ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.63 by root, Sun Nov 4 22:03:17 2007 UTC vs.
Revision 1.507 by root, Thu Jul 11 08:22:54 2019 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
39
40/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
32# include "config.h" 45# include "config.h"
46# endif
47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
33 67
34# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
69# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
71# endif
72# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
74# endif
75# else
76# ifndef EV_USE_MONOTONIC
77# define EV_USE_MONOTONIC 0
78# endif
79# ifndef EV_USE_REALTIME
80# define EV_USE_REALTIME 0
81# endif
37# endif 82# endif
38 83
84# if HAVE_NANOSLEEP
85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
91# endif
92
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
40# define EV_USE_SELECT 1 99# define EV_USE_SELECT 0
41# endif 100# endif
42 101
43# if HAVE_POLL && HAVE_POLL_H 102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
44# define EV_USE_POLL 1 108# define EV_USE_POLL 0
45# endif 109# endif
46 110
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
115# else
116# undef EV_USE_EPOLL
48# define EV_USE_EPOLL 1 117# define EV_USE_EPOLL 0
49# endif 118# endif
50 119
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 120# if HAVE_LINUX_AIO_ABI_H
52# define EV_USE_KQUEUE 1 121# ifndef EV_USE_LINUXAIO
122# define EV_USE_LINUXAIO EV_FEATURE_BACKENDS
123# endif
124# else
125# undef EV_USE_LINUXAIO
126# define EV_USE_LINUXAIO 0
53# endif 127# endif
54 128
129# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
130# ifndef EV_USE_KQUEUE
131# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
132# endif
133# else
134# undef EV_USE_KQUEUE
135# define EV_USE_KQUEUE 0
55#endif 136# endif
137
138# if HAVE_PORT_H && HAVE_PORT_CREATE
139# ifndef EV_USE_PORT
140# define EV_USE_PORT EV_FEATURE_BACKENDS
141# endif
142# else
143# undef EV_USE_PORT
144# define EV_USE_PORT 0
145# endif
56 146
57#include <math.h> 147# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
148# ifndef EV_USE_INOTIFY
149# define EV_USE_INOTIFY EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_INOTIFY
153# define EV_USE_INOTIFY 0
154# endif
155
156# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
157# ifndef EV_USE_SIGNALFD
158# define EV_USE_SIGNALFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_SIGNALFD
162# define EV_USE_SIGNALFD 0
163# endif
164
165# if HAVE_EVENTFD
166# ifndef EV_USE_EVENTFD
167# define EV_USE_EVENTFD EV_FEATURE_OS
168# endif
169# else
170# undef EV_USE_EVENTFD
171# define EV_USE_EVENTFD 0
172# endif
173
174#endif
175
176/* OS X, in its infinite idiocy, actually HARDCODES
177 * a limit of 1024 into their select. Where people have brains,
178 * OS X engineers apparently have a vacuum. Or maybe they were
179 * ordered to have a vacuum, or they do anything for money.
180 * This might help. Or not.
181 * Note that this must be defined early, as other include files
182 * will rely on this define as well.
183 */
184#define _DARWIN_UNLIMITED_SELECT 1
185
58#include <stdlib.h> 186#include <stdlib.h>
59#include <unistd.h> 187#include <string.h>
60#include <fcntl.h> 188#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 189#include <stddef.h>
63 190
64#include <stdio.h> 191#include <stdio.h>
65 192
66#include <assert.h> 193#include <assert.h>
67#include <errno.h> 194#include <errno.h>
68#include <sys/types.h> 195#include <sys/types.h>
196#include <time.h>
197#include <limits.h>
198
199#include <signal.h>
200
201#ifdef EV_H
202# include EV_H
203#else
204# include "ev.h"
205#endif
206
207#if EV_NO_THREADS
208# undef EV_NO_SMP
209# define EV_NO_SMP 1
210# undef ECB_NO_THREADS
211# define ECB_NO_THREADS 1
212#endif
213#if EV_NO_SMP
214# undef EV_NO_SMP
215# define ECB_NO_SMP 1
216#endif
217
69#ifndef WIN32 218#ifndef _WIN32
219# include <sys/time.h>
70# include <sys/wait.h> 220# include <sys/wait.h>
221# include <unistd.h>
222#else
223# include <io.h>
224# define WIN32_LEAN_AND_MEAN
225# include <winsock2.h>
226# include <windows.h>
227# ifndef EV_SELECT_IS_WINSOCKET
228# define EV_SELECT_IS_WINSOCKET 1
71#endif 229# endif
72#include <sys/time.h> 230# undef EV_AVOID_STDIO
73#include <time.h> 231#endif
74 232
75/**/ 233/* this block tries to deduce configuration from header-defined symbols and defaults */
234
235/* try to deduce the maximum number of signals on this platform */
236#if defined EV_NSIG
237/* use what's provided */
238#elif defined NSIG
239# define EV_NSIG (NSIG)
240#elif defined _NSIG
241# define EV_NSIG (_NSIG)
242#elif defined SIGMAX
243# define EV_NSIG (SIGMAX+1)
244#elif defined SIG_MAX
245# define EV_NSIG (SIG_MAX+1)
246#elif defined _SIG_MAX
247# define EV_NSIG (_SIG_MAX+1)
248#elif defined MAXSIG
249# define EV_NSIG (MAXSIG+1)
250#elif defined MAX_SIG
251# define EV_NSIG (MAX_SIG+1)
252#elif defined SIGARRAYSIZE
253# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
254#elif defined _sys_nsig
255# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
256#else
257# define EV_NSIG (8 * sizeof (sigset_t) + 1)
258#endif
259
260#ifndef EV_USE_FLOOR
261# define EV_USE_FLOOR 0
262#endif
263
264#ifndef EV_USE_CLOCK_SYSCALL
265# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
266# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
267# else
268# define EV_USE_CLOCK_SYSCALL 0
269# endif
270#endif
271
272#if !(_POSIX_TIMERS > 0)
273# ifndef EV_USE_MONOTONIC
274# define EV_USE_MONOTONIC 0
275# endif
276# ifndef EV_USE_REALTIME
277# define EV_USE_REALTIME 0
278# endif
279#endif
76 280
77#ifndef EV_USE_MONOTONIC 281#ifndef EV_USE_MONOTONIC
282# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
283# define EV_USE_MONOTONIC EV_FEATURE_OS
284# else
78# define EV_USE_MONOTONIC 1 285# define EV_USE_MONOTONIC 0
286# endif
287#endif
288
289#ifndef EV_USE_REALTIME
290# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
291#endif
292
293#ifndef EV_USE_NANOSLEEP
294# if _POSIX_C_SOURCE >= 199309L
295# define EV_USE_NANOSLEEP EV_FEATURE_OS
296# else
297# define EV_USE_NANOSLEEP 0
298# endif
79#endif 299#endif
80 300
81#ifndef EV_USE_SELECT 301#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 302# define EV_USE_SELECT EV_FEATURE_BACKENDS
83#endif 303#endif
84 304
85#ifndef EV_USE_POLL 305#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 306# ifdef _WIN32
307# define EV_USE_POLL 0
308# else
309# define EV_USE_POLL EV_FEATURE_BACKENDS
310# endif
87#endif 311#endif
88 312
89#ifndef EV_USE_EPOLL 313#ifndef EV_USE_EPOLL
314# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
315# define EV_USE_EPOLL EV_FEATURE_BACKENDS
316# else
90# define EV_USE_EPOLL 0 317# define EV_USE_EPOLL 0
318# endif
91#endif 319#endif
92 320
93#ifndef EV_USE_KQUEUE 321#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 322# define EV_USE_KQUEUE 0
95#endif 323#endif
96 324
325#ifndef EV_USE_PORT
326# define EV_USE_PORT 0
327#endif
328
97#ifndef EV_USE_WIN32 329#ifndef EV_USE_LINUXAIO
98# ifdef WIN32 330# if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
99# define EV_USE_WIN32 1 331# define EV_USE_LINUXAIO 1
100# else 332# else
101# define EV_USE_WIN32 0 333# define EV_USE_LINUXAIO 0
102# endif 334# endif
103#endif 335#endif
104 336
105#ifndef EV_USE_REALTIME 337#ifndef EV_USE_IOURING
106# define EV_USE_REALTIME 1 338# if __linux
339# define EV_USE_IOURING 0
340# else
341# define EV_USE_IOURING 0
107#endif 342# endif
343#endif
108 344
109/**/ 345#ifndef EV_USE_INOTIFY
346# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
347# define EV_USE_INOTIFY EV_FEATURE_OS
348# else
349# define EV_USE_INOTIFY 0
350# endif
351#endif
352
353#ifndef EV_PID_HASHSIZE
354# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
355#endif
356
357#ifndef EV_INOTIFY_HASHSIZE
358# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
359#endif
360
361#ifndef EV_USE_EVENTFD
362# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
363# define EV_USE_EVENTFD EV_FEATURE_OS
364# else
365# define EV_USE_EVENTFD 0
366# endif
367#endif
368
369#ifndef EV_USE_SIGNALFD
370# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
371# define EV_USE_SIGNALFD EV_FEATURE_OS
372# else
373# define EV_USE_SIGNALFD 0
374# endif
375#endif
376
377#if 0 /* debugging */
378# define EV_VERIFY 3
379# define EV_USE_4HEAP 1
380# define EV_HEAP_CACHE_AT 1
381#endif
382
383#ifndef EV_VERIFY
384# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
385#endif
386
387#ifndef EV_USE_4HEAP
388# define EV_USE_4HEAP EV_FEATURE_DATA
389#endif
390
391#ifndef EV_HEAP_CACHE_AT
392# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
393#endif
394
395#ifdef __ANDROID__
396/* supposedly, android doesn't typedef fd_mask */
397# undef EV_USE_SELECT
398# define EV_USE_SELECT 0
399/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
400# undef EV_USE_CLOCK_SYSCALL
401# define EV_USE_CLOCK_SYSCALL 0
402#endif
403
404/* aix's poll.h seems to cause lots of trouble */
405#ifdef _AIX
406/* AIX has a completely broken poll.h header */
407# undef EV_USE_POLL
408# define EV_USE_POLL 0
409#endif
410
411/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
412/* which makes programs even slower. might work on other unices, too. */
413#if EV_USE_CLOCK_SYSCALL
414# include <sys/syscall.h>
415# ifdef SYS_clock_gettime
416# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
417# undef EV_USE_MONOTONIC
418# define EV_USE_MONOTONIC 1
419# define EV_NEED_SYSCALL 1
420# else
421# undef EV_USE_CLOCK_SYSCALL
422# define EV_USE_CLOCK_SYSCALL 0
423# endif
424#endif
425
426/* this block fixes any misconfiguration where we know we run into trouble otherwise */
110 427
111#ifndef CLOCK_MONOTONIC 428#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC 429# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0 430# define EV_USE_MONOTONIC 0
114#endif 431#endif
116#ifndef CLOCK_REALTIME 433#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME 434# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0 435# define EV_USE_REALTIME 0
119#endif 436#endif
120 437
121/**/ 438#if !EV_STAT_ENABLE
439# undef EV_USE_INOTIFY
440# define EV_USE_INOTIFY 0
441#endif
122 442
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 443#if !EV_USE_NANOSLEEP
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 444/* hp-ux has it in sys/time.h, which we unconditionally include above */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 445# if !defined _WIN32 && !defined __hpux
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 446# include <sys/select.h>
447# endif
448#endif
127 449
128#include "ev.h" 450#if EV_USE_LINUXAIO
451# include <sys/syscall.h>
452# if SYS_io_getevents && EV_USE_EPOLL /* linuxaio backend requires epoll backend */
453# define EV_NEED_SYSCALL 1
454# else
455# undef EV_USE_LINUXAIO
456# define EV_USE_LINUXAIO 0
457# endif
458#endif
129 459
130#if __GNUC__ >= 3 460#if EV_USE_IOURING
131# define expect(expr,value) __builtin_expect ((expr),(value)) 461# include <sys/syscall.h>
132# define inline inline 462# if !SYS_io_uring_setup && __linux && !__alpha
463# define SYS_io_uring_setup 425
464# define SYS_io_uring_enter 426
465# define SYS_io_uring_wregister 427
466# endif
467# if SYS_io_uring_setup && EV_USE_EPOLL /* iouring backend requires epoll backend */
468# define EV_NEED_SYSCALL 1
469# else
470# undef EV_USE_IOURING
471# define EV_USE_IOURING 0
472# endif
473#endif
474
475#if EV_USE_INOTIFY
476# include <sys/statfs.h>
477# include <sys/inotify.h>
478/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
479# ifndef IN_DONT_FOLLOW
480# undef EV_USE_INOTIFY
481# define EV_USE_INOTIFY 0
482# endif
483#endif
484
485#if EV_USE_EVENTFD
486/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
487# include <stdint.h>
488# ifndef EFD_NONBLOCK
489# define EFD_NONBLOCK O_NONBLOCK
490# endif
491# ifndef EFD_CLOEXEC
492# ifdef O_CLOEXEC
493# define EFD_CLOEXEC O_CLOEXEC
494# else
495# define EFD_CLOEXEC 02000000
496# endif
497# endif
498EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
499#endif
500
501#if EV_USE_SIGNALFD
502/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
503# include <stdint.h>
504# ifndef SFD_NONBLOCK
505# define SFD_NONBLOCK O_NONBLOCK
506# endif
507# ifndef SFD_CLOEXEC
508# ifdef O_CLOEXEC
509# define SFD_CLOEXEC O_CLOEXEC
510# else
511# define SFD_CLOEXEC 02000000
512# endif
513# endif
514EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
515
516struct signalfd_siginfo
517{
518 uint32_t ssi_signo;
519 char pad[128 - sizeof (uint32_t)];
520};
521#endif
522
523/*****************************************************************************/
524
525#if EV_VERIFY >= 3
526# define EV_FREQUENT_CHECK ev_verify (EV_A)
133#else 527#else
134# define expect(expr,value) (expr) 528# define EV_FREQUENT_CHECK do { } while (0)
135# define inline static 529#endif
530
531/*
532 * This is used to work around floating point rounding problems.
533 * This value is good at least till the year 4000.
534 */
535#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
536/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
537
538#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
539#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
540
541/* find a portable timestamp that is "always" in the future but fits into time_t.
542 * this is quite hard, and we are mostly guessing - we handle 32 bit signed/unsigned time_t,
543 * and sizes larger than 32 bit, and maybe the unlikely floating point time_t */
544#define EV_TSTAMP_HUGE \
545 (sizeof (time_t) >= 8 ? 10000000000000. \
546 : 0 < (time_t)4294967295 ? 4294967295. \
547 : 2147483647.) \
548
549#define EV_TS_TO_MS(a) a * 1e3 + 0.9999
550#define EV_TS_FROM_USEC(us) us * 1e-6
551#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
552#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
553#define EV_TV_GET(tv) ((tv).tv_sec + (tv).tv_usec * 1e-6)
554#define EV_TS_GET(ts) ((ts).tv_sec + (ts).tv_nsec * 1e-9)
555
556/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
557/* ECB.H BEGIN */
558/*
559 * libecb - http://software.schmorp.de/pkg/libecb
560 *
561 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
562 * Copyright (©) 2011 Emanuele Giaquinta
563 * All rights reserved.
564 *
565 * Redistribution and use in source and binary forms, with or without modifica-
566 * tion, are permitted provided that the following conditions are met:
567 *
568 * 1. Redistributions of source code must retain the above copyright notice,
569 * this list of conditions and the following disclaimer.
570 *
571 * 2. Redistributions in binary form must reproduce the above copyright
572 * notice, this list of conditions and the following disclaimer in the
573 * documentation and/or other materials provided with the distribution.
574 *
575 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
576 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
577 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
578 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
579 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
580 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
581 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
582 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
583 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
584 * OF THE POSSIBILITY OF SUCH DAMAGE.
585 *
586 * Alternatively, the contents of this file may be used under the terms of
587 * the GNU General Public License ("GPL") version 2 or any later version,
588 * in which case the provisions of the GPL are applicable instead of
589 * the above. If you wish to allow the use of your version of this file
590 * only under the terms of the GPL and not to allow others to use your
591 * version of this file under the BSD license, indicate your decision
592 * by deleting the provisions above and replace them with the notice
593 * and other provisions required by the GPL. If you do not delete the
594 * provisions above, a recipient may use your version of this file under
595 * either the BSD or the GPL.
596 */
597
598#ifndef ECB_H
599#define ECB_H
600
601/* 16 bits major, 16 bits minor */
602#define ECB_VERSION 0x00010006
603
604#ifdef _WIN32
605 typedef signed char int8_t;
606 typedef unsigned char uint8_t;
607 typedef signed short int16_t;
608 typedef unsigned short uint16_t;
609 typedef signed int int32_t;
610 typedef unsigned int uint32_t;
611 #if __GNUC__
612 typedef signed long long int64_t;
613 typedef unsigned long long uint64_t;
614 #else /* _MSC_VER || __BORLANDC__ */
615 typedef signed __int64 int64_t;
616 typedef unsigned __int64 uint64_t;
136#endif 617 #endif
618 #ifdef _WIN64
619 #define ECB_PTRSIZE 8
620 typedef uint64_t uintptr_t;
621 typedef int64_t intptr_t;
622 #else
623 #define ECB_PTRSIZE 4
624 typedef uint32_t uintptr_t;
625 typedef int32_t intptr_t;
626 #endif
627#else
628 #include <inttypes.h>
629 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
630 #define ECB_PTRSIZE 8
631 #else
632 #define ECB_PTRSIZE 4
633 #endif
634#endif
137 635
138#define expect_false(expr) expect ((expr) != 0, 0) 636#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
139#define expect_true(expr) expect ((expr) != 0, 1) 637#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
140 638
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 639/* work around x32 idiocy by defining proper macros */
142#define ABSPRI(w) ((w)->priority - EV_MINPRI) 640#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
641 #if _ILP32
642 #define ECB_AMD64_X32 1
643 #else
644 #define ECB_AMD64 1
645 #endif
646#endif
143 647
144typedef struct ev_watcher *W; 648/* many compilers define _GNUC_ to some versions but then only implement
145typedef struct ev_watcher_list *WL; 649 * what their idiot authors think are the "more important" extensions,
146typedef struct ev_watcher_time *WT; 650 * causing enormous grief in return for some better fake benchmark numbers.
651 * or so.
652 * we try to detect these and simply assume they are not gcc - if they have
653 * an issue with that they should have done it right in the first place.
654 */
655#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
656 #define ECB_GCC_VERSION(major,minor) 0
657#else
658 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
659#endif
147 660
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 661#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
662
663#if __clang__ && defined __has_builtin
664 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
665#else
666 #define ECB_CLANG_BUILTIN(x) 0
667#endif
668
669#if __clang__ && defined __has_extension
670 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
671#else
672 #define ECB_CLANG_EXTENSION(x) 0
673#endif
674
675#define ECB_CPP (__cplusplus+0)
676#define ECB_CPP11 (__cplusplus >= 201103L)
677#define ECB_CPP14 (__cplusplus >= 201402L)
678#define ECB_CPP17 (__cplusplus >= 201703L)
679
680#if ECB_CPP
681 #define ECB_C 0
682 #define ECB_STDC_VERSION 0
683#else
684 #define ECB_C 1
685 #define ECB_STDC_VERSION __STDC_VERSION__
686#endif
687
688#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
689#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
690#define ECB_C17 (ECB_STDC_VERSION >= 201710L)
691
692#if ECB_CPP
693 #define ECB_EXTERN_C extern "C"
694 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
695 #define ECB_EXTERN_C_END }
696#else
697 #define ECB_EXTERN_C extern
698 #define ECB_EXTERN_C_BEG
699 #define ECB_EXTERN_C_END
700#endif
149 701
150/*****************************************************************************/ 702/*****************************************************************************/
151 703
704/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
705/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
706
707#if ECB_NO_THREADS
708 #define ECB_NO_SMP 1
709#endif
710
711#if ECB_NO_SMP
712 #define ECB_MEMORY_FENCE do { } while (0)
713#endif
714
715/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
716#if __xlC__ && ECB_CPP
717 #include <builtins.h>
718#endif
719
720#if 1400 <= _MSC_VER
721 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
722#endif
723
724#ifndef ECB_MEMORY_FENCE
725 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
726 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
727 #if __i386 || __i386__
728 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
729 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
730 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
731 #elif ECB_GCC_AMD64
732 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
733 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
734 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
735 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
736 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
737 #elif defined __ARM_ARCH_2__ \
738 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
739 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
740 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
741 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
742 || defined __ARM_ARCH_5TEJ__
743 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
744 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
745 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
746 || defined __ARM_ARCH_6T2__
747 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
748 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
749 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
750 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
751 #elif __aarch64__
752 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
753 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
754 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
755 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
756 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
757 #elif defined __s390__ || defined __s390x__
758 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
759 #elif defined __mips__
760 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
761 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
762 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
763 #elif defined __alpha__
764 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
765 #elif defined __hppa__
766 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
767 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
768 #elif defined __ia64__
769 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
770 #elif defined __m68k__
771 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
772 #elif defined __m88k__
773 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
774 #elif defined __sh__
775 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
776 #endif
777 #endif
778#endif
779
780#ifndef ECB_MEMORY_FENCE
781 #if ECB_GCC_VERSION(4,7)
782 /* see comment below (stdatomic.h) about the C11 memory model. */
783 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
784 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
785 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
786 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
787
788 #elif ECB_CLANG_EXTENSION(c_atomic)
789 /* see comment below (stdatomic.h) about the C11 memory model. */
790 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
791 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
792 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
793 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
794
795 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
796 #define ECB_MEMORY_FENCE __sync_synchronize ()
797 #elif _MSC_VER >= 1500 /* VC++ 2008 */
798 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
799 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
800 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
801 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
802 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
803 #elif _MSC_VER >= 1400 /* VC++ 2005 */
804 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
805 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
806 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
807 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
808 #elif defined _WIN32
809 #include <WinNT.h>
810 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
811 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
812 #include <mbarrier.h>
813 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
814 #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
815 #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
816 #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
817 #elif __xlC__
818 #define ECB_MEMORY_FENCE __sync ()
819 #endif
820#endif
821
822#ifndef ECB_MEMORY_FENCE
823 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
824 /* we assume that these memory fences work on all variables/all memory accesses, */
825 /* not just C11 atomics and atomic accesses */
826 #include <stdatomic.h>
827 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
828 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
829 #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
830 #endif
831#endif
832
833#ifndef ECB_MEMORY_FENCE
834 #if !ECB_AVOID_PTHREADS
835 /*
836 * if you get undefined symbol references to pthread_mutex_lock,
837 * or failure to find pthread.h, then you should implement
838 * the ECB_MEMORY_FENCE operations for your cpu/compiler
839 * OR provide pthread.h and link against the posix thread library
840 * of your system.
841 */
842 #include <pthread.h>
843 #define ECB_NEEDS_PTHREADS 1
844 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
845
846 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
847 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
848 #endif
849#endif
850
851#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
852 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
853#endif
854
855#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
856 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
857#endif
858
859#if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
860 #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
861#endif
862
863/*****************************************************************************/
864
865#if ECB_CPP
866 #define ecb_inline static inline
867#elif ECB_GCC_VERSION(2,5)
868 #define ecb_inline static __inline__
869#elif ECB_C99
870 #define ecb_inline static inline
871#else
872 #define ecb_inline static
873#endif
874
875#if ECB_GCC_VERSION(3,3)
876 #define ecb_restrict __restrict__
877#elif ECB_C99
878 #define ecb_restrict restrict
879#else
880 #define ecb_restrict
881#endif
882
883typedef int ecb_bool;
884
885#define ECB_CONCAT_(a, b) a ## b
886#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
887#define ECB_STRINGIFY_(a) # a
888#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
889#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
890
891#define ecb_function_ ecb_inline
892
893#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
894 #define ecb_attribute(attrlist) __attribute__ (attrlist)
895#else
896 #define ecb_attribute(attrlist)
897#endif
898
899#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
900 #define ecb_is_constant(expr) __builtin_constant_p (expr)
901#else
902 /* possible C11 impl for integral types
903 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
904 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
905
906 #define ecb_is_constant(expr) 0
907#endif
908
909#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
910 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
911#else
912 #define ecb_expect(expr,value) (expr)
913#endif
914
915#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
916 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
917#else
918 #define ecb_prefetch(addr,rw,locality)
919#endif
920
921/* no emulation for ecb_decltype */
922#if ECB_CPP11
923 // older implementations might have problems with decltype(x)::type, work around it
924 template<class T> struct ecb_decltype_t { typedef T type; };
925 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
926#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
927 #define ecb_decltype(x) __typeof__ (x)
928#endif
929
930#if _MSC_VER >= 1300
931 #define ecb_deprecated __declspec (deprecated)
932#else
933 #define ecb_deprecated ecb_attribute ((__deprecated__))
934#endif
935
936#if _MSC_VER >= 1500
937 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
938#elif ECB_GCC_VERSION(4,5)
939 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
940#else
941 #define ecb_deprecated_message(msg) ecb_deprecated
942#endif
943
944#if _MSC_VER >= 1400
945 #define ecb_noinline __declspec (noinline)
946#else
947 #define ecb_noinline ecb_attribute ((__noinline__))
948#endif
949
950#define ecb_unused ecb_attribute ((__unused__))
951#define ecb_const ecb_attribute ((__const__))
952#define ecb_pure ecb_attribute ((__pure__))
953
954#if ECB_C11 || __IBMC_NORETURN
955 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
956 #define ecb_noreturn _Noreturn
957#elif ECB_CPP11
958 #define ecb_noreturn [[noreturn]]
959#elif _MSC_VER >= 1200
960 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
961 #define ecb_noreturn __declspec (noreturn)
962#else
963 #define ecb_noreturn ecb_attribute ((__noreturn__))
964#endif
965
966#if ECB_GCC_VERSION(4,3)
967 #define ecb_artificial ecb_attribute ((__artificial__))
968 #define ecb_hot ecb_attribute ((__hot__))
969 #define ecb_cold ecb_attribute ((__cold__))
970#else
971 #define ecb_artificial
972 #define ecb_hot
973 #define ecb_cold
974#endif
975
976/* put around conditional expressions if you are very sure that the */
977/* expression is mostly true or mostly false. note that these return */
978/* booleans, not the expression. */
979#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
980#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
981/* for compatibility to the rest of the world */
982#define ecb_likely(expr) ecb_expect_true (expr)
983#define ecb_unlikely(expr) ecb_expect_false (expr)
984
985/* count trailing zero bits and count # of one bits */
986#if ECB_GCC_VERSION(3,4) \
987 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
988 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
989 && ECB_CLANG_BUILTIN(__builtin_popcount))
990 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
991 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
992 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
993 #define ecb_ctz32(x) __builtin_ctz (x)
994 #define ecb_ctz64(x) __builtin_ctzll (x)
995 #define ecb_popcount32(x) __builtin_popcount (x)
996 /* no popcountll */
997#else
998 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
999 ecb_function_ ecb_const int
1000 ecb_ctz32 (uint32_t x)
1001 {
1002#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1003 unsigned long r;
1004 _BitScanForward (&r, x);
1005 return (int)r;
1006#else
1007 int r = 0;
1008
1009 x &= ~x + 1; /* this isolates the lowest bit */
1010
1011#if ECB_branchless_on_i386
1012 r += !!(x & 0xaaaaaaaa) << 0;
1013 r += !!(x & 0xcccccccc) << 1;
1014 r += !!(x & 0xf0f0f0f0) << 2;
1015 r += !!(x & 0xff00ff00) << 3;
1016 r += !!(x & 0xffff0000) << 4;
1017#else
1018 if (x & 0xaaaaaaaa) r += 1;
1019 if (x & 0xcccccccc) r += 2;
1020 if (x & 0xf0f0f0f0) r += 4;
1021 if (x & 0xff00ff00) r += 8;
1022 if (x & 0xffff0000) r += 16;
1023#endif
1024
1025 return r;
1026#endif
1027 }
1028
1029 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
1030 ecb_function_ ecb_const int
1031 ecb_ctz64 (uint64_t x)
1032 {
1033#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1034 unsigned long r;
1035 _BitScanForward64 (&r, x);
1036 return (int)r;
1037#else
1038 int shift = x & 0xffffffff ? 0 : 32;
1039 return ecb_ctz32 (x >> shift) + shift;
1040#endif
1041 }
1042
1043 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1044 ecb_function_ ecb_const int
1045 ecb_popcount32 (uint32_t x)
1046 {
1047 x -= (x >> 1) & 0x55555555;
1048 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1049 x = ((x >> 4) + x) & 0x0f0f0f0f;
1050 x *= 0x01010101;
1051
1052 return x >> 24;
1053 }
1054
1055 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1056 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1057 {
1058#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1059 unsigned long r;
1060 _BitScanReverse (&r, x);
1061 return (int)r;
1062#else
1063 int r = 0;
1064
1065 if (x >> 16) { x >>= 16; r += 16; }
1066 if (x >> 8) { x >>= 8; r += 8; }
1067 if (x >> 4) { x >>= 4; r += 4; }
1068 if (x >> 2) { x >>= 2; r += 2; }
1069 if (x >> 1) { r += 1; }
1070
1071 return r;
1072#endif
1073 }
1074
1075 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1076 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1077 {
1078#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1079 unsigned long r;
1080 _BitScanReverse64 (&r, x);
1081 return (int)r;
1082#else
1083 int r = 0;
1084
1085 if (x >> 32) { x >>= 32; r += 32; }
1086
1087 return r + ecb_ld32 (x);
1088#endif
1089 }
1090#endif
1091
1092ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1093ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1094ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1095ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1096
1097ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1098ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1099{
1100 return ( (x * 0x0802U & 0x22110U)
1101 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1102}
1103
1104ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1105ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1106{
1107 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1108 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1109 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1110 x = ( x >> 8 ) | ( x << 8);
1111
1112 return x;
1113}
1114
1115ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1116ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1117{
1118 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1119 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1120 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1121 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1122 x = ( x >> 16 ) | ( x << 16);
1123
1124 return x;
1125}
1126
1127/* popcount64 is only available on 64 bit cpus as gcc builtin */
1128/* so for this version we are lazy */
1129ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1130ecb_function_ ecb_const int
1131ecb_popcount64 (uint64_t x)
1132{
1133 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1134}
1135
1136ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1137ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1138ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1139ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1140ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1141ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1142ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1143ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1144
1145ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1146ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1147ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1148ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1149ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1150ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1151ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1152ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1153
1154#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1155 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1156 #define ecb_bswap16(x) __builtin_bswap16 (x)
1157 #else
1158 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1159 #endif
1160 #define ecb_bswap32(x) __builtin_bswap32 (x)
1161 #define ecb_bswap64(x) __builtin_bswap64 (x)
1162#elif _MSC_VER
1163 #include <stdlib.h>
1164 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1165 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1166 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1167#else
1168 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1169 ecb_function_ ecb_const uint16_t
1170 ecb_bswap16 (uint16_t x)
1171 {
1172 return ecb_rotl16 (x, 8);
1173 }
1174
1175 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1176 ecb_function_ ecb_const uint32_t
1177 ecb_bswap32 (uint32_t x)
1178 {
1179 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1180 }
1181
1182 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1183 ecb_function_ ecb_const uint64_t
1184 ecb_bswap64 (uint64_t x)
1185 {
1186 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1187 }
1188#endif
1189
1190#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1191 #define ecb_unreachable() __builtin_unreachable ()
1192#else
1193 /* this seems to work fine, but gcc always emits a warning for it :/ */
1194 ecb_inline ecb_noreturn void ecb_unreachable (void);
1195 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1196#endif
1197
1198/* try to tell the compiler that some condition is definitely true */
1199#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1200
1201ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1202ecb_inline ecb_const uint32_t
1203ecb_byteorder_helper (void)
1204{
1205 /* the union code still generates code under pressure in gcc, */
1206 /* but less than using pointers, and always seems to */
1207 /* successfully return a constant. */
1208 /* the reason why we have this horrible preprocessor mess */
1209 /* is to avoid it in all cases, at least on common architectures */
1210 /* or when using a recent enough gcc version (>= 4.6) */
1211#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1212 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1213 #define ECB_LITTLE_ENDIAN 1
1214 return 0x44332211;
1215#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1216 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1217 #define ECB_BIG_ENDIAN 1
1218 return 0x11223344;
1219#else
1220 union
1221 {
1222 uint8_t c[4];
1223 uint32_t u;
1224 } u = { 0x11, 0x22, 0x33, 0x44 };
1225 return u.u;
1226#endif
1227}
1228
1229ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1230ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1231ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1232ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1233
1234#if ECB_GCC_VERSION(3,0) || ECB_C99
1235 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1236#else
1237 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1238#endif
1239
1240#if ECB_CPP
1241 template<typename T>
1242 static inline T ecb_div_rd (T val, T div)
1243 {
1244 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1245 }
1246 template<typename T>
1247 static inline T ecb_div_ru (T val, T div)
1248 {
1249 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1250 }
1251#else
1252 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1253 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1254#endif
1255
1256#if ecb_cplusplus_does_not_suck
1257 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1258 template<typename T, int N>
1259 static inline int ecb_array_length (const T (&arr)[N])
1260 {
1261 return N;
1262 }
1263#else
1264 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1265#endif
1266
1267ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1268ecb_function_ ecb_const uint32_t
1269ecb_binary16_to_binary32 (uint32_t x)
1270{
1271 unsigned int s = (x & 0x8000) << (31 - 15);
1272 int e = (x >> 10) & 0x001f;
1273 unsigned int m = x & 0x03ff;
1274
1275 if (ecb_expect_false (e == 31))
1276 /* infinity or NaN */
1277 e = 255 - (127 - 15);
1278 else if (ecb_expect_false (!e))
1279 {
1280 if (ecb_expect_true (!m))
1281 /* zero, handled by code below by forcing e to 0 */
1282 e = 0 - (127 - 15);
1283 else
1284 {
1285 /* subnormal, renormalise */
1286 unsigned int s = 10 - ecb_ld32 (m);
1287
1288 m = (m << s) & 0x3ff; /* mask implicit bit */
1289 e -= s - 1;
1290 }
1291 }
1292
1293 /* e and m now are normalised, or zero, (or inf or nan) */
1294 e += 127 - 15;
1295
1296 return s | (e << 23) | (m << (23 - 10));
1297}
1298
1299ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1300ecb_function_ ecb_const uint16_t
1301ecb_binary32_to_binary16 (uint32_t x)
1302{
1303 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1304 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1305 unsigned int m = x & 0x007fffff;
1306
1307 x &= 0x7fffffff;
1308
1309 /* if it's within range of binary16 normals, use fast path */
1310 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1311 {
1312 /* mantissa round-to-even */
1313 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1314
1315 /* handle overflow */
1316 if (ecb_expect_false (m >= 0x00800000))
1317 {
1318 m >>= 1;
1319 e += 1;
1320 }
1321
1322 return s | (e << 10) | (m >> (23 - 10));
1323 }
1324
1325 /* handle large numbers and infinity */
1326 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1327 return s | 0x7c00;
1328
1329 /* handle zero, subnormals and small numbers */
1330 if (ecb_expect_true (x < 0x38800000))
1331 {
1332 /* zero */
1333 if (ecb_expect_true (!x))
1334 return s;
1335
1336 /* handle subnormals */
1337
1338 /* too small, will be zero */
1339 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1340 return s;
1341
1342 m |= 0x00800000; /* make implicit bit explicit */
1343
1344 /* very tricky - we need to round to the nearest e (+10) bit value */
1345 {
1346 unsigned int bits = 14 - e;
1347 unsigned int half = (1 << (bits - 1)) - 1;
1348 unsigned int even = (m >> bits) & 1;
1349
1350 /* if this overflows, we will end up with a normalised number */
1351 m = (m + half + even) >> bits;
1352 }
1353
1354 return s | m;
1355 }
1356
1357 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1358 m >>= 13;
1359
1360 return s | 0x7c00 | m | !m;
1361}
1362
1363/*******************************************************************************/
1364/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1365
1366/* basically, everything uses "ieee pure-endian" floating point numbers */
1367/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1368#if 0 \
1369 || __i386 || __i386__ \
1370 || ECB_GCC_AMD64 \
1371 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1372 || defined __s390__ || defined __s390x__ \
1373 || defined __mips__ \
1374 || defined __alpha__ \
1375 || defined __hppa__ \
1376 || defined __ia64__ \
1377 || defined __m68k__ \
1378 || defined __m88k__ \
1379 || defined __sh__ \
1380 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1381 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1382 || defined __aarch64__
1383 #define ECB_STDFP 1
1384 #include <string.h> /* for memcpy */
1385#else
1386 #define ECB_STDFP 0
1387#endif
1388
1389#ifndef ECB_NO_LIBM
1390
1391 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1392
1393 /* only the oldest of old doesn't have this one. solaris. */
1394 #ifdef INFINITY
1395 #define ECB_INFINITY INFINITY
1396 #else
1397 #define ECB_INFINITY HUGE_VAL
1398 #endif
1399
1400 #ifdef NAN
1401 #define ECB_NAN NAN
1402 #else
1403 #define ECB_NAN ECB_INFINITY
1404 #endif
1405
1406 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1407 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1408 #define ecb_frexpf(x,e) frexpf ((x), (e))
1409 #else
1410 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1411 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1412 #endif
1413
1414 /* convert a float to ieee single/binary32 */
1415 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1416 ecb_function_ ecb_const uint32_t
1417 ecb_float_to_binary32 (float x)
1418 {
1419 uint32_t r;
1420
1421 #if ECB_STDFP
1422 memcpy (&r, &x, 4);
1423 #else
1424 /* slow emulation, works for anything but -0 */
1425 uint32_t m;
1426 int e;
1427
1428 if (x == 0e0f ) return 0x00000000U;
1429 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1430 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1431 if (x != x ) return 0x7fbfffffU;
1432
1433 m = ecb_frexpf (x, &e) * 0x1000000U;
1434
1435 r = m & 0x80000000U;
1436
1437 if (r)
1438 m = -m;
1439
1440 if (e <= -126)
1441 {
1442 m &= 0xffffffU;
1443 m >>= (-125 - e);
1444 e = -126;
1445 }
1446
1447 r |= (e + 126) << 23;
1448 r |= m & 0x7fffffU;
1449 #endif
1450
1451 return r;
1452 }
1453
1454 /* converts an ieee single/binary32 to a float */
1455 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1456 ecb_function_ ecb_const float
1457 ecb_binary32_to_float (uint32_t x)
1458 {
1459 float r;
1460
1461 #if ECB_STDFP
1462 memcpy (&r, &x, 4);
1463 #else
1464 /* emulation, only works for normals and subnormals and +0 */
1465 int neg = x >> 31;
1466 int e = (x >> 23) & 0xffU;
1467
1468 x &= 0x7fffffU;
1469
1470 if (e)
1471 x |= 0x800000U;
1472 else
1473 e = 1;
1474
1475 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1476 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1477
1478 r = neg ? -r : r;
1479 #endif
1480
1481 return r;
1482 }
1483
1484 /* convert a double to ieee double/binary64 */
1485 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1486 ecb_function_ ecb_const uint64_t
1487 ecb_double_to_binary64 (double x)
1488 {
1489 uint64_t r;
1490
1491 #if ECB_STDFP
1492 memcpy (&r, &x, 8);
1493 #else
1494 /* slow emulation, works for anything but -0 */
1495 uint64_t m;
1496 int e;
1497
1498 if (x == 0e0 ) return 0x0000000000000000U;
1499 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1500 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1501 if (x != x ) return 0X7ff7ffffffffffffU;
1502
1503 m = frexp (x, &e) * 0x20000000000000U;
1504
1505 r = m & 0x8000000000000000;;
1506
1507 if (r)
1508 m = -m;
1509
1510 if (e <= -1022)
1511 {
1512 m &= 0x1fffffffffffffU;
1513 m >>= (-1021 - e);
1514 e = -1022;
1515 }
1516
1517 r |= ((uint64_t)(e + 1022)) << 52;
1518 r |= m & 0xfffffffffffffU;
1519 #endif
1520
1521 return r;
1522 }
1523
1524 /* converts an ieee double/binary64 to a double */
1525 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1526 ecb_function_ ecb_const double
1527 ecb_binary64_to_double (uint64_t x)
1528 {
1529 double r;
1530
1531 #if ECB_STDFP
1532 memcpy (&r, &x, 8);
1533 #else
1534 /* emulation, only works for normals and subnormals and +0 */
1535 int neg = x >> 63;
1536 int e = (x >> 52) & 0x7ffU;
1537
1538 x &= 0xfffffffffffffU;
1539
1540 if (e)
1541 x |= 0x10000000000000U;
1542 else
1543 e = 1;
1544
1545 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1546 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1547
1548 r = neg ? -r : r;
1549 #endif
1550
1551 return r;
1552 }
1553
1554 /* convert a float to ieee half/binary16 */
1555 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1556 ecb_function_ ecb_const uint16_t
1557 ecb_float_to_binary16 (float x)
1558 {
1559 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1560 }
1561
1562 /* convert an ieee half/binary16 to float */
1563 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1564 ecb_function_ ecb_const float
1565 ecb_binary16_to_float (uint16_t x)
1566 {
1567 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1568 }
1569
1570#endif
1571
1572#endif
1573
1574/* ECB.H END */
1575
1576#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1577/* if your architecture doesn't need memory fences, e.g. because it is
1578 * single-cpu/core, or if you use libev in a project that doesn't use libev
1579 * from multiple threads, then you can define ECB_NO_THREADS when compiling
1580 * libev, in which cases the memory fences become nops.
1581 * alternatively, you can remove this #error and link against libpthread,
1582 * which will then provide the memory fences.
1583 */
1584# error "memory fences not defined for your architecture, please report"
1585#endif
1586
1587#ifndef ECB_MEMORY_FENCE
1588# define ECB_MEMORY_FENCE do { } while (0)
1589# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1590# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1591#endif
1592
1593#define inline_size ecb_inline
1594
1595#if EV_FEATURE_CODE
1596# define inline_speed ecb_inline
1597#else
1598# define inline_speed ecb_noinline static
1599#endif
1600
1601/*****************************************************************************/
1602/* raw syscall wrappers */
1603
1604#if EV_NEED_SYSCALL
1605
1606#include <sys/syscall.h>
1607
1608/*
1609 * define some syscall wrappers for common architectures
1610 * this is mostly for nice looks during debugging, not performance.
1611 * our syscalls return < 0, not == -1, on error. which is good
1612 * enough for linux aio.
1613 * TODO: arm is also common nowadays, maybe even mips and x86
1614 * TODO: after implementing this, it suddenly looks like overkill, but its hard to remove...
1615 */
1616#if __GNUC__ && __linux && ECB_AMD64 && !defined __OPTIMIZE_SIZE__
1617 /* the costly errno access probably kills this for size optimisation */
1618
1619 #define ev_syscall(nr,narg,arg1,arg2,arg3,arg4,arg5,arg6) \
1620 ({ \
1621 long res; \
1622 register unsigned long r6 __asm__ ("r9" ); \
1623 register unsigned long r5 __asm__ ("r8" ); \
1624 register unsigned long r4 __asm__ ("r10"); \
1625 register unsigned long r3 __asm__ ("rdx"); \
1626 register unsigned long r2 __asm__ ("rsi"); \
1627 register unsigned long r1 __asm__ ("rdi"); \
1628 if (narg >= 6) r6 = (unsigned long)(arg6); \
1629 if (narg >= 5) r5 = (unsigned long)(arg5); \
1630 if (narg >= 4) r4 = (unsigned long)(arg4); \
1631 if (narg >= 3) r3 = (unsigned long)(arg3); \
1632 if (narg >= 2) r2 = (unsigned long)(arg2); \
1633 if (narg >= 1) r1 = (unsigned long)(arg1); \
1634 __asm__ __volatile__ ( \
1635 "syscall\n\t" \
1636 : "=a" (res) \
1637 : "0" (nr), "r" (r1), "r" (r2), "r" (r3), "r" (r4), "r" (r5) \
1638 : "cc", "r11", "cx", "memory"); \
1639 errno = -res; \
1640 res; \
1641 })
1642
1643#endif
1644
1645#ifdef ev_syscall
1646 #define ev_syscall0(nr) ev_syscall (nr, 0, 0, 0, 0, 0, 0, 0)
1647 #define ev_syscall1(nr,arg1) ev_syscall (nr, 1, arg1, 0, 0, 0, 0, 0)
1648 #define ev_syscall2(nr,arg1,arg2) ev_syscall (nr, 2, arg1, arg2, 0, 0, 0, 0)
1649 #define ev_syscall3(nr,arg1,arg2,arg3) ev_syscall (nr, 3, arg1, arg2, arg3, 0, 0, 0)
1650 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) ev_syscall (nr, 3, arg1, arg2, arg3, arg4, 0, 0)
1651 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) ev_syscall (nr, 5, arg1, arg2, arg3, arg4, arg5, 0)
1652 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) ev_syscall (nr, 6, arg1, arg2, arg3, arg4, arg5,arg6)
1653#else
1654 #define ev_syscall0(nr) syscall (nr)
1655 #define ev_syscall1(nr,arg1) syscall (nr, arg1)
1656 #define ev_syscall2(nr,arg1,arg2) syscall (nr, arg1, arg2)
1657 #define ev_syscall3(nr,arg1,arg2,arg3) syscall (nr, arg1, arg2, arg3)
1658 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) syscall (nr, arg1, arg2, arg3, arg4)
1659 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) syscall (nr, arg1, arg2, arg3, arg4, arg5)
1660 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) syscall (nr, arg1, arg2, arg3, arg4, arg5,arg6)
1661#endif
1662
1663#endif
1664
1665/*****************************************************************************/
1666
1667#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1668
1669#if EV_MINPRI == EV_MAXPRI
1670# define ABSPRI(w) (((W)w), 0)
1671#else
1672# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1673#endif
1674
1675#define EMPTY /* required for microsofts broken pseudo-c compiler */
1676
1677typedef ev_watcher *W;
1678typedef ev_watcher_list *WL;
1679typedef ev_watcher_time *WT;
1680
1681#define ev_active(w) ((W)(w))->active
1682#define ev_at(w) ((WT)(w))->at
1683
1684#if EV_USE_REALTIME
1685/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1686/* giving it a reasonably high chance of working on typical architectures */
1687static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1688#endif
1689
1690#if EV_USE_MONOTONIC
1691static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1692#endif
1693
1694#ifndef EV_FD_TO_WIN32_HANDLE
1695# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1696#endif
1697#ifndef EV_WIN32_HANDLE_TO_FD
1698# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1699#endif
1700#ifndef EV_WIN32_CLOSE_FD
1701# define EV_WIN32_CLOSE_FD(fd) close (fd)
1702#endif
1703
1704#ifdef _WIN32
1705# include "ev_win32.c"
1706#endif
1707
1708/*****************************************************************************/
1709
1710#if EV_USE_LINUXAIO
1711# include <linux/aio_abi.h> /* probably only needed for aio_context_t */
1712#endif
1713
1714/* define a suitable floor function (only used by periodics atm) */
1715
1716#if EV_USE_FLOOR
1717# include <math.h>
1718# define ev_floor(v) floor (v)
1719#else
1720
1721#include <float.h>
1722
1723/* a floor() replacement function, should be independent of ev_tstamp type */
1724ecb_noinline
1725static ev_tstamp
1726ev_floor (ev_tstamp v)
1727{
1728 /* the choice of shift factor is not terribly important */
1729#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1730 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1731#else
1732 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1733#endif
1734
1735 /* special treatment for negative arguments */
1736 if (ecb_expect_false (v < 0.))
1737 {
1738 ev_tstamp f = -ev_floor (-v);
1739
1740 return f - (f == v ? 0 : 1);
1741 }
1742
1743 /* argument too large for an unsigned long? then reduce it */
1744 if (ecb_expect_false (v >= shift))
1745 {
1746 ev_tstamp f;
1747
1748 if (v == v - 1.)
1749 return v; /* very large numbers are assumed to be integer */
1750
1751 f = shift * ev_floor (v * (1. / shift));
1752 return f + ev_floor (v - f);
1753 }
1754
1755 /* fits into an unsigned long */
1756 return (unsigned long)v;
1757}
1758
1759#endif
1760
1761/*****************************************************************************/
1762
1763#ifdef __linux
1764# include <sys/utsname.h>
1765#endif
1766
1767ecb_noinline ecb_cold
1768static unsigned int
1769ev_linux_version (void)
1770{
1771#ifdef __linux
1772 unsigned int v = 0;
1773 struct utsname buf;
1774 int i;
1775 char *p = buf.release;
1776
1777 if (uname (&buf))
1778 return 0;
1779
1780 for (i = 3+1; --i; )
1781 {
1782 unsigned int c = 0;
1783
1784 for (;;)
1785 {
1786 if (*p >= '0' && *p <= '9')
1787 c = c * 10 + *p++ - '0';
1788 else
1789 {
1790 p += *p == '.';
1791 break;
1792 }
1793 }
1794
1795 v = (v << 8) | c;
1796 }
1797
1798 return v;
1799#else
1800 return 0;
1801#endif
1802}
1803
1804/*****************************************************************************/
1805
1806#if EV_AVOID_STDIO
1807ecb_noinline ecb_cold
1808static void
1809ev_printerr (const char *msg)
1810{
1811 write (STDERR_FILENO, msg, strlen (msg));
1812}
1813#endif
1814
1815static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
1816
1817ecb_cold
1818void
1819ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
1820{
1821 syserr_cb = cb;
1822}
1823
1824ecb_noinline ecb_cold
1825static void
1826ev_syserr (const char *msg)
1827{
1828 if (!msg)
1829 msg = "(libev) system error";
1830
1831 if (syserr_cb)
1832 syserr_cb (msg);
1833 else
1834 {
1835#if EV_AVOID_STDIO
1836 ev_printerr (msg);
1837 ev_printerr (": ");
1838 ev_printerr (strerror (errno));
1839 ev_printerr ("\n");
1840#else
1841 perror (msg);
1842#endif
1843 abort ();
1844 }
1845}
1846
1847static void *
1848ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
1849{
1850 /* some systems, notably openbsd and darwin, fail to properly
1851 * implement realloc (x, 0) (as required by both ansi c-89 and
1852 * the single unix specification, so work around them here.
1853 * recently, also (at least) fedora and debian started breaking it,
1854 * despite documenting it otherwise.
1855 */
1856
1857 if (size)
1858 return realloc (ptr, size);
1859
1860 free (ptr);
1861 return 0;
1862}
1863
1864static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
1865
1866ecb_cold
1867void
1868ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
1869{
1870 alloc = cb;
1871}
1872
1873inline_speed void *
1874ev_realloc (void *ptr, long size)
1875{
1876 ptr = alloc (ptr, size);
1877
1878 if (!ptr && size)
1879 {
1880#if EV_AVOID_STDIO
1881 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1882#else
1883 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1884#endif
1885 abort ();
1886 }
1887
1888 return ptr;
1889}
1890
1891#define ev_malloc(size) ev_realloc (0, (size))
1892#define ev_free(ptr) ev_realloc ((ptr), 0)
1893
1894/*****************************************************************************/
1895
1896/* set in reify when reification needed */
1897#define EV_ANFD_REIFY 1
1898
1899/* file descriptor info structure */
152typedef struct 1900typedef struct
153{ 1901{
154 struct ev_watcher_list *head; 1902 WL head;
155 unsigned char events; 1903 unsigned char events; /* the events watched for */
156 unsigned char reify; 1904 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1905 unsigned char emask; /* some backends store the actual kernel mask in here */
1906 unsigned char eflags; /* flags field for use by backends */
1907#if EV_USE_EPOLL
1908 unsigned int egen; /* generation counter to counter epoll bugs */
1909#endif
1910#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1911 SOCKET handle;
1912#endif
1913#if EV_USE_IOCP
1914 OVERLAPPED or, ow;
1915#endif
157} ANFD; 1916} ANFD;
158 1917
1918/* stores the pending event set for a given watcher */
159typedef struct 1919typedef struct
160{ 1920{
161 W w; 1921 W w;
162 int events; 1922 int events; /* the pending event set for the given watcher */
163} ANPENDING; 1923} ANPENDING;
164 1924
1925#if EV_USE_INOTIFY
1926/* hash table entry per inotify-id */
1927typedef struct
1928{
1929 WL head;
1930} ANFS;
1931#endif
1932
1933/* Heap Entry */
1934#if EV_HEAP_CACHE_AT
1935 /* a heap element */
1936 typedef struct {
1937 ev_tstamp at;
1938 WT w;
1939 } ANHE;
1940
1941 #define ANHE_w(he) (he).w /* access watcher, read-write */
1942 #define ANHE_at(he) (he).at /* access cached at, read-only */
1943 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1944#else
1945 /* a heap element */
1946 typedef WT ANHE;
1947
1948 #define ANHE_w(he) (he)
1949 #define ANHE_at(he) (he)->at
1950 #define ANHE_at_cache(he)
1951#endif
1952
165#if EV_MULTIPLICITY 1953#if EV_MULTIPLICITY
166 1954
167struct ev_loop 1955 struct ev_loop
168{ 1956 {
1957 ev_tstamp ev_rt_now;
1958 #define ev_rt_now ((loop)->ev_rt_now)
169# define VAR(name,decl) decl; 1959 #define VAR(name,decl) decl;
170# include "ev_vars.h" 1960 #include "ev_vars.h"
171};
172# undef VAR 1961 #undef VAR
1962 };
173# include "ev_wrap.h" 1963 #include "ev_wrap.h"
1964
1965 static struct ev_loop default_loop_struct;
1966 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
174 1967
175#else 1968#else
176 1969
1970 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
177# define VAR(name,decl) static decl; 1971 #define VAR(name,decl) static decl;
178# include "ev_vars.h" 1972 #include "ev_vars.h"
179# undef VAR 1973 #undef VAR
180 1974
1975 static int ev_default_loop_ptr;
1976
181#endif 1977#endif
1978
1979#if EV_FEATURE_API
1980# define EV_RELEASE_CB if (ecb_expect_false (release_cb)) release_cb (EV_A)
1981# define EV_ACQUIRE_CB if (ecb_expect_false (acquire_cb)) acquire_cb (EV_A)
1982# define EV_INVOKE_PENDING invoke_cb (EV_A)
1983#else
1984# define EV_RELEASE_CB (void)0
1985# define EV_ACQUIRE_CB (void)0
1986# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1987#endif
1988
1989#define EVBREAK_RECURSE 0x80
182 1990
183/*****************************************************************************/ 1991/*****************************************************************************/
184 1992
185inline ev_tstamp 1993#ifndef EV_HAVE_EV_TIME
186ev_time (void) 1994ev_tstamp
1995ev_time (void) EV_NOEXCEPT
187{ 1996{
188#if EV_USE_REALTIME 1997#if EV_USE_REALTIME
1998 if (ecb_expect_true (have_realtime))
1999 {
189 struct timespec ts; 2000 struct timespec ts;
190 clock_gettime (CLOCK_REALTIME, &ts); 2001 clock_gettime (CLOCK_REALTIME, &ts);
191 return ts.tv_sec + ts.tv_nsec * 1e-9; 2002 return EV_TS_GET (ts);
192#else 2003 }
2004#endif
2005
193 struct timeval tv; 2006 struct timeval tv;
194 gettimeofday (&tv, 0); 2007 gettimeofday (&tv, 0);
195 return tv.tv_sec + tv.tv_usec * 1e-6; 2008 return EV_TV_GET (tv);
196#endif
197} 2009}
2010#endif
198 2011
199inline ev_tstamp 2012inline_size ev_tstamp
200get_clock (void) 2013get_clock (void)
201{ 2014{
202#if EV_USE_MONOTONIC 2015#if EV_USE_MONOTONIC
203 if (expect_true (have_monotonic)) 2016 if (ecb_expect_true (have_monotonic))
204 { 2017 {
205 struct timespec ts; 2018 struct timespec ts;
206 clock_gettime (CLOCK_MONOTONIC, &ts); 2019 clock_gettime (CLOCK_MONOTONIC, &ts);
207 return ts.tv_sec + ts.tv_nsec * 1e-9; 2020 return EV_TS_GET (ts);
208 } 2021 }
209#endif 2022#endif
210 2023
211 return ev_time (); 2024 return ev_time ();
212} 2025}
213 2026
2027#if EV_MULTIPLICITY
214ev_tstamp 2028ev_tstamp
215ev_now (EV_P) 2029ev_now (EV_P) EV_NOEXCEPT
216{ 2030{
217 return rt_now; 2031 return ev_rt_now;
218} 2032}
2033#endif
219 2034
220#define array_roundsize(base,n) ((n) | 4 & ~3) 2035void
221 2036ev_sleep (ev_tstamp delay) EV_NOEXCEPT
222#define array_needsize(base,cur,cnt,init) \ 2037{
223 if (expect_false ((cnt) > cur)) \ 2038 if (delay > 0.)
224 { \
225 int newcnt = cur; \
226 do \
227 { \
228 newcnt = array_roundsize (base, newcnt << 1); \
229 } \
230 while ((cnt) > newcnt); \
231 \
232 base = realloc (base, sizeof (*base) * (newcnt)); \
233 init (base + cur, newcnt - cur); \
234 cur = newcnt; \
235 } 2039 {
2040#if EV_USE_NANOSLEEP
2041 struct timespec ts;
2042
2043 EV_TS_SET (ts, delay);
2044 nanosleep (&ts, 0);
2045#elif defined _WIN32
2046 /* maybe this should round up, as ms is very low resolution */
2047 /* compared to select (µs) or nanosleep (ns) */
2048 Sleep ((unsigned long)(EV_TS_TO_MS (delay)));
2049#else
2050 struct timeval tv;
2051
2052 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
2053 /* something not guaranteed by newer posix versions, but guaranteed */
2054 /* by older ones */
2055 EV_TV_SET (tv, delay);
2056 select (0, 0, 0, 0, &tv);
2057#endif
2058 }
2059}
236 2060
237/*****************************************************************************/ 2061/*****************************************************************************/
238 2062
2063#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
2064
2065/* find a suitable new size for the given array, */
2066/* hopefully by rounding to a nice-to-malloc size */
2067inline_size int
2068array_nextsize (int elem, int cur, int cnt)
2069{
2070 int ncur = cur + 1;
2071
2072 do
2073 ncur <<= 1;
2074 while (cnt > ncur);
2075
2076 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
2077 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
2078 {
2079 ncur *= elem;
2080 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
2081 ncur = ncur - sizeof (void *) * 4;
2082 ncur /= elem;
2083 }
2084
2085 return ncur;
2086}
2087
2088ecb_noinline ecb_cold
2089static void *
2090array_realloc (int elem, void *base, int *cur, int cnt)
2091{
2092 *cur = array_nextsize (elem, *cur, cnt);
2093 return ev_realloc (base, elem * *cur);
2094}
2095
2096#define array_needsize_noinit(base,offset,count)
2097
2098#define array_needsize_zerofill(base,offset,count) \
2099 memset ((void *)(base + offset), 0, sizeof (*(base)) * (count))
2100
2101#define array_needsize(type,base,cur,cnt,init) \
2102 if (ecb_expect_false ((cnt) > (cur))) \
2103 { \
2104 ecb_unused int ocur_ = (cur); \
2105 (base) = (type *)array_realloc \
2106 (sizeof (type), (base), &(cur), (cnt)); \
2107 init ((base), ocur_, ((cur) - ocur_)); \
2108 }
2109
2110#if 0
2111#define array_slim(type,stem) \
2112 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
2113 { \
2114 stem ## max = array_roundsize (stem ## cnt >> 1); \
2115 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
2116 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
2117 }
2118#endif
2119
2120#define array_free(stem, idx) \
2121 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
2122
2123/*****************************************************************************/
2124
2125/* dummy callback for pending events */
2126ecb_noinline
239static void 2127static void
240anfds_init (ANFD *base, int count) 2128pendingcb (EV_P_ ev_prepare *w, int revents)
241{ 2129{
242 while (count--) 2130}
243 {
244 base->head = 0;
245 base->events = EV_NONE;
246 base->reify = 0;
247 2131
248 ++base; 2132ecb_noinline
2133void
2134ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
2135{
2136 W w_ = (W)w;
2137 int pri = ABSPRI (w_);
2138
2139 if (ecb_expect_false (w_->pending))
2140 pendings [pri][w_->pending - 1].events |= revents;
2141 else
249 } 2142 {
250} 2143 w_->pending = ++pendingcnt [pri];
251 2144 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
252static void 2145 pendings [pri][w_->pending - 1].w = w_;
253event (EV_P_ W w, int events)
254{
255 if (w->pending)
256 {
257 pendings [ABSPRI (w)][w->pending - 1].events |= events; 2146 pendings [pri][w_->pending - 1].events = revents;
258 return;
259 } 2147 }
260 2148
261 w->pending = ++pendingcnt [ABSPRI (w)]; 2149 pendingpri = NUMPRI - 1;
262 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
263 pendings [ABSPRI (w)][w->pending - 1].w = w;
264 pendings [ABSPRI (w)][w->pending - 1].events = events;
265} 2150}
266 2151
267static void 2152inline_speed void
2153feed_reverse (EV_P_ W w)
2154{
2155 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2156 rfeeds [rfeedcnt++] = w;
2157}
2158
2159inline_size void
2160feed_reverse_done (EV_P_ int revents)
2161{
2162 do
2163 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2164 while (rfeedcnt);
2165}
2166
2167inline_speed void
268queue_events (EV_P_ W *events, int eventcnt, int type) 2168queue_events (EV_P_ W *events, int eventcnt, int type)
269{ 2169{
270 int i; 2170 int i;
271 2171
272 for (i = 0; i < eventcnt; ++i) 2172 for (i = 0; i < eventcnt; ++i)
273 event (EV_A_ events [i], type); 2173 ev_feed_event (EV_A_ events [i], type);
274} 2174}
275 2175
276static void 2176/*****************************************************************************/
2177
2178inline_speed void
277fd_event (EV_P_ int fd, int events) 2179fd_event_nocheck (EV_P_ int fd, int revents)
278{ 2180{
279 ANFD *anfd = anfds + fd; 2181 ANFD *anfd = anfds + fd;
280 struct ev_io *w; 2182 ev_io *w;
281 2183
282 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 2184 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
283 { 2185 {
284 int ev = w->events & events; 2186 int ev = w->events & revents;
285 2187
286 if (ev) 2188 if (ev)
287 event (EV_A_ (W)w, ev); 2189 ev_feed_event (EV_A_ (W)w, ev);
288 } 2190 }
289} 2191}
290 2192
291/*****************************************************************************/ 2193/* do not submit kernel events for fds that have reify set */
2194/* because that means they changed while we were polling for new events */
2195inline_speed void
2196fd_event (EV_P_ int fd, int revents)
2197{
2198 ANFD *anfd = anfds + fd;
292 2199
293static void 2200 if (ecb_expect_true (!anfd->reify))
2201 fd_event_nocheck (EV_A_ fd, revents);
2202}
2203
2204void
2205ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
2206{
2207 if (fd >= 0 && fd < anfdmax)
2208 fd_event_nocheck (EV_A_ fd, revents);
2209}
2210
2211/* make sure the external fd watch events are in-sync */
2212/* with the kernel/libev internal state */
2213inline_size void
294fd_reify (EV_P) 2214fd_reify (EV_P)
295{ 2215{
296 int i; 2216 int i;
297 2217
2218#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
298 for (i = 0; i < fdchangecnt; ++i) 2219 for (i = 0; i < fdchangecnt; ++i)
299 { 2220 {
300 int fd = fdchanges [i]; 2221 int fd = fdchanges [i];
301 ANFD *anfd = anfds + fd; 2222 ANFD *anfd = anfds + fd;
2223
2224 if (anfd->reify & EV__IOFDSET && anfd->head)
2225 {
2226 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2227
2228 if (handle != anfd->handle)
2229 {
2230 unsigned long arg;
2231
2232 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2233
2234 /* handle changed, but fd didn't - we need to do it in two steps */
2235 backend_modify (EV_A_ fd, anfd->events, 0);
2236 anfd->events = 0;
2237 anfd->handle = handle;
2238 }
2239 }
2240 }
2241#endif
2242
2243 for (i = 0; i < fdchangecnt; ++i)
2244 {
2245 int fd = fdchanges [i];
2246 ANFD *anfd = anfds + fd;
302 struct ev_io *w; 2247 ev_io *w;
303 2248
304 int events = 0; 2249 unsigned char o_events = anfd->events;
305 2250 unsigned char o_reify = anfd->reify;
306 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
307 events |= w->events;
308 2251
309 anfd->reify = 0; 2252 anfd->reify = 0;
310 2253
311 if (anfd->events != events) 2254 /*if (ecb_expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
312 { 2255 {
313 method_modify (EV_A_ fd, anfd->events, events);
314 anfd->events = events; 2256 anfd->events = 0;
2257
2258 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2259 anfd->events |= (unsigned char)w->events;
2260
2261 if (o_events != anfd->events)
2262 o_reify = EV__IOFDSET; /* actually |= */
315 } 2263 }
2264
2265 if (o_reify & EV__IOFDSET)
2266 backend_modify (EV_A_ fd, o_events, anfd->events);
316 } 2267 }
317 2268
318 fdchangecnt = 0; 2269 fdchangecnt = 0;
319} 2270}
320 2271
321static void 2272/* something about the given fd changed */
2273inline_size
2274void
322fd_change (EV_P_ int fd) 2275fd_change (EV_P_ int fd, int flags)
323{ 2276{
324 if (anfds [fd].reify || fdchangecnt < 0) 2277 unsigned char reify = anfds [fd].reify;
325 return;
326
327 anfds [fd].reify = 1; 2278 anfds [fd].reify |= flags;
328 2279
2280 if (ecb_expect_true (!reify))
2281 {
329 ++fdchangecnt; 2282 ++fdchangecnt;
330 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 2283 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
331 fdchanges [fdchangecnt - 1] = fd; 2284 fdchanges [fdchangecnt - 1] = fd;
2285 }
332} 2286}
333 2287
334static void 2288/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2289inline_speed ecb_cold void
335fd_kill (EV_P_ int fd) 2290fd_kill (EV_P_ int fd)
336{ 2291{
337 struct ev_io *w; 2292 ev_io *w;
338 2293
339 while ((w = (struct ev_io *)anfds [fd].head)) 2294 while ((w = (ev_io *)anfds [fd].head))
340 { 2295 {
341 ev_io_stop (EV_A_ w); 2296 ev_io_stop (EV_A_ w);
342 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2297 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
343 } 2298 }
2299}
2300
2301/* check whether the given fd is actually valid, for error recovery */
2302inline_size ecb_cold int
2303fd_valid (int fd)
2304{
2305#ifdef _WIN32
2306 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
2307#else
2308 return fcntl (fd, F_GETFD) != -1;
2309#endif
344} 2310}
345 2311
346/* called on EBADF to verify fds */ 2312/* called on EBADF to verify fds */
2313ecb_noinline ecb_cold
347static void 2314static void
348fd_ebadf (EV_P) 2315fd_ebadf (EV_P)
349{ 2316{
350 int fd; 2317 int fd;
351 2318
352 for (fd = 0; fd < anfdmax; ++fd) 2319 for (fd = 0; fd < anfdmax; ++fd)
353 if (anfds [fd].events) 2320 if (anfds [fd].events)
354 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 2321 if (!fd_valid (fd) && errno == EBADF)
355 fd_kill (EV_A_ fd); 2322 fd_kill (EV_A_ fd);
356} 2323}
357 2324
358/* called on ENOMEM in select/poll to kill some fds and retry */ 2325/* called on ENOMEM in select/poll to kill some fds and retry */
2326ecb_noinline ecb_cold
359static void 2327static void
360fd_enomem (EV_P) 2328fd_enomem (EV_P)
361{ 2329{
362 int fd; 2330 int fd;
363 2331
364 for (fd = anfdmax; fd--; ) 2332 for (fd = anfdmax; fd--; )
365 if (anfds [fd].events) 2333 if (anfds [fd].events)
366 { 2334 {
367 close (fd);
368 fd_kill (EV_A_ fd); 2335 fd_kill (EV_A_ fd);
369 return; 2336 break;
370 } 2337 }
371} 2338}
372 2339
373/* susually called after fork if method needs to re-arm all fds from scratch */ 2340/* usually called after fork if backend needs to re-arm all fds from scratch */
2341ecb_noinline
374static void 2342static void
375fd_rearm_all (EV_P) 2343fd_rearm_all (EV_P)
376{ 2344{
377 int fd; 2345 int fd;
378 2346
379 /* this should be highly optimised to not do anything but set a flag */
380 for (fd = 0; fd < anfdmax; ++fd) 2347 for (fd = 0; fd < anfdmax; ++fd)
381 if (anfds [fd].events) 2348 if (anfds [fd].events)
382 { 2349 {
383 anfds [fd].events = 0; 2350 anfds [fd].events = 0;
384 fd_change (EV_A_ fd); 2351 anfds [fd].emask = 0;
2352 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
385 } 2353 }
386} 2354}
387 2355
2356/* used to prepare libev internal fd's */
2357/* this is not fork-safe */
2358inline_speed void
2359fd_intern (int fd)
2360{
2361#ifdef _WIN32
2362 unsigned long arg = 1;
2363 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2364#else
2365 fcntl (fd, F_SETFD, FD_CLOEXEC);
2366 fcntl (fd, F_SETFL, O_NONBLOCK);
2367#endif
2368}
2369
388/*****************************************************************************/ 2370/*****************************************************************************/
389 2371
2372/*
2373 * the heap functions want a real array index. array index 0 is guaranteed to not
2374 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2375 * the branching factor of the d-tree.
2376 */
2377
2378/*
2379 * at the moment we allow libev the luxury of two heaps,
2380 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2381 * which is more cache-efficient.
2382 * the difference is about 5% with 50000+ watchers.
2383 */
2384#if EV_USE_4HEAP
2385
2386#define DHEAP 4
2387#define HEAP0 (DHEAP - 1) /* index of first element in heap */
2388#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2389#define UPHEAP_DONE(p,k) ((p) == (k))
2390
2391/* away from the root */
2392inline_speed void
2393downheap (ANHE *heap, int N, int k)
2394{
2395 ANHE he = heap [k];
2396 ANHE *E = heap + N + HEAP0;
2397
2398 for (;;)
2399 {
2400 ev_tstamp minat;
2401 ANHE *minpos;
2402 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2403
2404 /* find minimum child */
2405 if (ecb_expect_true (pos + DHEAP - 1 < E))
2406 {
2407 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2408 if ( minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2409 if ( minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2410 if ( minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2411 }
2412 else if (pos < E)
2413 {
2414 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2415 if (pos + 1 < E && minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2416 if (pos + 2 < E && minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2417 if (pos + 3 < E && minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2418 }
2419 else
2420 break;
2421
2422 if (ANHE_at (he) <= minat)
2423 break;
2424
2425 heap [k] = *minpos;
2426 ev_active (ANHE_w (*minpos)) = k;
2427
2428 k = minpos - heap;
2429 }
2430
2431 heap [k] = he;
2432 ev_active (ANHE_w (he)) = k;
2433}
2434
2435#else /* not 4HEAP */
2436
2437#define HEAP0 1
2438#define HPARENT(k) ((k) >> 1)
2439#define UPHEAP_DONE(p,k) (!(p))
2440
2441/* away from the root */
2442inline_speed void
2443downheap (ANHE *heap, int N, int k)
2444{
2445 ANHE he = heap [k];
2446
2447 for (;;)
2448 {
2449 int c = k << 1;
2450
2451 if (c >= N + HEAP0)
2452 break;
2453
2454 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2455 ? 1 : 0;
2456
2457 if (ANHE_at (he) <= ANHE_at (heap [c]))
2458 break;
2459
2460 heap [k] = heap [c];
2461 ev_active (ANHE_w (heap [k])) = k;
2462
2463 k = c;
2464 }
2465
2466 heap [k] = he;
2467 ev_active (ANHE_w (he)) = k;
2468}
2469#endif
2470
2471/* towards the root */
2472inline_speed void
2473upheap (ANHE *heap, int k)
2474{
2475 ANHE he = heap [k];
2476
2477 for (;;)
2478 {
2479 int p = HPARENT (k);
2480
2481 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2482 break;
2483
2484 heap [k] = heap [p];
2485 ev_active (ANHE_w (heap [k])) = k;
2486 k = p;
2487 }
2488
2489 heap [k] = he;
2490 ev_active (ANHE_w (he)) = k;
2491}
2492
2493/* move an element suitably so it is in a correct place */
2494inline_size void
2495adjustheap (ANHE *heap, int N, int k)
2496{
2497 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2498 upheap (heap, k);
2499 else
2500 downheap (heap, N, k);
2501}
2502
2503/* rebuild the heap: this function is used only once and executed rarely */
2504inline_size void
2505reheap (ANHE *heap, int N)
2506{
2507 int i;
2508
2509 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2510 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2511 for (i = 0; i < N; ++i)
2512 upheap (heap, i + HEAP0);
2513}
2514
2515/*****************************************************************************/
2516
2517/* associate signal watchers to a signal signal */
2518typedef struct
2519{
2520 EV_ATOMIC_T pending;
2521#if EV_MULTIPLICITY
2522 EV_P;
2523#endif
2524 WL head;
2525} ANSIG;
2526
2527static ANSIG signals [EV_NSIG - 1];
2528
2529/*****************************************************************************/
2530
2531#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2532
2533ecb_noinline ecb_cold
390static void 2534static void
391upheap (WT *heap, int k) 2535evpipe_init (EV_P)
392{ 2536{
393 WT w = heap [k]; 2537 if (!ev_is_active (&pipe_w))
394
395 while (k && heap [k >> 1]->at > w->at)
396 {
397 heap [k] = heap [k >> 1];
398 ((W)heap [k])->active = k + 1;
399 k >>= 1;
400 } 2538 {
2539 int fds [2];
401 2540
402 heap [k] = w; 2541# if EV_USE_EVENTFD
403 ((W)heap [k])->active = k + 1; 2542 fds [0] = -1;
2543 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2544 if (fds [1] < 0 && errno == EINVAL)
2545 fds [1] = eventfd (0, 0);
404 2546
405} 2547 if (fds [1] < 0)
2548# endif
2549 {
2550 while (pipe (fds))
2551 ev_syserr ("(libev) error creating signal/async pipe");
406 2552
2553 fd_intern (fds [0]);
2554 }
2555
2556 evpipe [0] = fds [0];
2557
2558 if (evpipe [1] < 0)
2559 evpipe [1] = fds [1]; /* first call, set write fd */
2560 else
2561 {
2562 /* on subsequent calls, do not change evpipe [1] */
2563 /* so that evpipe_write can always rely on its value. */
2564 /* this branch does not do anything sensible on windows, */
2565 /* so must not be executed on windows */
2566
2567 dup2 (fds [1], evpipe [1]);
2568 close (fds [1]);
2569 }
2570
2571 fd_intern (evpipe [1]);
2572
2573 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2574 ev_io_start (EV_A_ &pipe_w);
2575 ev_unref (EV_A); /* watcher should not keep loop alive */
2576 }
2577}
2578
2579inline_speed void
2580evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2581{
2582 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2583
2584 if (ecb_expect_true (*flag))
2585 return;
2586
2587 *flag = 1;
2588 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2589
2590 pipe_write_skipped = 1;
2591
2592 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2593
2594 if (pipe_write_wanted)
2595 {
2596 int old_errno;
2597
2598 pipe_write_skipped = 0;
2599 ECB_MEMORY_FENCE_RELEASE;
2600
2601 old_errno = errno; /* save errno because write will clobber it */
2602
2603#if EV_USE_EVENTFD
2604 if (evpipe [0] < 0)
2605 {
2606 uint64_t counter = 1;
2607 write (evpipe [1], &counter, sizeof (uint64_t));
2608 }
2609 else
2610#endif
2611 {
2612#ifdef _WIN32
2613 WSABUF buf;
2614 DWORD sent;
2615 buf.buf = (char *)&buf;
2616 buf.len = 1;
2617 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2618#else
2619 write (evpipe [1], &(evpipe [1]), 1);
2620#endif
2621 }
2622
2623 errno = old_errno;
2624 }
2625}
2626
2627/* called whenever the libev signal pipe */
2628/* got some events (signal, async) */
407static void 2629static void
408downheap (WT *heap, int N, int k) 2630pipecb (EV_P_ ev_io *iow, int revents)
409{ 2631{
410 WT w = heap [k]; 2632 int i;
411 2633
412 while (k < (N >> 1)) 2634 if (revents & EV_READ)
2635 {
2636#if EV_USE_EVENTFD
2637 if (evpipe [0] < 0)
2638 {
2639 uint64_t counter;
2640 read (evpipe [1], &counter, sizeof (uint64_t));
2641 }
2642 else
2643#endif
2644 {
2645 char dummy[4];
2646#ifdef _WIN32
2647 WSABUF buf;
2648 DWORD recvd;
2649 DWORD flags = 0;
2650 buf.buf = dummy;
2651 buf.len = sizeof (dummy);
2652 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2653#else
2654 read (evpipe [0], &dummy, sizeof (dummy));
2655#endif
2656 }
413 { 2657 }
414 int j = k << 1;
415 2658
416 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 2659 pipe_write_skipped = 0;
417 ++j;
418 2660
419 if (w->at <= heap [j]->at) 2661 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2662
2663#if EV_SIGNAL_ENABLE
2664 if (sig_pending)
2665 {
2666 sig_pending = 0;
2667
2668 ECB_MEMORY_FENCE;
2669
2670 for (i = EV_NSIG - 1; i--; )
2671 if (ecb_expect_false (signals [i].pending))
2672 ev_feed_signal_event (EV_A_ i + 1);
2673 }
2674#endif
2675
2676#if EV_ASYNC_ENABLE
2677 if (async_pending)
2678 {
2679 async_pending = 0;
2680
2681 ECB_MEMORY_FENCE;
2682
2683 for (i = asynccnt; i--; )
2684 if (asyncs [i]->sent)
2685 {
2686 asyncs [i]->sent = 0;
2687 ECB_MEMORY_FENCE_RELEASE;
2688 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2689 }
2690 }
2691#endif
2692}
2693
2694/*****************************************************************************/
2695
2696void
2697ev_feed_signal (int signum) EV_NOEXCEPT
2698{
2699#if EV_MULTIPLICITY
2700 EV_P;
2701 ECB_MEMORY_FENCE_ACQUIRE;
2702 EV_A = signals [signum - 1].loop;
2703
2704 if (!EV_A)
2705 return;
2706#endif
2707
2708 signals [signum - 1].pending = 1;
2709 evpipe_write (EV_A_ &sig_pending);
2710}
2711
2712static void
2713ev_sighandler (int signum)
2714{
2715#ifdef _WIN32
2716 signal (signum, ev_sighandler);
2717#endif
2718
2719 ev_feed_signal (signum);
2720}
2721
2722ecb_noinline
2723void
2724ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2725{
2726 WL w;
2727
2728 if (ecb_expect_false (signum <= 0 || signum >= EV_NSIG))
2729 return;
2730
2731 --signum;
2732
2733#if EV_MULTIPLICITY
2734 /* it is permissible to try to feed a signal to the wrong loop */
2735 /* or, likely more useful, feeding a signal nobody is waiting for */
2736
2737 if (ecb_expect_false (signals [signum].loop != EV_A))
2738 return;
2739#endif
2740
2741 signals [signum].pending = 0;
2742 ECB_MEMORY_FENCE_RELEASE;
2743
2744 for (w = signals [signum].head; w; w = w->next)
2745 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2746}
2747
2748#if EV_USE_SIGNALFD
2749static void
2750sigfdcb (EV_P_ ev_io *iow, int revents)
2751{
2752 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2753
2754 for (;;)
2755 {
2756 ssize_t res = read (sigfd, si, sizeof (si));
2757
2758 /* not ISO-C, as res might be -1, but works with SuS */
2759 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2760 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2761
2762 if (res < (ssize_t)sizeof (si))
420 break; 2763 break;
421
422 heap [k] = heap [j];
423 ((W)heap [k])->active = k + 1;
424 k = j;
425 } 2764 }
426
427 heap [k] = w;
428 ((W)heap [k])->active = k + 1;
429} 2765}
2766#endif
2767
2768#endif
430 2769
431/*****************************************************************************/ 2770/*****************************************************************************/
432 2771
433typedef struct 2772#if EV_CHILD_ENABLE
434{ 2773static WL childs [EV_PID_HASHSIZE];
435 struct ev_watcher_list *head;
436 sig_atomic_t volatile gotsig;
437} ANSIG;
438 2774
439static ANSIG *signals;
440static int signalmax;
441
442static int sigpipe [2];
443static sig_atomic_t volatile gotsig;
444static struct ev_io sigev;
445
446static void
447signals_init (ANSIG *base, int count)
448{
449 while (count--)
450 {
451 base->head = 0;
452 base->gotsig = 0;
453
454 ++base;
455 }
456}
457
458static void
459sighandler (int signum)
460{
461 signals [signum - 1].gotsig = 1;
462
463 if (!gotsig)
464 {
465 int old_errno = errno;
466 gotsig = 1;
467 write (sigpipe [1], &signum, 1);
468 errno = old_errno;
469 }
470}
471
472static void
473sigcb (EV_P_ struct ev_io *iow, int revents)
474{
475 struct ev_watcher_list *w;
476 int signum;
477
478 read (sigpipe [0], &revents, 1);
479 gotsig = 0;
480
481 for (signum = signalmax; signum--; )
482 if (signals [signum].gotsig)
483 {
484 signals [signum].gotsig = 0;
485
486 for (w = signals [signum].head; w; w = w->next)
487 event (EV_A_ (W)w, EV_SIGNAL);
488 }
489}
490
491static void
492siginit (EV_P)
493{
494#ifndef WIN32
495 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
496 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
497
498 /* rather than sort out wether we really need nb, set it */
499 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
500 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
501#endif
502
503 ev_io_set (&sigev, sigpipe [0], EV_READ);
504 ev_io_start (EV_A_ &sigev);
505 ev_unref (EV_A); /* child watcher should not keep loop alive */
506}
507
508/*****************************************************************************/
509
510#ifndef WIN32
511
512static struct ev_child *childs [PID_HASHSIZE];
513static struct ev_signal childev; 2775static ev_signal childev;
2776
2777#ifndef WIFCONTINUED
2778# define WIFCONTINUED(status) 0
2779#endif
2780
2781/* handle a single child status event */
2782inline_speed void
2783child_reap (EV_P_ int chain, int pid, int status)
2784{
2785 ev_child *w;
2786 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2787
2788 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2789 {
2790 if ((w->pid == pid || !w->pid)
2791 && (!traced || (w->flags & 1)))
2792 {
2793 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2794 w->rpid = pid;
2795 w->rstatus = status;
2796 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2797 }
2798 }
2799}
514 2800
515#ifndef WCONTINUED 2801#ifndef WCONTINUED
516# define WCONTINUED 0 2802# define WCONTINUED 0
517#endif 2803#endif
518 2804
2805/* called on sigchld etc., calls waitpid */
519static void 2806static void
520child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
521{
522 struct ev_child *w;
523
524 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
525 if (w->pid == pid || !w->pid)
526 {
527 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
528 w->rpid = pid;
529 w->rstatus = status;
530 event (EV_A_ (W)w, EV_CHILD);
531 }
532}
533
534static void
535childcb (EV_P_ struct ev_signal *sw, int revents) 2807childcb (EV_P_ ev_signal *sw, int revents)
536{ 2808{
537 int pid, status; 2809 int pid, status;
538 2810
2811 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
539 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 2812 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
540 { 2813 if (!WCONTINUED
2814 || errno != EINVAL
2815 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2816 return;
2817
541 /* make sure we are called again until all childs have been reaped */ 2818 /* make sure we are called again until all children have been reaped */
2819 /* we need to do it this way so that the callback gets called before we continue */
542 event (EV_A_ (W)sw, EV_SIGNAL); 2820 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
543 2821
544 child_reap (EV_A_ sw, pid, pid, status); 2822 child_reap (EV_A_ pid, pid, status);
2823 if ((EV_PID_HASHSIZE) > 1)
545 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 2824 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
546 }
547} 2825}
548 2826
549#endif 2827#endif
550 2828
551/*****************************************************************************/ 2829/*****************************************************************************/
552 2830
2831#if EV_USE_IOCP
2832# include "ev_iocp.c"
2833#endif
2834#if EV_USE_PORT
2835# include "ev_port.c"
2836#endif
553#if EV_USE_KQUEUE 2837#if EV_USE_KQUEUE
554# include "ev_kqueue.c" 2838# include "ev_kqueue.c"
555#endif 2839#endif
556#if EV_USE_EPOLL 2840#if EV_USE_EPOLL
557# include "ev_epoll.c" 2841# include "ev_epoll.c"
558#endif 2842#endif
2843#if EV_USE_LINUXAIO
2844# include "ev_linuxaio.c"
2845#endif
2846#if EV_USE_IOURING
2847# include "ev_iouring.c"
2848#endif
559#if EV_USE_POLL 2849#if EV_USE_POLL
560# include "ev_poll.c" 2850# include "ev_poll.c"
561#endif 2851#endif
562#if EV_USE_SELECT 2852#if EV_USE_SELECT
563# include "ev_select.c" 2853# include "ev_select.c"
564#endif 2854#endif
565 2855
566int 2856ecb_cold int
567ev_version_major (void) 2857ev_version_major (void) EV_NOEXCEPT
568{ 2858{
569 return EV_VERSION_MAJOR; 2859 return EV_VERSION_MAJOR;
570} 2860}
571 2861
572int 2862ecb_cold int
573ev_version_minor (void) 2863ev_version_minor (void) EV_NOEXCEPT
574{ 2864{
575 return EV_VERSION_MINOR; 2865 return EV_VERSION_MINOR;
576} 2866}
577 2867
578/* return true if we are running with elevated privileges and should ignore env variables */ 2868/* return true if we are running with elevated privileges and should ignore env variables */
579static int 2869inline_size ecb_cold int
580enable_secure (void) 2870enable_secure (void)
581{ 2871{
582#ifdef WIN32 2872#ifdef _WIN32
583 return 0; 2873 return 0;
584#else 2874#else
585 return getuid () != geteuid () 2875 return getuid () != geteuid ()
586 || getgid () != getegid (); 2876 || getgid () != getegid ();
587#endif 2877#endif
588} 2878}
589 2879
590int 2880ecb_cold
591ev_method (EV_P) 2881unsigned int
2882ev_supported_backends (void) EV_NOEXCEPT
592{ 2883{
593 return method; 2884 unsigned int flags = 0;
594}
595 2885
2886 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2887 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
2888 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2889 if (EV_USE_LINUXAIO) flags |= EVBACKEND_LINUXAIO;
2890 if (EV_USE_IOURING ) flags |= EVBACKEND_IOURING;
2891 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2892 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
2893
2894 return flags;
2895}
2896
2897ecb_cold
2898unsigned int
2899ev_recommended_backends (void) EV_NOEXCEPT
2900{
2901 unsigned int flags = ev_supported_backends ();
2902
2903#ifndef __NetBSD__
2904 /* kqueue is borked on everything but netbsd apparently */
2905 /* it usually doesn't work correctly on anything but sockets and pipes */
2906 flags &= ~EVBACKEND_KQUEUE;
2907#endif
2908#ifdef __APPLE__
2909 /* only select works correctly on that "unix-certified" platform */
2910 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2911 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2912#endif
2913#ifdef __FreeBSD__
2914 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2915#endif
2916
2917 /* TODO: linuxaio is very experimental */
2918#if !EV_RECOMMEND_LINUXAIO
2919 flags &= ~EVBACKEND_LINUXAIO;
2920#endif
2921 /* TODO: linuxaio is super experimental */
2922#if !EV_RECOMMEND_IOURING
2923 flags &= ~EVBACKEND_IOURING;
2924#endif
2925
2926 return flags;
2927}
2928
2929ecb_cold
2930unsigned int
2931ev_embeddable_backends (void) EV_NOEXCEPT
2932{
2933 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2934
2935 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2936 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2937 flags &= ~EVBACKEND_EPOLL;
2938
2939 /* EVBACKEND_LINUXAIO is theoretically embeddable, but suffers from a performance overhead */
2940
2941 /* EVBACKEND_IOURING is practically embeddable, but the current implementation is not
2942 * because our backend_fd is the epoll fd we need as fallback.
2943 * if the kernel ever is fixed, this might change...
2944 */
2945
2946 return flags;
2947}
2948
2949unsigned int
2950ev_backend (EV_P) EV_NOEXCEPT
2951{
2952 return backend;
2953}
2954
2955#if EV_FEATURE_API
2956unsigned int
2957ev_iteration (EV_P) EV_NOEXCEPT
2958{
2959 return loop_count;
2960}
2961
2962unsigned int
2963ev_depth (EV_P) EV_NOEXCEPT
2964{
2965 return loop_depth;
2966}
2967
2968void
2969ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2970{
2971 io_blocktime = interval;
2972}
2973
2974void
2975ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2976{
2977 timeout_blocktime = interval;
2978}
2979
2980void
2981ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
2982{
2983 userdata = data;
2984}
2985
2986void *
2987ev_userdata (EV_P) EV_NOEXCEPT
2988{
2989 return userdata;
2990}
2991
2992void
2993ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
2994{
2995 invoke_cb = invoke_pending_cb;
2996}
2997
2998void
2999ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
3000{
3001 release_cb = release;
3002 acquire_cb = acquire;
3003}
3004#endif
3005
3006/* initialise a loop structure, must be zero-initialised */
3007ecb_noinline ecb_cold
596static void 3008static void
597loop_init (EV_P_ int methods) 3009loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
598{ 3010{
599 if (!method) 3011 if (!backend)
600 { 3012 {
3013 origflags = flags;
3014
3015#if EV_USE_REALTIME
3016 if (!have_realtime)
3017 {
3018 struct timespec ts;
3019
3020 if (!clock_gettime (CLOCK_REALTIME, &ts))
3021 have_realtime = 1;
3022 }
3023#endif
3024
601#if EV_USE_MONOTONIC 3025#if EV_USE_MONOTONIC
3026 if (!have_monotonic)
602 { 3027 {
603 struct timespec ts; 3028 struct timespec ts;
3029
604 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 3030 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
605 have_monotonic = 1; 3031 have_monotonic = 1;
606 } 3032 }
607#endif 3033#endif
608 3034
3035 /* pid check not overridable via env */
3036#ifndef _WIN32
3037 if (flags & EVFLAG_FORKCHECK)
3038 curpid = getpid ();
3039#endif
3040
3041 if (!(flags & EVFLAG_NOENV)
3042 && !enable_secure ()
3043 && getenv ("LIBEV_FLAGS"))
3044 flags = atoi (getenv ("LIBEV_FLAGS"));
3045
609 rt_now = ev_time (); 3046 ev_rt_now = ev_time ();
610 mn_now = get_clock (); 3047 mn_now = get_clock ();
611 now_floor = mn_now; 3048 now_floor = mn_now;
612 rtmn_diff = rt_now - mn_now; 3049 rtmn_diff = ev_rt_now - mn_now;
3050#if EV_FEATURE_API
3051 invoke_cb = ev_invoke_pending;
3052#endif
613 3053
614 if (methods == EVMETHOD_AUTO) 3054 io_blocktime = 0.;
615 if (!enable_secure () && getenv ("LIBEV_METHODS")) 3055 timeout_blocktime = 0.;
616 methods = atoi (getenv ("LIBEV_METHODS")); 3056 backend = 0;
617 else 3057 backend_fd = -1;
618 methods = EVMETHOD_ANY; 3058 sig_pending = 0;
3059#if EV_ASYNC_ENABLE
3060 async_pending = 0;
3061#endif
3062 pipe_write_skipped = 0;
3063 pipe_write_wanted = 0;
3064 evpipe [0] = -1;
3065 evpipe [1] = -1;
3066#if EV_USE_INOTIFY
3067 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
3068#endif
3069#if EV_USE_SIGNALFD
3070 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
3071#endif
619 3072
620 method = 0; 3073 if (!(flags & EVBACKEND_MASK))
3074 flags |= ev_recommended_backends ();
3075
621#if EV_USE_WIN32 3076#if EV_USE_IOCP
622 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 3077 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
3078#endif
3079#if EV_USE_PORT
3080 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
623#endif 3081#endif
624#if EV_USE_KQUEUE 3082#if EV_USE_KQUEUE
625 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 3083 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
3084#endif
3085#if EV_USE_IOURING
3086 if (!backend && (flags & EVBACKEND_IOURING )) backend = iouring_init (EV_A_ flags);
3087#endif
3088#if EV_USE_LINUXAIO
3089 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
626#endif 3090#endif
627#if EV_USE_EPOLL 3091#if EV_USE_EPOLL
628 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 3092 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
629#endif 3093#endif
630#if EV_USE_POLL 3094#if EV_USE_POLL
631 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 3095 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
632#endif 3096#endif
633#if EV_USE_SELECT 3097#if EV_USE_SELECT
634 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 3098 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
635#endif 3099#endif
636 }
637}
638 3100
3101 ev_prepare_init (&pending_w, pendingcb);
3102
3103#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3104 ev_init (&pipe_w, pipecb);
3105 ev_set_priority (&pipe_w, EV_MAXPRI);
3106#endif
3107 }
3108}
3109
3110/* free up a loop structure */
3111ecb_cold
639void 3112void
640loop_destroy (EV_P) 3113ev_loop_destroy (EV_P)
641{ 3114{
3115 int i;
3116
3117#if EV_MULTIPLICITY
3118 /* mimic free (0) */
3119 if (!EV_A)
3120 return;
3121#endif
3122
3123#if EV_CLEANUP_ENABLE
3124 /* queue cleanup watchers (and execute them) */
3125 if (ecb_expect_false (cleanupcnt))
3126 {
3127 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3128 EV_INVOKE_PENDING;
3129 }
3130#endif
3131
3132#if EV_CHILD_ENABLE
3133 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3134 {
3135 ev_ref (EV_A); /* child watcher */
3136 ev_signal_stop (EV_A_ &childev);
3137 }
3138#endif
3139
3140 if (ev_is_active (&pipe_w))
3141 {
3142 /*ev_ref (EV_A);*/
3143 /*ev_io_stop (EV_A_ &pipe_w);*/
3144
3145 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3146 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3147 }
3148
3149#if EV_USE_SIGNALFD
3150 if (ev_is_active (&sigfd_w))
3151 close (sigfd);
3152#endif
3153
3154#if EV_USE_INOTIFY
3155 if (fs_fd >= 0)
3156 close (fs_fd);
3157#endif
3158
3159 if (backend_fd >= 0)
3160 close (backend_fd);
3161
642#if EV_USE_WIN32 3162#if EV_USE_IOCP
643 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 3163 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3164#endif
3165#if EV_USE_PORT
3166 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
644#endif 3167#endif
645#if EV_USE_KQUEUE 3168#if EV_USE_KQUEUE
646 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 3169 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3170#endif
3171#if EV_USE_IOURING
3172 if (backend == EVBACKEND_IOURING ) iouring_destroy (EV_A);
3173#endif
3174#if EV_USE_LINUXAIO
3175 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
647#endif 3176#endif
648#if EV_USE_EPOLL 3177#if EV_USE_EPOLL
649 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 3178 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
650#endif 3179#endif
651#if EV_USE_POLL 3180#if EV_USE_POLL
652 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 3181 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
653#endif 3182#endif
654#if EV_USE_SELECT 3183#if EV_USE_SELECT
655 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 3184 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
656#endif 3185#endif
657 3186
658 method = 0; 3187 for (i = NUMPRI; i--; )
659 /*TODO*/ 3188 {
660} 3189 array_free (pending, [i]);
3190#if EV_IDLE_ENABLE
3191 array_free (idle, [i]);
3192#endif
3193 }
661 3194
662void 3195 ev_free (anfds); anfds = 0; anfdmax = 0;
3196
3197 /* have to use the microsoft-never-gets-it-right macro */
3198 array_free (rfeed, EMPTY);
3199 array_free (fdchange, EMPTY);
3200 array_free (timer, EMPTY);
3201#if EV_PERIODIC_ENABLE
3202 array_free (periodic, EMPTY);
3203#endif
3204#if EV_FORK_ENABLE
3205 array_free (fork, EMPTY);
3206#endif
3207#if EV_CLEANUP_ENABLE
3208 array_free (cleanup, EMPTY);
3209#endif
3210 array_free (prepare, EMPTY);
3211 array_free (check, EMPTY);
3212#if EV_ASYNC_ENABLE
3213 array_free (async, EMPTY);
3214#endif
3215
3216 backend = 0;
3217
3218#if EV_MULTIPLICITY
3219 if (ev_is_default_loop (EV_A))
3220#endif
3221 ev_default_loop_ptr = 0;
3222#if EV_MULTIPLICITY
3223 else
3224 ev_free (EV_A);
3225#endif
3226}
3227
3228#if EV_USE_INOTIFY
3229inline_size void infy_fork (EV_P);
3230#endif
3231
3232inline_size void
663loop_fork (EV_P) 3233loop_fork (EV_P)
664{ 3234{
665 /*TODO*/ 3235#if EV_USE_PORT
3236 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
3237#endif
3238#if EV_USE_KQUEUE
3239 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3240#endif
3241#if EV_USE_IOURING
3242 if (backend == EVBACKEND_IOURING ) iouring_fork (EV_A);
3243#endif
3244#if EV_USE_LINUXAIO
3245 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
3246#endif
666#if EV_USE_EPOLL 3247#if EV_USE_EPOLL
667 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 3248 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
668#endif 3249#endif
669#if EV_USE_KQUEUE 3250#if EV_USE_INOTIFY
670 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 3251 infy_fork (EV_A);
671#endif 3252#endif
3253
3254#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3255 if (ev_is_active (&pipe_w) && postfork != 2)
3256 {
3257 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3258
3259 ev_ref (EV_A);
3260 ev_io_stop (EV_A_ &pipe_w);
3261
3262 if (evpipe [0] >= 0)
3263 EV_WIN32_CLOSE_FD (evpipe [0]);
3264
3265 evpipe_init (EV_A);
3266 /* iterate over everything, in case we missed something before */
3267 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3268 }
3269#endif
3270
3271 postfork = 0;
672} 3272}
673 3273
674#if EV_MULTIPLICITY 3274#if EV_MULTIPLICITY
3275
3276ecb_cold
675struct ev_loop * 3277struct ev_loop *
676ev_loop_new (int methods) 3278ev_loop_new (unsigned int flags) EV_NOEXCEPT
677{ 3279{
678 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 3280 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
679 3281
3282 memset (EV_A, 0, sizeof (struct ev_loop));
680 loop_init (EV_A_ methods); 3283 loop_init (EV_A_ flags);
681 3284
682 if (ev_method (EV_A)) 3285 if (ev_backend (EV_A))
683 return loop; 3286 return EV_A;
684 3287
3288 ev_free (EV_A);
685 return 0; 3289 return 0;
686} 3290}
687 3291
688void 3292#endif /* multiplicity */
689ev_loop_destroy (EV_P)
690{
691 loop_destroy (EV_A);
692 free (loop);
693}
694 3293
695void 3294#if EV_VERIFY
696ev_loop_fork (EV_P) 3295ecb_noinline ecb_cold
3296static void
3297verify_watcher (EV_P_ W w)
697{ 3298{
698 loop_fork (EV_A); 3299 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
699}
700 3300
3301 if (w->pending)
3302 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3303}
3304
3305ecb_noinline ecb_cold
3306static void
3307verify_heap (EV_P_ ANHE *heap, int N)
3308{
3309 int i;
3310
3311 for (i = HEAP0; i < N + HEAP0; ++i)
3312 {
3313 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3314 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3315 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3316
3317 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3318 }
3319}
3320
3321ecb_noinline ecb_cold
3322static void
3323array_verify (EV_P_ W *ws, int cnt)
3324{
3325 while (cnt--)
3326 {
3327 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3328 verify_watcher (EV_A_ ws [cnt]);
3329 }
3330}
3331#endif
3332
3333#if EV_FEATURE_API
3334void ecb_cold
3335ev_verify (EV_P) EV_NOEXCEPT
3336{
3337#if EV_VERIFY
3338 int i;
3339 WL w, w2;
3340
3341 assert (activecnt >= -1);
3342
3343 assert (fdchangemax >= fdchangecnt);
3344 for (i = 0; i < fdchangecnt; ++i)
3345 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3346
3347 assert (anfdmax >= 0);
3348 for (i = 0; i < anfdmax; ++i)
3349 {
3350 int j = 0;
3351
3352 for (w = w2 = anfds [i].head; w; w = w->next)
3353 {
3354 verify_watcher (EV_A_ (W)w);
3355
3356 if (j++ & 1)
3357 {
3358 assert (("libev: io watcher list contains a loop", w != w2));
3359 w2 = w2->next;
3360 }
3361
3362 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3363 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3364 }
3365 }
3366
3367 assert (timermax >= timercnt);
3368 verify_heap (EV_A_ timers, timercnt);
3369
3370#if EV_PERIODIC_ENABLE
3371 assert (periodicmax >= periodiccnt);
3372 verify_heap (EV_A_ periodics, periodiccnt);
3373#endif
3374
3375 for (i = NUMPRI; i--; )
3376 {
3377 assert (pendingmax [i] >= pendingcnt [i]);
3378#if EV_IDLE_ENABLE
3379 assert (idleall >= 0);
3380 assert (idlemax [i] >= idlecnt [i]);
3381 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3382#endif
3383 }
3384
3385#if EV_FORK_ENABLE
3386 assert (forkmax >= forkcnt);
3387 array_verify (EV_A_ (W *)forks, forkcnt);
3388#endif
3389
3390#if EV_CLEANUP_ENABLE
3391 assert (cleanupmax >= cleanupcnt);
3392 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3393#endif
3394
3395#if EV_ASYNC_ENABLE
3396 assert (asyncmax >= asynccnt);
3397 array_verify (EV_A_ (W *)asyncs, asynccnt);
3398#endif
3399
3400#if EV_PREPARE_ENABLE
3401 assert (preparemax >= preparecnt);
3402 array_verify (EV_A_ (W *)prepares, preparecnt);
3403#endif
3404
3405#if EV_CHECK_ENABLE
3406 assert (checkmax >= checkcnt);
3407 array_verify (EV_A_ (W *)checks, checkcnt);
3408#endif
3409
3410# if 0
3411#if EV_CHILD_ENABLE
3412 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3413 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3414#endif
3415# endif
3416#endif
3417}
701#endif 3418#endif
702 3419
703#if EV_MULTIPLICITY 3420#if EV_MULTIPLICITY
704struct ev_loop default_loop_struct; 3421ecb_cold
705static struct ev_loop *default_loop;
706
707struct ev_loop * 3422struct ev_loop *
708#else 3423#else
709static int default_loop;
710
711int 3424int
712#endif 3425#endif
713ev_default_loop (int methods) 3426ev_default_loop (unsigned int flags) EV_NOEXCEPT
714{ 3427{
715 if (sigpipe [0] == sigpipe [1])
716 if (pipe (sigpipe))
717 return 0;
718
719 if (!default_loop) 3428 if (!ev_default_loop_ptr)
720 { 3429 {
721#if EV_MULTIPLICITY 3430#if EV_MULTIPLICITY
722 struct ev_loop *loop = default_loop = &default_loop_struct; 3431 EV_P = ev_default_loop_ptr = &default_loop_struct;
723#else 3432#else
724 default_loop = 1; 3433 ev_default_loop_ptr = 1;
725#endif 3434#endif
726 3435
727 loop_init (EV_A_ methods); 3436 loop_init (EV_A_ flags);
728 3437
729 if (ev_method (EV_A)) 3438 if (ev_backend (EV_A))
730 { 3439 {
731 ev_watcher_init (&sigev, sigcb); 3440#if EV_CHILD_ENABLE
732 ev_set_priority (&sigev, EV_MAXPRI);
733 siginit (EV_A);
734
735#ifndef WIN32
736 ev_signal_init (&childev, childcb, SIGCHLD); 3441 ev_signal_init (&childev, childcb, SIGCHLD);
737 ev_set_priority (&childev, EV_MAXPRI); 3442 ev_set_priority (&childev, EV_MAXPRI);
738 ev_signal_start (EV_A_ &childev); 3443 ev_signal_start (EV_A_ &childev);
739 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3444 ev_unref (EV_A); /* child watcher should not keep loop alive */
740#endif 3445#endif
741 } 3446 }
742 else 3447 else
743 default_loop = 0; 3448 ev_default_loop_ptr = 0;
744 } 3449 }
745 3450
746 return default_loop; 3451 return ev_default_loop_ptr;
747} 3452}
748 3453
749void 3454void
750ev_default_destroy (void) 3455ev_loop_fork (EV_P) EV_NOEXCEPT
751{ 3456{
752#if EV_MULTIPLICITY 3457 postfork = 1;
753 struct ev_loop *loop = default_loop;
754#endif
755
756 ev_ref (EV_A); /* child watcher */
757 ev_signal_stop (EV_A_ &childev);
758
759 ev_ref (EV_A); /* signal watcher */
760 ev_io_stop (EV_A_ &sigev);
761
762 close (sigpipe [0]); sigpipe [0] = 0;
763 close (sigpipe [1]); sigpipe [1] = 0;
764
765 loop_destroy (EV_A);
766}
767
768void
769ev_default_fork (void)
770{
771#if EV_MULTIPLICITY
772 struct ev_loop *loop = default_loop;
773#endif
774
775 loop_fork (EV_A);
776
777 ev_io_stop (EV_A_ &sigev);
778 close (sigpipe [0]);
779 close (sigpipe [1]);
780 pipe (sigpipe);
781
782 ev_ref (EV_A); /* signal watcher */
783 siginit (EV_A);
784} 3458}
785 3459
786/*****************************************************************************/ 3460/*****************************************************************************/
787 3461
3462void
3463ev_invoke (EV_P_ void *w, int revents)
3464{
3465 EV_CB_INVOKE ((W)w, revents);
3466}
3467
3468unsigned int
3469ev_pending_count (EV_P) EV_NOEXCEPT
3470{
3471 int pri;
3472 unsigned int count = 0;
3473
3474 for (pri = NUMPRI; pri--; )
3475 count += pendingcnt [pri];
3476
3477 return count;
3478}
3479
3480ecb_noinline
3481void
3482ev_invoke_pending (EV_P)
3483{
3484 pendingpri = NUMPRI;
3485
3486 do
3487 {
3488 --pendingpri;
3489
3490 /* pendingpri possibly gets modified in the inner loop */
3491 while (pendingcnt [pendingpri])
3492 {
3493 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3494
3495 p->w->pending = 0;
3496 EV_CB_INVOKE (p->w, p->events);
3497 EV_FREQUENT_CHECK;
3498 }
3499 }
3500 while (pendingpri);
3501}
3502
3503#if EV_IDLE_ENABLE
3504/* make idle watchers pending. this handles the "call-idle */
3505/* only when higher priorities are idle" logic */
3506inline_size void
3507idle_reify (EV_P)
3508{
3509 if (ecb_expect_false (idleall))
3510 {
3511 int pri;
3512
3513 for (pri = NUMPRI; pri--; )
3514 {
3515 if (pendingcnt [pri])
3516 break;
3517
3518 if (idlecnt [pri])
3519 {
3520 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3521 break;
3522 }
3523 }
3524 }
3525}
3526#endif
3527
3528/* make timers pending */
3529inline_size void
3530timers_reify (EV_P)
3531{
3532 EV_FREQUENT_CHECK;
3533
3534 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3535 {
3536 do
3537 {
3538 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3539
3540 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3541
3542 /* first reschedule or stop timer */
3543 if (w->repeat)
3544 {
3545 ev_at (w) += w->repeat;
3546 if (ev_at (w) < mn_now)
3547 ev_at (w) = mn_now;
3548
3549 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3550
3551 ANHE_at_cache (timers [HEAP0]);
3552 downheap (timers, timercnt, HEAP0);
3553 }
3554 else
3555 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3556
3557 EV_FREQUENT_CHECK;
3558 feed_reverse (EV_A_ (W)w);
3559 }
3560 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3561
3562 feed_reverse_done (EV_A_ EV_TIMER);
3563 }
3564}
3565
3566#if EV_PERIODIC_ENABLE
3567
3568ecb_noinline
788static void 3569static void
789call_pending (EV_P) 3570periodic_recalc (EV_P_ ev_periodic *w)
790{ 3571{
3572 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3573 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3574
3575 /* the above almost always errs on the low side */
3576 while (at <= ev_rt_now)
3577 {
3578 ev_tstamp nat = at + w->interval;
3579
3580 /* when resolution fails us, we use ev_rt_now */
3581 if (ecb_expect_false (nat == at))
3582 {
3583 at = ev_rt_now;
3584 break;
3585 }
3586
3587 at = nat;
3588 }
3589
3590 ev_at (w) = at;
3591}
3592
3593/* make periodics pending */
3594inline_size void
3595periodics_reify (EV_P)
3596{
3597 EV_FREQUENT_CHECK;
3598
3599 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3600 {
3601 do
3602 {
3603 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3604
3605 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3606
3607 /* first reschedule or stop timer */
3608 if (w->reschedule_cb)
3609 {
3610 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3611
3612 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3613
3614 ANHE_at_cache (periodics [HEAP0]);
3615 downheap (periodics, periodiccnt, HEAP0);
3616 }
3617 else if (w->interval)
3618 {
3619 periodic_recalc (EV_A_ w);
3620 ANHE_at_cache (periodics [HEAP0]);
3621 downheap (periodics, periodiccnt, HEAP0);
3622 }
3623 else
3624 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3625
3626 EV_FREQUENT_CHECK;
3627 feed_reverse (EV_A_ (W)w);
3628 }
3629 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3630
3631 feed_reverse_done (EV_A_ EV_PERIODIC);
3632 }
3633}
3634
3635/* simply recalculate all periodics */
3636/* TODO: maybe ensure that at least one event happens when jumping forward? */
3637ecb_noinline ecb_cold
3638static void
3639periodics_reschedule (EV_P)
3640{
791 int pri; 3641 int i;
792 3642
793 for (pri = NUMPRI; pri--; ) 3643 /* adjust periodics after time jump */
794 while (pendingcnt [pri]) 3644 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3645 {
3646 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3647
3648 if (w->reschedule_cb)
3649 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3650 else if (w->interval)
3651 periodic_recalc (EV_A_ w);
3652
3653 ANHE_at_cache (periodics [i]);
3654 }
3655
3656 reheap (periodics, periodiccnt);
3657}
3658#endif
3659
3660/* adjust all timers by a given offset */
3661ecb_noinline ecb_cold
3662static void
3663timers_reschedule (EV_P_ ev_tstamp adjust)
3664{
3665 int i;
3666
3667 for (i = 0; i < timercnt; ++i)
3668 {
3669 ANHE *he = timers + i + HEAP0;
3670 ANHE_w (*he)->at += adjust;
3671 ANHE_at_cache (*he);
3672 }
3673}
3674
3675/* fetch new monotonic and realtime times from the kernel */
3676/* also detect if there was a timejump, and act accordingly */
3677inline_speed void
3678time_update (EV_P_ ev_tstamp max_block)
3679{
3680#if EV_USE_MONOTONIC
3681 if (ecb_expect_true (have_monotonic))
3682 {
3683 int i;
3684 ev_tstamp odiff = rtmn_diff;
3685
3686 mn_now = get_clock ();
3687
3688 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3689 /* interpolate in the meantime */
3690 if (ecb_expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
3691 {
3692 ev_rt_now = rtmn_diff + mn_now;
3693 return;
3694 }
3695
3696 now_floor = mn_now;
3697 ev_rt_now = ev_time ();
3698
3699 /* loop a few times, before making important decisions.
3700 * on the choice of "4": one iteration isn't enough,
3701 * in case we get preempted during the calls to
3702 * ev_time and get_clock. a second call is almost guaranteed
3703 * to succeed in that case, though. and looping a few more times
3704 * doesn't hurt either as we only do this on time-jumps or
3705 * in the unlikely event of having been preempted here.
3706 */
3707 for (i = 4; --i; )
3708 {
3709 ev_tstamp diff;
3710 rtmn_diff = ev_rt_now - mn_now;
3711
3712 diff = odiff - rtmn_diff;
3713
3714 if (ecb_expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
3715 return; /* all is well */
3716
3717 ev_rt_now = ev_time ();
3718 mn_now = get_clock ();
3719 now_floor = mn_now;
3720 }
3721
3722 /* no timer adjustment, as the monotonic clock doesn't jump */
3723 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3724# if EV_PERIODIC_ENABLE
3725 periodics_reschedule (EV_A);
3726# endif
3727 }
3728 else
3729#endif
3730 {
3731 ev_rt_now = ev_time ();
3732
3733 if (ecb_expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3734 {
3735 /* adjust timers. this is easy, as the offset is the same for all of them */
3736 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3737#if EV_PERIODIC_ENABLE
3738 periodics_reschedule (EV_A);
3739#endif
3740 }
3741
3742 mn_now = ev_rt_now;
3743 }
3744}
3745
3746int
3747ev_run (EV_P_ int flags)
3748{
3749#if EV_FEATURE_API
3750 ++loop_depth;
3751#endif
3752
3753 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3754
3755 loop_done = EVBREAK_CANCEL;
3756
3757 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3758
3759 do
3760 {
3761#if EV_VERIFY >= 2
3762 ev_verify (EV_A);
3763#endif
3764
3765#ifndef _WIN32
3766 if (ecb_expect_false (curpid)) /* penalise the forking check even more */
3767 if (ecb_expect_false (getpid () != curpid))
3768 {
3769 curpid = getpid ();
3770 postfork = 1;
3771 }
3772#endif
3773
3774#if EV_FORK_ENABLE
3775 /* we might have forked, so queue fork handlers */
3776 if (ecb_expect_false (postfork))
3777 if (forkcnt)
3778 {
3779 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3780 EV_INVOKE_PENDING;
3781 }
3782#endif
3783
3784#if EV_PREPARE_ENABLE
3785 /* queue prepare watchers (and execute them) */
3786 if (ecb_expect_false (preparecnt))
3787 {
3788 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3789 EV_INVOKE_PENDING;
3790 }
3791#endif
3792
3793 if (ecb_expect_false (loop_done))
3794 break;
3795
3796 /* we might have forked, so reify kernel state if necessary */
3797 if (ecb_expect_false (postfork))
3798 loop_fork (EV_A);
3799
3800 /* update fd-related kernel structures */
3801 fd_reify (EV_A);
3802
3803 /* calculate blocking time */
795 { 3804 {
796 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 3805 ev_tstamp waittime = 0.;
3806 ev_tstamp sleeptime = 0.;
797 3807
798 if (p->w) 3808 /* remember old timestamp for io_blocktime calculation */
3809 ev_tstamp prev_mn_now = mn_now;
3810
3811 /* update time to cancel out callback processing overhead */
3812 time_update (EV_A_ 1e100);
3813
3814 /* from now on, we want a pipe-wake-up */
3815 pipe_write_wanted = 1;
3816
3817 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3818
3819 if (ecb_expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
799 { 3820 {
800 p->w->pending = 0; 3821 waittime = MAX_BLOCKTIME;
801 3822
802 (*(void (**)(EV_P_ W, int))&p->w->cb) (EV_A_ p->w, p->events); 3823 if (timercnt)
3824 {
3825 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3826 if (waittime > to) waittime = to;
3827 }
3828
3829#if EV_PERIODIC_ENABLE
3830 if (periodiccnt)
3831 {
3832 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3833 if (waittime > to) waittime = to;
3834 }
3835#endif
3836
3837 /* don't let timeouts decrease the waittime below timeout_blocktime */
3838 if (ecb_expect_false (waittime < timeout_blocktime))
3839 waittime = timeout_blocktime;
3840
3841 /* at this point, we NEED to wait, so we have to ensure */
3842 /* to pass a minimum nonzero value to the backend */
3843 if (ecb_expect_false (waittime < backend_mintime))
3844 waittime = backend_mintime;
3845
3846 /* extra check because io_blocktime is commonly 0 */
3847 if (ecb_expect_false (io_blocktime))
3848 {
3849 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3850
3851 if (sleeptime > waittime - backend_mintime)
3852 sleeptime = waittime - backend_mintime;
3853
3854 if (ecb_expect_true (sleeptime > 0.))
3855 {
3856 ev_sleep (sleeptime);
3857 waittime -= sleeptime;
3858 }
3859 }
803 } 3860 }
3861
3862#if EV_FEATURE_API
3863 ++loop_count;
3864#endif
3865 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3866 backend_poll (EV_A_ waittime);
3867 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3868
3869 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3870
3871 ECB_MEMORY_FENCE_ACQUIRE;
3872 if (pipe_write_skipped)
3873 {
3874 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3875 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3876 }
3877
3878 /* update ev_rt_now, do magic */
3879 time_update (EV_A_ waittime + sleeptime);
804 } 3880 }
805}
806 3881
807static void 3882 /* queue pending timers and reschedule them */
808timers_reify (EV_P) 3883 timers_reify (EV_A); /* relative timers called last */
3884#if EV_PERIODIC_ENABLE
3885 periodics_reify (EV_A); /* absolute timers called first */
3886#endif
3887
3888#if EV_IDLE_ENABLE
3889 /* queue idle watchers unless other events are pending */
3890 idle_reify (EV_A);
3891#endif
3892
3893#if EV_CHECK_ENABLE
3894 /* queue check watchers, to be executed first */
3895 if (ecb_expect_false (checkcnt))
3896 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3897#endif
3898
3899 EV_INVOKE_PENDING;
3900 }
3901 while (ecb_expect_true (
3902 activecnt
3903 && !loop_done
3904 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3905 ));
3906
3907 if (loop_done == EVBREAK_ONE)
3908 loop_done = EVBREAK_CANCEL;
3909
3910#if EV_FEATURE_API
3911 --loop_depth;
3912#endif
3913
3914 return activecnt;
3915}
3916
3917void
3918ev_break (EV_P_ int how) EV_NOEXCEPT
809{ 3919{
810 while (timercnt && ((WT)timers [0])->at <= mn_now) 3920 loop_done = how;
3921}
3922
3923void
3924ev_ref (EV_P) EV_NOEXCEPT
3925{
3926 ++activecnt;
3927}
3928
3929void
3930ev_unref (EV_P) EV_NOEXCEPT
3931{
3932 --activecnt;
3933}
3934
3935void
3936ev_now_update (EV_P) EV_NOEXCEPT
3937{
3938 time_update (EV_A_ 1e100);
3939}
3940
3941void
3942ev_suspend (EV_P) EV_NOEXCEPT
3943{
3944 ev_now_update (EV_A);
3945}
3946
3947void
3948ev_resume (EV_P) EV_NOEXCEPT
3949{
3950 ev_tstamp mn_prev = mn_now;
3951
3952 ev_now_update (EV_A);
3953 timers_reschedule (EV_A_ mn_now - mn_prev);
3954#if EV_PERIODIC_ENABLE
3955 /* TODO: really do this? */
3956 periodics_reschedule (EV_A);
3957#endif
3958}
3959
3960/*****************************************************************************/
3961/* singly-linked list management, used when the expected list length is short */
3962
3963inline_size void
3964wlist_add (WL *head, WL elem)
3965{
3966 elem->next = *head;
3967 *head = elem;
3968}
3969
3970inline_size void
3971wlist_del (WL *head, WL elem)
3972{
3973 while (*head)
3974 {
3975 if (ecb_expect_true (*head == elem))
3976 {
3977 *head = elem->next;
3978 break;
3979 }
3980
3981 head = &(*head)->next;
3982 }
3983}
3984
3985/* internal, faster, version of ev_clear_pending */
3986inline_speed void
3987clear_pending (EV_P_ W w)
3988{
3989 if (w->pending)
3990 {
3991 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3992 w->pending = 0;
3993 }
3994}
3995
3996int
3997ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
3998{
3999 W w_ = (W)w;
4000 int pending = w_->pending;
4001
4002 if (ecb_expect_true (pending))
4003 {
4004 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
4005 p->w = (W)&pending_w;
4006 w_->pending = 0;
4007 return p->events;
4008 }
4009 else
4010 return 0;
4011}
4012
4013inline_size void
4014pri_adjust (EV_P_ W w)
4015{
4016 int pri = ev_priority (w);
4017 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
4018 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
4019 ev_set_priority (w, pri);
4020}
4021
4022inline_speed void
4023ev_start (EV_P_ W w, int active)
4024{
4025 pri_adjust (EV_A_ w);
4026 w->active = active;
4027 ev_ref (EV_A);
4028}
4029
4030inline_size void
4031ev_stop (EV_P_ W w)
4032{
4033 ev_unref (EV_A);
4034 w->active = 0;
4035}
4036
4037/*****************************************************************************/
4038
4039ecb_noinline
4040void
4041ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
4042{
4043 int fd = w->fd;
4044
4045 if (ecb_expect_false (ev_is_active (w)))
4046 return;
4047
4048 assert (("libev: ev_io_start called with negative fd", fd >= 0));
4049 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
4050
4051#if EV_VERIFY >= 2
4052 assert (("libev: ev_io_start called on watcher with invalid fd", fd_valid (fd)));
4053#endif
4054 EV_FREQUENT_CHECK;
4055
4056 ev_start (EV_A_ (W)w, 1);
4057 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
4058 wlist_add (&anfds[fd].head, (WL)w);
4059
4060 /* common bug, apparently */
4061 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
4062
4063 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
4064 w->events &= ~EV__IOFDSET;
4065
4066 EV_FREQUENT_CHECK;
4067}
4068
4069ecb_noinline
4070void
4071ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
4072{
4073 clear_pending (EV_A_ (W)w);
4074 if (ecb_expect_false (!ev_is_active (w)))
4075 return;
4076
4077 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
4078
4079#if EV_VERIFY >= 2
4080 assert (("libev: ev_io_stop called on watcher with invalid fd", fd_valid (w->fd)));
4081#endif
4082 EV_FREQUENT_CHECK;
4083
4084 wlist_del (&anfds[w->fd].head, (WL)w);
4085 ev_stop (EV_A_ (W)w);
4086
4087 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
4088
4089 EV_FREQUENT_CHECK;
4090}
4091
4092ecb_noinline
4093void
4094ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
4095{
4096 if (ecb_expect_false (ev_is_active (w)))
4097 return;
4098
4099 ev_at (w) += mn_now;
4100
4101 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
4102
4103 EV_FREQUENT_CHECK;
4104
4105 ++timercnt;
4106 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
4107 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
4108 ANHE_w (timers [ev_active (w)]) = (WT)w;
4109 ANHE_at_cache (timers [ev_active (w)]);
4110 upheap (timers, ev_active (w));
4111
4112 EV_FREQUENT_CHECK;
4113
4114 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
4115}
4116
4117ecb_noinline
4118void
4119ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
4120{
4121 clear_pending (EV_A_ (W)w);
4122 if (ecb_expect_false (!ev_is_active (w)))
4123 return;
4124
4125 EV_FREQUENT_CHECK;
4126
4127 {
4128 int active = ev_active (w);
4129
4130 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
4131
4132 --timercnt;
4133
4134 if (ecb_expect_true (active < timercnt + HEAP0))
811 { 4135 {
812 struct ev_timer *w = timers [0]; 4136 timers [active] = timers [timercnt + HEAP0];
4137 adjustheap (timers, timercnt, active);
4138 }
4139 }
813 4140
814 assert (("inactive timer on timer heap detected", ev_is_active (w))); 4141 ev_at (w) -= mn_now;
815 4142
816 /* first reschedule or stop timer */ 4143 ev_stop (EV_A_ (W)w);
4144
4145 EV_FREQUENT_CHECK;
4146}
4147
4148ecb_noinline
4149void
4150ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
4151{
4152 EV_FREQUENT_CHECK;
4153
4154 clear_pending (EV_A_ (W)w);
4155
4156 if (ev_is_active (w))
4157 {
817 if (w->repeat) 4158 if (w->repeat)
818 { 4159 {
819 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
820 ((WT)w)->at = mn_now + w->repeat; 4160 ev_at (w) = mn_now + w->repeat;
821 downheap ((WT *)timers, timercnt, 0); 4161 ANHE_at_cache (timers [ev_active (w)]);
822 } 4162 adjustheap (timers, timercnt, ev_active (w));
823 else
824 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
825
826 event (EV_A_ (W)w, EV_TIMEOUT);
827 }
828}
829
830static void
831periodics_reify (EV_P)
832{
833 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
834 {
835 struct ev_periodic *w = periodics [0];
836
837 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
838
839 /* first reschedule or stop timer */
840 if (w->interval)
841 {
842 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
843 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
844 downheap ((WT *)periodics, periodiccnt, 0);
845 }
846 else
847 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
848
849 event (EV_A_ (W)w, EV_PERIODIC);
850 }
851}
852
853static void
854periodics_reschedule (EV_P)
855{
856 int i;
857
858 /* adjust periodics after time jump */
859 for (i = 0; i < periodiccnt; ++i)
860 {
861 struct ev_periodic *w = periodics [i];
862
863 if (w->interval)
864 {
865 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
866
867 if (fabs (diff) >= 1e-4)
868 {
869 ev_periodic_stop (EV_A_ w);
870 ev_periodic_start (EV_A_ w);
871
872 i = 0; /* restart loop, inefficient, but time jumps should be rare */
873 }
874 }
875 }
876}
877
878inline int
879time_update_monotonic (EV_P)
880{
881 mn_now = get_clock ();
882
883 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
884 {
885 rt_now = rtmn_diff + mn_now;
886 return 0;
887 }
888 else
889 {
890 now_floor = mn_now;
891 rt_now = ev_time ();
892 return 1;
893 }
894}
895
896static void
897time_update (EV_P)
898{
899 int i;
900
901#if EV_USE_MONOTONIC
902 if (expect_true (have_monotonic))
903 {
904 if (time_update_monotonic (EV_A))
905 {
906 ev_tstamp odiff = rtmn_diff;
907
908 for (i = 4; --i; ) /* loop a few times, before making important decisions */
909 {
910 rtmn_diff = rt_now - mn_now;
911
912 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
913 return; /* all is well */
914
915 rt_now = ev_time ();
916 mn_now = get_clock ();
917 now_floor = mn_now;
918 }
919
920 periodics_reschedule (EV_A);
921 /* no timer adjustment, as the monotonic clock doesn't jump */
922 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
923 }
924 }
925 else
926#endif
927 {
928 rt_now = ev_time ();
929
930 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
931 {
932 periodics_reschedule (EV_A);
933
934 /* adjust timers. this is easy, as the offset is the same for all */
935 for (i = 0; i < timercnt; ++i)
936 ((WT)timers [i])->at += rt_now - mn_now;
937 }
938
939 mn_now = rt_now;
940 }
941}
942
943void
944ev_ref (EV_P)
945{
946 ++activecnt;
947}
948
949void
950ev_unref (EV_P)
951{
952 --activecnt;
953}
954
955static int loop_done;
956
957void
958ev_loop (EV_P_ int flags)
959{
960 double block;
961 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
962
963 do
964 {
965 /* queue check watchers (and execute them) */
966 if (expect_false (preparecnt))
967 {
968 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
969 call_pending (EV_A);
970 }
971
972 /* update fd-related kernel structures */
973 fd_reify (EV_A);
974
975 /* calculate blocking time */
976
977 /* we only need this for !monotonic clockor timers, but as we basically
978 always have timers, we just calculate it always */
979#if EV_USE_MONOTONIC
980 if (expect_true (have_monotonic))
981 time_update_monotonic (EV_A);
982 else
983#endif
984 {
985 rt_now = ev_time ();
986 mn_now = rt_now;
987 }
988
989 if (flags & EVLOOP_NONBLOCK || idlecnt)
990 block = 0.;
991 else
992 {
993 block = MAX_BLOCKTIME;
994
995 if (timercnt)
996 {
997 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
998 if (block > to) block = to;
999 }
1000
1001 if (periodiccnt)
1002 {
1003 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
1004 if (block > to) block = to;
1005 }
1006
1007 if (block < 0.) block = 0.;
1008 }
1009
1010 method_poll (EV_A_ block);
1011
1012 /* update rt_now, do magic */
1013 time_update (EV_A);
1014
1015 /* queue pending timers and reschedule them */
1016 timers_reify (EV_A); /* relative timers called last */
1017 periodics_reify (EV_A); /* absolute timers called first */
1018
1019 /* queue idle watchers unless io or timers are pending */
1020 if (!pendingcnt)
1021 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1022
1023 /* queue check watchers, to be executed first */
1024 if (checkcnt)
1025 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1026
1027 call_pending (EV_A);
1028 }
1029 while (activecnt && !loop_done);
1030
1031 if (loop_done != 2)
1032 loop_done = 0;
1033}
1034
1035void
1036ev_unloop (EV_P_ int how)
1037{
1038 loop_done = how;
1039}
1040
1041/*****************************************************************************/
1042
1043inline void
1044wlist_add (WL *head, WL elem)
1045{
1046 elem->next = *head;
1047 *head = elem;
1048}
1049
1050inline void
1051wlist_del (WL *head, WL elem)
1052{
1053 while (*head)
1054 {
1055 if (*head == elem)
1056 {
1057 *head = elem->next;
1058 return;
1059 }
1060
1061 head = &(*head)->next;
1062 }
1063}
1064
1065inline void
1066ev_clear_pending (EV_P_ W w)
1067{
1068 if (w->pending)
1069 {
1070 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1071 w->pending = 0;
1072 }
1073}
1074
1075inline void
1076ev_start (EV_P_ W w, int active)
1077{
1078 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1079 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1080
1081 w->active = active;
1082 ev_ref (EV_A);
1083}
1084
1085inline void
1086ev_stop (EV_P_ W w)
1087{
1088 ev_unref (EV_A);
1089 w->active = 0;
1090}
1091
1092/*****************************************************************************/
1093
1094void
1095ev_io_start (EV_P_ struct ev_io *w)
1096{
1097 int fd = w->fd;
1098
1099 if (ev_is_active (w))
1100 return;
1101
1102 assert (("ev_io_start called with negative fd", fd >= 0));
1103
1104 ev_start (EV_A_ (W)w, 1);
1105 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
1106 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1107
1108 fd_change (EV_A_ fd);
1109}
1110
1111void
1112ev_io_stop (EV_P_ struct ev_io *w)
1113{
1114 ev_clear_pending (EV_A_ (W)w);
1115 if (!ev_is_active (w))
1116 return;
1117
1118 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1119 ev_stop (EV_A_ (W)w);
1120
1121 fd_change (EV_A_ w->fd);
1122}
1123
1124void
1125ev_timer_start (EV_P_ struct ev_timer *w)
1126{
1127 if (ev_is_active (w))
1128 return;
1129
1130 ((WT)w)->at += mn_now;
1131
1132 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1133
1134 ev_start (EV_A_ (W)w, ++timercnt);
1135 array_needsize (timers, timermax, timercnt, );
1136 timers [timercnt - 1] = w;
1137 upheap ((WT *)timers, timercnt - 1);
1138
1139 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1140}
1141
1142void
1143ev_timer_stop (EV_P_ struct ev_timer *w)
1144{
1145 ev_clear_pending (EV_A_ (W)w);
1146 if (!ev_is_active (w))
1147 return;
1148
1149 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1150
1151 if (((W)w)->active < timercnt--)
1152 {
1153 timers [((W)w)->active - 1] = timers [timercnt];
1154 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1155 }
1156
1157 ((WT)w)->at = w->repeat;
1158
1159 ev_stop (EV_A_ (W)w);
1160}
1161
1162void
1163ev_timer_again (EV_P_ struct ev_timer *w)
1164{
1165 if (ev_is_active (w))
1166 {
1167 if (w->repeat)
1168 {
1169 ((WT)w)->at = mn_now + w->repeat;
1170 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1171 } 4163 }
1172 else 4164 else
1173 ev_timer_stop (EV_A_ w); 4165 ev_timer_stop (EV_A_ w);
1174 } 4166 }
1175 else if (w->repeat) 4167 else if (w->repeat)
4168 {
4169 ev_at (w) = w->repeat;
1176 ev_timer_start (EV_A_ w); 4170 ev_timer_start (EV_A_ w);
1177} 4171 }
1178 4172
4173 EV_FREQUENT_CHECK;
4174}
4175
4176ev_tstamp
4177ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4178{
4179 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
4180}
4181
4182#if EV_PERIODIC_ENABLE
4183ecb_noinline
1179void 4184void
1180ev_periodic_start (EV_P_ struct ev_periodic *w) 4185ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
1181{ 4186{
1182 if (ev_is_active (w)) 4187 if (ecb_expect_false (ev_is_active (w)))
1183 return; 4188 return;
1184 4189
4190 if (w->reschedule_cb)
4191 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
4192 else if (w->interval)
4193 {
1185 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 4194 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
4195 periodic_recalc (EV_A_ w);
4196 }
4197 else
4198 ev_at (w) = w->offset;
1186 4199
1187 /* this formula differs from the one in periodic_reify because we do not always round up */ 4200 EV_FREQUENT_CHECK;
1188 if (w->interval)
1189 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1190 4201
4202 ++periodiccnt;
1191 ev_start (EV_A_ (W)w, ++periodiccnt); 4203 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1192 array_needsize (periodics, periodicmax, periodiccnt, ); 4204 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
1193 periodics [periodiccnt - 1] = w; 4205 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1194 upheap ((WT *)periodics, periodiccnt - 1); 4206 ANHE_at_cache (periodics [ev_active (w)]);
4207 upheap (periodics, ev_active (w));
1195 4208
4209 EV_FREQUENT_CHECK;
4210
1196 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 4211 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1197} 4212}
1198 4213
4214ecb_noinline
1199void 4215void
1200ev_periodic_stop (EV_P_ struct ev_periodic *w) 4216ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
1201{ 4217{
1202 ev_clear_pending (EV_A_ (W)w); 4218 clear_pending (EV_A_ (W)w);
1203 if (!ev_is_active (w)) 4219 if (ecb_expect_false (!ev_is_active (w)))
1204 return; 4220 return;
1205 4221
4222 EV_FREQUENT_CHECK;
4223
4224 {
4225 int active = ev_active (w);
4226
1206 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 4227 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1207 4228
1208 if (((W)w)->active < periodiccnt--) 4229 --periodiccnt;
4230
4231 if (ecb_expect_true (active < periodiccnt + HEAP0))
1209 { 4232 {
1210 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 4233 periodics [active] = periodics [periodiccnt + HEAP0];
1211 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 4234 adjustheap (periodics, periodiccnt, active);
1212 } 4235 }
4236 }
1213 4237
1214 ev_stop (EV_A_ (W)w); 4238 ev_stop (EV_A_ (W)w);
1215}
1216 4239
1217void 4240 EV_FREQUENT_CHECK;
1218ev_idle_start (EV_P_ struct ev_idle *w)
1219{
1220 if (ev_is_active (w))
1221 return;
1222
1223 ev_start (EV_A_ (W)w, ++idlecnt);
1224 array_needsize (idles, idlemax, idlecnt, );
1225 idles [idlecnt - 1] = w;
1226} 4241}
1227 4242
4243ecb_noinline
1228void 4244void
1229ev_idle_stop (EV_P_ struct ev_idle *w) 4245ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
1230{ 4246{
1231 ev_clear_pending (EV_A_ (W)w); 4247 /* TODO: use adjustheap and recalculation */
1232 if (ev_is_active (w))
1233 return;
1234
1235 idles [((W)w)->active - 1] = idles [--idlecnt];
1236 ev_stop (EV_A_ (W)w); 4248 ev_periodic_stop (EV_A_ w);
4249 ev_periodic_start (EV_A_ w);
1237} 4250}
1238 4251#endif
1239void
1240ev_prepare_start (EV_P_ struct ev_prepare *w)
1241{
1242 if (ev_is_active (w))
1243 return;
1244
1245 ev_start (EV_A_ (W)w, ++preparecnt);
1246 array_needsize (prepares, preparemax, preparecnt, );
1247 prepares [preparecnt - 1] = w;
1248}
1249
1250void
1251ev_prepare_stop (EV_P_ struct ev_prepare *w)
1252{
1253 ev_clear_pending (EV_A_ (W)w);
1254 if (ev_is_active (w))
1255 return;
1256
1257 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1258 ev_stop (EV_A_ (W)w);
1259}
1260
1261void
1262ev_check_start (EV_P_ struct ev_check *w)
1263{
1264 if (ev_is_active (w))
1265 return;
1266
1267 ev_start (EV_A_ (W)w, ++checkcnt);
1268 array_needsize (checks, checkmax, checkcnt, );
1269 checks [checkcnt - 1] = w;
1270}
1271
1272void
1273ev_check_stop (EV_P_ struct ev_check *w)
1274{
1275 ev_clear_pending (EV_A_ (W)w);
1276 if (ev_is_active (w))
1277 return;
1278
1279 checks [((W)w)->active - 1] = checks [--checkcnt];
1280 ev_stop (EV_A_ (W)w);
1281}
1282 4252
1283#ifndef SA_RESTART 4253#ifndef SA_RESTART
1284# define SA_RESTART 0 4254# define SA_RESTART 0
1285#endif 4255#endif
1286 4256
4257#if EV_SIGNAL_ENABLE
4258
4259ecb_noinline
1287void 4260void
1288ev_signal_start (EV_P_ struct ev_signal *w) 4261ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
1289{ 4262{
4263 if (ecb_expect_false (ev_is_active (w)))
4264 return;
4265
4266 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4267
1290#if EV_MULTIPLICITY 4268#if EV_MULTIPLICITY
1291 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 4269 assert (("libev: a signal must not be attached to two different loops",
4270 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4271
4272 signals [w->signum - 1].loop = EV_A;
4273 ECB_MEMORY_FENCE_RELEASE;
4274#endif
4275
4276 EV_FREQUENT_CHECK;
4277
4278#if EV_USE_SIGNALFD
4279 if (sigfd == -2)
4280 {
4281 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
4282 if (sigfd < 0 && errno == EINVAL)
4283 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
4284
4285 if (sigfd >= 0)
4286 {
4287 fd_intern (sigfd); /* doing it twice will not hurt */
4288
4289 sigemptyset (&sigfd_set);
4290
4291 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4292 ev_set_priority (&sigfd_w, EV_MAXPRI);
4293 ev_io_start (EV_A_ &sigfd_w);
4294 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4295 }
4296 }
4297
4298 if (sigfd >= 0)
4299 {
4300 /* TODO: check .head */
4301 sigaddset (&sigfd_set, w->signum);
4302 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4303
4304 signalfd (sigfd, &sigfd_set, 0);
4305 }
4306#endif
4307
4308 ev_start (EV_A_ (W)w, 1);
4309 wlist_add (&signals [w->signum - 1].head, (WL)w);
4310
4311 if (!((WL)w)->next)
4312# if EV_USE_SIGNALFD
4313 if (sigfd < 0) /*TODO*/
1292#endif 4314# endif
1293 if (ev_is_active (w)) 4315 {
4316# ifdef _WIN32
4317 evpipe_init (EV_A);
4318
4319 signal (w->signum, ev_sighandler);
4320# else
4321 struct sigaction sa;
4322
4323 evpipe_init (EV_A);
4324
4325 sa.sa_handler = ev_sighandler;
4326 sigfillset (&sa.sa_mask);
4327 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
4328 sigaction (w->signum, &sa, 0);
4329
4330 if (origflags & EVFLAG_NOSIGMASK)
4331 {
4332 sigemptyset (&sa.sa_mask);
4333 sigaddset (&sa.sa_mask, w->signum);
4334 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4335 }
4336#endif
4337 }
4338
4339 EV_FREQUENT_CHECK;
4340}
4341
4342ecb_noinline
4343void
4344ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
4345{
4346 clear_pending (EV_A_ (W)w);
4347 if (ecb_expect_false (!ev_is_active (w)))
1294 return; 4348 return;
1295 4349
1296 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 4350 EV_FREQUENT_CHECK;
4351
4352 wlist_del (&signals [w->signum - 1].head, (WL)w);
4353 ev_stop (EV_A_ (W)w);
4354
4355 if (!signals [w->signum - 1].head)
4356 {
4357#if EV_MULTIPLICITY
4358 signals [w->signum - 1].loop = 0; /* unattach from signal */
4359#endif
4360#if EV_USE_SIGNALFD
4361 if (sigfd >= 0)
4362 {
4363 sigset_t ss;
4364
4365 sigemptyset (&ss);
4366 sigaddset (&ss, w->signum);
4367 sigdelset (&sigfd_set, w->signum);
4368
4369 signalfd (sigfd, &sigfd_set, 0);
4370 sigprocmask (SIG_UNBLOCK, &ss, 0);
4371 }
4372 else
4373#endif
4374 signal (w->signum, SIG_DFL);
4375 }
4376
4377 EV_FREQUENT_CHECK;
4378}
4379
4380#endif
4381
4382#if EV_CHILD_ENABLE
4383
4384void
4385ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4386{
4387#if EV_MULTIPLICITY
4388 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
4389#endif
4390 if (ecb_expect_false (ev_is_active (w)))
4391 return;
4392
4393 EV_FREQUENT_CHECK;
1297 4394
1298 ev_start (EV_A_ (W)w, 1); 4395 ev_start (EV_A_ (W)w, 1);
1299 array_needsize (signals, signalmax, w->signum, signals_init); 4396 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1300 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1301 4397
1302 if (!((WL)w)->next) 4398 EV_FREQUENT_CHECK;
1303 {
1304 struct sigaction sa;
1305 sa.sa_handler = sighandler;
1306 sigfillset (&sa.sa_mask);
1307 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1308 sigaction (w->signum, &sa, 0);
1309 }
1310} 4399}
1311 4400
1312void 4401void
1313ev_signal_stop (EV_P_ struct ev_signal *w) 4402ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
1314{ 4403{
1315 ev_clear_pending (EV_A_ (W)w); 4404 clear_pending (EV_A_ (W)w);
1316 if (!ev_is_active (w)) 4405 if (ecb_expect_false (!ev_is_active (w)))
1317 return; 4406 return;
1318 4407
1319 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 4408 EV_FREQUENT_CHECK;
4409
4410 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1320 ev_stop (EV_A_ (W)w); 4411 ev_stop (EV_A_ (W)w);
1321 4412
1322 if (!signals [w->signum - 1].head) 4413 EV_FREQUENT_CHECK;
1323 signal (w->signum, SIG_DFL);
1324} 4414}
1325 4415
1326void 4416#endif
1327ev_child_start (EV_P_ struct ev_child *w) 4417
1328{ 4418#if EV_STAT_ENABLE
1329#if EV_MULTIPLICITY 4419
1330 assert (("child watchers are only supported in the default loop", loop == default_loop)); 4420# ifdef _WIN32
4421# undef lstat
4422# define lstat(a,b) _stati64 (a,b)
1331#endif 4423# endif
1332 if (ev_is_active (w)) 4424
4425#define DEF_STAT_INTERVAL 5.0074891
4426#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4427#define MIN_STAT_INTERVAL 0.1074891
4428
4429ecb_noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4430
4431#if EV_USE_INOTIFY
4432
4433/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4434# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4435
4436ecb_noinline
4437static void
4438infy_add (EV_P_ ev_stat *w)
4439{
4440 w->wd = inotify_add_watch (fs_fd, w->path,
4441 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4442 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4443 | IN_DONT_FOLLOW | IN_MASK_ADD);
4444
4445 if (w->wd >= 0)
4446 {
4447 struct statfs sfs;
4448
4449 /* now local changes will be tracked by inotify, but remote changes won't */
4450 /* unless the filesystem is known to be local, we therefore still poll */
4451 /* also do poll on <2.6.25, but with normal frequency */
4452
4453 if (!fs_2625)
4454 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4455 else if (!statfs (w->path, &sfs)
4456 && (sfs.f_type == 0x1373 /* devfs */
4457 || sfs.f_type == 0x4006 /* fat */
4458 || sfs.f_type == 0x4d44 /* msdos */
4459 || sfs.f_type == 0xEF53 /* ext2/3 */
4460 || sfs.f_type == 0x72b6 /* jffs2 */
4461 || sfs.f_type == 0x858458f6 /* ramfs */
4462 || sfs.f_type == 0x5346544e /* ntfs */
4463 || sfs.f_type == 0x3153464a /* jfs */
4464 || sfs.f_type == 0x9123683e /* btrfs */
4465 || sfs.f_type == 0x52654973 /* reiser3 */
4466 || sfs.f_type == 0x01021994 /* tmpfs */
4467 || sfs.f_type == 0x58465342 /* xfs */))
4468 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4469 else
4470 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
4471 }
4472 else
4473 {
4474 /* can't use inotify, continue to stat */
4475 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4476
4477 /* if path is not there, monitor some parent directory for speedup hints */
4478 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4479 /* but an efficiency issue only */
4480 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4481 {
4482 char path [4096];
4483 strcpy (path, w->path);
4484
4485 do
4486 {
4487 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4488 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4489
4490 char *pend = strrchr (path, '/');
4491
4492 if (!pend || pend == path)
4493 break;
4494
4495 *pend = 0;
4496 w->wd = inotify_add_watch (fs_fd, path, mask);
4497 }
4498 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4499 }
4500 }
4501
4502 if (w->wd >= 0)
4503 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4504
4505 /* now re-arm timer, if required */
4506 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4507 ev_timer_again (EV_A_ &w->timer);
4508 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4509}
4510
4511ecb_noinline
4512static void
4513infy_del (EV_P_ ev_stat *w)
4514{
4515 int slot;
4516 int wd = w->wd;
4517
4518 if (wd < 0)
1333 return; 4519 return;
1334 4520
4521 w->wd = -2;
4522 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4523 wlist_del (&fs_hash [slot].head, (WL)w);
4524
4525 /* remove this watcher, if others are watching it, they will rearm */
4526 inotify_rm_watch (fs_fd, wd);
4527}
4528
4529ecb_noinline
4530static void
4531infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4532{
4533 if (slot < 0)
4534 /* overflow, need to check for all hash slots */
4535 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4536 infy_wd (EV_A_ slot, wd, ev);
4537 else
4538 {
4539 WL w_;
4540
4541 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4542 {
4543 ev_stat *w = (ev_stat *)w_;
4544 w_ = w_->next; /* lets us remove this watcher and all before it */
4545
4546 if (w->wd == wd || wd == -1)
4547 {
4548 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4549 {
4550 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4551 w->wd = -1;
4552 infy_add (EV_A_ w); /* re-add, no matter what */
4553 }
4554
4555 stat_timer_cb (EV_A_ &w->timer, 0);
4556 }
4557 }
4558 }
4559}
4560
4561static void
4562infy_cb (EV_P_ ev_io *w, int revents)
4563{
4564 char buf [EV_INOTIFY_BUFSIZE];
4565 int ofs;
4566 int len = read (fs_fd, buf, sizeof (buf));
4567
4568 for (ofs = 0; ofs < len; )
4569 {
4570 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4571 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4572 ofs += sizeof (struct inotify_event) + ev->len;
4573 }
4574}
4575
4576inline_size ecb_cold
4577void
4578ev_check_2625 (EV_P)
4579{
4580 /* kernels < 2.6.25 are borked
4581 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4582 */
4583 if (ev_linux_version () < 0x020619)
4584 return;
4585
4586 fs_2625 = 1;
4587}
4588
4589inline_size int
4590infy_newfd (void)
4591{
4592#if defined IN_CLOEXEC && defined IN_NONBLOCK
4593 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4594 if (fd >= 0)
4595 return fd;
4596#endif
4597 return inotify_init ();
4598}
4599
4600inline_size void
4601infy_init (EV_P)
4602{
4603 if (fs_fd != -2)
4604 return;
4605
4606 fs_fd = -1;
4607
4608 ev_check_2625 (EV_A);
4609
4610 fs_fd = infy_newfd ();
4611
4612 if (fs_fd >= 0)
4613 {
4614 fd_intern (fs_fd);
4615 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4616 ev_set_priority (&fs_w, EV_MAXPRI);
4617 ev_io_start (EV_A_ &fs_w);
4618 ev_unref (EV_A);
4619 }
4620}
4621
4622inline_size void
4623infy_fork (EV_P)
4624{
4625 int slot;
4626
4627 if (fs_fd < 0)
4628 return;
4629
4630 ev_ref (EV_A);
4631 ev_io_stop (EV_A_ &fs_w);
4632 close (fs_fd);
4633 fs_fd = infy_newfd ();
4634
4635 if (fs_fd >= 0)
4636 {
4637 fd_intern (fs_fd);
4638 ev_io_set (&fs_w, fs_fd, EV_READ);
4639 ev_io_start (EV_A_ &fs_w);
4640 ev_unref (EV_A);
4641 }
4642
4643 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4644 {
4645 WL w_ = fs_hash [slot].head;
4646 fs_hash [slot].head = 0;
4647
4648 while (w_)
4649 {
4650 ev_stat *w = (ev_stat *)w_;
4651 w_ = w_->next; /* lets us add this watcher */
4652
4653 w->wd = -1;
4654
4655 if (fs_fd >= 0)
4656 infy_add (EV_A_ w); /* re-add, no matter what */
4657 else
4658 {
4659 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4660 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4661 ev_timer_again (EV_A_ &w->timer);
4662 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4663 }
4664 }
4665 }
4666}
4667
4668#endif
4669
4670#ifdef _WIN32
4671# define EV_LSTAT(p,b) _stati64 (p, b)
4672#else
4673# define EV_LSTAT(p,b) lstat (p, b)
4674#endif
4675
4676void
4677ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
4678{
4679 if (lstat (w->path, &w->attr) < 0)
4680 w->attr.st_nlink = 0;
4681 else if (!w->attr.st_nlink)
4682 w->attr.st_nlink = 1;
4683}
4684
4685ecb_noinline
4686static void
4687stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4688{
4689 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4690
4691 ev_statdata prev = w->attr;
4692 ev_stat_stat (EV_A_ w);
4693
4694 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4695 if (
4696 prev.st_dev != w->attr.st_dev
4697 || prev.st_ino != w->attr.st_ino
4698 || prev.st_mode != w->attr.st_mode
4699 || prev.st_nlink != w->attr.st_nlink
4700 || prev.st_uid != w->attr.st_uid
4701 || prev.st_gid != w->attr.st_gid
4702 || prev.st_rdev != w->attr.st_rdev
4703 || prev.st_size != w->attr.st_size
4704 || prev.st_atime != w->attr.st_atime
4705 || prev.st_mtime != w->attr.st_mtime
4706 || prev.st_ctime != w->attr.st_ctime
4707 ) {
4708 /* we only update w->prev on actual differences */
4709 /* in case we test more often than invoke the callback, */
4710 /* to ensure that prev is always different to attr */
4711 w->prev = prev;
4712
4713 #if EV_USE_INOTIFY
4714 if (fs_fd >= 0)
4715 {
4716 infy_del (EV_A_ w);
4717 infy_add (EV_A_ w);
4718 ev_stat_stat (EV_A_ w); /* avoid race... */
4719 }
4720 #endif
4721
4722 ev_feed_event (EV_A_ w, EV_STAT);
4723 }
4724}
4725
4726void
4727ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
4728{
4729 if (ecb_expect_false (ev_is_active (w)))
4730 return;
4731
4732 ev_stat_stat (EV_A_ w);
4733
4734 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4735 w->interval = MIN_STAT_INTERVAL;
4736
4737 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4738 ev_set_priority (&w->timer, ev_priority (w));
4739
4740#if EV_USE_INOTIFY
4741 infy_init (EV_A);
4742
4743 if (fs_fd >= 0)
4744 infy_add (EV_A_ w);
4745 else
4746#endif
4747 {
4748 ev_timer_again (EV_A_ &w->timer);
4749 ev_unref (EV_A);
4750 }
4751
1335 ev_start (EV_A_ (W)w, 1); 4752 ev_start (EV_A_ (W)w, 1);
1336 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1337}
1338 4753
4754 EV_FREQUENT_CHECK;
4755}
4756
1339void 4757void
1340ev_child_stop (EV_P_ struct ev_child *w) 4758ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
1341{ 4759{
1342 ev_clear_pending (EV_A_ (W)w); 4760 clear_pending (EV_A_ (W)w);
1343 if (ev_is_active (w)) 4761 if (ecb_expect_false (!ev_is_active (w)))
1344 return; 4762 return;
1345 4763
1346 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4764 EV_FREQUENT_CHECK;
4765
4766#if EV_USE_INOTIFY
4767 infy_del (EV_A_ w);
4768#endif
4769
4770 if (ev_is_active (&w->timer))
4771 {
4772 ev_ref (EV_A);
4773 ev_timer_stop (EV_A_ &w->timer);
4774 }
4775
1347 ev_stop (EV_A_ (W)w); 4776 ev_stop (EV_A_ (W)w);
4777
4778 EV_FREQUENT_CHECK;
1348} 4779}
4780#endif
4781
4782#if EV_IDLE_ENABLE
4783void
4784ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
4785{
4786 if (ecb_expect_false (ev_is_active (w)))
4787 return;
4788
4789 pri_adjust (EV_A_ (W)w);
4790
4791 EV_FREQUENT_CHECK;
4792
4793 {
4794 int active = ++idlecnt [ABSPRI (w)];
4795
4796 ++idleall;
4797 ev_start (EV_A_ (W)w, active);
4798
4799 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
4800 idles [ABSPRI (w)][active - 1] = w;
4801 }
4802
4803 EV_FREQUENT_CHECK;
4804}
4805
4806void
4807ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
4808{
4809 clear_pending (EV_A_ (W)w);
4810 if (ecb_expect_false (!ev_is_active (w)))
4811 return;
4812
4813 EV_FREQUENT_CHECK;
4814
4815 {
4816 int active = ev_active (w);
4817
4818 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4819 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4820
4821 ev_stop (EV_A_ (W)w);
4822 --idleall;
4823 }
4824
4825 EV_FREQUENT_CHECK;
4826}
4827#endif
4828
4829#if EV_PREPARE_ENABLE
4830void
4831ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
4832{
4833 if (ecb_expect_false (ev_is_active (w)))
4834 return;
4835
4836 EV_FREQUENT_CHECK;
4837
4838 ev_start (EV_A_ (W)w, ++preparecnt);
4839 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
4840 prepares [preparecnt - 1] = w;
4841
4842 EV_FREQUENT_CHECK;
4843}
4844
4845void
4846ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
4847{
4848 clear_pending (EV_A_ (W)w);
4849 if (ecb_expect_false (!ev_is_active (w)))
4850 return;
4851
4852 EV_FREQUENT_CHECK;
4853
4854 {
4855 int active = ev_active (w);
4856
4857 prepares [active - 1] = prepares [--preparecnt];
4858 ev_active (prepares [active - 1]) = active;
4859 }
4860
4861 ev_stop (EV_A_ (W)w);
4862
4863 EV_FREQUENT_CHECK;
4864}
4865#endif
4866
4867#if EV_CHECK_ENABLE
4868void
4869ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
4870{
4871 if (ecb_expect_false (ev_is_active (w)))
4872 return;
4873
4874 EV_FREQUENT_CHECK;
4875
4876 ev_start (EV_A_ (W)w, ++checkcnt);
4877 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
4878 checks [checkcnt - 1] = w;
4879
4880 EV_FREQUENT_CHECK;
4881}
4882
4883void
4884ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
4885{
4886 clear_pending (EV_A_ (W)w);
4887 if (ecb_expect_false (!ev_is_active (w)))
4888 return;
4889
4890 EV_FREQUENT_CHECK;
4891
4892 {
4893 int active = ev_active (w);
4894
4895 checks [active - 1] = checks [--checkcnt];
4896 ev_active (checks [active - 1]) = active;
4897 }
4898
4899 ev_stop (EV_A_ (W)w);
4900
4901 EV_FREQUENT_CHECK;
4902}
4903#endif
4904
4905#if EV_EMBED_ENABLE
4906ecb_noinline
4907void
4908ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
4909{
4910 ev_run (w->other, EVRUN_NOWAIT);
4911}
4912
4913static void
4914embed_io_cb (EV_P_ ev_io *io, int revents)
4915{
4916 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4917
4918 if (ev_cb (w))
4919 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4920 else
4921 ev_run (w->other, EVRUN_NOWAIT);
4922}
4923
4924static void
4925embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4926{
4927 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4928
4929 {
4930 EV_P = w->other;
4931
4932 while (fdchangecnt)
4933 {
4934 fd_reify (EV_A);
4935 ev_run (EV_A_ EVRUN_NOWAIT);
4936 }
4937 }
4938}
4939
4940static void
4941embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4942{
4943 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4944
4945 ev_embed_stop (EV_A_ w);
4946
4947 {
4948 EV_P = w->other;
4949
4950 ev_loop_fork (EV_A);
4951 ev_run (EV_A_ EVRUN_NOWAIT);
4952 }
4953
4954 ev_embed_start (EV_A_ w);
4955}
4956
4957#if 0
4958static void
4959embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4960{
4961 ev_idle_stop (EV_A_ idle);
4962}
4963#endif
4964
4965void
4966ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
4967{
4968 if (ecb_expect_false (ev_is_active (w)))
4969 return;
4970
4971 {
4972 EV_P = w->other;
4973 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4974 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4975 }
4976
4977 EV_FREQUENT_CHECK;
4978
4979 ev_set_priority (&w->io, ev_priority (w));
4980 ev_io_start (EV_A_ &w->io);
4981
4982 ev_prepare_init (&w->prepare, embed_prepare_cb);
4983 ev_set_priority (&w->prepare, EV_MINPRI);
4984 ev_prepare_start (EV_A_ &w->prepare);
4985
4986 ev_fork_init (&w->fork, embed_fork_cb);
4987 ev_fork_start (EV_A_ &w->fork);
4988
4989 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4990
4991 ev_start (EV_A_ (W)w, 1);
4992
4993 EV_FREQUENT_CHECK;
4994}
4995
4996void
4997ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
4998{
4999 clear_pending (EV_A_ (W)w);
5000 if (ecb_expect_false (!ev_is_active (w)))
5001 return;
5002
5003 EV_FREQUENT_CHECK;
5004
5005 ev_io_stop (EV_A_ &w->io);
5006 ev_prepare_stop (EV_A_ &w->prepare);
5007 ev_fork_stop (EV_A_ &w->fork);
5008
5009 ev_stop (EV_A_ (W)w);
5010
5011 EV_FREQUENT_CHECK;
5012}
5013#endif
5014
5015#if EV_FORK_ENABLE
5016void
5017ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
5018{
5019 if (ecb_expect_false (ev_is_active (w)))
5020 return;
5021
5022 EV_FREQUENT_CHECK;
5023
5024 ev_start (EV_A_ (W)w, ++forkcnt);
5025 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
5026 forks [forkcnt - 1] = w;
5027
5028 EV_FREQUENT_CHECK;
5029}
5030
5031void
5032ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
5033{
5034 clear_pending (EV_A_ (W)w);
5035 if (ecb_expect_false (!ev_is_active (w)))
5036 return;
5037
5038 EV_FREQUENT_CHECK;
5039
5040 {
5041 int active = ev_active (w);
5042
5043 forks [active - 1] = forks [--forkcnt];
5044 ev_active (forks [active - 1]) = active;
5045 }
5046
5047 ev_stop (EV_A_ (W)w);
5048
5049 EV_FREQUENT_CHECK;
5050}
5051#endif
5052
5053#if EV_CLEANUP_ENABLE
5054void
5055ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5056{
5057 if (ecb_expect_false (ev_is_active (w)))
5058 return;
5059
5060 EV_FREQUENT_CHECK;
5061
5062 ev_start (EV_A_ (W)w, ++cleanupcnt);
5063 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
5064 cleanups [cleanupcnt - 1] = w;
5065
5066 /* cleanup watchers should never keep a refcount on the loop */
5067 ev_unref (EV_A);
5068 EV_FREQUENT_CHECK;
5069}
5070
5071void
5072ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5073{
5074 clear_pending (EV_A_ (W)w);
5075 if (ecb_expect_false (!ev_is_active (w)))
5076 return;
5077
5078 EV_FREQUENT_CHECK;
5079 ev_ref (EV_A);
5080
5081 {
5082 int active = ev_active (w);
5083
5084 cleanups [active - 1] = cleanups [--cleanupcnt];
5085 ev_active (cleanups [active - 1]) = active;
5086 }
5087
5088 ev_stop (EV_A_ (W)w);
5089
5090 EV_FREQUENT_CHECK;
5091}
5092#endif
5093
5094#if EV_ASYNC_ENABLE
5095void
5096ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
5097{
5098 if (ecb_expect_false (ev_is_active (w)))
5099 return;
5100
5101 w->sent = 0;
5102
5103 evpipe_init (EV_A);
5104
5105 EV_FREQUENT_CHECK;
5106
5107 ev_start (EV_A_ (W)w, ++asynccnt);
5108 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
5109 asyncs [asynccnt - 1] = w;
5110
5111 EV_FREQUENT_CHECK;
5112}
5113
5114void
5115ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
5116{
5117 clear_pending (EV_A_ (W)w);
5118 if (ecb_expect_false (!ev_is_active (w)))
5119 return;
5120
5121 EV_FREQUENT_CHECK;
5122
5123 {
5124 int active = ev_active (w);
5125
5126 asyncs [active - 1] = asyncs [--asynccnt];
5127 ev_active (asyncs [active - 1]) = active;
5128 }
5129
5130 ev_stop (EV_A_ (W)w);
5131
5132 EV_FREQUENT_CHECK;
5133}
5134
5135void
5136ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
5137{
5138 w->sent = 1;
5139 evpipe_write (EV_A_ &async_pending);
5140}
5141#endif
1349 5142
1350/*****************************************************************************/ 5143/*****************************************************************************/
1351 5144
1352struct ev_once 5145struct ev_once
1353{ 5146{
1354 struct ev_io io; 5147 ev_io io;
1355 struct ev_timer to; 5148 ev_timer to;
1356 void (*cb)(int revents, void *arg); 5149 void (*cb)(int revents, void *arg);
1357 void *arg; 5150 void *arg;
1358}; 5151};
1359 5152
1360static void 5153static void
1361once_cb (EV_P_ struct ev_once *once, int revents) 5154once_cb (EV_P_ struct ev_once *once, int revents)
1362{ 5155{
1363 void (*cb)(int revents, void *arg) = once->cb; 5156 void (*cb)(int revents, void *arg) = once->cb;
1364 void *arg = once->arg; 5157 void *arg = once->arg;
1365 5158
1366 ev_io_stop (EV_A_ &once->io); 5159 ev_io_stop (EV_A_ &once->io);
1367 ev_timer_stop (EV_A_ &once->to); 5160 ev_timer_stop (EV_A_ &once->to);
1368 free (once); 5161 ev_free (once);
1369 5162
1370 cb (revents, arg); 5163 cb (revents, arg);
1371} 5164}
1372 5165
1373static void 5166static void
1374once_cb_io (EV_P_ struct ev_io *w, int revents) 5167once_cb_io (EV_P_ ev_io *w, int revents)
1375{ 5168{
1376 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 5169 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
5170
5171 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1377} 5172}
1378 5173
1379static void 5174static void
1380once_cb_to (EV_P_ struct ev_timer *w, int revents) 5175once_cb_to (EV_P_ ev_timer *w, int revents)
1381{ 5176{
1382 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 5177 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
1383}
1384 5178
5179 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
5180}
5181
1385void 5182void
1386ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 5183ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
1387{ 5184{
1388 struct ev_once *once = malloc (sizeof (struct ev_once)); 5185 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1389 5186
1390 if (!once)
1391 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1392 else
1393 {
1394 once->cb = cb; 5187 once->cb = cb;
1395 once->arg = arg; 5188 once->arg = arg;
1396 5189
1397 ev_watcher_init (&once->io, once_cb_io); 5190 ev_init (&once->io, once_cb_io);
1398 if (fd >= 0) 5191 if (fd >= 0)
5192 {
5193 ev_io_set (&once->io, fd, events);
5194 ev_io_start (EV_A_ &once->io);
5195 }
5196
5197 ev_init (&once->to, once_cb_to);
5198 if (timeout >= 0.)
5199 {
5200 ev_timer_set (&once->to, timeout, 0.);
5201 ev_timer_start (EV_A_ &once->to);
5202 }
5203}
5204
5205/*****************************************************************************/
5206
5207#if EV_WALK_ENABLE
5208ecb_cold
5209void
5210ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5211{
5212 int i, j;
5213 ev_watcher_list *wl, *wn;
5214
5215 if (types & (EV_IO | EV_EMBED))
5216 for (i = 0; i < anfdmax; ++i)
5217 for (wl = anfds [i].head; wl; )
1399 { 5218 {
1400 ev_io_set (&once->io, fd, events); 5219 wn = wl->next;
1401 ev_io_start (EV_A_ &once->io); 5220
5221#if EV_EMBED_ENABLE
5222 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5223 {
5224 if (types & EV_EMBED)
5225 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5226 }
5227 else
5228#endif
5229#if EV_USE_INOTIFY
5230 if (ev_cb ((ev_io *)wl) == infy_cb)
5231 ;
5232 else
5233#endif
5234 if ((ev_io *)wl != &pipe_w)
5235 if (types & EV_IO)
5236 cb (EV_A_ EV_IO, wl);
5237
5238 wl = wn;
1402 } 5239 }
1403 5240
1404 ev_watcher_init (&once->to, once_cb_to); 5241 if (types & (EV_TIMER | EV_STAT))
1405 if (timeout >= 0.) 5242 for (i = timercnt + HEAP0; i-- > HEAP0; )
5243#if EV_STAT_ENABLE
5244 /*TODO: timer is not always active*/
5245 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1406 { 5246 {
1407 ev_timer_set (&once->to, timeout, 0.); 5247 if (types & EV_STAT)
1408 ev_timer_start (EV_A_ &once->to); 5248 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1409 } 5249 }
1410 } 5250 else
1411} 5251#endif
5252 if (types & EV_TIMER)
5253 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1412 5254
5255#if EV_PERIODIC_ENABLE
5256 if (types & EV_PERIODIC)
5257 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5258 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5259#endif
5260
5261#if EV_IDLE_ENABLE
5262 if (types & EV_IDLE)
5263 for (j = NUMPRI; j--; )
5264 for (i = idlecnt [j]; i--; )
5265 cb (EV_A_ EV_IDLE, idles [j][i]);
5266#endif
5267
5268#if EV_FORK_ENABLE
5269 if (types & EV_FORK)
5270 for (i = forkcnt; i--; )
5271 if (ev_cb (forks [i]) != embed_fork_cb)
5272 cb (EV_A_ EV_FORK, forks [i]);
5273#endif
5274
5275#if EV_ASYNC_ENABLE
5276 if (types & EV_ASYNC)
5277 for (i = asynccnt; i--; )
5278 cb (EV_A_ EV_ASYNC, asyncs [i]);
5279#endif
5280
5281#if EV_PREPARE_ENABLE
5282 if (types & EV_PREPARE)
5283 for (i = preparecnt; i--; )
5284# if EV_EMBED_ENABLE
5285 if (ev_cb (prepares [i]) != embed_prepare_cb)
5286# endif
5287 cb (EV_A_ EV_PREPARE, prepares [i]);
5288#endif
5289
5290#if EV_CHECK_ENABLE
5291 if (types & EV_CHECK)
5292 for (i = checkcnt; i--; )
5293 cb (EV_A_ EV_CHECK, checks [i]);
5294#endif
5295
5296#if EV_SIGNAL_ENABLE
5297 if (types & EV_SIGNAL)
5298 for (i = 0; i < EV_NSIG - 1; ++i)
5299 for (wl = signals [i].head; wl; )
5300 {
5301 wn = wl->next;
5302 cb (EV_A_ EV_SIGNAL, wl);
5303 wl = wn;
5304 }
5305#endif
5306
5307#if EV_CHILD_ENABLE
5308 if (types & EV_CHILD)
5309 for (i = (EV_PID_HASHSIZE); i--; )
5310 for (wl = childs [i]; wl; )
5311 {
5312 wn = wl->next;
5313 cb (EV_A_ EV_CHILD, wl);
5314 wl = wn;
5315 }
5316#endif
5317/* EV_STAT 0x00001000 /* stat data changed */
5318/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5319}
5320#endif
5321
5322#if EV_MULTIPLICITY
5323 #include "ev_wrap.h"
5324#endif
5325

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines