ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.92 by root, Sun Nov 11 00:08:54 2007 UTC vs.
Revision 1.501 by root, Mon Jul 1 21:47:42 2019 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
37# include "config.h" 45# include "config.h"
46# endif
47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
38 67
39# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
69# ifndef EV_USE_MONOTONIC
40# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
71# endif
72# ifndef EV_USE_REALTIME
41# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
74# endif
75# else
76# ifndef EV_USE_MONOTONIC
77# define EV_USE_MONOTONIC 0
78# endif
79# ifndef EV_USE_REALTIME
80# define EV_USE_REALTIME 0
81# endif
42# endif 82# endif
43 83
84# if HAVE_NANOSLEEP
85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
91# endif
92
44# if HAVE_SELECT && HAVE_SYS_SELECT_H 93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
45# define EV_USE_SELECT 1 99# define EV_USE_SELECT 0
46# endif 100# endif
47 101
48# if HAVE_POLL && HAVE_POLL_H 102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
49# define EV_USE_POLL 1 108# define EV_USE_POLL 0
50# endif 109# endif
51 110
52# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
115# else
116# undef EV_USE_EPOLL
53# define EV_USE_EPOLL 1 117# define EV_USE_EPOLL 0
54# endif 118# endif
55 119
56# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 120# if HAVE_LINUX_AIO_ABI_H
57# define EV_USE_KQUEUE 1 121# ifndef EV_USE_LINUXAIO
122# define EV_USE_LINUXAIO EV_FEATURE_BACKENDS
123# endif
124# else
125# undef EV_USE_LINUXAIO
126# define EV_USE_LINUXAIO 0
58# endif 127# endif
59 128
129# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
130# ifndef EV_USE_KQUEUE
131# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
132# endif
133# else
134# undef EV_USE_KQUEUE
135# define EV_USE_KQUEUE 0
60#endif 136# endif
137
138# if HAVE_PORT_H && HAVE_PORT_CREATE
139# ifndef EV_USE_PORT
140# define EV_USE_PORT EV_FEATURE_BACKENDS
141# endif
142# else
143# undef EV_USE_PORT
144# define EV_USE_PORT 0
145# endif
61 146
62#include <math.h> 147# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
148# ifndef EV_USE_INOTIFY
149# define EV_USE_INOTIFY EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_INOTIFY
153# define EV_USE_INOTIFY 0
154# endif
155
156# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
157# ifndef EV_USE_SIGNALFD
158# define EV_USE_SIGNALFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_SIGNALFD
162# define EV_USE_SIGNALFD 0
163# endif
164
165# if HAVE_EVENTFD
166# ifndef EV_USE_EVENTFD
167# define EV_USE_EVENTFD EV_FEATURE_OS
168# endif
169# else
170# undef EV_USE_EVENTFD
171# define EV_USE_EVENTFD 0
172# endif
173
174#endif
175
176/* OS X, in its infinite idiocy, actually HARDCODES
177 * a limit of 1024 into their select. Where people have brains,
178 * OS X engineers apparently have a vacuum. Or maybe they were
179 * ordered to have a vacuum, or they do anything for money.
180 * This might help. Or not.
181 * Note that this must be defined early, as other include files
182 * will rely on this define as well.
183 */
184#define _DARWIN_UNLIMITED_SELECT 1
185
63#include <stdlib.h> 186#include <stdlib.h>
187#include <string.h>
64#include <fcntl.h> 188#include <fcntl.h>
65#include <stddef.h> 189#include <stddef.h>
66 190
67#include <stdio.h> 191#include <stdio.h>
68 192
69#include <assert.h> 193#include <assert.h>
70#include <errno.h> 194#include <errno.h>
71#include <sys/types.h> 195#include <sys/types.h>
72#include <time.h> 196#include <time.h>
197#include <limits.h>
73 198
74#include <signal.h> 199#include <signal.h>
75 200
201#ifdef EV_H
202# include EV_H
203#else
204# include "ev.h"
205#endif
206
207#if EV_NO_THREADS
208# undef EV_NO_SMP
209# define EV_NO_SMP 1
210# undef ECB_NO_THREADS
211# define ECB_NO_THREADS 1
212#endif
213#if EV_NO_SMP
214# undef EV_NO_SMP
215# define ECB_NO_SMP 1
216#endif
217
76#ifndef WIN32 218#ifndef _WIN32
77# include <unistd.h>
78# include <sys/time.h> 219# include <sys/time.h>
79# include <sys/wait.h> 220# include <sys/wait.h>
221# include <unistd.h>
222#else
223# include <io.h>
224# define WIN32_LEAN_AND_MEAN
225# include <winsock2.h>
226# include <windows.h>
227# ifndef EV_SELECT_IS_WINSOCKET
228# define EV_SELECT_IS_WINSOCKET 1
80#endif 229# endif
81/**/ 230# undef EV_AVOID_STDIO
231#endif
232
233/* this block tries to deduce configuration from header-defined symbols and defaults */
234
235/* try to deduce the maximum number of signals on this platform */
236#if defined EV_NSIG
237/* use what's provided */
238#elif defined NSIG
239# define EV_NSIG (NSIG)
240#elif defined _NSIG
241# define EV_NSIG (_NSIG)
242#elif defined SIGMAX
243# define EV_NSIG (SIGMAX+1)
244#elif defined SIG_MAX
245# define EV_NSIG (SIG_MAX+1)
246#elif defined _SIG_MAX
247# define EV_NSIG (_SIG_MAX+1)
248#elif defined MAXSIG
249# define EV_NSIG (MAXSIG+1)
250#elif defined MAX_SIG
251# define EV_NSIG (MAX_SIG+1)
252#elif defined SIGARRAYSIZE
253# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
254#elif defined _sys_nsig
255# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
256#else
257# define EV_NSIG (8 * sizeof (sigset_t) + 1)
258#endif
259
260#ifndef EV_USE_FLOOR
261# define EV_USE_FLOOR 0
262#endif
263
264#ifndef EV_USE_CLOCK_SYSCALL
265# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
266# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
267# else
268# define EV_USE_CLOCK_SYSCALL 0
269# endif
270#endif
271
272#if !(_POSIX_TIMERS > 0)
273# ifndef EV_USE_MONOTONIC
274# define EV_USE_MONOTONIC 0
275# endif
276# ifndef EV_USE_REALTIME
277# define EV_USE_REALTIME 0
278# endif
279#endif
82 280
83#ifndef EV_USE_MONOTONIC 281#ifndef EV_USE_MONOTONIC
282# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
283# define EV_USE_MONOTONIC EV_FEATURE_OS
284# else
84# define EV_USE_MONOTONIC 1 285# define EV_USE_MONOTONIC 0
286# endif
287#endif
288
289#ifndef EV_USE_REALTIME
290# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
291#endif
292
293#ifndef EV_USE_NANOSLEEP
294# if _POSIX_C_SOURCE >= 199309L
295# define EV_USE_NANOSLEEP EV_FEATURE_OS
296# else
297# define EV_USE_NANOSLEEP 0
298# endif
85#endif 299#endif
86 300
87#ifndef EV_USE_SELECT 301#ifndef EV_USE_SELECT
88# define EV_USE_SELECT 1 302# define EV_USE_SELECT EV_FEATURE_BACKENDS
89#endif 303#endif
90 304
91#ifndef EV_USE_POLL 305#ifndef EV_USE_POLL
92# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 306# ifdef _WIN32
307# define EV_USE_POLL 0
308# else
309# define EV_USE_POLL EV_FEATURE_BACKENDS
310# endif
93#endif 311#endif
94 312
95#ifndef EV_USE_EPOLL 313#ifndef EV_USE_EPOLL
314# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
315# define EV_USE_EPOLL EV_FEATURE_BACKENDS
316# else
96# define EV_USE_EPOLL 0 317# define EV_USE_EPOLL 0
318# endif
97#endif 319#endif
98 320
99#ifndef EV_USE_KQUEUE 321#ifndef EV_USE_KQUEUE
100# define EV_USE_KQUEUE 0 322# define EV_USE_KQUEUE 0
101#endif 323#endif
102 324
325#ifndef EV_USE_PORT
326# define EV_USE_PORT 0
327#endif
328
103#ifndef EV_USE_WIN32 329#ifndef EV_USE_LINUXAIO
104# ifdef WIN32 330# if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
105# define EV_USE_WIN32 0 /* it does not exist, use select */
106# undef EV_USE_SELECT
107# define EV_USE_SELECT 1 331# define EV_USE_LINUXAIO 1
108# else 332# else
109# define EV_USE_WIN32 0 333# define EV_USE_LINUXAIO 0
110# endif 334# endif
111#endif 335#endif
112 336
113#ifndef EV_USE_REALTIME 337#ifndef EV_USE_IOURING
114# define EV_USE_REALTIME 1 338# if __linux
339# define EV_USE_IOURING 0
340# else
341# define EV_USE_IOURING 0
115#endif 342# endif
343#endif
116 344
117/**/ 345#ifndef EV_USE_INOTIFY
346# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
347# define EV_USE_INOTIFY EV_FEATURE_OS
348# else
349# define EV_USE_INOTIFY 0
350# endif
351#endif
352
353#ifndef EV_PID_HASHSIZE
354# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
355#endif
356
357#ifndef EV_INOTIFY_HASHSIZE
358# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
359#endif
360
361#ifndef EV_USE_EVENTFD
362# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
363# define EV_USE_EVENTFD EV_FEATURE_OS
364# else
365# define EV_USE_EVENTFD 0
366# endif
367#endif
368
369#ifndef EV_USE_SIGNALFD
370# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
371# define EV_USE_SIGNALFD EV_FEATURE_OS
372# else
373# define EV_USE_SIGNALFD 0
374# endif
375#endif
376
377#if 0 /* debugging */
378# define EV_VERIFY 3
379# define EV_USE_4HEAP 1
380# define EV_HEAP_CACHE_AT 1
381#endif
382
383#ifndef EV_VERIFY
384# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
385#endif
386
387#ifndef EV_USE_4HEAP
388# define EV_USE_4HEAP EV_FEATURE_DATA
389#endif
390
391#ifndef EV_HEAP_CACHE_AT
392# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
393#endif
394
395#ifdef __ANDROID__
396/* supposedly, android doesn't typedef fd_mask */
397# undef EV_USE_SELECT
398# define EV_USE_SELECT 0
399/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
400# undef EV_USE_CLOCK_SYSCALL
401# define EV_USE_CLOCK_SYSCALL 0
402#endif
403
404/* aix's poll.h seems to cause lots of trouble */
405#ifdef _AIX
406/* AIX has a completely broken poll.h header */
407# undef EV_USE_POLL
408# define EV_USE_POLL 0
409#endif
410
411/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
412/* which makes programs even slower. might work on other unices, too. */
413#if EV_USE_CLOCK_SYSCALL
414# include <sys/syscall.h>
415# ifdef SYS_clock_gettime
416# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
417# undef EV_USE_MONOTONIC
418# define EV_USE_MONOTONIC 1
419# define EV_NEED_SYSCALL 1
420# else
421# undef EV_USE_CLOCK_SYSCALL
422# define EV_USE_CLOCK_SYSCALL 0
423# endif
424#endif
425
426/* this block fixes any misconfiguration where we know we run into trouble otherwise */
118 427
119#ifndef CLOCK_MONOTONIC 428#ifndef CLOCK_MONOTONIC
120# undef EV_USE_MONOTONIC 429# undef EV_USE_MONOTONIC
121# define EV_USE_MONOTONIC 0 430# define EV_USE_MONOTONIC 0
122#endif 431#endif
124#ifndef CLOCK_REALTIME 433#ifndef CLOCK_REALTIME
125# undef EV_USE_REALTIME 434# undef EV_USE_REALTIME
126# define EV_USE_REALTIME 0 435# define EV_USE_REALTIME 0
127#endif 436#endif
128 437
129/**/ 438#if !EV_STAT_ENABLE
439# undef EV_USE_INOTIFY
440# define EV_USE_INOTIFY 0
441#endif
442
443#if !EV_USE_NANOSLEEP
444/* hp-ux has it in sys/time.h, which we unconditionally include above */
445# if !defined _WIN32 && !defined __hpux
446# include <sys/select.h>
447# endif
448#endif
449
450#if EV_USE_LINUXAIO
451# include <sys/syscall.h>
452# if !SYS_io_getevents || !EV_USE_EPOLL /* ev_linxaio uses ev_poll.c:ev_epoll_create */
453# undef EV_USE_LINUXAIO
454# define EV_USE_LINUXAIO 0
455# else
456# define EV_NEED_SYSCALL 1
457# endif
458#endif
459
460#if EV_USE_IOURING
461# include <sys/syscall.h>
462# if !__alpha && !SYS_io_uring_setup
463# define SYS_io_uring_setup 425
464# define SYS_io_uring_enter 426
465# define SYS_io_uring_wregister 427
466# endif
467# if SYS_io_uring_setup
468# define EV_NEED_SYSCALL 1
469# else
470# undef EV_USE_IOURING
471# define EV_USE_IOURING 0
472# endif
473#endif
474
475#if EV_USE_INOTIFY
476# include <sys/statfs.h>
477# include <sys/inotify.h>
478/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
479# ifndef IN_DONT_FOLLOW
480# undef EV_USE_INOTIFY
481# define EV_USE_INOTIFY 0
482# endif
483#endif
484
485#if EV_USE_EVENTFD
486/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
487# include <stdint.h>
488# ifndef EFD_NONBLOCK
489# define EFD_NONBLOCK O_NONBLOCK
490# endif
491# ifndef EFD_CLOEXEC
492# ifdef O_CLOEXEC
493# define EFD_CLOEXEC O_CLOEXEC
494# else
495# define EFD_CLOEXEC 02000000
496# endif
497# endif
498EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
499#endif
500
501#if EV_USE_SIGNALFD
502/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
503# include <stdint.h>
504# ifndef SFD_NONBLOCK
505# define SFD_NONBLOCK O_NONBLOCK
506# endif
507# ifndef SFD_CLOEXEC
508# ifdef O_CLOEXEC
509# define SFD_CLOEXEC O_CLOEXEC
510# else
511# define SFD_CLOEXEC 02000000
512# endif
513# endif
514EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
515
516struct signalfd_siginfo
517{
518 uint32_t ssi_signo;
519 char pad[128 - sizeof (uint32_t)];
520};
521#endif
522
523/*****************************************************************************/
524
525#if EV_NEED_SYSCALL
526
527#include <sys/syscall.h>
528
529/*
530 * define some syscall wrappers for common architectures
531 * this is mostly for nice looks during debugging, not performance.
532 * our syscalls return < 0, not == -1, on error. which is good
533 * enough for linux aio.
534 * TODO: arm is also common nowadays, maybe even mips and x86
535 * TODO: after implementing this, it suddenly looks like overkill, but its hard to remove...
536 */
537#if __GNUC__ && __linux && ECB_AMD64 && !defined __OPTIMIZE_SIZE__
538 /* the costly errno access probably kills this for size optimisation */
539
540 #define ev_syscall(nr,narg,arg1,arg2,arg3,arg4,arg5) \
541 ({ \
542 long res; \
543 register unsigned long r5 __asm__ ("r8" ); \
544 register unsigned long r4 __asm__ ("r10"); \
545 register unsigned long r3 __asm__ ("rdx"); \
546 register unsigned long r2 __asm__ ("rsi"); \
547 register unsigned long r1 __asm__ ("rdi"); \
548 if (narg >= 5) r5 = (unsigned long)(arg5); \
549 if (narg >= 4) r4 = (unsigned long)(arg4); \
550 if (narg >= 3) r3 = (unsigned long)(arg3); \
551 if (narg >= 2) r2 = (unsigned long)(arg2); \
552 if (narg >= 1) r1 = (unsigned long)(arg1); \
553 __asm__ __volatile__ ( \
554 "syscall\n\t" \
555 : "=a" (res) \
556 : "0" (nr), "r" (r1), "r" (r2), "r" (r3), "r" (r4), "r" (r5) \
557 : "cc", "r11", "cx", "memory"); \
558 errno = -res; \
559 res; \
560 })
561
562#endif
563
564#ifdef ev_syscall
565 #define ev_syscall0(nr) ev_syscall (nr, 0, 0, 0, 0, 0, 0
566 #define ev_syscall1(nr,arg1) ev_syscall (nr, 1, arg1, 0, 0, 0, 0)
567 #define ev_syscall2(nr,arg1,arg2) ev_syscall (nr, 2, arg1, arg2, 0, 0, 0)
568 #define ev_syscall3(nr,arg1,arg2,arg3) ev_syscall (nr, 3, arg1, arg2, arg3, 0, 0)
569 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) ev_syscall (nr, 3, arg1, arg2, arg3, arg4, 0)
570 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) ev_syscall (nr, 5, arg1, arg2, arg3, arg4, arg5)
571#else
572 #define ev_syscall0(nr) syscall (nr)
573 #define ev_syscall1(nr,arg1) syscall (nr, arg1)
574 #define ev_syscall2(nr,arg1,arg2) syscall (nr, arg1, arg2)
575 #define ev_syscall3(nr,arg1,arg2,arg3) syscall (nr, arg1, arg2, arg3)
576 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) syscall (nr, arg1, arg2, arg3, arg4)
577 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) syscall (nr, arg1, arg2, arg3, arg4, arg5)
578#endif
579
580#endif
581
582/*****************************************************************************/
583
584#if EV_VERIFY >= 3
585# define EV_FREQUENT_CHECK ev_verify (EV_A)
586#else
587# define EV_FREQUENT_CHECK do { } while (0)
588#endif
589
590/*
591 * This is used to work around floating point rounding problems.
592 * This value is good at least till the year 4000.
593 */
594#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
595/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
130 596
131#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 597#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
132#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 598#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
133#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
134/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
135 599
600#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
601#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
602
603/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
604/* ECB.H BEGIN */
605/*
606 * libecb - http://software.schmorp.de/pkg/libecb
607 *
608 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
609 * Copyright (©) 2011 Emanuele Giaquinta
610 * All rights reserved.
611 *
612 * Redistribution and use in source and binary forms, with or without modifica-
613 * tion, are permitted provided that the following conditions are met:
614 *
615 * 1. Redistributions of source code must retain the above copyright notice,
616 * this list of conditions and the following disclaimer.
617 *
618 * 2. Redistributions in binary form must reproduce the above copyright
619 * notice, this list of conditions and the following disclaimer in the
620 * documentation and/or other materials provided with the distribution.
621 *
622 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
623 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
624 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
625 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
626 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
627 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
628 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
629 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
630 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
631 * OF THE POSSIBILITY OF SUCH DAMAGE.
632 *
633 * Alternatively, the contents of this file may be used under the terms of
634 * the GNU General Public License ("GPL") version 2 or any later version,
635 * in which case the provisions of the GPL are applicable instead of
636 * the above. If you wish to allow the use of your version of this file
637 * only under the terms of the GPL and not to allow others to use your
638 * version of this file under the BSD license, indicate your decision
639 * by deleting the provisions above and replace them with the notice
640 * and other provisions required by the GPL. If you do not delete the
641 * provisions above, a recipient may use your version of this file under
642 * either the BSD or the GPL.
643 */
644
136#ifdef EV_H 645#ifndef ECB_H
137# include EV_H 646#define ECB_H
138#else 647
139# include "ev.h" 648/* 16 bits major, 16 bits minor */
649#define ECB_VERSION 0x00010006
650
651#ifdef _WIN32
652 typedef signed char int8_t;
653 typedef unsigned char uint8_t;
654 typedef signed short int16_t;
655 typedef unsigned short uint16_t;
656 typedef signed int int32_t;
657 typedef unsigned int uint32_t;
658 #if __GNUC__
659 typedef signed long long int64_t;
660 typedef unsigned long long uint64_t;
661 #else /* _MSC_VER || __BORLANDC__ */
662 typedef signed __int64 int64_t;
663 typedef unsigned __int64 uint64_t;
140#endif 664 #endif
141 665 #ifdef _WIN64
142#if __GNUC__ >= 3 666 #define ECB_PTRSIZE 8
143# define expect(expr,value) __builtin_expect ((expr),(value)) 667 typedef uint64_t uintptr_t;
144# define inline inline 668 typedef int64_t intptr_t;
145#else 669 #else
146# define expect(expr,value) (expr) 670 #define ECB_PTRSIZE 4
147# define inline static 671 typedef uint32_t uintptr_t;
672 typedef int32_t intptr_t;
148#endif 673 #endif
674#else
675 #include <inttypes.h>
676 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
677 #define ECB_PTRSIZE 8
678 #else
679 #define ECB_PTRSIZE 4
680 #endif
681#endif
149 682
150#define expect_false(expr) expect ((expr) != 0, 0) 683#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
151#define expect_true(expr) expect ((expr) != 0, 1) 684#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
152 685
153#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 686/* work around x32 idiocy by defining proper macros */
154#define ABSPRI(w) ((w)->priority - EV_MINPRI) 687#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
688 #if _ILP32
689 #define ECB_AMD64_X32 1
690 #else
691 #define ECB_AMD64 1
692 #endif
693#endif
155 694
156typedef struct ev_watcher *W; 695/* many compilers define _GNUC_ to some versions but then only implement
157typedef struct ev_watcher_list *WL; 696 * what their idiot authors think are the "more important" extensions,
158typedef struct ev_watcher_time *WT; 697 * causing enormous grief in return for some better fake benchmark numbers.
698 * or so.
699 * we try to detect these and simply assume they are not gcc - if they have
700 * an issue with that they should have done it right in the first place.
701 */
702#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
703 #define ECB_GCC_VERSION(major,minor) 0
704#else
705 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
706#endif
159 707
160static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 708#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
161 709
162#include "ev_win32.c" 710#if __clang__ && defined __has_builtin
711 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
712#else
713 #define ECB_CLANG_BUILTIN(x) 0
714#endif
715
716#if __clang__ && defined __has_extension
717 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
718#else
719 #define ECB_CLANG_EXTENSION(x) 0
720#endif
721
722#define ECB_CPP (__cplusplus+0)
723#define ECB_CPP11 (__cplusplus >= 201103L)
724#define ECB_CPP14 (__cplusplus >= 201402L)
725#define ECB_CPP17 (__cplusplus >= 201703L)
726
727#if ECB_CPP
728 #define ECB_C 0
729 #define ECB_STDC_VERSION 0
730#else
731 #define ECB_C 1
732 #define ECB_STDC_VERSION __STDC_VERSION__
733#endif
734
735#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
736#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
737#define ECB_C17 (ECB_STDC_VERSION >= 201710L)
738
739#if ECB_CPP
740 #define ECB_EXTERN_C extern "C"
741 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
742 #define ECB_EXTERN_C_END }
743#else
744 #define ECB_EXTERN_C extern
745 #define ECB_EXTERN_C_BEG
746 #define ECB_EXTERN_C_END
747#endif
163 748
164/*****************************************************************************/ 749/*****************************************************************************/
165 750
751/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
752/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
753
754#if ECB_NO_THREADS
755 #define ECB_NO_SMP 1
756#endif
757
758#if ECB_NO_SMP
759 #define ECB_MEMORY_FENCE do { } while (0)
760#endif
761
762/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
763#if __xlC__ && ECB_CPP
764 #include <builtins.h>
765#endif
766
767#if 1400 <= _MSC_VER
768 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
769#endif
770
771#ifndef ECB_MEMORY_FENCE
772 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
773 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
774 #if __i386 || __i386__
775 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
776 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
777 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
778 #elif ECB_GCC_AMD64
779 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
780 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
781 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
782 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
783 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
784 #elif defined __ARM_ARCH_2__ \
785 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
786 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
787 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
788 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
789 || defined __ARM_ARCH_5TEJ__
790 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
791 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
792 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
793 || defined __ARM_ARCH_6T2__
794 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
795 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
796 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
797 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
798 #elif __aarch64__
799 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
800 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
801 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
802 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
803 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
804 #elif defined __s390__ || defined __s390x__
805 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
806 #elif defined __mips__
807 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
808 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
809 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
810 #elif defined __alpha__
811 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
812 #elif defined __hppa__
813 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
814 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
815 #elif defined __ia64__
816 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
817 #elif defined __m68k__
818 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
819 #elif defined __m88k__
820 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
821 #elif defined __sh__
822 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
823 #endif
824 #endif
825#endif
826
827#ifndef ECB_MEMORY_FENCE
828 #if ECB_GCC_VERSION(4,7)
829 /* see comment below (stdatomic.h) about the C11 memory model. */
830 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
831 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
832 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
833 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
834
835 #elif ECB_CLANG_EXTENSION(c_atomic)
836 /* see comment below (stdatomic.h) about the C11 memory model. */
837 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
838 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
839 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
840 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
841
842 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
843 #define ECB_MEMORY_FENCE __sync_synchronize ()
844 #elif _MSC_VER >= 1500 /* VC++ 2008 */
845 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
846 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
847 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
848 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
849 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
850 #elif _MSC_VER >= 1400 /* VC++ 2005 */
851 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
852 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
853 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
854 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
855 #elif defined _WIN32
856 #include <WinNT.h>
857 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
858 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
859 #include <mbarrier.h>
860 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
861 #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
862 #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
863 #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
864 #elif __xlC__
865 #define ECB_MEMORY_FENCE __sync ()
866 #endif
867#endif
868
869#ifndef ECB_MEMORY_FENCE
870 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
871 /* we assume that these memory fences work on all variables/all memory accesses, */
872 /* not just C11 atomics and atomic accesses */
873 #include <stdatomic.h>
874 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
875 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
876 #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
877 #endif
878#endif
879
880#ifndef ECB_MEMORY_FENCE
881 #if !ECB_AVOID_PTHREADS
882 /*
883 * if you get undefined symbol references to pthread_mutex_lock,
884 * or failure to find pthread.h, then you should implement
885 * the ECB_MEMORY_FENCE operations for your cpu/compiler
886 * OR provide pthread.h and link against the posix thread library
887 * of your system.
888 */
889 #include <pthread.h>
890 #define ECB_NEEDS_PTHREADS 1
891 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
892
893 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
894 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
895 #endif
896#endif
897
898#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
899 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
900#endif
901
902#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
903 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
904#endif
905
906#if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
907 #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
908#endif
909
910/*****************************************************************************/
911
912#if ECB_CPP
913 #define ecb_inline static inline
914#elif ECB_GCC_VERSION(2,5)
915 #define ecb_inline static __inline__
916#elif ECB_C99
917 #define ecb_inline static inline
918#else
919 #define ecb_inline static
920#endif
921
922#if ECB_GCC_VERSION(3,3)
923 #define ecb_restrict __restrict__
924#elif ECB_C99
925 #define ecb_restrict restrict
926#else
927 #define ecb_restrict
928#endif
929
930typedef int ecb_bool;
931
932#define ECB_CONCAT_(a, b) a ## b
933#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
934#define ECB_STRINGIFY_(a) # a
935#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
936#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
937
938#define ecb_function_ ecb_inline
939
940#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
941 #define ecb_attribute(attrlist) __attribute__ (attrlist)
942#else
943 #define ecb_attribute(attrlist)
944#endif
945
946#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
947 #define ecb_is_constant(expr) __builtin_constant_p (expr)
948#else
949 /* possible C11 impl for integral types
950 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
951 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
952
953 #define ecb_is_constant(expr) 0
954#endif
955
956#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
957 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
958#else
959 #define ecb_expect(expr,value) (expr)
960#endif
961
962#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
963 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
964#else
965 #define ecb_prefetch(addr,rw,locality)
966#endif
967
968/* no emulation for ecb_decltype */
969#if ECB_CPP11
970 // older implementations might have problems with decltype(x)::type, work around it
971 template<class T> struct ecb_decltype_t { typedef T type; };
972 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
973#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
974 #define ecb_decltype(x) __typeof__ (x)
975#endif
976
977#if _MSC_VER >= 1300
978 #define ecb_deprecated __declspec (deprecated)
979#else
980 #define ecb_deprecated ecb_attribute ((__deprecated__))
981#endif
982
983#if _MSC_VER >= 1500
984 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
985#elif ECB_GCC_VERSION(4,5)
986 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
987#else
988 #define ecb_deprecated_message(msg) ecb_deprecated
989#endif
990
991#if _MSC_VER >= 1400
992 #define ecb_noinline __declspec (noinline)
993#else
994 #define ecb_noinline ecb_attribute ((__noinline__))
995#endif
996
997#define ecb_unused ecb_attribute ((__unused__))
998#define ecb_const ecb_attribute ((__const__))
999#define ecb_pure ecb_attribute ((__pure__))
1000
1001#if ECB_C11 || __IBMC_NORETURN
1002 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
1003 #define ecb_noreturn _Noreturn
1004#elif ECB_CPP11
1005 #define ecb_noreturn [[noreturn]]
1006#elif _MSC_VER >= 1200
1007 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
1008 #define ecb_noreturn __declspec (noreturn)
1009#else
1010 #define ecb_noreturn ecb_attribute ((__noreturn__))
1011#endif
1012
1013#if ECB_GCC_VERSION(4,3)
1014 #define ecb_artificial ecb_attribute ((__artificial__))
1015 #define ecb_hot ecb_attribute ((__hot__))
1016 #define ecb_cold ecb_attribute ((__cold__))
1017#else
1018 #define ecb_artificial
1019 #define ecb_hot
1020 #define ecb_cold
1021#endif
1022
1023/* put around conditional expressions if you are very sure that the */
1024/* expression is mostly true or mostly false. note that these return */
1025/* booleans, not the expression. */
1026#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
1027#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
1028/* for compatibility to the rest of the world */
1029#define ecb_likely(expr) ecb_expect_true (expr)
1030#define ecb_unlikely(expr) ecb_expect_false (expr)
1031
1032/* count trailing zero bits and count # of one bits */
1033#if ECB_GCC_VERSION(3,4) \
1034 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
1035 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
1036 && ECB_CLANG_BUILTIN(__builtin_popcount))
1037 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
1038 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
1039 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
1040 #define ecb_ctz32(x) __builtin_ctz (x)
1041 #define ecb_ctz64(x) __builtin_ctzll (x)
1042 #define ecb_popcount32(x) __builtin_popcount (x)
1043 /* no popcountll */
1044#else
1045 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
1046 ecb_function_ ecb_const int
1047 ecb_ctz32 (uint32_t x)
1048 {
1049#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1050 unsigned long r;
1051 _BitScanForward (&r, x);
1052 return (int)r;
1053#else
1054 int r = 0;
1055
1056 x &= ~x + 1; /* this isolates the lowest bit */
1057
1058#if ECB_branchless_on_i386
1059 r += !!(x & 0xaaaaaaaa) << 0;
1060 r += !!(x & 0xcccccccc) << 1;
1061 r += !!(x & 0xf0f0f0f0) << 2;
1062 r += !!(x & 0xff00ff00) << 3;
1063 r += !!(x & 0xffff0000) << 4;
1064#else
1065 if (x & 0xaaaaaaaa) r += 1;
1066 if (x & 0xcccccccc) r += 2;
1067 if (x & 0xf0f0f0f0) r += 4;
1068 if (x & 0xff00ff00) r += 8;
1069 if (x & 0xffff0000) r += 16;
1070#endif
1071
1072 return r;
1073#endif
1074 }
1075
1076 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
1077 ecb_function_ ecb_const int
1078 ecb_ctz64 (uint64_t x)
1079 {
1080#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1081 unsigned long r;
1082 _BitScanForward64 (&r, x);
1083 return (int)r;
1084#else
1085 int shift = x & 0xffffffff ? 0 : 32;
1086 return ecb_ctz32 (x >> shift) + shift;
1087#endif
1088 }
1089
1090 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1091 ecb_function_ ecb_const int
1092 ecb_popcount32 (uint32_t x)
1093 {
1094 x -= (x >> 1) & 0x55555555;
1095 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1096 x = ((x >> 4) + x) & 0x0f0f0f0f;
1097 x *= 0x01010101;
1098
1099 return x >> 24;
1100 }
1101
1102 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1103 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1104 {
1105#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1106 unsigned long r;
1107 _BitScanReverse (&r, x);
1108 return (int)r;
1109#else
1110 int r = 0;
1111
1112 if (x >> 16) { x >>= 16; r += 16; }
1113 if (x >> 8) { x >>= 8; r += 8; }
1114 if (x >> 4) { x >>= 4; r += 4; }
1115 if (x >> 2) { x >>= 2; r += 2; }
1116 if (x >> 1) { r += 1; }
1117
1118 return r;
1119#endif
1120 }
1121
1122 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1123 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1124 {
1125#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1126 unsigned long r;
1127 _BitScanReverse64 (&r, x);
1128 return (int)r;
1129#else
1130 int r = 0;
1131
1132 if (x >> 32) { x >>= 32; r += 32; }
1133
1134 return r + ecb_ld32 (x);
1135#endif
1136 }
1137#endif
1138
1139ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1140ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1141ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1142ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1143
1144ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1145ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1146{
1147 return ( (x * 0x0802U & 0x22110U)
1148 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1149}
1150
1151ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1152ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1153{
1154 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1155 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1156 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1157 x = ( x >> 8 ) | ( x << 8);
1158
1159 return x;
1160}
1161
1162ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1163ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1164{
1165 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1166 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1167 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1168 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1169 x = ( x >> 16 ) | ( x << 16);
1170
1171 return x;
1172}
1173
1174/* popcount64 is only available on 64 bit cpus as gcc builtin */
1175/* so for this version we are lazy */
1176ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1177ecb_function_ ecb_const int
1178ecb_popcount64 (uint64_t x)
1179{
1180 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1181}
1182
1183ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1184ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1185ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1186ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1187ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1188ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1189ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1190ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1191
1192ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1193ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1194ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1195ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1196ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1197ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1198ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1199ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1200
1201#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1202 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1203 #define ecb_bswap16(x) __builtin_bswap16 (x)
1204 #else
1205 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1206 #endif
1207 #define ecb_bswap32(x) __builtin_bswap32 (x)
1208 #define ecb_bswap64(x) __builtin_bswap64 (x)
1209#elif _MSC_VER
1210 #include <stdlib.h>
1211 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1212 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1213 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1214#else
1215 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1216 ecb_function_ ecb_const uint16_t
1217 ecb_bswap16 (uint16_t x)
1218 {
1219 return ecb_rotl16 (x, 8);
1220 }
1221
1222 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1223 ecb_function_ ecb_const uint32_t
1224 ecb_bswap32 (uint32_t x)
1225 {
1226 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1227 }
1228
1229 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1230 ecb_function_ ecb_const uint64_t
1231 ecb_bswap64 (uint64_t x)
1232 {
1233 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1234 }
1235#endif
1236
1237#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1238 #define ecb_unreachable() __builtin_unreachable ()
1239#else
1240 /* this seems to work fine, but gcc always emits a warning for it :/ */
1241 ecb_inline ecb_noreturn void ecb_unreachable (void);
1242 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1243#endif
1244
1245/* try to tell the compiler that some condition is definitely true */
1246#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1247
1248ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1249ecb_inline ecb_const uint32_t
1250ecb_byteorder_helper (void)
1251{
1252 /* the union code still generates code under pressure in gcc, */
1253 /* but less than using pointers, and always seems to */
1254 /* successfully return a constant. */
1255 /* the reason why we have this horrible preprocessor mess */
1256 /* is to avoid it in all cases, at least on common architectures */
1257 /* or when using a recent enough gcc version (>= 4.6) */
1258#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1259 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1260 #define ECB_LITTLE_ENDIAN 1
1261 return 0x44332211;
1262#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1263 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1264 #define ECB_BIG_ENDIAN 1
1265 return 0x11223344;
1266#else
1267 union
1268 {
1269 uint8_t c[4];
1270 uint32_t u;
1271 } u = { 0x11, 0x22, 0x33, 0x44 };
1272 return u.u;
1273#endif
1274}
1275
1276ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1277ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1278ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1279ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1280
1281#if ECB_GCC_VERSION(3,0) || ECB_C99
1282 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1283#else
1284 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1285#endif
1286
1287#if ECB_CPP
1288 template<typename T>
1289 static inline T ecb_div_rd (T val, T div)
1290 {
1291 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1292 }
1293 template<typename T>
1294 static inline T ecb_div_ru (T val, T div)
1295 {
1296 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1297 }
1298#else
1299 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1300 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1301#endif
1302
1303#if ecb_cplusplus_does_not_suck
1304 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1305 template<typename T, int N>
1306 static inline int ecb_array_length (const T (&arr)[N])
1307 {
1308 return N;
1309 }
1310#else
1311 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1312#endif
1313
1314ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1315ecb_function_ ecb_const uint32_t
1316ecb_binary16_to_binary32 (uint32_t x)
1317{
1318 unsigned int s = (x & 0x8000) << (31 - 15);
1319 int e = (x >> 10) & 0x001f;
1320 unsigned int m = x & 0x03ff;
1321
1322 if (ecb_expect_false (e == 31))
1323 /* infinity or NaN */
1324 e = 255 - (127 - 15);
1325 else if (ecb_expect_false (!e))
1326 {
1327 if (ecb_expect_true (!m))
1328 /* zero, handled by code below by forcing e to 0 */
1329 e = 0 - (127 - 15);
1330 else
1331 {
1332 /* subnormal, renormalise */
1333 unsigned int s = 10 - ecb_ld32 (m);
1334
1335 m = (m << s) & 0x3ff; /* mask implicit bit */
1336 e -= s - 1;
1337 }
1338 }
1339
1340 /* e and m now are normalised, or zero, (or inf or nan) */
1341 e += 127 - 15;
1342
1343 return s | (e << 23) | (m << (23 - 10));
1344}
1345
1346ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1347ecb_function_ ecb_const uint16_t
1348ecb_binary32_to_binary16 (uint32_t x)
1349{
1350 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1351 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1352 unsigned int m = x & 0x007fffff;
1353
1354 x &= 0x7fffffff;
1355
1356 /* if it's within range of binary16 normals, use fast path */
1357 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1358 {
1359 /* mantissa round-to-even */
1360 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1361
1362 /* handle overflow */
1363 if (ecb_expect_false (m >= 0x00800000))
1364 {
1365 m >>= 1;
1366 e += 1;
1367 }
1368
1369 return s | (e << 10) | (m >> (23 - 10));
1370 }
1371
1372 /* handle large numbers and infinity */
1373 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1374 return s | 0x7c00;
1375
1376 /* handle zero, subnormals and small numbers */
1377 if (ecb_expect_true (x < 0x38800000))
1378 {
1379 /* zero */
1380 if (ecb_expect_true (!x))
1381 return s;
1382
1383 /* handle subnormals */
1384
1385 /* too small, will be zero */
1386 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1387 return s;
1388
1389 m |= 0x00800000; /* make implicit bit explicit */
1390
1391 /* very tricky - we need to round to the nearest e (+10) bit value */
1392 {
1393 unsigned int bits = 14 - e;
1394 unsigned int half = (1 << (bits - 1)) - 1;
1395 unsigned int even = (m >> bits) & 1;
1396
1397 /* if this overflows, we will end up with a normalised number */
1398 m = (m + half + even) >> bits;
1399 }
1400
1401 return s | m;
1402 }
1403
1404 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1405 m >>= 13;
1406
1407 return s | 0x7c00 | m | !m;
1408}
1409
1410/*******************************************************************************/
1411/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1412
1413/* basically, everything uses "ieee pure-endian" floating point numbers */
1414/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1415#if 0 \
1416 || __i386 || __i386__ \
1417 || ECB_GCC_AMD64 \
1418 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1419 || defined __s390__ || defined __s390x__ \
1420 || defined __mips__ \
1421 || defined __alpha__ \
1422 || defined __hppa__ \
1423 || defined __ia64__ \
1424 || defined __m68k__ \
1425 || defined __m88k__ \
1426 || defined __sh__ \
1427 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1428 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1429 || defined __aarch64__
1430 #define ECB_STDFP 1
1431 #include <string.h> /* for memcpy */
1432#else
1433 #define ECB_STDFP 0
1434#endif
1435
1436#ifndef ECB_NO_LIBM
1437
1438 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1439
1440 /* only the oldest of old doesn't have this one. solaris. */
1441 #ifdef INFINITY
1442 #define ECB_INFINITY INFINITY
1443 #else
1444 #define ECB_INFINITY HUGE_VAL
1445 #endif
1446
1447 #ifdef NAN
1448 #define ECB_NAN NAN
1449 #else
1450 #define ECB_NAN ECB_INFINITY
1451 #endif
1452
1453 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1454 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1455 #define ecb_frexpf(x,e) frexpf ((x), (e))
1456 #else
1457 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1458 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1459 #endif
1460
1461 /* convert a float to ieee single/binary32 */
1462 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1463 ecb_function_ ecb_const uint32_t
1464 ecb_float_to_binary32 (float x)
1465 {
1466 uint32_t r;
1467
1468 #if ECB_STDFP
1469 memcpy (&r, &x, 4);
1470 #else
1471 /* slow emulation, works for anything but -0 */
1472 uint32_t m;
1473 int e;
1474
1475 if (x == 0e0f ) return 0x00000000U;
1476 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1477 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1478 if (x != x ) return 0x7fbfffffU;
1479
1480 m = ecb_frexpf (x, &e) * 0x1000000U;
1481
1482 r = m & 0x80000000U;
1483
1484 if (r)
1485 m = -m;
1486
1487 if (e <= -126)
1488 {
1489 m &= 0xffffffU;
1490 m >>= (-125 - e);
1491 e = -126;
1492 }
1493
1494 r |= (e + 126) << 23;
1495 r |= m & 0x7fffffU;
1496 #endif
1497
1498 return r;
1499 }
1500
1501 /* converts an ieee single/binary32 to a float */
1502 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1503 ecb_function_ ecb_const float
1504 ecb_binary32_to_float (uint32_t x)
1505 {
1506 float r;
1507
1508 #if ECB_STDFP
1509 memcpy (&r, &x, 4);
1510 #else
1511 /* emulation, only works for normals and subnormals and +0 */
1512 int neg = x >> 31;
1513 int e = (x >> 23) & 0xffU;
1514
1515 x &= 0x7fffffU;
1516
1517 if (e)
1518 x |= 0x800000U;
1519 else
1520 e = 1;
1521
1522 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1523 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1524
1525 r = neg ? -r : r;
1526 #endif
1527
1528 return r;
1529 }
1530
1531 /* convert a double to ieee double/binary64 */
1532 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1533 ecb_function_ ecb_const uint64_t
1534 ecb_double_to_binary64 (double x)
1535 {
1536 uint64_t r;
1537
1538 #if ECB_STDFP
1539 memcpy (&r, &x, 8);
1540 #else
1541 /* slow emulation, works for anything but -0 */
1542 uint64_t m;
1543 int e;
1544
1545 if (x == 0e0 ) return 0x0000000000000000U;
1546 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1547 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1548 if (x != x ) return 0X7ff7ffffffffffffU;
1549
1550 m = frexp (x, &e) * 0x20000000000000U;
1551
1552 r = m & 0x8000000000000000;;
1553
1554 if (r)
1555 m = -m;
1556
1557 if (e <= -1022)
1558 {
1559 m &= 0x1fffffffffffffU;
1560 m >>= (-1021 - e);
1561 e = -1022;
1562 }
1563
1564 r |= ((uint64_t)(e + 1022)) << 52;
1565 r |= m & 0xfffffffffffffU;
1566 #endif
1567
1568 return r;
1569 }
1570
1571 /* converts an ieee double/binary64 to a double */
1572 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1573 ecb_function_ ecb_const double
1574 ecb_binary64_to_double (uint64_t x)
1575 {
1576 double r;
1577
1578 #if ECB_STDFP
1579 memcpy (&r, &x, 8);
1580 #else
1581 /* emulation, only works for normals and subnormals and +0 */
1582 int neg = x >> 63;
1583 int e = (x >> 52) & 0x7ffU;
1584
1585 x &= 0xfffffffffffffU;
1586
1587 if (e)
1588 x |= 0x10000000000000U;
1589 else
1590 e = 1;
1591
1592 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1593 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1594
1595 r = neg ? -r : r;
1596 #endif
1597
1598 return r;
1599 }
1600
1601 /* convert a float to ieee half/binary16 */
1602 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1603 ecb_function_ ecb_const uint16_t
1604 ecb_float_to_binary16 (float x)
1605 {
1606 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1607 }
1608
1609 /* convert an ieee half/binary16 to float */
1610 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1611 ecb_function_ ecb_const float
1612 ecb_binary16_to_float (uint16_t x)
1613 {
1614 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1615 }
1616
1617#endif
1618
1619#endif
1620
1621/* ECB.H END */
1622
1623#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1624/* if your architecture doesn't need memory fences, e.g. because it is
1625 * single-cpu/core, or if you use libev in a project that doesn't use libev
1626 * from multiple threads, then you can define ECB_NO_THREADS when compiling
1627 * libev, in which cases the memory fences become nops.
1628 * alternatively, you can remove this #error and link against libpthread,
1629 * which will then provide the memory fences.
1630 */
1631# error "memory fences not defined for your architecture, please report"
1632#endif
1633
1634#ifndef ECB_MEMORY_FENCE
1635# define ECB_MEMORY_FENCE do { } while (0)
1636# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1637# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1638#endif
1639
1640#define inline_size ecb_inline
1641
1642#if EV_FEATURE_CODE
1643# define inline_speed ecb_inline
1644#else
1645# define inline_speed ecb_noinline static
1646#endif
1647
1648#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1649
1650#if EV_MINPRI == EV_MAXPRI
1651# define ABSPRI(w) (((W)w), 0)
1652#else
1653# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1654#endif
1655
1656#define EMPTY /* required for microsofts broken pseudo-c compiler */
1657
1658typedef ev_watcher *W;
1659typedef ev_watcher_list *WL;
1660typedef ev_watcher_time *WT;
1661
1662#define ev_active(w) ((W)(w))->active
1663#define ev_at(w) ((WT)(w))->at
1664
1665#if EV_USE_REALTIME
1666/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1667/* giving it a reasonably high chance of working on typical architectures */
1668static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1669#endif
1670
1671#if EV_USE_MONOTONIC
1672static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1673#endif
1674
1675#ifndef EV_FD_TO_WIN32_HANDLE
1676# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1677#endif
1678#ifndef EV_WIN32_HANDLE_TO_FD
1679# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1680#endif
1681#ifndef EV_WIN32_CLOSE_FD
1682# define EV_WIN32_CLOSE_FD(fd) close (fd)
1683#endif
1684
1685#ifdef _WIN32
1686# include "ev_win32.c"
1687#endif
1688
1689/*****************************************************************************/
1690
1691#if EV_USE_LINUXAIO
1692# include <linux/aio_abi.h> /* probably only needed for aio_context_t */
1693#endif
1694
1695/* define a suitable floor function (only used by periodics atm) */
1696
1697#if EV_USE_FLOOR
1698# include <math.h>
1699# define ev_floor(v) floor (v)
1700#else
1701
1702#include <float.h>
1703
1704/* a floor() replacement function, should be independent of ev_tstamp type */
1705ecb_noinline
1706static ev_tstamp
1707ev_floor (ev_tstamp v)
1708{
1709 /* the choice of shift factor is not terribly important */
1710#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1711 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1712#else
1713 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1714#endif
1715
1716 /* argument too large for an unsigned long? */
1717 if (ecb_expect_false (v >= shift))
1718 {
1719 ev_tstamp f;
1720
1721 if (v == v - 1.)
1722 return v; /* very large number */
1723
1724 f = shift * ev_floor (v * (1. / shift));
1725 return f + ev_floor (v - f);
1726 }
1727
1728 /* special treatment for negative args? */
1729 if (ecb_expect_false (v < 0.))
1730 {
1731 ev_tstamp f = -ev_floor (-v);
1732
1733 return f - (f == v ? 0 : 1);
1734 }
1735
1736 /* fits into an unsigned long */
1737 return (unsigned long)v;
1738}
1739
1740#endif
1741
1742/*****************************************************************************/
1743
1744#ifdef __linux
1745# include <sys/utsname.h>
1746#endif
1747
1748ecb_noinline ecb_cold
1749static unsigned int
1750ev_linux_version (void)
1751{
1752#ifdef __linux
1753 unsigned int v = 0;
1754 struct utsname buf;
1755 int i;
1756 char *p = buf.release;
1757
1758 if (uname (&buf))
1759 return 0;
1760
1761 for (i = 3+1; --i; )
1762 {
1763 unsigned int c = 0;
1764
1765 for (;;)
1766 {
1767 if (*p >= '0' && *p <= '9')
1768 c = c * 10 + *p++ - '0';
1769 else
1770 {
1771 p += *p == '.';
1772 break;
1773 }
1774 }
1775
1776 v = (v << 8) | c;
1777 }
1778
1779 return v;
1780#else
1781 return 0;
1782#endif
1783}
1784
1785/*****************************************************************************/
1786
1787#if EV_AVOID_STDIO
1788ecb_noinline ecb_cold
1789static void
1790ev_printerr (const char *msg)
1791{
1792 write (STDERR_FILENO, msg, strlen (msg));
1793}
1794#endif
1795
166static void (*syserr_cb)(const char *msg); 1796static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
167 1797
1798ecb_cold
1799void
168void ev_set_syserr_cb (void (*cb)(const char *msg)) 1800ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
169{ 1801{
170 syserr_cb = cb; 1802 syserr_cb = cb;
171} 1803}
172 1804
1805ecb_noinline ecb_cold
173static void 1806static void
174syserr (const char *msg) 1807ev_syserr (const char *msg)
175{ 1808{
176 if (!msg) 1809 if (!msg)
177 msg = "(libev) system error"; 1810 msg = "(libev) system error";
178 1811
179 if (syserr_cb) 1812 if (syserr_cb)
180 syserr_cb (msg); 1813 syserr_cb (msg);
181 else 1814 else
182 { 1815 {
1816#if EV_AVOID_STDIO
1817 ev_printerr (msg);
1818 ev_printerr (": ");
1819 ev_printerr (strerror (errno));
1820 ev_printerr ("\n");
1821#else
183 perror (msg); 1822 perror (msg);
1823#endif
184 abort (); 1824 abort ();
185 } 1825 }
186} 1826}
187 1827
188static void *(*alloc)(void *ptr, long size); 1828static void *
1829ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
1830{
1831 /* some systems, notably openbsd and darwin, fail to properly
1832 * implement realloc (x, 0) (as required by both ansi c-89 and
1833 * the single unix specification, so work around them here.
1834 * recently, also (at least) fedora and debian started breaking it,
1835 * despite documenting it otherwise.
1836 */
189 1837
1838 if (size)
1839 return realloc (ptr, size);
1840
1841 free (ptr);
1842 return 0;
1843}
1844
1845static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
1846
1847ecb_cold
1848void
190void ev_set_allocator (void *(*cb)(void *ptr, long size)) 1849ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
191{ 1850{
192 alloc = cb; 1851 alloc = cb;
193} 1852}
194 1853
195static void * 1854inline_speed void *
196ev_realloc (void *ptr, long size) 1855ev_realloc (void *ptr, long size)
197{ 1856{
198 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1857 ptr = alloc (ptr, size);
199 1858
200 if (!ptr && size) 1859 if (!ptr && size)
201 { 1860 {
1861#if EV_AVOID_STDIO
1862 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1863#else
202 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1864 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1865#endif
203 abort (); 1866 abort ();
204 } 1867 }
205 1868
206 return ptr; 1869 return ptr;
207} 1870}
209#define ev_malloc(size) ev_realloc (0, (size)) 1872#define ev_malloc(size) ev_realloc (0, (size))
210#define ev_free(ptr) ev_realloc ((ptr), 0) 1873#define ev_free(ptr) ev_realloc ((ptr), 0)
211 1874
212/*****************************************************************************/ 1875/*****************************************************************************/
213 1876
1877/* set in reify when reification needed */
1878#define EV_ANFD_REIFY 1
1879
1880/* file descriptor info structure */
214typedef struct 1881typedef struct
215{ 1882{
216 WL head; 1883 WL head;
217 unsigned char events; 1884 unsigned char events; /* the events watched for */
1885 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1886 unsigned char emask; /* some backends store the actual kernel mask in here */
218 unsigned char reify; 1887 unsigned char unused;
1888#if EV_USE_EPOLL
1889 unsigned int egen; /* generation counter to counter epoll bugs */
1890#endif
1891#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1892 SOCKET handle;
1893#endif
1894#if EV_USE_IOCP
1895 OVERLAPPED or, ow;
1896#endif
219} ANFD; 1897} ANFD;
220 1898
1899/* stores the pending event set for a given watcher */
221typedef struct 1900typedef struct
222{ 1901{
223 W w; 1902 W w;
224 int events; 1903 int events; /* the pending event set for the given watcher */
225} ANPENDING; 1904} ANPENDING;
1905
1906#if EV_USE_INOTIFY
1907/* hash table entry per inotify-id */
1908typedef struct
1909{
1910 WL head;
1911} ANFS;
1912#endif
1913
1914/* Heap Entry */
1915#if EV_HEAP_CACHE_AT
1916 /* a heap element */
1917 typedef struct {
1918 ev_tstamp at;
1919 WT w;
1920 } ANHE;
1921
1922 #define ANHE_w(he) (he).w /* access watcher, read-write */
1923 #define ANHE_at(he) (he).at /* access cached at, read-only */
1924 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1925#else
1926 /* a heap element */
1927 typedef WT ANHE;
1928
1929 #define ANHE_w(he) (he)
1930 #define ANHE_at(he) (he)->at
1931 #define ANHE_at_cache(he)
1932#endif
226 1933
227#if EV_MULTIPLICITY 1934#if EV_MULTIPLICITY
228 1935
229 struct ev_loop 1936 struct ev_loop
230 { 1937 {
231 ev_tstamp ev_rt_now; 1938 ev_tstamp ev_rt_now;
1939 #define ev_rt_now ((loop)->ev_rt_now)
232 #define VAR(name,decl) decl; 1940 #define VAR(name,decl) decl;
233 #include "ev_vars.h" 1941 #include "ev_vars.h"
234 #undef VAR 1942 #undef VAR
235 }; 1943 };
236 #include "ev_wrap.h" 1944 #include "ev_wrap.h"
237 1945
238 struct ev_loop default_loop_struct; 1946 static struct ev_loop default_loop_struct;
239 static struct ev_loop *default_loop; 1947 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
240 1948
241#else 1949#else
242 1950
243 ev_tstamp ev_rt_now; 1951 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
244 #define VAR(name,decl) static decl; 1952 #define VAR(name,decl) static decl;
245 #include "ev_vars.h" 1953 #include "ev_vars.h"
246 #undef VAR 1954 #undef VAR
247 1955
248 static int default_loop; 1956 static int ev_default_loop_ptr;
249 1957
250#endif 1958#endif
1959
1960#if EV_FEATURE_API
1961# define EV_RELEASE_CB if (ecb_expect_false (release_cb)) release_cb (EV_A)
1962# define EV_ACQUIRE_CB if (ecb_expect_false (acquire_cb)) acquire_cb (EV_A)
1963# define EV_INVOKE_PENDING invoke_cb (EV_A)
1964#else
1965# define EV_RELEASE_CB (void)0
1966# define EV_ACQUIRE_CB (void)0
1967# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1968#endif
1969
1970#define EVBREAK_RECURSE 0x80
251 1971
252/*****************************************************************************/ 1972/*****************************************************************************/
253 1973
1974#ifndef EV_HAVE_EV_TIME
254ev_tstamp 1975ev_tstamp
255ev_time (void) 1976ev_time (void) EV_NOEXCEPT
256{ 1977{
257#if EV_USE_REALTIME 1978#if EV_USE_REALTIME
1979 if (ecb_expect_true (have_realtime))
1980 {
258 struct timespec ts; 1981 struct timespec ts;
259 clock_gettime (CLOCK_REALTIME, &ts); 1982 clock_gettime (CLOCK_REALTIME, &ts);
260 return ts.tv_sec + ts.tv_nsec * 1e-9; 1983 return ts.tv_sec + ts.tv_nsec * 1e-9;
261#else 1984 }
1985#endif
1986
262 struct timeval tv; 1987 struct timeval tv;
263 gettimeofday (&tv, 0); 1988 gettimeofday (&tv, 0);
264 return tv.tv_sec + tv.tv_usec * 1e-6; 1989 return tv.tv_sec + tv.tv_usec * 1e-6;
265#endif
266} 1990}
1991#endif
267 1992
268inline ev_tstamp 1993inline_size ev_tstamp
269get_clock (void) 1994get_clock (void)
270{ 1995{
271#if EV_USE_MONOTONIC 1996#if EV_USE_MONOTONIC
272 if (expect_true (have_monotonic)) 1997 if (ecb_expect_true (have_monotonic))
273 { 1998 {
274 struct timespec ts; 1999 struct timespec ts;
275 clock_gettime (CLOCK_MONOTONIC, &ts); 2000 clock_gettime (CLOCK_MONOTONIC, &ts);
276 return ts.tv_sec + ts.tv_nsec * 1e-9; 2001 return ts.tv_sec + ts.tv_nsec * 1e-9;
277 } 2002 }
280 return ev_time (); 2005 return ev_time ();
281} 2006}
282 2007
283#if EV_MULTIPLICITY 2008#if EV_MULTIPLICITY
284ev_tstamp 2009ev_tstamp
285ev_now (EV_P) 2010ev_now (EV_P) EV_NOEXCEPT
286{ 2011{
287 return ev_rt_now; 2012 return ev_rt_now;
288} 2013}
289#endif 2014#endif
290 2015
291#define array_roundsize(type,n) ((n) | 4 & ~3) 2016void
2017ev_sleep (ev_tstamp delay) EV_NOEXCEPT
2018{
2019 if (delay > 0.)
2020 {
2021#if EV_USE_NANOSLEEP
2022 struct timespec ts;
2023
2024 EV_TS_SET (ts, delay);
2025 nanosleep (&ts, 0);
2026#elif defined _WIN32
2027 /* maybe this should round up, as ms is very low resolution */
2028 /* compared to select (µs) or nanosleep (ns) */
2029 Sleep ((unsigned long)(delay * 1e3));
2030#else
2031 struct timeval tv;
2032
2033 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
2034 /* something not guaranteed by newer posix versions, but guaranteed */
2035 /* by older ones */
2036 EV_TV_SET (tv, delay);
2037 select (0, 0, 0, 0, &tv);
2038#endif
2039 }
2040}
2041
2042/*****************************************************************************/
2043
2044#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
2045
2046/* find a suitable new size for the given array, */
2047/* hopefully by rounding to a nice-to-malloc size */
2048inline_size int
2049array_nextsize (int elem, int cur, int cnt)
2050{
2051 int ncur = cur + 1;
2052
2053 do
2054 ncur <<= 1;
2055 while (cnt > ncur);
2056
2057 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
2058 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
2059 {
2060 ncur *= elem;
2061 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
2062 ncur = ncur - sizeof (void *) * 4;
2063 ncur /= elem;
2064 }
2065
2066 return ncur;
2067}
2068
2069ecb_noinline ecb_cold
2070static void *
2071array_realloc (int elem, void *base, int *cur, int cnt)
2072{
2073 *cur = array_nextsize (elem, *cur, cnt);
2074 return ev_realloc (base, elem * *cur);
2075}
2076
2077#define array_needsize_noinit(base,offset,count)
2078
2079#define array_needsize_zerofill(base,offset,count) \
2080 memset ((void *)(base + offset), 0, sizeof (*(base)) * (count))
292 2081
293#define array_needsize(type,base,cur,cnt,init) \ 2082#define array_needsize(type,base,cur,cnt,init) \
294 if (expect_false ((cnt) > cur)) \ 2083 if (ecb_expect_false ((cnt) > (cur))) \
295 { \ 2084 { \
296 int newcnt = cur; \ 2085 ecb_unused int ocur_ = (cur); \
297 do \ 2086 (base) = (type *)array_realloc \
298 { \ 2087 (sizeof (type), (base), &(cur), (cnt)); \
299 newcnt = array_roundsize (type, newcnt << 1); \ 2088 init ((base), ocur_, ((cur) - ocur_)); \
300 } \
301 while ((cnt) > newcnt); \
302 \
303 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
304 init (base + cur, newcnt - cur); \
305 cur = newcnt; \
306 } 2089 }
307 2090
2091#if 0
308#define array_slim(type,stem) \ 2092#define array_slim(type,stem) \
309 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 2093 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
310 { \ 2094 { \
311 stem ## max = array_roundsize (stem ## cnt >> 1); \ 2095 stem ## max = array_roundsize (stem ## cnt >> 1); \
312 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 2096 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
313 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 2097 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
314 } 2098 }
315 2099#endif
316/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
317/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
318#define array_free_microshit(stem) \
319 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
320 2100
321#define array_free(stem, idx) \ 2101#define array_free(stem, idx) \
322 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 2102 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
323 2103
324/*****************************************************************************/ 2104/*****************************************************************************/
325 2105
2106/* dummy callback for pending events */
2107ecb_noinline
326static void 2108static void
327anfds_init (ANFD *base, int count) 2109pendingcb (EV_P_ ev_prepare *w, int revents)
328{ 2110{
329 while (count--)
330 {
331 base->head = 0;
332 base->events = EV_NONE;
333 base->reify = 0;
334
335 ++base;
336 }
337} 2111}
338 2112
2113ecb_noinline
339void 2114void
340ev_feed_event (EV_P_ void *w, int revents) 2115ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
341{ 2116{
342 W w_ = (W)w; 2117 W w_ = (W)w;
2118 int pri = ABSPRI (w_);
343 2119
344 if (w_->pending) 2120 if (ecb_expect_false (w_->pending))
2121 pendings [pri][w_->pending - 1].events |= revents;
2122 else
345 { 2123 {
2124 w_->pending = ++pendingcnt [pri];
2125 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
2126 pendings [pri][w_->pending - 1].w = w_;
346 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 2127 pendings [pri][w_->pending - 1].events = revents;
347 return;
348 } 2128 }
349 2129
350 w_->pending = ++pendingcnt [ABSPRI (w_)]; 2130 pendingpri = NUMPRI - 1;
351 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
352 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
353 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
354} 2131}
355 2132
356static void 2133inline_speed void
2134feed_reverse (EV_P_ W w)
2135{
2136 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2137 rfeeds [rfeedcnt++] = w;
2138}
2139
2140inline_size void
2141feed_reverse_done (EV_P_ int revents)
2142{
2143 do
2144 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2145 while (rfeedcnt);
2146}
2147
2148inline_speed void
357queue_events (EV_P_ W *events, int eventcnt, int type) 2149queue_events (EV_P_ W *events, int eventcnt, int type)
358{ 2150{
359 int i; 2151 int i;
360 2152
361 for (i = 0; i < eventcnt; ++i) 2153 for (i = 0; i < eventcnt; ++i)
362 ev_feed_event (EV_A_ events [i], type); 2154 ev_feed_event (EV_A_ events [i], type);
363} 2155}
364 2156
2157/*****************************************************************************/
2158
365inline void 2159inline_speed void
366fd_event (EV_P_ int fd, int revents) 2160fd_event_nocheck (EV_P_ int fd, int revents)
367{ 2161{
368 ANFD *anfd = anfds + fd; 2162 ANFD *anfd = anfds + fd;
369 struct ev_io *w; 2163 ev_io *w;
370 2164
371 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 2165 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
372 { 2166 {
373 int ev = w->events & revents; 2167 int ev = w->events & revents;
374 2168
375 if (ev) 2169 if (ev)
376 ev_feed_event (EV_A_ (W)w, ev); 2170 ev_feed_event (EV_A_ (W)w, ev);
377 } 2171 }
378} 2172}
379 2173
380void 2174/* do not submit kernel events for fds that have reify set */
2175/* because that means they changed while we were polling for new events */
2176inline_speed void
381ev_feed_fd_event (EV_P_ int fd, int revents) 2177fd_event (EV_P_ int fd, int revents)
382{ 2178{
2179 ANFD *anfd = anfds + fd;
2180
2181 if (ecb_expect_true (!anfd->reify))
383 fd_event (EV_A_ fd, revents); 2182 fd_event_nocheck (EV_A_ fd, revents);
384} 2183}
385 2184
386/*****************************************************************************/ 2185void
2186ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
2187{
2188 if (fd >= 0 && fd < anfdmax)
2189 fd_event_nocheck (EV_A_ fd, revents);
2190}
387 2191
388static void 2192/* make sure the external fd watch events are in-sync */
2193/* with the kernel/libev internal state */
2194inline_size void
389fd_reify (EV_P) 2195fd_reify (EV_P)
390{ 2196{
391 int i; 2197 int i;
392 2198
2199#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
393 for (i = 0; i < fdchangecnt; ++i) 2200 for (i = 0; i < fdchangecnt; ++i)
394 { 2201 {
395 int fd = fdchanges [i]; 2202 int fd = fdchanges [i];
396 ANFD *anfd = anfds + fd; 2203 ANFD *anfd = anfds + fd;
2204
2205 if (anfd->reify & EV__IOFDSET && anfd->head)
2206 {
2207 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2208
2209 if (handle != anfd->handle)
2210 {
2211 unsigned long arg;
2212
2213 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2214
2215 /* handle changed, but fd didn't - we need to do it in two steps */
2216 backend_modify (EV_A_ fd, anfd->events, 0);
2217 anfd->events = 0;
2218 anfd->handle = handle;
2219 }
2220 }
2221 }
2222#endif
2223
2224 for (i = 0; i < fdchangecnt; ++i)
2225 {
2226 int fd = fdchanges [i];
2227 ANFD *anfd = anfds + fd;
397 struct ev_io *w; 2228 ev_io *w;
398 2229
399 int events = 0; 2230 unsigned char o_events = anfd->events;
400 2231 unsigned char o_reify = anfd->reify;
401 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
402 events |= w->events;
403 2232
404 anfd->reify = 0; 2233 anfd->reify = 0;
405 2234
406 method_modify (EV_A_ fd, anfd->events, events); 2235 /*if (ecb_expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
2236 {
407 anfd->events = events; 2237 anfd->events = 0;
2238
2239 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2240 anfd->events |= (unsigned char)w->events;
2241
2242 if (o_events != anfd->events)
2243 o_reify = EV__IOFDSET; /* actually |= */
2244 }
2245
2246 if (o_reify & EV__IOFDSET)
2247 backend_modify (EV_A_ fd, o_events, anfd->events);
408 } 2248 }
409 2249
410 fdchangecnt = 0; 2250 fdchangecnt = 0;
411} 2251}
412 2252
413static void 2253/* something about the given fd changed */
2254inline_size
2255void
414fd_change (EV_P_ int fd) 2256fd_change (EV_P_ int fd, int flags)
415{ 2257{
416 if (anfds [fd].reify) 2258 unsigned char reify = anfds [fd].reify;
417 return;
418
419 anfds [fd].reify = 1; 2259 anfds [fd].reify |= flags;
420 2260
2261 if (ecb_expect_true (!reify))
2262 {
421 ++fdchangecnt; 2263 ++fdchangecnt;
422 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 2264 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
423 fdchanges [fdchangecnt - 1] = fd; 2265 fdchanges [fdchangecnt - 1] = fd;
2266 }
424} 2267}
425 2268
426static void 2269/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2270inline_speed ecb_cold void
427fd_kill (EV_P_ int fd) 2271fd_kill (EV_P_ int fd)
428{ 2272{
429 struct ev_io *w; 2273 ev_io *w;
430 2274
431 while ((w = (struct ev_io *)anfds [fd].head)) 2275 while ((w = (ev_io *)anfds [fd].head))
432 { 2276 {
433 ev_io_stop (EV_A_ w); 2277 ev_io_stop (EV_A_ w);
434 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2278 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
435 } 2279 }
436} 2280}
437 2281
438static int 2282/* check whether the given fd is actually valid, for error recovery */
2283inline_size ecb_cold int
439fd_valid (int fd) 2284fd_valid (int fd)
440{ 2285{
441#ifdef WIN32 2286#ifdef _WIN32
442 return !!win32_get_osfhandle (fd); 2287 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
443#else 2288#else
444 return fcntl (fd, F_GETFD) != -1; 2289 return fcntl (fd, F_GETFD) != -1;
445#endif 2290#endif
446} 2291}
447 2292
448/* called on EBADF to verify fds */ 2293/* called on EBADF to verify fds */
2294ecb_noinline ecb_cold
449static void 2295static void
450fd_ebadf (EV_P) 2296fd_ebadf (EV_P)
451{ 2297{
452 int fd; 2298 int fd;
453 2299
454 for (fd = 0; fd < anfdmax; ++fd) 2300 for (fd = 0; fd < anfdmax; ++fd)
455 if (anfds [fd].events) 2301 if (anfds [fd].events)
456 if (!fd_valid (fd) == -1 && errno == EBADF) 2302 if (!fd_valid (fd) && errno == EBADF)
457 fd_kill (EV_A_ fd); 2303 fd_kill (EV_A_ fd);
458} 2304}
459 2305
460/* called on ENOMEM in select/poll to kill some fds and retry */ 2306/* called on ENOMEM in select/poll to kill some fds and retry */
2307ecb_noinline ecb_cold
461static void 2308static void
462fd_enomem (EV_P) 2309fd_enomem (EV_P)
463{ 2310{
464 int fd; 2311 int fd;
465 2312
466 for (fd = anfdmax; fd--; ) 2313 for (fd = anfdmax; fd--; )
467 if (anfds [fd].events) 2314 if (anfds [fd].events)
468 { 2315 {
469 fd_kill (EV_A_ fd); 2316 fd_kill (EV_A_ fd);
470 return; 2317 break;
471 } 2318 }
472} 2319}
473 2320
474/* usually called after fork if method needs to re-arm all fds from scratch */ 2321/* usually called after fork if backend needs to re-arm all fds from scratch */
2322ecb_noinline
475static void 2323static void
476fd_rearm_all (EV_P) 2324fd_rearm_all (EV_P)
477{ 2325{
478 int fd; 2326 int fd;
479 2327
480 /* this should be highly optimised to not do anything but set a flag */
481 for (fd = 0; fd < anfdmax; ++fd) 2328 for (fd = 0; fd < anfdmax; ++fd)
482 if (anfds [fd].events) 2329 if (anfds [fd].events)
483 { 2330 {
484 anfds [fd].events = 0; 2331 anfds [fd].events = 0;
485 fd_change (EV_A_ fd); 2332 anfds [fd].emask = 0;
2333 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
486 } 2334 }
487} 2335}
488 2336
2337/* used to prepare libev internal fd's */
2338/* this is not fork-safe */
2339inline_speed void
2340fd_intern (int fd)
2341{
2342#ifdef _WIN32
2343 unsigned long arg = 1;
2344 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2345#else
2346 fcntl (fd, F_SETFD, FD_CLOEXEC);
2347 fcntl (fd, F_SETFL, O_NONBLOCK);
2348#endif
2349}
2350
489/*****************************************************************************/ 2351/*****************************************************************************/
490 2352
2353/*
2354 * the heap functions want a real array index. array index 0 is guaranteed to not
2355 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2356 * the branching factor of the d-tree.
2357 */
2358
2359/*
2360 * at the moment we allow libev the luxury of two heaps,
2361 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2362 * which is more cache-efficient.
2363 * the difference is about 5% with 50000+ watchers.
2364 */
2365#if EV_USE_4HEAP
2366
2367#define DHEAP 4
2368#define HEAP0 (DHEAP - 1) /* index of first element in heap */
2369#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2370#define UPHEAP_DONE(p,k) ((p) == (k))
2371
2372/* away from the root */
2373inline_speed void
2374downheap (ANHE *heap, int N, int k)
2375{
2376 ANHE he = heap [k];
2377 ANHE *E = heap + N + HEAP0;
2378
2379 for (;;)
2380 {
2381 ev_tstamp minat;
2382 ANHE *minpos;
2383 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2384
2385 /* find minimum child */
2386 if (ecb_expect_true (pos + DHEAP - 1 < E))
2387 {
2388 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2389 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2390 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2391 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2392 }
2393 else if (pos < E)
2394 {
2395 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2396 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2397 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2398 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2399 }
2400 else
2401 break;
2402
2403 if (ANHE_at (he) <= minat)
2404 break;
2405
2406 heap [k] = *minpos;
2407 ev_active (ANHE_w (*minpos)) = k;
2408
2409 k = minpos - heap;
2410 }
2411
2412 heap [k] = he;
2413 ev_active (ANHE_w (he)) = k;
2414}
2415
2416#else /* 4HEAP */
2417
2418#define HEAP0 1
2419#define HPARENT(k) ((k) >> 1)
2420#define UPHEAP_DONE(p,k) (!(p))
2421
2422/* away from the root */
2423inline_speed void
2424downheap (ANHE *heap, int N, int k)
2425{
2426 ANHE he = heap [k];
2427
2428 for (;;)
2429 {
2430 int c = k << 1;
2431
2432 if (c >= N + HEAP0)
2433 break;
2434
2435 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2436 ? 1 : 0;
2437
2438 if (ANHE_at (he) <= ANHE_at (heap [c]))
2439 break;
2440
2441 heap [k] = heap [c];
2442 ev_active (ANHE_w (heap [k])) = k;
2443
2444 k = c;
2445 }
2446
2447 heap [k] = he;
2448 ev_active (ANHE_w (he)) = k;
2449}
2450#endif
2451
2452/* towards the root */
2453inline_speed void
2454upheap (ANHE *heap, int k)
2455{
2456 ANHE he = heap [k];
2457
2458 for (;;)
2459 {
2460 int p = HPARENT (k);
2461
2462 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2463 break;
2464
2465 heap [k] = heap [p];
2466 ev_active (ANHE_w (heap [k])) = k;
2467 k = p;
2468 }
2469
2470 heap [k] = he;
2471 ev_active (ANHE_w (he)) = k;
2472}
2473
2474/* move an element suitably so it is in a correct place */
2475inline_size void
2476adjustheap (ANHE *heap, int N, int k)
2477{
2478 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2479 upheap (heap, k);
2480 else
2481 downheap (heap, N, k);
2482}
2483
2484/* rebuild the heap: this function is used only once and executed rarely */
2485inline_size void
2486reheap (ANHE *heap, int N)
2487{
2488 int i;
2489
2490 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2491 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2492 for (i = 0; i < N; ++i)
2493 upheap (heap, i + HEAP0);
2494}
2495
2496/*****************************************************************************/
2497
2498/* associate signal watchers to a signal signal */
2499typedef struct
2500{
2501 EV_ATOMIC_T pending;
2502#if EV_MULTIPLICITY
2503 EV_P;
2504#endif
2505 WL head;
2506} ANSIG;
2507
2508static ANSIG signals [EV_NSIG - 1];
2509
2510/*****************************************************************************/
2511
2512#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2513
2514ecb_noinline ecb_cold
491static void 2515static void
492upheap (WT *heap, int k) 2516evpipe_init (EV_P)
493{ 2517{
494 WT w = heap [k]; 2518 if (!ev_is_active (&pipe_w))
495
496 while (k && heap [k >> 1]->at > w->at)
497 {
498 heap [k] = heap [k >> 1];
499 ((W)heap [k])->active = k + 1;
500 k >>= 1;
501 } 2519 {
2520 int fds [2];
502 2521
503 heap [k] = w; 2522# if EV_USE_EVENTFD
504 ((W)heap [k])->active = k + 1; 2523 fds [0] = -1;
2524 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2525 if (fds [1] < 0 && errno == EINVAL)
2526 fds [1] = eventfd (0, 0);
505 2527
506} 2528 if (fds [1] < 0)
2529# endif
2530 {
2531 while (pipe (fds))
2532 ev_syserr ("(libev) error creating signal/async pipe");
507 2533
2534 fd_intern (fds [0]);
2535 }
2536
2537 evpipe [0] = fds [0];
2538
2539 if (evpipe [1] < 0)
2540 evpipe [1] = fds [1]; /* first call, set write fd */
2541 else
2542 {
2543 /* on subsequent calls, do not change evpipe [1] */
2544 /* so that evpipe_write can always rely on its value. */
2545 /* this branch does not do anything sensible on windows, */
2546 /* so must not be executed on windows */
2547
2548 dup2 (fds [1], evpipe [1]);
2549 close (fds [1]);
2550 }
2551
2552 fd_intern (evpipe [1]);
2553
2554 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2555 ev_io_start (EV_A_ &pipe_w);
2556 ev_unref (EV_A); /* watcher should not keep loop alive */
2557 }
2558}
2559
2560inline_speed void
2561evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2562{
2563 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2564
2565 if (ecb_expect_true (*flag))
2566 return;
2567
2568 *flag = 1;
2569 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2570
2571 pipe_write_skipped = 1;
2572
2573 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2574
2575 if (pipe_write_wanted)
2576 {
2577 int old_errno;
2578
2579 pipe_write_skipped = 0;
2580 ECB_MEMORY_FENCE_RELEASE;
2581
2582 old_errno = errno; /* save errno because write will clobber it */
2583
2584#if EV_USE_EVENTFD
2585 if (evpipe [0] < 0)
2586 {
2587 uint64_t counter = 1;
2588 write (evpipe [1], &counter, sizeof (uint64_t));
2589 }
2590 else
2591#endif
2592 {
2593#ifdef _WIN32
2594 WSABUF buf;
2595 DWORD sent;
2596 buf.buf = (char *)&buf;
2597 buf.len = 1;
2598 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2599#else
2600 write (evpipe [1], &(evpipe [1]), 1);
2601#endif
2602 }
2603
2604 errno = old_errno;
2605 }
2606}
2607
2608/* called whenever the libev signal pipe */
2609/* got some events (signal, async) */
508static void 2610static void
509downheap (WT *heap, int N, int k) 2611pipecb (EV_P_ ev_io *iow, int revents)
510{ 2612{
511 WT w = heap [k]; 2613 int i;
512 2614
513 while (k < (N >> 1)) 2615 if (revents & EV_READ)
514 {
515 int j = k << 1;
516
517 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
518 ++j;
519
520 if (w->at <= heap [j]->at)
521 break;
522
523 heap [k] = heap [j];
524 ((W)heap [k])->active = k + 1;
525 k = j;
526 } 2616 {
527 2617#if EV_USE_EVENTFD
528 heap [k] = w; 2618 if (evpipe [0] < 0)
529 ((W)heap [k])->active = k + 1; 2619 {
530} 2620 uint64_t counter;
531 2621 read (evpipe [1], &counter, sizeof (uint64_t));
532inline void 2622 }
533adjustheap (WT *heap, int N, int k, ev_tstamp at)
534{
535 ev_tstamp old_at = heap [k]->at;
536 heap [k]->at = at;
537
538 if (old_at < at)
539 downheap (heap, N, k);
540 else 2623 else
541 upheap (heap, k); 2624#endif
2625 {
2626 char dummy[4];
2627#ifdef _WIN32
2628 WSABUF buf;
2629 DWORD recvd;
2630 DWORD flags = 0;
2631 buf.buf = dummy;
2632 buf.len = sizeof (dummy);
2633 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2634#else
2635 read (evpipe [0], &dummy, sizeof (dummy));
2636#endif
2637 }
2638 }
2639
2640 pipe_write_skipped = 0;
2641
2642 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2643
2644#if EV_SIGNAL_ENABLE
2645 if (sig_pending)
2646 {
2647 sig_pending = 0;
2648
2649 ECB_MEMORY_FENCE;
2650
2651 for (i = EV_NSIG - 1; i--; )
2652 if (ecb_expect_false (signals [i].pending))
2653 ev_feed_signal_event (EV_A_ i + 1);
2654 }
2655#endif
2656
2657#if EV_ASYNC_ENABLE
2658 if (async_pending)
2659 {
2660 async_pending = 0;
2661
2662 ECB_MEMORY_FENCE;
2663
2664 for (i = asynccnt; i--; )
2665 if (asyncs [i]->sent)
2666 {
2667 asyncs [i]->sent = 0;
2668 ECB_MEMORY_FENCE_RELEASE;
2669 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2670 }
2671 }
2672#endif
542} 2673}
543 2674
544/*****************************************************************************/ 2675/*****************************************************************************/
545 2676
546typedef struct 2677void
2678ev_feed_signal (int signum) EV_NOEXCEPT
547{ 2679{
548 WL head; 2680#if EV_MULTIPLICITY
549 sig_atomic_t volatile gotsig; 2681 EV_P;
550} ANSIG; 2682 ECB_MEMORY_FENCE_ACQUIRE;
2683 EV_A = signals [signum - 1].loop;
551 2684
552static ANSIG *signals; 2685 if (!EV_A)
553static int signalmax; 2686 return;
2687#endif
554 2688
555static int sigpipe [2]; 2689 signals [signum - 1].pending = 1;
556static sig_atomic_t volatile gotsig; 2690 evpipe_write (EV_A_ &sig_pending);
557static struct ev_io sigev; 2691}
558 2692
559static void 2693static void
560signals_init (ANSIG *base, int count)
561{
562 while (count--)
563 {
564 base->head = 0;
565 base->gotsig = 0;
566
567 ++base;
568 }
569}
570
571static void
572sighandler (int signum) 2694ev_sighandler (int signum)
573{ 2695{
574#if WIN32
575 signal (signum, sighandler);
576#endif
577
578 signals [signum - 1].gotsig = 1;
579
580 if (!gotsig)
581 {
582 int old_errno = errno;
583 gotsig = 1;
584#ifdef WIN32 2696#ifdef _WIN32
585 send (sigpipe [1], &signum, 1, MSG_DONTWAIT); 2697 signal (signum, ev_sighandler);
586#else
587 write (sigpipe [1], &signum, 1);
588#endif 2698#endif
589 errno = old_errno;
590 }
591}
592 2699
2700 ev_feed_signal (signum);
2701}
2702
2703ecb_noinline
593void 2704void
594ev_feed_signal_event (EV_P_ int signum) 2705ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
595{ 2706{
596 WL w; 2707 WL w;
597 2708
2709 if (ecb_expect_false (signum <= 0 || signum >= EV_NSIG))
2710 return;
2711
2712 --signum;
2713
598#if EV_MULTIPLICITY 2714#if EV_MULTIPLICITY
599 assert (("feeding signal events is only supported in the default loop", loop == default_loop)); 2715 /* it is permissible to try to feed a signal to the wrong loop */
600#endif 2716 /* or, likely more useful, feeding a signal nobody is waiting for */
601 2717
602 --signum; 2718 if (ecb_expect_false (signals [signum].loop != EV_A))
603
604 if (signum < 0 || signum >= signalmax)
605 return; 2719 return;
2720#endif
606 2721
607 signals [signum].gotsig = 0; 2722 signals [signum].pending = 0;
2723 ECB_MEMORY_FENCE_RELEASE;
608 2724
609 for (w = signals [signum].head; w; w = w->next) 2725 for (w = signals [signum].head; w; w = w->next)
610 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2726 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
611} 2727}
612 2728
2729#if EV_USE_SIGNALFD
613static void 2730static void
614sigcb (EV_P_ struct ev_io *iow, int revents) 2731sigfdcb (EV_P_ ev_io *iow, int revents)
615{ 2732{
616 int signum; 2733 struct signalfd_siginfo si[2], *sip; /* these structs are big */
617 2734
618#ifdef WIN32 2735 for (;;)
619 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT); 2736 {
620#else 2737 ssize_t res = read (sigfd, si, sizeof (si));
621 read (sigpipe [0], &revents, 1);
622#endif
623 gotsig = 0;
624 2738
625 for (signum = signalmax; signum--; ) 2739 /* not ISO-C, as res might be -1, but works with SuS */
626 if (signals [signum].gotsig) 2740 for (sip = si; (char *)sip < (char *)si + res; ++sip)
627 ev_feed_signal_event (EV_A_ signum + 1); 2741 ev_feed_signal_event (EV_A_ sip->ssi_signo);
628}
629 2742
630static void 2743 if (res < (ssize_t)sizeof (si))
631siginit (EV_P) 2744 break;
632{ 2745 }
633#ifndef WIN32
634 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
635 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
636
637 /* rather than sort out wether we really need nb, set it */
638 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
639 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
640#endif
641
642 ev_io_set (&sigev, sigpipe [0], EV_READ);
643 ev_io_start (EV_A_ &sigev);
644 ev_unref (EV_A); /* child watcher should not keep loop alive */
645} 2746}
2747#endif
2748
2749#endif
646 2750
647/*****************************************************************************/ 2751/*****************************************************************************/
648 2752
649static struct ev_child *childs [PID_HASHSIZE]; 2753#if EV_CHILD_ENABLE
2754static WL childs [EV_PID_HASHSIZE];
650 2755
651#ifndef WIN32
652
653static struct ev_signal childev; 2756static ev_signal childev;
2757
2758#ifndef WIFCONTINUED
2759# define WIFCONTINUED(status) 0
2760#endif
2761
2762/* handle a single child status event */
2763inline_speed void
2764child_reap (EV_P_ int chain, int pid, int status)
2765{
2766 ev_child *w;
2767 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2768
2769 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2770 {
2771 if ((w->pid == pid || !w->pid)
2772 && (!traced || (w->flags & 1)))
2773 {
2774 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2775 w->rpid = pid;
2776 w->rstatus = status;
2777 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2778 }
2779 }
2780}
654 2781
655#ifndef WCONTINUED 2782#ifndef WCONTINUED
656# define WCONTINUED 0 2783# define WCONTINUED 0
657#endif 2784#endif
658 2785
2786/* called on sigchld etc., calls waitpid */
659static void 2787static void
660child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
661{
662 struct ev_child *w;
663
664 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
665 if (w->pid == pid || !w->pid)
666 {
667 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
668 w->rpid = pid;
669 w->rstatus = status;
670 ev_feed_event (EV_A_ (W)w, EV_CHILD);
671 }
672}
673
674static void
675childcb (EV_P_ struct ev_signal *sw, int revents) 2788childcb (EV_P_ ev_signal *sw, int revents)
676{ 2789{
677 int pid, status; 2790 int pid, status;
678 2791
2792 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
679 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 2793 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
680 { 2794 if (!WCONTINUED
2795 || errno != EINVAL
2796 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2797 return;
2798
681 /* make sure we are called again until all childs have been reaped */ 2799 /* make sure we are called again until all children have been reaped */
2800 /* we need to do it this way so that the callback gets called before we continue */
682 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2801 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
683 2802
684 child_reap (EV_A_ sw, pid, pid, status); 2803 child_reap (EV_A_ pid, pid, status);
2804 if ((EV_PID_HASHSIZE) > 1)
685 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 2805 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
686 }
687} 2806}
688 2807
689#endif 2808#endif
690 2809
691/*****************************************************************************/ 2810/*****************************************************************************/
692 2811
2812#if EV_USE_IOCP
2813# include "ev_iocp.c"
2814#endif
2815#if EV_USE_PORT
2816# include "ev_port.c"
2817#endif
693#if EV_USE_KQUEUE 2818#if EV_USE_KQUEUE
694# include "ev_kqueue.c" 2819# include "ev_kqueue.c"
695#endif 2820#endif
696#if EV_USE_EPOLL 2821#if EV_USE_EPOLL
697# include "ev_epoll.c" 2822# include "ev_epoll.c"
698#endif 2823#endif
2824#if EV_USE_LINUXAIO
2825# include "ev_linuxaio.c"
2826#endif
2827#if EV_USE_IOURING
2828# include "ev_iouring.c"
2829#endif
699#if EV_USE_POLL 2830#if EV_USE_POLL
700# include "ev_poll.c" 2831# include "ev_poll.c"
701#endif 2832#endif
702#if EV_USE_SELECT 2833#if EV_USE_SELECT
703# include "ev_select.c" 2834# include "ev_select.c"
704#endif 2835#endif
705 2836
706int 2837ecb_cold int
707ev_version_major (void) 2838ev_version_major (void) EV_NOEXCEPT
708{ 2839{
709 return EV_VERSION_MAJOR; 2840 return EV_VERSION_MAJOR;
710} 2841}
711 2842
712int 2843ecb_cold int
713ev_version_minor (void) 2844ev_version_minor (void) EV_NOEXCEPT
714{ 2845{
715 return EV_VERSION_MINOR; 2846 return EV_VERSION_MINOR;
716} 2847}
717 2848
718/* return true if we are running with elevated privileges and should ignore env variables */ 2849/* return true if we are running with elevated privileges and should ignore env variables */
719static int 2850inline_size ecb_cold int
720enable_secure (void) 2851enable_secure (void)
721{ 2852{
722#ifdef WIN32 2853#ifdef _WIN32
723 return 0; 2854 return 0;
724#else 2855#else
725 return getuid () != geteuid () 2856 return getuid () != geteuid ()
726 || getgid () != getegid (); 2857 || getgid () != getegid ();
727#endif 2858#endif
728} 2859}
729 2860
2861ecb_cold
2862unsigned int
2863ev_supported_backends (void) EV_NOEXCEPT
2864{
2865 unsigned int flags = 0;
2866
2867 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2868 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
2869 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2870 if (EV_USE_LINUXAIO) flags |= EVBACKEND_LINUXAIO;
2871 if (EV_USE_IOURING ) flags |= EVBACKEND_IOURING;
2872 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2873 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
2874
2875 return flags;
2876}
2877
2878ecb_cold
2879unsigned int
2880ev_recommended_backends (void) EV_NOEXCEPT
2881{
2882 unsigned int flags = ev_supported_backends ();
2883
2884#ifndef __NetBSD__
2885 /* kqueue is borked on everything but netbsd apparently */
2886 /* it usually doesn't work correctly on anything but sockets and pipes */
2887 flags &= ~EVBACKEND_KQUEUE;
2888#endif
2889#ifdef __APPLE__
2890 /* only select works correctly on that "unix-certified" platform */
2891 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2892 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2893#endif
2894#ifdef __FreeBSD__
2895 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2896#endif
2897
2898 /* TODO: linuxaio is very experimental */
2899#if !EV_RECOMMEND_LINUXAIO
2900 flags &= ~EVBACKEND_LINUXAIO;
2901#endif
2902 /* TODO: linuxaio is super experimental */
2903#if !EV_RECOMMEND_IOURING
2904 flags &= ~EVBACKEND_IOURING;
2905#endif
2906
2907 return flags;
2908}
2909
2910ecb_cold
2911unsigned int
2912ev_embeddable_backends (void) EV_NOEXCEPT
2913{
2914 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2915
2916 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2917 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2918 flags &= ~EVBACKEND_EPOLL;
2919
2920 return flags;
2921}
2922
2923unsigned int
2924ev_backend (EV_P) EV_NOEXCEPT
2925{
2926 return backend;
2927}
2928
2929#if EV_FEATURE_API
2930unsigned int
2931ev_iteration (EV_P) EV_NOEXCEPT
2932{
2933 return loop_count;
2934}
2935
2936unsigned int
2937ev_depth (EV_P) EV_NOEXCEPT
2938{
2939 return loop_depth;
2940}
2941
2942void
2943ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2944{
2945 io_blocktime = interval;
2946}
2947
2948void
2949ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2950{
2951 timeout_blocktime = interval;
2952}
2953
2954void
2955ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
2956{
2957 userdata = data;
2958}
2959
2960void *
2961ev_userdata (EV_P) EV_NOEXCEPT
2962{
2963 return userdata;
2964}
2965
2966void
2967ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
2968{
2969 invoke_cb = invoke_pending_cb;
2970}
2971
2972void
2973ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
2974{
2975 release_cb = release;
2976 acquire_cb = acquire;
2977}
2978#endif
2979
2980/* initialise a loop structure, must be zero-initialised */
2981ecb_noinline ecb_cold
2982static void
2983loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
2984{
2985 if (!backend)
2986 {
2987 origflags = flags;
2988
2989#if EV_USE_REALTIME
2990 if (!have_realtime)
2991 {
2992 struct timespec ts;
2993
2994 if (!clock_gettime (CLOCK_REALTIME, &ts))
2995 have_realtime = 1;
2996 }
2997#endif
2998
2999#if EV_USE_MONOTONIC
3000 if (!have_monotonic)
3001 {
3002 struct timespec ts;
3003
3004 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
3005 have_monotonic = 1;
3006 }
3007#endif
3008
3009 /* pid check not overridable via env */
3010#ifndef _WIN32
3011 if (flags & EVFLAG_FORKCHECK)
3012 curpid = getpid ();
3013#endif
3014
3015 if (!(flags & EVFLAG_NOENV)
3016 && !enable_secure ()
3017 && getenv ("LIBEV_FLAGS"))
3018 flags = atoi (getenv ("LIBEV_FLAGS"));
3019
3020 ev_rt_now = ev_time ();
3021 mn_now = get_clock ();
3022 now_floor = mn_now;
3023 rtmn_diff = ev_rt_now - mn_now;
3024#if EV_FEATURE_API
3025 invoke_cb = ev_invoke_pending;
3026#endif
3027
3028 io_blocktime = 0.;
3029 timeout_blocktime = 0.;
3030 backend = 0;
3031 backend_fd = -1;
3032 sig_pending = 0;
3033#if EV_ASYNC_ENABLE
3034 async_pending = 0;
3035#endif
3036 pipe_write_skipped = 0;
3037 pipe_write_wanted = 0;
3038 evpipe [0] = -1;
3039 evpipe [1] = -1;
3040#if EV_USE_INOTIFY
3041 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
3042#endif
3043#if EV_USE_SIGNALFD
3044 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
3045#endif
3046
3047 if (!(flags & EVBACKEND_MASK))
3048 flags |= ev_recommended_backends ();
3049
3050#if EV_USE_IOCP
3051 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
3052#endif
3053#if EV_USE_PORT
3054 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
3055#endif
3056#if EV_USE_KQUEUE
3057 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
3058#endif
3059#if EV_USE_IOURING
3060 if (!backend && (flags & EVBACKEND_IOURING )) backend = iouring_init (EV_A_ flags);
3061#endif
3062#if EV_USE_LINUXAIO
3063 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
3064#endif
3065#if EV_USE_EPOLL
3066 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
3067#endif
3068#if EV_USE_POLL
3069 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
3070#endif
3071#if EV_USE_SELECT
3072 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
3073#endif
3074
3075 ev_prepare_init (&pending_w, pendingcb);
3076
3077#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3078 ev_init (&pipe_w, pipecb);
3079 ev_set_priority (&pipe_w, EV_MAXPRI);
3080#endif
3081 }
3082}
3083
3084/* free up a loop structure */
3085ecb_cold
3086void
3087ev_loop_destroy (EV_P)
3088{
3089 int i;
3090
3091#if EV_MULTIPLICITY
3092 /* mimic free (0) */
3093 if (!EV_A)
3094 return;
3095#endif
3096
3097#if EV_CLEANUP_ENABLE
3098 /* queue cleanup watchers (and execute them) */
3099 if (ecb_expect_false (cleanupcnt))
3100 {
3101 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3102 EV_INVOKE_PENDING;
3103 }
3104#endif
3105
3106#if EV_CHILD_ENABLE
3107 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3108 {
3109 ev_ref (EV_A); /* child watcher */
3110 ev_signal_stop (EV_A_ &childev);
3111 }
3112#endif
3113
3114 if (ev_is_active (&pipe_w))
3115 {
3116 /*ev_ref (EV_A);*/
3117 /*ev_io_stop (EV_A_ &pipe_w);*/
3118
3119 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3120 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3121 }
3122
3123#if EV_USE_SIGNALFD
3124 if (ev_is_active (&sigfd_w))
3125 close (sigfd);
3126#endif
3127
3128#if EV_USE_INOTIFY
3129 if (fs_fd >= 0)
3130 close (fs_fd);
3131#endif
3132
3133 if (backend_fd >= 0)
3134 close (backend_fd);
3135
3136#if EV_USE_IOCP
3137 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3138#endif
3139#if EV_USE_PORT
3140 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
3141#endif
3142#if EV_USE_KQUEUE
3143 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3144#endif
3145#if EV_USE_IOURING
3146 if (backend == EVBACKEND_IOURING ) iouring_destroy (EV_A);
3147#endif
3148#if EV_USE_LINUXAIO
3149 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
3150#endif
3151#if EV_USE_EPOLL
3152 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
3153#endif
3154#if EV_USE_POLL
3155 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
3156#endif
3157#if EV_USE_SELECT
3158 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
3159#endif
3160
3161 for (i = NUMPRI; i--; )
3162 {
3163 array_free (pending, [i]);
3164#if EV_IDLE_ENABLE
3165 array_free (idle, [i]);
3166#endif
3167 }
3168
3169 ev_free (anfds); anfds = 0; anfdmax = 0;
3170
3171 /* have to use the microsoft-never-gets-it-right macro */
3172 array_free (rfeed, EMPTY);
3173 array_free (fdchange, EMPTY);
3174 array_free (timer, EMPTY);
3175#if EV_PERIODIC_ENABLE
3176 array_free (periodic, EMPTY);
3177#endif
3178#if EV_FORK_ENABLE
3179 array_free (fork, EMPTY);
3180#endif
3181#if EV_CLEANUP_ENABLE
3182 array_free (cleanup, EMPTY);
3183#endif
3184 array_free (prepare, EMPTY);
3185 array_free (check, EMPTY);
3186#if EV_ASYNC_ENABLE
3187 array_free (async, EMPTY);
3188#endif
3189
3190 backend = 0;
3191
3192#if EV_MULTIPLICITY
3193 if (ev_is_default_loop (EV_A))
3194#endif
3195 ev_default_loop_ptr = 0;
3196#if EV_MULTIPLICITY
3197 else
3198 ev_free (EV_A);
3199#endif
3200}
3201
3202#if EV_USE_INOTIFY
3203inline_size void infy_fork (EV_P);
3204#endif
3205
3206inline_size void
3207loop_fork (EV_P)
3208{
3209#if EV_USE_PORT
3210 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
3211#endif
3212#if EV_USE_KQUEUE
3213 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3214#endif
3215#if EV_USE_IOURING
3216 if (backend == EVBACKEND_IOURING ) iouring_fork (EV_A);
3217#endif
3218#if EV_USE_LINUXAIO
3219 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
3220#endif
3221#if EV_USE_EPOLL
3222 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
3223#endif
3224#if EV_USE_INOTIFY
3225 infy_fork (EV_A);
3226#endif
3227
3228#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3229 if (ev_is_active (&pipe_w) && postfork != 2)
3230 {
3231 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3232
3233 ev_ref (EV_A);
3234 ev_io_stop (EV_A_ &pipe_w);
3235
3236 if (evpipe [0] >= 0)
3237 EV_WIN32_CLOSE_FD (evpipe [0]);
3238
3239 evpipe_init (EV_A);
3240 /* iterate over everything, in case we missed something before */
3241 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3242 }
3243#endif
3244
3245 postfork = 0;
3246}
3247
3248#if EV_MULTIPLICITY
3249
3250ecb_cold
3251struct ev_loop *
3252ev_loop_new (unsigned int flags) EV_NOEXCEPT
3253{
3254 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3255
3256 memset (EV_A, 0, sizeof (struct ev_loop));
3257 loop_init (EV_A_ flags);
3258
3259 if (ev_backend (EV_A))
3260 return EV_A;
3261
3262 ev_free (EV_A);
3263 return 0;
3264}
3265
3266#endif /* multiplicity */
3267
3268#if EV_VERIFY
3269ecb_noinline ecb_cold
3270static void
3271verify_watcher (EV_P_ W w)
3272{
3273 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
3274
3275 if (w->pending)
3276 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3277}
3278
3279ecb_noinline ecb_cold
3280static void
3281verify_heap (EV_P_ ANHE *heap, int N)
3282{
3283 int i;
3284
3285 for (i = HEAP0; i < N + HEAP0; ++i)
3286 {
3287 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3288 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3289 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3290
3291 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3292 }
3293}
3294
3295ecb_noinline ecb_cold
3296static void
3297array_verify (EV_P_ W *ws, int cnt)
3298{
3299 while (cnt--)
3300 {
3301 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3302 verify_watcher (EV_A_ ws [cnt]);
3303 }
3304}
3305#endif
3306
3307#if EV_FEATURE_API
3308void ecb_cold
3309ev_verify (EV_P) EV_NOEXCEPT
3310{
3311#if EV_VERIFY
3312 int i;
3313 WL w, w2;
3314
3315 assert (activecnt >= -1);
3316
3317 assert (fdchangemax >= fdchangecnt);
3318 for (i = 0; i < fdchangecnt; ++i)
3319 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3320
3321 assert (anfdmax >= 0);
3322 for (i = 0; i < anfdmax; ++i)
3323 {
3324 int j = 0;
3325
3326 for (w = w2 = anfds [i].head; w; w = w->next)
3327 {
3328 verify_watcher (EV_A_ (W)w);
3329
3330 if (j++ & 1)
3331 {
3332 assert (("libev: io watcher list contains a loop", w != w2));
3333 w2 = w2->next;
3334 }
3335
3336 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3337 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3338 }
3339 }
3340
3341 assert (timermax >= timercnt);
3342 verify_heap (EV_A_ timers, timercnt);
3343
3344#if EV_PERIODIC_ENABLE
3345 assert (periodicmax >= periodiccnt);
3346 verify_heap (EV_A_ periodics, periodiccnt);
3347#endif
3348
3349 for (i = NUMPRI; i--; )
3350 {
3351 assert (pendingmax [i] >= pendingcnt [i]);
3352#if EV_IDLE_ENABLE
3353 assert (idleall >= 0);
3354 assert (idlemax [i] >= idlecnt [i]);
3355 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3356#endif
3357 }
3358
3359#if EV_FORK_ENABLE
3360 assert (forkmax >= forkcnt);
3361 array_verify (EV_A_ (W *)forks, forkcnt);
3362#endif
3363
3364#if EV_CLEANUP_ENABLE
3365 assert (cleanupmax >= cleanupcnt);
3366 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3367#endif
3368
3369#if EV_ASYNC_ENABLE
3370 assert (asyncmax >= asynccnt);
3371 array_verify (EV_A_ (W *)asyncs, asynccnt);
3372#endif
3373
3374#if EV_PREPARE_ENABLE
3375 assert (preparemax >= preparecnt);
3376 array_verify (EV_A_ (W *)prepares, preparecnt);
3377#endif
3378
3379#if EV_CHECK_ENABLE
3380 assert (checkmax >= checkcnt);
3381 array_verify (EV_A_ (W *)checks, checkcnt);
3382#endif
3383
3384# if 0
3385#if EV_CHILD_ENABLE
3386 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3387 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3388#endif
3389# endif
3390#endif
3391}
3392#endif
3393
3394#if EV_MULTIPLICITY
3395ecb_cold
3396struct ev_loop *
3397#else
730int 3398int
731ev_method (EV_P) 3399#endif
3400ev_default_loop (unsigned int flags) EV_NOEXCEPT
732{ 3401{
733 return method; 3402 if (!ev_default_loop_ptr)
734}
735
736static void
737loop_init (EV_P_ int methods)
738{
739 if (!method)
740 {
741#if EV_USE_MONOTONIC
742 { 3403 {
743 struct timespec ts;
744 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
745 have_monotonic = 1;
746 }
747#endif
748
749 ev_rt_now = ev_time ();
750 mn_now = get_clock ();
751 now_floor = mn_now;
752 rtmn_diff = ev_rt_now - mn_now;
753
754 if (methods == EVMETHOD_AUTO)
755 if (!enable_secure () && getenv ("LIBEV_METHODS"))
756 methods = atoi (getenv ("LIBEV_METHODS"));
757 else
758 methods = EVMETHOD_ANY;
759
760 method = 0;
761#if EV_USE_WIN32
762 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
763#endif
764#if EV_USE_KQUEUE
765 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
766#endif
767#if EV_USE_EPOLL
768 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
769#endif
770#if EV_USE_POLL
771 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
772#endif
773#if EV_USE_SELECT
774 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
775#endif
776
777 ev_init (&sigev, sigcb);
778 ev_set_priority (&sigev, EV_MAXPRI);
779 }
780}
781
782void
783loop_destroy (EV_P)
784{
785 int i;
786
787#if EV_USE_WIN32
788 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
789#endif
790#if EV_USE_KQUEUE
791 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
792#endif
793#if EV_USE_EPOLL
794 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
795#endif
796#if EV_USE_POLL
797 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
798#endif
799#if EV_USE_SELECT
800 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
801#endif
802
803 for (i = NUMPRI; i--; )
804 array_free (pending, [i]);
805
806 /* have to use the microsoft-never-gets-it-right macro */
807 array_free_microshit (fdchange);
808 array_free_microshit (timer);
809 array_free_microshit (periodic);
810 array_free_microshit (idle);
811 array_free_microshit (prepare);
812 array_free_microshit (check);
813
814 method = 0;
815}
816
817static void
818loop_fork (EV_P)
819{
820#if EV_USE_EPOLL
821 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
822#endif
823#if EV_USE_KQUEUE
824 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
825#endif
826
827 if (ev_is_active (&sigev))
828 {
829 /* default loop */
830
831 ev_ref (EV_A);
832 ev_io_stop (EV_A_ &sigev);
833 close (sigpipe [0]);
834 close (sigpipe [1]);
835
836 while (pipe (sigpipe))
837 syserr ("(libev) error creating pipe");
838
839 siginit (EV_A);
840 }
841
842 postfork = 0;
843}
844
845#if EV_MULTIPLICITY 3404#if EV_MULTIPLICITY
846struct ev_loop *
847ev_loop_new (int methods)
848{
849 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
850
851 memset (loop, 0, sizeof (struct ev_loop));
852
853 loop_init (EV_A_ methods);
854
855 if (ev_method (EV_A))
856 return loop;
857
858 return 0;
859}
860
861void
862ev_loop_destroy (EV_P)
863{
864 loop_destroy (EV_A);
865 ev_free (loop);
866}
867
868void
869ev_loop_fork (EV_P)
870{
871 postfork = 1;
872}
873
874#endif
875
876#if EV_MULTIPLICITY
877struct ev_loop *
878#else
879int
880#endif
881ev_default_loop (int methods)
882{
883 if (sigpipe [0] == sigpipe [1])
884 if (pipe (sigpipe))
885 return 0;
886
887 if (!default_loop)
888 {
889#if EV_MULTIPLICITY
890 struct ev_loop *loop = default_loop = &default_loop_struct; 3405 EV_P = ev_default_loop_ptr = &default_loop_struct;
891#else 3406#else
892 default_loop = 1; 3407 ev_default_loop_ptr = 1;
893#endif 3408#endif
894 3409
895 loop_init (EV_A_ methods); 3410 loop_init (EV_A_ flags);
896 3411
897 if (ev_method (EV_A)) 3412 if (ev_backend (EV_A))
898 { 3413 {
899 siginit (EV_A); 3414#if EV_CHILD_ENABLE
900
901#ifndef WIN32
902 ev_signal_init (&childev, childcb, SIGCHLD); 3415 ev_signal_init (&childev, childcb, SIGCHLD);
903 ev_set_priority (&childev, EV_MAXPRI); 3416 ev_set_priority (&childev, EV_MAXPRI);
904 ev_signal_start (EV_A_ &childev); 3417 ev_signal_start (EV_A_ &childev);
905 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3418 ev_unref (EV_A); /* child watcher should not keep loop alive */
906#endif 3419#endif
907 } 3420 }
908 else 3421 else
909 default_loop = 0; 3422 ev_default_loop_ptr = 0;
910 } 3423 }
911 3424
912 return default_loop; 3425 return ev_default_loop_ptr;
913} 3426}
914 3427
915void 3428void
916ev_default_destroy (void) 3429ev_loop_fork (EV_P) EV_NOEXCEPT
917{ 3430{
918#if EV_MULTIPLICITY
919 struct ev_loop *loop = default_loop;
920#endif
921
922#ifndef WIN32
923 ev_ref (EV_A); /* child watcher */
924 ev_signal_stop (EV_A_ &childev);
925#endif
926
927 ev_ref (EV_A); /* signal watcher */
928 ev_io_stop (EV_A_ &sigev);
929
930 close (sigpipe [0]); sigpipe [0] = 0;
931 close (sigpipe [1]); sigpipe [1] = 0;
932
933 loop_destroy (EV_A);
934}
935
936void
937ev_default_fork (void)
938{
939#if EV_MULTIPLICITY
940 struct ev_loop *loop = default_loop;
941#endif
942
943 if (method)
944 postfork = 1; 3431 postfork = 1;
945} 3432}
946 3433
947/*****************************************************************************/ 3434/*****************************************************************************/
948 3435
949static int 3436void
950any_pending (EV_P) 3437ev_invoke (EV_P_ void *w, int revents)
3438{
3439 EV_CB_INVOKE ((W)w, revents);
3440}
3441
3442unsigned int
3443ev_pending_count (EV_P) EV_NOEXCEPT
951{ 3444{
952 int pri; 3445 int pri;
3446 unsigned int count = 0;
953 3447
954 for (pri = NUMPRI; pri--; ) 3448 for (pri = NUMPRI; pri--; )
3449 count += pendingcnt [pri];
3450
3451 return count;
3452}
3453
3454ecb_noinline
3455void
3456ev_invoke_pending (EV_P)
3457{
3458 pendingpri = NUMPRI;
3459
3460 do
3461 {
3462 --pendingpri;
3463
3464 /* pendingpri possibly gets modified in the inner loop */
3465 while (pendingcnt [pendingpri])
3466 {
3467 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3468
3469 p->w->pending = 0;
3470 EV_CB_INVOKE (p->w, p->events);
3471 EV_FREQUENT_CHECK;
3472 }
3473 }
3474 while (pendingpri);
3475}
3476
3477#if EV_IDLE_ENABLE
3478/* make idle watchers pending. this handles the "call-idle */
3479/* only when higher priorities are idle" logic */
3480inline_size void
3481idle_reify (EV_P)
3482{
3483 if (ecb_expect_false (idleall))
3484 {
3485 int pri;
3486
3487 for (pri = NUMPRI; pri--; )
3488 {
955 if (pendingcnt [pri]) 3489 if (pendingcnt [pri])
956 return 1; 3490 break;
957 3491
958 return 0; 3492 if (idlecnt [pri])
3493 {
3494 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3495 break;
3496 }
3497 }
3498 }
959} 3499}
3500#endif
960 3501
3502/* make timers pending */
3503inline_size void
3504timers_reify (EV_P)
3505{
3506 EV_FREQUENT_CHECK;
3507
3508 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3509 {
3510 do
3511 {
3512 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3513
3514 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3515
3516 /* first reschedule or stop timer */
3517 if (w->repeat)
3518 {
3519 ev_at (w) += w->repeat;
3520 if (ev_at (w) < mn_now)
3521 ev_at (w) = mn_now;
3522
3523 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3524
3525 ANHE_at_cache (timers [HEAP0]);
3526 downheap (timers, timercnt, HEAP0);
3527 }
3528 else
3529 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3530
3531 EV_FREQUENT_CHECK;
3532 feed_reverse (EV_A_ (W)w);
3533 }
3534 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3535
3536 feed_reverse_done (EV_A_ EV_TIMER);
3537 }
3538}
3539
3540#if EV_PERIODIC_ENABLE
3541
3542ecb_noinline
961static void 3543static void
962call_pending (EV_P) 3544periodic_recalc (EV_P_ ev_periodic *w)
963{ 3545{
3546 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3547 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3548
3549 /* the above almost always errs on the low side */
3550 while (at <= ev_rt_now)
3551 {
3552 ev_tstamp nat = at + w->interval;
3553
3554 /* when resolution fails us, we use ev_rt_now */
3555 if (ecb_expect_false (nat == at))
3556 {
3557 at = ev_rt_now;
3558 break;
3559 }
3560
3561 at = nat;
3562 }
3563
3564 ev_at (w) = at;
3565}
3566
3567/* make periodics pending */
3568inline_size void
3569periodics_reify (EV_P)
3570{
3571 EV_FREQUENT_CHECK;
3572
3573 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3574 {
3575 do
3576 {
3577 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3578
3579 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3580
3581 /* first reschedule or stop timer */
3582 if (w->reschedule_cb)
3583 {
3584 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3585
3586 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3587
3588 ANHE_at_cache (periodics [HEAP0]);
3589 downheap (periodics, periodiccnt, HEAP0);
3590 }
3591 else if (w->interval)
3592 {
3593 periodic_recalc (EV_A_ w);
3594 ANHE_at_cache (periodics [HEAP0]);
3595 downheap (periodics, periodiccnt, HEAP0);
3596 }
3597 else
3598 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3599
3600 EV_FREQUENT_CHECK;
3601 feed_reverse (EV_A_ (W)w);
3602 }
3603 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3604
3605 feed_reverse_done (EV_A_ EV_PERIODIC);
3606 }
3607}
3608
3609/* simply recalculate all periodics */
3610/* TODO: maybe ensure that at least one event happens when jumping forward? */
3611ecb_noinline ecb_cold
3612static void
3613periodics_reschedule (EV_P)
3614{
964 int pri; 3615 int i;
965 3616
966 for (pri = NUMPRI; pri--; ) 3617 /* adjust periodics after time jump */
967 while (pendingcnt [pri]) 3618 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3619 {
3620 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3621
3622 if (w->reschedule_cb)
3623 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3624 else if (w->interval)
3625 periodic_recalc (EV_A_ w);
3626
3627 ANHE_at_cache (periodics [i]);
3628 }
3629
3630 reheap (periodics, periodiccnt);
3631}
3632#endif
3633
3634/* adjust all timers by a given offset */
3635ecb_noinline ecb_cold
3636static void
3637timers_reschedule (EV_P_ ev_tstamp adjust)
3638{
3639 int i;
3640
3641 for (i = 0; i < timercnt; ++i)
3642 {
3643 ANHE *he = timers + i + HEAP0;
3644 ANHE_w (*he)->at += adjust;
3645 ANHE_at_cache (*he);
3646 }
3647}
3648
3649/* fetch new monotonic and realtime times from the kernel */
3650/* also detect if there was a timejump, and act accordingly */
3651inline_speed void
3652time_update (EV_P_ ev_tstamp max_block)
3653{
3654#if EV_USE_MONOTONIC
3655 if (ecb_expect_true (have_monotonic))
3656 {
3657 int i;
3658 ev_tstamp odiff = rtmn_diff;
3659
3660 mn_now = get_clock ();
3661
3662 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3663 /* interpolate in the meantime */
3664 if (ecb_expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
3665 {
3666 ev_rt_now = rtmn_diff + mn_now;
3667 return;
3668 }
3669
3670 now_floor = mn_now;
3671 ev_rt_now = ev_time ();
3672
3673 /* loop a few times, before making important decisions.
3674 * on the choice of "4": one iteration isn't enough,
3675 * in case we get preempted during the calls to
3676 * ev_time and get_clock. a second call is almost guaranteed
3677 * to succeed in that case, though. and looping a few more times
3678 * doesn't hurt either as we only do this on time-jumps or
3679 * in the unlikely event of having been preempted here.
3680 */
3681 for (i = 4; --i; )
3682 {
3683 ev_tstamp diff;
3684 rtmn_diff = ev_rt_now - mn_now;
3685
3686 diff = odiff - rtmn_diff;
3687
3688 if (ecb_expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
3689 return; /* all is well */
3690
3691 ev_rt_now = ev_time ();
3692 mn_now = get_clock ();
3693 now_floor = mn_now;
3694 }
3695
3696 /* no timer adjustment, as the monotonic clock doesn't jump */
3697 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3698# if EV_PERIODIC_ENABLE
3699 periodics_reschedule (EV_A);
3700# endif
3701 }
3702 else
3703#endif
3704 {
3705 ev_rt_now = ev_time ();
3706
3707 if (ecb_expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3708 {
3709 /* adjust timers. this is easy, as the offset is the same for all of them */
3710 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3711#if EV_PERIODIC_ENABLE
3712 periodics_reschedule (EV_A);
3713#endif
3714 }
3715
3716 mn_now = ev_rt_now;
3717 }
3718}
3719
3720int
3721ev_run (EV_P_ int flags)
3722{
3723#if EV_FEATURE_API
3724 ++loop_depth;
3725#endif
3726
3727 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3728
3729 loop_done = EVBREAK_CANCEL;
3730
3731 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3732
3733 do
3734 {
3735#if EV_VERIFY >= 2
3736 ev_verify (EV_A);
3737#endif
3738
3739#ifndef _WIN32
3740 if (ecb_expect_false (curpid)) /* penalise the forking check even more */
3741 if (ecb_expect_false (getpid () != curpid))
3742 {
3743 curpid = getpid ();
3744 postfork = 1;
3745 }
3746#endif
3747
3748#if EV_FORK_ENABLE
3749 /* we might have forked, so queue fork handlers */
3750 if (ecb_expect_false (postfork))
3751 if (forkcnt)
3752 {
3753 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3754 EV_INVOKE_PENDING;
3755 }
3756#endif
3757
3758#if EV_PREPARE_ENABLE
3759 /* queue prepare watchers (and execute them) */
3760 if (ecb_expect_false (preparecnt))
3761 {
3762 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3763 EV_INVOKE_PENDING;
3764 }
3765#endif
3766
3767 if (ecb_expect_false (loop_done))
3768 break;
3769
3770 /* we might have forked, so reify kernel state if necessary */
3771 if (ecb_expect_false (postfork))
3772 loop_fork (EV_A);
3773
3774 /* update fd-related kernel structures */
3775 fd_reify (EV_A);
3776
3777 /* calculate blocking time */
968 { 3778 {
969 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 3779 ev_tstamp waittime = 0.;
3780 ev_tstamp sleeptime = 0.;
970 3781
971 if (p->w) 3782 /* remember old timestamp for io_blocktime calculation */
3783 ev_tstamp prev_mn_now = mn_now;
3784
3785 /* update time to cancel out callback processing overhead */
3786 time_update (EV_A_ 1e100);
3787
3788 /* from now on, we want a pipe-wake-up */
3789 pipe_write_wanted = 1;
3790
3791 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3792
3793 if (ecb_expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
972 { 3794 {
973 p->w->pending = 0; 3795 waittime = MAX_BLOCKTIME;
974 EV_CB_INVOKE (p->w, p->events); 3796
3797 if (timercnt)
3798 {
3799 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3800 if (waittime > to) waittime = to;
3801 }
3802
3803#if EV_PERIODIC_ENABLE
3804 if (periodiccnt)
3805 {
3806 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3807 if (waittime > to) waittime = to;
3808 }
3809#endif
3810
3811 /* don't let timeouts decrease the waittime below timeout_blocktime */
3812 if (ecb_expect_false (waittime < timeout_blocktime))
3813 waittime = timeout_blocktime;
3814
3815 /* at this point, we NEED to wait, so we have to ensure */
3816 /* to pass a minimum nonzero value to the backend */
3817 if (ecb_expect_false (waittime < backend_mintime))
3818 waittime = backend_mintime;
3819
3820 /* extra check because io_blocktime is commonly 0 */
3821 if (ecb_expect_false (io_blocktime))
3822 {
3823 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3824
3825 if (sleeptime > waittime - backend_mintime)
3826 sleeptime = waittime - backend_mintime;
3827
3828 if (ecb_expect_true (sleeptime > 0.))
3829 {
3830 ev_sleep (sleeptime);
3831 waittime -= sleeptime;
3832 }
3833 }
975 } 3834 }
3835
3836#if EV_FEATURE_API
3837 ++loop_count;
3838#endif
3839 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3840 backend_poll (EV_A_ waittime);
3841 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3842
3843 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3844
3845 ECB_MEMORY_FENCE_ACQUIRE;
3846 if (pipe_write_skipped)
3847 {
3848 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3849 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3850 }
3851
3852 /* update ev_rt_now, do magic */
3853 time_update (EV_A_ waittime + sleeptime);
976 } 3854 }
977}
978 3855
979static void 3856 /* queue pending timers and reschedule them */
980timers_reify (EV_P) 3857 timers_reify (EV_A); /* relative timers called last */
3858#if EV_PERIODIC_ENABLE
3859 periodics_reify (EV_A); /* absolute timers called first */
3860#endif
3861
3862#if EV_IDLE_ENABLE
3863 /* queue idle watchers unless other events are pending */
3864 idle_reify (EV_A);
3865#endif
3866
3867#if EV_CHECK_ENABLE
3868 /* queue check watchers, to be executed first */
3869 if (ecb_expect_false (checkcnt))
3870 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3871#endif
3872
3873 EV_INVOKE_PENDING;
3874 }
3875 while (ecb_expect_true (
3876 activecnt
3877 && !loop_done
3878 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3879 ));
3880
3881 if (loop_done == EVBREAK_ONE)
3882 loop_done = EVBREAK_CANCEL;
3883
3884#if EV_FEATURE_API
3885 --loop_depth;
3886#endif
3887
3888 return activecnt;
3889}
3890
3891void
3892ev_break (EV_P_ int how) EV_NOEXCEPT
981{ 3893{
982 while (timercnt && ((WT)timers [0])->at <= mn_now) 3894 loop_done = how;
3895}
3896
3897void
3898ev_ref (EV_P) EV_NOEXCEPT
3899{
3900 ++activecnt;
3901}
3902
3903void
3904ev_unref (EV_P) EV_NOEXCEPT
3905{
3906 --activecnt;
3907}
3908
3909void
3910ev_now_update (EV_P) EV_NOEXCEPT
3911{
3912 time_update (EV_A_ 1e100);
3913}
3914
3915void
3916ev_suspend (EV_P) EV_NOEXCEPT
3917{
3918 ev_now_update (EV_A);
3919}
3920
3921void
3922ev_resume (EV_P) EV_NOEXCEPT
3923{
3924 ev_tstamp mn_prev = mn_now;
3925
3926 ev_now_update (EV_A);
3927 timers_reschedule (EV_A_ mn_now - mn_prev);
3928#if EV_PERIODIC_ENABLE
3929 /* TODO: really do this? */
3930 periodics_reschedule (EV_A);
3931#endif
3932}
3933
3934/*****************************************************************************/
3935/* singly-linked list management, used when the expected list length is short */
3936
3937inline_size void
3938wlist_add (WL *head, WL elem)
3939{
3940 elem->next = *head;
3941 *head = elem;
3942}
3943
3944inline_size void
3945wlist_del (WL *head, WL elem)
3946{
3947 while (*head)
3948 {
3949 if (ecb_expect_true (*head == elem))
3950 {
3951 *head = elem->next;
3952 break;
3953 }
3954
3955 head = &(*head)->next;
3956 }
3957}
3958
3959/* internal, faster, version of ev_clear_pending */
3960inline_speed void
3961clear_pending (EV_P_ W w)
3962{
3963 if (w->pending)
3964 {
3965 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3966 w->pending = 0;
3967 }
3968}
3969
3970int
3971ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
3972{
3973 W w_ = (W)w;
3974 int pending = w_->pending;
3975
3976 if (ecb_expect_true (pending))
3977 {
3978 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3979 p->w = (W)&pending_w;
3980 w_->pending = 0;
3981 return p->events;
3982 }
3983 else
3984 return 0;
3985}
3986
3987inline_size void
3988pri_adjust (EV_P_ W w)
3989{
3990 int pri = ev_priority (w);
3991 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3992 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3993 ev_set_priority (w, pri);
3994}
3995
3996inline_speed void
3997ev_start (EV_P_ W w, int active)
3998{
3999 pri_adjust (EV_A_ w);
4000 w->active = active;
4001 ev_ref (EV_A);
4002}
4003
4004inline_size void
4005ev_stop (EV_P_ W w)
4006{
4007 ev_unref (EV_A);
4008 w->active = 0;
4009}
4010
4011/*****************************************************************************/
4012
4013ecb_noinline
4014void
4015ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
4016{
4017 int fd = w->fd;
4018
4019 if (ecb_expect_false (ev_is_active (w)))
4020 return;
4021
4022 assert (("libev: ev_io_start called with negative fd", fd >= 0));
4023 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
4024
4025#if EV_VERIFY >= 2
4026 assert (("libev: ev_io_start called on watcher with invalid fd", fd_valid (fd)));
4027#endif
4028 EV_FREQUENT_CHECK;
4029
4030 ev_start (EV_A_ (W)w, 1);
4031 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
4032 wlist_add (&anfds[fd].head, (WL)w);
4033
4034 /* common bug, apparently */
4035 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
4036
4037 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
4038 w->events &= ~EV__IOFDSET;
4039
4040 EV_FREQUENT_CHECK;
4041}
4042
4043ecb_noinline
4044void
4045ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
4046{
4047 clear_pending (EV_A_ (W)w);
4048 if (ecb_expect_false (!ev_is_active (w)))
4049 return;
4050
4051 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
4052
4053#if EV_VERIFY >= 2
4054 assert (("libev: ev_io_stop called on watcher with invalid fd", fd_valid (w->fd)));
4055#endif
4056 EV_FREQUENT_CHECK;
4057
4058 wlist_del (&anfds[w->fd].head, (WL)w);
4059 ev_stop (EV_A_ (W)w);
4060
4061 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
4062
4063 EV_FREQUENT_CHECK;
4064}
4065
4066ecb_noinline
4067void
4068ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
4069{
4070 if (ecb_expect_false (ev_is_active (w)))
4071 return;
4072
4073 ev_at (w) += mn_now;
4074
4075 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
4076
4077 EV_FREQUENT_CHECK;
4078
4079 ++timercnt;
4080 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
4081 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
4082 ANHE_w (timers [ev_active (w)]) = (WT)w;
4083 ANHE_at_cache (timers [ev_active (w)]);
4084 upheap (timers, ev_active (w));
4085
4086 EV_FREQUENT_CHECK;
4087
4088 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
4089}
4090
4091ecb_noinline
4092void
4093ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
4094{
4095 clear_pending (EV_A_ (W)w);
4096 if (ecb_expect_false (!ev_is_active (w)))
4097 return;
4098
4099 EV_FREQUENT_CHECK;
4100
4101 {
4102 int active = ev_active (w);
4103
4104 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
4105
4106 --timercnt;
4107
4108 if (ecb_expect_true (active < timercnt + HEAP0))
983 { 4109 {
984 struct ev_timer *w = timers [0]; 4110 timers [active] = timers [timercnt + HEAP0];
4111 adjustheap (timers, timercnt, active);
4112 }
4113 }
985 4114
986 assert (("inactive timer on timer heap detected", ev_is_active (w))); 4115 ev_at (w) -= mn_now;
987 4116
988 /* first reschedule or stop timer */ 4117 ev_stop (EV_A_ (W)w);
4118
4119 EV_FREQUENT_CHECK;
4120}
4121
4122ecb_noinline
4123void
4124ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
4125{
4126 EV_FREQUENT_CHECK;
4127
4128 clear_pending (EV_A_ (W)w);
4129
4130 if (ev_is_active (w))
4131 {
989 if (w->repeat) 4132 if (w->repeat)
990 { 4133 {
991 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 4134 ev_at (w) = mn_now + w->repeat;
992 4135 ANHE_at_cache (timers [ev_active (w)]);
993 ((WT)w)->at += w->repeat; 4136 adjustheap (timers, timercnt, ev_active (w));
994 if (((WT)w)->at < mn_now)
995 ((WT)w)->at = mn_now;
996
997 downheap ((WT *)timers, timercnt, 0);
998 } 4137 }
999 else 4138 else
1000 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 4139 ev_timer_stop (EV_A_ w);
1001
1002 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1003 }
1004}
1005
1006static void
1007periodics_reify (EV_P)
1008{
1009 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1010 { 4140 }
1011 struct ev_periodic *w = periodics [0]; 4141 else if (w->repeat)
4142 {
4143 ev_at (w) = w->repeat;
4144 ev_timer_start (EV_A_ w);
4145 }
1012 4146
1013 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 4147 EV_FREQUENT_CHECK;
4148}
1014 4149
1015 /* first reschedule or stop timer */ 4150ev_tstamp
4151ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4152{
4153 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
4154}
4155
4156#if EV_PERIODIC_ENABLE
4157ecb_noinline
4158void
4159ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
4160{
4161 if (ecb_expect_false (ev_is_active (w)))
4162 return;
4163
1016 if (w->reschedule_cb) 4164 if (w->reschedule_cb)
1017 {
1018 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 4165 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1019
1020 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1021 downheap ((WT *)periodics, periodiccnt, 0);
1022 }
1023 else if (w->interval) 4166 else if (w->interval)
1024 {
1025 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1026 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1027 downheap ((WT *)periodics, periodiccnt, 0);
1028 }
1029 else
1030 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1031
1032 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1033 } 4167 {
1034} 4168 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1035 4169 periodic_recalc (EV_A_ w);
1036static void
1037periodics_reschedule (EV_P)
1038{
1039 int i;
1040
1041 /* adjust periodics after time jump */
1042 for (i = 0; i < periodiccnt; ++i)
1043 {
1044 struct ev_periodic *w = periodics [i];
1045
1046 if (w->reschedule_cb)
1047 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1048 else if (w->interval)
1049 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1050 }
1051
1052 /* now rebuild the heap */
1053 for (i = periodiccnt >> 1; i--; )
1054 downheap ((WT *)periodics, periodiccnt, i);
1055}
1056
1057inline int
1058time_update_monotonic (EV_P)
1059{
1060 mn_now = get_clock ();
1061
1062 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1063 {
1064 ev_rt_now = rtmn_diff + mn_now;
1065 return 0;
1066 } 4170 }
1067 else 4171 else
1068 { 4172 ev_at (w) = w->offset;
1069 now_floor = mn_now;
1070 ev_rt_now = ev_time ();
1071 return 1;
1072 }
1073}
1074 4173
1075static void 4174 EV_FREQUENT_CHECK;
1076time_update (EV_P)
1077{
1078 int i;
1079 4175
1080#if EV_USE_MONOTONIC 4176 ++periodiccnt;
1081 if (expect_true (have_monotonic)) 4177 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1082 { 4178 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
1083 if (time_update_monotonic (EV_A)) 4179 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1084 { 4180 ANHE_at_cache (periodics [ev_active (w)]);
1085 ev_tstamp odiff = rtmn_diff; 4181 upheap (periodics, ev_active (w));
1086 4182
1087 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 4183 EV_FREQUENT_CHECK;
1088 {
1089 rtmn_diff = ev_rt_now - mn_now;
1090 4184
1091 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 4185 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1092 return; /* all is well */
1093
1094 ev_rt_now = ev_time ();
1095 mn_now = get_clock ();
1096 now_floor = mn_now;
1097 }
1098
1099 periodics_reschedule (EV_A);
1100 /* no timer adjustment, as the monotonic clock doesn't jump */
1101 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1102 }
1103 }
1104 else
1105#endif
1106 {
1107 ev_rt_now = ev_time ();
1108
1109 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1110 {
1111 periodics_reschedule (EV_A);
1112
1113 /* adjust timers. this is easy, as the offset is the same for all */
1114 for (i = 0; i < timercnt; ++i)
1115 ((WT)timers [i])->at += ev_rt_now - mn_now;
1116 }
1117
1118 mn_now = ev_rt_now;
1119 }
1120} 4186}
1121 4187
4188ecb_noinline
1122void 4189void
1123ev_ref (EV_P) 4190ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
1124{ 4191{
1125 ++activecnt;
1126}
1127
1128void
1129ev_unref (EV_P)
1130{
1131 --activecnt;
1132}
1133
1134static int loop_done;
1135
1136void
1137ev_loop (EV_P_ int flags)
1138{
1139 double block;
1140 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1141
1142 do
1143 {
1144 /* queue check watchers (and execute them) */
1145 if (expect_false (preparecnt))
1146 {
1147 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1148 call_pending (EV_A);
1149 }
1150
1151 /* we might have forked, so reify kernel state if necessary */
1152 if (expect_false (postfork))
1153 loop_fork (EV_A);
1154
1155 /* update fd-related kernel structures */
1156 fd_reify (EV_A);
1157
1158 /* calculate blocking time */
1159
1160 /* we only need this for !monotonic clock or timers, but as we basically
1161 always have timers, we just calculate it always */
1162#if EV_USE_MONOTONIC
1163 if (expect_true (have_monotonic))
1164 time_update_monotonic (EV_A);
1165 else
1166#endif
1167 {
1168 ev_rt_now = ev_time ();
1169 mn_now = ev_rt_now;
1170 }
1171
1172 if (flags & EVLOOP_NONBLOCK || idlecnt)
1173 block = 0.;
1174 else
1175 {
1176 block = MAX_BLOCKTIME;
1177
1178 if (timercnt)
1179 {
1180 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
1181 if (block > to) block = to;
1182 }
1183
1184 if (periodiccnt)
1185 {
1186 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
1187 if (block > to) block = to;
1188 }
1189
1190 if (block < 0.) block = 0.;
1191 }
1192
1193 method_poll (EV_A_ block);
1194
1195 /* update ev_rt_now, do magic */
1196 time_update (EV_A);
1197
1198 /* queue pending timers and reschedule them */
1199 timers_reify (EV_A); /* relative timers called last */
1200 periodics_reify (EV_A); /* absolute timers called first */
1201
1202 /* queue idle watchers unless io or timers are pending */
1203 if (idlecnt && !any_pending (EV_A))
1204 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1205
1206 /* queue check watchers, to be executed first */
1207 if (checkcnt)
1208 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1209
1210 call_pending (EV_A);
1211 }
1212 while (activecnt && !loop_done);
1213
1214 if (loop_done != 2)
1215 loop_done = 0;
1216}
1217
1218void
1219ev_unloop (EV_P_ int how)
1220{
1221 loop_done = how;
1222}
1223
1224/*****************************************************************************/
1225
1226inline void
1227wlist_add (WL *head, WL elem)
1228{
1229 elem->next = *head;
1230 *head = elem;
1231}
1232
1233inline void
1234wlist_del (WL *head, WL elem)
1235{
1236 while (*head)
1237 {
1238 if (*head == elem)
1239 {
1240 *head = elem->next;
1241 return;
1242 }
1243
1244 head = &(*head)->next;
1245 }
1246}
1247
1248inline void
1249ev_clear_pending (EV_P_ W w) 4192 clear_pending (EV_A_ (W)w);
1250{ 4193 if (ecb_expect_false (!ev_is_active (w)))
1251 if (w->pending)
1252 {
1253 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1254 w->pending = 0;
1255 }
1256}
1257
1258inline void
1259ev_start (EV_P_ W w, int active)
1260{
1261 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1262 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1263
1264 w->active = active;
1265 ev_ref (EV_A);
1266}
1267
1268inline void
1269ev_stop (EV_P_ W w)
1270{
1271 ev_unref (EV_A);
1272 w->active = 0;
1273}
1274
1275/*****************************************************************************/
1276
1277void
1278ev_io_start (EV_P_ struct ev_io *w)
1279{
1280 int fd = w->fd;
1281
1282 if (ev_is_active (w))
1283 return; 4194 return;
1284 4195
1285 assert (("ev_io_start called with negative fd", fd >= 0)); 4196 EV_FREQUENT_CHECK;
1286 4197
1287 ev_start (EV_A_ (W)w, 1); 4198 {
1288 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 4199 int active = ev_active (w);
1289 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1290 4200
1291 fd_change (EV_A_ fd); 4201 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1292}
1293 4202
1294void 4203 --periodiccnt;
1295ev_io_stop (EV_P_ struct ev_io *w)
1296{
1297 ev_clear_pending (EV_A_ (W)w);
1298 if (!ev_is_active (w))
1299 return;
1300 4204
1301 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 4205 if (ecb_expect_true (active < periodiccnt + HEAP0))
4206 {
4207 periodics [active] = periodics [periodiccnt + HEAP0];
4208 adjustheap (periodics, periodiccnt, active);
4209 }
4210 }
1302 4211
1303 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1304 ev_stop (EV_A_ (W)w); 4212 ev_stop (EV_A_ (W)w);
1305 4213
1306 fd_change (EV_A_ w->fd); 4214 EV_FREQUENT_CHECK;
1307} 4215}
1308 4216
4217ecb_noinline
1309void 4218void
1310ev_timer_start (EV_P_ struct ev_timer *w)
1311{
1312 if (ev_is_active (w))
1313 return;
1314
1315 ((WT)w)->at += mn_now;
1316
1317 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1318
1319 ev_start (EV_A_ (W)w, ++timercnt);
1320 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1321 timers [timercnt - 1] = w;
1322 upheap ((WT *)timers, timercnt - 1);
1323
1324 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1325}
1326
1327void
1328ev_timer_stop (EV_P_ struct ev_timer *w)
1329{
1330 ev_clear_pending (EV_A_ (W)w);
1331 if (!ev_is_active (w))
1332 return;
1333
1334 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1335
1336 if (((W)w)->active < timercnt--)
1337 {
1338 timers [((W)w)->active - 1] = timers [timercnt];
1339 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1340 }
1341
1342 ((WT)w)->at -= mn_now;
1343
1344 ev_stop (EV_A_ (W)w);
1345}
1346
1347void
1348ev_timer_again (EV_P_ struct ev_timer *w)
1349{
1350 if (ev_is_active (w))
1351 {
1352 if (w->repeat)
1353 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
1354 else
1355 ev_timer_stop (EV_A_ w);
1356 }
1357 else if (w->repeat)
1358 ev_timer_start (EV_A_ w);
1359}
1360
1361void
1362ev_periodic_start (EV_P_ struct ev_periodic *w)
1363{
1364 if (ev_is_active (w))
1365 return;
1366
1367 if (w->reschedule_cb)
1368 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1369 else if (w->interval)
1370 {
1371 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1372 /* this formula differs from the one in periodic_reify because we do not always round up */
1373 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1374 }
1375
1376 ev_start (EV_A_ (W)w, ++periodiccnt);
1377 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1378 periodics [periodiccnt - 1] = w;
1379 upheap ((WT *)periodics, periodiccnt - 1);
1380
1381 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1382}
1383
1384void
1385ev_periodic_stop (EV_P_ struct ev_periodic *w)
1386{
1387 ev_clear_pending (EV_A_ (W)w);
1388 if (!ev_is_active (w))
1389 return;
1390
1391 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1392
1393 if (((W)w)->active < periodiccnt--)
1394 {
1395 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1396 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1397 }
1398
1399 ev_stop (EV_A_ (W)w);
1400}
1401
1402void
1403ev_periodic_again (EV_P_ struct ev_periodic *w) 4219ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
1404{ 4220{
1405 /* TODO: use adjustheap and recalculation */ 4221 /* TODO: use adjustheap and recalculation */
1406 ev_periodic_stop (EV_A_ w); 4222 ev_periodic_stop (EV_A_ w);
1407 ev_periodic_start (EV_A_ w); 4223 ev_periodic_start (EV_A_ w);
1408} 4224}
1409 4225#endif
1410void
1411ev_idle_start (EV_P_ struct ev_idle *w)
1412{
1413 if (ev_is_active (w))
1414 return;
1415
1416 ev_start (EV_A_ (W)w, ++idlecnt);
1417 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1418 idles [idlecnt - 1] = w;
1419}
1420
1421void
1422ev_idle_stop (EV_P_ struct ev_idle *w)
1423{
1424 ev_clear_pending (EV_A_ (W)w);
1425 if (ev_is_active (w))
1426 return;
1427
1428 idles [((W)w)->active - 1] = idles [--idlecnt];
1429 ev_stop (EV_A_ (W)w);
1430}
1431
1432void
1433ev_prepare_start (EV_P_ struct ev_prepare *w)
1434{
1435 if (ev_is_active (w))
1436 return;
1437
1438 ev_start (EV_A_ (W)w, ++preparecnt);
1439 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1440 prepares [preparecnt - 1] = w;
1441}
1442
1443void
1444ev_prepare_stop (EV_P_ struct ev_prepare *w)
1445{
1446 ev_clear_pending (EV_A_ (W)w);
1447 if (ev_is_active (w))
1448 return;
1449
1450 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1451 ev_stop (EV_A_ (W)w);
1452}
1453
1454void
1455ev_check_start (EV_P_ struct ev_check *w)
1456{
1457 if (ev_is_active (w))
1458 return;
1459
1460 ev_start (EV_A_ (W)w, ++checkcnt);
1461 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1462 checks [checkcnt - 1] = w;
1463}
1464
1465void
1466ev_check_stop (EV_P_ struct ev_check *w)
1467{
1468 ev_clear_pending (EV_A_ (W)w);
1469 if (ev_is_active (w))
1470 return;
1471
1472 checks [((W)w)->active - 1] = checks [--checkcnt];
1473 ev_stop (EV_A_ (W)w);
1474}
1475 4226
1476#ifndef SA_RESTART 4227#ifndef SA_RESTART
1477# define SA_RESTART 0 4228# define SA_RESTART 0
1478#endif 4229#endif
1479 4230
4231#if EV_SIGNAL_ENABLE
4232
4233ecb_noinline
1480void 4234void
1481ev_signal_start (EV_P_ struct ev_signal *w) 4235ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
1482{ 4236{
4237 if (ecb_expect_false (ev_is_active (w)))
4238 return;
4239
4240 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4241
1483#if EV_MULTIPLICITY 4242#if EV_MULTIPLICITY
1484 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 4243 assert (("libev: a signal must not be attached to two different loops",
4244 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4245
4246 signals [w->signum - 1].loop = EV_A;
4247 ECB_MEMORY_FENCE_RELEASE;
4248#endif
4249
4250 EV_FREQUENT_CHECK;
4251
4252#if EV_USE_SIGNALFD
4253 if (sigfd == -2)
4254 {
4255 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
4256 if (sigfd < 0 && errno == EINVAL)
4257 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
4258
4259 if (sigfd >= 0)
4260 {
4261 fd_intern (sigfd); /* doing it twice will not hurt */
4262
4263 sigemptyset (&sigfd_set);
4264
4265 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4266 ev_set_priority (&sigfd_w, EV_MAXPRI);
4267 ev_io_start (EV_A_ &sigfd_w);
4268 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4269 }
4270 }
4271
4272 if (sigfd >= 0)
4273 {
4274 /* TODO: check .head */
4275 sigaddset (&sigfd_set, w->signum);
4276 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4277
4278 signalfd (sigfd, &sigfd_set, 0);
4279 }
4280#endif
4281
4282 ev_start (EV_A_ (W)w, 1);
4283 wlist_add (&signals [w->signum - 1].head, (WL)w);
4284
4285 if (!((WL)w)->next)
4286# if EV_USE_SIGNALFD
4287 if (sigfd < 0) /*TODO*/
1485#endif 4288# endif
1486 if (ev_is_active (w)) 4289 {
4290# ifdef _WIN32
4291 evpipe_init (EV_A);
4292
4293 signal (w->signum, ev_sighandler);
4294# else
4295 struct sigaction sa;
4296
4297 evpipe_init (EV_A);
4298
4299 sa.sa_handler = ev_sighandler;
4300 sigfillset (&sa.sa_mask);
4301 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
4302 sigaction (w->signum, &sa, 0);
4303
4304 if (origflags & EVFLAG_NOSIGMASK)
4305 {
4306 sigemptyset (&sa.sa_mask);
4307 sigaddset (&sa.sa_mask, w->signum);
4308 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4309 }
4310#endif
4311 }
4312
4313 EV_FREQUENT_CHECK;
4314}
4315
4316ecb_noinline
4317void
4318ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
4319{
4320 clear_pending (EV_A_ (W)w);
4321 if (ecb_expect_false (!ev_is_active (w)))
1487 return; 4322 return;
1488 4323
1489 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 4324 EV_FREQUENT_CHECK;
4325
4326 wlist_del (&signals [w->signum - 1].head, (WL)w);
4327 ev_stop (EV_A_ (W)w);
4328
4329 if (!signals [w->signum - 1].head)
4330 {
4331#if EV_MULTIPLICITY
4332 signals [w->signum - 1].loop = 0; /* unattach from signal */
4333#endif
4334#if EV_USE_SIGNALFD
4335 if (sigfd >= 0)
4336 {
4337 sigset_t ss;
4338
4339 sigemptyset (&ss);
4340 sigaddset (&ss, w->signum);
4341 sigdelset (&sigfd_set, w->signum);
4342
4343 signalfd (sigfd, &sigfd_set, 0);
4344 sigprocmask (SIG_UNBLOCK, &ss, 0);
4345 }
4346 else
4347#endif
4348 signal (w->signum, SIG_DFL);
4349 }
4350
4351 EV_FREQUENT_CHECK;
4352}
4353
4354#endif
4355
4356#if EV_CHILD_ENABLE
4357
4358void
4359ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4360{
4361#if EV_MULTIPLICITY
4362 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
4363#endif
4364 if (ecb_expect_false (ev_is_active (w)))
4365 return;
4366
4367 EV_FREQUENT_CHECK;
1490 4368
1491 ev_start (EV_A_ (W)w, 1); 4369 ev_start (EV_A_ (W)w, 1);
1492 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 4370 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1493 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1494 4371
1495 if (!((WL)w)->next) 4372 EV_FREQUENT_CHECK;
1496 {
1497#if WIN32
1498 signal (w->signum, sighandler);
1499#else
1500 struct sigaction sa;
1501 sa.sa_handler = sighandler;
1502 sigfillset (&sa.sa_mask);
1503 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1504 sigaction (w->signum, &sa, 0);
1505#endif
1506 }
1507} 4373}
1508 4374
1509void 4375void
1510ev_signal_stop (EV_P_ struct ev_signal *w) 4376ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
1511{ 4377{
1512 ev_clear_pending (EV_A_ (W)w); 4378 clear_pending (EV_A_ (W)w);
1513 if (!ev_is_active (w)) 4379 if (ecb_expect_false (!ev_is_active (w)))
1514 return; 4380 return;
1515 4381
1516 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 4382 EV_FREQUENT_CHECK;
4383
4384 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1517 ev_stop (EV_A_ (W)w); 4385 ev_stop (EV_A_ (W)w);
1518 4386
1519 if (!signals [w->signum - 1].head) 4387 EV_FREQUENT_CHECK;
1520 signal (w->signum, SIG_DFL);
1521} 4388}
1522 4389
1523void 4390#endif
1524ev_child_start (EV_P_ struct ev_child *w) 4391
1525{ 4392#if EV_STAT_ENABLE
1526#if EV_MULTIPLICITY 4393
1527 assert (("child watchers are only supported in the default loop", loop == default_loop)); 4394# ifdef _WIN32
4395# undef lstat
4396# define lstat(a,b) _stati64 (a,b)
1528#endif 4397# endif
1529 if (ev_is_active (w)) 4398
4399#define DEF_STAT_INTERVAL 5.0074891
4400#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4401#define MIN_STAT_INTERVAL 0.1074891
4402
4403ecb_noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4404
4405#if EV_USE_INOTIFY
4406
4407/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4408# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4409
4410ecb_noinline
4411static void
4412infy_add (EV_P_ ev_stat *w)
4413{
4414 w->wd = inotify_add_watch (fs_fd, w->path,
4415 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4416 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4417 | IN_DONT_FOLLOW | IN_MASK_ADD);
4418
4419 if (w->wd >= 0)
4420 {
4421 struct statfs sfs;
4422
4423 /* now local changes will be tracked by inotify, but remote changes won't */
4424 /* unless the filesystem is known to be local, we therefore still poll */
4425 /* also do poll on <2.6.25, but with normal frequency */
4426
4427 if (!fs_2625)
4428 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4429 else if (!statfs (w->path, &sfs)
4430 && (sfs.f_type == 0x1373 /* devfs */
4431 || sfs.f_type == 0x4006 /* fat */
4432 || sfs.f_type == 0x4d44 /* msdos */
4433 || sfs.f_type == 0xEF53 /* ext2/3 */
4434 || sfs.f_type == 0x72b6 /* jffs2 */
4435 || sfs.f_type == 0x858458f6 /* ramfs */
4436 || sfs.f_type == 0x5346544e /* ntfs */
4437 || sfs.f_type == 0x3153464a /* jfs */
4438 || sfs.f_type == 0x9123683e /* btrfs */
4439 || sfs.f_type == 0x52654973 /* reiser3 */
4440 || sfs.f_type == 0x01021994 /* tmpfs */
4441 || sfs.f_type == 0x58465342 /* xfs */))
4442 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4443 else
4444 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
4445 }
4446 else
4447 {
4448 /* can't use inotify, continue to stat */
4449 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4450
4451 /* if path is not there, monitor some parent directory for speedup hints */
4452 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4453 /* but an efficiency issue only */
4454 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4455 {
4456 char path [4096];
4457 strcpy (path, w->path);
4458
4459 do
4460 {
4461 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4462 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4463
4464 char *pend = strrchr (path, '/');
4465
4466 if (!pend || pend == path)
4467 break;
4468
4469 *pend = 0;
4470 w->wd = inotify_add_watch (fs_fd, path, mask);
4471 }
4472 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4473 }
4474 }
4475
4476 if (w->wd >= 0)
4477 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4478
4479 /* now re-arm timer, if required */
4480 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4481 ev_timer_again (EV_A_ &w->timer);
4482 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4483}
4484
4485ecb_noinline
4486static void
4487infy_del (EV_P_ ev_stat *w)
4488{
4489 int slot;
4490 int wd = w->wd;
4491
4492 if (wd < 0)
1530 return; 4493 return;
1531 4494
4495 w->wd = -2;
4496 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4497 wlist_del (&fs_hash [slot].head, (WL)w);
4498
4499 /* remove this watcher, if others are watching it, they will rearm */
4500 inotify_rm_watch (fs_fd, wd);
4501}
4502
4503ecb_noinline
4504static void
4505infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4506{
4507 if (slot < 0)
4508 /* overflow, need to check for all hash slots */
4509 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4510 infy_wd (EV_A_ slot, wd, ev);
4511 else
4512 {
4513 WL w_;
4514
4515 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4516 {
4517 ev_stat *w = (ev_stat *)w_;
4518 w_ = w_->next; /* lets us remove this watcher and all before it */
4519
4520 if (w->wd == wd || wd == -1)
4521 {
4522 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4523 {
4524 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4525 w->wd = -1;
4526 infy_add (EV_A_ w); /* re-add, no matter what */
4527 }
4528
4529 stat_timer_cb (EV_A_ &w->timer, 0);
4530 }
4531 }
4532 }
4533}
4534
4535static void
4536infy_cb (EV_P_ ev_io *w, int revents)
4537{
4538 char buf [EV_INOTIFY_BUFSIZE];
4539 int ofs;
4540 int len = read (fs_fd, buf, sizeof (buf));
4541
4542 for (ofs = 0; ofs < len; )
4543 {
4544 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4545 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4546 ofs += sizeof (struct inotify_event) + ev->len;
4547 }
4548}
4549
4550inline_size ecb_cold
4551void
4552ev_check_2625 (EV_P)
4553{
4554 /* kernels < 2.6.25 are borked
4555 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4556 */
4557 if (ev_linux_version () < 0x020619)
4558 return;
4559
4560 fs_2625 = 1;
4561}
4562
4563inline_size int
4564infy_newfd (void)
4565{
4566#if defined IN_CLOEXEC && defined IN_NONBLOCK
4567 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4568 if (fd >= 0)
4569 return fd;
4570#endif
4571 return inotify_init ();
4572}
4573
4574inline_size void
4575infy_init (EV_P)
4576{
4577 if (fs_fd != -2)
4578 return;
4579
4580 fs_fd = -1;
4581
4582 ev_check_2625 (EV_A);
4583
4584 fs_fd = infy_newfd ();
4585
4586 if (fs_fd >= 0)
4587 {
4588 fd_intern (fs_fd);
4589 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4590 ev_set_priority (&fs_w, EV_MAXPRI);
4591 ev_io_start (EV_A_ &fs_w);
4592 ev_unref (EV_A);
4593 }
4594}
4595
4596inline_size void
4597infy_fork (EV_P)
4598{
4599 int slot;
4600
4601 if (fs_fd < 0)
4602 return;
4603
4604 ev_ref (EV_A);
4605 ev_io_stop (EV_A_ &fs_w);
4606 close (fs_fd);
4607 fs_fd = infy_newfd ();
4608
4609 if (fs_fd >= 0)
4610 {
4611 fd_intern (fs_fd);
4612 ev_io_set (&fs_w, fs_fd, EV_READ);
4613 ev_io_start (EV_A_ &fs_w);
4614 ev_unref (EV_A);
4615 }
4616
4617 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4618 {
4619 WL w_ = fs_hash [slot].head;
4620 fs_hash [slot].head = 0;
4621
4622 while (w_)
4623 {
4624 ev_stat *w = (ev_stat *)w_;
4625 w_ = w_->next; /* lets us add this watcher */
4626
4627 w->wd = -1;
4628
4629 if (fs_fd >= 0)
4630 infy_add (EV_A_ w); /* re-add, no matter what */
4631 else
4632 {
4633 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4634 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4635 ev_timer_again (EV_A_ &w->timer);
4636 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4637 }
4638 }
4639 }
4640}
4641
4642#endif
4643
4644#ifdef _WIN32
4645# define EV_LSTAT(p,b) _stati64 (p, b)
4646#else
4647# define EV_LSTAT(p,b) lstat (p, b)
4648#endif
4649
4650void
4651ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
4652{
4653 if (lstat (w->path, &w->attr) < 0)
4654 w->attr.st_nlink = 0;
4655 else if (!w->attr.st_nlink)
4656 w->attr.st_nlink = 1;
4657}
4658
4659ecb_noinline
4660static void
4661stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4662{
4663 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4664
4665 ev_statdata prev = w->attr;
4666 ev_stat_stat (EV_A_ w);
4667
4668 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4669 if (
4670 prev.st_dev != w->attr.st_dev
4671 || prev.st_ino != w->attr.st_ino
4672 || prev.st_mode != w->attr.st_mode
4673 || prev.st_nlink != w->attr.st_nlink
4674 || prev.st_uid != w->attr.st_uid
4675 || prev.st_gid != w->attr.st_gid
4676 || prev.st_rdev != w->attr.st_rdev
4677 || prev.st_size != w->attr.st_size
4678 || prev.st_atime != w->attr.st_atime
4679 || prev.st_mtime != w->attr.st_mtime
4680 || prev.st_ctime != w->attr.st_ctime
4681 ) {
4682 /* we only update w->prev on actual differences */
4683 /* in case we test more often than invoke the callback, */
4684 /* to ensure that prev is always different to attr */
4685 w->prev = prev;
4686
4687 #if EV_USE_INOTIFY
4688 if (fs_fd >= 0)
4689 {
4690 infy_del (EV_A_ w);
4691 infy_add (EV_A_ w);
4692 ev_stat_stat (EV_A_ w); /* avoid race... */
4693 }
4694 #endif
4695
4696 ev_feed_event (EV_A_ w, EV_STAT);
4697 }
4698}
4699
4700void
4701ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
4702{
4703 if (ecb_expect_false (ev_is_active (w)))
4704 return;
4705
4706 ev_stat_stat (EV_A_ w);
4707
4708 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4709 w->interval = MIN_STAT_INTERVAL;
4710
4711 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4712 ev_set_priority (&w->timer, ev_priority (w));
4713
4714#if EV_USE_INOTIFY
4715 infy_init (EV_A);
4716
4717 if (fs_fd >= 0)
4718 infy_add (EV_A_ w);
4719 else
4720#endif
4721 {
4722 ev_timer_again (EV_A_ &w->timer);
4723 ev_unref (EV_A);
4724 }
4725
1532 ev_start (EV_A_ (W)w, 1); 4726 ev_start (EV_A_ (W)w, 1);
1533 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1534}
1535 4727
4728 EV_FREQUENT_CHECK;
4729}
4730
1536void 4731void
1537ev_child_stop (EV_P_ struct ev_child *w) 4732ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
1538{ 4733{
1539 ev_clear_pending (EV_A_ (W)w); 4734 clear_pending (EV_A_ (W)w);
1540 if (ev_is_active (w)) 4735 if (ecb_expect_false (!ev_is_active (w)))
1541 return; 4736 return;
1542 4737
1543 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4738 EV_FREQUENT_CHECK;
4739
4740#if EV_USE_INOTIFY
4741 infy_del (EV_A_ w);
4742#endif
4743
4744 if (ev_is_active (&w->timer))
4745 {
4746 ev_ref (EV_A);
4747 ev_timer_stop (EV_A_ &w->timer);
4748 }
4749
1544 ev_stop (EV_A_ (W)w); 4750 ev_stop (EV_A_ (W)w);
4751
4752 EV_FREQUENT_CHECK;
1545} 4753}
4754#endif
4755
4756#if EV_IDLE_ENABLE
4757void
4758ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
4759{
4760 if (ecb_expect_false (ev_is_active (w)))
4761 return;
4762
4763 pri_adjust (EV_A_ (W)w);
4764
4765 EV_FREQUENT_CHECK;
4766
4767 {
4768 int active = ++idlecnt [ABSPRI (w)];
4769
4770 ++idleall;
4771 ev_start (EV_A_ (W)w, active);
4772
4773 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
4774 idles [ABSPRI (w)][active - 1] = w;
4775 }
4776
4777 EV_FREQUENT_CHECK;
4778}
4779
4780void
4781ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
4782{
4783 clear_pending (EV_A_ (W)w);
4784 if (ecb_expect_false (!ev_is_active (w)))
4785 return;
4786
4787 EV_FREQUENT_CHECK;
4788
4789 {
4790 int active = ev_active (w);
4791
4792 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4793 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4794
4795 ev_stop (EV_A_ (W)w);
4796 --idleall;
4797 }
4798
4799 EV_FREQUENT_CHECK;
4800}
4801#endif
4802
4803#if EV_PREPARE_ENABLE
4804void
4805ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
4806{
4807 if (ecb_expect_false (ev_is_active (w)))
4808 return;
4809
4810 EV_FREQUENT_CHECK;
4811
4812 ev_start (EV_A_ (W)w, ++preparecnt);
4813 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
4814 prepares [preparecnt - 1] = w;
4815
4816 EV_FREQUENT_CHECK;
4817}
4818
4819void
4820ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
4821{
4822 clear_pending (EV_A_ (W)w);
4823 if (ecb_expect_false (!ev_is_active (w)))
4824 return;
4825
4826 EV_FREQUENT_CHECK;
4827
4828 {
4829 int active = ev_active (w);
4830
4831 prepares [active - 1] = prepares [--preparecnt];
4832 ev_active (prepares [active - 1]) = active;
4833 }
4834
4835 ev_stop (EV_A_ (W)w);
4836
4837 EV_FREQUENT_CHECK;
4838}
4839#endif
4840
4841#if EV_CHECK_ENABLE
4842void
4843ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
4844{
4845 if (ecb_expect_false (ev_is_active (w)))
4846 return;
4847
4848 EV_FREQUENT_CHECK;
4849
4850 ev_start (EV_A_ (W)w, ++checkcnt);
4851 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
4852 checks [checkcnt - 1] = w;
4853
4854 EV_FREQUENT_CHECK;
4855}
4856
4857void
4858ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
4859{
4860 clear_pending (EV_A_ (W)w);
4861 if (ecb_expect_false (!ev_is_active (w)))
4862 return;
4863
4864 EV_FREQUENT_CHECK;
4865
4866 {
4867 int active = ev_active (w);
4868
4869 checks [active - 1] = checks [--checkcnt];
4870 ev_active (checks [active - 1]) = active;
4871 }
4872
4873 ev_stop (EV_A_ (W)w);
4874
4875 EV_FREQUENT_CHECK;
4876}
4877#endif
4878
4879#if EV_EMBED_ENABLE
4880ecb_noinline
4881void
4882ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
4883{
4884 ev_run (w->other, EVRUN_NOWAIT);
4885}
4886
4887static void
4888embed_io_cb (EV_P_ ev_io *io, int revents)
4889{
4890 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4891
4892 if (ev_cb (w))
4893 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4894 else
4895 ev_run (w->other, EVRUN_NOWAIT);
4896}
4897
4898static void
4899embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4900{
4901 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4902
4903 {
4904 EV_P = w->other;
4905
4906 while (fdchangecnt)
4907 {
4908 fd_reify (EV_A);
4909 ev_run (EV_A_ EVRUN_NOWAIT);
4910 }
4911 }
4912}
4913
4914static void
4915embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4916{
4917 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4918
4919 ev_embed_stop (EV_A_ w);
4920
4921 {
4922 EV_P = w->other;
4923
4924 ev_loop_fork (EV_A);
4925 ev_run (EV_A_ EVRUN_NOWAIT);
4926 }
4927
4928 ev_embed_start (EV_A_ w);
4929}
4930
4931#if 0
4932static void
4933embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4934{
4935 ev_idle_stop (EV_A_ idle);
4936}
4937#endif
4938
4939void
4940ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
4941{
4942 if (ecb_expect_false (ev_is_active (w)))
4943 return;
4944
4945 {
4946 EV_P = w->other;
4947 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4948 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4949 }
4950
4951 EV_FREQUENT_CHECK;
4952
4953 ev_set_priority (&w->io, ev_priority (w));
4954 ev_io_start (EV_A_ &w->io);
4955
4956 ev_prepare_init (&w->prepare, embed_prepare_cb);
4957 ev_set_priority (&w->prepare, EV_MINPRI);
4958 ev_prepare_start (EV_A_ &w->prepare);
4959
4960 ev_fork_init (&w->fork, embed_fork_cb);
4961 ev_fork_start (EV_A_ &w->fork);
4962
4963 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4964
4965 ev_start (EV_A_ (W)w, 1);
4966
4967 EV_FREQUENT_CHECK;
4968}
4969
4970void
4971ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
4972{
4973 clear_pending (EV_A_ (W)w);
4974 if (ecb_expect_false (!ev_is_active (w)))
4975 return;
4976
4977 EV_FREQUENT_CHECK;
4978
4979 ev_io_stop (EV_A_ &w->io);
4980 ev_prepare_stop (EV_A_ &w->prepare);
4981 ev_fork_stop (EV_A_ &w->fork);
4982
4983 ev_stop (EV_A_ (W)w);
4984
4985 EV_FREQUENT_CHECK;
4986}
4987#endif
4988
4989#if EV_FORK_ENABLE
4990void
4991ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
4992{
4993 if (ecb_expect_false (ev_is_active (w)))
4994 return;
4995
4996 EV_FREQUENT_CHECK;
4997
4998 ev_start (EV_A_ (W)w, ++forkcnt);
4999 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
5000 forks [forkcnt - 1] = w;
5001
5002 EV_FREQUENT_CHECK;
5003}
5004
5005void
5006ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
5007{
5008 clear_pending (EV_A_ (W)w);
5009 if (ecb_expect_false (!ev_is_active (w)))
5010 return;
5011
5012 EV_FREQUENT_CHECK;
5013
5014 {
5015 int active = ev_active (w);
5016
5017 forks [active - 1] = forks [--forkcnt];
5018 ev_active (forks [active - 1]) = active;
5019 }
5020
5021 ev_stop (EV_A_ (W)w);
5022
5023 EV_FREQUENT_CHECK;
5024}
5025#endif
5026
5027#if EV_CLEANUP_ENABLE
5028void
5029ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5030{
5031 if (ecb_expect_false (ev_is_active (w)))
5032 return;
5033
5034 EV_FREQUENT_CHECK;
5035
5036 ev_start (EV_A_ (W)w, ++cleanupcnt);
5037 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
5038 cleanups [cleanupcnt - 1] = w;
5039
5040 /* cleanup watchers should never keep a refcount on the loop */
5041 ev_unref (EV_A);
5042 EV_FREQUENT_CHECK;
5043}
5044
5045void
5046ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5047{
5048 clear_pending (EV_A_ (W)w);
5049 if (ecb_expect_false (!ev_is_active (w)))
5050 return;
5051
5052 EV_FREQUENT_CHECK;
5053 ev_ref (EV_A);
5054
5055 {
5056 int active = ev_active (w);
5057
5058 cleanups [active - 1] = cleanups [--cleanupcnt];
5059 ev_active (cleanups [active - 1]) = active;
5060 }
5061
5062 ev_stop (EV_A_ (W)w);
5063
5064 EV_FREQUENT_CHECK;
5065}
5066#endif
5067
5068#if EV_ASYNC_ENABLE
5069void
5070ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
5071{
5072 if (ecb_expect_false (ev_is_active (w)))
5073 return;
5074
5075 w->sent = 0;
5076
5077 evpipe_init (EV_A);
5078
5079 EV_FREQUENT_CHECK;
5080
5081 ev_start (EV_A_ (W)w, ++asynccnt);
5082 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
5083 asyncs [asynccnt - 1] = w;
5084
5085 EV_FREQUENT_CHECK;
5086}
5087
5088void
5089ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
5090{
5091 clear_pending (EV_A_ (W)w);
5092 if (ecb_expect_false (!ev_is_active (w)))
5093 return;
5094
5095 EV_FREQUENT_CHECK;
5096
5097 {
5098 int active = ev_active (w);
5099
5100 asyncs [active - 1] = asyncs [--asynccnt];
5101 ev_active (asyncs [active - 1]) = active;
5102 }
5103
5104 ev_stop (EV_A_ (W)w);
5105
5106 EV_FREQUENT_CHECK;
5107}
5108
5109void
5110ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
5111{
5112 w->sent = 1;
5113 evpipe_write (EV_A_ &async_pending);
5114}
5115#endif
1546 5116
1547/*****************************************************************************/ 5117/*****************************************************************************/
1548 5118
1549struct ev_once 5119struct ev_once
1550{ 5120{
1551 struct ev_io io; 5121 ev_io io;
1552 struct ev_timer to; 5122 ev_timer to;
1553 void (*cb)(int revents, void *arg); 5123 void (*cb)(int revents, void *arg);
1554 void *arg; 5124 void *arg;
1555}; 5125};
1556 5126
1557static void 5127static void
1558once_cb (EV_P_ struct ev_once *once, int revents) 5128once_cb (EV_P_ struct ev_once *once, int revents)
1559{ 5129{
1560 void (*cb)(int revents, void *arg) = once->cb; 5130 void (*cb)(int revents, void *arg) = once->cb;
1561 void *arg = once->arg; 5131 void *arg = once->arg;
1562 5132
1563 ev_io_stop (EV_A_ &once->io); 5133 ev_io_stop (EV_A_ &once->io);
1564 ev_timer_stop (EV_A_ &once->to); 5134 ev_timer_stop (EV_A_ &once->to);
1565 ev_free (once); 5135 ev_free (once);
1566 5136
1567 cb (revents, arg); 5137 cb (revents, arg);
1568} 5138}
1569 5139
1570static void 5140static void
1571once_cb_io (EV_P_ struct ev_io *w, int revents) 5141once_cb_io (EV_P_ ev_io *w, int revents)
1572{ 5142{
1573 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 5143 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
5144
5145 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1574} 5146}
1575 5147
1576static void 5148static void
1577once_cb_to (EV_P_ struct ev_timer *w, int revents) 5149once_cb_to (EV_P_ ev_timer *w, int revents)
1578{ 5150{
1579 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 5151 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
1580}
1581 5152
5153 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
5154}
5155
1582void 5156void
1583ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 5157ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
1584{ 5158{
1585 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 5159 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1586 5160
1587 if (!once)
1588 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1589 else
1590 {
1591 once->cb = cb; 5161 once->cb = cb;
1592 once->arg = arg; 5162 once->arg = arg;
1593 5163
1594 ev_init (&once->io, once_cb_io); 5164 ev_init (&once->io, once_cb_io);
1595 if (fd >= 0) 5165 if (fd >= 0)
5166 {
5167 ev_io_set (&once->io, fd, events);
5168 ev_io_start (EV_A_ &once->io);
5169 }
5170
5171 ev_init (&once->to, once_cb_to);
5172 if (timeout >= 0.)
5173 {
5174 ev_timer_set (&once->to, timeout, 0.);
5175 ev_timer_start (EV_A_ &once->to);
5176 }
5177}
5178
5179/*****************************************************************************/
5180
5181#if EV_WALK_ENABLE
5182ecb_cold
5183void
5184ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5185{
5186 int i, j;
5187 ev_watcher_list *wl, *wn;
5188
5189 if (types & (EV_IO | EV_EMBED))
5190 for (i = 0; i < anfdmax; ++i)
5191 for (wl = anfds [i].head; wl; )
1596 { 5192 {
1597 ev_io_set (&once->io, fd, events); 5193 wn = wl->next;
1598 ev_io_start (EV_A_ &once->io); 5194
5195#if EV_EMBED_ENABLE
5196 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5197 {
5198 if (types & EV_EMBED)
5199 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5200 }
5201 else
5202#endif
5203#if EV_USE_INOTIFY
5204 if (ev_cb ((ev_io *)wl) == infy_cb)
5205 ;
5206 else
5207#endif
5208 if ((ev_io *)wl != &pipe_w)
5209 if (types & EV_IO)
5210 cb (EV_A_ EV_IO, wl);
5211
5212 wl = wn;
1599 } 5213 }
1600 5214
1601 ev_init (&once->to, once_cb_to); 5215 if (types & (EV_TIMER | EV_STAT))
1602 if (timeout >= 0.) 5216 for (i = timercnt + HEAP0; i-- > HEAP0; )
5217#if EV_STAT_ENABLE
5218 /*TODO: timer is not always active*/
5219 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1603 { 5220 {
1604 ev_timer_set (&once->to, timeout, 0.); 5221 if (types & EV_STAT)
1605 ev_timer_start (EV_A_ &once->to); 5222 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1606 } 5223 }
1607 } 5224 else
1608} 5225#endif
5226 if (types & EV_TIMER)
5227 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1609 5228
1610#ifdef __cplusplus 5229#if EV_PERIODIC_ENABLE
1611} 5230 if (types & EV_PERIODIC)
5231 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5232 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5233#endif
5234
5235#if EV_IDLE_ENABLE
5236 if (types & EV_IDLE)
5237 for (j = NUMPRI; j--; )
5238 for (i = idlecnt [j]; i--; )
5239 cb (EV_A_ EV_IDLE, idles [j][i]);
5240#endif
5241
5242#if EV_FORK_ENABLE
5243 if (types & EV_FORK)
5244 for (i = forkcnt; i--; )
5245 if (ev_cb (forks [i]) != embed_fork_cb)
5246 cb (EV_A_ EV_FORK, forks [i]);
5247#endif
5248
5249#if EV_ASYNC_ENABLE
5250 if (types & EV_ASYNC)
5251 for (i = asynccnt; i--; )
5252 cb (EV_A_ EV_ASYNC, asyncs [i]);
5253#endif
5254
5255#if EV_PREPARE_ENABLE
5256 if (types & EV_PREPARE)
5257 for (i = preparecnt; i--; )
5258# if EV_EMBED_ENABLE
5259 if (ev_cb (prepares [i]) != embed_prepare_cb)
1612#endif 5260# endif
5261 cb (EV_A_ EV_PREPARE, prepares [i]);
5262#endif
1613 5263
5264#if EV_CHECK_ENABLE
5265 if (types & EV_CHECK)
5266 for (i = checkcnt; i--; )
5267 cb (EV_A_ EV_CHECK, checks [i]);
5268#endif
5269
5270#if EV_SIGNAL_ENABLE
5271 if (types & EV_SIGNAL)
5272 for (i = 0; i < EV_NSIG - 1; ++i)
5273 for (wl = signals [i].head; wl; )
5274 {
5275 wn = wl->next;
5276 cb (EV_A_ EV_SIGNAL, wl);
5277 wl = wn;
5278 }
5279#endif
5280
5281#if EV_CHILD_ENABLE
5282 if (types & EV_CHILD)
5283 for (i = (EV_PID_HASHSIZE); i--; )
5284 for (wl = childs [i]; wl; )
5285 {
5286 wn = wl->next;
5287 cb (EV_A_ EV_CHILD, wl);
5288 wl = wn;
5289 }
5290#endif
5291/* EV_STAT 0x00001000 /* stat data changed */
5292/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5293}
5294#endif
5295
5296#if EV_MULTIPLICITY
5297 #include "ev_wrap.h"
5298#endif
5299

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines