ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.248 by root, Wed May 21 23:25:21 2008 UTC vs.
Revision 1.506 by root, Thu Jul 11 05:41:39 2019 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
100# ifndef EV_USE_KQUEUE 120# if HAVE_LINUX_AIO_ABI_H
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 121# ifndef EV_USE_LINUXAIO
102# define EV_USE_KQUEUE 1 122# define EV_USE_LINUXAIO EV_FEATURE_BACKENDS
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_LINUXAIO
126# define EV_USE_LINUXAIO 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT 129# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
109# if HAVE_PORT_H && HAVE_PORT_CREATE 130# ifndef EV_USE_KQUEUE
110# define EV_USE_PORT 1 131# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
111# else
112# define EV_USE_PORT 0
113# endif 132# endif
114# endif
115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else 133# else
120# define EV_USE_INOTIFY 0 134# undef EV_USE_KQUEUE
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0 135# define EV_USE_KQUEUE 0
129# endif
130# endif 136# endif
131 137
138# if HAVE_PORT_H && HAVE_PORT_CREATE
139# ifndef EV_USE_PORT
140# define EV_USE_PORT EV_FEATURE_BACKENDS
141# endif
142# else
143# undef EV_USE_PORT
144# define EV_USE_PORT 0
132#endif 145# endif
133 146
134#include <math.h> 147# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
148# ifndef EV_USE_INOTIFY
149# define EV_USE_INOTIFY EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_INOTIFY
153# define EV_USE_INOTIFY 0
154# endif
155
156# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
157# ifndef EV_USE_SIGNALFD
158# define EV_USE_SIGNALFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_SIGNALFD
162# define EV_USE_SIGNALFD 0
163# endif
164
165# if HAVE_EVENTFD
166# ifndef EV_USE_EVENTFD
167# define EV_USE_EVENTFD EV_FEATURE_OS
168# endif
169# else
170# undef EV_USE_EVENTFD
171# define EV_USE_EVENTFD 0
172# endif
173
174#endif
175
176/* OS X, in its infinite idiocy, actually HARDCODES
177 * a limit of 1024 into their select. Where people have brains,
178 * OS X engineers apparently have a vacuum. Or maybe they were
179 * ordered to have a vacuum, or they do anything for money.
180 * This might help. Or not.
181 * Note that this must be defined early, as other include files
182 * will rely on this define as well.
183 */
184#define _DARWIN_UNLIMITED_SELECT 1
185
135#include <stdlib.h> 186#include <stdlib.h>
187#include <string.h>
136#include <fcntl.h> 188#include <fcntl.h>
137#include <stddef.h> 189#include <stddef.h>
138 190
139#include <stdio.h> 191#include <stdio.h>
140 192
141#include <assert.h> 193#include <assert.h>
142#include <errno.h> 194#include <errno.h>
143#include <sys/types.h> 195#include <sys/types.h>
144#include <time.h> 196#include <time.h>
197#include <limits.h>
145 198
146#include <signal.h> 199#include <signal.h>
147 200
148#ifdef EV_H 201#ifdef EV_H
149# include EV_H 202# include EV_H
150#else 203#else
151# include "ev.h" 204# include "ev.h"
205#endif
206
207#if EV_NO_THREADS
208# undef EV_NO_SMP
209# define EV_NO_SMP 1
210# undef ECB_NO_THREADS
211# define ECB_NO_THREADS 1
212#endif
213#if EV_NO_SMP
214# undef EV_NO_SMP
215# define ECB_NO_SMP 1
152#endif 216#endif
153 217
154#ifndef _WIN32 218#ifndef _WIN32
155# include <sys/time.h> 219# include <sys/time.h>
156# include <sys/wait.h> 220# include <sys/wait.h>
157# include <unistd.h> 221# include <unistd.h>
158#else 222#else
223# include <io.h>
159# define WIN32_LEAN_AND_MEAN 224# define WIN32_LEAN_AND_MEAN
225# include <winsock2.h>
160# include <windows.h> 226# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 227# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 228# define EV_SELECT_IS_WINSOCKET 1
163# endif 229# endif
230# undef EV_AVOID_STDIO
164#endif 231#endif
165 232
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 233/* this block tries to deduce configuration from header-defined symbols and defaults */
167 234
235/* try to deduce the maximum number of signals on this platform */
236#if defined EV_NSIG
237/* use what's provided */
238#elif defined NSIG
239# define EV_NSIG (NSIG)
240#elif defined _NSIG
241# define EV_NSIG (_NSIG)
242#elif defined SIGMAX
243# define EV_NSIG (SIGMAX+1)
244#elif defined SIG_MAX
245# define EV_NSIG (SIG_MAX+1)
246#elif defined _SIG_MAX
247# define EV_NSIG (_SIG_MAX+1)
248#elif defined MAXSIG
249# define EV_NSIG (MAXSIG+1)
250#elif defined MAX_SIG
251# define EV_NSIG (MAX_SIG+1)
252#elif defined SIGARRAYSIZE
253# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
254#elif defined _sys_nsig
255# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
256#else
257# define EV_NSIG (8 * sizeof (sigset_t) + 1)
258#endif
259
260#ifndef EV_USE_FLOOR
261# define EV_USE_FLOOR 0
262#endif
263
264#ifndef EV_USE_CLOCK_SYSCALL
265# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
266# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
267# else
268# define EV_USE_CLOCK_SYSCALL 0
269# endif
270#endif
271
272#if !(_POSIX_TIMERS > 0)
273# ifndef EV_USE_MONOTONIC
274# define EV_USE_MONOTONIC 0
275# endif
276# ifndef EV_USE_REALTIME
277# define EV_USE_REALTIME 0
278# endif
279#endif
280
168#ifndef EV_USE_MONOTONIC 281#ifndef EV_USE_MONOTONIC
282# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
283# define EV_USE_MONOTONIC EV_FEATURE_OS
284# else
169# define EV_USE_MONOTONIC 0 285# define EV_USE_MONOTONIC 0
286# endif
170#endif 287#endif
171 288
172#ifndef EV_USE_REALTIME 289#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 290# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 291#endif
175 292
176#ifndef EV_USE_NANOSLEEP 293#ifndef EV_USE_NANOSLEEP
294# if _POSIX_C_SOURCE >= 199309L
295# define EV_USE_NANOSLEEP EV_FEATURE_OS
296# else
177# define EV_USE_NANOSLEEP 0 297# define EV_USE_NANOSLEEP 0
298# endif
178#endif 299#endif
179 300
180#ifndef EV_USE_SELECT 301#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 302# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 303#endif
183 304
184#ifndef EV_USE_POLL 305#ifndef EV_USE_POLL
185# ifdef _WIN32 306# ifdef _WIN32
186# define EV_USE_POLL 0 307# define EV_USE_POLL 0
187# else 308# else
188# define EV_USE_POLL 1 309# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 310# endif
190#endif 311#endif
191 312
192#ifndef EV_USE_EPOLL 313#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 314# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 315# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 316# else
196# define EV_USE_EPOLL 0 317# define EV_USE_EPOLL 0
197# endif 318# endif
198#endif 319#endif
199 320
203 324
204#ifndef EV_USE_PORT 325#ifndef EV_USE_PORT
205# define EV_USE_PORT 0 326# define EV_USE_PORT 0
206#endif 327#endif
207 328
329#ifndef EV_USE_LINUXAIO
330# if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
331# define EV_USE_LINUXAIO 1
332# else
333# define EV_USE_LINUXAIO 0
334# endif
335#endif
336
337#ifndef EV_USE_IOURING
338# if __linux
339# define EV_USE_IOURING 0
340# else
341# define EV_USE_IOURING 0
342# endif
343#endif
344
208#ifndef EV_USE_INOTIFY 345#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 346# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 347# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 348# else
212# define EV_USE_INOTIFY 0 349# define EV_USE_INOTIFY 0
213# endif 350# endif
214#endif 351#endif
215 352
216#ifndef EV_PID_HASHSIZE 353#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 354# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 355#endif
223 356
224#ifndef EV_INOTIFY_HASHSIZE 357#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 358# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 359#endif
231 360
232#ifndef EV_USE_EVENTFD 361#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 362# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 363# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 364# else
236# define EV_USE_EVENTFD 0 365# define EV_USE_EVENTFD 0
237# endif 366# endif
238#endif 367#endif
239 368
369#ifndef EV_USE_SIGNALFD
370# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
371# define EV_USE_SIGNALFD EV_FEATURE_OS
372# else
373# define EV_USE_SIGNALFD 0
374# endif
375#endif
376
377#if 0 /* debugging */
378# define EV_VERIFY 3
379# define EV_USE_4HEAP 1
380# define EV_HEAP_CACHE_AT 1
381#endif
382
383#ifndef EV_VERIFY
384# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
385#endif
386
240#ifndef EV_USE_4HEAP 387#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL 388# define EV_USE_4HEAP EV_FEATURE_DATA
242#endif 389#endif
243 390
244#ifndef EV_HEAP_CACHE_AT 391#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL 392# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
393#endif
394
395#ifdef __ANDROID__
396/* supposedly, android doesn't typedef fd_mask */
397# undef EV_USE_SELECT
398# define EV_USE_SELECT 0
399/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
400# undef EV_USE_CLOCK_SYSCALL
401# define EV_USE_CLOCK_SYSCALL 0
402#endif
403
404/* aix's poll.h seems to cause lots of trouble */
405#ifdef _AIX
406/* AIX has a completely broken poll.h header */
407# undef EV_USE_POLL
408# define EV_USE_POLL 0
409#endif
410
411/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
412/* which makes programs even slower. might work on other unices, too. */
413#if EV_USE_CLOCK_SYSCALL
414# include <sys/syscall.h>
415# ifdef SYS_clock_gettime
416# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
417# undef EV_USE_MONOTONIC
418# define EV_USE_MONOTONIC 1
419# define EV_NEED_SYSCALL 1
420# else
421# undef EV_USE_CLOCK_SYSCALL
422# define EV_USE_CLOCK_SYSCALL 0
423# endif
246#endif 424#endif
247 425
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 426/* this block fixes any misconfiguration where we know we run into trouble otherwise */
249 427
250#ifndef CLOCK_MONOTONIC 428#ifndef CLOCK_MONOTONIC
261# undef EV_USE_INOTIFY 439# undef EV_USE_INOTIFY
262# define EV_USE_INOTIFY 0 440# define EV_USE_INOTIFY 0
263#endif 441#endif
264 442
265#if !EV_USE_NANOSLEEP 443#if !EV_USE_NANOSLEEP
266# ifndef _WIN32 444/* hp-ux has it in sys/time.h, which we unconditionally include above */
445# if !defined _WIN32 && !defined __hpux
267# include <sys/select.h> 446# include <sys/select.h>
268# endif 447# endif
269#endif 448#endif
270 449
450#if EV_USE_LINUXAIO
451# include <sys/syscall.h>
452# if SYS_io_getevents && EV_USE_EPOLL /* linuxaio backend requires epoll backend */
453# define EV_NEED_SYSCALL 1
454# else
455# undef EV_USE_LINUXAIO
456# define EV_USE_LINUXAIO 0
457# endif
458#endif
459
460#if EV_USE_IOURING
461# include <sys/syscall.h>
462# if !SYS_io_uring_setup && __linux && !__alpha
463# define SYS_io_uring_setup 425
464# define SYS_io_uring_enter 426
465# define SYS_io_uring_wregister 427
466# endif
467# if SYS_io_uring_setup && EV_USE_EPOLL /* iouring backend requires epoll backend */
468# define EV_NEED_SYSCALL 1
469# else
470# undef EV_USE_IOURING
471# define EV_USE_IOURING 0
472# endif
473#endif
474
271#if EV_USE_INOTIFY 475#if EV_USE_INOTIFY
476# include <sys/statfs.h>
272# include <sys/inotify.h> 477# include <sys/inotify.h>
478/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
479# ifndef IN_DONT_FOLLOW
480# undef EV_USE_INOTIFY
481# define EV_USE_INOTIFY 0
273#endif 482# endif
274
275#if EV_SELECT_IS_WINSOCKET
276# include <winsock.h>
277#endif 483#endif
278 484
279#if EV_USE_EVENTFD 485#if EV_USE_EVENTFD
280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 486/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h> 487# include <stdint.h>
282# ifdef __cplusplus 488# ifndef EFD_NONBLOCK
283extern "C" { 489# define EFD_NONBLOCK O_NONBLOCK
284# endif 490# endif
285int eventfd (unsigned int initval, int flags); 491# ifndef EFD_CLOEXEC
286# ifdef __cplusplus 492# ifdef O_CLOEXEC
287} 493# define EFD_CLOEXEC O_CLOEXEC
494# else
495# define EFD_CLOEXEC 02000000
496# endif
288# endif 497# endif
498EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
499#endif
500
501#if EV_USE_SIGNALFD
502/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
503# include <stdint.h>
504# ifndef SFD_NONBLOCK
505# define SFD_NONBLOCK O_NONBLOCK
289#endif 506# endif
507# ifndef SFD_CLOEXEC
508# ifdef O_CLOEXEC
509# define SFD_CLOEXEC O_CLOEXEC
510# else
511# define SFD_CLOEXEC 02000000
512# endif
513# endif
514EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
290 515
291/**/ 516struct signalfd_siginfo
517{
518 uint32_t ssi_signo;
519 char pad[128 - sizeof (uint32_t)];
520};
521#endif
292 522
293/* undefined or zero: no verification done or available */ 523/*****************************************************************************/
294/* 1 or higher: ev_loop_verify function available */
295/* 2 or higher: ev_loop_verify is called frequently */
296#define EV_VERIFY 1
297 524
298#if EV_VERIFY > 1 525#if EV_VERIFY >= 3
299# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 526# define EV_FREQUENT_CHECK ev_verify (EV_A)
300#else 527#else
301# define EV_FREQUENT_CHECK do { } while (0) 528# define EV_FREQUENT_CHECK do { } while (0)
302#endif 529#endif
303 530
304/* 531/*
305 * This is used to avoid floating point rounding problems. 532 * This is used to work around floating point rounding problems.
306 * It is added to ev_rt_now when scheduling periodics
307 * to ensure progress, time-wise, even when rounding
308 * errors are against us.
309 * This value is good at least till the year 4000. 533 * This value is good at least till the year 4000.
310 * Better solutions welcome.
311 */ 534 */
312#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 535#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
536/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
313 537
314#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 538#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
315#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 539#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
316/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
317 540
541/* find a portable timestamp that is "always" in the future but fits into time_t.
542 * this is quite hard, and we are mostly guessing - we handle 32 bit signed/unsigned time_t,
543 * and sizes larger than 32 bit, and maybe the unlikely floating point time_t */
544#define EV_TSTAMP_HUGE \
545 (sizeof (time_t) >= 8 ? 10000000000000. \
546 : 0 < (time_t)4294967295 ? 4294967295. \
547 : 2147483647.) \
548
549#define EV_TS_TO_MS(a) a * 1e3 + 0.9999
550#define EV_TS_FROM_US(us) us * 1e-6
551#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
552#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
553#define EV_TV_GET(tv) ((tv).tv_sec + (tv).tv_usec * 1e-6)
554#define EV_TS_GET(ts) ((ts).tv_sec + (ts).tv_nsec * 1e-9)
555
556/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
557/* ECB.H BEGIN */
558/*
559 * libecb - http://software.schmorp.de/pkg/libecb
560 *
561 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
562 * Copyright (©) 2011 Emanuele Giaquinta
563 * All rights reserved.
564 *
565 * Redistribution and use in source and binary forms, with or without modifica-
566 * tion, are permitted provided that the following conditions are met:
567 *
568 * 1. Redistributions of source code must retain the above copyright notice,
569 * this list of conditions and the following disclaimer.
570 *
571 * 2. Redistributions in binary form must reproduce the above copyright
572 * notice, this list of conditions and the following disclaimer in the
573 * documentation and/or other materials provided with the distribution.
574 *
575 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
576 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
577 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
578 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
579 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
580 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
581 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
582 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
583 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
584 * OF THE POSSIBILITY OF SUCH DAMAGE.
585 *
586 * Alternatively, the contents of this file may be used under the terms of
587 * the GNU General Public License ("GPL") version 2 or any later version,
588 * in which case the provisions of the GPL are applicable instead of
589 * the above. If you wish to allow the use of your version of this file
590 * only under the terms of the GPL and not to allow others to use your
591 * version of this file under the BSD license, indicate your decision
592 * by deleting the provisions above and replace them with the notice
593 * and other provisions required by the GPL. If you do not delete the
594 * provisions above, a recipient may use your version of this file under
595 * either the BSD or the GPL.
596 */
597
598#ifndef ECB_H
599#define ECB_H
600
601/* 16 bits major, 16 bits minor */
602#define ECB_VERSION 0x00010006
603
604#ifdef _WIN32
605 typedef signed char int8_t;
606 typedef unsigned char uint8_t;
607 typedef signed short int16_t;
608 typedef unsigned short uint16_t;
609 typedef signed int int32_t;
610 typedef unsigned int uint32_t;
318#if __GNUC__ >= 4 611 #if __GNUC__
319# define expect(expr,value) __builtin_expect ((expr),(value)) 612 typedef signed long long int64_t;
320# define noinline __attribute__ ((noinline)) 613 typedef unsigned long long uint64_t;
614 #else /* _MSC_VER || __BORLANDC__ */
615 typedef signed __int64 int64_t;
616 typedef unsigned __int64 uint64_t;
617 #endif
618 #ifdef _WIN64
619 #define ECB_PTRSIZE 8
620 typedef uint64_t uintptr_t;
621 typedef int64_t intptr_t;
622 #else
623 #define ECB_PTRSIZE 4
624 typedef uint32_t uintptr_t;
625 typedef int32_t intptr_t;
626 #endif
321#else 627#else
322# define expect(expr,value) (expr) 628 #include <inttypes.h>
323# define noinline 629 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
324# if __STDC_VERSION__ < 199901L && __GNUC__ < 2 630 #define ECB_PTRSIZE 8
325# define inline 631 #else
632 #define ECB_PTRSIZE 4
633 #endif
326# endif 634#endif
635
636#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
637#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
638
639/* work around x32 idiocy by defining proper macros */
640#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
641 #if _ILP32
642 #define ECB_AMD64_X32 1
643 #else
644 #define ECB_AMD64 1
327#endif 645 #endif
646#endif
328 647
329#define expect_false(expr) expect ((expr) != 0, 0) 648/* many compilers define _GNUC_ to some versions but then only implement
330#define expect_true(expr) expect ((expr) != 0, 1) 649 * what their idiot authors think are the "more important" extensions,
331#define inline_size static inline 650 * causing enormous grief in return for some better fake benchmark numbers.
332 651 * or so.
333#if EV_MINIMAL 652 * we try to detect these and simply assume they are not gcc - if they have
334# define inline_speed static noinline 653 * an issue with that they should have done it right in the first place.
654 */
655#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
656 #define ECB_GCC_VERSION(major,minor) 0
335#else 657#else
658 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
659#endif
660
661#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
662
663#if __clang__ && defined __has_builtin
664 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
665#else
666 #define ECB_CLANG_BUILTIN(x) 0
667#endif
668
669#if __clang__ && defined __has_extension
670 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
671#else
672 #define ECB_CLANG_EXTENSION(x) 0
673#endif
674
675#define ECB_CPP (__cplusplus+0)
676#define ECB_CPP11 (__cplusplus >= 201103L)
677#define ECB_CPP14 (__cplusplus >= 201402L)
678#define ECB_CPP17 (__cplusplus >= 201703L)
679
680#if ECB_CPP
681 #define ECB_C 0
682 #define ECB_STDC_VERSION 0
683#else
684 #define ECB_C 1
685 #define ECB_STDC_VERSION __STDC_VERSION__
686#endif
687
688#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
689#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
690#define ECB_C17 (ECB_STDC_VERSION >= 201710L)
691
692#if ECB_CPP
693 #define ECB_EXTERN_C extern "C"
694 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
695 #define ECB_EXTERN_C_END }
696#else
697 #define ECB_EXTERN_C extern
698 #define ECB_EXTERN_C_BEG
699 #define ECB_EXTERN_C_END
700#endif
701
702/*****************************************************************************/
703
704/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
705/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
706
707#if ECB_NO_THREADS
708 #define ECB_NO_SMP 1
709#endif
710
711#if ECB_NO_SMP
712 #define ECB_MEMORY_FENCE do { } while (0)
713#endif
714
715/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
716#if __xlC__ && ECB_CPP
717 #include <builtins.h>
718#endif
719
720#if 1400 <= _MSC_VER
721 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
722#endif
723
724#ifndef ECB_MEMORY_FENCE
725 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
726 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
727 #if __i386 || __i386__
728 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
729 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
730 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
731 #elif ECB_GCC_AMD64
732 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
733 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
734 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
735 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
736 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
737 #elif defined __ARM_ARCH_2__ \
738 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
739 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
740 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
741 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
742 || defined __ARM_ARCH_5TEJ__
743 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
744 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
745 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
746 || defined __ARM_ARCH_6T2__
747 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
748 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
749 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
750 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
751 #elif __aarch64__
752 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
753 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
754 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
755 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
756 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
757 #elif defined __s390__ || defined __s390x__
758 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
759 #elif defined __mips__
760 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
761 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
762 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
763 #elif defined __alpha__
764 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
765 #elif defined __hppa__
766 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
767 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
768 #elif defined __ia64__
769 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
770 #elif defined __m68k__
771 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
772 #elif defined __m88k__
773 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
774 #elif defined __sh__
775 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
776 #endif
777 #endif
778#endif
779
780#ifndef ECB_MEMORY_FENCE
781 #if ECB_GCC_VERSION(4,7)
782 /* see comment below (stdatomic.h) about the C11 memory model. */
783 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
784 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
785 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
786 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
787
788 #elif ECB_CLANG_EXTENSION(c_atomic)
789 /* see comment below (stdatomic.h) about the C11 memory model. */
790 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
791 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
792 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
793 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
794
795 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
796 #define ECB_MEMORY_FENCE __sync_synchronize ()
797 #elif _MSC_VER >= 1500 /* VC++ 2008 */
798 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
799 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
800 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
801 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
802 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
803 #elif _MSC_VER >= 1400 /* VC++ 2005 */
804 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
805 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
806 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
807 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
808 #elif defined _WIN32
809 #include <WinNT.h>
810 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
811 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
812 #include <mbarrier.h>
813 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
814 #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
815 #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
816 #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
817 #elif __xlC__
818 #define ECB_MEMORY_FENCE __sync ()
819 #endif
820#endif
821
822#ifndef ECB_MEMORY_FENCE
823 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
824 /* we assume that these memory fences work on all variables/all memory accesses, */
825 /* not just C11 atomics and atomic accesses */
826 #include <stdatomic.h>
827 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
828 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
829 #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
830 #endif
831#endif
832
833#ifndef ECB_MEMORY_FENCE
834 #if !ECB_AVOID_PTHREADS
835 /*
836 * if you get undefined symbol references to pthread_mutex_lock,
837 * or failure to find pthread.h, then you should implement
838 * the ECB_MEMORY_FENCE operations for your cpu/compiler
839 * OR provide pthread.h and link against the posix thread library
840 * of your system.
841 */
842 #include <pthread.h>
843 #define ECB_NEEDS_PTHREADS 1
844 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
845
846 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
847 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
848 #endif
849#endif
850
851#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
852 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
853#endif
854
855#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
856 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
857#endif
858
859#if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
860 #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
861#endif
862
863/*****************************************************************************/
864
865#if ECB_CPP
866 #define ecb_inline static inline
867#elif ECB_GCC_VERSION(2,5)
868 #define ecb_inline static __inline__
869#elif ECB_C99
870 #define ecb_inline static inline
871#else
872 #define ecb_inline static
873#endif
874
875#if ECB_GCC_VERSION(3,3)
876 #define ecb_restrict __restrict__
877#elif ECB_C99
878 #define ecb_restrict restrict
879#else
880 #define ecb_restrict
881#endif
882
883typedef int ecb_bool;
884
885#define ECB_CONCAT_(a, b) a ## b
886#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
887#define ECB_STRINGIFY_(a) # a
888#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
889#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
890
891#define ecb_function_ ecb_inline
892
893#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
894 #define ecb_attribute(attrlist) __attribute__ (attrlist)
895#else
896 #define ecb_attribute(attrlist)
897#endif
898
899#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
900 #define ecb_is_constant(expr) __builtin_constant_p (expr)
901#else
902 /* possible C11 impl for integral types
903 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
904 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
905
906 #define ecb_is_constant(expr) 0
907#endif
908
909#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
910 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
911#else
912 #define ecb_expect(expr,value) (expr)
913#endif
914
915#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
916 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
917#else
918 #define ecb_prefetch(addr,rw,locality)
919#endif
920
921/* no emulation for ecb_decltype */
922#if ECB_CPP11
923 // older implementations might have problems with decltype(x)::type, work around it
924 template<class T> struct ecb_decltype_t { typedef T type; };
925 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
926#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
927 #define ecb_decltype(x) __typeof__ (x)
928#endif
929
930#if _MSC_VER >= 1300
931 #define ecb_deprecated __declspec (deprecated)
932#else
933 #define ecb_deprecated ecb_attribute ((__deprecated__))
934#endif
935
936#if _MSC_VER >= 1500
937 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
938#elif ECB_GCC_VERSION(4,5)
939 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
940#else
941 #define ecb_deprecated_message(msg) ecb_deprecated
942#endif
943
944#if _MSC_VER >= 1400
945 #define ecb_noinline __declspec (noinline)
946#else
947 #define ecb_noinline ecb_attribute ((__noinline__))
948#endif
949
950#define ecb_unused ecb_attribute ((__unused__))
951#define ecb_const ecb_attribute ((__const__))
952#define ecb_pure ecb_attribute ((__pure__))
953
954#if ECB_C11 || __IBMC_NORETURN
955 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
956 #define ecb_noreturn _Noreturn
957#elif ECB_CPP11
958 #define ecb_noreturn [[noreturn]]
959#elif _MSC_VER >= 1200
960 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
961 #define ecb_noreturn __declspec (noreturn)
962#else
963 #define ecb_noreturn ecb_attribute ((__noreturn__))
964#endif
965
966#if ECB_GCC_VERSION(4,3)
967 #define ecb_artificial ecb_attribute ((__artificial__))
968 #define ecb_hot ecb_attribute ((__hot__))
969 #define ecb_cold ecb_attribute ((__cold__))
970#else
971 #define ecb_artificial
972 #define ecb_hot
973 #define ecb_cold
974#endif
975
976/* put around conditional expressions if you are very sure that the */
977/* expression is mostly true or mostly false. note that these return */
978/* booleans, not the expression. */
979#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
980#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
981/* for compatibility to the rest of the world */
982#define ecb_likely(expr) ecb_expect_true (expr)
983#define ecb_unlikely(expr) ecb_expect_false (expr)
984
985/* count trailing zero bits and count # of one bits */
986#if ECB_GCC_VERSION(3,4) \
987 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
988 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
989 && ECB_CLANG_BUILTIN(__builtin_popcount))
990 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
991 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
992 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
993 #define ecb_ctz32(x) __builtin_ctz (x)
994 #define ecb_ctz64(x) __builtin_ctzll (x)
995 #define ecb_popcount32(x) __builtin_popcount (x)
996 /* no popcountll */
997#else
998 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
999 ecb_function_ ecb_const int
1000 ecb_ctz32 (uint32_t x)
1001 {
1002#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1003 unsigned long r;
1004 _BitScanForward (&r, x);
1005 return (int)r;
1006#else
1007 int r = 0;
1008
1009 x &= ~x + 1; /* this isolates the lowest bit */
1010
1011#if ECB_branchless_on_i386
1012 r += !!(x & 0xaaaaaaaa) << 0;
1013 r += !!(x & 0xcccccccc) << 1;
1014 r += !!(x & 0xf0f0f0f0) << 2;
1015 r += !!(x & 0xff00ff00) << 3;
1016 r += !!(x & 0xffff0000) << 4;
1017#else
1018 if (x & 0xaaaaaaaa) r += 1;
1019 if (x & 0xcccccccc) r += 2;
1020 if (x & 0xf0f0f0f0) r += 4;
1021 if (x & 0xff00ff00) r += 8;
1022 if (x & 0xffff0000) r += 16;
1023#endif
1024
1025 return r;
1026#endif
1027 }
1028
1029 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
1030 ecb_function_ ecb_const int
1031 ecb_ctz64 (uint64_t x)
1032 {
1033#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1034 unsigned long r;
1035 _BitScanForward64 (&r, x);
1036 return (int)r;
1037#else
1038 int shift = x & 0xffffffff ? 0 : 32;
1039 return ecb_ctz32 (x >> shift) + shift;
1040#endif
1041 }
1042
1043 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1044 ecb_function_ ecb_const int
1045 ecb_popcount32 (uint32_t x)
1046 {
1047 x -= (x >> 1) & 0x55555555;
1048 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1049 x = ((x >> 4) + x) & 0x0f0f0f0f;
1050 x *= 0x01010101;
1051
1052 return x >> 24;
1053 }
1054
1055 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1056 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1057 {
1058#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1059 unsigned long r;
1060 _BitScanReverse (&r, x);
1061 return (int)r;
1062#else
1063 int r = 0;
1064
1065 if (x >> 16) { x >>= 16; r += 16; }
1066 if (x >> 8) { x >>= 8; r += 8; }
1067 if (x >> 4) { x >>= 4; r += 4; }
1068 if (x >> 2) { x >>= 2; r += 2; }
1069 if (x >> 1) { r += 1; }
1070
1071 return r;
1072#endif
1073 }
1074
1075 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1076 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1077 {
1078#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1079 unsigned long r;
1080 _BitScanReverse64 (&r, x);
1081 return (int)r;
1082#else
1083 int r = 0;
1084
1085 if (x >> 32) { x >>= 32; r += 32; }
1086
1087 return r + ecb_ld32 (x);
1088#endif
1089 }
1090#endif
1091
1092ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1093ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1094ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1095ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1096
1097ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1098ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1099{
1100 return ( (x * 0x0802U & 0x22110U)
1101 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1102}
1103
1104ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1105ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1106{
1107 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1108 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1109 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1110 x = ( x >> 8 ) | ( x << 8);
1111
1112 return x;
1113}
1114
1115ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1116ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1117{
1118 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1119 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1120 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1121 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1122 x = ( x >> 16 ) | ( x << 16);
1123
1124 return x;
1125}
1126
1127/* popcount64 is only available on 64 bit cpus as gcc builtin */
1128/* so for this version we are lazy */
1129ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1130ecb_function_ ecb_const int
1131ecb_popcount64 (uint64_t x)
1132{
1133 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1134}
1135
1136ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1137ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1138ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1139ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1140ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1141ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1142ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1143ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1144
1145ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1146ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1147ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1148ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1149ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1150ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1151ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1152ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1153
1154#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1155 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1156 #define ecb_bswap16(x) __builtin_bswap16 (x)
1157 #else
1158 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1159 #endif
1160 #define ecb_bswap32(x) __builtin_bswap32 (x)
1161 #define ecb_bswap64(x) __builtin_bswap64 (x)
1162#elif _MSC_VER
1163 #include <stdlib.h>
1164 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1165 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1166 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1167#else
1168 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1169 ecb_function_ ecb_const uint16_t
1170 ecb_bswap16 (uint16_t x)
1171 {
1172 return ecb_rotl16 (x, 8);
1173 }
1174
1175 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1176 ecb_function_ ecb_const uint32_t
1177 ecb_bswap32 (uint32_t x)
1178 {
1179 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1180 }
1181
1182 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1183 ecb_function_ ecb_const uint64_t
1184 ecb_bswap64 (uint64_t x)
1185 {
1186 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1187 }
1188#endif
1189
1190#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1191 #define ecb_unreachable() __builtin_unreachable ()
1192#else
1193 /* this seems to work fine, but gcc always emits a warning for it :/ */
1194 ecb_inline ecb_noreturn void ecb_unreachable (void);
1195 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1196#endif
1197
1198/* try to tell the compiler that some condition is definitely true */
1199#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1200
1201ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1202ecb_inline ecb_const uint32_t
1203ecb_byteorder_helper (void)
1204{
1205 /* the union code still generates code under pressure in gcc, */
1206 /* but less than using pointers, and always seems to */
1207 /* successfully return a constant. */
1208 /* the reason why we have this horrible preprocessor mess */
1209 /* is to avoid it in all cases, at least on common architectures */
1210 /* or when using a recent enough gcc version (>= 4.6) */
1211#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1212 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1213 #define ECB_LITTLE_ENDIAN 1
1214 return 0x44332211;
1215#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1216 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1217 #define ECB_BIG_ENDIAN 1
1218 return 0x11223344;
1219#else
1220 union
1221 {
1222 uint8_t c[4];
1223 uint32_t u;
1224 } u = { 0x11, 0x22, 0x33, 0x44 };
1225 return u.u;
1226#endif
1227}
1228
1229ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1230ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1231ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1232ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1233
1234#if ECB_GCC_VERSION(3,0) || ECB_C99
1235 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1236#else
1237 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1238#endif
1239
1240#if ECB_CPP
1241 template<typename T>
1242 static inline T ecb_div_rd (T val, T div)
1243 {
1244 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1245 }
1246 template<typename T>
1247 static inline T ecb_div_ru (T val, T div)
1248 {
1249 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1250 }
1251#else
1252 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1253 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1254#endif
1255
1256#if ecb_cplusplus_does_not_suck
1257 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1258 template<typename T, int N>
1259 static inline int ecb_array_length (const T (&arr)[N])
1260 {
1261 return N;
1262 }
1263#else
1264 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1265#endif
1266
1267ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1268ecb_function_ ecb_const uint32_t
1269ecb_binary16_to_binary32 (uint32_t x)
1270{
1271 unsigned int s = (x & 0x8000) << (31 - 15);
1272 int e = (x >> 10) & 0x001f;
1273 unsigned int m = x & 0x03ff;
1274
1275 if (ecb_expect_false (e == 31))
1276 /* infinity or NaN */
1277 e = 255 - (127 - 15);
1278 else if (ecb_expect_false (!e))
1279 {
1280 if (ecb_expect_true (!m))
1281 /* zero, handled by code below by forcing e to 0 */
1282 e = 0 - (127 - 15);
1283 else
1284 {
1285 /* subnormal, renormalise */
1286 unsigned int s = 10 - ecb_ld32 (m);
1287
1288 m = (m << s) & 0x3ff; /* mask implicit bit */
1289 e -= s - 1;
1290 }
1291 }
1292
1293 /* e and m now are normalised, or zero, (or inf or nan) */
1294 e += 127 - 15;
1295
1296 return s | (e << 23) | (m << (23 - 10));
1297}
1298
1299ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1300ecb_function_ ecb_const uint16_t
1301ecb_binary32_to_binary16 (uint32_t x)
1302{
1303 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1304 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1305 unsigned int m = x & 0x007fffff;
1306
1307 x &= 0x7fffffff;
1308
1309 /* if it's within range of binary16 normals, use fast path */
1310 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1311 {
1312 /* mantissa round-to-even */
1313 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1314
1315 /* handle overflow */
1316 if (ecb_expect_false (m >= 0x00800000))
1317 {
1318 m >>= 1;
1319 e += 1;
1320 }
1321
1322 return s | (e << 10) | (m >> (23 - 10));
1323 }
1324
1325 /* handle large numbers and infinity */
1326 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1327 return s | 0x7c00;
1328
1329 /* handle zero, subnormals and small numbers */
1330 if (ecb_expect_true (x < 0x38800000))
1331 {
1332 /* zero */
1333 if (ecb_expect_true (!x))
1334 return s;
1335
1336 /* handle subnormals */
1337
1338 /* too small, will be zero */
1339 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1340 return s;
1341
1342 m |= 0x00800000; /* make implicit bit explicit */
1343
1344 /* very tricky - we need to round to the nearest e (+10) bit value */
1345 {
1346 unsigned int bits = 14 - e;
1347 unsigned int half = (1 << (bits - 1)) - 1;
1348 unsigned int even = (m >> bits) & 1;
1349
1350 /* if this overflows, we will end up with a normalised number */
1351 m = (m + half + even) >> bits;
1352 }
1353
1354 return s | m;
1355 }
1356
1357 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1358 m >>= 13;
1359
1360 return s | 0x7c00 | m | !m;
1361}
1362
1363/*******************************************************************************/
1364/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1365
1366/* basically, everything uses "ieee pure-endian" floating point numbers */
1367/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1368#if 0 \
1369 || __i386 || __i386__ \
1370 || ECB_GCC_AMD64 \
1371 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1372 || defined __s390__ || defined __s390x__ \
1373 || defined __mips__ \
1374 || defined __alpha__ \
1375 || defined __hppa__ \
1376 || defined __ia64__ \
1377 || defined __m68k__ \
1378 || defined __m88k__ \
1379 || defined __sh__ \
1380 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1381 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1382 || defined __aarch64__
1383 #define ECB_STDFP 1
1384 #include <string.h> /* for memcpy */
1385#else
1386 #define ECB_STDFP 0
1387#endif
1388
1389#ifndef ECB_NO_LIBM
1390
1391 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1392
1393 /* only the oldest of old doesn't have this one. solaris. */
1394 #ifdef INFINITY
1395 #define ECB_INFINITY INFINITY
1396 #else
1397 #define ECB_INFINITY HUGE_VAL
1398 #endif
1399
1400 #ifdef NAN
1401 #define ECB_NAN NAN
1402 #else
1403 #define ECB_NAN ECB_INFINITY
1404 #endif
1405
1406 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1407 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1408 #define ecb_frexpf(x,e) frexpf ((x), (e))
1409 #else
1410 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1411 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1412 #endif
1413
1414 /* convert a float to ieee single/binary32 */
1415 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1416 ecb_function_ ecb_const uint32_t
1417 ecb_float_to_binary32 (float x)
1418 {
1419 uint32_t r;
1420
1421 #if ECB_STDFP
1422 memcpy (&r, &x, 4);
1423 #else
1424 /* slow emulation, works for anything but -0 */
1425 uint32_t m;
1426 int e;
1427
1428 if (x == 0e0f ) return 0x00000000U;
1429 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1430 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1431 if (x != x ) return 0x7fbfffffU;
1432
1433 m = ecb_frexpf (x, &e) * 0x1000000U;
1434
1435 r = m & 0x80000000U;
1436
1437 if (r)
1438 m = -m;
1439
1440 if (e <= -126)
1441 {
1442 m &= 0xffffffU;
1443 m >>= (-125 - e);
1444 e = -126;
1445 }
1446
1447 r |= (e + 126) << 23;
1448 r |= m & 0x7fffffU;
1449 #endif
1450
1451 return r;
1452 }
1453
1454 /* converts an ieee single/binary32 to a float */
1455 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1456 ecb_function_ ecb_const float
1457 ecb_binary32_to_float (uint32_t x)
1458 {
1459 float r;
1460
1461 #if ECB_STDFP
1462 memcpy (&r, &x, 4);
1463 #else
1464 /* emulation, only works for normals and subnormals and +0 */
1465 int neg = x >> 31;
1466 int e = (x >> 23) & 0xffU;
1467
1468 x &= 0x7fffffU;
1469
1470 if (e)
1471 x |= 0x800000U;
1472 else
1473 e = 1;
1474
1475 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1476 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1477
1478 r = neg ? -r : r;
1479 #endif
1480
1481 return r;
1482 }
1483
1484 /* convert a double to ieee double/binary64 */
1485 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1486 ecb_function_ ecb_const uint64_t
1487 ecb_double_to_binary64 (double x)
1488 {
1489 uint64_t r;
1490
1491 #if ECB_STDFP
1492 memcpy (&r, &x, 8);
1493 #else
1494 /* slow emulation, works for anything but -0 */
1495 uint64_t m;
1496 int e;
1497
1498 if (x == 0e0 ) return 0x0000000000000000U;
1499 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1500 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1501 if (x != x ) return 0X7ff7ffffffffffffU;
1502
1503 m = frexp (x, &e) * 0x20000000000000U;
1504
1505 r = m & 0x8000000000000000;;
1506
1507 if (r)
1508 m = -m;
1509
1510 if (e <= -1022)
1511 {
1512 m &= 0x1fffffffffffffU;
1513 m >>= (-1021 - e);
1514 e = -1022;
1515 }
1516
1517 r |= ((uint64_t)(e + 1022)) << 52;
1518 r |= m & 0xfffffffffffffU;
1519 #endif
1520
1521 return r;
1522 }
1523
1524 /* converts an ieee double/binary64 to a double */
1525 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1526 ecb_function_ ecb_const double
1527 ecb_binary64_to_double (uint64_t x)
1528 {
1529 double r;
1530
1531 #if ECB_STDFP
1532 memcpy (&r, &x, 8);
1533 #else
1534 /* emulation, only works for normals and subnormals and +0 */
1535 int neg = x >> 63;
1536 int e = (x >> 52) & 0x7ffU;
1537
1538 x &= 0xfffffffffffffU;
1539
1540 if (e)
1541 x |= 0x10000000000000U;
1542 else
1543 e = 1;
1544
1545 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1546 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1547
1548 r = neg ? -r : r;
1549 #endif
1550
1551 return r;
1552 }
1553
1554 /* convert a float to ieee half/binary16 */
1555 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1556 ecb_function_ ecb_const uint16_t
1557 ecb_float_to_binary16 (float x)
1558 {
1559 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1560 }
1561
1562 /* convert an ieee half/binary16 to float */
1563 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1564 ecb_function_ ecb_const float
1565 ecb_binary16_to_float (uint16_t x)
1566 {
1567 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1568 }
1569
1570#endif
1571
1572#endif
1573
1574/* ECB.H END */
1575
1576#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1577/* if your architecture doesn't need memory fences, e.g. because it is
1578 * single-cpu/core, or if you use libev in a project that doesn't use libev
1579 * from multiple threads, then you can define ECB_NO_THREADS when compiling
1580 * libev, in which cases the memory fences become nops.
1581 * alternatively, you can remove this #error and link against libpthread,
1582 * which will then provide the memory fences.
1583 */
1584# error "memory fences not defined for your architecture, please report"
1585#endif
1586
1587#ifndef ECB_MEMORY_FENCE
1588# define ECB_MEMORY_FENCE do { } while (0)
1589# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1590# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1591#endif
1592
1593#define inline_size ecb_inline
1594
1595#if EV_FEATURE_CODE
336# define inline_speed static inline 1596# define inline_speed ecb_inline
1597#else
1598# define inline_speed ecb_noinline static
337#endif 1599#endif
338 1600
1601/*****************************************************************************/
1602/* raw syscall wrappers */
1603
1604#if EV_NEED_SYSCALL
1605
1606#include <sys/syscall.h>
1607
1608/*
1609 * define some syscall wrappers for common architectures
1610 * this is mostly for nice looks during debugging, not performance.
1611 * our syscalls return < 0, not == -1, on error. which is good
1612 * enough for linux aio.
1613 * TODO: arm is also common nowadays, maybe even mips and x86
1614 * TODO: after implementing this, it suddenly looks like overkill, but its hard to remove...
1615 */
1616#if __GNUC__ && __linux && ECB_AMD64 && !defined __OPTIMIZE_SIZE__
1617 /* the costly errno access probably kills this for size optimisation */
1618
1619 #define ev_syscall(nr,narg,arg1,arg2,arg3,arg4,arg5,arg6) \
1620 ({ \
1621 long res; \
1622 register unsigned long r6 __asm__ ("r9" ); \
1623 register unsigned long r5 __asm__ ("r8" ); \
1624 register unsigned long r4 __asm__ ("r10"); \
1625 register unsigned long r3 __asm__ ("rdx"); \
1626 register unsigned long r2 __asm__ ("rsi"); \
1627 register unsigned long r1 __asm__ ("rdi"); \
1628 if (narg >= 6) r6 = (unsigned long)(arg6); \
1629 if (narg >= 5) r5 = (unsigned long)(arg5); \
1630 if (narg >= 4) r4 = (unsigned long)(arg4); \
1631 if (narg >= 3) r3 = (unsigned long)(arg3); \
1632 if (narg >= 2) r2 = (unsigned long)(arg2); \
1633 if (narg >= 1) r1 = (unsigned long)(arg1); \
1634 __asm__ __volatile__ ( \
1635 "syscall\n\t" \
1636 : "=a" (res) \
1637 : "0" (nr), "r" (r1), "r" (r2), "r" (r3), "r" (r4), "r" (r5) \
1638 : "cc", "r11", "cx", "memory"); \
1639 errno = -res; \
1640 res; \
1641 })
1642
1643#endif
1644
1645#ifdef ev_syscall
1646 #define ev_syscall0(nr) ev_syscall (nr, 0, 0, 0, 0, 0, 0, 0)
1647 #define ev_syscall1(nr,arg1) ev_syscall (nr, 1, arg1, 0, 0, 0, 0, 0)
1648 #define ev_syscall2(nr,arg1,arg2) ev_syscall (nr, 2, arg1, arg2, 0, 0, 0, 0)
1649 #define ev_syscall3(nr,arg1,arg2,arg3) ev_syscall (nr, 3, arg1, arg2, arg3, 0, 0, 0)
1650 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) ev_syscall (nr, 3, arg1, arg2, arg3, arg4, 0, 0)
1651 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) ev_syscall (nr, 5, arg1, arg2, arg3, arg4, arg5, 0)
1652 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) ev_syscall (nr, 6, arg1, arg2, arg3, arg4, arg5,arg6)
1653#else
1654 #define ev_syscall0(nr) syscall (nr)
1655 #define ev_syscall1(nr,arg1) syscall (nr, arg1)
1656 #define ev_syscall2(nr,arg1,arg2) syscall (nr, arg1, arg2)
1657 #define ev_syscall3(nr,arg1,arg2,arg3) syscall (nr, arg1, arg2, arg3)
1658 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) syscall (nr, arg1, arg2, arg3, arg4)
1659 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) syscall (nr, arg1, arg2, arg3, arg4, arg5)
1660 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) syscall (nr, arg1, arg2, arg3, arg4, arg5,arg6)
1661#endif
1662
1663#endif
1664
1665/*****************************************************************************/
1666
339#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1667#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1668
1669#if EV_MINPRI == EV_MAXPRI
1670# define ABSPRI(w) (((W)w), 0)
1671#else
340#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1672# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1673#endif
341 1674
342#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1675#define EMPTY /* required for microsofts broken pseudo-c compiler */
343#define EMPTY2(a,b) /* used to suppress some warnings */
344 1676
345typedef ev_watcher *W; 1677typedef ev_watcher *W;
346typedef ev_watcher_list *WL; 1678typedef ev_watcher_list *WL;
347typedef ev_watcher_time *WT; 1679typedef ev_watcher_time *WT;
348 1680
349#define ev_active(w) ((W)(w))->active 1681#define ev_active(w) ((W)(w))->active
350#define ev_at(w) ((WT)(w))->at 1682#define ev_at(w) ((WT)(w))->at
351 1683
1684#if EV_USE_REALTIME
1685/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1686/* giving it a reasonably high chance of working on typical architectures */
1687static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1688#endif
1689
352#if EV_USE_MONOTONIC 1690#if EV_USE_MONOTONIC
353/* sig_atomic_t is used to avoid per-thread variables or locking but still */
354/* giving it a reasonably high chance of working on typical architetcures */
355static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1691static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1692#endif
1693
1694#ifndef EV_FD_TO_WIN32_HANDLE
1695# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1696#endif
1697#ifndef EV_WIN32_HANDLE_TO_FD
1698# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1699#endif
1700#ifndef EV_WIN32_CLOSE_FD
1701# define EV_WIN32_CLOSE_FD(fd) close (fd)
356#endif 1702#endif
357 1703
358#ifdef _WIN32 1704#ifdef _WIN32
359# include "ev_win32.c" 1705# include "ev_win32.c"
360#endif 1706#endif
361 1707
362/*****************************************************************************/ 1708/*****************************************************************************/
363 1709
1710#if EV_USE_LINUXAIO
1711# include <linux/aio_abi.h> /* probably only needed for aio_context_t */
1712#endif
1713
1714/* define a suitable floor function (only used by periodics atm) */
1715
1716#if EV_USE_FLOOR
1717# include <math.h>
1718# define ev_floor(v) floor (v)
1719#else
1720
1721#include <float.h>
1722
1723/* a floor() replacement function, should be independent of ev_tstamp type */
1724ecb_noinline
1725static ev_tstamp
1726ev_floor (ev_tstamp v)
1727{
1728 /* the choice of shift factor is not terribly important */
1729#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1730 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1731#else
1732 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1733#endif
1734
1735 /* special treatment for negative arguments */
1736 if (ecb_expect_false (v < 0.))
1737 {
1738 ev_tstamp f = -ev_floor (-v);
1739
1740 return f - (f == v ? 0 : 1);
1741 }
1742
1743 /* argument too large for an unsigned long? then reduce it */
1744 if (ecb_expect_false (v >= shift))
1745 {
1746 ev_tstamp f;
1747
1748 if (v == v - 1.)
1749 return v; /* very large numbers are assumed to be integer */
1750
1751 f = shift * ev_floor (v * (1. / shift));
1752 return f + ev_floor (v - f);
1753 }
1754
1755 /* fits into an unsigned long */
1756 return (unsigned long)v;
1757}
1758
1759#endif
1760
1761/*****************************************************************************/
1762
1763#ifdef __linux
1764# include <sys/utsname.h>
1765#endif
1766
1767ecb_noinline ecb_cold
1768static unsigned int
1769ev_linux_version (void)
1770{
1771#ifdef __linux
1772 unsigned int v = 0;
1773 struct utsname buf;
1774 int i;
1775 char *p = buf.release;
1776
1777 if (uname (&buf))
1778 return 0;
1779
1780 for (i = 3+1; --i; )
1781 {
1782 unsigned int c = 0;
1783
1784 for (;;)
1785 {
1786 if (*p >= '0' && *p <= '9')
1787 c = c * 10 + *p++ - '0';
1788 else
1789 {
1790 p += *p == '.';
1791 break;
1792 }
1793 }
1794
1795 v = (v << 8) | c;
1796 }
1797
1798 return v;
1799#else
1800 return 0;
1801#endif
1802}
1803
1804/*****************************************************************************/
1805
1806#if EV_AVOID_STDIO
1807ecb_noinline ecb_cold
1808static void
1809ev_printerr (const char *msg)
1810{
1811 write (STDERR_FILENO, msg, strlen (msg));
1812}
1813#endif
1814
364static void (*syserr_cb)(const char *msg); 1815static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
365 1816
1817ecb_cold
366void 1818void
367ev_set_syserr_cb (void (*cb)(const char *msg)) 1819ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
368{ 1820{
369 syserr_cb = cb; 1821 syserr_cb = cb;
370} 1822}
371 1823
372static void noinline 1824ecb_noinline ecb_cold
1825static void
373syserr (const char *msg) 1826ev_syserr (const char *msg)
374{ 1827{
375 if (!msg) 1828 if (!msg)
376 msg = "(libev) system error"; 1829 msg = "(libev) system error";
377 1830
378 if (syserr_cb) 1831 if (syserr_cb)
379 syserr_cb (msg); 1832 syserr_cb (msg);
380 else 1833 else
381 { 1834 {
1835#if EV_AVOID_STDIO
1836 ev_printerr (msg);
1837 ev_printerr (": ");
1838 ev_printerr (strerror (errno));
1839 ev_printerr ("\n");
1840#else
382 perror (msg); 1841 perror (msg);
1842#endif
383 abort (); 1843 abort ();
384 } 1844 }
385} 1845}
386 1846
387static void * 1847static void *
388ev_realloc_emul (void *ptr, long size) 1848ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
389{ 1849{
390 /* some systems, notably openbsd and darwin, fail to properly 1850 /* some systems, notably openbsd and darwin, fail to properly
391 * implement realloc (x, 0) (as required by both ansi c-98 and 1851 * implement realloc (x, 0) (as required by both ansi c-89 and
392 * the single unix specification, so work around them here. 1852 * the single unix specification, so work around them here.
1853 * recently, also (at least) fedora and debian started breaking it,
1854 * despite documenting it otherwise.
393 */ 1855 */
394 1856
395 if (size) 1857 if (size)
396 return realloc (ptr, size); 1858 return realloc (ptr, size);
397 1859
398 free (ptr); 1860 free (ptr);
399 return 0; 1861 return 0;
400} 1862}
401 1863
402static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1864static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
403 1865
1866ecb_cold
404void 1867void
405ev_set_allocator (void *(*cb)(void *ptr, long size)) 1868ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
406{ 1869{
407 alloc = cb; 1870 alloc = cb;
408} 1871}
409 1872
410inline_speed void * 1873inline_speed void *
412{ 1875{
413 ptr = alloc (ptr, size); 1876 ptr = alloc (ptr, size);
414 1877
415 if (!ptr && size) 1878 if (!ptr && size)
416 { 1879 {
1880#if EV_AVOID_STDIO
1881 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1882#else
417 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1883 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1884#endif
418 abort (); 1885 abort ();
419 } 1886 }
420 1887
421 return ptr; 1888 return ptr;
422} 1889}
424#define ev_malloc(size) ev_realloc (0, (size)) 1891#define ev_malloc(size) ev_realloc (0, (size))
425#define ev_free(ptr) ev_realloc ((ptr), 0) 1892#define ev_free(ptr) ev_realloc ((ptr), 0)
426 1893
427/*****************************************************************************/ 1894/*****************************************************************************/
428 1895
1896/* set in reify when reification needed */
1897#define EV_ANFD_REIFY 1
1898
1899/* file descriptor info structure */
429typedef struct 1900typedef struct
430{ 1901{
431 WL head; 1902 WL head;
432 unsigned char events; 1903 unsigned char events; /* the events watched for */
433 unsigned char reify; 1904 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1905 unsigned char emask; /* some backends store the actual kernel mask in here */
1906 unsigned char eflags; /* flags field for use by backends */
1907#if EV_USE_EPOLL
1908 unsigned int egen; /* generation counter to counter epoll bugs */
1909#endif
434#if EV_SELECT_IS_WINSOCKET 1910#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
435 SOCKET handle; 1911 SOCKET handle;
436#endif 1912#endif
1913#if EV_USE_IOCP
1914 OVERLAPPED or, ow;
1915#endif
437} ANFD; 1916} ANFD;
438 1917
1918/* stores the pending event set for a given watcher */
439typedef struct 1919typedef struct
440{ 1920{
441 W w; 1921 W w;
442 int events; 1922 int events; /* the pending event set for the given watcher */
443} ANPENDING; 1923} ANPENDING;
444 1924
445#if EV_USE_INOTIFY 1925#if EV_USE_INOTIFY
446/* hash table entry per inotify-id */ 1926/* hash table entry per inotify-id */
447typedef struct 1927typedef struct
450} ANFS; 1930} ANFS;
451#endif 1931#endif
452 1932
453/* Heap Entry */ 1933/* Heap Entry */
454#if EV_HEAP_CACHE_AT 1934#if EV_HEAP_CACHE_AT
1935 /* a heap element */
455 typedef struct { 1936 typedef struct {
456 ev_tstamp at; 1937 ev_tstamp at;
457 WT w; 1938 WT w;
458 } ANHE; 1939 } ANHE;
459 1940
460 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1941 #define ANHE_w(he) (he).w /* access watcher, read-write */
461 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1942 #define ANHE_at(he) (he).at /* access cached at, read-only */
462 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 1943 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
463#else 1944#else
1945 /* a heap element */
464 typedef WT ANHE; 1946 typedef WT ANHE;
465 1947
466 #define ANHE_w(he) (he) 1948 #define ANHE_w(he) (he)
467 #define ANHE_at(he) (he)->at 1949 #define ANHE_at(he) (he)->at
468 #define ANHE_at_cache(he) 1950 #define ANHE_at_cache(he)
479 #undef VAR 1961 #undef VAR
480 }; 1962 };
481 #include "ev_wrap.h" 1963 #include "ev_wrap.h"
482 1964
483 static struct ev_loop default_loop_struct; 1965 static struct ev_loop default_loop_struct;
484 struct ev_loop *ev_default_loop_ptr; 1966 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
485 1967
486#else 1968#else
487 1969
488 ev_tstamp ev_rt_now; 1970 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
489 #define VAR(name,decl) static decl; 1971 #define VAR(name,decl) static decl;
490 #include "ev_vars.h" 1972 #include "ev_vars.h"
491 #undef VAR 1973 #undef VAR
492 1974
493 static int ev_default_loop_ptr; 1975 static int ev_default_loop_ptr;
494 1976
495#endif 1977#endif
496 1978
1979#if EV_FEATURE_API
1980# define EV_RELEASE_CB if (ecb_expect_false (release_cb)) release_cb (EV_A)
1981# define EV_ACQUIRE_CB if (ecb_expect_false (acquire_cb)) acquire_cb (EV_A)
1982# define EV_INVOKE_PENDING invoke_cb (EV_A)
1983#else
1984# define EV_RELEASE_CB (void)0
1985# define EV_ACQUIRE_CB (void)0
1986# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1987#endif
1988
1989#define EVBREAK_RECURSE 0x80
1990
497/*****************************************************************************/ 1991/*****************************************************************************/
498 1992
1993#ifndef EV_HAVE_EV_TIME
499ev_tstamp 1994ev_tstamp
500ev_time (void) 1995ev_time (void) EV_NOEXCEPT
501{ 1996{
502#if EV_USE_REALTIME 1997#if EV_USE_REALTIME
1998 if (ecb_expect_true (have_realtime))
1999 {
503 struct timespec ts; 2000 struct timespec ts;
504 clock_gettime (CLOCK_REALTIME, &ts); 2001 clock_gettime (CLOCK_REALTIME, &ts);
505 return ts.tv_sec + ts.tv_nsec * 1e-9; 2002 return EV_TS_GET (ts);
506#else 2003 }
2004#endif
2005
507 struct timeval tv; 2006 struct timeval tv;
508 gettimeofday (&tv, 0); 2007 gettimeofday (&tv, 0);
509 return tv.tv_sec + tv.tv_usec * 1e-6; 2008 return EV_TV_GET (tv);
510#endif
511} 2009}
2010#endif
512 2011
513ev_tstamp inline_size 2012inline_size ev_tstamp
514get_clock (void) 2013get_clock (void)
515{ 2014{
516#if EV_USE_MONOTONIC 2015#if EV_USE_MONOTONIC
517 if (expect_true (have_monotonic)) 2016 if (ecb_expect_true (have_monotonic))
518 { 2017 {
519 struct timespec ts; 2018 struct timespec ts;
520 clock_gettime (CLOCK_MONOTONIC, &ts); 2019 clock_gettime (CLOCK_MONOTONIC, &ts);
521 return ts.tv_sec + ts.tv_nsec * 1e-9; 2020 return EV_TS_GET (ts);
522 } 2021 }
523#endif 2022#endif
524 2023
525 return ev_time (); 2024 return ev_time ();
526} 2025}
527 2026
528#if EV_MULTIPLICITY 2027#if EV_MULTIPLICITY
529ev_tstamp 2028ev_tstamp
530ev_now (EV_P) 2029ev_now (EV_P) EV_NOEXCEPT
531{ 2030{
532 return ev_rt_now; 2031 return ev_rt_now;
533} 2032}
534#endif 2033#endif
535 2034
536void 2035void
537ev_sleep (ev_tstamp delay) 2036ev_sleep (ev_tstamp delay) EV_NOEXCEPT
538{ 2037{
539 if (delay > 0.) 2038 if (delay > 0.)
540 { 2039 {
541#if EV_USE_NANOSLEEP 2040#if EV_USE_NANOSLEEP
542 struct timespec ts; 2041 struct timespec ts;
543 2042
544 ts.tv_sec = (time_t)delay; 2043 EV_TS_SET (ts, delay);
545 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
546
547 nanosleep (&ts, 0); 2044 nanosleep (&ts, 0);
548#elif defined(_WIN32) 2045#elif defined _WIN32
2046 /* maybe this should round up, as ms is very low resolution */
2047 /* compared to select (µs) or nanosleep (ns) */
549 Sleep ((unsigned long)(delay * 1e3)); 2048 Sleep ((unsigned long)(EV_TS_TO_MS (delay)));
550#else 2049#else
551 struct timeval tv; 2050 struct timeval tv;
552 2051
553 tv.tv_sec = (time_t)delay; 2052 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
554 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 2053 /* something not guaranteed by newer posix versions, but guaranteed */
555 2054 /* by older ones */
2055 EV_TV_SET (tv, delay);
556 select (0, 0, 0, 0, &tv); 2056 select (0, 0, 0, 0, &tv);
557#endif 2057#endif
558 } 2058 }
559} 2059}
560 2060
561/*****************************************************************************/ 2061/*****************************************************************************/
562 2062
563#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 2063#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
564 2064
565int inline_size 2065/* find a suitable new size for the given array, */
2066/* hopefully by rounding to a nice-to-malloc size */
2067inline_size int
566array_nextsize (int elem, int cur, int cnt) 2068array_nextsize (int elem, int cur, int cnt)
567{ 2069{
568 int ncur = cur + 1; 2070 int ncur = cur + 1;
569 2071
570 do 2072 do
571 ncur <<= 1; 2073 ncur <<= 1;
572 while (cnt > ncur); 2074 while (cnt > ncur);
573 2075
574 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 2076 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
575 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 2077 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
576 { 2078 {
577 ncur *= elem; 2079 ncur *= elem;
578 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 2080 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
579 ncur = ncur - sizeof (void *) * 4; 2081 ncur = ncur - sizeof (void *) * 4;
581 } 2083 }
582 2084
583 return ncur; 2085 return ncur;
584} 2086}
585 2087
586static noinline void * 2088ecb_noinline ecb_cold
2089static void *
587array_realloc (int elem, void *base, int *cur, int cnt) 2090array_realloc (int elem, void *base, int *cur, int cnt)
588{ 2091{
589 *cur = array_nextsize (elem, *cur, cnt); 2092 *cur = array_nextsize (elem, *cur, cnt);
590 return ev_realloc (base, elem * *cur); 2093 return ev_realloc (base, elem * *cur);
591} 2094}
592 2095
2096#define array_needsize_noinit(base,offset,count)
2097
2098#define array_needsize_zerofill(base,offset,count) \
2099 memset ((void *)(base + offset), 0, sizeof (*(base)) * (count))
2100
593#define array_needsize(type,base,cur,cnt,init) \ 2101#define array_needsize(type,base,cur,cnt,init) \
594 if (expect_false ((cnt) > (cur))) \ 2102 if (ecb_expect_false ((cnt) > (cur))) \
595 { \ 2103 { \
596 int ocur_ = (cur); \ 2104 ecb_unused int ocur_ = (cur); \
597 (base) = (type *)array_realloc \ 2105 (base) = (type *)array_realloc \
598 (sizeof (type), (base), &(cur), (cnt)); \ 2106 (sizeof (type), (base), &(cur), (cnt)); \
599 init ((base) + (ocur_), (cur) - ocur_); \ 2107 init ((base), ocur_, ((cur) - ocur_)); \
600 } 2108 }
601 2109
602#if 0 2110#if 0
603#define array_slim(type,stem) \ 2111#define array_slim(type,stem) \
604 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 2112 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
608 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 2116 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
609 } 2117 }
610#endif 2118#endif
611 2119
612#define array_free(stem, idx) \ 2120#define array_free(stem, idx) \
613 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 2121 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
614 2122
615/*****************************************************************************/ 2123/*****************************************************************************/
616 2124
617void noinline 2125/* dummy callback for pending events */
2126ecb_noinline
2127static void
2128pendingcb (EV_P_ ev_prepare *w, int revents)
2129{
2130}
2131
2132ecb_noinline
2133void
618ev_feed_event (EV_P_ void *w, int revents) 2134ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
619{ 2135{
620 W w_ = (W)w; 2136 W w_ = (W)w;
621 int pri = ABSPRI (w_); 2137 int pri = ABSPRI (w_);
622 2138
623 if (expect_false (w_->pending)) 2139 if (ecb_expect_false (w_->pending))
624 pendings [pri][w_->pending - 1].events |= revents; 2140 pendings [pri][w_->pending - 1].events |= revents;
625 else 2141 else
626 { 2142 {
627 w_->pending = ++pendingcnt [pri]; 2143 w_->pending = ++pendingcnt [pri];
628 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 2144 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
629 pendings [pri][w_->pending - 1].w = w_; 2145 pendings [pri][w_->pending - 1].w = w_;
630 pendings [pri][w_->pending - 1].events = revents; 2146 pendings [pri][w_->pending - 1].events = revents;
631 } 2147 }
632}
633 2148
634void inline_speed 2149 pendingpri = NUMPRI - 1;
2150}
2151
2152inline_speed void
2153feed_reverse (EV_P_ W w)
2154{
2155 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2156 rfeeds [rfeedcnt++] = w;
2157}
2158
2159inline_size void
2160feed_reverse_done (EV_P_ int revents)
2161{
2162 do
2163 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2164 while (rfeedcnt);
2165}
2166
2167inline_speed void
635queue_events (EV_P_ W *events, int eventcnt, int type) 2168queue_events (EV_P_ W *events, int eventcnt, int type)
636{ 2169{
637 int i; 2170 int i;
638 2171
639 for (i = 0; i < eventcnt; ++i) 2172 for (i = 0; i < eventcnt; ++i)
640 ev_feed_event (EV_A_ events [i], type); 2173 ev_feed_event (EV_A_ events [i], type);
641} 2174}
642 2175
643/*****************************************************************************/ 2176/*****************************************************************************/
644 2177
645void inline_size 2178inline_speed void
646anfds_init (ANFD *base, int count)
647{
648 while (count--)
649 {
650 base->head = 0;
651 base->events = EV_NONE;
652 base->reify = 0;
653
654 ++base;
655 }
656}
657
658void inline_speed
659fd_event (EV_P_ int fd, int revents) 2179fd_event_nocheck (EV_P_ int fd, int revents)
660{ 2180{
661 ANFD *anfd = anfds + fd; 2181 ANFD *anfd = anfds + fd;
662 ev_io *w; 2182 ev_io *w;
663 2183
664 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2184 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
668 if (ev) 2188 if (ev)
669 ev_feed_event (EV_A_ (W)w, ev); 2189 ev_feed_event (EV_A_ (W)w, ev);
670 } 2190 }
671} 2191}
672 2192
673void 2193/* do not submit kernel events for fds that have reify set */
2194/* because that means they changed while we were polling for new events */
2195inline_speed void
674ev_feed_fd_event (EV_P_ int fd, int revents) 2196fd_event (EV_P_ int fd, int revents)
2197{
2198 ANFD *anfd = anfds + fd;
2199
2200 if (ecb_expect_true (!anfd->reify))
2201 fd_event_nocheck (EV_A_ fd, revents);
2202}
2203
2204void
2205ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
675{ 2206{
676 if (fd >= 0 && fd < anfdmax) 2207 if (fd >= 0 && fd < anfdmax)
677 fd_event (EV_A_ fd, revents); 2208 fd_event_nocheck (EV_A_ fd, revents);
678} 2209}
679 2210
680void inline_size 2211/* make sure the external fd watch events are in-sync */
2212/* with the kernel/libev internal state */
2213inline_size void
681fd_reify (EV_P) 2214fd_reify (EV_P)
682{ 2215{
683 int i; 2216 int i;
2217
2218#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2219 for (i = 0; i < fdchangecnt; ++i)
2220 {
2221 int fd = fdchanges [i];
2222 ANFD *anfd = anfds + fd;
2223
2224 if (anfd->reify & EV__IOFDSET && anfd->head)
2225 {
2226 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2227
2228 if (handle != anfd->handle)
2229 {
2230 unsigned long arg;
2231
2232 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2233
2234 /* handle changed, but fd didn't - we need to do it in two steps */
2235 backend_modify (EV_A_ fd, anfd->events, 0);
2236 anfd->events = 0;
2237 anfd->handle = handle;
2238 }
2239 }
2240 }
2241#endif
684 2242
685 for (i = 0; i < fdchangecnt; ++i) 2243 for (i = 0; i < fdchangecnt; ++i)
686 { 2244 {
687 int fd = fdchanges [i]; 2245 int fd = fdchanges [i];
688 ANFD *anfd = anfds + fd; 2246 ANFD *anfd = anfds + fd;
689 ev_io *w; 2247 ev_io *w;
690 2248
691 unsigned char events = 0; 2249 unsigned char o_events = anfd->events;
2250 unsigned char o_reify = anfd->reify;
692 2251
693 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2252 anfd->reify = 0;
694 events |= (unsigned char)w->events;
695 2253
696#if EV_SELECT_IS_WINSOCKET 2254 /*if (ecb_expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
697 if (events)
698 { 2255 {
699 unsigned long argp; 2256 anfd->events = 0;
700 #ifdef EV_FD_TO_WIN32_HANDLE 2257
701 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 2258 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
702 #else 2259 anfd->events |= (unsigned char)w->events;
703 anfd->handle = _get_osfhandle (fd); 2260
704 #endif 2261 if (o_events != anfd->events)
705 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 2262 o_reify = EV__IOFDSET; /* actually |= */
706 } 2263 }
707#endif
708 2264
709 { 2265 if (o_reify & EV__IOFDSET)
710 unsigned char o_events = anfd->events;
711 unsigned char o_reify = anfd->reify;
712
713 anfd->reify = 0;
714 anfd->events = events;
715
716 if (o_events != events || o_reify & EV_IOFDSET)
717 backend_modify (EV_A_ fd, o_events, events); 2266 backend_modify (EV_A_ fd, o_events, anfd->events);
718 }
719 } 2267 }
720 2268
721 fdchangecnt = 0; 2269 fdchangecnt = 0;
722} 2270}
723 2271
2272/* something about the given fd changed */
724void inline_size 2273inline_size
2274void
725fd_change (EV_P_ int fd, int flags) 2275fd_change (EV_P_ int fd, int flags)
726{ 2276{
727 unsigned char reify = anfds [fd].reify; 2277 unsigned char reify = anfds [fd].reify;
728 anfds [fd].reify |= flags; 2278 anfds [fd].reify |= flags;
729 2279
730 if (expect_true (!reify)) 2280 if (ecb_expect_true (!reify))
731 { 2281 {
732 ++fdchangecnt; 2282 ++fdchangecnt;
733 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 2283 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
734 fdchanges [fdchangecnt - 1] = fd; 2284 fdchanges [fdchangecnt - 1] = fd;
735 } 2285 }
736} 2286}
737 2287
738void inline_speed 2288/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2289inline_speed ecb_cold void
739fd_kill (EV_P_ int fd) 2290fd_kill (EV_P_ int fd)
740{ 2291{
741 ev_io *w; 2292 ev_io *w;
742 2293
743 while ((w = (ev_io *)anfds [fd].head)) 2294 while ((w = (ev_io *)anfds [fd].head))
745 ev_io_stop (EV_A_ w); 2296 ev_io_stop (EV_A_ w);
746 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2297 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
747 } 2298 }
748} 2299}
749 2300
750int inline_size 2301/* check whether the given fd is actually valid, for error recovery */
2302inline_size ecb_cold int
751fd_valid (int fd) 2303fd_valid (int fd)
752{ 2304{
753#ifdef _WIN32 2305#ifdef _WIN32
754 return _get_osfhandle (fd) != -1; 2306 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
755#else 2307#else
756 return fcntl (fd, F_GETFD) != -1; 2308 return fcntl (fd, F_GETFD) != -1;
757#endif 2309#endif
758} 2310}
759 2311
760/* called on EBADF to verify fds */ 2312/* called on EBADF to verify fds */
761static void noinline 2313ecb_noinline ecb_cold
2314static void
762fd_ebadf (EV_P) 2315fd_ebadf (EV_P)
763{ 2316{
764 int fd; 2317 int fd;
765 2318
766 for (fd = 0; fd < anfdmax; ++fd) 2319 for (fd = 0; fd < anfdmax; ++fd)
767 if (anfds [fd].events) 2320 if (anfds [fd].events)
768 if (!fd_valid (fd) == -1 && errno == EBADF) 2321 if (!fd_valid (fd) && errno == EBADF)
769 fd_kill (EV_A_ fd); 2322 fd_kill (EV_A_ fd);
770} 2323}
771 2324
772/* called on ENOMEM in select/poll to kill some fds and retry */ 2325/* called on ENOMEM in select/poll to kill some fds and retry */
773static void noinline 2326ecb_noinline ecb_cold
2327static void
774fd_enomem (EV_P) 2328fd_enomem (EV_P)
775{ 2329{
776 int fd; 2330 int fd;
777 2331
778 for (fd = anfdmax; fd--; ) 2332 for (fd = anfdmax; fd--; )
779 if (anfds [fd].events) 2333 if (anfds [fd].events)
780 { 2334 {
781 fd_kill (EV_A_ fd); 2335 fd_kill (EV_A_ fd);
782 return; 2336 break;
783 } 2337 }
784} 2338}
785 2339
786/* usually called after fork if backend needs to re-arm all fds from scratch */ 2340/* usually called after fork if backend needs to re-arm all fds from scratch */
787static void noinline 2341ecb_noinline
2342static void
788fd_rearm_all (EV_P) 2343fd_rearm_all (EV_P)
789{ 2344{
790 int fd; 2345 int fd;
791 2346
792 for (fd = 0; fd < anfdmax; ++fd) 2347 for (fd = 0; fd < anfdmax; ++fd)
793 if (anfds [fd].events) 2348 if (anfds [fd].events)
794 { 2349 {
795 anfds [fd].events = 0; 2350 anfds [fd].events = 0;
2351 anfds [fd].emask = 0;
796 fd_change (EV_A_ fd, EV_IOFDSET | 1); 2352 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
797 } 2353 }
798} 2354}
799 2355
2356/* used to prepare libev internal fd's */
2357/* this is not fork-safe */
2358inline_speed void
2359fd_intern (int fd)
2360{
2361#ifdef _WIN32
2362 unsigned long arg = 1;
2363 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2364#else
2365 fcntl (fd, F_SETFD, FD_CLOEXEC);
2366 fcntl (fd, F_SETFL, O_NONBLOCK);
2367#endif
2368}
2369
800/*****************************************************************************/ 2370/*****************************************************************************/
801 2371
802/* 2372/*
803 * the heap functions want a real array index. array index 0 uis guaranteed to not 2373 * the heap functions want a real array index. array index 0 is guaranteed to not
804 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 2374 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
805 * the branching factor of the d-tree. 2375 * the branching factor of the d-tree.
806 */ 2376 */
807 2377
808/* 2378/*
817#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 2387#define HEAP0 (DHEAP - 1) /* index of first element in heap */
818#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 2388#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
819#define UPHEAP_DONE(p,k) ((p) == (k)) 2389#define UPHEAP_DONE(p,k) ((p) == (k))
820 2390
821/* away from the root */ 2391/* away from the root */
822void inline_speed 2392inline_speed void
823downheap (ANHE *heap, int N, int k) 2393downheap (ANHE *heap, int N, int k)
824{ 2394{
825 ANHE he = heap [k]; 2395 ANHE he = heap [k];
826 ANHE *E = heap + N + HEAP0; 2396 ANHE *E = heap + N + HEAP0;
827 2397
830 ev_tstamp minat; 2400 ev_tstamp minat;
831 ANHE *minpos; 2401 ANHE *minpos;
832 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1; 2402 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
833 2403
834 /* find minimum child */ 2404 /* find minimum child */
835 if (expect_true (pos + DHEAP - 1 < E)) 2405 if (ecb_expect_true (pos + DHEAP - 1 < E))
836 { 2406 {
837 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 2407 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
838 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 2408 if ( minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
839 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 2409 if ( minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
840 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); 2410 if ( minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
841 } 2411 }
842 else if (pos < E) 2412 else if (pos < E)
843 { 2413 {
844 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 2414 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
845 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 2415 if (pos + 1 < E && minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
846 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 2416 if (pos + 2 < E && minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
847 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); 2417 if (pos + 3 < E && minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
848 } 2418 }
849 else 2419 else
850 break; 2420 break;
851 2421
852 if (ANHE_at (he) <= minat) 2422 if (ANHE_at (he) <= minat)
860 2430
861 heap [k] = he; 2431 heap [k] = he;
862 ev_active (ANHE_w (he)) = k; 2432 ev_active (ANHE_w (he)) = k;
863} 2433}
864 2434
865#else /* 4HEAP */ 2435#else /* not 4HEAP */
866 2436
867#define HEAP0 1 2437#define HEAP0 1
868#define HPARENT(k) ((k) >> 1) 2438#define HPARENT(k) ((k) >> 1)
869#define UPHEAP_DONE(p,k) (!(p)) 2439#define UPHEAP_DONE(p,k) (!(p))
870 2440
871/* away from the root */ 2441/* away from the root */
872void inline_speed 2442inline_speed void
873downheap (ANHE *heap, int N, int k) 2443downheap (ANHE *heap, int N, int k)
874{ 2444{
875 ANHE he = heap [k]; 2445 ANHE he = heap [k];
876 2446
877 for (;;) 2447 for (;;)
878 { 2448 {
879 int c = k << 1; 2449 int c = k << 1;
880 2450
881 if (c > N + HEAP0 - 1) 2451 if (c >= N + HEAP0)
882 break; 2452 break;
883 2453
884 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 2454 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
885 ? 1 : 0; 2455 ? 1 : 0;
886 2456
897 ev_active (ANHE_w (he)) = k; 2467 ev_active (ANHE_w (he)) = k;
898} 2468}
899#endif 2469#endif
900 2470
901/* towards the root */ 2471/* towards the root */
902void inline_speed 2472inline_speed void
903upheap (ANHE *heap, int k) 2473upheap (ANHE *heap, int k)
904{ 2474{
905 ANHE he = heap [k]; 2475 ANHE he = heap [k];
906 2476
907 for (;;) 2477 for (;;)
918 2488
919 heap [k] = he; 2489 heap [k] = he;
920 ev_active (ANHE_w (he)) = k; 2490 ev_active (ANHE_w (he)) = k;
921} 2491}
922 2492
923void inline_size 2493/* move an element suitably so it is in a correct place */
2494inline_size void
924adjustheap (ANHE *heap, int N, int k) 2495adjustheap (ANHE *heap, int N, int k)
925{ 2496{
926 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 2497 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
927 upheap (heap, k); 2498 upheap (heap, k);
928 else 2499 else
929 downheap (heap, N, k); 2500 downheap (heap, N, k);
930} 2501}
931 2502
932/* rebuild the heap: this function is used only once and executed rarely */ 2503/* rebuild the heap: this function is used only once and executed rarely */
933void inline_size 2504inline_size void
934reheap (ANHE *heap, int N) 2505reheap (ANHE *heap, int N)
935{ 2506{
936 int i; 2507 int i;
2508
937 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 2509 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
938 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */ 2510 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
939 for (i = 0; i < N; ++i) 2511 for (i = 0; i < N; ++i)
940 upheap (heap, i + HEAP0); 2512 upheap (heap, i + HEAP0);
941} 2513}
942 2514
943#if EV_VERIFY 2515/*****************************************************************************/
2516
2517/* associate signal watchers to a signal signal */
2518typedef struct
2519{
2520 EV_ATOMIC_T pending;
2521#if EV_MULTIPLICITY
2522 EV_P;
2523#endif
2524 WL head;
2525} ANSIG;
2526
2527static ANSIG signals [EV_NSIG - 1];
2528
2529/*****************************************************************************/
2530
2531#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2532
2533ecb_noinline ecb_cold
944static void 2534static void
945checkheap (ANHE *heap, int N)
946{
947 int i;
948
949 for (i = HEAP0; i < N + HEAP0; ++i)
950 {
951 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
952 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
953 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
954 }
955}
956#endif
957
958/*****************************************************************************/
959
960typedef struct
961{
962 WL head;
963 EV_ATOMIC_T gotsig;
964} ANSIG;
965
966static ANSIG *signals;
967static int signalmax;
968
969static EV_ATOMIC_T gotsig;
970
971void inline_size
972signals_init (ANSIG *base, int count)
973{
974 while (count--)
975 {
976 base->head = 0;
977 base->gotsig = 0;
978
979 ++base;
980 }
981}
982
983/*****************************************************************************/
984
985void inline_speed
986fd_intern (int fd)
987{
988#ifdef _WIN32
989 int arg = 1;
990 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
991#else
992 fcntl (fd, F_SETFD, FD_CLOEXEC);
993 fcntl (fd, F_SETFL, O_NONBLOCK);
994#endif
995}
996
997static void noinline
998evpipe_init (EV_P) 2535evpipe_init (EV_P)
999{ 2536{
1000 if (!ev_is_active (&pipeev)) 2537 if (!ev_is_active (&pipe_w))
2538 {
2539 int fds [2];
2540
2541# if EV_USE_EVENTFD
2542 fds [0] = -1;
2543 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2544 if (fds [1] < 0 && errno == EINVAL)
2545 fds [1] = eventfd (0, 0);
2546
2547 if (fds [1] < 0)
2548# endif
2549 {
2550 while (pipe (fds))
2551 ev_syserr ("(libev) error creating signal/async pipe");
2552
2553 fd_intern (fds [0]);
2554 }
2555
2556 evpipe [0] = fds [0];
2557
2558 if (evpipe [1] < 0)
2559 evpipe [1] = fds [1]; /* first call, set write fd */
2560 else
2561 {
2562 /* on subsequent calls, do not change evpipe [1] */
2563 /* so that evpipe_write can always rely on its value. */
2564 /* this branch does not do anything sensible on windows, */
2565 /* so must not be executed on windows */
2566
2567 dup2 (fds [1], evpipe [1]);
2568 close (fds [1]);
2569 }
2570
2571 fd_intern (evpipe [1]);
2572
2573 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2574 ev_io_start (EV_A_ &pipe_w);
2575 ev_unref (EV_A); /* watcher should not keep loop alive */
1001 { 2576 }
2577}
2578
2579inline_speed void
2580evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2581{
2582 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2583
2584 if (ecb_expect_true (*flag))
2585 return;
2586
2587 *flag = 1;
2588 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2589
2590 pipe_write_skipped = 1;
2591
2592 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2593
2594 if (pipe_write_wanted)
2595 {
2596 int old_errno;
2597
2598 pipe_write_skipped = 0;
2599 ECB_MEMORY_FENCE_RELEASE;
2600
2601 old_errno = errno; /* save errno because write will clobber it */
2602
1002#if EV_USE_EVENTFD 2603#if EV_USE_EVENTFD
1003 if ((evfd = eventfd (0, 0)) >= 0) 2604 if (evpipe [0] < 0)
1004 { 2605 {
1005 evpipe [0] = -1; 2606 uint64_t counter = 1;
1006 fd_intern (evfd); 2607 write (evpipe [1], &counter, sizeof (uint64_t));
1007 ev_io_set (&pipeev, evfd, EV_READ);
1008 } 2608 }
1009 else 2609 else
1010#endif 2610#endif
1011 { 2611 {
1012 while (pipe (evpipe)) 2612#ifdef _WIN32
1013 syserr ("(libev) error creating signal/async pipe"); 2613 WSABUF buf;
1014 2614 DWORD sent;
1015 fd_intern (evpipe [0]); 2615 buf.buf = (char *)&buf;
1016 fd_intern (evpipe [1]); 2616 buf.len = 1;
1017 ev_io_set (&pipeev, evpipe [0], EV_READ); 2617 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2618#else
2619 write (evpipe [1], &(evpipe [1]), 1);
2620#endif
1018 } 2621 }
1019 2622
1020 ev_io_start (EV_A_ &pipeev); 2623 errno = old_errno;
1021 ev_unref (EV_A); /* watcher should not keep loop alive */
1022 }
1023}
1024
1025void inline_size
1026evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1027{
1028 if (!*flag)
1029 { 2624 }
1030 int old_errno = errno; /* save errno because write might clobber it */ 2625}
1031 2626
1032 *flag = 1; 2627/* called whenever the libev signal pipe */
2628/* got some events (signal, async) */
2629static void
2630pipecb (EV_P_ ev_io *iow, int revents)
2631{
2632 int i;
1033 2633
2634 if (revents & EV_READ)
2635 {
1034#if EV_USE_EVENTFD 2636#if EV_USE_EVENTFD
1035 if (evfd >= 0) 2637 if (evpipe [0] < 0)
1036 { 2638 {
1037 uint64_t counter = 1; 2639 uint64_t counter;
1038 write (evfd, &counter, sizeof (uint64_t)); 2640 read (evpipe [1], &counter, sizeof (uint64_t));
1039 } 2641 }
1040 else 2642 else
1041#endif 2643#endif
1042 write (evpipe [1], &old_errno, 1); 2644 {
1043
1044 errno = old_errno;
1045 }
1046}
1047
1048static void
1049pipecb (EV_P_ ev_io *iow, int revents)
1050{
1051#if EV_USE_EVENTFD
1052 if (evfd >= 0)
1053 {
1054 uint64_t counter;
1055 read (evfd, &counter, sizeof (uint64_t));
1056 }
1057 else
1058#endif
1059 {
1060 char dummy; 2645 char dummy[4];
2646#ifdef _WIN32
2647 WSABUF buf;
2648 DWORD recvd;
2649 DWORD flags = 0;
2650 buf.buf = dummy;
2651 buf.len = sizeof (dummy);
2652 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2653#else
1061 read (evpipe [0], &dummy, 1); 2654 read (evpipe [0], &dummy, sizeof (dummy));
2655#endif
2656 }
2657 }
2658
2659 pipe_write_skipped = 0;
2660
2661 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2662
2663#if EV_SIGNAL_ENABLE
2664 if (sig_pending)
1062 } 2665 {
2666 sig_pending = 0;
1063 2667
1064 if (gotsig && ev_is_default_loop (EV_A)) 2668 ECB_MEMORY_FENCE;
1065 {
1066 int signum;
1067 gotsig = 0;
1068 2669
1069 for (signum = signalmax; signum--; ) 2670 for (i = EV_NSIG - 1; i--; )
1070 if (signals [signum].gotsig) 2671 if (ecb_expect_false (signals [i].pending))
1071 ev_feed_signal_event (EV_A_ signum + 1); 2672 ev_feed_signal_event (EV_A_ i + 1);
1072 } 2673 }
2674#endif
1073 2675
1074#if EV_ASYNC_ENABLE 2676#if EV_ASYNC_ENABLE
1075 if (gotasync) 2677 if (async_pending)
1076 { 2678 {
1077 int i; 2679 async_pending = 0;
1078 gotasync = 0; 2680
2681 ECB_MEMORY_FENCE;
1079 2682
1080 for (i = asynccnt; i--; ) 2683 for (i = asynccnt; i--; )
1081 if (asyncs [i]->sent) 2684 if (asyncs [i]->sent)
1082 { 2685 {
1083 asyncs [i]->sent = 0; 2686 asyncs [i]->sent = 0;
2687 ECB_MEMORY_FENCE_RELEASE;
1084 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2688 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1085 } 2689 }
1086 } 2690 }
1087#endif 2691#endif
1088} 2692}
1089 2693
1090/*****************************************************************************/ 2694/*****************************************************************************/
1091 2695
2696void
2697ev_feed_signal (int signum) EV_NOEXCEPT
2698{
2699#if EV_MULTIPLICITY
2700 EV_P;
2701 ECB_MEMORY_FENCE_ACQUIRE;
2702 EV_A = signals [signum - 1].loop;
2703
2704 if (!EV_A)
2705 return;
2706#endif
2707
2708 signals [signum - 1].pending = 1;
2709 evpipe_write (EV_A_ &sig_pending);
2710}
2711
1092static void 2712static void
1093ev_sighandler (int signum) 2713ev_sighandler (int signum)
1094{ 2714{
2715#ifdef _WIN32
2716 signal (signum, ev_sighandler);
2717#endif
2718
2719 ev_feed_signal (signum);
2720}
2721
2722ecb_noinline
2723void
2724ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2725{
2726 WL w;
2727
2728 if (ecb_expect_false (signum <= 0 || signum >= EV_NSIG))
2729 return;
2730
2731 --signum;
2732
1095#if EV_MULTIPLICITY 2733#if EV_MULTIPLICITY
1096 struct ev_loop *loop = &default_loop_struct; 2734 /* it is permissible to try to feed a signal to the wrong loop */
1097#endif 2735 /* or, likely more useful, feeding a signal nobody is waiting for */
1098 2736
1099#if _WIN32 2737 if (ecb_expect_false (signals [signum].loop != EV_A))
1100 signal (signum, ev_sighandler);
1101#endif
1102
1103 signals [signum - 1].gotsig = 1;
1104 evpipe_write (EV_A_ &gotsig);
1105}
1106
1107void noinline
1108ev_feed_signal_event (EV_P_ int signum)
1109{
1110 WL w;
1111
1112#if EV_MULTIPLICITY
1113 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1114#endif
1115
1116 --signum;
1117
1118 if (signum < 0 || signum >= signalmax)
1119 return; 2738 return;
2739#endif
1120 2740
1121 signals [signum].gotsig = 0; 2741 signals [signum].pending = 0;
2742 ECB_MEMORY_FENCE_RELEASE;
1122 2743
1123 for (w = signals [signum].head; w; w = w->next) 2744 for (w = signals [signum].head; w; w = w->next)
1124 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2745 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1125} 2746}
1126 2747
2748#if EV_USE_SIGNALFD
2749static void
2750sigfdcb (EV_P_ ev_io *iow, int revents)
2751{
2752 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2753
2754 for (;;)
2755 {
2756 ssize_t res = read (sigfd, si, sizeof (si));
2757
2758 /* not ISO-C, as res might be -1, but works with SuS */
2759 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2760 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2761
2762 if (res < (ssize_t)sizeof (si))
2763 break;
2764 }
2765}
2766#endif
2767
2768#endif
2769
1127/*****************************************************************************/ 2770/*****************************************************************************/
1128 2771
2772#if EV_CHILD_ENABLE
1129static WL childs [EV_PID_HASHSIZE]; 2773static WL childs [EV_PID_HASHSIZE];
1130
1131#ifndef _WIN32
1132 2774
1133static ev_signal childev; 2775static ev_signal childev;
1134 2776
1135#ifndef WIFCONTINUED 2777#ifndef WIFCONTINUED
1136# define WIFCONTINUED(status) 0 2778# define WIFCONTINUED(status) 0
1137#endif 2779#endif
1138 2780
1139void inline_speed 2781/* handle a single child status event */
2782inline_speed void
1140child_reap (EV_P_ int chain, int pid, int status) 2783child_reap (EV_P_ int chain, int pid, int status)
1141{ 2784{
1142 ev_child *w; 2785 ev_child *w;
1143 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2786 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1144 2787
1145 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2788 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1146 { 2789 {
1147 if ((w->pid == pid || !w->pid) 2790 if ((w->pid == pid || !w->pid)
1148 && (!traced || (w->flags & 1))) 2791 && (!traced || (w->flags & 1)))
1149 { 2792 {
1150 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2793 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1157 2800
1158#ifndef WCONTINUED 2801#ifndef WCONTINUED
1159# define WCONTINUED 0 2802# define WCONTINUED 0
1160#endif 2803#endif
1161 2804
2805/* called on sigchld etc., calls waitpid */
1162static void 2806static void
1163childcb (EV_P_ ev_signal *sw, int revents) 2807childcb (EV_P_ ev_signal *sw, int revents)
1164{ 2808{
1165 int pid, status; 2809 int pid, status;
1166 2810
1174 /* make sure we are called again until all children have been reaped */ 2818 /* make sure we are called again until all children have been reaped */
1175 /* we need to do it this way so that the callback gets called before we continue */ 2819 /* we need to do it this way so that the callback gets called before we continue */
1176 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2820 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1177 2821
1178 child_reap (EV_A_ pid, pid, status); 2822 child_reap (EV_A_ pid, pid, status);
1179 if (EV_PID_HASHSIZE > 1) 2823 if ((EV_PID_HASHSIZE) > 1)
1180 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2824 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1181} 2825}
1182 2826
1183#endif 2827#endif
1184 2828
1185/*****************************************************************************/ 2829/*****************************************************************************/
1186 2830
2831#if EV_USE_IOCP
2832# include "ev_iocp.c"
2833#endif
1187#if EV_USE_PORT 2834#if EV_USE_PORT
1188# include "ev_port.c" 2835# include "ev_port.c"
1189#endif 2836#endif
1190#if EV_USE_KQUEUE 2837#if EV_USE_KQUEUE
1191# include "ev_kqueue.c" 2838# include "ev_kqueue.c"
1192#endif 2839#endif
1193#if EV_USE_EPOLL 2840#if EV_USE_EPOLL
1194# include "ev_epoll.c" 2841# include "ev_epoll.c"
1195#endif 2842#endif
2843#if EV_USE_LINUXAIO
2844# include "ev_linuxaio.c"
2845#endif
2846#if EV_USE_IOURING
2847# include "ev_iouring.c"
2848#endif
1196#if EV_USE_POLL 2849#if EV_USE_POLL
1197# include "ev_poll.c" 2850# include "ev_poll.c"
1198#endif 2851#endif
1199#if EV_USE_SELECT 2852#if EV_USE_SELECT
1200# include "ev_select.c" 2853# include "ev_select.c"
1201#endif 2854#endif
1202 2855
1203int 2856ecb_cold int
1204ev_version_major (void) 2857ev_version_major (void) EV_NOEXCEPT
1205{ 2858{
1206 return EV_VERSION_MAJOR; 2859 return EV_VERSION_MAJOR;
1207} 2860}
1208 2861
1209int 2862ecb_cold int
1210ev_version_minor (void) 2863ev_version_minor (void) EV_NOEXCEPT
1211{ 2864{
1212 return EV_VERSION_MINOR; 2865 return EV_VERSION_MINOR;
1213} 2866}
1214 2867
1215/* return true if we are running with elevated privileges and should ignore env variables */ 2868/* return true if we are running with elevated privileges and should ignore env variables */
1216int inline_size 2869inline_size ecb_cold int
1217enable_secure (void) 2870enable_secure (void)
1218{ 2871{
1219#ifdef _WIN32 2872#ifdef _WIN32
1220 return 0; 2873 return 0;
1221#else 2874#else
1222 return getuid () != geteuid () 2875 return getuid () != geteuid ()
1223 || getgid () != getegid (); 2876 || getgid () != getegid ();
1224#endif 2877#endif
1225} 2878}
1226 2879
2880ecb_cold
1227unsigned int 2881unsigned int
1228ev_supported_backends (void) 2882ev_supported_backends (void) EV_NOEXCEPT
1229{ 2883{
1230 unsigned int flags = 0; 2884 unsigned int flags = 0;
1231 2885
1232 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2886 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1233 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2887 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
1234 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL; 2888 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2889 if (EV_USE_LINUXAIO) flags |= EVBACKEND_LINUXAIO;
2890 if (EV_USE_IOURING ) flags |= EVBACKEND_IOURING;
1235 if (EV_USE_POLL ) flags |= EVBACKEND_POLL; 2891 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1236 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2892 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
1237 2893
1238 return flags; 2894 return flags;
1239} 2895}
1240 2896
2897ecb_cold
1241unsigned int 2898unsigned int
1242ev_recommended_backends (void) 2899ev_recommended_backends (void) EV_NOEXCEPT
1243{ 2900{
1244 unsigned int flags = ev_supported_backends (); 2901 unsigned int flags = ev_supported_backends ();
1245 2902
1246#ifndef __NetBSD__ 2903#ifndef __NetBSD__
1247 /* kqueue is borked on everything but netbsd apparently */ 2904 /* kqueue is borked on everything but netbsd apparently */
1248 /* it usually doesn't work correctly on anything but sockets and pipes */ 2905 /* it usually doesn't work correctly on anything but sockets and pipes */
1249 flags &= ~EVBACKEND_KQUEUE; 2906 flags &= ~EVBACKEND_KQUEUE;
1250#endif 2907#endif
1251#ifdef __APPLE__ 2908#ifdef __APPLE__
1252 // flags &= ~EVBACKEND_KQUEUE; for documentation 2909 /* only select works correctly on that "unix-certified" platform */
2910 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2911 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2912#endif
2913#ifdef __FreeBSD__
2914 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2915#endif
2916
2917 /* TODO: linuxaio is very experimental */
2918#if !EV_RECOMMEND_LINUXAIO
2919 flags &= ~EVBACKEND_LINUXAIO;
2920#endif
2921 /* TODO: linuxaio is super experimental */
2922#if !EV_RECOMMEND_IOURING
1253 flags &= ~EVBACKEND_POLL; 2923 flags &= ~EVBACKEND_IOURING;
1254#endif 2924#endif
1255 2925
1256 return flags; 2926 return flags;
1257} 2927}
1258 2928
2929ecb_cold
1259unsigned int 2930unsigned int
1260ev_embeddable_backends (void) 2931ev_embeddable_backends (void) EV_NOEXCEPT
1261{ 2932{
1262 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2933 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1263 2934
1264 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 2935 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1265 /* please fix it and tell me how to detect the fix */ 2936 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1266 flags &= ~EVBACKEND_EPOLL; 2937 flags &= ~EVBACKEND_EPOLL;
2938
2939 /* EVBACKEND_LINUXAIO is theoretically embeddable, but suffers from a performance overhead */
2940
2941 /* EVBACKEND_IOURING is practically embeddable, but the current implementation is not
2942 * because our backend_fd is the epoll fd we need as fallback.
2943 * if the kernel ever is fixed, this might change...
2944 */
1267 2945
1268 return flags; 2946 return flags;
1269} 2947}
1270 2948
1271unsigned int 2949unsigned int
1272ev_backend (EV_P) 2950ev_backend (EV_P) EV_NOEXCEPT
1273{ 2951{
1274 return backend; 2952 return backend;
1275} 2953}
1276 2954
2955#if EV_FEATURE_API
1277unsigned int 2956unsigned int
1278ev_loop_count (EV_P) 2957ev_iteration (EV_P) EV_NOEXCEPT
1279{ 2958{
1280 return loop_count; 2959 return loop_count;
1281} 2960}
1282 2961
2962unsigned int
2963ev_depth (EV_P) EV_NOEXCEPT
2964{
2965 return loop_depth;
2966}
2967
1283void 2968void
1284ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2969ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
1285{ 2970{
1286 io_blocktime = interval; 2971 io_blocktime = interval;
1287} 2972}
1288 2973
1289void 2974void
1290ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2975ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
1291{ 2976{
1292 timeout_blocktime = interval; 2977 timeout_blocktime = interval;
1293} 2978}
1294 2979
1295static void noinline 2980void
2981ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
2982{
2983 userdata = data;
2984}
2985
2986void *
2987ev_userdata (EV_P) EV_NOEXCEPT
2988{
2989 return userdata;
2990}
2991
2992void
2993ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
2994{
2995 invoke_cb = invoke_pending_cb;
2996}
2997
2998void
2999ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
3000{
3001 release_cb = release;
3002 acquire_cb = acquire;
3003}
3004#endif
3005
3006/* initialise a loop structure, must be zero-initialised */
3007ecb_noinline ecb_cold
3008static void
1296loop_init (EV_P_ unsigned int flags) 3009loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
1297{ 3010{
1298 if (!backend) 3011 if (!backend)
1299 { 3012 {
3013 origflags = flags;
3014
3015#if EV_USE_REALTIME
3016 if (!have_realtime)
3017 {
3018 struct timespec ts;
3019
3020 if (!clock_gettime (CLOCK_REALTIME, &ts))
3021 have_realtime = 1;
3022 }
3023#endif
3024
1300#if EV_USE_MONOTONIC 3025#if EV_USE_MONOTONIC
3026 if (!have_monotonic)
1301 { 3027 {
1302 struct timespec ts; 3028 struct timespec ts;
3029
1303 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 3030 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1304 have_monotonic = 1; 3031 have_monotonic = 1;
1305 } 3032 }
1306#endif
1307
1308 ev_rt_now = ev_time ();
1309 mn_now = get_clock ();
1310 now_floor = mn_now;
1311 rtmn_diff = ev_rt_now - mn_now;
1312
1313 io_blocktime = 0.;
1314 timeout_blocktime = 0.;
1315 backend = 0;
1316 backend_fd = -1;
1317 gotasync = 0;
1318#if EV_USE_INOTIFY
1319 fs_fd = -2;
1320#endif 3033#endif
1321 3034
1322 /* pid check not overridable via env */ 3035 /* pid check not overridable via env */
1323#ifndef _WIN32 3036#ifndef _WIN32
1324 if (flags & EVFLAG_FORKCHECK) 3037 if (flags & EVFLAG_FORKCHECK)
1328 if (!(flags & EVFLAG_NOENV) 3041 if (!(flags & EVFLAG_NOENV)
1329 && !enable_secure () 3042 && !enable_secure ()
1330 && getenv ("LIBEV_FLAGS")) 3043 && getenv ("LIBEV_FLAGS"))
1331 flags = atoi (getenv ("LIBEV_FLAGS")); 3044 flags = atoi (getenv ("LIBEV_FLAGS"));
1332 3045
1333 if (!(flags & 0x0000ffffU)) 3046 ev_rt_now = ev_time ();
3047 mn_now = get_clock ();
3048 now_floor = mn_now;
3049 rtmn_diff = ev_rt_now - mn_now;
3050#if EV_FEATURE_API
3051 invoke_cb = ev_invoke_pending;
3052#endif
3053
3054 io_blocktime = 0.;
3055 timeout_blocktime = 0.;
3056 backend = 0;
3057 backend_fd = -1;
3058 sig_pending = 0;
3059#if EV_ASYNC_ENABLE
3060 async_pending = 0;
3061#endif
3062 pipe_write_skipped = 0;
3063 pipe_write_wanted = 0;
3064 evpipe [0] = -1;
3065 evpipe [1] = -1;
3066#if EV_USE_INOTIFY
3067 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
3068#endif
3069#if EV_USE_SIGNALFD
3070 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
3071#endif
3072
3073 if (!(flags & EVBACKEND_MASK))
1334 flags |= ev_recommended_backends (); 3074 flags |= ev_recommended_backends ();
1335 3075
3076#if EV_USE_IOCP
3077 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
3078#endif
1336#if EV_USE_PORT 3079#if EV_USE_PORT
1337 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 3080 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1338#endif 3081#endif
1339#if EV_USE_KQUEUE 3082#if EV_USE_KQUEUE
1340 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 3083 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
3084#endif
3085#if EV_USE_IOURING
3086 if (!backend && (flags & EVBACKEND_IOURING )) backend = iouring_init (EV_A_ flags);
3087#endif
3088#if EV_USE_LINUXAIO
3089 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
1341#endif 3090#endif
1342#if EV_USE_EPOLL 3091#if EV_USE_EPOLL
1343 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags); 3092 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1344#endif 3093#endif
1345#if EV_USE_POLL 3094#if EV_USE_POLL
1346 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags); 3095 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1347#endif 3096#endif
1348#if EV_USE_SELECT 3097#if EV_USE_SELECT
1349 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 3098 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
1350#endif 3099#endif
1351 3100
3101 ev_prepare_init (&pending_w, pendingcb);
3102
3103#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1352 ev_init (&pipeev, pipecb); 3104 ev_init (&pipe_w, pipecb);
1353 ev_set_priority (&pipeev, EV_MAXPRI); 3105 ev_set_priority (&pipe_w, EV_MAXPRI);
3106#endif
1354 } 3107 }
1355} 3108}
1356 3109
1357static void noinline 3110/* free up a loop structure */
3111ecb_cold
3112void
1358loop_destroy (EV_P) 3113ev_loop_destroy (EV_P)
1359{ 3114{
1360 int i; 3115 int i;
1361 3116
3117#if EV_MULTIPLICITY
3118 /* mimic free (0) */
3119 if (!EV_A)
3120 return;
3121#endif
3122
3123#if EV_CLEANUP_ENABLE
3124 /* queue cleanup watchers (and execute them) */
3125 if (ecb_expect_false (cleanupcnt))
3126 {
3127 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3128 EV_INVOKE_PENDING;
3129 }
3130#endif
3131
3132#if EV_CHILD_ENABLE
3133 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3134 {
3135 ev_ref (EV_A); /* child watcher */
3136 ev_signal_stop (EV_A_ &childev);
3137 }
3138#endif
3139
1362 if (ev_is_active (&pipeev)) 3140 if (ev_is_active (&pipe_w))
1363 { 3141 {
1364 ev_ref (EV_A); /* signal watcher */ 3142 /*ev_ref (EV_A);*/
1365 ev_io_stop (EV_A_ &pipeev); 3143 /*ev_io_stop (EV_A_ &pipe_w);*/
1366 3144
3145 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3146 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3147 }
3148
1367#if EV_USE_EVENTFD 3149#if EV_USE_SIGNALFD
1368 if (evfd >= 0) 3150 if (ev_is_active (&sigfd_w))
1369 close (evfd); 3151 close (sigfd);
1370#endif 3152#endif
1371
1372 if (evpipe [0] >= 0)
1373 {
1374 close (evpipe [0]);
1375 close (evpipe [1]);
1376 }
1377 }
1378 3153
1379#if EV_USE_INOTIFY 3154#if EV_USE_INOTIFY
1380 if (fs_fd >= 0) 3155 if (fs_fd >= 0)
1381 close (fs_fd); 3156 close (fs_fd);
1382#endif 3157#endif
1383 3158
1384 if (backend_fd >= 0) 3159 if (backend_fd >= 0)
1385 close (backend_fd); 3160 close (backend_fd);
1386 3161
3162#if EV_USE_IOCP
3163 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3164#endif
1387#if EV_USE_PORT 3165#if EV_USE_PORT
1388 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 3166 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1389#endif 3167#endif
1390#if EV_USE_KQUEUE 3168#if EV_USE_KQUEUE
1391 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 3169 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3170#endif
3171#if EV_USE_IOURING
3172 if (backend == EVBACKEND_IOURING ) iouring_destroy (EV_A);
3173#endif
3174#if EV_USE_LINUXAIO
3175 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
1392#endif 3176#endif
1393#if EV_USE_EPOLL 3177#if EV_USE_EPOLL
1394 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A); 3178 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1395#endif 3179#endif
1396#if EV_USE_POLL 3180#if EV_USE_POLL
1397 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A); 3181 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1398#endif 3182#endif
1399#if EV_USE_SELECT 3183#if EV_USE_SELECT
1400 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 3184 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
1401#endif 3185#endif
1402 3186
1403 for (i = NUMPRI; i--; ) 3187 for (i = NUMPRI; i--; )
1404 { 3188 {
1405 array_free (pending, [i]); 3189 array_free (pending, [i]);
1406#if EV_IDLE_ENABLE 3190#if EV_IDLE_ENABLE
1407 array_free (idle, [i]); 3191 array_free (idle, [i]);
1408#endif 3192#endif
1409 } 3193 }
1410 3194
1411 ev_free (anfds); anfdmax = 0; 3195 ev_free (anfds); anfds = 0; anfdmax = 0;
1412 3196
1413 /* have to use the microsoft-never-gets-it-right macro */ 3197 /* have to use the microsoft-never-gets-it-right macro */
3198 array_free (rfeed, EMPTY);
1414 array_free (fdchange, EMPTY); 3199 array_free (fdchange, EMPTY);
1415 array_free (timer, EMPTY); 3200 array_free (timer, EMPTY);
1416#if EV_PERIODIC_ENABLE 3201#if EV_PERIODIC_ENABLE
1417 array_free (periodic, EMPTY); 3202 array_free (periodic, EMPTY);
1418#endif 3203#endif
1419#if EV_FORK_ENABLE 3204#if EV_FORK_ENABLE
1420 array_free (fork, EMPTY); 3205 array_free (fork, EMPTY);
1421#endif 3206#endif
3207#if EV_CLEANUP_ENABLE
3208 array_free (cleanup, EMPTY);
3209#endif
1422 array_free (prepare, EMPTY); 3210 array_free (prepare, EMPTY);
1423 array_free (check, EMPTY); 3211 array_free (check, EMPTY);
1424#if EV_ASYNC_ENABLE 3212#if EV_ASYNC_ENABLE
1425 array_free (async, EMPTY); 3213 array_free (async, EMPTY);
1426#endif 3214#endif
1427 3215
1428 backend = 0; 3216 backend = 0;
3217
3218#if EV_MULTIPLICITY
3219 if (ev_is_default_loop (EV_A))
3220#endif
3221 ev_default_loop_ptr = 0;
3222#if EV_MULTIPLICITY
3223 else
3224 ev_free (EV_A);
3225#endif
1429} 3226}
1430 3227
1431#if EV_USE_INOTIFY 3228#if EV_USE_INOTIFY
1432void inline_size infy_fork (EV_P); 3229inline_size void infy_fork (EV_P);
1433#endif 3230#endif
1434 3231
1435void inline_size 3232inline_size void
1436loop_fork (EV_P) 3233loop_fork (EV_P)
1437{ 3234{
1438#if EV_USE_PORT 3235#if EV_USE_PORT
1439 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 3236 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1440#endif 3237#endif
1441#if EV_USE_KQUEUE 3238#if EV_USE_KQUEUE
1442 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 3239 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3240#endif
3241#if EV_USE_IOURING
3242 if (backend == EVBACKEND_IOURING ) iouring_fork (EV_A);
3243#endif
3244#if EV_USE_LINUXAIO
3245 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
1443#endif 3246#endif
1444#if EV_USE_EPOLL 3247#if EV_USE_EPOLL
1445 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 3248 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1446#endif 3249#endif
1447#if EV_USE_INOTIFY 3250#if EV_USE_INOTIFY
1448 infy_fork (EV_A); 3251 infy_fork (EV_A);
1449#endif 3252#endif
1450 3253
1451 if (ev_is_active (&pipeev)) 3254#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3255 if (ev_is_active (&pipe_w) && postfork != 2)
3256 {
3257 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3258
3259 ev_ref (EV_A);
3260 ev_io_stop (EV_A_ &pipe_w);
3261
3262 if (evpipe [0] >= 0)
3263 EV_WIN32_CLOSE_FD (evpipe [0]);
3264
3265 evpipe_init (EV_A);
3266 /* iterate over everything, in case we missed something before */
3267 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1452 { 3268 }
1453 /* this "locks" the handlers against writing to the pipe */ 3269#endif
1454 /* while we modify the fd vars */ 3270
1455 gotsig = 1; 3271 postfork = 0;
3272}
3273
3274#if EV_MULTIPLICITY
3275
3276ecb_cold
3277struct ev_loop *
3278ev_loop_new (unsigned int flags) EV_NOEXCEPT
3279{
3280 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3281
3282 memset (EV_A, 0, sizeof (struct ev_loop));
3283 loop_init (EV_A_ flags);
3284
3285 if (ev_backend (EV_A))
3286 return EV_A;
3287
3288 ev_free (EV_A);
3289 return 0;
3290}
3291
3292#endif /* multiplicity */
3293
3294#if EV_VERIFY
3295ecb_noinline ecb_cold
3296static void
3297verify_watcher (EV_P_ W w)
3298{
3299 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
3300
3301 if (w->pending)
3302 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3303}
3304
3305ecb_noinline ecb_cold
3306static void
3307verify_heap (EV_P_ ANHE *heap, int N)
3308{
3309 int i;
3310
3311 for (i = HEAP0; i < N + HEAP0; ++i)
3312 {
3313 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3314 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3315 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3316
3317 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3318 }
3319}
3320
3321ecb_noinline ecb_cold
3322static void
3323array_verify (EV_P_ W *ws, int cnt)
3324{
3325 while (cnt--)
3326 {
3327 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3328 verify_watcher (EV_A_ ws [cnt]);
3329 }
3330}
3331#endif
3332
3333#if EV_FEATURE_API
3334void ecb_cold
3335ev_verify (EV_P) EV_NOEXCEPT
3336{
3337#if EV_VERIFY
3338 int i;
3339 WL w, w2;
3340
3341 assert (activecnt >= -1);
3342
3343 assert (fdchangemax >= fdchangecnt);
3344 for (i = 0; i < fdchangecnt; ++i)
3345 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3346
3347 assert (anfdmax >= 0);
3348 for (i = 0; i < anfdmax; ++i)
3349 {
3350 int j = 0;
3351
3352 for (w = w2 = anfds [i].head; w; w = w->next)
3353 {
3354 verify_watcher (EV_A_ (W)w);
3355
3356 if (j++ & 1)
3357 {
3358 assert (("libev: io watcher list contains a loop", w != w2));
3359 w2 = w2->next;
3360 }
3361
3362 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3363 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3364 }
3365 }
3366
3367 assert (timermax >= timercnt);
3368 verify_heap (EV_A_ timers, timercnt);
3369
3370#if EV_PERIODIC_ENABLE
3371 assert (periodicmax >= periodiccnt);
3372 verify_heap (EV_A_ periodics, periodiccnt);
3373#endif
3374
3375 for (i = NUMPRI; i--; )
3376 {
3377 assert (pendingmax [i] >= pendingcnt [i]);
3378#if EV_IDLE_ENABLE
3379 assert (idleall >= 0);
3380 assert (idlemax [i] >= idlecnt [i]);
3381 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3382#endif
3383 }
3384
3385#if EV_FORK_ENABLE
3386 assert (forkmax >= forkcnt);
3387 array_verify (EV_A_ (W *)forks, forkcnt);
3388#endif
3389
3390#if EV_CLEANUP_ENABLE
3391 assert (cleanupmax >= cleanupcnt);
3392 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3393#endif
3394
1456#if EV_ASYNC_ENABLE 3395#if EV_ASYNC_ENABLE
1457 gotasync = 1; 3396 assert (asyncmax >= asynccnt);
3397 array_verify (EV_A_ (W *)asyncs, asynccnt);
3398#endif
3399
3400#if EV_PREPARE_ENABLE
3401 assert (preparemax >= preparecnt);
3402 array_verify (EV_A_ (W *)prepares, preparecnt);
3403#endif
3404
3405#if EV_CHECK_ENABLE
3406 assert (checkmax >= checkcnt);
3407 array_verify (EV_A_ (W *)checks, checkcnt);
3408#endif
3409
3410# if 0
3411#if EV_CHILD_ENABLE
3412 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3413 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3414#endif
1458#endif 3415# endif
1459
1460 ev_ref (EV_A);
1461 ev_io_stop (EV_A_ &pipeev);
1462
1463#if EV_USE_EVENTFD
1464 if (evfd >= 0)
1465 close (evfd);
1466#endif 3416#endif
1467
1468 if (evpipe [0] >= 0)
1469 {
1470 close (evpipe [0]);
1471 close (evpipe [1]);
1472 }
1473
1474 evpipe_init (EV_A);
1475 /* now iterate over everything, in case we missed something */
1476 pipecb (EV_A_ &pipeev, EV_READ);
1477 }
1478
1479 postfork = 0;
1480} 3417}
3418#endif
1481 3419
1482#if EV_MULTIPLICITY 3420#if EV_MULTIPLICITY
3421ecb_cold
1483struct ev_loop * 3422struct ev_loop *
1484ev_loop_new (unsigned int flags)
1485{
1486 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1487
1488 memset (loop, 0, sizeof (struct ev_loop));
1489
1490 loop_init (EV_A_ flags);
1491
1492 if (ev_backend (EV_A))
1493 return loop;
1494
1495 return 0;
1496}
1497
1498void
1499ev_loop_destroy (EV_P)
1500{
1501 loop_destroy (EV_A);
1502 ev_free (loop);
1503}
1504
1505void
1506ev_loop_fork (EV_P)
1507{
1508 postfork = 1; /* must be in line with ev_default_fork */
1509}
1510
1511#if EV_VERIFY
1512static void
1513array_check (W **ws, int cnt)
1514{
1515 while (cnt--)
1516 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1517}
1518
1519static void
1520ev_loop_verify (EV_P)
1521{
1522 int i;
1523
1524 checkheap (timers, timercnt);
1525#if EV_PERIODIC_ENABLE
1526 checkheap (periodics, periodiccnt);
1527#endif
1528
1529#if EV_IDLE_ENABLE
1530 for (i = NUMPRI; i--; )
1531 array_check ((W **)idles [i], idlecnt [i]);
1532#endif
1533#if EV_FORK_ENABLE
1534 array_check ((W **)forks, forkcnt);
1535#endif
1536 array_check ((W **)prepares, preparecnt);
1537 array_check ((W **)checks, checkcnt);
1538#if EV_ASYNC_ENABLE
1539 array_check ((W **)asyncs, asynccnt);
1540#endif
1541}
1542#endif
1543
1544#endif
1545
1546#if EV_MULTIPLICITY
1547struct ev_loop *
1548ev_default_loop_init (unsigned int flags)
1549#else 3423#else
1550int 3424int
3425#endif
1551ev_default_loop (unsigned int flags) 3426ev_default_loop (unsigned int flags) EV_NOEXCEPT
1552#endif
1553{ 3427{
1554 if (!ev_default_loop_ptr) 3428 if (!ev_default_loop_ptr)
1555 { 3429 {
1556#if EV_MULTIPLICITY 3430#if EV_MULTIPLICITY
1557 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3431 EV_P = ev_default_loop_ptr = &default_loop_struct;
1558#else 3432#else
1559 ev_default_loop_ptr = 1; 3433 ev_default_loop_ptr = 1;
1560#endif 3434#endif
1561 3435
1562 loop_init (EV_A_ flags); 3436 loop_init (EV_A_ flags);
1563 3437
1564 if (ev_backend (EV_A)) 3438 if (ev_backend (EV_A))
1565 { 3439 {
1566#ifndef _WIN32 3440#if EV_CHILD_ENABLE
1567 ev_signal_init (&childev, childcb, SIGCHLD); 3441 ev_signal_init (&childev, childcb, SIGCHLD);
1568 ev_set_priority (&childev, EV_MAXPRI); 3442 ev_set_priority (&childev, EV_MAXPRI);
1569 ev_signal_start (EV_A_ &childev); 3443 ev_signal_start (EV_A_ &childev);
1570 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3444 ev_unref (EV_A); /* child watcher should not keep loop alive */
1571#endif 3445#endif
1576 3450
1577 return ev_default_loop_ptr; 3451 return ev_default_loop_ptr;
1578} 3452}
1579 3453
1580void 3454void
1581ev_default_destroy (void) 3455ev_loop_fork (EV_P) EV_NOEXCEPT
1582{ 3456{
1583#if EV_MULTIPLICITY 3457 postfork = 1;
1584 struct ev_loop *loop = ev_default_loop_ptr;
1585#endif
1586
1587#ifndef _WIN32
1588 ev_ref (EV_A); /* child watcher */
1589 ev_signal_stop (EV_A_ &childev);
1590#endif
1591
1592 loop_destroy (EV_A);
1593}
1594
1595void
1596ev_default_fork (void)
1597{
1598#if EV_MULTIPLICITY
1599 struct ev_loop *loop = ev_default_loop_ptr;
1600#endif
1601
1602 if (backend)
1603 postfork = 1; /* must be in line with ev_loop_fork */
1604} 3458}
1605 3459
1606/*****************************************************************************/ 3460/*****************************************************************************/
1607 3461
1608void 3462void
1609ev_invoke (EV_P_ void *w, int revents) 3463ev_invoke (EV_P_ void *w, int revents)
1610{ 3464{
1611 EV_CB_INVOKE ((W)w, revents); 3465 EV_CB_INVOKE ((W)w, revents);
1612} 3466}
1613 3467
1614void inline_speed 3468unsigned int
1615call_pending (EV_P) 3469ev_pending_count (EV_P) EV_NOEXCEPT
1616{ 3470{
1617 int pri; 3471 int pri;
1618 3472 unsigned int count = 0;
1619 EV_FREQUENT_CHECK;
1620 3473
1621 for (pri = NUMPRI; pri--; ) 3474 for (pri = NUMPRI; pri--; )
3475 count += pendingcnt [pri];
3476
3477 return count;
3478}
3479
3480ecb_noinline
3481void
3482ev_invoke_pending (EV_P)
3483{
3484 pendingpri = NUMPRI;
3485
3486 do
3487 {
3488 --pendingpri;
3489
3490 /* pendingpri possibly gets modified in the inner loop */
1622 while (pendingcnt [pri]) 3491 while (pendingcnt [pendingpri])
1623 {
1624 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1625
1626 if (expect_true (p->w))
1627 { 3492 {
1628 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 3493 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1629 3494
1630 p->w->pending = 0; 3495 p->w->pending = 0;
1631 EV_CB_INVOKE (p->w, p->events); 3496 EV_CB_INVOKE (p->w, p->events);
3497 EV_FREQUENT_CHECK;
1632 } 3498 }
1633 } 3499 }
1634 3500 while (pendingpri);
1635 EV_FREQUENT_CHECK;
1636} 3501}
1637 3502
1638#if EV_IDLE_ENABLE 3503#if EV_IDLE_ENABLE
1639void inline_size 3504/* make idle watchers pending. this handles the "call-idle */
3505/* only when higher priorities are idle" logic */
3506inline_size void
1640idle_reify (EV_P) 3507idle_reify (EV_P)
1641{ 3508{
1642 if (expect_false (idleall)) 3509 if (ecb_expect_false (idleall))
1643 { 3510 {
1644 int pri; 3511 int pri;
1645 3512
1646 for (pri = NUMPRI; pri--; ) 3513 for (pri = NUMPRI; pri--; )
1647 { 3514 {
1656 } 3523 }
1657 } 3524 }
1658} 3525}
1659#endif 3526#endif
1660 3527
1661void inline_size 3528/* make timers pending */
3529inline_size void
1662timers_reify (EV_P) 3530timers_reify (EV_P)
1663{ 3531{
1664 EV_FREQUENT_CHECK; 3532 EV_FREQUENT_CHECK;
1665 3533
1666 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 3534 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1667 { 3535 {
1668 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 3536 do
1669
1670 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1671
1672 /* first reschedule or stop timer */
1673 if (w->repeat)
1674 { 3537 {
3538 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3539
3540 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3541
3542 /* first reschedule or stop timer */
3543 if (w->repeat)
3544 {
1675 ev_at (w) += w->repeat; 3545 ev_at (w) += w->repeat;
1676 if (ev_at (w) < mn_now) 3546 if (ev_at (w) < mn_now)
1677 ev_at (w) = mn_now; 3547 ev_at (w) = mn_now;
1678 3548
1679 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3549 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1680 3550
1681 ANHE_at_cache (timers [HEAP0]); 3551 ANHE_at_cache (timers [HEAP0]);
1682 downheap (timers, timercnt, HEAP0); 3552 downheap (timers, timercnt, HEAP0);
3553 }
3554 else
3555 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3556
3557 EV_FREQUENT_CHECK;
3558 feed_reverse (EV_A_ (W)w);
1683 } 3559 }
1684 else 3560 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1685 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1686 3561
1687 EV_FREQUENT_CHECK; 3562 feed_reverse_done (EV_A_ EV_TIMER);
1688 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1689 } 3563 }
1690} 3564}
1691 3565
1692#if EV_PERIODIC_ENABLE 3566#if EV_PERIODIC_ENABLE
1693void inline_size 3567
3568ecb_noinline
3569static void
3570periodic_recalc (EV_P_ ev_periodic *w)
3571{
3572 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3573 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3574
3575 /* the above almost always errs on the low side */
3576 while (at <= ev_rt_now)
3577 {
3578 ev_tstamp nat = at + w->interval;
3579
3580 /* when resolution fails us, we use ev_rt_now */
3581 if (ecb_expect_false (nat == at))
3582 {
3583 at = ev_rt_now;
3584 break;
3585 }
3586
3587 at = nat;
3588 }
3589
3590 ev_at (w) = at;
3591}
3592
3593/* make periodics pending */
3594inline_size void
1694periodics_reify (EV_P) 3595periodics_reify (EV_P)
1695{ 3596{
1696 EV_FREQUENT_CHECK; 3597 EV_FREQUENT_CHECK;
3598
1697 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 3599 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1698 { 3600 {
1699 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 3601 do
1700
1701 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1702
1703 /* first reschedule or stop timer */
1704 if (w->reschedule_cb)
1705 { 3602 {
3603 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3604
3605 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3606
3607 /* first reschedule or stop timer */
3608 if (w->reschedule_cb)
3609 {
1706 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3610 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1707 3611
1708 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 3612 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1709 3613
1710 ANHE_at_cache (periodics [HEAP0]); 3614 ANHE_at_cache (periodics [HEAP0]);
1711 downheap (periodics, periodiccnt, HEAP0); 3615 downheap (periodics, periodiccnt, HEAP0);
3616 }
3617 else if (w->interval)
3618 {
3619 periodic_recalc (EV_A_ w);
3620 ANHE_at_cache (periodics [HEAP0]);
3621 downheap (periodics, periodiccnt, HEAP0);
3622 }
3623 else
3624 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3625
1712 EV_FREQUENT_CHECK; 3626 EV_FREQUENT_CHECK;
3627 feed_reverse (EV_A_ (W)w);
1713 } 3628 }
1714 else if (w->interval) 3629 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1715 {
1716 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1717 /* if next trigger time is not sufficiently in the future, put it there */
1718 /* this might happen because of floating point inexactness */
1719 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1720 {
1721 ev_at (w) += w->interval;
1722 3630
1723 /* if interval is unreasonably low we might still have a time in the past */
1724 /* so correct this. this will make the periodic very inexact, but the user */
1725 /* has effectively asked to get triggered more often than possible */
1726 if (ev_at (w) < ev_rt_now)
1727 ev_at (w) = ev_rt_now;
1728 }
1729
1730 ANHE_at_cache (periodics [HEAP0]);
1731 downheap (periodics, periodiccnt, HEAP0);
1732 }
1733 else
1734 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1735
1736 EV_FREQUENT_CHECK;
1737 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 3631 feed_reverse_done (EV_A_ EV_PERIODIC);
1738 } 3632 }
1739} 3633}
1740 3634
1741static void noinline 3635/* simply recalculate all periodics */
3636/* TODO: maybe ensure that at least one event happens when jumping forward? */
3637ecb_noinline ecb_cold
3638static void
1742periodics_reschedule (EV_P) 3639periodics_reschedule (EV_P)
1743{ 3640{
1744 int i; 3641 int i;
1745 3642
1746 /* adjust periodics after time jump */ 3643 /* adjust periodics after time jump */
1749 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 3646 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1750 3647
1751 if (w->reschedule_cb) 3648 if (w->reschedule_cb)
1752 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3649 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1753 else if (w->interval) 3650 else if (w->interval)
1754 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 3651 periodic_recalc (EV_A_ w);
1755 3652
1756 ANHE_at_cache (periodics [i]); 3653 ANHE_at_cache (periodics [i]);
1757 } 3654 }
1758 3655
1759 reheap (periodics, periodiccnt); 3656 reheap (periodics, periodiccnt);
1760} 3657}
1761#endif 3658#endif
1762 3659
1763void inline_speed 3660/* adjust all timers by a given offset */
3661ecb_noinline ecb_cold
3662static void
3663timers_reschedule (EV_P_ ev_tstamp adjust)
3664{
3665 int i;
3666
3667 for (i = 0; i < timercnt; ++i)
3668 {
3669 ANHE *he = timers + i + HEAP0;
3670 ANHE_w (*he)->at += adjust;
3671 ANHE_at_cache (*he);
3672 }
3673}
3674
3675/* fetch new monotonic and realtime times from the kernel */
3676/* also detect if there was a timejump, and act accordingly */
3677inline_speed void
1764time_update (EV_P_ ev_tstamp max_block) 3678time_update (EV_P_ ev_tstamp max_block)
1765{ 3679{
1766 int i;
1767
1768#if EV_USE_MONOTONIC 3680#if EV_USE_MONOTONIC
1769 if (expect_true (have_monotonic)) 3681 if (ecb_expect_true (have_monotonic))
1770 { 3682 {
3683 int i;
1771 ev_tstamp odiff = rtmn_diff; 3684 ev_tstamp odiff = rtmn_diff;
1772 3685
1773 mn_now = get_clock (); 3686 mn_now = get_clock ();
1774 3687
1775 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3688 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1776 /* interpolate in the meantime */ 3689 /* interpolate in the meantime */
1777 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 3690 if (ecb_expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1778 { 3691 {
1779 ev_rt_now = rtmn_diff + mn_now; 3692 ev_rt_now = rtmn_diff + mn_now;
1780 return; 3693 return;
1781 } 3694 }
1782 3695
1791 * doesn't hurt either as we only do this on time-jumps or 3704 * doesn't hurt either as we only do this on time-jumps or
1792 * in the unlikely event of having been preempted here. 3705 * in the unlikely event of having been preempted here.
1793 */ 3706 */
1794 for (i = 4; --i; ) 3707 for (i = 4; --i; )
1795 { 3708 {
3709 ev_tstamp diff;
1796 rtmn_diff = ev_rt_now - mn_now; 3710 rtmn_diff = ev_rt_now - mn_now;
1797 3711
3712 diff = odiff - rtmn_diff;
3713
1798 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 3714 if (ecb_expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1799 return; /* all is well */ 3715 return; /* all is well */
1800 3716
1801 ev_rt_now = ev_time (); 3717 ev_rt_now = ev_time ();
1802 mn_now = get_clock (); 3718 mn_now = get_clock ();
1803 now_floor = mn_now; 3719 now_floor = mn_now;
1804 } 3720 }
1805 3721
3722 /* no timer adjustment, as the monotonic clock doesn't jump */
3723 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1806# if EV_PERIODIC_ENABLE 3724# if EV_PERIODIC_ENABLE
1807 periodics_reschedule (EV_A); 3725 periodics_reschedule (EV_A);
1808# endif 3726# endif
1809 /* no timer adjustment, as the monotonic clock doesn't jump */
1810 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1811 } 3727 }
1812 else 3728 else
1813#endif 3729#endif
1814 { 3730 {
1815 ev_rt_now = ev_time (); 3731 ev_rt_now = ev_time ();
1816 3732
1817 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3733 if (ecb_expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1818 { 3734 {
3735 /* adjust timers. this is easy, as the offset is the same for all of them */
3736 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1819#if EV_PERIODIC_ENABLE 3737#if EV_PERIODIC_ENABLE
1820 periodics_reschedule (EV_A); 3738 periodics_reschedule (EV_A);
1821#endif 3739#endif
1822 /* adjust timers. this is easy, as the offset is the same for all of them */
1823 for (i = 0; i < timercnt; ++i)
1824 {
1825 ANHE *he = timers + i + HEAP0;
1826 ANHE_w (*he)->at += ev_rt_now - mn_now;
1827 ANHE_at_cache (*he);
1828 }
1829 } 3740 }
1830 3741
1831 mn_now = ev_rt_now; 3742 mn_now = ev_rt_now;
1832 } 3743 }
1833} 3744}
1834 3745
1835void 3746int
1836ev_ref (EV_P)
1837{
1838 ++activecnt;
1839}
1840
1841void
1842ev_unref (EV_P)
1843{
1844 --activecnt;
1845}
1846
1847static int loop_done;
1848
1849void
1850ev_loop (EV_P_ int flags) 3747ev_run (EV_P_ int flags)
1851{ 3748{
3749#if EV_FEATURE_API
3750 ++loop_depth;
3751#endif
3752
3753 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3754
1852 loop_done = EVUNLOOP_CANCEL; 3755 loop_done = EVBREAK_CANCEL;
1853 3756
1854 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3757 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1855 3758
1856 do 3759 do
1857 { 3760 {
3761#if EV_VERIFY >= 2
3762 ev_verify (EV_A);
3763#endif
3764
1858#ifndef _WIN32 3765#ifndef _WIN32
1859 if (expect_false (curpid)) /* penalise the forking check even more */ 3766 if (ecb_expect_false (curpid)) /* penalise the forking check even more */
1860 if (expect_false (getpid () != curpid)) 3767 if (ecb_expect_false (getpid () != curpid))
1861 { 3768 {
1862 curpid = getpid (); 3769 curpid = getpid ();
1863 postfork = 1; 3770 postfork = 1;
1864 } 3771 }
1865#endif 3772#endif
1866 3773
1867#if EV_FORK_ENABLE 3774#if EV_FORK_ENABLE
1868 /* we might have forked, so queue fork handlers */ 3775 /* we might have forked, so queue fork handlers */
1869 if (expect_false (postfork)) 3776 if (ecb_expect_false (postfork))
1870 if (forkcnt) 3777 if (forkcnt)
1871 { 3778 {
1872 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3779 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1873 call_pending (EV_A); 3780 EV_INVOKE_PENDING;
1874 } 3781 }
1875#endif 3782#endif
1876 3783
3784#if EV_PREPARE_ENABLE
1877 /* queue prepare watchers (and execute them) */ 3785 /* queue prepare watchers (and execute them) */
1878 if (expect_false (preparecnt)) 3786 if (ecb_expect_false (preparecnt))
1879 { 3787 {
1880 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3788 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1881 call_pending (EV_A); 3789 EV_INVOKE_PENDING;
1882 } 3790 }
3791#endif
1883 3792
1884 if (expect_false (!activecnt)) 3793 if (ecb_expect_false (loop_done))
1885 break; 3794 break;
1886 3795
1887 /* we might have forked, so reify kernel state if necessary */ 3796 /* we might have forked, so reify kernel state if necessary */
1888 if (expect_false (postfork)) 3797 if (ecb_expect_false (postfork))
1889 loop_fork (EV_A); 3798 loop_fork (EV_A);
1890 3799
1891 /* update fd-related kernel structures */ 3800 /* update fd-related kernel structures */
1892 fd_reify (EV_A); 3801 fd_reify (EV_A);
1893 3802
1894 /* calculate blocking time */ 3803 /* calculate blocking time */
1895 { 3804 {
1896 ev_tstamp waittime = 0.; 3805 ev_tstamp waittime = 0.;
1897 ev_tstamp sleeptime = 0.; 3806 ev_tstamp sleeptime = 0.;
1898 3807
3808 /* remember old timestamp for io_blocktime calculation */
3809 ev_tstamp prev_mn_now = mn_now;
3810
3811 /* update time to cancel out callback processing overhead */
3812 time_update (EV_A_ 1e100);
3813
3814 /* from now on, we want a pipe-wake-up */
3815 pipe_write_wanted = 1;
3816
3817 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3818
1899 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3819 if (ecb_expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1900 { 3820 {
1901 /* update time to cancel out callback processing overhead */
1902 time_update (EV_A_ 1e100);
1903
1904 waittime = MAX_BLOCKTIME; 3821 waittime = MAX_BLOCKTIME;
1905 3822
1906 if (timercnt) 3823 if (timercnt)
1907 { 3824 {
1908 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 3825 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1909 if (waittime > to) waittime = to; 3826 if (waittime > to) waittime = to;
1910 } 3827 }
1911 3828
1912#if EV_PERIODIC_ENABLE 3829#if EV_PERIODIC_ENABLE
1913 if (periodiccnt) 3830 if (periodiccnt)
1914 { 3831 {
1915 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3832 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1916 if (waittime > to) waittime = to; 3833 if (waittime > to) waittime = to;
1917 } 3834 }
1918#endif 3835#endif
1919 3836
3837 /* don't let timeouts decrease the waittime below timeout_blocktime */
1920 if (expect_false (waittime < timeout_blocktime)) 3838 if (ecb_expect_false (waittime < timeout_blocktime))
1921 waittime = timeout_blocktime; 3839 waittime = timeout_blocktime;
1922 3840
1923 sleeptime = waittime - backend_fudge; 3841 /* at this point, we NEED to wait, so we have to ensure */
3842 /* to pass a minimum nonzero value to the backend */
3843 if (ecb_expect_false (waittime < backend_mintime))
3844 waittime = backend_mintime;
1924 3845
3846 /* extra check because io_blocktime is commonly 0 */
1925 if (expect_true (sleeptime > io_blocktime)) 3847 if (ecb_expect_false (io_blocktime))
1926 sleeptime = io_blocktime;
1927
1928 if (sleeptime)
1929 { 3848 {
3849 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3850
3851 if (sleeptime > waittime - backend_mintime)
3852 sleeptime = waittime - backend_mintime;
3853
3854 if (ecb_expect_true (sleeptime > 0.))
3855 {
1930 ev_sleep (sleeptime); 3856 ev_sleep (sleeptime);
1931 waittime -= sleeptime; 3857 waittime -= sleeptime;
3858 }
1932 } 3859 }
1933 } 3860 }
1934 3861
3862#if EV_FEATURE_API
1935 ++loop_count; 3863 ++loop_count;
3864#endif
3865 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1936 backend_poll (EV_A_ waittime); 3866 backend_poll (EV_A_ waittime);
3867 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3868
3869 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3870
3871 ECB_MEMORY_FENCE_ACQUIRE;
3872 if (pipe_write_skipped)
3873 {
3874 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3875 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3876 }
1937 3877
1938 /* update ev_rt_now, do magic */ 3878 /* update ev_rt_now, do magic */
1939 time_update (EV_A_ waittime + sleeptime); 3879 time_update (EV_A_ waittime + sleeptime);
1940 } 3880 }
1941 3881
1948#if EV_IDLE_ENABLE 3888#if EV_IDLE_ENABLE
1949 /* queue idle watchers unless other events are pending */ 3889 /* queue idle watchers unless other events are pending */
1950 idle_reify (EV_A); 3890 idle_reify (EV_A);
1951#endif 3891#endif
1952 3892
3893#if EV_CHECK_ENABLE
1953 /* queue check watchers, to be executed first */ 3894 /* queue check watchers, to be executed first */
1954 if (expect_false (checkcnt)) 3895 if (ecb_expect_false (checkcnt))
1955 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3896 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3897#endif
1956 3898
1957 call_pending (EV_A); 3899 EV_INVOKE_PENDING;
1958 } 3900 }
1959 while (expect_true ( 3901 while (ecb_expect_true (
1960 activecnt 3902 activecnt
1961 && !loop_done 3903 && !loop_done
1962 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3904 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1963 )); 3905 ));
1964 3906
1965 if (loop_done == EVUNLOOP_ONE) 3907 if (loop_done == EVBREAK_ONE)
1966 loop_done = EVUNLOOP_CANCEL; 3908 loop_done = EVBREAK_CANCEL;
1967}
1968 3909
3910#if EV_FEATURE_API
3911 --loop_depth;
3912#endif
3913
3914 return activecnt;
3915}
3916
1969void 3917void
1970ev_unloop (EV_P_ int how) 3918ev_break (EV_P_ int how) EV_NOEXCEPT
1971{ 3919{
1972 loop_done = how; 3920 loop_done = how;
1973} 3921}
1974 3922
3923void
3924ev_ref (EV_P) EV_NOEXCEPT
3925{
3926 ++activecnt;
3927}
3928
3929void
3930ev_unref (EV_P) EV_NOEXCEPT
3931{
3932 --activecnt;
3933}
3934
3935void
3936ev_now_update (EV_P) EV_NOEXCEPT
3937{
3938 time_update (EV_A_ 1e100);
3939}
3940
3941void
3942ev_suspend (EV_P) EV_NOEXCEPT
3943{
3944 ev_now_update (EV_A);
3945}
3946
3947void
3948ev_resume (EV_P) EV_NOEXCEPT
3949{
3950 ev_tstamp mn_prev = mn_now;
3951
3952 ev_now_update (EV_A);
3953 timers_reschedule (EV_A_ mn_now - mn_prev);
3954#if EV_PERIODIC_ENABLE
3955 /* TODO: really do this? */
3956 periodics_reschedule (EV_A);
3957#endif
3958}
3959
1975/*****************************************************************************/ 3960/*****************************************************************************/
3961/* singly-linked list management, used when the expected list length is short */
1976 3962
1977void inline_size 3963inline_size void
1978wlist_add (WL *head, WL elem) 3964wlist_add (WL *head, WL elem)
1979{ 3965{
1980 elem->next = *head; 3966 elem->next = *head;
1981 *head = elem; 3967 *head = elem;
1982} 3968}
1983 3969
1984void inline_size 3970inline_size void
1985wlist_del (WL *head, WL elem) 3971wlist_del (WL *head, WL elem)
1986{ 3972{
1987 while (*head) 3973 while (*head)
1988 { 3974 {
1989 if (*head == elem) 3975 if (ecb_expect_true (*head == elem))
1990 { 3976 {
1991 *head = elem->next; 3977 *head = elem->next;
1992 return; 3978 break;
1993 } 3979 }
1994 3980
1995 head = &(*head)->next; 3981 head = &(*head)->next;
1996 } 3982 }
1997} 3983}
1998 3984
1999void inline_speed 3985/* internal, faster, version of ev_clear_pending */
3986inline_speed void
2000clear_pending (EV_P_ W w) 3987clear_pending (EV_P_ W w)
2001{ 3988{
2002 if (w->pending) 3989 if (w->pending)
2003 { 3990 {
2004 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3991 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2005 w->pending = 0; 3992 w->pending = 0;
2006 } 3993 }
2007} 3994}
2008 3995
2009int 3996int
2010ev_clear_pending (EV_P_ void *w) 3997ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
2011{ 3998{
2012 W w_ = (W)w; 3999 W w_ = (W)w;
2013 int pending = w_->pending; 4000 int pending = w_->pending;
2014 4001
2015 if (expect_true (pending)) 4002 if (ecb_expect_true (pending))
2016 { 4003 {
2017 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 4004 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
4005 p->w = (W)&pending_w;
2018 w_->pending = 0; 4006 w_->pending = 0;
2019 p->w = 0;
2020 return p->events; 4007 return p->events;
2021 } 4008 }
2022 else 4009 else
2023 return 0; 4010 return 0;
2024} 4011}
2025 4012
2026void inline_size 4013inline_size void
2027pri_adjust (EV_P_ W w) 4014pri_adjust (EV_P_ W w)
2028{ 4015{
2029 int pri = w->priority; 4016 int pri = ev_priority (w);
2030 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 4017 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2031 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 4018 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2032 w->priority = pri; 4019 ev_set_priority (w, pri);
2033} 4020}
2034 4021
2035void inline_speed 4022inline_speed void
2036ev_start (EV_P_ W w, int active) 4023ev_start (EV_P_ W w, int active)
2037{ 4024{
2038 pri_adjust (EV_A_ w); 4025 pri_adjust (EV_A_ w);
2039 w->active = active; 4026 w->active = active;
2040 ev_ref (EV_A); 4027 ev_ref (EV_A);
2041} 4028}
2042 4029
2043void inline_size 4030inline_size void
2044ev_stop (EV_P_ W w) 4031ev_stop (EV_P_ W w)
2045{ 4032{
2046 ev_unref (EV_A); 4033 ev_unref (EV_A);
2047 w->active = 0; 4034 w->active = 0;
2048} 4035}
2049 4036
2050/*****************************************************************************/ 4037/*****************************************************************************/
2051 4038
2052void noinline 4039ecb_noinline
4040void
2053ev_io_start (EV_P_ ev_io *w) 4041ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
2054{ 4042{
2055 int fd = w->fd; 4043 int fd = w->fd;
2056 4044
2057 if (expect_false (ev_is_active (w))) 4045 if (ecb_expect_false (ev_is_active (w)))
2058 return; 4046 return;
2059 4047
2060 assert (("ev_io_start called with negative fd", fd >= 0)); 4048 assert (("libev: ev_io_start called with negative fd", fd >= 0));
4049 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2061 4050
4051#if EV_VERIFY >= 2
4052 assert (("libev: ev_io_start called on watcher with invalid fd", fd_valid (fd)));
4053#endif
2062 EV_FREQUENT_CHECK; 4054 EV_FREQUENT_CHECK;
2063 4055
2064 ev_start (EV_A_ (W)w, 1); 4056 ev_start (EV_A_ (W)w, 1);
2065 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 4057 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
2066 wlist_add (&anfds[fd].head, (WL)w); 4058 wlist_add (&anfds[fd].head, (WL)w);
2067 4059
4060 /* common bug, apparently */
4061 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
4062
2068 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 4063 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2069 w->events &= ~EV_IOFDSET; 4064 w->events &= ~EV__IOFDSET;
2070 4065
2071 EV_FREQUENT_CHECK; 4066 EV_FREQUENT_CHECK;
2072} 4067}
2073 4068
2074void noinline 4069ecb_noinline
4070void
2075ev_io_stop (EV_P_ ev_io *w) 4071ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
2076{ 4072{
2077 clear_pending (EV_A_ (W)w); 4073 clear_pending (EV_A_ (W)w);
2078 if (expect_false (!ev_is_active (w))) 4074 if (ecb_expect_false (!ev_is_active (w)))
2079 return; 4075 return;
2080 4076
2081 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 4077 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2082 4078
4079#if EV_VERIFY >= 2
4080 assert (("libev: ev_io_stop called on watcher with invalid fd", fd_valid (w->fd)));
4081#endif
2083 EV_FREQUENT_CHECK; 4082 EV_FREQUENT_CHECK;
2084 4083
2085 wlist_del (&anfds[w->fd].head, (WL)w); 4084 wlist_del (&anfds[w->fd].head, (WL)w);
2086 ev_stop (EV_A_ (W)w); 4085 ev_stop (EV_A_ (W)w);
2087 4086
2088 fd_change (EV_A_ w->fd, 1); 4087 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2089 4088
2090 EV_FREQUENT_CHECK; 4089 EV_FREQUENT_CHECK;
2091} 4090}
2092 4091
2093void noinline 4092ecb_noinline
4093void
2094ev_timer_start (EV_P_ ev_timer *w) 4094ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
2095{ 4095{
2096 if (expect_false (ev_is_active (w))) 4096 if (ecb_expect_false (ev_is_active (w)))
2097 return; 4097 return;
2098 4098
2099 ev_at (w) += mn_now; 4099 ev_at (w) += mn_now;
2100 4100
2101 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 4101 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2102 4102
2103 EV_FREQUENT_CHECK; 4103 EV_FREQUENT_CHECK;
2104 4104
2105 ++timercnt; 4105 ++timercnt;
2106 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 4106 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2107 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 4107 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
2108 ANHE_w (timers [ev_active (w)]) = (WT)w; 4108 ANHE_w (timers [ev_active (w)]) = (WT)w;
2109 ANHE_at_cache (timers [ev_active (w)]); 4109 ANHE_at_cache (timers [ev_active (w)]);
2110 upheap (timers, ev_active (w)); 4110 upheap (timers, ev_active (w));
2111 4111
2112 EV_FREQUENT_CHECK; 4112 EV_FREQUENT_CHECK;
2113 4113
2114 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 4114 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2115} 4115}
2116 4116
2117void noinline 4117ecb_noinline
4118void
2118ev_timer_stop (EV_P_ ev_timer *w) 4119ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
2119{ 4120{
2120 clear_pending (EV_A_ (W)w); 4121 clear_pending (EV_A_ (W)w);
2121 if (expect_false (!ev_is_active (w))) 4122 if (ecb_expect_false (!ev_is_active (w)))
2122 return; 4123 return;
2123 4124
2124 EV_FREQUENT_CHECK; 4125 EV_FREQUENT_CHECK;
2125 4126
2126 { 4127 {
2127 int active = ev_active (w); 4128 int active = ev_active (w);
2128 4129
2129 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 4130 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2130 4131
2131 --timercnt; 4132 --timercnt;
2132 4133
2133 if (expect_true (active < timercnt + HEAP0)) 4134 if (ecb_expect_true (active < timercnt + HEAP0))
2134 { 4135 {
2135 timers [active] = timers [timercnt + HEAP0]; 4136 timers [active] = timers [timercnt + HEAP0];
2136 adjustheap (timers, timercnt, active); 4137 adjustheap (timers, timercnt, active);
2137 } 4138 }
2138 } 4139 }
2139 4140
2140 EV_FREQUENT_CHECK;
2141
2142 ev_at (w) -= mn_now; 4141 ev_at (w) -= mn_now;
2143 4142
2144 ev_stop (EV_A_ (W)w); 4143 ev_stop (EV_A_ (W)w);
2145}
2146 4144
2147void noinline 4145 EV_FREQUENT_CHECK;
4146}
4147
4148ecb_noinline
4149void
2148ev_timer_again (EV_P_ ev_timer *w) 4150ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
2149{ 4151{
2150 EV_FREQUENT_CHECK; 4152 EV_FREQUENT_CHECK;
4153
4154 clear_pending (EV_A_ (W)w);
2151 4155
2152 if (ev_is_active (w)) 4156 if (ev_is_active (w))
2153 { 4157 {
2154 if (w->repeat) 4158 if (w->repeat)
2155 { 4159 {
2167 } 4171 }
2168 4172
2169 EV_FREQUENT_CHECK; 4173 EV_FREQUENT_CHECK;
2170} 4174}
2171 4175
4176ev_tstamp
4177ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4178{
4179 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
4180}
4181
2172#if EV_PERIODIC_ENABLE 4182#if EV_PERIODIC_ENABLE
2173void noinline 4183ecb_noinline
4184void
2174ev_periodic_start (EV_P_ ev_periodic *w) 4185ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
2175{ 4186{
2176 if (expect_false (ev_is_active (w))) 4187 if (ecb_expect_false (ev_is_active (w)))
2177 return; 4188 return;
2178 4189
2179 if (w->reschedule_cb) 4190 if (w->reschedule_cb)
2180 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 4191 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2181 else if (w->interval) 4192 else if (w->interval)
2182 { 4193 {
2183 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 4194 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2184 /* this formula differs from the one in periodic_reify because we do not always round up */ 4195 periodic_recalc (EV_A_ w);
2185 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2186 } 4196 }
2187 else 4197 else
2188 ev_at (w) = w->offset; 4198 ev_at (w) = w->offset;
2189 4199
2190 EV_FREQUENT_CHECK; 4200 EV_FREQUENT_CHECK;
2191 4201
2192 ++periodiccnt; 4202 ++periodiccnt;
2193 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1); 4203 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2194 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 4204 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
2195 ANHE_w (periodics [ev_active (w)]) = (WT)w; 4205 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2196 ANHE_at_cache (periodics [ev_active (w)]); 4206 ANHE_at_cache (periodics [ev_active (w)]);
2197 upheap (periodics, ev_active (w)); 4207 upheap (periodics, ev_active (w));
2198 4208
2199 EV_FREQUENT_CHECK; 4209 EV_FREQUENT_CHECK;
2200 4210
2201 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 4211 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2202} 4212}
2203 4213
2204void noinline 4214ecb_noinline
4215void
2205ev_periodic_stop (EV_P_ ev_periodic *w) 4216ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
2206{ 4217{
2207 clear_pending (EV_A_ (W)w); 4218 clear_pending (EV_A_ (W)w);
2208 if (expect_false (!ev_is_active (w))) 4219 if (ecb_expect_false (!ev_is_active (w)))
2209 return; 4220 return;
2210 4221
2211 EV_FREQUENT_CHECK; 4222 EV_FREQUENT_CHECK;
2212 4223
2213 { 4224 {
2214 int active = ev_active (w); 4225 int active = ev_active (w);
2215 4226
2216 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 4227 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2217 4228
2218 --periodiccnt; 4229 --periodiccnt;
2219 4230
2220 if (expect_true (active < periodiccnt + HEAP0)) 4231 if (ecb_expect_true (active < periodiccnt + HEAP0))
2221 { 4232 {
2222 periodics [active] = periodics [periodiccnt + HEAP0]; 4233 periodics [active] = periodics [periodiccnt + HEAP0];
2223 adjustheap (periodics, periodiccnt, active); 4234 adjustheap (periodics, periodiccnt, active);
2224 } 4235 }
2225 } 4236 }
2226 4237
2227 EV_FREQUENT_CHECK;
2228
2229 ev_stop (EV_A_ (W)w); 4238 ev_stop (EV_A_ (W)w);
2230}
2231 4239
2232void noinline 4240 EV_FREQUENT_CHECK;
4241}
4242
4243ecb_noinline
4244void
2233ev_periodic_again (EV_P_ ev_periodic *w) 4245ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
2234{ 4246{
2235 /* TODO: use adjustheap and recalculation */ 4247 /* TODO: use adjustheap and recalculation */
2236 ev_periodic_stop (EV_A_ w); 4248 ev_periodic_stop (EV_A_ w);
2237 ev_periodic_start (EV_A_ w); 4249 ev_periodic_start (EV_A_ w);
2238} 4250}
2240 4252
2241#ifndef SA_RESTART 4253#ifndef SA_RESTART
2242# define SA_RESTART 0 4254# define SA_RESTART 0
2243#endif 4255#endif
2244 4256
2245void noinline 4257#if EV_SIGNAL_ENABLE
4258
4259ecb_noinline
4260void
2246ev_signal_start (EV_P_ ev_signal *w) 4261ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
2247{ 4262{
4263 if (ecb_expect_false (ev_is_active (w)))
4264 return;
4265
4266 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4267
2248#if EV_MULTIPLICITY 4268#if EV_MULTIPLICITY
2249 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4269 assert (("libev: a signal must not be attached to two different loops",
2250#endif 4270 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2251 if (expect_false (ev_is_active (w)))
2252 return;
2253 4271
2254 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 4272 signals [w->signum - 1].loop = EV_A;
4273 ECB_MEMORY_FENCE_RELEASE;
4274#endif
2255 4275
2256 evpipe_init (EV_A);
2257
2258 EV_FREQUENT_CHECK; 4276 EV_FREQUENT_CHECK;
2259 4277
4278#if EV_USE_SIGNALFD
4279 if (sigfd == -2)
2260 { 4280 {
2261#ifndef _WIN32 4281 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2262 sigset_t full, prev; 4282 if (sigfd < 0 && errno == EINVAL)
2263 sigfillset (&full); 4283 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2264 sigprocmask (SIG_SETMASK, &full, &prev);
2265#endif
2266 4284
2267 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 4285 if (sigfd >= 0)
4286 {
4287 fd_intern (sigfd); /* doing it twice will not hurt */
2268 4288
2269#ifndef _WIN32 4289 sigemptyset (&sigfd_set);
2270 sigprocmask (SIG_SETMASK, &prev, 0); 4290
2271#endif 4291 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4292 ev_set_priority (&sigfd_w, EV_MAXPRI);
4293 ev_io_start (EV_A_ &sigfd_w);
4294 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4295 }
2272 } 4296 }
4297
4298 if (sigfd >= 0)
4299 {
4300 /* TODO: check .head */
4301 sigaddset (&sigfd_set, w->signum);
4302 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4303
4304 signalfd (sigfd, &sigfd_set, 0);
4305 }
4306#endif
2273 4307
2274 ev_start (EV_A_ (W)w, 1); 4308 ev_start (EV_A_ (W)w, 1);
2275 wlist_add (&signals [w->signum - 1].head, (WL)w); 4309 wlist_add (&signals [w->signum - 1].head, (WL)w);
2276 4310
2277 if (!((WL)w)->next) 4311 if (!((WL)w)->next)
4312# if EV_USE_SIGNALFD
4313 if (sigfd < 0) /*TODO*/
4314# endif
2278 { 4315 {
2279#if _WIN32 4316# ifdef _WIN32
4317 evpipe_init (EV_A);
4318
2280 signal (w->signum, ev_sighandler); 4319 signal (w->signum, ev_sighandler);
2281#else 4320# else
2282 struct sigaction sa; 4321 struct sigaction sa;
4322
4323 evpipe_init (EV_A);
4324
2283 sa.sa_handler = ev_sighandler; 4325 sa.sa_handler = ev_sighandler;
2284 sigfillset (&sa.sa_mask); 4326 sigfillset (&sa.sa_mask);
2285 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 4327 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2286 sigaction (w->signum, &sa, 0); 4328 sigaction (w->signum, &sa, 0);
4329
4330 if (origflags & EVFLAG_NOSIGMASK)
4331 {
4332 sigemptyset (&sa.sa_mask);
4333 sigaddset (&sa.sa_mask, w->signum);
4334 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4335 }
2287#endif 4336#endif
2288 } 4337 }
2289 4338
2290 EV_FREQUENT_CHECK; 4339 EV_FREQUENT_CHECK;
2291} 4340}
2292 4341
2293void noinline 4342ecb_noinline
4343void
2294ev_signal_stop (EV_P_ ev_signal *w) 4344ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
2295{ 4345{
2296 clear_pending (EV_A_ (W)w); 4346 clear_pending (EV_A_ (W)w);
2297 if (expect_false (!ev_is_active (w))) 4347 if (ecb_expect_false (!ev_is_active (w)))
2298 return; 4348 return;
2299 4349
2300 EV_FREQUENT_CHECK; 4350 EV_FREQUENT_CHECK;
2301 4351
2302 wlist_del (&signals [w->signum - 1].head, (WL)w); 4352 wlist_del (&signals [w->signum - 1].head, (WL)w);
2303 ev_stop (EV_A_ (W)w); 4353 ev_stop (EV_A_ (W)w);
2304 4354
2305 if (!signals [w->signum - 1].head) 4355 if (!signals [w->signum - 1].head)
2306 signal (w->signum, SIG_DFL); 4356 {
2307
2308 EV_FREQUENT_CHECK;
2309}
2310
2311void
2312ev_child_start (EV_P_ ev_child *w)
2313{
2314#if EV_MULTIPLICITY 4357#if EV_MULTIPLICITY
4358 signals [w->signum - 1].loop = 0; /* unattach from signal */
4359#endif
4360#if EV_USE_SIGNALFD
4361 if (sigfd >= 0)
4362 {
4363 sigset_t ss;
4364
4365 sigemptyset (&ss);
4366 sigaddset (&ss, w->signum);
4367 sigdelset (&sigfd_set, w->signum);
4368
4369 signalfd (sigfd, &sigfd_set, 0);
4370 sigprocmask (SIG_UNBLOCK, &ss, 0);
4371 }
4372 else
4373#endif
4374 signal (w->signum, SIG_DFL);
4375 }
4376
4377 EV_FREQUENT_CHECK;
4378}
4379
4380#endif
4381
4382#if EV_CHILD_ENABLE
4383
4384void
4385ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4386{
4387#if EV_MULTIPLICITY
2315 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4388 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2316#endif 4389#endif
2317 if (expect_false (ev_is_active (w))) 4390 if (ecb_expect_false (ev_is_active (w)))
2318 return; 4391 return;
2319 4392
2320 EV_FREQUENT_CHECK; 4393 EV_FREQUENT_CHECK;
2321 4394
2322 ev_start (EV_A_ (W)w, 1); 4395 ev_start (EV_A_ (W)w, 1);
2323 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4396 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2324 4397
2325 EV_FREQUENT_CHECK; 4398 EV_FREQUENT_CHECK;
2326} 4399}
2327 4400
2328void 4401void
2329ev_child_stop (EV_P_ ev_child *w) 4402ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
2330{ 4403{
2331 clear_pending (EV_A_ (W)w); 4404 clear_pending (EV_A_ (W)w);
2332 if (expect_false (!ev_is_active (w))) 4405 if (ecb_expect_false (!ev_is_active (w)))
2333 return; 4406 return;
2334 4407
2335 EV_FREQUENT_CHECK; 4408 EV_FREQUENT_CHECK;
2336 4409
2337 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4410 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2338 ev_stop (EV_A_ (W)w); 4411 ev_stop (EV_A_ (W)w);
2339 4412
2340 EV_FREQUENT_CHECK; 4413 EV_FREQUENT_CHECK;
2341} 4414}
4415
4416#endif
2342 4417
2343#if EV_STAT_ENABLE 4418#if EV_STAT_ENABLE
2344 4419
2345# ifdef _WIN32 4420# ifdef _WIN32
2346# undef lstat 4421# undef lstat
2347# define lstat(a,b) _stati64 (a,b) 4422# define lstat(a,b) _stati64 (a,b)
2348# endif 4423# endif
2349 4424
2350#define DEF_STAT_INTERVAL 5.0074891 4425#define DEF_STAT_INTERVAL 5.0074891
4426#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2351#define MIN_STAT_INTERVAL 0.1074891 4427#define MIN_STAT_INTERVAL 0.1074891
2352 4428
2353static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 4429ecb_noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2354 4430
2355#if EV_USE_INOTIFY 4431#if EV_USE_INOTIFY
2356# define EV_INOTIFY_BUFSIZE 8192
2357 4432
2358static void noinline 4433/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4434# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4435
4436ecb_noinline
4437static void
2359infy_add (EV_P_ ev_stat *w) 4438infy_add (EV_P_ ev_stat *w)
2360{ 4439{
2361 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 4440 w->wd = inotify_add_watch (fs_fd, w->path,
4441 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4442 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4443 | IN_DONT_FOLLOW | IN_MASK_ADD);
2362 4444
2363 if (w->wd < 0) 4445 if (w->wd >= 0)
4446 {
4447 struct statfs sfs;
4448
4449 /* now local changes will be tracked by inotify, but remote changes won't */
4450 /* unless the filesystem is known to be local, we therefore still poll */
4451 /* also do poll on <2.6.25, but with normal frequency */
4452
4453 if (!fs_2625)
4454 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4455 else if (!statfs (w->path, &sfs)
4456 && (sfs.f_type == 0x1373 /* devfs */
4457 || sfs.f_type == 0x4006 /* fat */
4458 || sfs.f_type == 0x4d44 /* msdos */
4459 || sfs.f_type == 0xEF53 /* ext2/3 */
4460 || sfs.f_type == 0x72b6 /* jffs2 */
4461 || sfs.f_type == 0x858458f6 /* ramfs */
4462 || sfs.f_type == 0x5346544e /* ntfs */
4463 || sfs.f_type == 0x3153464a /* jfs */
4464 || sfs.f_type == 0x9123683e /* btrfs */
4465 || sfs.f_type == 0x52654973 /* reiser3 */
4466 || sfs.f_type == 0x01021994 /* tmpfs */
4467 || sfs.f_type == 0x58465342 /* xfs */))
4468 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4469 else
4470 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2364 { 4471 }
2365 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 4472 else
4473 {
4474 /* can't use inotify, continue to stat */
4475 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2366 4476
2367 /* monitor some parent directory for speedup hints */ 4477 /* if path is not there, monitor some parent directory for speedup hints */
2368 /* note that exceeding the hardcoded limit is not a correctness issue, */ 4478 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2369 /* but an efficiency issue only */ 4479 /* but an efficiency issue only */
2370 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4480 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2371 { 4481 {
2372 char path [4096]; 4482 char path [4096];
2373 strcpy (path, w->path); 4483 strcpy (path, w->path);
2377 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 4487 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2378 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 4488 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2379 4489
2380 char *pend = strrchr (path, '/'); 4490 char *pend = strrchr (path, '/');
2381 4491
2382 if (!pend) 4492 if (!pend || pend == path)
2383 break; /* whoops, no '/', complain to your admin */ 4493 break;
2384 4494
2385 *pend = 0; 4495 *pend = 0;
2386 w->wd = inotify_add_watch (fs_fd, path, mask); 4496 w->wd = inotify_add_watch (fs_fd, path, mask);
2387 } 4497 }
2388 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4498 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2389 } 4499 }
2390 } 4500 }
2391 else
2392 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2393 4501
2394 if (w->wd >= 0) 4502 if (w->wd >= 0)
2395 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4503 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2396}
2397 4504
2398static void noinline 4505 /* now re-arm timer, if required */
4506 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4507 ev_timer_again (EV_A_ &w->timer);
4508 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4509}
4510
4511ecb_noinline
4512static void
2399infy_del (EV_P_ ev_stat *w) 4513infy_del (EV_P_ ev_stat *w)
2400{ 4514{
2401 int slot; 4515 int slot;
2402 int wd = w->wd; 4516 int wd = w->wd;
2403 4517
2404 if (wd < 0) 4518 if (wd < 0)
2405 return; 4519 return;
2406 4520
2407 w->wd = -2; 4521 w->wd = -2;
2408 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4522 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2409 wlist_del (&fs_hash [slot].head, (WL)w); 4523 wlist_del (&fs_hash [slot].head, (WL)w);
2410 4524
2411 /* remove this watcher, if others are watching it, they will rearm */ 4525 /* remove this watcher, if others are watching it, they will rearm */
2412 inotify_rm_watch (fs_fd, wd); 4526 inotify_rm_watch (fs_fd, wd);
2413} 4527}
2414 4528
2415static void noinline 4529ecb_noinline
4530static void
2416infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4531infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2417{ 4532{
2418 if (slot < 0) 4533 if (slot < 0)
2419 /* overflow, need to check for all hahs slots */ 4534 /* overflow, need to check for all hash slots */
2420 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4535 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2421 infy_wd (EV_A_ slot, wd, ev); 4536 infy_wd (EV_A_ slot, wd, ev);
2422 else 4537 else
2423 { 4538 {
2424 WL w_; 4539 WL w_;
2425 4540
2426 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4541 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2427 { 4542 {
2428 ev_stat *w = (ev_stat *)w_; 4543 ev_stat *w = (ev_stat *)w_;
2429 w_ = w_->next; /* lets us remove this watcher and all before it */ 4544 w_ = w_->next; /* lets us remove this watcher and all before it */
2430 4545
2431 if (w->wd == wd || wd == -1) 4546 if (w->wd == wd || wd == -1)
2432 { 4547 {
2433 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4548 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2434 { 4549 {
4550 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2435 w->wd = -1; 4551 w->wd = -1;
2436 infy_add (EV_A_ w); /* re-add, no matter what */ 4552 infy_add (EV_A_ w); /* re-add, no matter what */
2437 } 4553 }
2438 4554
2439 stat_timer_cb (EV_A_ &w->timer, 0); 4555 stat_timer_cb (EV_A_ &w->timer, 0);
2444 4560
2445static void 4561static void
2446infy_cb (EV_P_ ev_io *w, int revents) 4562infy_cb (EV_P_ ev_io *w, int revents)
2447{ 4563{
2448 char buf [EV_INOTIFY_BUFSIZE]; 4564 char buf [EV_INOTIFY_BUFSIZE];
2449 struct inotify_event *ev = (struct inotify_event *)buf;
2450 int ofs; 4565 int ofs;
2451 int len = read (fs_fd, buf, sizeof (buf)); 4566 int len = read (fs_fd, buf, sizeof (buf));
2452 4567
2453 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4568 for (ofs = 0; ofs < len; )
4569 {
4570 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2454 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4571 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4572 ofs += sizeof (struct inotify_event) + ev->len;
4573 }
2455} 4574}
2456 4575
2457void inline_size 4576inline_size ecb_cold
4577void
4578ev_check_2625 (EV_P)
4579{
4580 /* kernels < 2.6.25 are borked
4581 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4582 */
4583 if (ev_linux_version () < 0x020619)
4584 return;
4585
4586 fs_2625 = 1;
4587}
4588
4589inline_size int
4590infy_newfd (void)
4591{
4592#if defined IN_CLOEXEC && defined IN_NONBLOCK
4593 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4594 if (fd >= 0)
4595 return fd;
4596#endif
4597 return inotify_init ();
4598}
4599
4600inline_size void
2458infy_init (EV_P) 4601infy_init (EV_P)
2459{ 4602{
2460 if (fs_fd != -2) 4603 if (fs_fd != -2)
2461 return; 4604 return;
2462 4605
4606 fs_fd = -1;
4607
4608 ev_check_2625 (EV_A);
4609
2463 fs_fd = inotify_init (); 4610 fs_fd = infy_newfd ();
2464 4611
2465 if (fs_fd >= 0) 4612 if (fs_fd >= 0)
2466 { 4613 {
4614 fd_intern (fs_fd);
2467 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4615 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2468 ev_set_priority (&fs_w, EV_MAXPRI); 4616 ev_set_priority (&fs_w, EV_MAXPRI);
2469 ev_io_start (EV_A_ &fs_w); 4617 ev_io_start (EV_A_ &fs_w);
4618 ev_unref (EV_A);
2470 } 4619 }
2471} 4620}
2472 4621
2473void inline_size 4622inline_size void
2474infy_fork (EV_P) 4623infy_fork (EV_P)
2475{ 4624{
2476 int slot; 4625 int slot;
2477 4626
2478 if (fs_fd < 0) 4627 if (fs_fd < 0)
2479 return; 4628 return;
2480 4629
4630 ev_ref (EV_A);
4631 ev_io_stop (EV_A_ &fs_w);
2481 close (fs_fd); 4632 close (fs_fd);
2482 fs_fd = inotify_init (); 4633 fs_fd = infy_newfd ();
2483 4634
4635 if (fs_fd >= 0)
4636 {
4637 fd_intern (fs_fd);
4638 ev_io_set (&fs_w, fs_fd, EV_READ);
4639 ev_io_start (EV_A_ &fs_w);
4640 ev_unref (EV_A);
4641 }
4642
2484 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4643 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2485 { 4644 {
2486 WL w_ = fs_hash [slot].head; 4645 WL w_ = fs_hash [slot].head;
2487 fs_hash [slot].head = 0; 4646 fs_hash [slot].head = 0;
2488 4647
2489 while (w_) 4648 while (w_)
2494 w->wd = -1; 4653 w->wd = -1;
2495 4654
2496 if (fs_fd >= 0) 4655 if (fs_fd >= 0)
2497 infy_add (EV_A_ w); /* re-add, no matter what */ 4656 infy_add (EV_A_ w); /* re-add, no matter what */
2498 else 4657 else
4658 {
4659 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4660 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2499 ev_timer_start (EV_A_ &w->timer); 4661 ev_timer_again (EV_A_ &w->timer);
4662 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4663 }
2500 } 4664 }
2501
2502 } 4665 }
2503} 4666}
2504 4667
2505#endif 4668#endif
2506 4669
4670#ifdef _WIN32
4671# define EV_LSTAT(p,b) _stati64 (p, b)
4672#else
4673# define EV_LSTAT(p,b) lstat (p, b)
4674#endif
4675
2507void 4676void
2508ev_stat_stat (EV_P_ ev_stat *w) 4677ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
2509{ 4678{
2510 if (lstat (w->path, &w->attr) < 0) 4679 if (lstat (w->path, &w->attr) < 0)
2511 w->attr.st_nlink = 0; 4680 w->attr.st_nlink = 0;
2512 else if (!w->attr.st_nlink) 4681 else if (!w->attr.st_nlink)
2513 w->attr.st_nlink = 1; 4682 w->attr.st_nlink = 1;
2514} 4683}
2515 4684
2516static void noinline 4685ecb_noinline
4686static void
2517stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4687stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2518{ 4688{
2519 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4689 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2520 4690
2521 /* we copy this here each the time so that */ 4691 ev_statdata prev = w->attr;
2522 /* prev has the old value when the callback gets invoked */
2523 w->prev = w->attr;
2524 ev_stat_stat (EV_A_ w); 4692 ev_stat_stat (EV_A_ w);
2525 4693
2526 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4694 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2527 if ( 4695 if (
2528 w->prev.st_dev != w->attr.st_dev 4696 prev.st_dev != w->attr.st_dev
2529 || w->prev.st_ino != w->attr.st_ino 4697 || prev.st_ino != w->attr.st_ino
2530 || w->prev.st_mode != w->attr.st_mode 4698 || prev.st_mode != w->attr.st_mode
2531 || w->prev.st_nlink != w->attr.st_nlink 4699 || prev.st_nlink != w->attr.st_nlink
2532 || w->prev.st_uid != w->attr.st_uid 4700 || prev.st_uid != w->attr.st_uid
2533 || w->prev.st_gid != w->attr.st_gid 4701 || prev.st_gid != w->attr.st_gid
2534 || w->prev.st_rdev != w->attr.st_rdev 4702 || prev.st_rdev != w->attr.st_rdev
2535 || w->prev.st_size != w->attr.st_size 4703 || prev.st_size != w->attr.st_size
2536 || w->prev.st_atime != w->attr.st_atime 4704 || prev.st_atime != w->attr.st_atime
2537 || w->prev.st_mtime != w->attr.st_mtime 4705 || prev.st_mtime != w->attr.st_mtime
2538 || w->prev.st_ctime != w->attr.st_ctime 4706 || prev.st_ctime != w->attr.st_ctime
2539 ) { 4707 ) {
4708 /* we only update w->prev on actual differences */
4709 /* in case we test more often than invoke the callback, */
4710 /* to ensure that prev is always different to attr */
4711 w->prev = prev;
4712
2540 #if EV_USE_INOTIFY 4713 #if EV_USE_INOTIFY
4714 if (fs_fd >= 0)
4715 {
2541 infy_del (EV_A_ w); 4716 infy_del (EV_A_ w);
2542 infy_add (EV_A_ w); 4717 infy_add (EV_A_ w);
2543 ev_stat_stat (EV_A_ w); /* avoid race... */ 4718 ev_stat_stat (EV_A_ w); /* avoid race... */
4719 }
2544 #endif 4720 #endif
2545 4721
2546 ev_feed_event (EV_A_ w, EV_STAT); 4722 ev_feed_event (EV_A_ w, EV_STAT);
2547 } 4723 }
2548} 4724}
2549 4725
2550void 4726void
2551ev_stat_start (EV_P_ ev_stat *w) 4727ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
2552{ 4728{
2553 if (expect_false (ev_is_active (w))) 4729 if (ecb_expect_false (ev_is_active (w)))
2554 return; 4730 return;
2555 4731
2556 /* since we use memcmp, we need to clear any padding data etc. */
2557 memset (&w->prev, 0, sizeof (ev_statdata));
2558 memset (&w->attr, 0, sizeof (ev_statdata));
2559
2560 ev_stat_stat (EV_A_ w); 4732 ev_stat_stat (EV_A_ w);
2561 4733
4734 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2562 if (w->interval < MIN_STAT_INTERVAL) 4735 w->interval = MIN_STAT_INTERVAL;
2563 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2564 4736
2565 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4737 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2566 ev_set_priority (&w->timer, ev_priority (w)); 4738 ev_set_priority (&w->timer, ev_priority (w));
2567 4739
2568#if EV_USE_INOTIFY 4740#if EV_USE_INOTIFY
2569 infy_init (EV_A); 4741 infy_init (EV_A);
2570 4742
2571 if (fs_fd >= 0) 4743 if (fs_fd >= 0)
2572 infy_add (EV_A_ w); 4744 infy_add (EV_A_ w);
2573 else 4745 else
2574#endif 4746#endif
4747 {
2575 ev_timer_start (EV_A_ &w->timer); 4748 ev_timer_again (EV_A_ &w->timer);
4749 ev_unref (EV_A);
4750 }
2576 4751
2577 ev_start (EV_A_ (W)w, 1); 4752 ev_start (EV_A_ (W)w, 1);
2578 4753
2579 EV_FREQUENT_CHECK; 4754 EV_FREQUENT_CHECK;
2580} 4755}
2581 4756
2582void 4757void
2583ev_stat_stop (EV_P_ ev_stat *w) 4758ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
2584{ 4759{
2585 clear_pending (EV_A_ (W)w); 4760 clear_pending (EV_A_ (W)w);
2586 if (expect_false (!ev_is_active (w))) 4761 if (ecb_expect_false (!ev_is_active (w)))
2587 return; 4762 return;
2588 4763
2589 EV_FREQUENT_CHECK; 4764 EV_FREQUENT_CHECK;
2590 4765
2591#if EV_USE_INOTIFY 4766#if EV_USE_INOTIFY
2592 infy_del (EV_A_ w); 4767 infy_del (EV_A_ w);
2593#endif 4768#endif
4769
4770 if (ev_is_active (&w->timer))
4771 {
4772 ev_ref (EV_A);
2594 ev_timer_stop (EV_A_ &w->timer); 4773 ev_timer_stop (EV_A_ &w->timer);
4774 }
2595 4775
2596 ev_stop (EV_A_ (W)w); 4776 ev_stop (EV_A_ (W)w);
2597 4777
2598 EV_FREQUENT_CHECK; 4778 EV_FREQUENT_CHECK;
2599} 4779}
2600#endif 4780#endif
2601 4781
2602#if EV_IDLE_ENABLE 4782#if EV_IDLE_ENABLE
2603void 4783void
2604ev_idle_start (EV_P_ ev_idle *w) 4784ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
2605{ 4785{
2606 if (expect_false (ev_is_active (w))) 4786 if (ecb_expect_false (ev_is_active (w)))
2607 return; 4787 return;
2608 4788
2609 pri_adjust (EV_A_ (W)w); 4789 pri_adjust (EV_A_ (W)w);
2610 4790
2611 EV_FREQUENT_CHECK; 4791 EV_FREQUENT_CHECK;
2614 int active = ++idlecnt [ABSPRI (w)]; 4794 int active = ++idlecnt [ABSPRI (w)];
2615 4795
2616 ++idleall; 4796 ++idleall;
2617 ev_start (EV_A_ (W)w, active); 4797 ev_start (EV_A_ (W)w, active);
2618 4798
2619 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 4799 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
2620 idles [ABSPRI (w)][active - 1] = w; 4800 idles [ABSPRI (w)][active - 1] = w;
2621 } 4801 }
2622 4802
2623 EV_FREQUENT_CHECK; 4803 EV_FREQUENT_CHECK;
2624} 4804}
2625 4805
2626void 4806void
2627ev_idle_stop (EV_P_ ev_idle *w) 4807ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
2628{ 4808{
2629 clear_pending (EV_A_ (W)w); 4809 clear_pending (EV_A_ (W)w);
2630 if (expect_false (!ev_is_active (w))) 4810 if (ecb_expect_false (!ev_is_active (w)))
2631 return; 4811 return;
2632 4812
2633 EV_FREQUENT_CHECK; 4813 EV_FREQUENT_CHECK;
2634 4814
2635 { 4815 {
2644 4824
2645 EV_FREQUENT_CHECK; 4825 EV_FREQUENT_CHECK;
2646} 4826}
2647#endif 4827#endif
2648 4828
4829#if EV_PREPARE_ENABLE
2649void 4830void
2650ev_prepare_start (EV_P_ ev_prepare *w) 4831ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
2651{ 4832{
2652 if (expect_false (ev_is_active (w))) 4833 if (ecb_expect_false (ev_is_active (w)))
2653 return; 4834 return;
2654 4835
2655 EV_FREQUENT_CHECK; 4836 EV_FREQUENT_CHECK;
2656 4837
2657 ev_start (EV_A_ (W)w, ++preparecnt); 4838 ev_start (EV_A_ (W)w, ++preparecnt);
2658 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4839 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
2659 prepares [preparecnt - 1] = w; 4840 prepares [preparecnt - 1] = w;
2660 4841
2661 EV_FREQUENT_CHECK; 4842 EV_FREQUENT_CHECK;
2662} 4843}
2663 4844
2664void 4845void
2665ev_prepare_stop (EV_P_ ev_prepare *w) 4846ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
2666{ 4847{
2667 clear_pending (EV_A_ (W)w); 4848 clear_pending (EV_A_ (W)w);
2668 if (expect_false (!ev_is_active (w))) 4849 if (ecb_expect_false (!ev_is_active (w)))
2669 return; 4850 return;
2670 4851
2671 EV_FREQUENT_CHECK; 4852 EV_FREQUENT_CHECK;
2672 4853
2673 { 4854 {
2679 4860
2680 ev_stop (EV_A_ (W)w); 4861 ev_stop (EV_A_ (W)w);
2681 4862
2682 EV_FREQUENT_CHECK; 4863 EV_FREQUENT_CHECK;
2683} 4864}
4865#endif
2684 4866
4867#if EV_CHECK_ENABLE
2685void 4868void
2686ev_check_start (EV_P_ ev_check *w) 4869ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
2687{ 4870{
2688 if (expect_false (ev_is_active (w))) 4871 if (ecb_expect_false (ev_is_active (w)))
2689 return; 4872 return;
2690 4873
2691 EV_FREQUENT_CHECK; 4874 EV_FREQUENT_CHECK;
2692 4875
2693 ev_start (EV_A_ (W)w, ++checkcnt); 4876 ev_start (EV_A_ (W)w, ++checkcnt);
2694 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4877 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
2695 checks [checkcnt - 1] = w; 4878 checks [checkcnt - 1] = w;
2696 4879
2697 EV_FREQUENT_CHECK; 4880 EV_FREQUENT_CHECK;
2698} 4881}
2699 4882
2700void 4883void
2701ev_check_stop (EV_P_ ev_check *w) 4884ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
2702{ 4885{
2703 clear_pending (EV_A_ (W)w); 4886 clear_pending (EV_A_ (W)w);
2704 if (expect_false (!ev_is_active (w))) 4887 if (ecb_expect_false (!ev_is_active (w)))
2705 return; 4888 return;
2706 4889
2707 EV_FREQUENT_CHECK; 4890 EV_FREQUENT_CHECK;
2708 4891
2709 { 4892 {
2715 4898
2716 ev_stop (EV_A_ (W)w); 4899 ev_stop (EV_A_ (W)w);
2717 4900
2718 EV_FREQUENT_CHECK; 4901 EV_FREQUENT_CHECK;
2719} 4902}
4903#endif
2720 4904
2721#if EV_EMBED_ENABLE 4905#if EV_EMBED_ENABLE
2722void noinline 4906ecb_noinline
4907void
2723ev_embed_sweep (EV_P_ ev_embed *w) 4908ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
2724{ 4909{
2725 ev_loop (w->other, EVLOOP_NONBLOCK); 4910 ev_run (w->other, EVRUN_NOWAIT);
2726} 4911}
2727 4912
2728static void 4913static void
2729embed_io_cb (EV_P_ ev_io *io, int revents) 4914embed_io_cb (EV_P_ ev_io *io, int revents)
2730{ 4915{
2731 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4916 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2732 4917
2733 if (ev_cb (w)) 4918 if (ev_cb (w))
2734 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4919 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2735 else 4920 else
2736 ev_loop (w->other, EVLOOP_NONBLOCK); 4921 ev_run (w->other, EVRUN_NOWAIT);
2737} 4922}
2738 4923
2739static void 4924static void
2740embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4925embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2741{ 4926{
2742 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4927 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2743 4928
2744 { 4929 {
2745 struct ev_loop *loop = w->other; 4930 EV_P = w->other;
2746 4931
2747 while (fdchangecnt) 4932 while (fdchangecnt)
2748 { 4933 {
2749 fd_reify (EV_A); 4934 fd_reify (EV_A);
2750 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4935 ev_run (EV_A_ EVRUN_NOWAIT);
2751 } 4936 }
2752 } 4937 }
4938}
4939
4940static void
4941embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4942{
4943 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4944
4945 ev_embed_stop (EV_A_ w);
4946
4947 {
4948 EV_P = w->other;
4949
4950 ev_loop_fork (EV_A);
4951 ev_run (EV_A_ EVRUN_NOWAIT);
4952 }
4953
4954 ev_embed_start (EV_A_ w);
2753} 4955}
2754 4956
2755#if 0 4957#if 0
2756static void 4958static void
2757embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4959embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2759 ev_idle_stop (EV_A_ idle); 4961 ev_idle_stop (EV_A_ idle);
2760} 4962}
2761#endif 4963#endif
2762 4964
2763void 4965void
2764ev_embed_start (EV_P_ ev_embed *w) 4966ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
2765{ 4967{
2766 if (expect_false (ev_is_active (w))) 4968 if (ecb_expect_false (ev_is_active (w)))
2767 return; 4969 return;
2768 4970
2769 { 4971 {
2770 struct ev_loop *loop = w->other; 4972 EV_P = w->other;
2771 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4973 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2772 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4974 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2773 } 4975 }
2774 4976
2775 EV_FREQUENT_CHECK; 4977 EV_FREQUENT_CHECK;
2776 4978
2779 4981
2780 ev_prepare_init (&w->prepare, embed_prepare_cb); 4982 ev_prepare_init (&w->prepare, embed_prepare_cb);
2781 ev_set_priority (&w->prepare, EV_MINPRI); 4983 ev_set_priority (&w->prepare, EV_MINPRI);
2782 ev_prepare_start (EV_A_ &w->prepare); 4984 ev_prepare_start (EV_A_ &w->prepare);
2783 4985
4986 ev_fork_init (&w->fork, embed_fork_cb);
4987 ev_fork_start (EV_A_ &w->fork);
4988
2784 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4989 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2785 4990
2786 ev_start (EV_A_ (W)w, 1); 4991 ev_start (EV_A_ (W)w, 1);
2787 4992
2788 EV_FREQUENT_CHECK; 4993 EV_FREQUENT_CHECK;
2789} 4994}
2790 4995
2791void 4996void
2792ev_embed_stop (EV_P_ ev_embed *w) 4997ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
2793{ 4998{
2794 clear_pending (EV_A_ (W)w); 4999 clear_pending (EV_A_ (W)w);
2795 if (expect_false (!ev_is_active (w))) 5000 if (ecb_expect_false (!ev_is_active (w)))
2796 return; 5001 return;
2797 5002
2798 EV_FREQUENT_CHECK; 5003 EV_FREQUENT_CHECK;
2799 5004
2800 ev_io_stop (EV_A_ &w->io); 5005 ev_io_stop (EV_A_ &w->io);
2801 ev_prepare_stop (EV_A_ &w->prepare); 5006 ev_prepare_stop (EV_A_ &w->prepare);
5007 ev_fork_stop (EV_A_ &w->fork);
2802 5008
2803 ev_stop (EV_A_ (W)w); 5009 ev_stop (EV_A_ (W)w);
2804 5010
2805 EV_FREQUENT_CHECK; 5011 EV_FREQUENT_CHECK;
2806} 5012}
2807#endif 5013#endif
2808 5014
2809#if EV_FORK_ENABLE 5015#if EV_FORK_ENABLE
2810void 5016void
2811ev_fork_start (EV_P_ ev_fork *w) 5017ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
2812{ 5018{
2813 if (expect_false (ev_is_active (w))) 5019 if (ecb_expect_false (ev_is_active (w)))
2814 return; 5020 return;
2815 5021
2816 EV_FREQUENT_CHECK; 5022 EV_FREQUENT_CHECK;
2817 5023
2818 ev_start (EV_A_ (W)w, ++forkcnt); 5024 ev_start (EV_A_ (W)w, ++forkcnt);
2819 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 5025 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
2820 forks [forkcnt - 1] = w; 5026 forks [forkcnt - 1] = w;
2821 5027
2822 EV_FREQUENT_CHECK; 5028 EV_FREQUENT_CHECK;
2823} 5029}
2824 5030
2825void 5031void
2826ev_fork_stop (EV_P_ ev_fork *w) 5032ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
2827{ 5033{
2828 clear_pending (EV_A_ (W)w); 5034 clear_pending (EV_A_ (W)w);
2829 if (expect_false (!ev_is_active (w))) 5035 if (ecb_expect_false (!ev_is_active (w)))
2830 return; 5036 return;
2831 5037
2832 EV_FREQUENT_CHECK; 5038 EV_FREQUENT_CHECK;
2833 5039
2834 { 5040 {
2842 5048
2843 EV_FREQUENT_CHECK; 5049 EV_FREQUENT_CHECK;
2844} 5050}
2845#endif 5051#endif
2846 5052
5053#if EV_CLEANUP_ENABLE
5054void
5055ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5056{
5057 if (ecb_expect_false (ev_is_active (w)))
5058 return;
5059
5060 EV_FREQUENT_CHECK;
5061
5062 ev_start (EV_A_ (W)w, ++cleanupcnt);
5063 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
5064 cleanups [cleanupcnt - 1] = w;
5065
5066 /* cleanup watchers should never keep a refcount on the loop */
5067 ev_unref (EV_A);
5068 EV_FREQUENT_CHECK;
5069}
5070
5071void
5072ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5073{
5074 clear_pending (EV_A_ (W)w);
5075 if (ecb_expect_false (!ev_is_active (w)))
5076 return;
5077
5078 EV_FREQUENT_CHECK;
5079 ev_ref (EV_A);
5080
5081 {
5082 int active = ev_active (w);
5083
5084 cleanups [active - 1] = cleanups [--cleanupcnt];
5085 ev_active (cleanups [active - 1]) = active;
5086 }
5087
5088 ev_stop (EV_A_ (W)w);
5089
5090 EV_FREQUENT_CHECK;
5091}
5092#endif
5093
2847#if EV_ASYNC_ENABLE 5094#if EV_ASYNC_ENABLE
2848void 5095void
2849ev_async_start (EV_P_ ev_async *w) 5096ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
2850{ 5097{
2851 if (expect_false (ev_is_active (w))) 5098 if (ecb_expect_false (ev_is_active (w)))
2852 return; 5099 return;
2853 5100
5101 w->sent = 0;
5102
2854 evpipe_init (EV_A); 5103 evpipe_init (EV_A);
2855 5104
2856 EV_FREQUENT_CHECK; 5105 EV_FREQUENT_CHECK;
2857 5106
2858 ev_start (EV_A_ (W)w, ++asynccnt); 5107 ev_start (EV_A_ (W)w, ++asynccnt);
2859 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 5108 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
2860 asyncs [asynccnt - 1] = w; 5109 asyncs [asynccnt - 1] = w;
2861 5110
2862 EV_FREQUENT_CHECK; 5111 EV_FREQUENT_CHECK;
2863} 5112}
2864 5113
2865void 5114void
2866ev_async_stop (EV_P_ ev_async *w) 5115ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
2867{ 5116{
2868 clear_pending (EV_A_ (W)w); 5117 clear_pending (EV_A_ (W)w);
2869 if (expect_false (!ev_is_active (w))) 5118 if (ecb_expect_false (!ev_is_active (w)))
2870 return; 5119 return;
2871 5120
2872 EV_FREQUENT_CHECK; 5121 EV_FREQUENT_CHECK;
2873 5122
2874 { 5123 {
2882 5131
2883 EV_FREQUENT_CHECK; 5132 EV_FREQUENT_CHECK;
2884} 5133}
2885 5134
2886void 5135void
2887ev_async_send (EV_P_ ev_async *w) 5136ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
2888{ 5137{
2889 w->sent = 1; 5138 w->sent = 1;
2890 evpipe_write (EV_A_ &gotasync); 5139 evpipe_write (EV_A_ &async_pending);
2891} 5140}
2892#endif 5141#endif
2893 5142
2894/*****************************************************************************/ 5143/*****************************************************************************/
2895 5144
2905once_cb (EV_P_ struct ev_once *once, int revents) 5154once_cb (EV_P_ struct ev_once *once, int revents)
2906{ 5155{
2907 void (*cb)(int revents, void *arg) = once->cb; 5156 void (*cb)(int revents, void *arg) = once->cb;
2908 void *arg = once->arg; 5157 void *arg = once->arg;
2909 5158
2910 ev_io_stop (EV_A_ &once->io); 5159 ev_io_stop (EV_A_ &once->io);
2911 ev_timer_stop (EV_A_ &once->to); 5160 ev_timer_stop (EV_A_ &once->to);
2912 ev_free (once); 5161 ev_free (once);
2913 5162
2914 cb (revents, arg); 5163 cb (revents, arg);
2915} 5164}
2916 5165
2917static void 5166static void
2918once_cb_io (EV_P_ ev_io *w, int revents) 5167once_cb_io (EV_P_ ev_io *w, int revents)
2919{ 5168{
2920 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 5169 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
5170
5171 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2921} 5172}
2922 5173
2923static void 5174static void
2924once_cb_to (EV_P_ ev_timer *w, int revents) 5175once_cb_to (EV_P_ ev_timer *w, int revents)
2925{ 5176{
2926 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 5177 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
2927}
2928 5178
5179 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
5180}
5181
2929void 5182void
2930ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 5183ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
2931{ 5184{
2932 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 5185 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2933
2934 if (expect_false (!once))
2935 {
2936 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
2937 return;
2938 }
2939 5186
2940 once->cb = cb; 5187 once->cb = cb;
2941 once->arg = arg; 5188 once->arg = arg;
2942 5189
2943 ev_init (&once->io, once_cb_io); 5190 ev_init (&once->io, once_cb_io);
2953 ev_timer_set (&once->to, timeout, 0.); 5200 ev_timer_set (&once->to, timeout, 0.);
2954 ev_timer_start (EV_A_ &once->to); 5201 ev_timer_start (EV_A_ &once->to);
2955 } 5202 }
2956} 5203}
2957 5204
5205/*****************************************************************************/
5206
5207#if EV_WALK_ENABLE
5208ecb_cold
5209void
5210ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5211{
5212 int i, j;
5213 ev_watcher_list *wl, *wn;
5214
5215 if (types & (EV_IO | EV_EMBED))
5216 for (i = 0; i < anfdmax; ++i)
5217 for (wl = anfds [i].head; wl; )
5218 {
5219 wn = wl->next;
5220
5221#if EV_EMBED_ENABLE
5222 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5223 {
5224 if (types & EV_EMBED)
5225 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5226 }
5227 else
5228#endif
5229#if EV_USE_INOTIFY
5230 if (ev_cb ((ev_io *)wl) == infy_cb)
5231 ;
5232 else
5233#endif
5234 if ((ev_io *)wl != &pipe_w)
5235 if (types & EV_IO)
5236 cb (EV_A_ EV_IO, wl);
5237
5238 wl = wn;
5239 }
5240
5241 if (types & (EV_TIMER | EV_STAT))
5242 for (i = timercnt + HEAP0; i-- > HEAP0; )
5243#if EV_STAT_ENABLE
5244 /*TODO: timer is not always active*/
5245 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5246 {
5247 if (types & EV_STAT)
5248 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5249 }
5250 else
5251#endif
5252 if (types & EV_TIMER)
5253 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5254
5255#if EV_PERIODIC_ENABLE
5256 if (types & EV_PERIODIC)
5257 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5258 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5259#endif
5260
5261#if EV_IDLE_ENABLE
5262 if (types & EV_IDLE)
5263 for (j = NUMPRI; j--; )
5264 for (i = idlecnt [j]; i--; )
5265 cb (EV_A_ EV_IDLE, idles [j][i]);
5266#endif
5267
5268#if EV_FORK_ENABLE
5269 if (types & EV_FORK)
5270 for (i = forkcnt; i--; )
5271 if (ev_cb (forks [i]) != embed_fork_cb)
5272 cb (EV_A_ EV_FORK, forks [i]);
5273#endif
5274
5275#if EV_ASYNC_ENABLE
5276 if (types & EV_ASYNC)
5277 for (i = asynccnt; i--; )
5278 cb (EV_A_ EV_ASYNC, asyncs [i]);
5279#endif
5280
5281#if EV_PREPARE_ENABLE
5282 if (types & EV_PREPARE)
5283 for (i = preparecnt; i--; )
5284# if EV_EMBED_ENABLE
5285 if (ev_cb (prepares [i]) != embed_prepare_cb)
5286# endif
5287 cb (EV_A_ EV_PREPARE, prepares [i]);
5288#endif
5289
5290#if EV_CHECK_ENABLE
5291 if (types & EV_CHECK)
5292 for (i = checkcnt; i--; )
5293 cb (EV_A_ EV_CHECK, checks [i]);
5294#endif
5295
5296#if EV_SIGNAL_ENABLE
5297 if (types & EV_SIGNAL)
5298 for (i = 0; i < EV_NSIG - 1; ++i)
5299 for (wl = signals [i].head; wl; )
5300 {
5301 wn = wl->next;
5302 cb (EV_A_ EV_SIGNAL, wl);
5303 wl = wn;
5304 }
5305#endif
5306
5307#if EV_CHILD_ENABLE
5308 if (types & EV_CHILD)
5309 for (i = (EV_PID_HASHSIZE); i--; )
5310 for (wl = childs [i]; wl; )
5311 {
5312 wn = wl->next;
5313 cb (EV_A_ EV_CHILD, wl);
5314 wl = wn;
5315 }
5316#endif
5317/* EV_STAT 0x00001000 /* stat data changed */
5318/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5319}
5320#endif
5321
2958#if EV_MULTIPLICITY 5322#if EV_MULTIPLICITY
2959 #include "ev_wrap.h" 5323 #include "ev_wrap.h"
2960#endif 5324#endif
2961 5325
2962#ifdef __cplusplus
2963}
2964#endif
2965

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines