMBED_ENABLE
5094 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5095 {
5096 if (types & EV_EMBED)
5097 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5098 }
5099 else
5100#endif
5101#if EV_USE_INOTIFY
5102 if (ev_cb ((ev_io *)wl) == infy_cb)
5103 ;
5104 else
5105#endif
5106 if ((ev_io *)wl != &pipe_w)
5107 if (types & EV_IO)
5108 cb (EV_A_ EV_IO, wl);
5109
5110 wl = wn;
5111 }
5112
5113 if (types & (EV_TIMER | EV_STAT))
5114 for (i = timercnt + HEAP0; i-- > HEAP0; )
5115#if EV_STAT_ENABLE
5116 /*TODO: timer is not always active*/
5117 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5118 {
5119 if (types & EV_STAT)
5120 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5121 }
5122 else
5123#endif
5124 if (types & EV_TIMER)
5125 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5126
5127#if EV_PERIODIC_ENABLE
5128 if (types & EV_PERIODIC)
5129 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5130 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5131#endif
5132
5133#if EV_IDLE_ENABLE
5134 if (types & EV_IDLE)
5135 for (j = NUMPRI; j--; )
5136 for (i = idlecnt [j]; i--; )
5137 cb (EV_A_ EV_IDLE, idles [j][i]);
5138#endif
5139
5140#if EV_FORK_ENABLE
5141 if (types & EV_FORK)
5142 for (i = forkcnt; i--; )
5143 if (ev_cb (forks [i]) != embed_fork_cb)
5144 cb (EV_A_ EV_FORK, forks [i]);
5145#endif
5146
5147#if EV_ASYNC_ENABLE
5148 if (types & EV_ASYNC)
5149 for (i = asynccnt; i--; )
5150 cb (EV_A_ EV_ASYNC, asyncs [i]);
5151#endif
5152
5153#if EV_PREPARE_ENABLE
5154 if (types & EV_PREPARE)
5155 for (i = preparecnt; i--; )
5156# if EV_EMBED_ENABLE
5157 if (ev_cb (prepares [i]) != embed_prepare_cb)
5158# endif
5159 cb (EV_A_ EV_PREPARE, prepares [i]);
5160#endif
5161
5162#if EV_CHECK_ENABLE
5163 if (types & EV_CHECK)
5164 for (i = checkcnt; i--; )
5165 cb (EV_A_ EV_CHECK, checks [i]);
5166#endif
5167
5168#if EV_SIGNAL_ENABLE
5169 if (types & EV_SIGNAL)
5170 for (i = 0; i < EV_NSIG - 1; ++i)
5171 for (wl = signals [i].head; wl; )
5172 {
5173 wn = wl->next;
5174 cb (EV_A_ EV_SIGNAL, wl);
5175 wl = wn;
5176 }
5177#endif
5178
5179#if EV_CHILD_ENABLE
5180 if (types & EV_CHILD)
5181 for (i = (EV_PID_HASHSIZE); i--; )
5182 for (wl = childs [i]; wl; )
5183 {
5184 wn = wl->next;
5185 cb (EV_A_ EV_CHILD, wl);
5186 wl = wn;
5187 }
5188#endif
5189/* EV_STAT 0x00001000 /* stat data changed */
5190/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5191}
5192#endif
5193
3088#if EV_MULTIPLICITY 5194#if EV_MULTIPLICITY
3089 #include "ev_wrap.h" 5195 #include "ev_wrap.h"
3090#endif 5196#endif
3091 5197
3092#ifdef __cplusplus
3093}
3094#endif
3095

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines