ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.113 by root, Mon Nov 12 08:00:05 2007 UTC vs.
Revision 1.504 by root, Sun Jul 7 06:00:32 2019 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
37# include "config.h" 45# include "config.h"
46# endif
47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
38 67
39# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
42# endif 71# endif
43# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
74# endif
75# else
76# ifndef EV_USE_MONOTONIC
77# define EV_USE_MONOTONIC 0
78# endif
79# ifndef EV_USE_REALTIME
80# define EV_USE_REALTIME 0
45# endif 81# endif
46# endif 82# endif
47 83
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 84# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
50# endif 91# endif
51 92
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
53# define EV_USE_POLL 1 99# define EV_USE_SELECT 0
54# endif 100# endif
55 101
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
57# define EV_USE_EPOLL 1 108# define EV_USE_POLL 0
58# endif 109# endif
59 110
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
62# endif 118# endif
63 119
120# if HAVE_LINUX_AIO_ABI_H
121# ifndef EV_USE_LINUXAIO
122# define EV_USE_LINUXAIO EV_FEATURE_BACKENDS
123# endif
124# else
125# undef EV_USE_LINUXAIO
126# define EV_USE_LINUXAIO 0
64#endif 127# endif
128
129# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
130# ifndef EV_USE_KQUEUE
131# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
132# endif
133# else
134# undef EV_USE_KQUEUE
135# define EV_USE_KQUEUE 0
136# endif
137
138# if HAVE_PORT_H && HAVE_PORT_CREATE
139# ifndef EV_USE_PORT
140# define EV_USE_PORT EV_FEATURE_BACKENDS
141# endif
142# else
143# undef EV_USE_PORT
144# define EV_USE_PORT 0
145# endif
65 146
66#include <math.h> 147# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
148# ifndef EV_USE_INOTIFY
149# define EV_USE_INOTIFY EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_INOTIFY
153# define EV_USE_INOTIFY 0
154# endif
155
156# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
157# ifndef EV_USE_SIGNALFD
158# define EV_USE_SIGNALFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_SIGNALFD
162# define EV_USE_SIGNALFD 0
163# endif
164
165# if HAVE_EVENTFD
166# ifndef EV_USE_EVENTFD
167# define EV_USE_EVENTFD EV_FEATURE_OS
168# endif
169# else
170# undef EV_USE_EVENTFD
171# define EV_USE_EVENTFD 0
172# endif
173
174#endif
175
176/* OS X, in its infinite idiocy, actually HARDCODES
177 * a limit of 1024 into their select. Where people have brains,
178 * OS X engineers apparently have a vacuum. Or maybe they were
179 * ordered to have a vacuum, or they do anything for money.
180 * This might help. Or not.
181 * Note that this must be defined early, as other include files
182 * will rely on this define as well.
183 */
184#define _DARWIN_UNLIMITED_SELECT 1
185
67#include <stdlib.h> 186#include <stdlib.h>
187#include <string.h>
68#include <fcntl.h> 188#include <fcntl.h>
69#include <stddef.h> 189#include <stddef.h>
70 190
71#include <stdio.h> 191#include <stdio.h>
72 192
73#include <assert.h> 193#include <assert.h>
74#include <errno.h> 194#include <errno.h>
75#include <sys/types.h> 195#include <sys/types.h>
76#include <time.h> 196#include <time.h>
197#include <limits.h>
77 198
78#include <signal.h> 199#include <signal.h>
79 200
201#ifdef EV_H
202# include EV_H
203#else
204# include "ev.h"
205#endif
206
207#if EV_NO_THREADS
208# undef EV_NO_SMP
209# define EV_NO_SMP 1
210# undef ECB_NO_THREADS
211# define ECB_NO_THREADS 1
212#endif
213#if EV_NO_SMP
214# undef EV_NO_SMP
215# define ECB_NO_SMP 1
216#endif
217
80#ifndef _WIN32 218#ifndef _WIN32
81# include <unistd.h>
82# include <sys/time.h> 219# include <sys/time.h>
83# include <sys/wait.h> 220# include <sys/wait.h>
221# include <unistd.h>
84#else 222#else
223# include <io.h>
85# define WIN32_LEAN_AND_MEAN 224# define WIN32_LEAN_AND_MEAN
225# include <winsock2.h>
86# include <windows.h> 226# include <windows.h>
87# ifndef EV_SELECT_IS_WINSOCKET 227# ifndef EV_SELECT_IS_WINSOCKET
88# define EV_SELECT_IS_WINSOCKET 1 228# define EV_SELECT_IS_WINSOCKET 1
89# endif 229# endif
230# undef EV_AVOID_STDIO
231#endif
232
233/* this block tries to deduce configuration from header-defined symbols and defaults */
234
235/* try to deduce the maximum number of signals on this platform */
236#if defined EV_NSIG
237/* use what's provided */
238#elif defined NSIG
239# define EV_NSIG (NSIG)
240#elif defined _NSIG
241# define EV_NSIG (_NSIG)
242#elif defined SIGMAX
243# define EV_NSIG (SIGMAX+1)
244#elif defined SIG_MAX
245# define EV_NSIG (SIG_MAX+1)
246#elif defined _SIG_MAX
247# define EV_NSIG (_SIG_MAX+1)
248#elif defined MAXSIG
249# define EV_NSIG (MAXSIG+1)
250#elif defined MAX_SIG
251# define EV_NSIG (MAX_SIG+1)
252#elif defined SIGARRAYSIZE
253# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
254#elif defined _sys_nsig
255# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
256#else
257# define EV_NSIG (8 * sizeof (sigset_t) + 1)
258#endif
259
260#ifndef EV_USE_FLOOR
261# define EV_USE_FLOOR 0
262#endif
263
264#ifndef EV_USE_CLOCK_SYSCALL
265# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
266# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
267# else
268# define EV_USE_CLOCK_SYSCALL 0
90#endif 269# endif
270#endif
91 271
92/**/ 272#if !(_POSIX_TIMERS > 0)
273# ifndef EV_USE_MONOTONIC
274# define EV_USE_MONOTONIC 0
275# endif
276# ifndef EV_USE_REALTIME
277# define EV_USE_REALTIME 0
278# endif
279#endif
93 280
94#ifndef EV_USE_MONOTONIC 281#ifndef EV_USE_MONOTONIC
282# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
283# define EV_USE_MONOTONIC EV_FEATURE_OS
284# else
95# define EV_USE_MONOTONIC 1 285# define EV_USE_MONOTONIC 0
286# endif
287#endif
288
289#ifndef EV_USE_REALTIME
290# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
291#endif
292
293#ifndef EV_USE_NANOSLEEP
294# if _POSIX_C_SOURCE >= 199309L
295# define EV_USE_NANOSLEEP EV_FEATURE_OS
296# else
297# define EV_USE_NANOSLEEP 0
298# endif
96#endif 299#endif
97 300
98#ifndef EV_USE_SELECT 301#ifndef EV_USE_SELECT
99# define EV_USE_SELECT 1 302# define EV_USE_SELECT EV_FEATURE_BACKENDS
100# define EV_SELECT_USE_FD_SET 1
101#endif 303#endif
102 304
103#ifndef EV_USE_POLL 305#ifndef EV_USE_POLL
104# ifdef _WIN32 306# ifdef _WIN32
105# define EV_USE_POLL 0 307# define EV_USE_POLL 0
106# else 308# else
107# define EV_USE_POLL 1 309# define EV_USE_POLL EV_FEATURE_BACKENDS
108# endif 310# endif
109#endif 311#endif
110 312
111#ifndef EV_USE_EPOLL 313#ifndef EV_USE_EPOLL
314# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
315# define EV_USE_EPOLL EV_FEATURE_BACKENDS
316# else
112# define EV_USE_EPOLL 0 317# define EV_USE_EPOLL 0
318# endif
113#endif 319#endif
114 320
115#ifndef EV_USE_KQUEUE 321#ifndef EV_USE_KQUEUE
116# define EV_USE_KQUEUE 0 322# define EV_USE_KQUEUE 0
117#endif 323#endif
118 324
119#ifndef EV_USE_REALTIME 325#ifndef EV_USE_PORT
326# define EV_USE_PORT 0
327#endif
328
329#ifndef EV_USE_LINUXAIO
330# if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
120# define EV_USE_REALTIME 1 331# define EV_USE_LINUXAIO 1
332# else
333# define EV_USE_LINUXAIO 0
121#endif 334# endif
335#endif
122 336
123/**/ 337#ifndef EV_USE_IOURING
338# if __linux
339# define EV_USE_IOURING 0
340# else
341# define EV_USE_IOURING 0
342# endif
343#endif
124 344
125/* darwin simply cannot be helped */ 345#ifndef EV_USE_INOTIFY
126#ifdef __APPLE__ 346# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
347# define EV_USE_INOTIFY EV_FEATURE_OS
348# else
349# define EV_USE_INOTIFY 0
350# endif
351#endif
352
353#ifndef EV_PID_HASHSIZE
354# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
355#endif
356
357#ifndef EV_INOTIFY_HASHSIZE
358# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
359#endif
360
361#ifndef EV_USE_EVENTFD
362# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
363# define EV_USE_EVENTFD EV_FEATURE_OS
364# else
365# define EV_USE_EVENTFD 0
366# endif
367#endif
368
369#ifndef EV_USE_SIGNALFD
370# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
371# define EV_USE_SIGNALFD EV_FEATURE_OS
372# else
373# define EV_USE_SIGNALFD 0
374# endif
375#endif
376
377#if 0 /* debugging */
378# define EV_VERIFY 3
379# define EV_USE_4HEAP 1
380# define EV_HEAP_CACHE_AT 1
381#endif
382
383#ifndef EV_VERIFY
384# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
385#endif
386
387#ifndef EV_USE_4HEAP
388# define EV_USE_4HEAP EV_FEATURE_DATA
389#endif
390
391#ifndef EV_HEAP_CACHE_AT
392# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
393#endif
394
395#ifdef __ANDROID__
396/* supposedly, android doesn't typedef fd_mask */
397# undef EV_USE_SELECT
398# define EV_USE_SELECT 0
399/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
400# undef EV_USE_CLOCK_SYSCALL
401# define EV_USE_CLOCK_SYSCALL 0
402#endif
403
404/* aix's poll.h seems to cause lots of trouble */
405#ifdef _AIX
406/* AIX has a completely broken poll.h header */
127# undef EV_USE_POLL 407# undef EV_USE_POLL
128# undef EV_USE_KQUEUE 408# define EV_USE_POLL 0
409#endif
410
411/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
412/* which makes programs even slower. might work on other unices, too. */
413#if EV_USE_CLOCK_SYSCALL
414# include <sys/syscall.h>
415# ifdef SYS_clock_gettime
416# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
417# undef EV_USE_MONOTONIC
418# define EV_USE_MONOTONIC 1
419# define EV_NEED_SYSCALL 1
420# else
421# undef EV_USE_CLOCK_SYSCALL
422# define EV_USE_CLOCK_SYSCALL 0
129#endif 423# endif
424#endif
425
426/* this block fixes any misconfiguration where we know we run into trouble otherwise */
130 427
131#ifndef CLOCK_MONOTONIC 428#ifndef CLOCK_MONOTONIC
132# undef EV_USE_MONOTONIC 429# undef EV_USE_MONOTONIC
133# define EV_USE_MONOTONIC 0 430# define EV_USE_MONOTONIC 0
134#endif 431#endif
136#ifndef CLOCK_REALTIME 433#ifndef CLOCK_REALTIME
137# undef EV_USE_REALTIME 434# undef EV_USE_REALTIME
138# define EV_USE_REALTIME 0 435# define EV_USE_REALTIME 0
139#endif 436#endif
140 437
141#if EV_SELECT_IS_WINSOCKET 438#if !EV_STAT_ENABLE
142# include <winsock.h> 439# undef EV_USE_INOTIFY
440# define EV_USE_INOTIFY 0
441#endif
442
443#if !EV_USE_NANOSLEEP
444/* hp-ux has it in sys/time.h, which we unconditionally include above */
445# if !defined _WIN32 && !defined __hpux
446# include <sys/select.h>
143#endif 447# endif
448#endif
144 449
145/**/ 450#if EV_USE_LINUXAIO
451# include <sys/syscall.h>
452# if SYS_io_getevents && EV_USE_EPOLL /* linuxaio backend requires epoll backend */
453# define EV_NEED_SYSCALL 1
454# else
455# undef EV_USE_LINUXAIO
456# define EV_USE_LINUXAIO 0
457# endif
458#endif
146 459
147#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 460#if EV_USE_IOURING
148#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 461# include <sys/syscall.h>
149#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 462# if !SYS_io_uring_setup && __linux && !__alpha
150/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 463# define SYS_io_uring_setup 425
464# define SYS_io_uring_enter 426
465# define SYS_io_uring_wregister 427
466# endif
467# if SYS_io_uring_setup && EV_USE_EPOLL /* iouring backend requires epoll backend */
468# define EV_NEED_SYSCALL 1
469# else
470# undef EV_USE_IOURING
471# define EV_USE_IOURING 0
472# endif
473#endif
151 474
152#ifdef EV_H 475#if EV_USE_INOTIFY
153# include EV_H 476# include <sys/statfs.h>
477# include <sys/inotify.h>
478/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
479# ifndef IN_DONT_FOLLOW
480# undef EV_USE_INOTIFY
481# define EV_USE_INOTIFY 0
482# endif
483#endif
484
485#if EV_USE_EVENTFD
486/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
487# include <stdint.h>
488# ifndef EFD_NONBLOCK
489# define EFD_NONBLOCK O_NONBLOCK
490# endif
491# ifndef EFD_CLOEXEC
492# ifdef O_CLOEXEC
493# define EFD_CLOEXEC O_CLOEXEC
494# else
495# define EFD_CLOEXEC 02000000
496# endif
497# endif
498EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
499#endif
500
501#if EV_USE_SIGNALFD
502/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
503# include <stdint.h>
504# ifndef SFD_NONBLOCK
505# define SFD_NONBLOCK O_NONBLOCK
506# endif
507# ifndef SFD_CLOEXEC
508# ifdef O_CLOEXEC
509# define SFD_CLOEXEC O_CLOEXEC
510# else
511# define SFD_CLOEXEC 02000000
512# endif
513# endif
514EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
515
516struct signalfd_siginfo
517{
518 uint32_t ssi_signo;
519 char pad[128 - sizeof (uint32_t)];
520};
521#endif
522
523/*****************************************************************************/
524
525#if EV_VERIFY >= 3
526# define EV_FREQUENT_CHECK ev_verify (EV_A)
154#else 527#else
155# include "ev.h" 528# define EV_FREQUENT_CHECK do { } while (0)
529#endif
530
531/*
532 * This is used to work around floating point rounding problems.
533 * This value is good at least till the year 4000.
534 */
535#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
536/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
537
538#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
539#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
540
541/* find a portable timestamp that is "alawys" in the future but fits into time_t.
542 * this is quite hard, and we are mostly guessing - we handle 32 bit signed/unsigned time_t,
543 * and sizes large than 32 bit, but and maybe the unlikely loating point time_t */
544#define EV_TSTAMP_HUGE \
545 (sizeof (time_t) >= 8 ? 10000000000000. \
546 : 0 < (time_t)4294967295 ? 4294967295. \
547 : 2147483647.) \
548
549#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
550#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
551
552/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
553/* ECB.H BEGIN */
554/*
555 * libecb - http://software.schmorp.de/pkg/libecb
556 *
557 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
558 * Copyright (©) 2011 Emanuele Giaquinta
559 * All rights reserved.
560 *
561 * Redistribution and use in source and binary forms, with or without modifica-
562 * tion, are permitted provided that the following conditions are met:
563 *
564 * 1. Redistributions of source code must retain the above copyright notice,
565 * this list of conditions and the following disclaimer.
566 *
567 * 2. Redistributions in binary form must reproduce the above copyright
568 * notice, this list of conditions and the following disclaimer in the
569 * documentation and/or other materials provided with the distribution.
570 *
571 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
572 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
573 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
574 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
575 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
576 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
577 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
578 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
579 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
580 * OF THE POSSIBILITY OF SUCH DAMAGE.
581 *
582 * Alternatively, the contents of this file may be used under the terms of
583 * the GNU General Public License ("GPL") version 2 or any later version,
584 * in which case the provisions of the GPL are applicable instead of
585 * the above. If you wish to allow the use of your version of this file
586 * only under the terms of the GPL and not to allow others to use your
587 * version of this file under the BSD license, indicate your decision
588 * by deleting the provisions above and replace them with the notice
589 * and other provisions required by the GPL. If you do not delete the
590 * provisions above, a recipient may use your version of this file under
591 * either the BSD or the GPL.
592 */
593
594#ifndef ECB_H
595#define ECB_H
596
597/* 16 bits major, 16 bits minor */
598#define ECB_VERSION 0x00010006
599
600#ifdef _WIN32
601 typedef signed char int8_t;
602 typedef unsigned char uint8_t;
603 typedef signed short int16_t;
604 typedef unsigned short uint16_t;
605 typedef signed int int32_t;
606 typedef unsigned int uint32_t;
607 #if __GNUC__
608 typedef signed long long int64_t;
609 typedef unsigned long long uint64_t;
610 #else /* _MSC_VER || __BORLANDC__ */
611 typedef signed __int64 int64_t;
612 typedef unsigned __int64 uint64_t;
156#endif 613 #endif
157 614 #ifdef _WIN64
158#if __GNUC__ >= 3 615 #define ECB_PTRSIZE 8
159# define expect(expr,value) __builtin_expect ((expr),(value)) 616 typedef uint64_t uintptr_t;
160# define inline inline 617 typedef int64_t intptr_t;
618 #else
619 #define ECB_PTRSIZE 4
620 typedef uint32_t uintptr_t;
621 typedef int32_t intptr_t;
622 #endif
161#else 623#else
624 #include <inttypes.h>
625 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
626 #define ECB_PTRSIZE 8
627 #else
628 #define ECB_PTRSIZE 4
629 #endif
630#endif
631
632#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
633#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
634
635/* work around x32 idiocy by defining proper macros */
636#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
637 #if _ILP32
638 #define ECB_AMD64_X32 1
639 #else
640 #define ECB_AMD64 1
641 #endif
642#endif
643
644/* many compilers define _GNUC_ to some versions but then only implement
645 * what their idiot authors think are the "more important" extensions,
646 * causing enormous grief in return for some better fake benchmark numbers.
647 * or so.
648 * we try to detect these and simply assume they are not gcc - if they have
649 * an issue with that they should have done it right in the first place.
650 */
651#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
652 #define ECB_GCC_VERSION(major,minor) 0
653#else
654 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
655#endif
656
657#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
658
659#if __clang__ && defined __has_builtin
660 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
661#else
662 #define ECB_CLANG_BUILTIN(x) 0
663#endif
664
665#if __clang__ && defined __has_extension
666 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
667#else
668 #define ECB_CLANG_EXTENSION(x) 0
669#endif
670
671#define ECB_CPP (__cplusplus+0)
672#define ECB_CPP11 (__cplusplus >= 201103L)
673#define ECB_CPP14 (__cplusplus >= 201402L)
674#define ECB_CPP17 (__cplusplus >= 201703L)
675
676#if ECB_CPP
677 #define ECB_C 0
678 #define ECB_STDC_VERSION 0
679#else
680 #define ECB_C 1
681 #define ECB_STDC_VERSION __STDC_VERSION__
682#endif
683
684#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
685#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
686#define ECB_C17 (ECB_STDC_VERSION >= 201710L)
687
688#if ECB_CPP
689 #define ECB_EXTERN_C extern "C"
690 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
691 #define ECB_EXTERN_C_END }
692#else
693 #define ECB_EXTERN_C extern
694 #define ECB_EXTERN_C_BEG
695 #define ECB_EXTERN_C_END
696#endif
697
698/*****************************************************************************/
699
700/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
701/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
702
703#if ECB_NO_THREADS
704 #define ECB_NO_SMP 1
705#endif
706
707#if ECB_NO_SMP
708 #define ECB_MEMORY_FENCE do { } while (0)
709#endif
710
711/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
712#if __xlC__ && ECB_CPP
713 #include <builtins.h>
714#endif
715
716#if 1400 <= _MSC_VER
717 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
718#endif
719
720#ifndef ECB_MEMORY_FENCE
721 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
722 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
723 #if __i386 || __i386__
724 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
725 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
726 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
727 #elif ECB_GCC_AMD64
728 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
729 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
730 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
731 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
732 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
733 #elif defined __ARM_ARCH_2__ \
734 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
735 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
736 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
737 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
738 || defined __ARM_ARCH_5TEJ__
739 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
740 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
741 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
742 || defined __ARM_ARCH_6T2__
743 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
744 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
745 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
746 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
747 #elif __aarch64__
748 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
749 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
750 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
751 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
752 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
753 #elif defined __s390__ || defined __s390x__
754 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
755 #elif defined __mips__
756 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
757 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
758 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
759 #elif defined __alpha__
760 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
761 #elif defined __hppa__
762 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
763 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
764 #elif defined __ia64__
765 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
766 #elif defined __m68k__
767 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
768 #elif defined __m88k__
769 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
770 #elif defined __sh__
771 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
772 #endif
773 #endif
774#endif
775
776#ifndef ECB_MEMORY_FENCE
777 #if ECB_GCC_VERSION(4,7)
778 /* see comment below (stdatomic.h) about the C11 memory model. */
779 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
780 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
781 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
782 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
783
784 #elif ECB_CLANG_EXTENSION(c_atomic)
785 /* see comment below (stdatomic.h) about the C11 memory model. */
786 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
787 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
788 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
789 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
790
791 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
792 #define ECB_MEMORY_FENCE __sync_synchronize ()
793 #elif _MSC_VER >= 1500 /* VC++ 2008 */
794 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
795 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
796 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
797 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
798 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
799 #elif _MSC_VER >= 1400 /* VC++ 2005 */
800 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
801 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
802 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
803 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
804 #elif defined _WIN32
805 #include <WinNT.h>
806 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
807 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
808 #include <mbarrier.h>
809 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
810 #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
811 #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
812 #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
813 #elif __xlC__
814 #define ECB_MEMORY_FENCE __sync ()
815 #endif
816#endif
817
818#ifndef ECB_MEMORY_FENCE
819 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
820 /* we assume that these memory fences work on all variables/all memory accesses, */
821 /* not just C11 atomics and atomic accesses */
822 #include <stdatomic.h>
823 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
824 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
825 #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
826 #endif
827#endif
828
829#ifndef ECB_MEMORY_FENCE
830 #if !ECB_AVOID_PTHREADS
831 /*
832 * if you get undefined symbol references to pthread_mutex_lock,
833 * or failure to find pthread.h, then you should implement
834 * the ECB_MEMORY_FENCE operations for your cpu/compiler
835 * OR provide pthread.h and link against the posix thread library
836 * of your system.
837 */
838 #include <pthread.h>
839 #define ECB_NEEDS_PTHREADS 1
840 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
841
842 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
843 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
844 #endif
845#endif
846
847#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
848 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
849#endif
850
851#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
852 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
853#endif
854
855#if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
856 #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
857#endif
858
859/*****************************************************************************/
860
861#if ECB_CPP
862 #define ecb_inline static inline
863#elif ECB_GCC_VERSION(2,5)
864 #define ecb_inline static __inline__
865#elif ECB_C99
866 #define ecb_inline static inline
867#else
868 #define ecb_inline static
869#endif
870
871#if ECB_GCC_VERSION(3,3)
872 #define ecb_restrict __restrict__
873#elif ECB_C99
874 #define ecb_restrict restrict
875#else
876 #define ecb_restrict
877#endif
878
879typedef int ecb_bool;
880
881#define ECB_CONCAT_(a, b) a ## b
882#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
883#define ECB_STRINGIFY_(a) # a
884#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
885#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
886
887#define ecb_function_ ecb_inline
888
889#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
890 #define ecb_attribute(attrlist) __attribute__ (attrlist)
891#else
892 #define ecb_attribute(attrlist)
893#endif
894
895#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
896 #define ecb_is_constant(expr) __builtin_constant_p (expr)
897#else
898 /* possible C11 impl for integral types
899 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
900 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
901
902 #define ecb_is_constant(expr) 0
903#endif
904
905#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
906 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
907#else
162# define expect(expr,value) (expr) 908 #define ecb_expect(expr,value) (expr)
163# define inline static
164#endif 909#endif
165 910
911#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
912 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
913#else
914 #define ecb_prefetch(addr,rw,locality)
915#endif
916
917/* no emulation for ecb_decltype */
918#if ECB_CPP11
919 // older implementations might have problems with decltype(x)::type, work around it
920 template<class T> struct ecb_decltype_t { typedef T type; };
921 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
922#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
923 #define ecb_decltype(x) __typeof__ (x)
924#endif
925
926#if _MSC_VER >= 1300
927 #define ecb_deprecated __declspec (deprecated)
928#else
929 #define ecb_deprecated ecb_attribute ((__deprecated__))
930#endif
931
932#if _MSC_VER >= 1500
933 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
934#elif ECB_GCC_VERSION(4,5)
935 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
936#else
937 #define ecb_deprecated_message(msg) ecb_deprecated
938#endif
939
940#if _MSC_VER >= 1400
941 #define ecb_noinline __declspec (noinline)
942#else
943 #define ecb_noinline ecb_attribute ((__noinline__))
944#endif
945
946#define ecb_unused ecb_attribute ((__unused__))
947#define ecb_const ecb_attribute ((__const__))
948#define ecb_pure ecb_attribute ((__pure__))
949
950#if ECB_C11 || __IBMC_NORETURN
951 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
952 #define ecb_noreturn _Noreturn
953#elif ECB_CPP11
954 #define ecb_noreturn [[noreturn]]
955#elif _MSC_VER >= 1200
956 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
957 #define ecb_noreturn __declspec (noreturn)
958#else
959 #define ecb_noreturn ecb_attribute ((__noreturn__))
960#endif
961
962#if ECB_GCC_VERSION(4,3)
963 #define ecb_artificial ecb_attribute ((__artificial__))
964 #define ecb_hot ecb_attribute ((__hot__))
965 #define ecb_cold ecb_attribute ((__cold__))
966#else
967 #define ecb_artificial
968 #define ecb_hot
969 #define ecb_cold
970#endif
971
972/* put around conditional expressions if you are very sure that the */
973/* expression is mostly true or mostly false. note that these return */
974/* booleans, not the expression. */
166#define expect_false(expr) expect ((expr) != 0, 0) 975#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
167#define expect_true(expr) expect ((expr) != 0, 1) 976#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
977/* for compatibility to the rest of the world */
978#define ecb_likely(expr) ecb_expect_true (expr)
979#define ecb_unlikely(expr) ecb_expect_false (expr)
168 980
981/* count trailing zero bits and count # of one bits */
982#if ECB_GCC_VERSION(3,4) \
983 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
984 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
985 && ECB_CLANG_BUILTIN(__builtin_popcount))
986 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
987 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
988 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
989 #define ecb_ctz32(x) __builtin_ctz (x)
990 #define ecb_ctz64(x) __builtin_ctzll (x)
991 #define ecb_popcount32(x) __builtin_popcount (x)
992 /* no popcountll */
993#else
994 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
995 ecb_function_ ecb_const int
996 ecb_ctz32 (uint32_t x)
997 {
998#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
999 unsigned long r;
1000 _BitScanForward (&r, x);
1001 return (int)r;
1002#else
1003 int r = 0;
1004
1005 x &= ~x + 1; /* this isolates the lowest bit */
1006
1007#if ECB_branchless_on_i386
1008 r += !!(x & 0xaaaaaaaa) << 0;
1009 r += !!(x & 0xcccccccc) << 1;
1010 r += !!(x & 0xf0f0f0f0) << 2;
1011 r += !!(x & 0xff00ff00) << 3;
1012 r += !!(x & 0xffff0000) << 4;
1013#else
1014 if (x & 0xaaaaaaaa) r += 1;
1015 if (x & 0xcccccccc) r += 2;
1016 if (x & 0xf0f0f0f0) r += 4;
1017 if (x & 0xff00ff00) r += 8;
1018 if (x & 0xffff0000) r += 16;
1019#endif
1020
1021 return r;
1022#endif
1023 }
1024
1025 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
1026 ecb_function_ ecb_const int
1027 ecb_ctz64 (uint64_t x)
1028 {
1029#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1030 unsigned long r;
1031 _BitScanForward64 (&r, x);
1032 return (int)r;
1033#else
1034 int shift = x & 0xffffffff ? 0 : 32;
1035 return ecb_ctz32 (x >> shift) + shift;
1036#endif
1037 }
1038
1039 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1040 ecb_function_ ecb_const int
1041 ecb_popcount32 (uint32_t x)
1042 {
1043 x -= (x >> 1) & 0x55555555;
1044 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1045 x = ((x >> 4) + x) & 0x0f0f0f0f;
1046 x *= 0x01010101;
1047
1048 return x >> 24;
1049 }
1050
1051 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1052 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1053 {
1054#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1055 unsigned long r;
1056 _BitScanReverse (&r, x);
1057 return (int)r;
1058#else
1059 int r = 0;
1060
1061 if (x >> 16) { x >>= 16; r += 16; }
1062 if (x >> 8) { x >>= 8; r += 8; }
1063 if (x >> 4) { x >>= 4; r += 4; }
1064 if (x >> 2) { x >>= 2; r += 2; }
1065 if (x >> 1) { r += 1; }
1066
1067 return r;
1068#endif
1069 }
1070
1071 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1072 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1073 {
1074#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1075 unsigned long r;
1076 _BitScanReverse64 (&r, x);
1077 return (int)r;
1078#else
1079 int r = 0;
1080
1081 if (x >> 32) { x >>= 32; r += 32; }
1082
1083 return r + ecb_ld32 (x);
1084#endif
1085 }
1086#endif
1087
1088ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1089ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1090ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1091ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1092
1093ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1094ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1095{
1096 return ( (x * 0x0802U & 0x22110U)
1097 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1098}
1099
1100ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1101ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1102{
1103 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1104 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1105 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1106 x = ( x >> 8 ) | ( x << 8);
1107
1108 return x;
1109}
1110
1111ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1112ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1113{
1114 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1115 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1116 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1117 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1118 x = ( x >> 16 ) | ( x << 16);
1119
1120 return x;
1121}
1122
1123/* popcount64 is only available on 64 bit cpus as gcc builtin */
1124/* so for this version we are lazy */
1125ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1126ecb_function_ ecb_const int
1127ecb_popcount64 (uint64_t x)
1128{
1129 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1130}
1131
1132ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1133ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1134ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1135ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1136ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1137ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1138ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1139ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1140
1141ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1142ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1143ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1144ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1145ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1146ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1147ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1148ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1149
1150#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1151 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1152 #define ecb_bswap16(x) __builtin_bswap16 (x)
1153 #else
1154 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1155 #endif
1156 #define ecb_bswap32(x) __builtin_bswap32 (x)
1157 #define ecb_bswap64(x) __builtin_bswap64 (x)
1158#elif _MSC_VER
1159 #include <stdlib.h>
1160 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1161 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1162 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1163#else
1164 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1165 ecb_function_ ecb_const uint16_t
1166 ecb_bswap16 (uint16_t x)
1167 {
1168 return ecb_rotl16 (x, 8);
1169 }
1170
1171 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1172 ecb_function_ ecb_const uint32_t
1173 ecb_bswap32 (uint32_t x)
1174 {
1175 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1176 }
1177
1178 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1179 ecb_function_ ecb_const uint64_t
1180 ecb_bswap64 (uint64_t x)
1181 {
1182 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1183 }
1184#endif
1185
1186#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1187 #define ecb_unreachable() __builtin_unreachable ()
1188#else
1189 /* this seems to work fine, but gcc always emits a warning for it :/ */
1190 ecb_inline ecb_noreturn void ecb_unreachable (void);
1191 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1192#endif
1193
1194/* try to tell the compiler that some condition is definitely true */
1195#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1196
1197ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1198ecb_inline ecb_const uint32_t
1199ecb_byteorder_helper (void)
1200{
1201 /* the union code still generates code under pressure in gcc, */
1202 /* but less than using pointers, and always seems to */
1203 /* successfully return a constant. */
1204 /* the reason why we have this horrible preprocessor mess */
1205 /* is to avoid it in all cases, at least on common architectures */
1206 /* or when using a recent enough gcc version (>= 4.6) */
1207#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1208 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1209 #define ECB_LITTLE_ENDIAN 1
1210 return 0x44332211;
1211#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1212 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1213 #define ECB_BIG_ENDIAN 1
1214 return 0x11223344;
1215#else
1216 union
1217 {
1218 uint8_t c[4];
1219 uint32_t u;
1220 } u = { 0x11, 0x22, 0x33, 0x44 };
1221 return u.u;
1222#endif
1223}
1224
1225ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1226ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1227ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1228ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1229
1230#if ECB_GCC_VERSION(3,0) || ECB_C99
1231 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1232#else
1233 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1234#endif
1235
1236#if ECB_CPP
1237 template<typename T>
1238 static inline T ecb_div_rd (T val, T div)
1239 {
1240 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1241 }
1242 template<typename T>
1243 static inline T ecb_div_ru (T val, T div)
1244 {
1245 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1246 }
1247#else
1248 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1249 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1250#endif
1251
1252#if ecb_cplusplus_does_not_suck
1253 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1254 template<typename T, int N>
1255 static inline int ecb_array_length (const T (&arr)[N])
1256 {
1257 return N;
1258 }
1259#else
1260 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1261#endif
1262
1263ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1264ecb_function_ ecb_const uint32_t
1265ecb_binary16_to_binary32 (uint32_t x)
1266{
1267 unsigned int s = (x & 0x8000) << (31 - 15);
1268 int e = (x >> 10) & 0x001f;
1269 unsigned int m = x & 0x03ff;
1270
1271 if (ecb_expect_false (e == 31))
1272 /* infinity or NaN */
1273 e = 255 - (127 - 15);
1274 else if (ecb_expect_false (!e))
1275 {
1276 if (ecb_expect_true (!m))
1277 /* zero, handled by code below by forcing e to 0 */
1278 e = 0 - (127 - 15);
1279 else
1280 {
1281 /* subnormal, renormalise */
1282 unsigned int s = 10 - ecb_ld32 (m);
1283
1284 m = (m << s) & 0x3ff; /* mask implicit bit */
1285 e -= s - 1;
1286 }
1287 }
1288
1289 /* e and m now are normalised, or zero, (or inf or nan) */
1290 e += 127 - 15;
1291
1292 return s | (e << 23) | (m << (23 - 10));
1293}
1294
1295ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1296ecb_function_ ecb_const uint16_t
1297ecb_binary32_to_binary16 (uint32_t x)
1298{
1299 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1300 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1301 unsigned int m = x & 0x007fffff;
1302
1303 x &= 0x7fffffff;
1304
1305 /* if it's within range of binary16 normals, use fast path */
1306 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1307 {
1308 /* mantissa round-to-even */
1309 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1310
1311 /* handle overflow */
1312 if (ecb_expect_false (m >= 0x00800000))
1313 {
1314 m >>= 1;
1315 e += 1;
1316 }
1317
1318 return s | (e << 10) | (m >> (23 - 10));
1319 }
1320
1321 /* handle large numbers and infinity */
1322 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1323 return s | 0x7c00;
1324
1325 /* handle zero, subnormals and small numbers */
1326 if (ecb_expect_true (x < 0x38800000))
1327 {
1328 /* zero */
1329 if (ecb_expect_true (!x))
1330 return s;
1331
1332 /* handle subnormals */
1333
1334 /* too small, will be zero */
1335 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1336 return s;
1337
1338 m |= 0x00800000; /* make implicit bit explicit */
1339
1340 /* very tricky - we need to round to the nearest e (+10) bit value */
1341 {
1342 unsigned int bits = 14 - e;
1343 unsigned int half = (1 << (bits - 1)) - 1;
1344 unsigned int even = (m >> bits) & 1;
1345
1346 /* if this overflows, we will end up with a normalised number */
1347 m = (m + half + even) >> bits;
1348 }
1349
1350 return s | m;
1351 }
1352
1353 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1354 m >>= 13;
1355
1356 return s | 0x7c00 | m | !m;
1357}
1358
1359/*******************************************************************************/
1360/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1361
1362/* basically, everything uses "ieee pure-endian" floating point numbers */
1363/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1364#if 0 \
1365 || __i386 || __i386__ \
1366 || ECB_GCC_AMD64 \
1367 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1368 || defined __s390__ || defined __s390x__ \
1369 || defined __mips__ \
1370 || defined __alpha__ \
1371 || defined __hppa__ \
1372 || defined __ia64__ \
1373 || defined __m68k__ \
1374 || defined __m88k__ \
1375 || defined __sh__ \
1376 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1377 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1378 || defined __aarch64__
1379 #define ECB_STDFP 1
1380 #include <string.h> /* for memcpy */
1381#else
1382 #define ECB_STDFP 0
1383#endif
1384
1385#ifndef ECB_NO_LIBM
1386
1387 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1388
1389 /* only the oldest of old doesn't have this one. solaris. */
1390 #ifdef INFINITY
1391 #define ECB_INFINITY INFINITY
1392 #else
1393 #define ECB_INFINITY HUGE_VAL
1394 #endif
1395
1396 #ifdef NAN
1397 #define ECB_NAN NAN
1398 #else
1399 #define ECB_NAN ECB_INFINITY
1400 #endif
1401
1402 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1403 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1404 #define ecb_frexpf(x,e) frexpf ((x), (e))
1405 #else
1406 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1407 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1408 #endif
1409
1410 /* convert a float to ieee single/binary32 */
1411 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1412 ecb_function_ ecb_const uint32_t
1413 ecb_float_to_binary32 (float x)
1414 {
1415 uint32_t r;
1416
1417 #if ECB_STDFP
1418 memcpy (&r, &x, 4);
1419 #else
1420 /* slow emulation, works for anything but -0 */
1421 uint32_t m;
1422 int e;
1423
1424 if (x == 0e0f ) return 0x00000000U;
1425 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1426 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1427 if (x != x ) return 0x7fbfffffU;
1428
1429 m = ecb_frexpf (x, &e) * 0x1000000U;
1430
1431 r = m & 0x80000000U;
1432
1433 if (r)
1434 m = -m;
1435
1436 if (e <= -126)
1437 {
1438 m &= 0xffffffU;
1439 m >>= (-125 - e);
1440 e = -126;
1441 }
1442
1443 r |= (e + 126) << 23;
1444 r |= m & 0x7fffffU;
1445 #endif
1446
1447 return r;
1448 }
1449
1450 /* converts an ieee single/binary32 to a float */
1451 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1452 ecb_function_ ecb_const float
1453 ecb_binary32_to_float (uint32_t x)
1454 {
1455 float r;
1456
1457 #if ECB_STDFP
1458 memcpy (&r, &x, 4);
1459 #else
1460 /* emulation, only works for normals and subnormals and +0 */
1461 int neg = x >> 31;
1462 int e = (x >> 23) & 0xffU;
1463
1464 x &= 0x7fffffU;
1465
1466 if (e)
1467 x |= 0x800000U;
1468 else
1469 e = 1;
1470
1471 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1472 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1473
1474 r = neg ? -r : r;
1475 #endif
1476
1477 return r;
1478 }
1479
1480 /* convert a double to ieee double/binary64 */
1481 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1482 ecb_function_ ecb_const uint64_t
1483 ecb_double_to_binary64 (double x)
1484 {
1485 uint64_t r;
1486
1487 #if ECB_STDFP
1488 memcpy (&r, &x, 8);
1489 #else
1490 /* slow emulation, works for anything but -0 */
1491 uint64_t m;
1492 int e;
1493
1494 if (x == 0e0 ) return 0x0000000000000000U;
1495 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1496 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1497 if (x != x ) return 0X7ff7ffffffffffffU;
1498
1499 m = frexp (x, &e) * 0x20000000000000U;
1500
1501 r = m & 0x8000000000000000;;
1502
1503 if (r)
1504 m = -m;
1505
1506 if (e <= -1022)
1507 {
1508 m &= 0x1fffffffffffffU;
1509 m >>= (-1021 - e);
1510 e = -1022;
1511 }
1512
1513 r |= ((uint64_t)(e + 1022)) << 52;
1514 r |= m & 0xfffffffffffffU;
1515 #endif
1516
1517 return r;
1518 }
1519
1520 /* converts an ieee double/binary64 to a double */
1521 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1522 ecb_function_ ecb_const double
1523 ecb_binary64_to_double (uint64_t x)
1524 {
1525 double r;
1526
1527 #if ECB_STDFP
1528 memcpy (&r, &x, 8);
1529 #else
1530 /* emulation, only works for normals and subnormals and +0 */
1531 int neg = x >> 63;
1532 int e = (x >> 52) & 0x7ffU;
1533
1534 x &= 0xfffffffffffffU;
1535
1536 if (e)
1537 x |= 0x10000000000000U;
1538 else
1539 e = 1;
1540
1541 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1542 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1543
1544 r = neg ? -r : r;
1545 #endif
1546
1547 return r;
1548 }
1549
1550 /* convert a float to ieee half/binary16 */
1551 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1552 ecb_function_ ecb_const uint16_t
1553 ecb_float_to_binary16 (float x)
1554 {
1555 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1556 }
1557
1558 /* convert an ieee half/binary16 to float */
1559 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1560 ecb_function_ ecb_const float
1561 ecb_binary16_to_float (uint16_t x)
1562 {
1563 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1564 }
1565
1566#endif
1567
1568#endif
1569
1570/* ECB.H END */
1571
1572#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1573/* if your architecture doesn't need memory fences, e.g. because it is
1574 * single-cpu/core, or if you use libev in a project that doesn't use libev
1575 * from multiple threads, then you can define ECB_NO_THREADS when compiling
1576 * libev, in which cases the memory fences become nops.
1577 * alternatively, you can remove this #error and link against libpthread,
1578 * which will then provide the memory fences.
1579 */
1580# error "memory fences not defined for your architecture, please report"
1581#endif
1582
1583#ifndef ECB_MEMORY_FENCE
1584# define ECB_MEMORY_FENCE do { } while (0)
1585# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1586# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1587#endif
1588
1589#define inline_size ecb_inline
1590
1591#if EV_FEATURE_CODE
1592# define inline_speed ecb_inline
1593#else
1594# define inline_speed ecb_noinline static
1595#endif
1596
1597/*****************************************************************************/
1598/* raw syscall wrappers */
1599
1600#if EV_NEED_SYSCALL
1601
1602#include <sys/syscall.h>
1603
1604/*
1605 * define some syscall wrappers for common architectures
1606 * this is mostly for nice looks during debugging, not performance.
1607 * our syscalls return < 0, not == -1, on error. which is good
1608 * enough for linux aio.
1609 * TODO: arm is also common nowadays, maybe even mips and x86
1610 * TODO: after implementing this, it suddenly looks like overkill, but its hard to remove...
1611 */
1612#if __GNUC__ && __linux && ECB_AMD64 && !defined __OPTIMIZE_SIZE__
1613 /* the costly errno access probably kills this for size optimisation */
1614
1615 #define ev_syscall(nr,narg,arg1,arg2,arg3,arg4,arg5,arg6) \
1616 ({ \
1617 long res; \
1618 register unsigned long r6 __asm__ ("r9" ); \
1619 register unsigned long r5 __asm__ ("r8" ); \
1620 register unsigned long r4 __asm__ ("r10"); \
1621 register unsigned long r3 __asm__ ("rdx"); \
1622 register unsigned long r2 __asm__ ("rsi"); \
1623 register unsigned long r1 __asm__ ("rdi"); \
1624 if (narg >= 6) r6 = (unsigned long)(arg6); \
1625 if (narg >= 5) r5 = (unsigned long)(arg5); \
1626 if (narg >= 4) r4 = (unsigned long)(arg4); \
1627 if (narg >= 3) r3 = (unsigned long)(arg3); \
1628 if (narg >= 2) r2 = (unsigned long)(arg2); \
1629 if (narg >= 1) r1 = (unsigned long)(arg1); \
1630 __asm__ __volatile__ ( \
1631 "syscall\n\t" \
1632 : "=a" (res) \
1633 : "0" (nr), "r" (r1), "r" (r2), "r" (r3), "r" (r4), "r" (r5) \
1634 : "cc", "r11", "cx", "memory"); \
1635 errno = -res; \
1636 res; \
1637 })
1638
1639#endif
1640
1641#ifdef ev_syscall
1642 #define ev_syscall0(nr) ev_syscall (nr, 0, 0, 0, 0, 0, 0, 0)
1643 #define ev_syscall1(nr,arg1) ev_syscall (nr, 1, arg1, 0, 0, 0, 0, 0)
1644 #define ev_syscall2(nr,arg1,arg2) ev_syscall (nr, 2, arg1, arg2, 0, 0, 0, 0)
1645 #define ev_syscall3(nr,arg1,arg2,arg3) ev_syscall (nr, 3, arg1, arg2, arg3, 0, 0, 0)
1646 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) ev_syscall (nr, 3, arg1, arg2, arg3, arg4, 0, 0)
1647 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) ev_syscall (nr, 5, arg1, arg2, arg3, arg4, arg5, 0)
1648 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) ev_syscall (nr, 6, arg1, arg2, arg3, arg4, arg5,arg6)
1649#else
1650 #define ev_syscall0(nr) syscall (nr)
1651 #define ev_syscall1(nr,arg1) syscall (nr, arg1)
1652 #define ev_syscall2(nr,arg1,arg2) syscall (nr, arg1, arg2)
1653 #define ev_syscall3(nr,arg1,arg2,arg3) syscall (nr, arg1, arg2, arg3)
1654 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) syscall (nr, arg1, arg2, arg3, arg4)
1655 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) syscall (nr, arg1, arg2, arg3, arg4, arg5)
1656 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) syscall (nr, arg1, arg2, arg3, arg4, arg5,arg6)
1657#endif
1658
1659#endif
1660
1661/*****************************************************************************/
1662
169#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1663#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1664
1665#if EV_MINPRI == EV_MAXPRI
1666# define ABSPRI(w) (((W)w), 0)
1667#else
170#define ABSPRI(w) ((w)->priority - EV_MINPRI) 1668# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1669#endif
171 1670
172#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1671#define EMPTY /* required for microsofts broken pseudo-c compiler */
173 1672
174typedef struct ev_watcher *W; 1673typedef ev_watcher *W;
175typedef struct ev_watcher_list *WL; 1674typedef ev_watcher_list *WL;
176typedef struct ev_watcher_time *WT; 1675typedef ev_watcher_time *WT;
177 1676
1677#define ev_active(w) ((W)(w))->active
1678#define ev_at(w) ((WT)(w))->at
1679
1680#if EV_USE_REALTIME
1681/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1682/* giving it a reasonably high chance of working on typical architectures */
1683static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1684#endif
1685
1686#if EV_USE_MONOTONIC
178static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1687static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1688#endif
1689
1690#ifndef EV_FD_TO_WIN32_HANDLE
1691# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1692#endif
1693#ifndef EV_WIN32_HANDLE_TO_FD
1694# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1695#endif
1696#ifndef EV_WIN32_CLOSE_FD
1697# define EV_WIN32_CLOSE_FD(fd) close (fd)
1698#endif
179 1699
180#ifdef _WIN32 1700#ifdef _WIN32
181# include "ev_win32.c" 1701# include "ev_win32.c"
182#endif 1702#endif
183 1703
184/*****************************************************************************/ 1704/*****************************************************************************/
185 1705
1706#if EV_USE_LINUXAIO
1707# include <linux/aio_abi.h> /* probably only needed for aio_context_t */
1708#endif
1709
1710/* define a suitable floor function (only used by periodics atm) */
1711
1712#if EV_USE_FLOOR
1713# include <math.h>
1714# define ev_floor(v) floor (v)
1715#else
1716
1717#include <float.h>
1718
1719/* a floor() replacement function, should be independent of ev_tstamp type */
1720ecb_noinline
1721static ev_tstamp
1722ev_floor (ev_tstamp v)
1723{
1724 /* the choice of shift factor is not terribly important */
1725#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1726 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1727#else
1728 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1729#endif
1730
1731 /* special treatment for negative arguments */
1732 if (ecb_expect_false (v < 0.))
1733 {
1734 ev_tstamp f = -ev_floor (-v);
1735
1736 return f - (f == v ? 0 : 1);
1737 }
1738
1739 /* argument too large for an unsigned long? then reduce it */
1740 if (ecb_expect_false (v >= shift))
1741 {
1742 ev_tstamp f;
1743
1744 if (v == v - 1.)
1745 return v; /* very large numbers are assumed to be integer */
1746
1747 f = shift * ev_floor (v * (1. / shift));
1748 return f + ev_floor (v - f);
1749 }
1750
1751 /* fits into an unsigned long */
1752 return (unsigned long)v;
1753}
1754
1755#endif
1756
1757/*****************************************************************************/
1758
1759#ifdef __linux
1760# include <sys/utsname.h>
1761#endif
1762
1763ecb_noinline ecb_cold
1764static unsigned int
1765ev_linux_version (void)
1766{
1767#ifdef __linux
1768 unsigned int v = 0;
1769 struct utsname buf;
1770 int i;
1771 char *p = buf.release;
1772
1773 if (uname (&buf))
1774 return 0;
1775
1776 for (i = 3+1; --i; )
1777 {
1778 unsigned int c = 0;
1779
1780 for (;;)
1781 {
1782 if (*p >= '0' && *p <= '9')
1783 c = c * 10 + *p++ - '0';
1784 else
1785 {
1786 p += *p == '.';
1787 break;
1788 }
1789 }
1790
1791 v = (v << 8) | c;
1792 }
1793
1794 return v;
1795#else
1796 return 0;
1797#endif
1798}
1799
1800/*****************************************************************************/
1801
1802#if EV_AVOID_STDIO
1803ecb_noinline ecb_cold
1804static void
1805ev_printerr (const char *msg)
1806{
1807 write (STDERR_FILENO, msg, strlen (msg));
1808}
1809#endif
1810
186static void (*syserr_cb)(const char *msg); 1811static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
187 1812
1813ecb_cold
1814void
188void ev_set_syserr_cb (void (*cb)(const char *msg)) 1815ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
189{ 1816{
190 syserr_cb = cb; 1817 syserr_cb = cb;
191} 1818}
192 1819
1820ecb_noinline ecb_cold
193static void 1821static void
194syserr (const char *msg) 1822ev_syserr (const char *msg)
195{ 1823{
196 if (!msg) 1824 if (!msg)
197 msg = "(libev) system error"; 1825 msg = "(libev) system error";
198 1826
199 if (syserr_cb) 1827 if (syserr_cb)
200 syserr_cb (msg); 1828 syserr_cb (msg);
201 else 1829 else
202 { 1830 {
1831#if EV_AVOID_STDIO
1832 ev_printerr (msg);
1833 ev_printerr (": ");
1834 ev_printerr (strerror (errno));
1835 ev_printerr ("\n");
1836#else
203 perror (msg); 1837 perror (msg);
1838#endif
204 abort (); 1839 abort ();
205 } 1840 }
206} 1841}
207 1842
208static void *(*alloc)(void *ptr, long size); 1843static void *
1844ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
1845{
1846 /* some systems, notably openbsd and darwin, fail to properly
1847 * implement realloc (x, 0) (as required by both ansi c-89 and
1848 * the single unix specification, so work around them here.
1849 * recently, also (at least) fedora and debian started breaking it,
1850 * despite documenting it otherwise.
1851 */
209 1852
1853 if (size)
1854 return realloc (ptr, size);
1855
1856 free (ptr);
1857 return 0;
1858}
1859
1860static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
1861
1862ecb_cold
1863void
210void ev_set_allocator (void *(*cb)(void *ptr, long size)) 1864ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
211{ 1865{
212 alloc = cb; 1866 alloc = cb;
213} 1867}
214 1868
215static void * 1869inline_speed void *
216ev_realloc (void *ptr, long size) 1870ev_realloc (void *ptr, long size)
217{ 1871{
218 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1872 ptr = alloc (ptr, size);
219 1873
220 if (!ptr && size) 1874 if (!ptr && size)
221 { 1875 {
1876#if EV_AVOID_STDIO
1877 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1878#else
222 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1879 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1880#endif
223 abort (); 1881 abort ();
224 } 1882 }
225 1883
226 return ptr; 1884 return ptr;
227} 1885}
229#define ev_malloc(size) ev_realloc (0, (size)) 1887#define ev_malloc(size) ev_realloc (0, (size))
230#define ev_free(ptr) ev_realloc ((ptr), 0) 1888#define ev_free(ptr) ev_realloc ((ptr), 0)
231 1889
232/*****************************************************************************/ 1890/*****************************************************************************/
233 1891
1892/* set in reify when reification needed */
1893#define EV_ANFD_REIFY 1
1894
1895/* file descriptor info structure */
234typedef struct 1896typedef struct
235{ 1897{
236 WL head; 1898 WL head;
237 unsigned char events; 1899 unsigned char events; /* the events watched for */
238 unsigned char reify; 1900 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1901 unsigned char emask; /* some backends store the actual kernel mask in here */
1902 unsigned char eflags; /* flags field for use by backends */
1903#if EV_USE_EPOLL
1904 unsigned int egen; /* generation counter to counter epoll bugs */
1905#endif
239#if EV_SELECT_IS_WINSOCKET 1906#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
240 SOCKET handle; 1907 SOCKET handle;
241#endif 1908#endif
1909#if EV_USE_IOCP
1910 OVERLAPPED or, ow;
1911#endif
242} ANFD; 1912} ANFD;
243 1913
1914/* stores the pending event set for a given watcher */
244typedef struct 1915typedef struct
245{ 1916{
246 W w; 1917 W w;
247 int events; 1918 int events; /* the pending event set for the given watcher */
248} ANPENDING; 1919} ANPENDING;
1920
1921#if EV_USE_INOTIFY
1922/* hash table entry per inotify-id */
1923typedef struct
1924{
1925 WL head;
1926} ANFS;
1927#endif
1928
1929/* Heap Entry */
1930#if EV_HEAP_CACHE_AT
1931 /* a heap element */
1932 typedef struct {
1933 ev_tstamp at;
1934 WT w;
1935 } ANHE;
1936
1937 #define ANHE_w(he) (he).w /* access watcher, read-write */
1938 #define ANHE_at(he) (he).at /* access cached at, read-only */
1939 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1940#else
1941 /* a heap element */
1942 typedef WT ANHE;
1943
1944 #define ANHE_w(he) (he)
1945 #define ANHE_at(he) (he)->at
1946 #define ANHE_at_cache(he)
1947#endif
249 1948
250#if EV_MULTIPLICITY 1949#if EV_MULTIPLICITY
251 1950
252 struct ev_loop 1951 struct ev_loop
253 { 1952 {
257 #include "ev_vars.h" 1956 #include "ev_vars.h"
258 #undef VAR 1957 #undef VAR
259 }; 1958 };
260 #include "ev_wrap.h" 1959 #include "ev_wrap.h"
261 1960
262 struct ev_loop default_loop_struct; 1961 static struct ev_loop default_loop_struct;
263 static struct ev_loop *default_loop; 1962 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
264 1963
265#else 1964#else
266 1965
267 ev_tstamp ev_rt_now; 1966 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
268 #define VAR(name,decl) static decl; 1967 #define VAR(name,decl) static decl;
269 #include "ev_vars.h" 1968 #include "ev_vars.h"
270 #undef VAR 1969 #undef VAR
271 1970
272 static int default_loop; 1971 static int ev_default_loop_ptr;
273 1972
274#endif 1973#endif
1974
1975#if EV_FEATURE_API
1976# define EV_RELEASE_CB if (ecb_expect_false (release_cb)) release_cb (EV_A)
1977# define EV_ACQUIRE_CB if (ecb_expect_false (acquire_cb)) acquire_cb (EV_A)
1978# define EV_INVOKE_PENDING invoke_cb (EV_A)
1979#else
1980# define EV_RELEASE_CB (void)0
1981# define EV_ACQUIRE_CB (void)0
1982# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1983#endif
1984
1985#define EVBREAK_RECURSE 0x80
275 1986
276/*****************************************************************************/ 1987/*****************************************************************************/
277 1988
1989#ifndef EV_HAVE_EV_TIME
278ev_tstamp 1990ev_tstamp
279ev_time (void) 1991ev_time (void) EV_NOEXCEPT
280{ 1992{
281#if EV_USE_REALTIME 1993#if EV_USE_REALTIME
1994 if (ecb_expect_true (have_realtime))
1995 {
282 struct timespec ts; 1996 struct timespec ts;
283 clock_gettime (CLOCK_REALTIME, &ts); 1997 clock_gettime (CLOCK_REALTIME, &ts);
284 return ts.tv_sec + ts.tv_nsec * 1e-9; 1998 return ts.tv_sec + ts.tv_nsec * 1e-9;
285#else 1999 }
2000#endif
2001
286 struct timeval tv; 2002 struct timeval tv;
287 gettimeofday (&tv, 0); 2003 gettimeofday (&tv, 0);
288 return tv.tv_sec + tv.tv_usec * 1e-6; 2004 return tv.tv_sec + tv.tv_usec * 1e-6;
289#endif
290} 2005}
2006#endif
291 2007
292inline ev_tstamp 2008inline_size ev_tstamp
293get_clock (void) 2009get_clock (void)
294{ 2010{
295#if EV_USE_MONOTONIC 2011#if EV_USE_MONOTONIC
296 if (expect_true (have_monotonic)) 2012 if (ecb_expect_true (have_monotonic))
297 { 2013 {
298 struct timespec ts; 2014 struct timespec ts;
299 clock_gettime (CLOCK_MONOTONIC, &ts); 2015 clock_gettime (CLOCK_MONOTONIC, &ts);
300 return ts.tv_sec + ts.tv_nsec * 1e-9; 2016 return ts.tv_sec + ts.tv_nsec * 1e-9;
301 } 2017 }
304 return ev_time (); 2020 return ev_time ();
305} 2021}
306 2022
307#if EV_MULTIPLICITY 2023#if EV_MULTIPLICITY
308ev_tstamp 2024ev_tstamp
309ev_now (EV_P) 2025ev_now (EV_P) EV_NOEXCEPT
310{ 2026{
311 return ev_rt_now; 2027 return ev_rt_now;
312} 2028}
313#endif 2029#endif
314 2030
315#define array_roundsize(type,n) (((n) | 4) & ~3) 2031void
2032ev_sleep (ev_tstamp delay) EV_NOEXCEPT
2033{
2034 if (delay > 0.)
2035 {
2036#if EV_USE_NANOSLEEP
2037 struct timespec ts;
2038
2039 EV_TS_SET (ts, delay);
2040 nanosleep (&ts, 0);
2041#elif defined _WIN32
2042 /* maybe this should round up, as ms is very low resolution */
2043 /* compared to select (µs) or nanosleep (ns) */
2044 Sleep ((unsigned long)(delay * 1e3));
2045#else
2046 struct timeval tv;
2047
2048 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
2049 /* something not guaranteed by newer posix versions, but guaranteed */
2050 /* by older ones */
2051 EV_TV_SET (tv, delay);
2052 select (0, 0, 0, 0, &tv);
2053#endif
2054 }
2055}
2056
2057/*****************************************************************************/
2058
2059#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
2060
2061/* find a suitable new size for the given array, */
2062/* hopefully by rounding to a nice-to-malloc size */
2063inline_size int
2064array_nextsize (int elem, int cur, int cnt)
2065{
2066 int ncur = cur + 1;
2067
2068 do
2069 ncur <<= 1;
2070 while (cnt > ncur);
2071
2072 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
2073 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
2074 {
2075 ncur *= elem;
2076 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
2077 ncur = ncur - sizeof (void *) * 4;
2078 ncur /= elem;
2079 }
2080
2081 return ncur;
2082}
2083
2084ecb_noinline ecb_cold
2085static void *
2086array_realloc (int elem, void *base, int *cur, int cnt)
2087{
2088 *cur = array_nextsize (elem, *cur, cnt);
2089 return ev_realloc (base, elem * *cur);
2090}
2091
2092#define array_needsize_noinit(base,offset,count)
2093
2094#define array_needsize_zerofill(base,offset,count) \
2095 memset ((void *)(base + offset), 0, sizeof (*(base)) * (count))
316 2096
317#define array_needsize(type,base,cur,cnt,init) \ 2097#define array_needsize(type,base,cur,cnt,init) \
318 if (expect_false ((cnt) > cur)) \ 2098 if (ecb_expect_false ((cnt) > (cur))) \
319 { \ 2099 { \
320 int newcnt = cur; \ 2100 ecb_unused int ocur_ = (cur); \
321 do \ 2101 (base) = (type *)array_realloc \
322 { \ 2102 (sizeof (type), (base), &(cur), (cnt)); \
323 newcnt = array_roundsize (type, newcnt << 1); \ 2103 init ((base), ocur_, ((cur) - ocur_)); \
324 } \
325 while ((cnt) > newcnt); \
326 \
327 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
328 init (base + cur, newcnt - cur); \
329 cur = newcnt; \
330 } 2104 }
331 2105
2106#if 0
332#define array_slim(type,stem) \ 2107#define array_slim(type,stem) \
333 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 2108 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
334 { \ 2109 { \
335 stem ## max = array_roundsize (stem ## cnt >> 1); \ 2110 stem ## max = array_roundsize (stem ## cnt >> 1); \
336 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 2111 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
337 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 2112 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
338 } 2113 }
2114#endif
339 2115
340#define array_free(stem, idx) \ 2116#define array_free(stem, idx) \
341 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 2117 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
342 2118
343/*****************************************************************************/ 2119/*****************************************************************************/
344 2120
2121/* dummy callback for pending events */
2122ecb_noinline
345static void 2123static void
346anfds_init (ANFD *base, int count) 2124pendingcb (EV_P_ ev_prepare *w, int revents)
347{ 2125{
348 while (count--)
349 {
350 base->head = 0;
351 base->events = EV_NONE;
352 base->reify = 0;
353
354 ++base;
355 }
356} 2126}
357 2127
2128ecb_noinline
358void 2129void
359ev_feed_event (EV_P_ void *w, int revents) 2130ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
360{ 2131{
361 W w_ = (W)w; 2132 W w_ = (W)w;
2133 int pri = ABSPRI (w_);
362 2134
363 if (w_->pending) 2135 if (ecb_expect_false (w_->pending))
2136 pendings [pri][w_->pending - 1].events |= revents;
2137 else
364 { 2138 {
2139 w_->pending = ++pendingcnt [pri];
2140 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
2141 pendings [pri][w_->pending - 1].w = w_;
365 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 2142 pendings [pri][w_->pending - 1].events = revents;
366 return;
367 } 2143 }
368 2144
369 w_->pending = ++pendingcnt [ABSPRI (w_)]; 2145 pendingpri = NUMPRI - 1;
370 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
371 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
372 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
373} 2146}
374 2147
375static void 2148inline_speed void
2149feed_reverse (EV_P_ W w)
2150{
2151 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2152 rfeeds [rfeedcnt++] = w;
2153}
2154
2155inline_size void
2156feed_reverse_done (EV_P_ int revents)
2157{
2158 do
2159 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2160 while (rfeedcnt);
2161}
2162
2163inline_speed void
376queue_events (EV_P_ W *events, int eventcnt, int type) 2164queue_events (EV_P_ W *events, int eventcnt, int type)
377{ 2165{
378 int i; 2166 int i;
379 2167
380 for (i = 0; i < eventcnt; ++i) 2168 for (i = 0; i < eventcnt; ++i)
381 ev_feed_event (EV_A_ events [i], type); 2169 ev_feed_event (EV_A_ events [i], type);
382} 2170}
383 2171
2172/*****************************************************************************/
2173
384inline void 2174inline_speed void
385fd_event (EV_P_ int fd, int revents) 2175fd_event_nocheck (EV_P_ int fd, int revents)
386{ 2176{
387 ANFD *anfd = anfds + fd; 2177 ANFD *anfd = anfds + fd;
388 struct ev_io *w; 2178 ev_io *w;
389 2179
390 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 2180 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
391 { 2181 {
392 int ev = w->events & revents; 2182 int ev = w->events & revents;
393 2183
394 if (ev) 2184 if (ev)
395 ev_feed_event (EV_A_ (W)w, ev); 2185 ev_feed_event (EV_A_ (W)w, ev);
396 } 2186 }
397} 2187}
398 2188
399void 2189/* do not submit kernel events for fds that have reify set */
2190/* because that means they changed while we were polling for new events */
2191inline_speed void
400ev_feed_fd_event (EV_P_ int fd, int revents) 2192fd_event (EV_P_ int fd, int revents)
401{ 2193{
2194 ANFD *anfd = anfds + fd;
2195
2196 if (ecb_expect_true (!anfd->reify))
402 fd_event (EV_A_ fd, revents); 2197 fd_event_nocheck (EV_A_ fd, revents);
403} 2198}
404 2199
405/*****************************************************************************/ 2200void
2201ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
2202{
2203 if (fd >= 0 && fd < anfdmax)
2204 fd_event_nocheck (EV_A_ fd, revents);
2205}
406 2206
407static void 2207/* make sure the external fd watch events are in-sync */
2208/* with the kernel/libev internal state */
2209inline_size void
408fd_reify (EV_P) 2210fd_reify (EV_P)
409{ 2211{
410 int i; 2212 int i;
411 2213
2214#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
412 for (i = 0; i < fdchangecnt; ++i) 2215 for (i = 0; i < fdchangecnt; ++i)
413 { 2216 {
414 int fd = fdchanges [i]; 2217 int fd = fdchanges [i];
415 ANFD *anfd = anfds + fd; 2218 ANFD *anfd = anfds + fd;
416 struct ev_io *w;
417 2219
418 int events = 0; 2220 if (anfd->reify & EV__IOFDSET && anfd->head)
419
420 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
421 events |= w->events;
422
423#if EV_SELECT_IS_WINSOCKET
424 if (events)
425 { 2221 {
2222 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2223
2224 if (handle != anfd->handle)
2225 {
426 unsigned long argp; 2226 unsigned long arg;
427 anfd->handle = _get_osfhandle (fd); 2227
428 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 2228 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2229
2230 /* handle changed, but fd didn't - we need to do it in two steps */
2231 backend_modify (EV_A_ fd, anfd->events, 0);
2232 anfd->events = 0;
2233 anfd->handle = handle;
2234 }
429 } 2235 }
2236 }
430#endif 2237#endif
2238
2239 for (i = 0; i < fdchangecnt; ++i)
2240 {
2241 int fd = fdchanges [i];
2242 ANFD *anfd = anfds + fd;
2243 ev_io *w;
2244
2245 unsigned char o_events = anfd->events;
2246 unsigned char o_reify = anfd->reify;
431 2247
432 anfd->reify = 0; 2248 anfd->reify = 0;
433 2249
434 method_modify (EV_A_ fd, anfd->events, events); 2250 /*if (ecb_expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
2251 {
435 anfd->events = events; 2252 anfd->events = 0;
2253
2254 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2255 anfd->events |= (unsigned char)w->events;
2256
2257 if (o_events != anfd->events)
2258 o_reify = EV__IOFDSET; /* actually |= */
2259 }
2260
2261 if (o_reify & EV__IOFDSET)
2262 backend_modify (EV_A_ fd, o_events, anfd->events);
436 } 2263 }
437 2264
438 fdchangecnt = 0; 2265 fdchangecnt = 0;
439} 2266}
440 2267
441static void 2268/* something about the given fd changed */
2269inline_size
2270void
442fd_change (EV_P_ int fd) 2271fd_change (EV_P_ int fd, int flags)
443{ 2272{
444 if (anfds [fd].reify) 2273 unsigned char reify = anfds [fd].reify;
445 return;
446
447 anfds [fd].reify = 1; 2274 anfds [fd].reify |= flags;
448 2275
2276 if (ecb_expect_true (!reify))
2277 {
449 ++fdchangecnt; 2278 ++fdchangecnt;
450 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 2279 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
451 fdchanges [fdchangecnt - 1] = fd; 2280 fdchanges [fdchangecnt - 1] = fd;
2281 }
452} 2282}
453 2283
454static void 2284/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2285inline_speed ecb_cold void
455fd_kill (EV_P_ int fd) 2286fd_kill (EV_P_ int fd)
456{ 2287{
457 struct ev_io *w; 2288 ev_io *w;
458 2289
459 while ((w = (struct ev_io *)anfds [fd].head)) 2290 while ((w = (ev_io *)anfds [fd].head))
460 { 2291 {
461 ev_io_stop (EV_A_ w); 2292 ev_io_stop (EV_A_ w);
462 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2293 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
463 } 2294 }
464} 2295}
465 2296
466static int 2297/* check whether the given fd is actually valid, for error recovery */
2298inline_size ecb_cold int
467fd_valid (int fd) 2299fd_valid (int fd)
468{ 2300{
469#ifdef _WIN32 2301#ifdef _WIN32
470 return _get_osfhandle (fd) != -1; 2302 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
471#else 2303#else
472 return fcntl (fd, F_GETFD) != -1; 2304 return fcntl (fd, F_GETFD) != -1;
473#endif 2305#endif
474} 2306}
475 2307
476/* called on EBADF to verify fds */ 2308/* called on EBADF to verify fds */
2309ecb_noinline ecb_cold
477static void 2310static void
478fd_ebadf (EV_P) 2311fd_ebadf (EV_P)
479{ 2312{
480 int fd; 2313 int fd;
481 2314
482 for (fd = 0; fd < anfdmax; ++fd) 2315 for (fd = 0; fd < anfdmax; ++fd)
483 if (anfds [fd].events) 2316 if (anfds [fd].events)
484 if (!fd_valid (fd) == -1 && errno == EBADF) 2317 if (!fd_valid (fd) && errno == EBADF)
485 fd_kill (EV_A_ fd); 2318 fd_kill (EV_A_ fd);
486} 2319}
487 2320
488/* called on ENOMEM in select/poll to kill some fds and retry */ 2321/* called on ENOMEM in select/poll to kill some fds and retry */
2322ecb_noinline ecb_cold
489static void 2323static void
490fd_enomem (EV_P) 2324fd_enomem (EV_P)
491{ 2325{
492 int fd; 2326 int fd;
493 2327
494 for (fd = anfdmax; fd--; ) 2328 for (fd = anfdmax; fd--; )
495 if (anfds [fd].events) 2329 if (anfds [fd].events)
496 { 2330 {
497 fd_kill (EV_A_ fd); 2331 fd_kill (EV_A_ fd);
498 return; 2332 break;
499 } 2333 }
500} 2334}
501 2335
502/* usually called after fork if method needs to re-arm all fds from scratch */ 2336/* usually called after fork if backend needs to re-arm all fds from scratch */
2337ecb_noinline
503static void 2338static void
504fd_rearm_all (EV_P) 2339fd_rearm_all (EV_P)
505{ 2340{
506 int fd; 2341 int fd;
507 2342
508 /* this should be highly optimised to not do anything but set a flag */
509 for (fd = 0; fd < anfdmax; ++fd) 2343 for (fd = 0; fd < anfdmax; ++fd)
510 if (anfds [fd].events) 2344 if (anfds [fd].events)
511 { 2345 {
512 anfds [fd].events = 0; 2346 anfds [fd].events = 0;
513 fd_change (EV_A_ fd); 2347 anfds [fd].emask = 0;
2348 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
514 } 2349 }
515} 2350}
516 2351
517/*****************************************************************************/ 2352/* used to prepare libev internal fd's */
518 2353/* this is not fork-safe */
519static void
520upheap (WT *heap, int k)
521{
522 WT w = heap [k];
523
524 while (k && heap [k >> 1]->at > w->at)
525 {
526 heap [k] = heap [k >> 1];
527 ((W)heap [k])->active = k + 1;
528 k >>= 1;
529 }
530
531 heap [k] = w;
532 ((W)heap [k])->active = k + 1;
533
534}
535
536static void
537downheap (WT *heap, int N, int k)
538{
539 WT w = heap [k];
540
541 while (k < (N >> 1))
542 {
543 int j = k << 1;
544
545 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
546 ++j;
547
548 if (w->at <= heap [j]->at)
549 break;
550
551 heap [k] = heap [j];
552 ((W)heap [k])->active = k + 1;
553 k = j;
554 }
555
556 heap [k] = w;
557 ((W)heap [k])->active = k + 1;
558}
559
560inline void 2354inline_speed void
561adjustheap (WT *heap, int N, int k)
562{
563 upheap (heap, k);
564 downheap (heap, N, k);
565}
566
567/*****************************************************************************/
568
569typedef struct
570{
571 WL head;
572 sig_atomic_t volatile gotsig;
573} ANSIG;
574
575static ANSIG *signals;
576static int signalmax;
577
578static int sigpipe [2];
579static sig_atomic_t volatile gotsig;
580static struct ev_io sigev;
581
582static void
583signals_init (ANSIG *base, int count)
584{
585 while (count--)
586 {
587 base->head = 0;
588 base->gotsig = 0;
589
590 ++base;
591 }
592}
593
594static void
595sighandler (int signum)
596{
597#if _WIN32
598 signal (signum, sighandler);
599#endif
600
601 signals [signum - 1].gotsig = 1;
602
603 if (!gotsig)
604 {
605 int old_errno = errno;
606 gotsig = 1;
607 write (sigpipe [1], &signum, 1);
608 errno = old_errno;
609 }
610}
611
612void
613ev_feed_signal_event (EV_P_ int signum)
614{
615 WL w;
616
617#if EV_MULTIPLICITY
618 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
619#endif
620
621 --signum;
622
623 if (signum < 0 || signum >= signalmax)
624 return;
625
626 signals [signum].gotsig = 0;
627
628 for (w = signals [signum].head; w; w = w->next)
629 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
630}
631
632static void
633sigcb (EV_P_ struct ev_io *iow, int revents)
634{
635 int signum;
636
637 read (sigpipe [0], &revents, 1);
638 gotsig = 0;
639
640 for (signum = signalmax; signum--; )
641 if (signals [signum].gotsig)
642 ev_feed_signal_event (EV_A_ signum + 1);
643}
644
645inline void
646fd_intern (int fd) 2355fd_intern (int fd)
647{ 2356{
648#ifdef _WIN32 2357#ifdef _WIN32
649 int arg = 1; 2358 unsigned long arg = 1;
650 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 2359 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
651#else 2360#else
652 fcntl (fd, F_SETFD, FD_CLOEXEC); 2361 fcntl (fd, F_SETFD, FD_CLOEXEC);
653 fcntl (fd, F_SETFL, O_NONBLOCK); 2362 fcntl (fd, F_SETFL, O_NONBLOCK);
654#endif 2363#endif
655} 2364}
656 2365
2366/*****************************************************************************/
2367
2368/*
2369 * the heap functions want a real array index. array index 0 is guaranteed to not
2370 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2371 * the branching factor of the d-tree.
2372 */
2373
2374/*
2375 * at the moment we allow libev the luxury of two heaps,
2376 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2377 * which is more cache-efficient.
2378 * the difference is about 5% with 50000+ watchers.
2379 */
2380#if EV_USE_4HEAP
2381
2382#define DHEAP 4
2383#define HEAP0 (DHEAP - 1) /* index of first element in heap */
2384#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2385#define UPHEAP_DONE(p,k) ((p) == (k))
2386
2387/* away from the root */
2388inline_speed void
2389downheap (ANHE *heap, int N, int k)
2390{
2391 ANHE he = heap [k];
2392 ANHE *E = heap + N + HEAP0;
2393
2394 for (;;)
2395 {
2396 ev_tstamp minat;
2397 ANHE *minpos;
2398 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2399
2400 /* find minimum child */
2401 if (ecb_expect_true (pos + DHEAP - 1 < E))
2402 {
2403 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2404 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2405 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2406 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2407 }
2408 else if (pos < E)
2409 {
2410 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2411 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2412 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2413 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2414 }
2415 else
2416 break;
2417
2418 if (ANHE_at (he) <= minat)
2419 break;
2420
2421 heap [k] = *minpos;
2422 ev_active (ANHE_w (*minpos)) = k;
2423
2424 k = minpos - heap;
2425 }
2426
2427 heap [k] = he;
2428 ev_active (ANHE_w (he)) = k;
2429}
2430
2431#else /* 4HEAP */
2432
2433#define HEAP0 1
2434#define HPARENT(k) ((k) >> 1)
2435#define UPHEAP_DONE(p,k) (!(p))
2436
2437/* away from the root */
2438inline_speed void
2439downheap (ANHE *heap, int N, int k)
2440{
2441 ANHE he = heap [k];
2442
2443 for (;;)
2444 {
2445 int c = k << 1;
2446
2447 if (c >= N + HEAP0)
2448 break;
2449
2450 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2451 ? 1 : 0;
2452
2453 if (ANHE_at (he) <= ANHE_at (heap [c]))
2454 break;
2455
2456 heap [k] = heap [c];
2457 ev_active (ANHE_w (heap [k])) = k;
2458
2459 k = c;
2460 }
2461
2462 heap [k] = he;
2463 ev_active (ANHE_w (he)) = k;
2464}
2465#endif
2466
2467/* towards the root */
2468inline_speed void
2469upheap (ANHE *heap, int k)
2470{
2471 ANHE he = heap [k];
2472
2473 for (;;)
2474 {
2475 int p = HPARENT (k);
2476
2477 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2478 break;
2479
2480 heap [k] = heap [p];
2481 ev_active (ANHE_w (heap [k])) = k;
2482 k = p;
2483 }
2484
2485 heap [k] = he;
2486 ev_active (ANHE_w (he)) = k;
2487}
2488
2489/* move an element suitably so it is in a correct place */
2490inline_size void
2491adjustheap (ANHE *heap, int N, int k)
2492{
2493 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2494 upheap (heap, k);
2495 else
2496 downheap (heap, N, k);
2497}
2498
2499/* rebuild the heap: this function is used only once and executed rarely */
2500inline_size void
2501reheap (ANHE *heap, int N)
2502{
2503 int i;
2504
2505 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2506 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2507 for (i = 0; i < N; ++i)
2508 upheap (heap, i + HEAP0);
2509}
2510
2511/*****************************************************************************/
2512
2513/* associate signal watchers to a signal signal */
2514typedef struct
2515{
2516 EV_ATOMIC_T pending;
2517#if EV_MULTIPLICITY
2518 EV_P;
2519#endif
2520 WL head;
2521} ANSIG;
2522
2523static ANSIG signals [EV_NSIG - 1];
2524
2525/*****************************************************************************/
2526
2527#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2528
2529ecb_noinline ecb_cold
657static void 2530static void
658siginit (EV_P) 2531evpipe_init (EV_P)
659{ 2532{
660 fd_intern (sigpipe [0]); 2533 if (!ev_is_active (&pipe_w))
2534 {
2535 int fds [2];
2536
2537# if EV_USE_EVENTFD
2538 fds [0] = -1;
2539 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2540 if (fds [1] < 0 && errno == EINVAL)
2541 fds [1] = eventfd (0, 0);
2542
2543 if (fds [1] < 0)
2544# endif
2545 {
2546 while (pipe (fds))
2547 ev_syserr ("(libev) error creating signal/async pipe");
2548
2549 fd_intern (fds [0]);
2550 }
2551
2552 evpipe [0] = fds [0];
2553
2554 if (evpipe [1] < 0)
2555 evpipe [1] = fds [1]; /* first call, set write fd */
2556 else
2557 {
2558 /* on subsequent calls, do not change evpipe [1] */
2559 /* so that evpipe_write can always rely on its value. */
2560 /* this branch does not do anything sensible on windows, */
2561 /* so must not be executed on windows */
2562
2563 dup2 (fds [1], evpipe [1]);
2564 close (fds [1]);
2565 }
2566
661 fd_intern (sigpipe [1]); 2567 fd_intern (evpipe [1]);
662 2568
663 ev_io_set (&sigev, sigpipe [0], EV_READ); 2569 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
664 ev_io_start (EV_A_ &sigev); 2570 ev_io_start (EV_A_ &pipe_w);
665 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2571 ev_unref (EV_A); /* watcher should not keep loop alive */
2572 }
2573}
2574
2575inline_speed void
2576evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2577{
2578 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2579
2580 if (ecb_expect_true (*flag))
2581 return;
2582
2583 *flag = 1;
2584 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2585
2586 pipe_write_skipped = 1;
2587
2588 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2589
2590 if (pipe_write_wanted)
2591 {
2592 int old_errno;
2593
2594 pipe_write_skipped = 0;
2595 ECB_MEMORY_FENCE_RELEASE;
2596
2597 old_errno = errno; /* save errno because write will clobber it */
2598
2599#if EV_USE_EVENTFD
2600 if (evpipe [0] < 0)
2601 {
2602 uint64_t counter = 1;
2603 write (evpipe [1], &counter, sizeof (uint64_t));
2604 }
2605 else
2606#endif
2607 {
2608#ifdef _WIN32
2609 WSABUF buf;
2610 DWORD sent;
2611 buf.buf = (char *)&buf;
2612 buf.len = 1;
2613 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2614#else
2615 write (evpipe [1], &(evpipe [1]), 1);
2616#endif
2617 }
2618
2619 errno = old_errno;
2620 }
2621}
2622
2623/* called whenever the libev signal pipe */
2624/* got some events (signal, async) */
2625static void
2626pipecb (EV_P_ ev_io *iow, int revents)
2627{
2628 int i;
2629
2630 if (revents & EV_READ)
2631 {
2632#if EV_USE_EVENTFD
2633 if (evpipe [0] < 0)
2634 {
2635 uint64_t counter;
2636 read (evpipe [1], &counter, sizeof (uint64_t));
2637 }
2638 else
2639#endif
2640 {
2641 char dummy[4];
2642#ifdef _WIN32
2643 WSABUF buf;
2644 DWORD recvd;
2645 DWORD flags = 0;
2646 buf.buf = dummy;
2647 buf.len = sizeof (dummy);
2648 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2649#else
2650 read (evpipe [0], &dummy, sizeof (dummy));
2651#endif
2652 }
2653 }
2654
2655 pipe_write_skipped = 0;
2656
2657 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2658
2659#if EV_SIGNAL_ENABLE
2660 if (sig_pending)
2661 {
2662 sig_pending = 0;
2663
2664 ECB_MEMORY_FENCE;
2665
2666 for (i = EV_NSIG - 1; i--; )
2667 if (ecb_expect_false (signals [i].pending))
2668 ev_feed_signal_event (EV_A_ i + 1);
2669 }
2670#endif
2671
2672#if EV_ASYNC_ENABLE
2673 if (async_pending)
2674 {
2675 async_pending = 0;
2676
2677 ECB_MEMORY_FENCE;
2678
2679 for (i = asynccnt; i--; )
2680 if (asyncs [i]->sent)
2681 {
2682 asyncs [i]->sent = 0;
2683 ECB_MEMORY_FENCE_RELEASE;
2684 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2685 }
2686 }
2687#endif
666} 2688}
667 2689
668/*****************************************************************************/ 2690/*****************************************************************************/
669 2691
670static struct ev_child *childs [PID_HASHSIZE]; 2692void
2693ev_feed_signal (int signum) EV_NOEXCEPT
2694{
2695#if EV_MULTIPLICITY
2696 EV_P;
2697 ECB_MEMORY_FENCE_ACQUIRE;
2698 EV_A = signals [signum - 1].loop;
671 2699
2700 if (!EV_A)
2701 return;
2702#endif
2703
2704 signals [signum - 1].pending = 1;
2705 evpipe_write (EV_A_ &sig_pending);
2706}
2707
2708static void
2709ev_sighandler (int signum)
2710{
672#ifndef _WIN32 2711#ifdef _WIN32
2712 signal (signum, ev_sighandler);
2713#endif
673 2714
2715 ev_feed_signal (signum);
2716}
2717
2718ecb_noinline
2719void
2720ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2721{
2722 WL w;
2723
2724 if (ecb_expect_false (signum <= 0 || signum >= EV_NSIG))
2725 return;
2726
2727 --signum;
2728
2729#if EV_MULTIPLICITY
2730 /* it is permissible to try to feed a signal to the wrong loop */
2731 /* or, likely more useful, feeding a signal nobody is waiting for */
2732
2733 if (ecb_expect_false (signals [signum].loop != EV_A))
2734 return;
2735#endif
2736
2737 signals [signum].pending = 0;
2738 ECB_MEMORY_FENCE_RELEASE;
2739
2740 for (w = signals [signum].head; w; w = w->next)
2741 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2742}
2743
2744#if EV_USE_SIGNALFD
2745static void
2746sigfdcb (EV_P_ ev_io *iow, int revents)
2747{
2748 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2749
2750 for (;;)
2751 {
2752 ssize_t res = read (sigfd, si, sizeof (si));
2753
2754 /* not ISO-C, as res might be -1, but works with SuS */
2755 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2756 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2757
2758 if (res < (ssize_t)sizeof (si))
2759 break;
2760 }
2761}
2762#endif
2763
2764#endif
2765
2766/*****************************************************************************/
2767
2768#if EV_CHILD_ENABLE
2769static WL childs [EV_PID_HASHSIZE];
2770
674static struct ev_signal childev; 2771static ev_signal childev;
2772
2773#ifndef WIFCONTINUED
2774# define WIFCONTINUED(status) 0
2775#endif
2776
2777/* handle a single child status event */
2778inline_speed void
2779child_reap (EV_P_ int chain, int pid, int status)
2780{
2781 ev_child *w;
2782 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2783
2784 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2785 {
2786 if ((w->pid == pid || !w->pid)
2787 && (!traced || (w->flags & 1)))
2788 {
2789 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2790 w->rpid = pid;
2791 w->rstatus = status;
2792 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2793 }
2794 }
2795}
675 2796
676#ifndef WCONTINUED 2797#ifndef WCONTINUED
677# define WCONTINUED 0 2798# define WCONTINUED 0
678#endif 2799#endif
679 2800
2801/* called on sigchld etc., calls waitpid */
680static void 2802static void
681child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
682{
683 struct ev_child *w;
684
685 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
686 if (w->pid == pid || !w->pid)
687 {
688 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
689 w->rpid = pid;
690 w->rstatus = status;
691 ev_feed_event (EV_A_ (W)w, EV_CHILD);
692 }
693}
694
695static void
696childcb (EV_P_ struct ev_signal *sw, int revents) 2803childcb (EV_P_ ev_signal *sw, int revents)
697{ 2804{
698 int pid, status; 2805 int pid, status;
699 2806
2807 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
700 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 2808 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
701 { 2809 if (!WCONTINUED
2810 || errno != EINVAL
2811 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2812 return;
2813
702 /* make sure we are called again until all childs have been reaped */ 2814 /* make sure we are called again until all children have been reaped */
2815 /* we need to do it this way so that the callback gets called before we continue */
703 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2816 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
704 2817
705 child_reap (EV_A_ sw, pid, pid, status); 2818 child_reap (EV_A_ pid, pid, status);
2819 if ((EV_PID_HASHSIZE) > 1)
706 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 2820 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
707 }
708} 2821}
709 2822
710#endif 2823#endif
711 2824
712/*****************************************************************************/ 2825/*****************************************************************************/
713 2826
2827#if EV_USE_IOCP
2828# include "ev_iocp.c"
2829#endif
2830#if EV_USE_PORT
2831# include "ev_port.c"
2832#endif
714#if EV_USE_KQUEUE 2833#if EV_USE_KQUEUE
715# include "ev_kqueue.c" 2834# include "ev_kqueue.c"
716#endif 2835#endif
717#if EV_USE_EPOLL 2836#if EV_USE_EPOLL
718# include "ev_epoll.c" 2837# include "ev_epoll.c"
719#endif 2838#endif
2839#if EV_USE_LINUXAIO
2840# include "ev_linuxaio.c"
2841#endif
2842#if EV_USE_IOURING
2843# include "ev_iouring.c"
2844#endif
720#if EV_USE_POLL 2845#if EV_USE_POLL
721# include "ev_poll.c" 2846# include "ev_poll.c"
722#endif 2847#endif
723#if EV_USE_SELECT 2848#if EV_USE_SELECT
724# include "ev_select.c" 2849# include "ev_select.c"
725#endif 2850#endif
726 2851
727int 2852ecb_cold int
728ev_version_major (void) 2853ev_version_major (void) EV_NOEXCEPT
729{ 2854{
730 return EV_VERSION_MAJOR; 2855 return EV_VERSION_MAJOR;
731} 2856}
732 2857
733int 2858ecb_cold int
734ev_version_minor (void) 2859ev_version_minor (void) EV_NOEXCEPT
735{ 2860{
736 return EV_VERSION_MINOR; 2861 return EV_VERSION_MINOR;
737} 2862}
738 2863
739/* return true if we are running with elevated privileges and should ignore env variables */ 2864/* return true if we are running with elevated privileges and should ignore env variables */
740static int 2865inline_size ecb_cold int
741enable_secure (void) 2866enable_secure (void)
742{ 2867{
743#ifdef _WIN32 2868#ifdef _WIN32
744 return 0; 2869 return 0;
745#else 2870#else
746 return getuid () != geteuid () 2871 return getuid () != geteuid ()
747 || getgid () != getegid (); 2872 || getgid () != getegid ();
748#endif 2873#endif
749} 2874}
750 2875
2876ecb_cold
751unsigned int 2877unsigned int
752ev_method (EV_P) 2878ev_supported_backends (void) EV_NOEXCEPT
753{ 2879{
754 return method; 2880 unsigned int flags = 0;
755}
756 2881
2882 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2883 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
2884 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2885 if (EV_USE_LINUXAIO) flags |= EVBACKEND_LINUXAIO;
2886 if (EV_USE_IOURING ) flags |= EVBACKEND_IOURING;
2887 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2888 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
2889
2890 return flags;
2891}
2892
2893ecb_cold
2894unsigned int
2895ev_recommended_backends (void) EV_NOEXCEPT
2896{
2897 unsigned int flags = ev_supported_backends ();
2898
2899#ifndef __NetBSD__
2900 /* kqueue is borked on everything but netbsd apparently */
2901 /* it usually doesn't work correctly on anything but sockets and pipes */
2902 flags &= ~EVBACKEND_KQUEUE;
2903#endif
2904#ifdef __APPLE__
2905 /* only select works correctly on that "unix-certified" platform */
2906 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2907 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2908#endif
2909#ifdef __FreeBSD__
2910 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2911#endif
2912
2913 /* TODO: linuxaio is very experimental */
2914#if !EV_RECOMMEND_LINUXAIO
2915 flags &= ~EVBACKEND_LINUXAIO;
2916#endif
2917 /* TODO: linuxaio is super experimental */
2918#if !EV_RECOMMEND_IOURING
2919 flags &= ~EVBACKEND_IOURING;
2920#endif
2921
2922 return flags;
2923}
2924
2925ecb_cold
2926unsigned int
2927ev_embeddable_backends (void) EV_NOEXCEPT
2928{
2929 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2930
2931 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2932 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2933 flags &= ~EVBACKEND_EPOLL;
2934
2935 /* EVBACKEND_LINUXAIO is theoretically embeddable, but suffers from a performance overhead */
2936
2937 /* EVBACKEND_IOURING is practically embeddable, but the current implementation is not
2938 * because our backend_fd is the epoll fd we need as fallback.
2939 * if the kernel ever is fixed, this might change...
2940 */
2941
2942 return flags;
2943}
2944
2945unsigned int
2946ev_backend (EV_P) EV_NOEXCEPT
2947{
2948 return backend;
2949}
2950
2951#if EV_FEATURE_API
2952unsigned int
2953ev_iteration (EV_P) EV_NOEXCEPT
2954{
2955 return loop_count;
2956}
2957
2958unsigned int
2959ev_depth (EV_P) EV_NOEXCEPT
2960{
2961 return loop_depth;
2962}
2963
2964void
2965ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2966{
2967 io_blocktime = interval;
2968}
2969
2970void
2971ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2972{
2973 timeout_blocktime = interval;
2974}
2975
2976void
2977ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
2978{
2979 userdata = data;
2980}
2981
2982void *
2983ev_userdata (EV_P) EV_NOEXCEPT
2984{
2985 return userdata;
2986}
2987
2988void
2989ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
2990{
2991 invoke_cb = invoke_pending_cb;
2992}
2993
2994void
2995ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
2996{
2997 release_cb = release;
2998 acquire_cb = acquire;
2999}
3000#endif
3001
3002/* initialise a loop structure, must be zero-initialised */
3003ecb_noinline ecb_cold
757static void 3004static void
758loop_init (EV_P_ unsigned int flags) 3005loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
759{ 3006{
760 if (!method) 3007 if (!backend)
761 { 3008 {
3009 origflags = flags;
3010
3011#if EV_USE_REALTIME
3012 if (!have_realtime)
3013 {
3014 struct timespec ts;
3015
3016 if (!clock_gettime (CLOCK_REALTIME, &ts))
3017 have_realtime = 1;
3018 }
3019#endif
3020
762#if EV_USE_MONOTONIC 3021#if EV_USE_MONOTONIC
3022 if (!have_monotonic)
763 { 3023 {
764 struct timespec ts; 3024 struct timespec ts;
3025
765 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 3026 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
766 have_monotonic = 1; 3027 have_monotonic = 1;
767 } 3028 }
768#endif 3029#endif
769 3030
770 ev_rt_now = ev_time (); 3031 /* pid check not overridable via env */
771 mn_now = get_clock (); 3032#ifndef _WIN32
772 now_floor = mn_now; 3033 if (flags & EVFLAG_FORKCHECK)
773 rtmn_diff = ev_rt_now - mn_now; 3034 curpid = getpid ();
3035#endif
774 3036
775 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 3037 if (!(flags & EVFLAG_NOENV)
3038 && !enable_secure ()
3039 && getenv ("LIBEV_FLAGS"))
776 flags = atoi (getenv ("LIBEV_FLAGS")); 3040 flags = atoi (getenv ("LIBEV_FLAGS"));
777 3041
778 if (!(flags & 0x0000ffff)) 3042 ev_rt_now = ev_time ();
779 flags |= 0x0000ffff; 3043 mn_now = get_clock ();
3044 now_floor = mn_now;
3045 rtmn_diff = ev_rt_now - mn_now;
3046#if EV_FEATURE_API
3047 invoke_cb = ev_invoke_pending;
3048#endif
780 3049
781 method = 0; 3050 io_blocktime = 0.;
3051 timeout_blocktime = 0.;
3052 backend = 0;
3053 backend_fd = -1;
3054 sig_pending = 0;
3055#if EV_ASYNC_ENABLE
3056 async_pending = 0;
3057#endif
3058 pipe_write_skipped = 0;
3059 pipe_write_wanted = 0;
3060 evpipe [0] = -1;
3061 evpipe [1] = -1;
3062#if EV_USE_INOTIFY
3063 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
3064#endif
3065#if EV_USE_SIGNALFD
3066 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
3067#endif
3068
3069 if (!(flags & EVBACKEND_MASK))
3070 flags |= ev_recommended_backends ();
3071
3072#if EV_USE_IOCP
3073 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
3074#endif
3075#if EV_USE_PORT
3076 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
3077#endif
782#if EV_USE_KQUEUE 3078#if EV_USE_KQUEUE
783 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags); 3079 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
3080#endif
3081#if EV_USE_IOURING
3082 if (!backend && (flags & EVBACKEND_IOURING )) backend = iouring_init (EV_A_ flags);
3083#endif
3084#if EV_USE_LINUXAIO
3085 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
784#endif 3086#endif
785#if EV_USE_EPOLL 3087#if EV_USE_EPOLL
786 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags); 3088 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
787#endif 3089#endif
788#if EV_USE_POLL 3090#if EV_USE_POLL
789 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags); 3091 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
790#endif 3092#endif
791#if EV_USE_SELECT 3093#if EV_USE_SELECT
792 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags); 3094 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
793#endif 3095#endif
794 3096
3097 ev_prepare_init (&pending_w, pendingcb);
3098
3099#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
795 ev_init (&sigev, sigcb); 3100 ev_init (&pipe_w, pipecb);
796 ev_set_priority (&sigev, EV_MAXPRI); 3101 ev_set_priority (&pipe_w, EV_MAXPRI);
3102#endif
797 } 3103 }
798} 3104}
799 3105
3106/* free up a loop structure */
3107ecb_cold
800void 3108void
801loop_destroy (EV_P) 3109ev_loop_destroy (EV_P)
802{ 3110{
803 int i; 3111 int i;
804 3112
3113#if EV_MULTIPLICITY
3114 /* mimic free (0) */
3115 if (!EV_A)
3116 return;
3117#endif
3118
3119#if EV_CLEANUP_ENABLE
3120 /* queue cleanup watchers (and execute them) */
3121 if (ecb_expect_false (cleanupcnt))
3122 {
3123 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3124 EV_INVOKE_PENDING;
3125 }
3126#endif
3127
3128#if EV_CHILD_ENABLE
3129 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3130 {
3131 ev_ref (EV_A); /* child watcher */
3132 ev_signal_stop (EV_A_ &childev);
3133 }
3134#endif
3135
3136 if (ev_is_active (&pipe_w))
3137 {
3138 /*ev_ref (EV_A);*/
3139 /*ev_io_stop (EV_A_ &pipe_w);*/
3140
3141 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3142 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3143 }
3144
3145#if EV_USE_SIGNALFD
3146 if (ev_is_active (&sigfd_w))
3147 close (sigfd);
3148#endif
3149
3150#if EV_USE_INOTIFY
3151 if (fs_fd >= 0)
3152 close (fs_fd);
3153#endif
3154
3155 if (backend_fd >= 0)
3156 close (backend_fd);
3157
3158#if EV_USE_IOCP
3159 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3160#endif
3161#if EV_USE_PORT
3162 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
3163#endif
805#if EV_USE_KQUEUE 3164#if EV_USE_KQUEUE
806 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 3165 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3166#endif
3167#if EV_USE_IOURING
3168 if (backend == EVBACKEND_IOURING ) iouring_destroy (EV_A);
3169#endif
3170#if EV_USE_LINUXAIO
3171 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
807#endif 3172#endif
808#if EV_USE_EPOLL 3173#if EV_USE_EPOLL
809 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 3174 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
810#endif 3175#endif
811#if EV_USE_POLL 3176#if EV_USE_POLL
812 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 3177 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
813#endif 3178#endif
814#if EV_USE_SELECT 3179#if EV_USE_SELECT
815 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 3180 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
816#endif 3181#endif
817 3182
818 for (i = NUMPRI; i--; ) 3183 for (i = NUMPRI; i--; )
3184 {
819 array_free (pending, [i]); 3185 array_free (pending, [i]);
3186#if EV_IDLE_ENABLE
3187 array_free (idle, [i]);
3188#endif
3189 }
3190
3191 ev_free (anfds); anfds = 0; anfdmax = 0;
820 3192
821 /* have to use the microsoft-never-gets-it-right macro */ 3193 /* have to use the microsoft-never-gets-it-right macro */
3194 array_free (rfeed, EMPTY);
822 array_free (fdchange, EMPTY); 3195 array_free (fdchange, EMPTY);
823 array_free (timer, EMPTY); 3196 array_free (timer, EMPTY);
824#if EV_PERIODICS 3197#if EV_PERIODIC_ENABLE
825 array_free (periodic, EMPTY); 3198 array_free (periodic, EMPTY);
826#endif 3199#endif
3200#if EV_FORK_ENABLE
3201 array_free (fork, EMPTY);
3202#endif
3203#if EV_CLEANUP_ENABLE
827 array_free (idle, EMPTY); 3204 array_free (cleanup, EMPTY);
3205#endif
828 array_free (prepare, EMPTY); 3206 array_free (prepare, EMPTY);
829 array_free (check, EMPTY); 3207 array_free (check, EMPTY);
3208#if EV_ASYNC_ENABLE
3209 array_free (async, EMPTY);
3210#endif
830 3211
831 method = 0; 3212 backend = 0;
832}
833 3213
3214#if EV_MULTIPLICITY
3215 if (ev_is_default_loop (EV_A))
3216#endif
3217 ev_default_loop_ptr = 0;
3218#if EV_MULTIPLICITY
3219 else
3220 ev_free (EV_A);
3221#endif
3222}
3223
3224#if EV_USE_INOTIFY
3225inline_size void infy_fork (EV_P);
3226#endif
3227
3228inline_size void
3229loop_fork (EV_P)
3230{
3231#if EV_USE_PORT
3232 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
3233#endif
3234#if EV_USE_KQUEUE
3235 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3236#endif
3237#if EV_USE_IOURING
3238 if (backend == EVBACKEND_IOURING ) iouring_fork (EV_A);
3239#endif
3240#if EV_USE_LINUXAIO
3241 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
3242#endif
3243#if EV_USE_EPOLL
3244 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
3245#endif
3246#if EV_USE_INOTIFY
3247 infy_fork (EV_A);
3248#endif
3249
3250#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3251 if (ev_is_active (&pipe_w) && postfork != 2)
3252 {
3253 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3254
3255 ev_ref (EV_A);
3256 ev_io_stop (EV_A_ &pipe_w);
3257
3258 if (evpipe [0] >= 0)
3259 EV_WIN32_CLOSE_FD (evpipe [0]);
3260
3261 evpipe_init (EV_A);
3262 /* iterate over everything, in case we missed something before */
3263 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3264 }
3265#endif
3266
3267 postfork = 0;
3268}
3269
3270#if EV_MULTIPLICITY
3271
3272ecb_cold
3273struct ev_loop *
3274ev_loop_new (unsigned int flags) EV_NOEXCEPT
3275{
3276 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3277
3278 memset (EV_A, 0, sizeof (struct ev_loop));
3279 loop_init (EV_A_ flags);
3280
3281 if (ev_backend (EV_A))
3282 return EV_A;
3283
3284 ev_free (EV_A);
3285 return 0;
3286}
3287
3288#endif /* multiplicity */
3289
3290#if EV_VERIFY
3291ecb_noinline ecb_cold
834static void 3292static void
835loop_fork (EV_P) 3293verify_watcher (EV_P_ W w)
836{ 3294{
837#if EV_USE_EPOLL 3295 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
838 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 3296
3297 if (w->pending)
3298 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3299}
3300
3301ecb_noinline ecb_cold
3302static void
3303verify_heap (EV_P_ ANHE *heap, int N)
3304{
3305 int i;
3306
3307 for (i = HEAP0; i < N + HEAP0; ++i)
3308 {
3309 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3310 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3311 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3312
3313 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3314 }
3315}
3316
3317ecb_noinline ecb_cold
3318static void
3319array_verify (EV_P_ W *ws, int cnt)
3320{
3321 while (cnt--)
3322 {
3323 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3324 verify_watcher (EV_A_ ws [cnt]);
3325 }
3326}
3327#endif
3328
3329#if EV_FEATURE_API
3330void ecb_cold
3331ev_verify (EV_P) EV_NOEXCEPT
3332{
3333#if EV_VERIFY
3334 int i;
3335 WL w, w2;
3336
3337 assert (activecnt >= -1);
3338
3339 assert (fdchangemax >= fdchangecnt);
3340 for (i = 0; i < fdchangecnt; ++i)
3341 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3342
3343 assert (anfdmax >= 0);
3344 for (i = 0; i < anfdmax; ++i)
3345 {
3346 int j = 0;
3347
3348 for (w = w2 = anfds [i].head; w; w = w->next)
3349 {
3350 verify_watcher (EV_A_ (W)w);
3351
3352 if (j++ & 1)
3353 {
3354 assert (("libev: io watcher list contains a loop", w != w2));
3355 w2 = w2->next;
3356 }
3357
3358 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3359 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3360 }
3361 }
3362
3363 assert (timermax >= timercnt);
3364 verify_heap (EV_A_ timers, timercnt);
3365
3366#if EV_PERIODIC_ENABLE
3367 assert (periodicmax >= periodiccnt);
3368 verify_heap (EV_A_ periodics, periodiccnt);
3369#endif
3370
3371 for (i = NUMPRI; i--; )
3372 {
3373 assert (pendingmax [i] >= pendingcnt [i]);
3374#if EV_IDLE_ENABLE
3375 assert (idleall >= 0);
3376 assert (idlemax [i] >= idlecnt [i]);
3377 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3378#endif
3379 }
3380
3381#if EV_FORK_ENABLE
3382 assert (forkmax >= forkcnt);
3383 array_verify (EV_A_ (W *)forks, forkcnt);
3384#endif
3385
3386#if EV_CLEANUP_ENABLE
3387 assert (cleanupmax >= cleanupcnt);
3388 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3389#endif
3390
3391#if EV_ASYNC_ENABLE
3392 assert (asyncmax >= asynccnt);
3393 array_verify (EV_A_ (W *)asyncs, asynccnt);
3394#endif
3395
3396#if EV_PREPARE_ENABLE
3397 assert (preparemax >= preparecnt);
3398 array_verify (EV_A_ (W *)prepares, preparecnt);
3399#endif
3400
3401#if EV_CHECK_ENABLE
3402 assert (checkmax >= checkcnt);
3403 array_verify (EV_A_ (W *)checks, checkcnt);
3404#endif
3405
3406# if 0
3407#if EV_CHILD_ENABLE
3408 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3409 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3410#endif
839#endif 3411# endif
840#if EV_USE_KQUEUE
841 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
842#endif 3412#endif
843
844 if (ev_is_active (&sigev))
845 {
846 /* default loop */
847
848 ev_ref (EV_A);
849 ev_io_stop (EV_A_ &sigev);
850 close (sigpipe [0]);
851 close (sigpipe [1]);
852
853 while (pipe (sigpipe))
854 syserr ("(libev) error creating pipe");
855
856 siginit (EV_A);
857 }
858
859 postfork = 0;
860} 3413}
3414#endif
861 3415
862#if EV_MULTIPLICITY 3416#if EV_MULTIPLICITY
863struct ev_loop * 3417ecb_cold
864ev_loop_new (unsigned int flags)
865{
866 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
867
868 memset (loop, 0, sizeof (struct ev_loop));
869
870 loop_init (EV_A_ flags);
871
872 if (ev_method (EV_A))
873 return loop;
874
875 return 0;
876}
877
878void
879ev_loop_destroy (EV_P)
880{
881 loop_destroy (EV_A);
882 ev_free (loop);
883}
884
885void
886ev_loop_fork (EV_P)
887{
888 postfork = 1;
889}
890
891#endif
892
893#if EV_MULTIPLICITY
894struct ev_loop * 3418struct ev_loop *
895#else 3419#else
896int 3420int
897#endif 3421#endif
898ev_default_loop (unsigned int flags) 3422ev_default_loop (unsigned int flags) EV_NOEXCEPT
899{ 3423{
900 if (sigpipe [0] == sigpipe [1])
901 if (pipe (sigpipe))
902 return 0;
903
904 if (!default_loop) 3424 if (!ev_default_loop_ptr)
905 { 3425 {
906#if EV_MULTIPLICITY 3426#if EV_MULTIPLICITY
907 struct ev_loop *loop = default_loop = &default_loop_struct; 3427 EV_P = ev_default_loop_ptr = &default_loop_struct;
908#else 3428#else
909 default_loop = 1; 3429 ev_default_loop_ptr = 1;
910#endif 3430#endif
911 3431
912 loop_init (EV_A_ flags); 3432 loop_init (EV_A_ flags);
913 3433
914 if (ev_method (EV_A)) 3434 if (ev_backend (EV_A))
915 { 3435 {
916 siginit (EV_A); 3436#if EV_CHILD_ENABLE
917
918#ifndef _WIN32
919 ev_signal_init (&childev, childcb, SIGCHLD); 3437 ev_signal_init (&childev, childcb, SIGCHLD);
920 ev_set_priority (&childev, EV_MAXPRI); 3438 ev_set_priority (&childev, EV_MAXPRI);
921 ev_signal_start (EV_A_ &childev); 3439 ev_signal_start (EV_A_ &childev);
922 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3440 ev_unref (EV_A); /* child watcher should not keep loop alive */
923#endif 3441#endif
924 } 3442 }
925 else 3443 else
926 default_loop = 0; 3444 ev_default_loop_ptr = 0;
927 } 3445 }
928 3446
929 return default_loop; 3447 return ev_default_loop_ptr;
930} 3448}
931 3449
932void 3450void
933ev_default_destroy (void) 3451ev_loop_fork (EV_P) EV_NOEXCEPT
934{ 3452{
935#if EV_MULTIPLICITY 3453 postfork = 1;
936 struct ev_loop *loop = default_loop; 3454}
3455
3456/*****************************************************************************/
3457
3458void
3459ev_invoke (EV_P_ void *w, int revents)
3460{
3461 EV_CB_INVOKE ((W)w, revents);
3462}
3463
3464unsigned int
3465ev_pending_count (EV_P) EV_NOEXCEPT
3466{
3467 int pri;
3468 unsigned int count = 0;
3469
3470 for (pri = NUMPRI; pri--; )
3471 count += pendingcnt [pri];
3472
3473 return count;
3474}
3475
3476ecb_noinline
3477void
3478ev_invoke_pending (EV_P)
3479{
3480 pendingpri = NUMPRI;
3481
3482 do
3483 {
3484 --pendingpri;
3485
3486 /* pendingpri possibly gets modified in the inner loop */
3487 while (pendingcnt [pendingpri])
3488 {
3489 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3490
3491 p->w->pending = 0;
3492 EV_CB_INVOKE (p->w, p->events);
3493 EV_FREQUENT_CHECK;
3494 }
3495 }
3496 while (pendingpri);
3497}
3498
3499#if EV_IDLE_ENABLE
3500/* make idle watchers pending. this handles the "call-idle */
3501/* only when higher priorities are idle" logic */
3502inline_size void
3503idle_reify (EV_P)
3504{
3505 if (ecb_expect_false (idleall))
3506 {
3507 int pri;
3508
3509 for (pri = NUMPRI; pri--; )
3510 {
3511 if (pendingcnt [pri])
3512 break;
3513
3514 if (idlecnt [pri])
3515 {
3516 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3517 break;
3518 }
3519 }
3520 }
3521}
3522#endif
3523
3524/* make timers pending */
3525inline_size void
3526timers_reify (EV_P)
3527{
3528 EV_FREQUENT_CHECK;
3529
3530 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3531 {
3532 do
3533 {
3534 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3535
3536 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3537
3538 /* first reschedule or stop timer */
3539 if (w->repeat)
3540 {
3541 ev_at (w) += w->repeat;
3542 if (ev_at (w) < mn_now)
3543 ev_at (w) = mn_now;
3544
3545 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3546
3547 ANHE_at_cache (timers [HEAP0]);
3548 downheap (timers, timercnt, HEAP0);
3549 }
3550 else
3551 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3552
3553 EV_FREQUENT_CHECK;
3554 feed_reverse (EV_A_ (W)w);
3555 }
3556 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3557
3558 feed_reverse_done (EV_A_ EV_TIMER);
3559 }
3560}
3561
3562#if EV_PERIODIC_ENABLE
3563
3564ecb_noinline
3565static void
3566periodic_recalc (EV_P_ ev_periodic *w)
3567{
3568 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3569 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3570
3571 /* the above almost always errs on the low side */
3572 while (at <= ev_rt_now)
3573 {
3574 ev_tstamp nat = at + w->interval;
3575
3576 /* when resolution fails us, we use ev_rt_now */
3577 if (ecb_expect_false (nat == at))
3578 {
3579 at = ev_rt_now;
3580 break;
3581 }
3582
3583 at = nat;
3584 }
3585
3586 ev_at (w) = at;
3587}
3588
3589/* make periodics pending */
3590inline_size void
3591periodics_reify (EV_P)
3592{
3593 EV_FREQUENT_CHECK;
3594
3595 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3596 {
3597 do
3598 {
3599 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3600
3601 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3602
3603 /* first reschedule or stop timer */
3604 if (w->reschedule_cb)
3605 {
3606 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3607
3608 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3609
3610 ANHE_at_cache (periodics [HEAP0]);
3611 downheap (periodics, periodiccnt, HEAP0);
3612 }
3613 else if (w->interval)
3614 {
3615 periodic_recalc (EV_A_ w);
3616 ANHE_at_cache (periodics [HEAP0]);
3617 downheap (periodics, periodiccnt, HEAP0);
3618 }
3619 else
3620 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3621
3622 EV_FREQUENT_CHECK;
3623 feed_reverse (EV_A_ (W)w);
3624 }
3625 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3626
3627 feed_reverse_done (EV_A_ EV_PERIODIC);
3628 }
3629}
3630
3631/* simply recalculate all periodics */
3632/* TODO: maybe ensure that at least one event happens when jumping forward? */
3633ecb_noinline ecb_cold
3634static void
3635periodics_reschedule (EV_P)
3636{
3637 int i;
3638
3639 /* adjust periodics after time jump */
3640 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3641 {
3642 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3643
3644 if (w->reschedule_cb)
3645 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3646 else if (w->interval)
3647 periodic_recalc (EV_A_ w);
3648
3649 ANHE_at_cache (periodics [i]);
3650 }
3651
3652 reheap (periodics, periodiccnt);
3653}
3654#endif
3655
3656/* adjust all timers by a given offset */
3657ecb_noinline ecb_cold
3658static void
3659timers_reschedule (EV_P_ ev_tstamp adjust)
3660{
3661 int i;
3662
3663 for (i = 0; i < timercnt; ++i)
3664 {
3665 ANHE *he = timers + i + HEAP0;
3666 ANHE_w (*he)->at += adjust;
3667 ANHE_at_cache (*he);
3668 }
3669}
3670
3671/* fetch new monotonic and realtime times from the kernel */
3672/* also detect if there was a timejump, and act accordingly */
3673inline_speed void
3674time_update (EV_P_ ev_tstamp max_block)
3675{
3676#if EV_USE_MONOTONIC
3677 if (ecb_expect_true (have_monotonic))
3678 {
3679 int i;
3680 ev_tstamp odiff = rtmn_diff;
3681
3682 mn_now = get_clock ();
3683
3684 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3685 /* interpolate in the meantime */
3686 if (ecb_expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
3687 {
3688 ev_rt_now = rtmn_diff + mn_now;
3689 return;
3690 }
3691
3692 now_floor = mn_now;
3693 ev_rt_now = ev_time ();
3694
3695 /* loop a few times, before making important decisions.
3696 * on the choice of "4": one iteration isn't enough,
3697 * in case we get preempted during the calls to
3698 * ev_time and get_clock. a second call is almost guaranteed
3699 * to succeed in that case, though. and looping a few more times
3700 * doesn't hurt either as we only do this on time-jumps or
3701 * in the unlikely event of having been preempted here.
3702 */
3703 for (i = 4; --i; )
3704 {
3705 ev_tstamp diff;
3706 rtmn_diff = ev_rt_now - mn_now;
3707
3708 diff = odiff - rtmn_diff;
3709
3710 if (ecb_expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
3711 return; /* all is well */
3712
3713 ev_rt_now = ev_time ();
3714 mn_now = get_clock ();
3715 now_floor = mn_now;
3716 }
3717
3718 /* no timer adjustment, as the monotonic clock doesn't jump */
3719 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3720# if EV_PERIODIC_ENABLE
3721 periodics_reschedule (EV_A);
3722# endif
3723 }
3724 else
3725#endif
3726 {
3727 ev_rt_now = ev_time ();
3728
3729 if (ecb_expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3730 {
3731 /* adjust timers. this is easy, as the offset is the same for all of them */
3732 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3733#if EV_PERIODIC_ENABLE
3734 periodics_reschedule (EV_A);
3735#endif
3736 }
3737
3738 mn_now = ev_rt_now;
3739 }
3740}
3741
3742int
3743ev_run (EV_P_ int flags)
3744{
3745#if EV_FEATURE_API
3746 ++loop_depth;
3747#endif
3748
3749 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3750
3751 loop_done = EVBREAK_CANCEL;
3752
3753 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3754
3755 do
3756 {
3757#if EV_VERIFY >= 2
3758 ev_verify (EV_A);
937#endif 3759#endif
938 3760
939#ifndef _WIN32 3761#ifndef _WIN32
940 ev_ref (EV_A); /* child watcher */ 3762 if (ecb_expect_false (curpid)) /* penalise the forking check even more */
941 ev_signal_stop (EV_A_ &childev); 3763 if (ecb_expect_false (getpid () != curpid))
942#endif 3764 {
943 3765 curpid = getpid ();
944 ev_ref (EV_A); /* signal watcher */
945 ev_io_stop (EV_A_ &sigev);
946
947 close (sigpipe [0]); sigpipe [0] = 0;
948 close (sigpipe [1]); sigpipe [1] = 0;
949
950 loop_destroy (EV_A);
951}
952
953void
954ev_default_fork (void)
955{
956#if EV_MULTIPLICITY
957 struct ev_loop *loop = default_loop;
958#endif
959
960 if (method)
961 postfork = 1; 3766 postfork = 1;
3767 }
3768#endif
3769
3770#if EV_FORK_ENABLE
3771 /* we might have forked, so queue fork handlers */
3772 if (ecb_expect_false (postfork))
3773 if (forkcnt)
3774 {
3775 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3776 EV_INVOKE_PENDING;
3777 }
3778#endif
3779
3780#if EV_PREPARE_ENABLE
3781 /* queue prepare watchers (and execute them) */
3782 if (ecb_expect_false (preparecnt))
3783 {
3784 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3785 EV_INVOKE_PENDING;
3786 }
3787#endif
3788
3789 if (ecb_expect_false (loop_done))
3790 break;
3791
3792 /* we might have forked, so reify kernel state if necessary */
3793 if (ecb_expect_false (postfork))
3794 loop_fork (EV_A);
3795
3796 /* update fd-related kernel structures */
3797 fd_reify (EV_A);
3798
3799 /* calculate blocking time */
3800 {
3801 ev_tstamp waittime = 0.;
3802 ev_tstamp sleeptime = 0.;
3803
3804 /* remember old timestamp for io_blocktime calculation */
3805 ev_tstamp prev_mn_now = mn_now;
3806
3807 /* update time to cancel out callback processing overhead */
3808 time_update (EV_A_ 1e100);
3809
3810 /* from now on, we want a pipe-wake-up */
3811 pipe_write_wanted = 1;
3812
3813 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3814
3815 if (ecb_expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3816 {
3817 waittime = MAX_BLOCKTIME;
3818
3819 if (timercnt)
3820 {
3821 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3822 if (waittime > to) waittime = to;
3823 }
3824
3825#if EV_PERIODIC_ENABLE
3826 if (periodiccnt)
3827 {
3828 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3829 if (waittime > to) waittime = to;
3830 }
3831#endif
3832
3833 /* don't let timeouts decrease the waittime below timeout_blocktime */
3834 if (ecb_expect_false (waittime < timeout_blocktime))
3835 waittime = timeout_blocktime;
3836
3837 /* at this point, we NEED to wait, so we have to ensure */
3838 /* to pass a minimum nonzero value to the backend */
3839 if (ecb_expect_false (waittime < backend_mintime))
3840 waittime = backend_mintime;
3841
3842 /* extra check because io_blocktime is commonly 0 */
3843 if (ecb_expect_false (io_blocktime))
3844 {
3845 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3846
3847 if (sleeptime > waittime - backend_mintime)
3848 sleeptime = waittime - backend_mintime;
3849
3850 if (ecb_expect_true (sleeptime > 0.))
3851 {
3852 ev_sleep (sleeptime);
3853 waittime -= sleeptime;
3854 }
3855 }
3856 }
3857
3858#if EV_FEATURE_API
3859 ++loop_count;
3860#endif
3861 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3862 backend_poll (EV_A_ waittime);
3863 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3864
3865 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3866
3867 ECB_MEMORY_FENCE_ACQUIRE;
3868 if (pipe_write_skipped)
3869 {
3870 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3871 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3872 }
3873
3874 /* update ev_rt_now, do magic */
3875 time_update (EV_A_ waittime + sleeptime);
3876 }
3877
3878 /* queue pending timers and reschedule them */
3879 timers_reify (EV_A); /* relative timers called last */
3880#if EV_PERIODIC_ENABLE
3881 periodics_reify (EV_A); /* absolute timers called first */
3882#endif
3883
3884#if EV_IDLE_ENABLE
3885 /* queue idle watchers unless other events are pending */
3886 idle_reify (EV_A);
3887#endif
3888
3889#if EV_CHECK_ENABLE
3890 /* queue check watchers, to be executed first */
3891 if (ecb_expect_false (checkcnt))
3892 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3893#endif
3894
3895 EV_INVOKE_PENDING;
3896 }
3897 while (ecb_expect_true (
3898 activecnt
3899 && !loop_done
3900 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3901 ));
3902
3903 if (loop_done == EVBREAK_ONE)
3904 loop_done = EVBREAK_CANCEL;
3905
3906#if EV_FEATURE_API
3907 --loop_depth;
3908#endif
3909
3910 return activecnt;
3911}
3912
3913void
3914ev_break (EV_P_ int how) EV_NOEXCEPT
3915{
3916 loop_done = how;
3917}
3918
3919void
3920ev_ref (EV_P) EV_NOEXCEPT
3921{
3922 ++activecnt;
3923}
3924
3925void
3926ev_unref (EV_P) EV_NOEXCEPT
3927{
3928 --activecnt;
3929}
3930
3931void
3932ev_now_update (EV_P) EV_NOEXCEPT
3933{
3934 time_update (EV_A_ 1e100);
3935}
3936
3937void
3938ev_suspend (EV_P) EV_NOEXCEPT
3939{
3940 ev_now_update (EV_A);
3941}
3942
3943void
3944ev_resume (EV_P) EV_NOEXCEPT
3945{
3946 ev_tstamp mn_prev = mn_now;
3947
3948 ev_now_update (EV_A);
3949 timers_reschedule (EV_A_ mn_now - mn_prev);
3950#if EV_PERIODIC_ENABLE
3951 /* TODO: really do this? */
3952 periodics_reschedule (EV_A);
3953#endif
962} 3954}
963 3955
964/*****************************************************************************/ 3956/*****************************************************************************/
3957/* singly-linked list management, used when the expected list length is short */
965 3958
966static int 3959inline_size void
967any_pending (EV_P) 3960wlist_add (WL *head, WL elem)
968{ 3961{
969 int pri; 3962 elem->next = *head;
3963 *head = elem;
3964}
970 3965
971 for (pri = NUMPRI; pri--; ) 3966inline_size void
972 if (pendingcnt [pri]) 3967wlist_del (WL *head, WL elem)
973 return 1; 3968{
3969 while (*head)
3970 {
3971 if (ecb_expect_true (*head == elem))
3972 {
3973 *head = elem->next;
3974 break;
3975 }
974 3976
3977 head = &(*head)->next;
3978 }
3979}
3980
3981/* internal, faster, version of ev_clear_pending */
3982inline_speed void
3983clear_pending (EV_P_ W w)
3984{
3985 if (w->pending)
3986 {
3987 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3988 w->pending = 0;
3989 }
3990}
3991
3992int
3993ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
3994{
3995 W w_ = (W)w;
3996 int pending = w_->pending;
3997
3998 if (ecb_expect_true (pending))
3999 {
4000 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
4001 p->w = (W)&pending_w;
4002 w_->pending = 0;
4003 return p->events;
4004 }
4005 else
975 return 0; 4006 return 0;
976} 4007}
977 4008
978static void 4009inline_size void
979call_pending (EV_P) 4010pri_adjust (EV_P_ W w)
980{ 4011{
981 int pri; 4012 int pri = ev_priority (w);
4013 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
4014 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
4015 ev_set_priority (w, pri);
4016}
982 4017
983 for (pri = NUMPRI; pri--; ) 4018inline_speed void
984 while (pendingcnt [pri]) 4019ev_start (EV_P_ W w, int active)
4020{
4021 pri_adjust (EV_A_ w);
4022 w->active = active;
4023 ev_ref (EV_A);
4024}
4025
4026inline_size void
4027ev_stop (EV_P_ W w)
4028{
4029 ev_unref (EV_A);
4030 w->active = 0;
4031}
4032
4033/*****************************************************************************/
4034
4035ecb_noinline
4036void
4037ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
4038{
4039 int fd = w->fd;
4040
4041 if (ecb_expect_false (ev_is_active (w)))
4042 return;
4043
4044 assert (("libev: ev_io_start called with negative fd", fd >= 0));
4045 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
4046
4047#if EV_VERIFY >= 2
4048 assert (("libev: ev_io_start called on watcher with invalid fd", fd_valid (fd)));
4049#endif
4050 EV_FREQUENT_CHECK;
4051
4052 ev_start (EV_A_ (W)w, 1);
4053 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
4054 wlist_add (&anfds[fd].head, (WL)w);
4055
4056 /* common bug, apparently */
4057 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
4058
4059 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
4060 w->events &= ~EV__IOFDSET;
4061
4062 EV_FREQUENT_CHECK;
4063}
4064
4065ecb_noinline
4066void
4067ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
4068{
4069 clear_pending (EV_A_ (W)w);
4070 if (ecb_expect_false (!ev_is_active (w)))
4071 return;
4072
4073 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
4074
4075#if EV_VERIFY >= 2
4076 assert (("libev: ev_io_stop called on watcher with invalid fd", fd_valid (w->fd)));
4077#endif
4078 EV_FREQUENT_CHECK;
4079
4080 wlist_del (&anfds[w->fd].head, (WL)w);
4081 ev_stop (EV_A_ (W)w);
4082
4083 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
4084
4085 EV_FREQUENT_CHECK;
4086}
4087
4088ecb_noinline
4089void
4090ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
4091{
4092 if (ecb_expect_false (ev_is_active (w)))
4093 return;
4094
4095 ev_at (w) += mn_now;
4096
4097 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
4098
4099 EV_FREQUENT_CHECK;
4100
4101 ++timercnt;
4102 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
4103 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
4104 ANHE_w (timers [ev_active (w)]) = (WT)w;
4105 ANHE_at_cache (timers [ev_active (w)]);
4106 upheap (timers, ev_active (w));
4107
4108 EV_FREQUENT_CHECK;
4109
4110 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
4111}
4112
4113ecb_noinline
4114void
4115ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
4116{
4117 clear_pending (EV_A_ (W)w);
4118 if (ecb_expect_false (!ev_is_active (w)))
4119 return;
4120
4121 EV_FREQUENT_CHECK;
4122
4123 {
4124 int active = ev_active (w);
4125
4126 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
4127
4128 --timercnt;
4129
4130 if (ecb_expect_true (active < timercnt + HEAP0))
985 { 4131 {
986 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 4132 timers [active] = timers [timercnt + HEAP0];
987 4133 adjustheap (timers, timercnt, active);
988 if (p->w)
989 {
990 p->w->pending = 0;
991 EV_CB_INVOKE (p->w, p->events);
992 }
993 } 4134 }
994} 4135 }
995 4136
996static void 4137 ev_at (w) -= mn_now;
997timers_reify (EV_P)
998{
999 while (timercnt && ((WT)timers [0])->at <= mn_now)
1000 {
1001 struct ev_timer *w = timers [0];
1002 4138
1003 assert (("inactive timer on timer heap detected", ev_is_active (w))); 4139 ev_stop (EV_A_ (W)w);
1004 4140
1005 /* first reschedule or stop timer */ 4141 EV_FREQUENT_CHECK;
4142}
4143
4144ecb_noinline
4145void
4146ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
4147{
4148 EV_FREQUENT_CHECK;
4149
4150 clear_pending (EV_A_ (W)w);
4151
4152 if (ev_is_active (w))
4153 {
1006 if (w->repeat) 4154 if (w->repeat)
1007 { 4155 {
1008 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1009
1010 ((WT)w)->at += w->repeat;
1011 if (((WT)w)->at < mn_now)
1012 ((WT)w)->at = mn_now;
1013
1014 downheap ((WT *)timers, timercnt, 0);
1015 }
1016 else
1017 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1018
1019 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1020 }
1021}
1022
1023#if EV_PERIODICS
1024static void
1025periodics_reify (EV_P)
1026{
1027 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1028 {
1029 struct ev_periodic *w = periodics [0];
1030
1031 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1032
1033 /* first reschedule or stop timer */
1034 if (w->reschedule_cb)
1035 {
1036 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1037 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1038 downheap ((WT *)periodics, periodiccnt, 0);
1039 }
1040 else if (w->interval)
1041 {
1042 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1043 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1044 downheap ((WT *)periodics, periodiccnt, 0);
1045 }
1046 else
1047 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1048
1049 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1050 }
1051}
1052
1053static void
1054periodics_reschedule (EV_P)
1055{
1056 int i;
1057
1058 /* adjust periodics after time jump */
1059 for (i = 0; i < periodiccnt; ++i)
1060 {
1061 struct ev_periodic *w = periodics [i];
1062
1063 if (w->reschedule_cb)
1064 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1065 else if (w->interval)
1066 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1067 }
1068
1069 /* now rebuild the heap */
1070 for (i = periodiccnt >> 1; i--; )
1071 downheap ((WT *)periodics, periodiccnt, i);
1072}
1073#endif
1074
1075inline int
1076time_update_monotonic (EV_P)
1077{
1078 mn_now = get_clock ();
1079
1080 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1081 {
1082 ev_rt_now = rtmn_diff + mn_now;
1083 return 0;
1084 }
1085 else
1086 {
1087 now_floor = mn_now;
1088 ev_rt_now = ev_time ();
1089 return 1;
1090 }
1091}
1092
1093static void
1094time_update (EV_P)
1095{
1096 int i;
1097
1098#if EV_USE_MONOTONIC
1099 if (expect_true (have_monotonic))
1100 {
1101 if (time_update_monotonic (EV_A))
1102 {
1103 ev_tstamp odiff = rtmn_diff;
1104
1105 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1106 {
1107 rtmn_diff = ev_rt_now - mn_now;
1108
1109 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1110 return; /* all is well */
1111
1112 ev_rt_now = ev_time ();
1113 mn_now = get_clock ();
1114 now_floor = mn_now;
1115 }
1116
1117# if EV_PERIODICS
1118 periodics_reschedule (EV_A);
1119# endif
1120 /* no timer adjustment, as the monotonic clock doesn't jump */
1121 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1122 }
1123 }
1124 else
1125#endif
1126 {
1127 ev_rt_now = ev_time ();
1128
1129 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1130 {
1131#if EV_PERIODICS
1132 periodics_reschedule (EV_A);
1133#endif
1134
1135 /* adjust timers. this is easy, as the offset is the same for all */
1136 for (i = 0; i < timercnt; ++i)
1137 ((WT)timers [i])->at += ev_rt_now - mn_now;
1138 }
1139
1140 mn_now = ev_rt_now;
1141 }
1142}
1143
1144void
1145ev_ref (EV_P)
1146{
1147 ++activecnt;
1148}
1149
1150void
1151ev_unref (EV_P)
1152{
1153 --activecnt;
1154}
1155
1156static int loop_done;
1157
1158void
1159ev_loop (EV_P_ int flags)
1160{
1161 double block;
1162 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1163
1164 do
1165 {
1166 /* queue check watchers (and execute them) */
1167 if (expect_false (preparecnt))
1168 {
1169 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1170 call_pending (EV_A);
1171 }
1172
1173 /* we might have forked, so reify kernel state if necessary */
1174 if (expect_false (postfork))
1175 loop_fork (EV_A);
1176
1177 /* update fd-related kernel structures */
1178 fd_reify (EV_A);
1179
1180 /* calculate blocking time */
1181
1182 /* we only need this for !monotonic clock or timers, but as we basically
1183 always have timers, we just calculate it always */
1184#if EV_USE_MONOTONIC
1185 if (expect_true (have_monotonic))
1186 time_update_monotonic (EV_A);
1187 else
1188#endif
1189 {
1190 ev_rt_now = ev_time ();
1191 mn_now = ev_rt_now;
1192 }
1193
1194 if (flags & EVLOOP_NONBLOCK || idlecnt)
1195 block = 0.;
1196 else
1197 {
1198 block = MAX_BLOCKTIME;
1199
1200 if (timercnt)
1201 {
1202 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
1203 if (block > to) block = to;
1204 }
1205
1206#if EV_PERIODICS
1207 if (periodiccnt)
1208 {
1209 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
1210 if (block > to) block = to;
1211 }
1212#endif
1213
1214 if (block < 0.) block = 0.;
1215 }
1216
1217 method_poll (EV_A_ block);
1218
1219 /* update ev_rt_now, do magic */
1220 time_update (EV_A);
1221
1222 /* queue pending timers and reschedule them */
1223 timers_reify (EV_A); /* relative timers called last */
1224#if EV_PERIODICS
1225 periodics_reify (EV_A); /* absolute timers called first */
1226#endif
1227
1228 /* queue idle watchers unless io or timers are pending */
1229 if (idlecnt && !any_pending (EV_A))
1230 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1231
1232 /* queue check watchers, to be executed first */
1233 if (checkcnt)
1234 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1235
1236 call_pending (EV_A);
1237 }
1238 while (activecnt && !loop_done);
1239
1240 if (loop_done != 2)
1241 loop_done = 0;
1242}
1243
1244void
1245ev_unloop (EV_P_ int how)
1246{
1247 loop_done = how;
1248}
1249
1250/*****************************************************************************/
1251
1252inline void
1253wlist_add (WL *head, WL elem)
1254{
1255 elem->next = *head;
1256 *head = elem;
1257}
1258
1259inline void
1260wlist_del (WL *head, WL elem)
1261{
1262 while (*head)
1263 {
1264 if (*head == elem)
1265 {
1266 *head = elem->next;
1267 return;
1268 }
1269
1270 head = &(*head)->next;
1271 }
1272}
1273
1274inline void
1275ev_clear_pending (EV_P_ W w)
1276{
1277 if (w->pending)
1278 {
1279 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1280 w->pending = 0;
1281 }
1282}
1283
1284inline void
1285ev_start (EV_P_ W w, int active)
1286{
1287 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1288 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1289
1290 w->active = active;
1291 ev_ref (EV_A);
1292}
1293
1294inline void
1295ev_stop (EV_P_ W w)
1296{
1297 ev_unref (EV_A);
1298 w->active = 0;
1299}
1300
1301/*****************************************************************************/
1302
1303void
1304ev_io_start (EV_P_ struct ev_io *w)
1305{
1306 int fd = w->fd;
1307
1308 if (ev_is_active (w))
1309 return;
1310
1311 assert (("ev_io_start called with negative fd", fd >= 0));
1312
1313 ev_start (EV_A_ (W)w, 1);
1314 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1315 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1316
1317 fd_change (EV_A_ fd);
1318}
1319
1320void
1321ev_io_stop (EV_P_ struct ev_io *w)
1322{
1323 ev_clear_pending (EV_A_ (W)w);
1324 if (!ev_is_active (w))
1325 return;
1326
1327 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1328
1329 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1330 ev_stop (EV_A_ (W)w);
1331
1332 fd_change (EV_A_ w->fd);
1333}
1334
1335void
1336ev_timer_start (EV_P_ struct ev_timer *w)
1337{
1338 if (ev_is_active (w))
1339 return;
1340
1341 ((WT)w)->at += mn_now;
1342
1343 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1344
1345 ev_start (EV_A_ (W)w, ++timercnt);
1346 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1347 timers [timercnt - 1] = w;
1348 upheap ((WT *)timers, timercnt - 1);
1349
1350 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1351}
1352
1353void
1354ev_timer_stop (EV_P_ struct ev_timer *w)
1355{
1356 ev_clear_pending (EV_A_ (W)w);
1357 if (!ev_is_active (w))
1358 return;
1359
1360 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1361
1362 if (((W)w)->active < timercnt--)
1363 {
1364 timers [((W)w)->active - 1] = timers [timercnt];
1365 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1366 }
1367
1368 ((WT)w)->at -= mn_now;
1369
1370 ev_stop (EV_A_ (W)w);
1371}
1372
1373void
1374ev_timer_again (EV_P_ struct ev_timer *w)
1375{
1376 if (ev_is_active (w))
1377 {
1378 if (w->repeat)
1379 {
1380 ((WT)w)->at = mn_now + w->repeat; 4156 ev_at (w) = mn_now + w->repeat;
4157 ANHE_at_cache (timers [ev_active (w)]);
1381 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 4158 adjustheap (timers, timercnt, ev_active (w));
1382 } 4159 }
1383 else 4160 else
1384 ev_timer_stop (EV_A_ w); 4161 ev_timer_stop (EV_A_ w);
1385 } 4162 }
1386 else if (w->repeat) 4163 else if (w->repeat)
1387 { 4164 {
1388 w->at = w->repeat; 4165 ev_at (w) = w->repeat;
1389 ev_timer_start (EV_A_ w); 4166 ev_timer_start (EV_A_ w);
1390 } 4167 }
1391}
1392 4168
4169 EV_FREQUENT_CHECK;
4170}
4171
4172ev_tstamp
4173ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4174{
4175 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
4176}
4177
1393#if EV_PERIODICS 4178#if EV_PERIODIC_ENABLE
4179ecb_noinline
1394void 4180void
1395ev_periodic_start (EV_P_ struct ev_periodic *w) 4181ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
1396{ 4182{
1397 if (ev_is_active (w)) 4183 if (ecb_expect_false (ev_is_active (w)))
1398 return; 4184 return;
1399 4185
1400 if (w->reschedule_cb) 4186 if (w->reschedule_cb)
1401 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 4187 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1402 else if (w->interval) 4188 else if (w->interval)
1403 { 4189 {
1404 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 4190 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1405 /* this formula differs from the one in periodic_reify because we do not always round up */ 4191 periodic_recalc (EV_A_ w);
1406 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1407 } 4192 }
4193 else
4194 ev_at (w) = w->offset;
1408 4195
4196 EV_FREQUENT_CHECK;
4197
4198 ++periodiccnt;
1409 ev_start (EV_A_ (W)w, ++periodiccnt); 4199 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1410 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 4200 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
1411 periodics [periodiccnt - 1] = w; 4201 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1412 upheap ((WT *)periodics, periodiccnt - 1); 4202 ANHE_at_cache (periodics [ev_active (w)]);
4203 upheap (periodics, ev_active (w));
1413 4204
4205 EV_FREQUENT_CHECK;
4206
1414 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 4207 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1415} 4208}
1416 4209
4210ecb_noinline
1417void 4211void
1418ev_periodic_stop (EV_P_ struct ev_periodic *w) 4212ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
1419{ 4213{
1420 ev_clear_pending (EV_A_ (W)w); 4214 clear_pending (EV_A_ (W)w);
1421 if (!ev_is_active (w)) 4215 if (ecb_expect_false (!ev_is_active (w)))
1422 return; 4216 return;
1423 4217
4218 EV_FREQUENT_CHECK;
4219
4220 {
4221 int active = ev_active (w);
4222
1424 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 4223 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1425 4224
1426 if (((W)w)->active < periodiccnt--) 4225 --periodiccnt;
4226
4227 if (ecb_expect_true (active < periodiccnt + HEAP0))
1427 { 4228 {
1428 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 4229 periodics [active] = periodics [periodiccnt + HEAP0];
1429 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 4230 adjustheap (periodics, periodiccnt, active);
1430 } 4231 }
4232 }
1431 4233
1432 ev_stop (EV_A_ (W)w); 4234 ev_stop (EV_A_ (W)w);
1433}
1434 4235
4236 EV_FREQUENT_CHECK;
4237}
4238
4239ecb_noinline
1435void 4240void
1436ev_periodic_again (EV_P_ struct ev_periodic *w) 4241ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
1437{ 4242{
1438 /* TODO: use adjustheap and recalculation */ 4243 /* TODO: use adjustheap and recalculation */
1439 ev_periodic_stop (EV_A_ w); 4244 ev_periodic_stop (EV_A_ w);
1440 ev_periodic_start (EV_A_ w); 4245 ev_periodic_start (EV_A_ w);
1441} 4246}
1442#endif 4247#endif
1443 4248
1444void
1445ev_idle_start (EV_P_ struct ev_idle *w)
1446{
1447 if (ev_is_active (w))
1448 return;
1449
1450 ev_start (EV_A_ (W)w, ++idlecnt);
1451 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1452 idles [idlecnt - 1] = w;
1453}
1454
1455void
1456ev_idle_stop (EV_P_ struct ev_idle *w)
1457{
1458 ev_clear_pending (EV_A_ (W)w);
1459 if (!ev_is_active (w))
1460 return;
1461
1462 idles [((W)w)->active - 1] = idles [--idlecnt];
1463 ev_stop (EV_A_ (W)w);
1464}
1465
1466void
1467ev_prepare_start (EV_P_ struct ev_prepare *w)
1468{
1469 if (ev_is_active (w))
1470 return;
1471
1472 ev_start (EV_A_ (W)w, ++preparecnt);
1473 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1474 prepares [preparecnt - 1] = w;
1475}
1476
1477void
1478ev_prepare_stop (EV_P_ struct ev_prepare *w)
1479{
1480 ev_clear_pending (EV_A_ (W)w);
1481 if (!ev_is_active (w))
1482 return;
1483
1484 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1485 ev_stop (EV_A_ (W)w);
1486}
1487
1488void
1489ev_check_start (EV_P_ struct ev_check *w)
1490{
1491 if (ev_is_active (w))
1492 return;
1493
1494 ev_start (EV_A_ (W)w, ++checkcnt);
1495 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1496 checks [checkcnt - 1] = w;
1497}
1498
1499void
1500ev_check_stop (EV_P_ struct ev_check *w)
1501{
1502 ev_clear_pending (EV_A_ (W)w);
1503 if (!ev_is_active (w))
1504 return;
1505
1506 checks [((W)w)->active - 1] = checks [--checkcnt];
1507 ev_stop (EV_A_ (W)w);
1508}
1509
1510#ifndef SA_RESTART 4249#ifndef SA_RESTART
1511# define SA_RESTART 0 4250# define SA_RESTART 0
1512#endif 4251#endif
1513 4252
4253#if EV_SIGNAL_ENABLE
4254
4255ecb_noinline
1514void 4256void
1515ev_signal_start (EV_P_ struct ev_signal *w) 4257ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
1516{ 4258{
4259 if (ecb_expect_false (ev_is_active (w)))
4260 return;
4261
4262 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4263
1517#if EV_MULTIPLICITY 4264#if EV_MULTIPLICITY
1518 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 4265 assert (("libev: a signal must not be attached to two different loops",
4266 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4267
4268 signals [w->signum - 1].loop = EV_A;
4269 ECB_MEMORY_FENCE_RELEASE;
4270#endif
4271
4272 EV_FREQUENT_CHECK;
4273
4274#if EV_USE_SIGNALFD
4275 if (sigfd == -2)
4276 {
4277 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
4278 if (sigfd < 0 && errno == EINVAL)
4279 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
4280
4281 if (sigfd >= 0)
4282 {
4283 fd_intern (sigfd); /* doing it twice will not hurt */
4284
4285 sigemptyset (&sigfd_set);
4286
4287 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4288 ev_set_priority (&sigfd_w, EV_MAXPRI);
4289 ev_io_start (EV_A_ &sigfd_w);
4290 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4291 }
4292 }
4293
4294 if (sigfd >= 0)
4295 {
4296 /* TODO: check .head */
4297 sigaddset (&sigfd_set, w->signum);
4298 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4299
4300 signalfd (sigfd, &sigfd_set, 0);
4301 }
4302#endif
4303
4304 ev_start (EV_A_ (W)w, 1);
4305 wlist_add (&signals [w->signum - 1].head, (WL)w);
4306
4307 if (!((WL)w)->next)
4308# if EV_USE_SIGNALFD
4309 if (sigfd < 0) /*TODO*/
1519#endif 4310# endif
1520 if (ev_is_active (w)) 4311 {
4312# ifdef _WIN32
4313 evpipe_init (EV_A);
4314
4315 signal (w->signum, ev_sighandler);
4316# else
4317 struct sigaction sa;
4318
4319 evpipe_init (EV_A);
4320
4321 sa.sa_handler = ev_sighandler;
4322 sigfillset (&sa.sa_mask);
4323 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
4324 sigaction (w->signum, &sa, 0);
4325
4326 if (origflags & EVFLAG_NOSIGMASK)
4327 {
4328 sigemptyset (&sa.sa_mask);
4329 sigaddset (&sa.sa_mask, w->signum);
4330 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4331 }
4332#endif
4333 }
4334
4335 EV_FREQUENT_CHECK;
4336}
4337
4338ecb_noinline
4339void
4340ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
4341{
4342 clear_pending (EV_A_ (W)w);
4343 if (ecb_expect_false (!ev_is_active (w)))
1521 return; 4344 return;
1522 4345
1523 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 4346 EV_FREQUENT_CHECK;
4347
4348 wlist_del (&signals [w->signum - 1].head, (WL)w);
4349 ev_stop (EV_A_ (W)w);
4350
4351 if (!signals [w->signum - 1].head)
4352 {
4353#if EV_MULTIPLICITY
4354 signals [w->signum - 1].loop = 0; /* unattach from signal */
4355#endif
4356#if EV_USE_SIGNALFD
4357 if (sigfd >= 0)
4358 {
4359 sigset_t ss;
4360
4361 sigemptyset (&ss);
4362 sigaddset (&ss, w->signum);
4363 sigdelset (&sigfd_set, w->signum);
4364
4365 signalfd (sigfd, &sigfd_set, 0);
4366 sigprocmask (SIG_UNBLOCK, &ss, 0);
4367 }
4368 else
4369#endif
4370 signal (w->signum, SIG_DFL);
4371 }
4372
4373 EV_FREQUENT_CHECK;
4374}
4375
4376#endif
4377
4378#if EV_CHILD_ENABLE
4379
4380void
4381ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4382{
4383#if EV_MULTIPLICITY
4384 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
4385#endif
4386 if (ecb_expect_false (ev_is_active (w)))
4387 return;
4388
4389 EV_FREQUENT_CHECK;
1524 4390
1525 ev_start (EV_A_ (W)w, 1); 4391 ev_start (EV_A_ (W)w, 1);
1526 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 4392 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1527 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1528 4393
1529 if (!((WL)w)->next) 4394 EV_FREQUENT_CHECK;
4395}
4396
4397void
4398ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
4399{
4400 clear_pending (EV_A_ (W)w);
4401 if (ecb_expect_false (!ev_is_active (w)))
4402 return;
4403
4404 EV_FREQUENT_CHECK;
4405
4406 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4407 ev_stop (EV_A_ (W)w);
4408
4409 EV_FREQUENT_CHECK;
4410}
4411
4412#endif
4413
4414#if EV_STAT_ENABLE
4415
4416# ifdef _WIN32
4417# undef lstat
4418# define lstat(a,b) _stati64 (a,b)
4419# endif
4420
4421#define DEF_STAT_INTERVAL 5.0074891
4422#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4423#define MIN_STAT_INTERVAL 0.1074891
4424
4425ecb_noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4426
4427#if EV_USE_INOTIFY
4428
4429/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4430# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4431
4432ecb_noinline
4433static void
4434infy_add (EV_P_ ev_stat *w)
4435{
4436 w->wd = inotify_add_watch (fs_fd, w->path,
4437 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4438 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4439 | IN_DONT_FOLLOW | IN_MASK_ADD);
4440
4441 if (w->wd >= 0)
4442 {
4443 struct statfs sfs;
4444
4445 /* now local changes will be tracked by inotify, but remote changes won't */
4446 /* unless the filesystem is known to be local, we therefore still poll */
4447 /* also do poll on <2.6.25, but with normal frequency */
4448
4449 if (!fs_2625)
4450 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4451 else if (!statfs (w->path, &sfs)
4452 && (sfs.f_type == 0x1373 /* devfs */
4453 || sfs.f_type == 0x4006 /* fat */
4454 || sfs.f_type == 0x4d44 /* msdos */
4455 || sfs.f_type == 0xEF53 /* ext2/3 */
4456 || sfs.f_type == 0x72b6 /* jffs2 */
4457 || sfs.f_type == 0x858458f6 /* ramfs */
4458 || sfs.f_type == 0x5346544e /* ntfs */
4459 || sfs.f_type == 0x3153464a /* jfs */
4460 || sfs.f_type == 0x9123683e /* btrfs */
4461 || sfs.f_type == 0x52654973 /* reiser3 */
4462 || sfs.f_type == 0x01021994 /* tmpfs */
4463 || sfs.f_type == 0x58465342 /* xfs */))
4464 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4465 else
4466 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1530 { 4467 }
4468 else
4469 {
4470 /* can't use inotify, continue to stat */
4471 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4472
4473 /* if path is not there, monitor some parent directory for speedup hints */
4474 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4475 /* but an efficiency issue only */
4476 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4477 {
4478 char path [4096];
4479 strcpy (path, w->path);
4480
4481 do
4482 {
4483 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4484 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4485
4486 char *pend = strrchr (path, '/');
4487
4488 if (!pend || pend == path)
4489 break;
4490
4491 *pend = 0;
4492 w->wd = inotify_add_watch (fs_fd, path, mask);
4493 }
4494 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4495 }
4496 }
4497
4498 if (w->wd >= 0)
4499 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4500
4501 /* now re-arm timer, if required */
4502 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4503 ev_timer_again (EV_A_ &w->timer);
4504 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4505}
4506
4507ecb_noinline
4508static void
4509infy_del (EV_P_ ev_stat *w)
4510{
4511 int slot;
4512 int wd = w->wd;
4513
4514 if (wd < 0)
4515 return;
4516
4517 w->wd = -2;
4518 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4519 wlist_del (&fs_hash [slot].head, (WL)w);
4520
4521 /* remove this watcher, if others are watching it, they will rearm */
4522 inotify_rm_watch (fs_fd, wd);
4523}
4524
4525ecb_noinline
4526static void
4527infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4528{
4529 if (slot < 0)
4530 /* overflow, need to check for all hash slots */
4531 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4532 infy_wd (EV_A_ slot, wd, ev);
4533 else
4534 {
4535 WL w_;
4536
4537 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4538 {
4539 ev_stat *w = (ev_stat *)w_;
4540 w_ = w_->next; /* lets us remove this watcher and all before it */
4541
4542 if (w->wd == wd || wd == -1)
4543 {
4544 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4545 {
4546 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4547 w->wd = -1;
4548 infy_add (EV_A_ w); /* re-add, no matter what */
4549 }
4550
4551 stat_timer_cb (EV_A_ &w->timer, 0);
4552 }
4553 }
4554 }
4555}
4556
4557static void
4558infy_cb (EV_P_ ev_io *w, int revents)
4559{
4560 char buf [EV_INOTIFY_BUFSIZE];
4561 int ofs;
4562 int len = read (fs_fd, buf, sizeof (buf));
4563
4564 for (ofs = 0; ofs < len; )
4565 {
4566 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4567 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4568 ofs += sizeof (struct inotify_event) + ev->len;
4569 }
4570}
4571
4572inline_size ecb_cold
4573void
4574ev_check_2625 (EV_P)
4575{
4576 /* kernels < 2.6.25 are borked
4577 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4578 */
4579 if (ev_linux_version () < 0x020619)
4580 return;
4581
4582 fs_2625 = 1;
4583}
4584
4585inline_size int
4586infy_newfd (void)
4587{
4588#if defined IN_CLOEXEC && defined IN_NONBLOCK
4589 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4590 if (fd >= 0)
4591 return fd;
4592#endif
4593 return inotify_init ();
4594}
4595
4596inline_size void
4597infy_init (EV_P)
4598{
4599 if (fs_fd != -2)
4600 return;
4601
4602 fs_fd = -1;
4603
4604 ev_check_2625 (EV_A);
4605
4606 fs_fd = infy_newfd ();
4607
4608 if (fs_fd >= 0)
4609 {
4610 fd_intern (fs_fd);
4611 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4612 ev_set_priority (&fs_w, EV_MAXPRI);
4613 ev_io_start (EV_A_ &fs_w);
4614 ev_unref (EV_A);
4615 }
4616}
4617
4618inline_size void
4619infy_fork (EV_P)
4620{
4621 int slot;
4622
4623 if (fs_fd < 0)
4624 return;
4625
4626 ev_ref (EV_A);
4627 ev_io_stop (EV_A_ &fs_w);
4628 close (fs_fd);
4629 fs_fd = infy_newfd ();
4630
4631 if (fs_fd >= 0)
4632 {
4633 fd_intern (fs_fd);
4634 ev_io_set (&fs_w, fs_fd, EV_READ);
4635 ev_io_start (EV_A_ &fs_w);
4636 ev_unref (EV_A);
4637 }
4638
4639 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4640 {
4641 WL w_ = fs_hash [slot].head;
4642 fs_hash [slot].head = 0;
4643
4644 while (w_)
4645 {
4646 ev_stat *w = (ev_stat *)w_;
4647 w_ = w_->next; /* lets us add this watcher */
4648
4649 w->wd = -1;
4650
4651 if (fs_fd >= 0)
4652 infy_add (EV_A_ w); /* re-add, no matter what */
4653 else
4654 {
4655 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4656 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4657 ev_timer_again (EV_A_ &w->timer);
4658 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4659 }
4660 }
4661 }
4662}
4663
4664#endif
4665
1531#if _WIN32 4666#ifdef _WIN32
1532 signal (w->signum, sighandler); 4667# define EV_LSTAT(p,b) _stati64 (p, b)
1533#else 4668#else
1534 struct sigaction sa; 4669# define EV_LSTAT(p,b) lstat (p, b)
1535 sa.sa_handler = sighandler;
1536 sigfillset (&sa.sa_mask);
1537 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1538 sigaction (w->signum, &sa, 0);
1539#endif 4670#endif
1540 }
1541}
1542 4671
1543void 4672void
1544ev_signal_stop (EV_P_ struct ev_signal *w) 4673ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
1545{ 4674{
1546 ev_clear_pending (EV_A_ (W)w); 4675 if (lstat (w->path, &w->attr) < 0)
1547 if (!ev_is_active (w)) 4676 w->attr.st_nlink = 0;
4677 else if (!w->attr.st_nlink)
4678 w->attr.st_nlink = 1;
4679}
4680
4681ecb_noinline
4682static void
4683stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4684{
4685 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4686
4687 ev_statdata prev = w->attr;
4688 ev_stat_stat (EV_A_ w);
4689
4690 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4691 if (
4692 prev.st_dev != w->attr.st_dev
4693 || prev.st_ino != w->attr.st_ino
4694 || prev.st_mode != w->attr.st_mode
4695 || prev.st_nlink != w->attr.st_nlink
4696 || prev.st_uid != w->attr.st_uid
4697 || prev.st_gid != w->attr.st_gid
4698 || prev.st_rdev != w->attr.st_rdev
4699 || prev.st_size != w->attr.st_size
4700 || prev.st_atime != w->attr.st_atime
4701 || prev.st_mtime != w->attr.st_mtime
4702 || prev.st_ctime != w->attr.st_ctime
4703 ) {
4704 /* we only update w->prev on actual differences */
4705 /* in case we test more often than invoke the callback, */
4706 /* to ensure that prev is always different to attr */
4707 w->prev = prev;
4708
4709 #if EV_USE_INOTIFY
4710 if (fs_fd >= 0)
4711 {
4712 infy_del (EV_A_ w);
4713 infy_add (EV_A_ w);
4714 ev_stat_stat (EV_A_ w); /* avoid race... */
4715 }
4716 #endif
4717
4718 ev_feed_event (EV_A_ w, EV_STAT);
4719 }
4720}
4721
4722void
4723ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
4724{
4725 if (ecb_expect_false (ev_is_active (w)))
1548 return; 4726 return;
1549 4727
1550 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 4728 ev_stat_stat (EV_A_ w);
4729
4730 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4731 w->interval = MIN_STAT_INTERVAL;
4732
4733 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4734 ev_set_priority (&w->timer, ev_priority (w));
4735
4736#if EV_USE_INOTIFY
4737 infy_init (EV_A);
4738
4739 if (fs_fd >= 0)
4740 infy_add (EV_A_ w);
4741 else
4742#endif
4743 {
4744 ev_timer_again (EV_A_ &w->timer);
4745 ev_unref (EV_A);
4746 }
4747
4748 ev_start (EV_A_ (W)w, 1);
4749
4750 EV_FREQUENT_CHECK;
4751}
4752
4753void
4754ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
4755{
4756 clear_pending (EV_A_ (W)w);
4757 if (ecb_expect_false (!ev_is_active (w)))
4758 return;
4759
4760 EV_FREQUENT_CHECK;
4761
4762#if EV_USE_INOTIFY
4763 infy_del (EV_A_ w);
4764#endif
4765
4766 if (ev_is_active (&w->timer))
4767 {
4768 ev_ref (EV_A);
4769 ev_timer_stop (EV_A_ &w->timer);
4770 }
4771
1551 ev_stop (EV_A_ (W)w); 4772 ev_stop (EV_A_ (W)w);
1552 4773
1553 if (!signals [w->signum - 1].head) 4774 EV_FREQUENT_CHECK;
1554 signal (w->signum, SIG_DFL);
1555} 4775}
1556
1557void
1558ev_child_start (EV_P_ struct ev_child *w)
1559{
1560#if EV_MULTIPLICITY
1561 assert (("child watchers are only supported in the default loop", loop == default_loop));
1562#endif 4776#endif
1563 if (ev_is_active (w)) 4777
4778#if EV_IDLE_ENABLE
4779void
4780ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
4781{
4782 if (ecb_expect_false (ev_is_active (w)))
1564 return; 4783 return;
1565 4784
4785 pri_adjust (EV_A_ (W)w);
4786
4787 EV_FREQUENT_CHECK;
4788
4789 {
4790 int active = ++idlecnt [ABSPRI (w)];
4791
4792 ++idleall;
4793 ev_start (EV_A_ (W)w, active);
4794
4795 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
4796 idles [ABSPRI (w)][active - 1] = w;
4797 }
4798
4799 EV_FREQUENT_CHECK;
4800}
4801
4802void
4803ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
4804{
4805 clear_pending (EV_A_ (W)w);
4806 if (ecb_expect_false (!ev_is_active (w)))
4807 return;
4808
4809 EV_FREQUENT_CHECK;
4810
4811 {
4812 int active = ev_active (w);
4813
4814 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4815 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4816
4817 ev_stop (EV_A_ (W)w);
4818 --idleall;
4819 }
4820
4821 EV_FREQUENT_CHECK;
4822}
4823#endif
4824
4825#if EV_PREPARE_ENABLE
4826void
4827ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
4828{
4829 if (ecb_expect_false (ev_is_active (w)))
4830 return;
4831
4832 EV_FREQUENT_CHECK;
4833
4834 ev_start (EV_A_ (W)w, ++preparecnt);
4835 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
4836 prepares [preparecnt - 1] = w;
4837
4838 EV_FREQUENT_CHECK;
4839}
4840
4841void
4842ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
4843{
4844 clear_pending (EV_A_ (W)w);
4845 if (ecb_expect_false (!ev_is_active (w)))
4846 return;
4847
4848 EV_FREQUENT_CHECK;
4849
4850 {
4851 int active = ev_active (w);
4852
4853 prepares [active - 1] = prepares [--preparecnt];
4854 ev_active (prepares [active - 1]) = active;
4855 }
4856
4857 ev_stop (EV_A_ (W)w);
4858
4859 EV_FREQUENT_CHECK;
4860}
4861#endif
4862
4863#if EV_CHECK_ENABLE
4864void
4865ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
4866{
4867 if (ecb_expect_false (ev_is_active (w)))
4868 return;
4869
4870 EV_FREQUENT_CHECK;
4871
4872 ev_start (EV_A_ (W)w, ++checkcnt);
4873 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
4874 checks [checkcnt - 1] = w;
4875
4876 EV_FREQUENT_CHECK;
4877}
4878
4879void
4880ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
4881{
4882 clear_pending (EV_A_ (W)w);
4883 if (ecb_expect_false (!ev_is_active (w)))
4884 return;
4885
4886 EV_FREQUENT_CHECK;
4887
4888 {
4889 int active = ev_active (w);
4890
4891 checks [active - 1] = checks [--checkcnt];
4892 ev_active (checks [active - 1]) = active;
4893 }
4894
4895 ev_stop (EV_A_ (W)w);
4896
4897 EV_FREQUENT_CHECK;
4898}
4899#endif
4900
4901#if EV_EMBED_ENABLE
4902ecb_noinline
4903void
4904ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
4905{
4906 ev_run (w->other, EVRUN_NOWAIT);
4907}
4908
4909static void
4910embed_io_cb (EV_P_ ev_io *io, int revents)
4911{
4912 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4913
4914 if (ev_cb (w))
4915 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4916 else
4917 ev_run (w->other, EVRUN_NOWAIT);
4918}
4919
4920static void
4921embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4922{
4923 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4924
4925 {
4926 EV_P = w->other;
4927
4928 while (fdchangecnt)
4929 {
4930 fd_reify (EV_A);
4931 ev_run (EV_A_ EVRUN_NOWAIT);
4932 }
4933 }
4934}
4935
4936static void
4937embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4938{
4939 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4940
4941 ev_embed_stop (EV_A_ w);
4942
4943 {
4944 EV_P = w->other;
4945
4946 ev_loop_fork (EV_A);
4947 ev_run (EV_A_ EVRUN_NOWAIT);
4948 }
4949
4950 ev_embed_start (EV_A_ w);
4951}
4952
4953#if 0
4954static void
4955embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4956{
4957 ev_idle_stop (EV_A_ idle);
4958}
4959#endif
4960
4961void
4962ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
4963{
4964 if (ecb_expect_false (ev_is_active (w)))
4965 return;
4966
4967 {
4968 EV_P = w->other;
4969 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4970 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4971 }
4972
4973 EV_FREQUENT_CHECK;
4974
4975 ev_set_priority (&w->io, ev_priority (w));
4976 ev_io_start (EV_A_ &w->io);
4977
4978 ev_prepare_init (&w->prepare, embed_prepare_cb);
4979 ev_set_priority (&w->prepare, EV_MINPRI);
4980 ev_prepare_start (EV_A_ &w->prepare);
4981
4982 ev_fork_init (&w->fork, embed_fork_cb);
4983 ev_fork_start (EV_A_ &w->fork);
4984
4985 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4986
1566 ev_start (EV_A_ (W)w, 1); 4987 ev_start (EV_A_ (W)w, 1);
1567 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1568}
1569 4988
4989 EV_FREQUENT_CHECK;
4990}
4991
1570void 4992void
1571ev_child_stop (EV_P_ struct ev_child *w) 4993ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
1572{ 4994{
1573 ev_clear_pending (EV_A_ (W)w); 4995 clear_pending (EV_A_ (W)w);
1574 if (!ev_is_active (w)) 4996 if (ecb_expect_false (!ev_is_active (w)))
1575 return; 4997 return;
1576 4998
1577 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4999 EV_FREQUENT_CHECK;
5000
5001 ev_io_stop (EV_A_ &w->io);
5002 ev_prepare_stop (EV_A_ &w->prepare);
5003 ev_fork_stop (EV_A_ &w->fork);
5004
1578 ev_stop (EV_A_ (W)w); 5005 ev_stop (EV_A_ (W)w);
5006
5007 EV_FREQUENT_CHECK;
1579} 5008}
5009#endif
5010
5011#if EV_FORK_ENABLE
5012void
5013ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
5014{
5015 if (ecb_expect_false (ev_is_active (w)))
5016 return;
5017
5018 EV_FREQUENT_CHECK;
5019
5020 ev_start (EV_A_ (W)w, ++forkcnt);
5021 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
5022 forks [forkcnt - 1] = w;
5023
5024 EV_FREQUENT_CHECK;
5025}
5026
5027void
5028ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
5029{
5030 clear_pending (EV_A_ (W)w);
5031 if (ecb_expect_false (!ev_is_active (w)))
5032 return;
5033
5034 EV_FREQUENT_CHECK;
5035
5036 {
5037 int active = ev_active (w);
5038
5039 forks [active - 1] = forks [--forkcnt];
5040 ev_active (forks [active - 1]) = active;
5041 }
5042
5043 ev_stop (EV_A_ (W)w);
5044
5045 EV_FREQUENT_CHECK;
5046}
5047#endif
5048
5049#if EV_CLEANUP_ENABLE
5050void
5051ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5052{
5053 if (ecb_expect_false (ev_is_active (w)))
5054 return;
5055
5056 EV_FREQUENT_CHECK;
5057
5058 ev_start (EV_A_ (W)w, ++cleanupcnt);
5059 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
5060 cleanups [cleanupcnt - 1] = w;
5061
5062 /* cleanup watchers should never keep a refcount on the loop */
5063 ev_unref (EV_A);
5064 EV_FREQUENT_CHECK;
5065}
5066
5067void
5068ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5069{
5070 clear_pending (EV_A_ (W)w);
5071 if (ecb_expect_false (!ev_is_active (w)))
5072 return;
5073
5074 EV_FREQUENT_CHECK;
5075 ev_ref (EV_A);
5076
5077 {
5078 int active = ev_active (w);
5079
5080 cleanups [active - 1] = cleanups [--cleanupcnt];
5081 ev_active (cleanups [active - 1]) = active;
5082 }
5083
5084 ev_stop (EV_A_ (W)w);
5085
5086 EV_FREQUENT_CHECK;
5087}
5088#endif
5089
5090#if EV_ASYNC_ENABLE
5091void
5092ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
5093{
5094 if (ecb_expect_false (ev_is_active (w)))
5095 return;
5096
5097 w->sent = 0;
5098
5099 evpipe_init (EV_A);
5100
5101 EV_FREQUENT_CHECK;
5102
5103 ev_start (EV_A_ (W)w, ++asynccnt);
5104 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
5105 asyncs [asynccnt - 1] = w;
5106
5107 EV_FREQUENT_CHECK;
5108}
5109
5110void
5111ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
5112{
5113 clear_pending (EV_A_ (W)w);
5114 if (ecb_expect_false (!ev_is_active (w)))
5115 return;
5116
5117 EV_FREQUENT_CHECK;
5118
5119 {
5120 int active = ev_active (w);
5121
5122 asyncs [active - 1] = asyncs [--asynccnt];
5123 ev_active (asyncs [active - 1]) = active;
5124 }
5125
5126 ev_stop (EV_A_ (W)w);
5127
5128 EV_FREQUENT_CHECK;
5129}
5130
5131void
5132ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
5133{
5134 w->sent = 1;
5135 evpipe_write (EV_A_ &async_pending);
5136}
5137#endif
1580 5138
1581/*****************************************************************************/ 5139/*****************************************************************************/
1582 5140
1583struct ev_once 5141struct ev_once
1584{ 5142{
1585 struct ev_io io; 5143 ev_io io;
1586 struct ev_timer to; 5144 ev_timer to;
1587 void (*cb)(int revents, void *arg); 5145 void (*cb)(int revents, void *arg);
1588 void *arg; 5146 void *arg;
1589}; 5147};
1590 5148
1591static void 5149static void
1592once_cb (EV_P_ struct ev_once *once, int revents) 5150once_cb (EV_P_ struct ev_once *once, int revents)
1593{ 5151{
1594 void (*cb)(int revents, void *arg) = once->cb; 5152 void (*cb)(int revents, void *arg) = once->cb;
1595 void *arg = once->arg; 5153 void *arg = once->arg;
1596 5154
1597 ev_io_stop (EV_A_ &once->io); 5155 ev_io_stop (EV_A_ &once->io);
1598 ev_timer_stop (EV_A_ &once->to); 5156 ev_timer_stop (EV_A_ &once->to);
1599 ev_free (once); 5157 ev_free (once);
1600 5158
1601 cb (revents, arg); 5159 cb (revents, arg);
1602} 5160}
1603 5161
1604static void 5162static void
1605once_cb_io (EV_P_ struct ev_io *w, int revents) 5163once_cb_io (EV_P_ ev_io *w, int revents)
1606{ 5164{
1607 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 5165 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
5166
5167 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1608} 5168}
1609 5169
1610static void 5170static void
1611once_cb_to (EV_P_ struct ev_timer *w, int revents) 5171once_cb_to (EV_P_ ev_timer *w, int revents)
1612{ 5172{
1613 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 5173 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
1614}
1615 5174
5175 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
5176}
5177
1616void 5178void
1617ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 5179ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
1618{ 5180{
1619 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 5181 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1620 5182
1621 if (!once)
1622 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1623 else
1624 {
1625 once->cb = cb; 5183 once->cb = cb;
1626 once->arg = arg; 5184 once->arg = arg;
1627 5185
1628 ev_init (&once->io, once_cb_io); 5186 ev_init (&once->io, once_cb_io);
1629 if (fd >= 0) 5187 if (fd >= 0)
5188 {
5189 ev_io_set (&once->io, fd, events);
5190 ev_io_start (EV_A_ &once->io);
5191 }
5192
5193 ev_init (&once->to, once_cb_to);
5194 if (timeout >= 0.)
5195 {
5196 ev_timer_set (&once->to, timeout, 0.);
5197 ev_timer_start (EV_A_ &once->to);
5198 }
5199}
5200
5201/*****************************************************************************/
5202
5203#if EV_WALK_ENABLE
5204ecb_cold
5205void
5206ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5207{
5208 int i, j;
5209 ev_watcher_list *wl, *wn;
5210
5211 if (types & (EV_IO | EV_EMBED))
5212 for (i = 0; i < anfdmax; ++i)
5213 for (wl = anfds [i].head; wl; )
1630 { 5214 {
1631 ev_io_set (&once->io, fd, events); 5215 wn = wl->next;
1632 ev_io_start (EV_A_ &once->io); 5216
5217#if EV_EMBED_ENABLE
5218 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5219 {
5220 if (types & EV_EMBED)
5221 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5222 }
5223 else
5224#endif
5225#if EV_USE_INOTIFY
5226 if (ev_cb ((ev_io *)wl) == infy_cb)
5227 ;
5228 else
5229#endif
5230 if ((ev_io *)wl != &pipe_w)
5231 if (types & EV_IO)
5232 cb (EV_A_ EV_IO, wl);
5233
5234 wl = wn;
1633 } 5235 }
1634 5236
1635 ev_init (&once->to, once_cb_to); 5237 if (types & (EV_TIMER | EV_STAT))
1636 if (timeout >= 0.) 5238 for (i = timercnt + HEAP0; i-- > HEAP0; )
5239#if EV_STAT_ENABLE
5240 /*TODO: timer is not always active*/
5241 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1637 { 5242 {
1638 ev_timer_set (&once->to, timeout, 0.); 5243 if (types & EV_STAT)
1639 ev_timer_start (EV_A_ &once->to); 5244 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1640 } 5245 }
1641 } 5246 else
1642} 5247#endif
5248 if (types & EV_TIMER)
5249 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1643 5250
1644#ifdef __cplusplus 5251#if EV_PERIODIC_ENABLE
1645} 5252 if (types & EV_PERIODIC)
5253 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5254 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5255#endif
5256
5257#if EV_IDLE_ENABLE
5258 if (types & EV_IDLE)
5259 for (j = NUMPRI; j--; )
5260 for (i = idlecnt [j]; i--; )
5261 cb (EV_A_ EV_IDLE, idles [j][i]);
5262#endif
5263
5264#if EV_FORK_ENABLE
5265 if (types & EV_FORK)
5266 for (i = forkcnt; i--; )
5267 if (ev_cb (forks [i]) != embed_fork_cb)
5268 cb (EV_A_ EV_FORK, forks [i]);
5269#endif
5270
5271#if EV_ASYNC_ENABLE
5272 if (types & EV_ASYNC)
5273 for (i = asynccnt; i--; )
5274 cb (EV_A_ EV_ASYNC, asyncs [i]);
5275#endif
5276
5277#if EV_PREPARE_ENABLE
5278 if (types & EV_PREPARE)
5279 for (i = preparecnt; i--; )
5280# if EV_EMBED_ENABLE
5281 if (ev_cb (prepares [i]) != embed_prepare_cb)
1646#endif 5282# endif
5283 cb (EV_A_ EV_PREPARE, prepares [i]);
5284#endif
1647 5285
5286#if EV_CHECK_ENABLE
5287 if (types & EV_CHECK)
5288 for (i = checkcnt; i--; )
5289 cb (EV_A_ EV_CHECK, checks [i]);
5290#endif
5291
5292#if EV_SIGNAL_ENABLE
5293 if (types & EV_SIGNAL)
5294 for (i = 0; i < EV_NSIG - 1; ++i)
5295 for (wl = signals [i].head; wl; )
5296 {
5297 wn = wl->next;
5298 cb (EV_A_ EV_SIGNAL, wl);
5299 wl = wn;
5300 }
5301#endif
5302
5303#if EV_CHILD_ENABLE
5304 if (types & EV_CHILD)
5305 for (i = (EV_PID_HASHSIZE); i--; )
5306 for (wl = childs [i]; wl; )
5307 {
5308 wn = wl->next;
5309 cb (EV_A_ EV_CHILD, wl);
5310 wl = wn;
5311 }
5312#endif
5313/* EV_STAT 0x00001000 /* stat data changed */
5314/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5315}
5316#endif
5317
5318#if EV_MULTIPLICITY
5319 #include "ev_wrap.h"
5320#endif
5321

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines