ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.51 by root, Sat Nov 3 21:58:51 2007 UTC vs.
Revision 1.410 by root, Sat Feb 4 17:57:55 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
39
40/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
32# include "config.h" 45# include "config.h"
33#endif 46# endif
34 47
35#include <math.h> 48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
68# if HAVE_CLOCK_GETTIME
69# ifndef EV_USE_MONOTONIC
70# define EV_USE_MONOTONIC 1
71# endif
72# ifndef EV_USE_REALTIME
73# define EV_USE_REALTIME 0
74# endif
75# else
76# ifndef EV_USE_MONOTONIC
77# define EV_USE_MONOTONIC 0
78# endif
79# ifndef EV_USE_REALTIME
80# define EV_USE_REALTIME 0
81# endif
82# endif
83
84# if HAVE_NANOSLEEP
85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
109# endif
110
111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
118# endif
119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121# ifndef EV_USE_KQUEUE
122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
127# endif
128
129# if HAVE_PORT_H && HAVE_PORT_CREATE
130# ifndef EV_USE_PORT
131# define EV_USE_PORT EV_FEATURE_BACKENDS
132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
136# endif
137
138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
145# endif
146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
36#include <stdlib.h> 167#include <stdlib.h>
37#include <unistd.h> 168#include <string.h>
38#include <fcntl.h> 169#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 170#include <stddef.h>
41 171
42#include <stdio.h> 172#include <stdio.h>
43 173
44#include <assert.h> 174#include <assert.h>
45#include <errno.h> 175#include <errno.h>
46#include <sys/types.h> 176#include <sys/types.h>
177#include <time.h>
178#include <limits.h>
179
180#include <signal.h>
181
182#ifdef EV_H
183# include EV_H
184#else
185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
197#endif
198
47#ifndef WIN32 199#ifndef _WIN32
200# include <sys/time.h>
48# include <sys/wait.h> 201# include <sys/wait.h>
202# include <unistd.h>
203#else
204# include <io.h>
205# define WIN32_LEAN_AND_MEAN
206# include <windows.h>
207# ifndef EV_SELECT_IS_WINSOCKET
208# define EV_SELECT_IS_WINSOCKET 1
49#endif 209# endif
50#include <sys/time.h> 210# undef EV_AVOID_STDIO
51#include <time.h> 211#endif
52 212
53/**/ 213/* OS X, in its infinite idiocy, actually HARDCODES
214 * a limit of 1024 into their select. Where people have brains,
215 * OS X engineers apparently have a vacuum. Or maybe they were
216 * ordered to have a vacuum, or they do anything for money.
217 * This might help. Or not.
218 */
219#define _DARWIN_UNLIMITED_SELECT 1
220
221/* this block tries to deduce configuration from header-defined symbols and defaults */
222
223/* try to deduce the maximum number of signals on this platform */
224#if defined (EV_NSIG)
225/* use what's provided */
226#elif defined (NSIG)
227# define EV_NSIG (NSIG)
228#elif defined(_NSIG)
229# define EV_NSIG (_NSIG)
230#elif defined (SIGMAX)
231# define EV_NSIG (SIGMAX+1)
232#elif defined (SIG_MAX)
233# define EV_NSIG (SIG_MAX+1)
234#elif defined (_SIG_MAX)
235# define EV_NSIG (_SIG_MAX+1)
236#elif defined (MAXSIG)
237# define EV_NSIG (MAXSIG+1)
238#elif defined (MAX_SIG)
239# define EV_NSIG (MAX_SIG+1)
240#elif defined (SIGARRAYSIZE)
241# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
242#elif defined (_sys_nsig)
243# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
244#else
245# error "unable to find value for NSIG, please report"
246/* to make it compile regardless, just remove the above line, */
247/* but consider reporting it, too! :) */
248# define EV_NSIG 65
249#endif
250
251#ifndef EV_USE_FLOOR
252# define EV_USE_FLOOR 0
253#endif
254
255#ifndef EV_USE_CLOCK_SYSCALL
256# if __linux && __GLIBC__ >= 2
257# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
258# else
259# define EV_USE_CLOCK_SYSCALL 0
260# endif
261#endif
54 262
55#ifndef EV_USE_MONOTONIC 263#ifndef EV_USE_MONOTONIC
264# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
265# define EV_USE_MONOTONIC EV_FEATURE_OS
266# else
56# define EV_USE_MONOTONIC 1 267# define EV_USE_MONOTONIC 0
268# endif
269#endif
270
271#ifndef EV_USE_REALTIME
272# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
273#endif
274
275#ifndef EV_USE_NANOSLEEP
276# if _POSIX_C_SOURCE >= 199309L
277# define EV_USE_NANOSLEEP EV_FEATURE_OS
278# else
279# define EV_USE_NANOSLEEP 0
280# endif
57#endif 281#endif
58 282
59#ifndef EV_USE_SELECT 283#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1 284# define EV_USE_SELECT EV_FEATURE_BACKENDS
61#endif 285#endif
62 286
63#ifndef EV_USEV_POLL 287#ifndef EV_USE_POLL
64# define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */ 288# ifdef _WIN32
289# define EV_USE_POLL 0
290# else
291# define EV_USE_POLL EV_FEATURE_BACKENDS
292# endif
65#endif 293#endif
66 294
67#ifndef EV_USE_EPOLL 295#ifndef EV_USE_EPOLL
296# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
297# define EV_USE_EPOLL EV_FEATURE_BACKENDS
298# else
68# define EV_USE_EPOLL 0 299# define EV_USE_EPOLL 0
300# endif
69#endif 301#endif
70 302
71#ifndef EV_USE_KQUEUE 303#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 304# define EV_USE_KQUEUE 0
73#endif 305#endif
74 306
75#ifndef EV_USE_REALTIME 307#ifndef EV_USE_PORT
76# define EV_USE_REALTIME 1 308# define EV_USE_PORT 0
309#endif
310
311#ifndef EV_USE_INOTIFY
312# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
313# define EV_USE_INOTIFY EV_FEATURE_OS
314# else
315# define EV_USE_INOTIFY 0
77#endif 316# endif
317#endif
78 318
79/**/ 319#ifndef EV_PID_HASHSIZE
320# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
321#endif
322
323#ifndef EV_INOTIFY_HASHSIZE
324# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
325#endif
326
327#ifndef EV_USE_EVENTFD
328# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
329# define EV_USE_EVENTFD EV_FEATURE_OS
330# else
331# define EV_USE_EVENTFD 0
332# endif
333#endif
334
335#ifndef EV_USE_SIGNALFD
336# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
337# define EV_USE_SIGNALFD EV_FEATURE_OS
338# else
339# define EV_USE_SIGNALFD 0
340# endif
341#endif
342
343#if 0 /* debugging */
344# define EV_VERIFY 3
345# define EV_USE_4HEAP 1
346# define EV_HEAP_CACHE_AT 1
347#endif
348
349#ifndef EV_VERIFY
350# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
351#endif
352
353#ifndef EV_USE_4HEAP
354# define EV_USE_4HEAP EV_FEATURE_DATA
355#endif
356
357#ifndef EV_HEAP_CACHE_AT
358# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
359#endif
360
361/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
362/* which makes programs even slower. might work on other unices, too. */
363#if EV_USE_CLOCK_SYSCALL
364# include <syscall.h>
365# ifdef SYS_clock_gettime
366# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
367# undef EV_USE_MONOTONIC
368# define EV_USE_MONOTONIC 1
369# else
370# undef EV_USE_CLOCK_SYSCALL
371# define EV_USE_CLOCK_SYSCALL 0
372# endif
373#endif
374
375/* this block fixes any misconfiguration where we know we run into trouble otherwise */
376
377#ifdef _AIX
378/* AIX has a completely broken poll.h header */
379# undef EV_USE_POLL
380# define EV_USE_POLL 0
381#endif
80 382
81#ifndef CLOCK_MONOTONIC 383#ifndef CLOCK_MONOTONIC
82# undef EV_USE_MONOTONIC 384# undef EV_USE_MONOTONIC
83# define EV_USE_MONOTONIC 0 385# define EV_USE_MONOTONIC 0
84#endif 386#endif
86#ifndef CLOCK_REALTIME 388#ifndef CLOCK_REALTIME
87# undef EV_USE_REALTIME 389# undef EV_USE_REALTIME
88# define EV_USE_REALTIME 0 390# define EV_USE_REALTIME 0
89#endif 391#endif
90 392
393#if !EV_STAT_ENABLE
394# undef EV_USE_INOTIFY
395# define EV_USE_INOTIFY 0
396#endif
397
398#if !EV_USE_NANOSLEEP
399/* hp-ux has it in sys/time.h, which we unconditionally include above */
400# if !defined(_WIN32) && !defined(__hpux)
401# include <sys/select.h>
402# endif
403#endif
404
405#if EV_USE_INOTIFY
406# include <sys/statfs.h>
407# include <sys/inotify.h>
408/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
409# ifndef IN_DONT_FOLLOW
410# undef EV_USE_INOTIFY
411# define EV_USE_INOTIFY 0
412# endif
413#endif
414
415#if EV_SELECT_IS_WINSOCKET
416# include <winsock.h>
417#endif
418
419#if EV_USE_EVENTFD
420/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
421# include <stdint.h>
422# ifndef EFD_NONBLOCK
423# define EFD_NONBLOCK O_NONBLOCK
424# endif
425# ifndef EFD_CLOEXEC
426# ifdef O_CLOEXEC
427# define EFD_CLOEXEC O_CLOEXEC
428# else
429# define EFD_CLOEXEC 02000000
430# endif
431# endif
432EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
433#endif
434
435#if EV_USE_SIGNALFD
436/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
437# include <stdint.h>
438# ifndef SFD_NONBLOCK
439# define SFD_NONBLOCK O_NONBLOCK
440# endif
441# ifndef SFD_CLOEXEC
442# ifdef O_CLOEXEC
443# define SFD_CLOEXEC O_CLOEXEC
444# else
445# define SFD_CLOEXEC 02000000
446# endif
447# endif
448EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
449
450struct signalfd_siginfo
451{
452 uint32_t ssi_signo;
453 char pad[128 - sizeof (uint32_t)];
454};
455#endif
456
91/**/ 457/**/
92 458
459#if EV_VERIFY >= 3
460# define EV_FREQUENT_CHECK ev_verify (EV_A)
461#else
462# define EV_FREQUENT_CHECK do { } while (0)
463#endif
464
465/*
466 * This is used to work around floating point rounding problems.
467 * This value is good at least till the year 4000.
468 */
469#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
470/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
471
93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 472#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 473#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
97 474
98#include "ev.h" 475#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
476#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
99 477
478/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
479/* ECB.H BEGIN */
480/*
481 * libecb - http://software.schmorp.de/pkg/libecb
482 *
483 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
484 * Copyright (©) 2011 Emanuele Giaquinta
485 * All rights reserved.
486 *
487 * Redistribution and use in source and binary forms, with or without modifica-
488 * tion, are permitted provided that the following conditions are met:
489 *
490 * 1. Redistributions of source code must retain the above copyright notice,
491 * this list of conditions and the following disclaimer.
492 *
493 * 2. Redistributions in binary form must reproduce the above copyright
494 * notice, this list of conditions and the following disclaimer in the
495 * documentation and/or other materials provided with the distribution.
496 *
497 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
498 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
499 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
500 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
501 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
502 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
503 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
504 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
505 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
506 * OF THE POSSIBILITY OF SUCH DAMAGE.
507 */
508
509#ifndef ECB_H
510#define ECB_H
511
512#ifdef _WIN32
513 typedef signed char int8_t;
514 typedef unsigned char uint8_t;
515 typedef signed short int16_t;
516 typedef unsigned short uint16_t;
517 typedef signed int int32_t;
518 typedef unsigned int uint32_t;
100#if __GNUC__ >= 3 519 #if __GNUC__
101# define expect(expr,value) __builtin_expect ((expr),(value)) 520 typedef signed long long int64_t;
102# define inline inline 521 typedef unsigned long long uint64_t;
522 #else /* _MSC_VER || __BORLANDC__ */
523 typedef signed __int64 int64_t;
524 typedef unsigned __int64 uint64_t;
525 #endif
103#else 526#else
527 #include <inttypes.h>
528#endif
529
530/* many compilers define _GNUC_ to some versions but then only implement
531 * what their idiot authors think are the "more important" extensions,
532 * causing enormous grief in return for some better fake benchmark numbers.
533 * or so.
534 * we try to detect these and simply assume they are not gcc - if they have
535 * an issue with that they should have done it right in the first place.
536 */
537#ifndef ECB_GCC_VERSION
538 #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
539 #define ECB_GCC_VERSION(major,minor) 0
540 #else
541 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
542 #endif
543#endif
544
545/*****************************************************************************/
546
547/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
548/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
549
550#if ECB_NO_THREADS
551# define ECB_NO_SMP 1
552#endif
553
554#if ECB_NO_THREADS || ECB_NO_SMP
555 #define ECB_MEMORY_FENCE do { } while (0)
556#endif
557
558#ifndef ECB_MEMORY_FENCE
559 #if ECB_GCC_VERSION(2,5) || defined(__INTEL_COMPILER) || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
560 #if __i386 || __i386__
561 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
562 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
563 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
564 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
565 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
566 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
567 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
568 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
569 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
570 #elif defined(__ARM_ARCH_6__ ) || defined(__ARM_ARCH_6J__ ) \
571 || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6ZK__)
572 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
573 #elif defined(__ARM_ARCH_7__ ) || defined(__ARM_ARCH_7A__ ) \
574 || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7R__ )
575 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
576 #elif __sparc || __sparc__
577 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
578 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
579 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
580 #elif defined(__s390__) || defined(__s390x__)
581 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
582 #endif
583 #endif
584#endif
585
586#ifndef ECB_MEMORY_FENCE
587 #if ECB_GCC_VERSION(4,4) || defined(__INTEL_COMPILER) || defined(__clang__)
588 #define ECB_MEMORY_FENCE __sync_synchronize ()
589 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
590 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
591 #elif _MSC_VER >= 1400 /* VC++ 2005 */
592 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
593 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
594 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
595 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
596 #elif defined(_WIN32)
597 #include <WinNT.h>
598 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
599 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
600 #include <mbarrier.h>
601 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
602 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
603 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
604 #endif
605#endif
606
607#ifndef ECB_MEMORY_FENCE
608 #if !ECB_AVOID_PTHREADS
609 /*
610 * if you get undefined symbol references to pthread_mutex_lock,
611 * or failure to find pthread.h, then you should implement
612 * the ECB_MEMORY_FENCE operations for your cpu/compiler
613 * OR provide pthread.h and link against the posix thread library
614 * of your system.
615 */
616 #include <pthread.h>
617 #define ECB_NEEDS_PTHREADS 1
618 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
619
620 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
621 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
622 #endif
623#endif
624
625#if !defined(ECB_MEMORY_FENCE_ACQUIRE) && defined(ECB_MEMORY_FENCE)
626 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
627#endif
628
629#if !defined(ECB_MEMORY_FENCE_RELEASE) && defined(ECB_MEMORY_FENCE)
630 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
631#endif
632
633/*****************************************************************************/
634
635#define ECB_C99 (__STDC_VERSION__ >= 199901L)
636
637#if __cplusplus
638 #define ecb_inline static inline
639#elif ECB_GCC_VERSION(2,5)
640 #define ecb_inline static __inline__
641#elif ECB_C99
642 #define ecb_inline static inline
643#else
644 #define ecb_inline static
645#endif
646
647#if ECB_GCC_VERSION(3,3)
648 #define ecb_restrict __restrict__
649#elif ECB_C99
650 #define ecb_restrict restrict
651#else
652 #define ecb_restrict
653#endif
654
655typedef int ecb_bool;
656
657#define ECB_CONCAT_(a, b) a ## b
658#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
659#define ECB_STRINGIFY_(a) # a
660#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
661
662#define ecb_function_ ecb_inline
663
664#if ECB_GCC_VERSION(3,1)
665 #define ecb_attribute(attrlist) __attribute__(attrlist)
666 #define ecb_is_constant(expr) __builtin_constant_p (expr)
667 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
668 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
669#else
670 #define ecb_attribute(attrlist)
671 #define ecb_is_constant(expr) 0
104# define expect(expr,value) (expr) 672 #define ecb_expect(expr,value) (expr)
105# define inline static 673 #define ecb_prefetch(addr,rw,locality)
106#endif 674#endif
107 675
676/* no emulation for ecb_decltype */
677#if ECB_GCC_VERSION(4,5)
678 #define ecb_decltype(x) __decltype(x)
679#elif ECB_GCC_VERSION(3,0)
680 #define ecb_decltype(x) __typeof(x)
681#endif
682
683#define ecb_noinline ecb_attribute ((__noinline__))
684#define ecb_noreturn ecb_attribute ((__noreturn__))
685#define ecb_unused ecb_attribute ((__unused__))
686#define ecb_const ecb_attribute ((__const__))
687#define ecb_pure ecb_attribute ((__pure__))
688
689#if ECB_GCC_VERSION(4,3)
690 #define ecb_artificial ecb_attribute ((__artificial__))
691 #define ecb_hot ecb_attribute ((__hot__))
692 #define ecb_cold ecb_attribute ((__cold__))
693#else
694 #define ecb_artificial
695 #define ecb_hot
696 #define ecb_cold
697#endif
698
699/* put around conditional expressions if you are very sure that the */
700/* expression is mostly true or mostly false. note that these return */
701/* booleans, not the expression. */
108#define expect_false(expr) expect ((expr) != 0, 0) 702#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
109#define expect_true(expr) expect ((expr) != 0, 1) 703#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
704/* for compatibility to the rest of the world */
705#define ecb_likely(expr) ecb_expect_true (expr)
706#define ecb_unlikely(expr) ecb_expect_false (expr)
110 707
708/* count trailing zero bits and count # of one bits */
709#if ECB_GCC_VERSION(3,4)
710 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
711 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
712 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
713 #define ecb_ctz32(x) __builtin_ctz (x)
714 #define ecb_ctz64(x) __builtin_ctzll (x)
715 #define ecb_popcount32(x) __builtin_popcount (x)
716 /* no popcountll */
717#else
718 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
719 ecb_function_ int
720 ecb_ctz32 (uint32_t x)
721 {
722 int r = 0;
723
724 x &= ~x + 1; /* this isolates the lowest bit */
725
726#if ECB_branchless_on_i386
727 r += !!(x & 0xaaaaaaaa) << 0;
728 r += !!(x & 0xcccccccc) << 1;
729 r += !!(x & 0xf0f0f0f0) << 2;
730 r += !!(x & 0xff00ff00) << 3;
731 r += !!(x & 0xffff0000) << 4;
732#else
733 if (x & 0xaaaaaaaa) r += 1;
734 if (x & 0xcccccccc) r += 2;
735 if (x & 0xf0f0f0f0) r += 4;
736 if (x & 0xff00ff00) r += 8;
737 if (x & 0xffff0000) r += 16;
738#endif
739
740 return r;
741 }
742
743 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
744 ecb_function_ int
745 ecb_ctz64 (uint64_t x)
746 {
747 int shift = x & 0xffffffffU ? 0 : 32;
748 return ecb_ctz32 (x >> shift) + shift;
749 }
750
751 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
752 ecb_function_ int
753 ecb_popcount32 (uint32_t x)
754 {
755 x -= (x >> 1) & 0x55555555;
756 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
757 x = ((x >> 4) + x) & 0x0f0f0f0f;
758 x *= 0x01010101;
759
760 return x >> 24;
761 }
762
763 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
764 ecb_function_ int ecb_ld32 (uint32_t x)
765 {
766 int r = 0;
767
768 if (x >> 16) { x >>= 16; r += 16; }
769 if (x >> 8) { x >>= 8; r += 8; }
770 if (x >> 4) { x >>= 4; r += 4; }
771 if (x >> 2) { x >>= 2; r += 2; }
772 if (x >> 1) { r += 1; }
773
774 return r;
775 }
776
777 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
778 ecb_function_ int ecb_ld64 (uint64_t x)
779 {
780 int r = 0;
781
782 if (x >> 32) { x >>= 32; r += 32; }
783
784 return r + ecb_ld32 (x);
785 }
786#endif
787
788ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
789ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
790{
791 return ( (x * 0x0802U & 0x22110U)
792 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
793}
794
795ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
796ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
797{
798 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
799 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
800 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
801 x = ( x >> 8 ) | ( x << 8);
802
803 return x;
804}
805
806ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
807ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
808{
809 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
810 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
811 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
812 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
813 x = ( x >> 16 ) | ( x << 16);
814
815 return x;
816}
817
818/* popcount64 is only available on 64 bit cpus as gcc builtin */
819/* so for this version we are lazy */
820ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
821ecb_function_ int
822ecb_popcount64 (uint64_t x)
823{
824 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
825}
826
827ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
828ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
829ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
830ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
831ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
832ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
833ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
834ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
835
836ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
837ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
838ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
839ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
840ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
841ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
842ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
843ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
844
845#if ECB_GCC_VERSION(4,3)
846 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
847 #define ecb_bswap32(x) __builtin_bswap32 (x)
848 #define ecb_bswap64(x) __builtin_bswap64 (x)
849#else
850 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
851 ecb_function_ uint16_t
852 ecb_bswap16 (uint16_t x)
853 {
854 return ecb_rotl16 (x, 8);
855 }
856
857 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
858 ecb_function_ uint32_t
859 ecb_bswap32 (uint32_t x)
860 {
861 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
862 }
863
864 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
865 ecb_function_ uint64_t
866 ecb_bswap64 (uint64_t x)
867 {
868 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
869 }
870#endif
871
872#if ECB_GCC_VERSION(4,5)
873 #define ecb_unreachable() __builtin_unreachable ()
874#else
875 /* this seems to work fine, but gcc always emits a warning for it :/ */
876 ecb_inline void ecb_unreachable (void) ecb_noreturn;
877 ecb_inline void ecb_unreachable (void) { }
878#endif
879
880/* try to tell the compiler that some condition is definitely true */
881#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
882
883ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
884ecb_inline unsigned char
885ecb_byteorder_helper (void)
886{
887 const uint32_t u = 0x11223344;
888 return *(unsigned char *)&u;
889}
890
891ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
892ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
893ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
894ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
895
896#if ECB_GCC_VERSION(3,0) || ECB_C99
897 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
898#else
899 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
900#endif
901
902#if __cplusplus
903 template<typename T>
904 static inline T ecb_div_rd (T val, T div)
905 {
906 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
907 }
908 template<typename T>
909 static inline T ecb_div_ru (T val, T div)
910 {
911 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
912 }
913#else
914 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
915 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
916#endif
917
918#if ecb_cplusplus_does_not_suck
919 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
920 template<typename T, int N>
921 static inline int ecb_array_length (const T (&arr)[N])
922 {
923 return N;
924 }
925#else
926 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
927#endif
928
929#endif
930
931/* ECB.H END */
932
933#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
934/* if your architecture doesn't need memory fences, e.g. because it is
935 * single-cpu/core, or if you use libev in a project that doesn't use libev
936 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
937 * libev, in which cases the memory fences become nops.
938 * alternatively, you can remove this #error and link against libpthread,
939 * which will then provide the memory fences.
940 */
941# error "memory fences not defined for your architecture, please report"
942#endif
943
944#ifndef ECB_MEMORY_FENCE
945# define ECB_MEMORY_FENCE do { } while (0)
946# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
947# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
948#endif
949
950#define expect_false(cond) ecb_expect_false (cond)
951#define expect_true(cond) ecb_expect_true (cond)
952#define noinline ecb_noinline
953
954#define inline_size ecb_inline
955
956#if EV_FEATURE_CODE
957# define inline_speed ecb_inline
958#else
959# define inline_speed static noinline
960#endif
961
111#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 962#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
963
964#if EV_MINPRI == EV_MAXPRI
965# define ABSPRI(w) (((W)w), 0)
966#else
112#define ABSPRI(w) ((w)->priority - EV_MINPRI) 967# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
968#endif
113 969
970#define EMPTY /* required for microsofts broken pseudo-c compiler */
971#define EMPTY2(a,b) /* used to suppress some warnings */
972
114typedef struct ev_watcher *W; 973typedef ev_watcher *W;
115typedef struct ev_watcher_list *WL; 974typedef ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT; 975typedef ev_watcher_time *WT;
117 976
118static ev_tstamp now_floor, mn_now, diff; /* monotonic clock */ 977#define ev_active(w) ((W)(w))->active
119static ev_tstamp rt_now; 978#define ev_at(w) ((WT)(w))->at
120static int method;
121 979
122static int have_monotonic; /* runtime */
123
124static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
125static void (*method_modify)(EV_P_ int fd, int oev, int nev);
126static void (*method_poll)(EV_P_ ev_tstamp timeout);
127
128static int activecnt; /* number of active events */
129
130#if EV_USE_SELECT 980#if EV_USE_REALTIME
131static unsigned char *vec_ri, *vec_ro, *vec_wi, *vec_wo; 981/* sig_atomic_t is used to avoid per-thread variables or locking but still */
132static int vec_max; 982/* giving it a reasonably high chance of working on typical architectures */
983static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
133#endif 984#endif
134 985
986#if EV_USE_MONOTONIC
987static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
988#endif
989
990#ifndef EV_FD_TO_WIN32_HANDLE
991# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
992#endif
993#ifndef EV_WIN32_HANDLE_TO_FD
994# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
995#endif
996#ifndef EV_WIN32_CLOSE_FD
997# define EV_WIN32_CLOSE_FD(fd) close (fd)
998#endif
999
1000#ifdef _WIN32
1001# include "ev_win32.c"
1002#endif
1003
1004/*****************************************************************************/
1005
1006/* define a suitable floor function (only used by periodics atm) */
1007
135#if EV_USEV_POLL 1008#if EV_USE_FLOOR
136static struct pollfd *polls; 1009# include <math.h>
137static int pollmax, pollcnt; 1010# define ev_floor(v) floor (v)
138static int *pollidxs; /* maps fds into structure indices */ 1011#else
139static int pollidxmax;
140#endif
141 1012
1013#include <float.h>
1014
1015/* a floor() replacement function, should be independent of ev_tstamp type */
1016static ev_tstamp noinline
1017ev_floor (ev_tstamp v)
1018{
1019 /* the choice of shift factor is not terribly important */
1020#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1021 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1022#else
1023 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1024#endif
1025
1026 /* argument too large for an unsigned long? */
1027 if (expect_false (v >= shift))
1028 {
1029 ev_tstamp f;
1030
1031 if (v == v - 1.)
1032 return v; /* very large number */
1033
1034 f = shift * ev_floor (v * (1. / shift));
1035 return f + ev_floor (v - f);
1036 }
1037
1038 /* special treatment for negative args? */
1039 if (expect_false (v < 0.))
1040 {
1041 ev_tstamp f = -ev_floor (-v);
1042
1043 return f - (f == v ? 0 : 1);
1044 }
1045
1046 /* fits into an unsigned long */
1047 return (unsigned long)v;
1048}
1049
1050#endif
1051
1052/*****************************************************************************/
1053
1054#ifdef __linux
1055# include <sys/utsname.h>
1056#endif
1057
1058static unsigned int noinline ecb_cold
1059ev_linux_version (void)
1060{
1061#ifdef __linux
1062 unsigned int v = 0;
1063 struct utsname buf;
1064 int i;
1065 char *p = buf.release;
1066
1067 if (uname (&buf))
1068 return 0;
1069
1070 for (i = 3+1; --i; )
1071 {
1072 unsigned int c = 0;
1073
1074 for (;;)
1075 {
1076 if (*p >= '0' && *p <= '9')
1077 c = c * 10 + *p++ - '0';
1078 else
1079 {
1080 p += *p == '.';
1081 break;
1082 }
1083 }
1084
1085 v = (v << 8) | c;
1086 }
1087
1088 return v;
1089#else
1090 return 0;
1091#endif
1092}
1093
1094/*****************************************************************************/
1095
1096#if EV_AVOID_STDIO
1097static void noinline ecb_cold
1098ev_printerr (const char *msg)
1099{
1100 write (STDERR_FILENO, msg, strlen (msg));
1101}
1102#endif
1103
1104static void (*syserr_cb)(const char *msg);
1105
1106void ecb_cold
1107ev_set_syserr_cb (void (*cb)(const char *msg))
1108{
1109 syserr_cb = cb;
1110}
1111
1112static void noinline ecb_cold
1113ev_syserr (const char *msg)
1114{
1115 if (!msg)
1116 msg = "(libev) system error";
1117
1118 if (syserr_cb)
1119 syserr_cb (msg);
1120 else
1121 {
1122#if EV_AVOID_STDIO
1123 ev_printerr (msg);
1124 ev_printerr (": ");
1125 ev_printerr (strerror (errno));
1126 ev_printerr ("\n");
1127#else
1128 perror (msg);
1129#endif
1130 abort ();
1131 }
1132}
1133
1134static void *
1135ev_realloc_emul (void *ptr, long size)
1136{
1137#if __GLIBC__
1138 return realloc (ptr, size);
1139#else
1140 /* some systems, notably openbsd and darwin, fail to properly
1141 * implement realloc (x, 0) (as required by both ansi c-89 and
1142 * the single unix specification, so work around them here.
1143 */
1144
1145 if (size)
1146 return realloc (ptr, size);
1147
1148 free (ptr);
1149 return 0;
1150#endif
1151}
1152
1153static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
1154
1155void ecb_cold
1156ev_set_allocator (void *(*cb)(void *ptr, long size))
1157{
1158 alloc = cb;
1159}
1160
1161inline_speed void *
1162ev_realloc (void *ptr, long size)
1163{
1164 ptr = alloc (ptr, size);
1165
1166 if (!ptr && size)
1167 {
1168#if EV_AVOID_STDIO
1169 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1170#else
1171 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1172#endif
1173 abort ();
1174 }
1175
1176 return ptr;
1177}
1178
1179#define ev_malloc(size) ev_realloc (0, (size))
1180#define ev_free(ptr) ev_realloc ((ptr), 0)
1181
1182/*****************************************************************************/
1183
1184/* set in reify when reification needed */
1185#define EV_ANFD_REIFY 1
1186
1187/* file descriptor info structure */
1188typedef struct
1189{
1190 WL head;
1191 unsigned char events; /* the events watched for */
1192 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1193 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
1194 unsigned char unused;
142#if EV_USE_EPOLL 1195#if EV_USE_EPOLL
143static int epoll_fd = -1; 1196 unsigned int egen; /* generation counter to counter epoll bugs */
144
145static struct epoll_event *events;
146static int eventmax;
147#endif 1197#endif
148 1198#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
149#if EV_USE_KQUEUE 1199 SOCKET handle;
150static int kqueue_fd;
151static struct kevent *kqueue_changes;
152static int kqueue_changemax, kqueue_changecnt;
153static struct kevent *kqueue_events;
154static int kqueue_eventmax;
155#endif 1200#endif
1201#if EV_USE_IOCP
1202 OVERLAPPED or, ow;
1203#endif
1204} ANFD;
1205
1206/* stores the pending event set for a given watcher */
1207typedef struct
1208{
1209 W w;
1210 int events; /* the pending event set for the given watcher */
1211} ANPENDING;
1212
1213#if EV_USE_INOTIFY
1214/* hash table entry per inotify-id */
1215typedef struct
1216{
1217 WL head;
1218} ANFS;
1219#endif
1220
1221/* Heap Entry */
1222#if EV_HEAP_CACHE_AT
1223 /* a heap element */
1224 typedef struct {
1225 ev_tstamp at;
1226 WT w;
1227 } ANHE;
1228
1229 #define ANHE_w(he) (he).w /* access watcher, read-write */
1230 #define ANHE_at(he) (he).at /* access cached at, read-only */
1231 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1232#else
1233 /* a heap element */
1234 typedef WT ANHE;
1235
1236 #define ANHE_w(he) (he)
1237 #define ANHE_at(he) (he)->at
1238 #define ANHE_at_cache(he)
1239#endif
1240
1241#if EV_MULTIPLICITY
1242
1243 struct ev_loop
1244 {
1245 ev_tstamp ev_rt_now;
1246 #define ev_rt_now ((loop)->ev_rt_now)
1247 #define VAR(name,decl) decl;
1248 #include "ev_vars.h"
1249 #undef VAR
1250 };
1251 #include "ev_wrap.h"
1252
1253 static struct ev_loop default_loop_struct;
1254 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1255
1256#else
1257
1258 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1259 #define VAR(name,decl) static decl;
1260 #include "ev_vars.h"
1261 #undef VAR
1262
1263 static int ev_default_loop_ptr;
1264
1265#endif
1266
1267#if EV_FEATURE_API
1268# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1269# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1270# define EV_INVOKE_PENDING invoke_cb (EV_A)
1271#else
1272# define EV_RELEASE_CB (void)0
1273# define EV_ACQUIRE_CB (void)0
1274# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1275#endif
1276
1277#define EVBREAK_RECURSE 0x80
156 1278
157/*****************************************************************************/ 1279/*****************************************************************************/
158 1280
159inline ev_tstamp 1281#ifndef EV_HAVE_EV_TIME
1282ev_tstamp
160ev_time (void) 1283ev_time (void)
161{ 1284{
162#if EV_USE_REALTIME 1285#if EV_USE_REALTIME
1286 if (expect_true (have_realtime))
1287 {
163 struct timespec ts; 1288 struct timespec ts;
164 clock_gettime (CLOCK_REALTIME, &ts); 1289 clock_gettime (CLOCK_REALTIME, &ts);
165 return ts.tv_sec + ts.tv_nsec * 1e-9; 1290 return ts.tv_sec + ts.tv_nsec * 1e-9;
166#else 1291 }
1292#endif
1293
167 struct timeval tv; 1294 struct timeval tv;
168 gettimeofday (&tv, 0); 1295 gettimeofday (&tv, 0);
169 return tv.tv_sec + tv.tv_usec * 1e-6; 1296 return tv.tv_sec + tv.tv_usec * 1e-6;
170#endif
171} 1297}
1298#endif
172 1299
173inline ev_tstamp 1300inline_size ev_tstamp
174get_clock (void) 1301get_clock (void)
175{ 1302{
176#if EV_USE_MONOTONIC 1303#if EV_USE_MONOTONIC
177 if (expect_true (have_monotonic)) 1304 if (expect_true (have_monotonic))
178 { 1305 {
183#endif 1310#endif
184 1311
185 return ev_time (); 1312 return ev_time ();
186} 1313}
187 1314
1315#if EV_MULTIPLICITY
188ev_tstamp 1316ev_tstamp
189ev_now (EV_P) 1317ev_now (EV_P)
190{ 1318{
191 return rt_now; 1319 return ev_rt_now;
192} 1320}
1321#endif
193 1322
194#define array_roundsize(base,n) ((n) | 4 & ~3) 1323void
195 1324ev_sleep (ev_tstamp delay)
196#define array_needsize(base,cur,cnt,init) \ 1325{
197 if (expect_false ((cnt) > cur)) \ 1326 if (delay > 0.)
198 { \
199 int newcnt = cur; \
200 do \
201 { \
202 newcnt = array_roundsize (base, newcnt << 1); \
203 } \
204 while ((cnt) > newcnt); \
205 \
206 base = realloc (base, sizeof (*base) * (newcnt)); \
207 init (base + cur, newcnt - cur); \
208 cur = newcnt; \
209 } 1327 {
1328#if EV_USE_NANOSLEEP
1329 struct timespec ts;
1330
1331 EV_TS_SET (ts, delay);
1332 nanosleep (&ts, 0);
1333#elif defined(_WIN32)
1334 Sleep ((unsigned long)(delay * 1e3));
1335#else
1336 struct timeval tv;
1337
1338 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1339 /* something not guaranteed by newer posix versions, but guaranteed */
1340 /* by older ones */
1341 EV_TV_SET (tv, delay);
1342 select (0, 0, 0, 0, &tv);
1343#endif
1344 }
1345}
210 1346
211/*****************************************************************************/ 1347/*****************************************************************************/
212 1348
213typedef struct 1349#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
214{
215 struct ev_watcher_list *head;
216 unsigned char events;
217 unsigned char reify;
218} ANFD;
219 1350
220static ANFD *anfds; 1351/* find a suitable new size for the given array, */
221static int anfdmax; 1352/* hopefully by rounding to a nice-to-malloc size */
222 1353inline_size int
223static void 1354array_nextsize (int elem, int cur, int cnt)
224anfds_init (ANFD *base, int count)
225{ 1355{
226 while (count--) 1356 int ncur = cur + 1;
227 {
228 base->head = 0;
229 base->events = EV_NONE;
230 base->reify = 0;
231 1357
232 ++base; 1358 do
1359 ncur <<= 1;
1360 while (cnt > ncur);
1361
1362 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1363 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
233 } 1364 {
234} 1365 ncur *= elem;
235 1366 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
236typedef struct 1367 ncur = ncur - sizeof (void *) * 4;
237{ 1368 ncur /= elem;
238 W w;
239 int events;
240} ANPENDING;
241
242static ANPENDING *pendings [NUMPRI];
243static int pendingmax [NUMPRI], pendingcnt [NUMPRI];
244
245static void
246event (EV_P_ W w, int events)
247{
248 if (w->pending)
249 { 1369 }
1370
1371 return ncur;
1372}
1373
1374static void * noinline ecb_cold
1375array_realloc (int elem, void *base, int *cur, int cnt)
1376{
1377 *cur = array_nextsize (elem, *cur, cnt);
1378 return ev_realloc (base, elem * *cur);
1379}
1380
1381#define array_init_zero(base,count) \
1382 memset ((void *)(base), 0, sizeof (*(base)) * (count))
1383
1384#define array_needsize(type,base,cur,cnt,init) \
1385 if (expect_false ((cnt) > (cur))) \
1386 { \
1387 int ecb_unused ocur_ = (cur); \
1388 (base) = (type *)array_realloc \
1389 (sizeof (type), (base), &(cur), (cnt)); \
1390 init ((base) + (ocur_), (cur) - ocur_); \
1391 }
1392
1393#if 0
1394#define array_slim(type,stem) \
1395 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1396 { \
1397 stem ## max = array_roundsize (stem ## cnt >> 1); \
1398 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1399 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1400 }
1401#endif
1402
1403#define array_free(stem, idx) \
1404 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1405
1406/*****************************************************************************/
1407
1408/* dummy callback for pending events */
1409static void noinline
1410pendingcb (EV_P_ ev_prepare *w, int revents)
1411{
1412}
1413
1414void noinline
1415ev_feed_event (EV_P_ void *w, int revents)
1416{
1417 W w_ = (W)w;
1418 int pri = ABSPRI (w_);
1419
1420 if (expect_false (w_->pending))
1421 pendings [pri][w_->pending - 1].events |= revents;
1422 else
1423 {
1424 w_->pending = ++pendingcnt [pri];
1425 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1426 pendings [pri][w_->pending - 1].w = w_;
250 pendings [ABSPRI (w)][w->pending - 1].events |= events; 1427 pendings [pri][w_->pending - 1].events = revents;
251 return;
252 } 1428 }
253
254 w->pending = ++pendingcnt [ABSPRI (w)];
255 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
256 pendings [ABSPRI (w)][w->pending - 1].w = w;
257 pendings [ABSPRI (w)][w->pending - 1].events = events;
258} 1429}
259 1430
260static void 1431inline_speed void
1432feed_reverse (EV_P_ W w)
1433{
1434 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1435 rfeeds [rfeedcnt++] = w;
1436}
1437
1438inline_size void
1439feed_reverse_done (EV_P_ int revents)
1440{
1441 do
1442 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1443 while (rfeedcnt);
1444}
1445
1446inline_speed void
261queue_events (EV_P_ W *events, int eventcnt, int type) 1447queue_events (EV_P_ W *events, int eventcnt, int type)
262{ 1448{
263 int i; 1449 int i;
264 1450
265 for (i = 0; i < eventcnt; ++i) 1451 for (i = 0; i < eventcnt; ++i)
266 event (EV_A_ events [i], type); 1452 ev_feed_event (EV_A_ events [i], type);
267} 1453}
268 1454
269static void 1455/*****************************************************************************/
1456
1457inline_speed void
270fd_event (EV_P_ int fd, int events) 1458fd_event_nocheck (EV_P_ int fd, int revents)
271{ 1459{
272 ANFD *anfd = anfds + fd; 1460 ANFD *anfd = anfds + fd;
273 struct ev_io *w; 1461 ev_io *w;
274 1462
275 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 1463 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
276 { 1464 {
277 int ev = w->events & events; 1465 int ev = w->events & revents;
278 1466
279 if (ev) 1467 if (ev)
280 event (EV_A_ (W)w, ev); 1468 ev_feed_event (EV_A_ (W)w, ev);
281 } 1469 }
282} 1470}
283 1471
284/*****************************************************************************/ 1472/* do not submit kernel events for fds that have reify set */
1473/* because that means they changed while we were polling for new events */
1474inline_speed void
1475fd_event (EV_P_ int fd, int revents)
1476{
1477 ANFD *anfd = anfds + fd;
285 1478
286static int *fdchanges; 1479 if (expect_true (!anfd->reify))
287static int fdchangemax, fdchangecnt; 1480 fd_event_nocheck (EV_A_ fd, revents);
1481}
288 1482
289static void 1483void
1484ev_feed_fd_event (EV_P_ int fd, int revents)
1485{
1486 if (fd >= 0 && fd < anfdmax)
1487 fd_event_nocheck (EV_A_ fd, revents);
1488}
1489
1490/* make sure the external fd watch events are in-sync */
1491/* with the kernel/libev internal state */
1492inline_size void
290fd_reify (EV_P) 1493fd_reify (EV_P)
291{ 1494{
292 int i; 1495 int i;
293 1496
1497#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
294 for (i = 0; i < fdchangecnt; ++i) 1498 for (i = 0; i < fdchangecnt; ++i)
295 { 1499 {
296 int fd = fdchanges [i]; 1500 int fd = fdchanges [i];
297 ANFD *anfd = anfds + fd; 1501 ANFD *anfd = anfds + fd;
298 struct ev_io *w;
299 1502
300 int events = 0; 1503 if (anfd->reify & EV__IOFDSET && anfd->head)
301
302 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
303 events |= w->events;
304
305 anfd->reify = 0;
306
307 if (anfd->events != events)
308 { 1504 {
1505 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1506
1507 if (handle != anfd->handle)
1508 {
1509 unsigned long arg;
1510
1511 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1512
1513 /* handle changed, but fd didn't - we need to do it in two steps */
309 method_modify (EV_A_ fd, anfd->events, events); 1514 backend_modify (EV_A_ fd, anfd->events, 0);
310 anfd->events = events; 1515 anfd->events = 0;
1516 anfd->handle = handle;
1517 }
311 } 1518 }
312 } 1519 }
1520#endif
1521
1522 for (i = 0; i < fdchangecnt; ++i)
1523 {
1524 int fd = fdchanges [i];
1525 ANFD *anfd = anfds + fd;
1526 ev_io *w;
1527
1528 unsigned char o_events = anfd->events;
1529 unsigned char o_reify = anfd->reify;
1530
1531 anfd->reify = 0;
1532
1533 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1534 {
1535 anfd->events = 0;
1536
1537 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1538 anfd->events |= (unsigned char)w->events;
1539
1540 if (o_events != anfd->events)
1541 o_reify = EV__IOFDSET; /* actually |= */
1542 }
1543
1544 if (o_reify & EV__IOFDSET)
1545 backend_modify (EV_A_ fd, o_events, anfd->events);
1546 }
313 1547
314 fdchangecnt = 0; 1548 fdchangecnt = 0;
315} 1549}
316 1550
317static void 1551/* something about the given fd changed */
1552inline_size void
318fd_change (EV_P_ int fd) 1553fd_change (EV_P_ int fd, int flags)
319{ 1554{
320 if (anfds [fd].reify || fdchangecnt < 0) 1555 unsigned char reify = anfds [fd].reify;
321 return;
322
323 anfds [fd].reify = 1; 1556 anfds [fd].reify |= flags;
324 1557
1558 if (expect_true (!reify))
1559 {
325 ++fdchangecnt; 1560 ++fdchangecnt;
326 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 1561 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
327 fdchanges [fdchangecnt - 1] = fd; 1562 fdchanges [fdchangecnt - 1] = fd;
1563 }
328} 1564}
329 1565
330static void 1566/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1567inline_speed void ecb_cold
331fd_kill (EV_P_ int fd) 1568fd_kill (EV_P_ int fd)
332{ 1569{
333 struct ev_io *w; 1570 ev_io *w;
334 1571
335 while ((w = (struct ev_io *)anfds [fd].head)) 1572 while ((w = (ev_io *)anfds [fd].head))
336 { 1573 {
337 ev_io_stop (EV_A_ w); 1574 ev_io_stop (EV_A_ w);
338 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1575 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
339 } 1576 }
1577}
1578
1579/* check whether the given fd is actually valid, for error recovery */
1580inline_size int ecb_cold
1581fd_valid (int fd)
1582{
1583#ifdef _WIN32
1584 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1585#else
1586 return fcntl (fd, F_GETFD) != -1;
1587#endif
340} 1588}
341 1589
342/* called on EBADF to verify fds */ 1590/* called on EBADF to verify fds */
343static void 1591static void noinline ecb_cold
344fd_ebadf (EV_P) 1592fd_ebadf (EV_P)
345{ 1593{
346 int fd; 1594 int fd;
347 1595
348 for (fd = 0; fd < anfdmax; ++fd) 1596 for (fd = 0; fd < anfdmax; ++fd)
349 if (anfds [fd].events) 1597 if (anfds [fd].events)
350 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 1598 if (!fd_valid (fd) && errno == EBADF)
351 fd_kill (EV_A_ fd); 1599 fd_kill (EV_A_ fd);
352} 1600}
353 1601
354/* called on ENOMEM in select/poll to kill some fds and retry */ 1602/* called on ENOMEM in select/poll to kill some fds and retry */
355static void 1603static void noinline ecb_cold
356fd_enomem (EV_P) 1604fd_enomem (EV_P)
357{ 1605{
358 int fd = anfdmax; 1606 int fd;
359 1607
360 while (fd--) 1608 for (fd = anfdmax; fd--; )
361 if (anfds [fd].events) 1609 if (anfds [fd].events)
362 { 1610 {
363 close (fd);
364 fd_kill (EV_A_ fd); 1611 fd_kill (EV_A_ fd);
365 return; 1612 break;
366 } 1613 }
367} 1614}
368 1615
1616/* usually called after fork if backend needs to re-arm all fds from scratch */
1617static void noinline
1618fd_rearm_all (EV_P)
1619{
1620 int fd;
1621
1622 for (fd = 0; fd < anfdmax; ++fd)
1623 if (anfds [fd].events)
1624 {
1625 anfds [fd].events = 0;
1626 anfds [fd].emask = 0;
1627 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1628 }
1629}
1630
1631/* used to prepare libev internal fd's */
1632/* this is not fork-safe */
1633inline_speed void
1634fd_intern (int fd)
1635{
1636#ifdef _WIN32
1637 unsigned long arg = 1;
1638 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1639#else
1640 fcntl (fd, F_SETFD, FD_CLOEXEC);
1641 fcntl (fd, F_SETFL, O_NONBLOCK);
1642#endif
1643}
1644
369/*****************************************************************************/ 1645/*****************************************************************************/
370 1646
371static struct ev_timer **timers; 1647/*
372static int timermax, timercnt; 1648 * the heap functions want a real array index. array index 0 is guaranteed to not
1649 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1650 * the branching factor of the d-tree.
1651 */
373 1652
374static struct ev_periodic **periodics; 1653/*
375static int periodicmax, periodiccnt; 1654 * at the moment we allow libev the luxury of two heaps,
1655 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1656 * which is more cache-efficient.
1657 * the difference is about 5% with 50000+ watchers.
1658 */
1659#if EV_USE_4HEAP
376 1660
1661#define DHEAP 4
1662#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1663#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1664#define UPHEAP_DONE(p,k) ((p) == (k))
1665
1666/* away from the root */
1667inline_speed void
1668downheap (ANHE *heap, int N, int k)
1669{
1670 ANHE he = heap [k];
1671 ANHE *E = heap + N + HEAP0;
1672
1673 for (;;)
1674 {
1675 ev_tstamp minat;
1676 ANHE *minpos;
1677 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1678
1679 /* find minimum child */
1680 if (expect_true (pos + DHEAP - 1 < E))
1681 {
1682 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1683 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1684 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1685 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1686 }
1687 else if (pos < E)
1688 {
1689 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1690 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1691 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1692 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1693 }
1694 else
1695 break;
1696
1697 if (ANHE_at (he) <= minat)
1698 break;
1699
1700 heap [k] = *minpos;
1701 ev_active (ANHE_w (*minpos)) = k;
1702
1703 k = minpos - heap;
1704 }
1705
1706 heap [k] = he;
1707 ev_active (ANHE_w (he)) = k;
1708}
1709
1710#else /* 4HEAP */
1711
1712#define HEAP0 1
1713#define HPARENT(k) ((k) >> 1)
1714#define UPHEAP_DONE(p,k) (!(p))
1715
1716/* away from the root */
1717inline_speed void
1718downheap (ANHE *heap, int N, int k)
1719{
1720 ANHE he = heap [k];
1721
1722 for (;;)
1723 {
1724 int c = k << 1;
1725
1726 if (c >= N + HEAP0)
1727 break;
1728
1729 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1730 ? 1 : 0;
1731
1732 if (ANHE_at (he) <= ANHE_at (heap [c]))
1733 break;
1734
1735 heap [k] = heap [c];
1736 ev_active (ANHE_w (heap [k])) = k;
1737
1738 k = c;
1739 }
1740
1741 heap [k] = he;
1742 ev_active (ANHE_w (he)) = k;
1743}
1744#endif
1745
1746/* towards the root */
1747inline_speed void
1748upheap (ANHE *heap, int k)
1749{
1750 ANHE he = heap [k];
1751
1752 for (;;)
1753 {
1754 int p = HPARENT (k);
1755
1756 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1757 break;
1758
1759 heap [k] = heap [p];
1760 ev_active (ANHE_w (heap [k])) = k;
1761 k = p;
1762 }
1763
1764 heap [k] = he;
1765 ev_active (ANHE_w (he)) = k;
1766}
1767
1768/* move an element suitably so it is in a correct place */
1769inline_size void
1770adjustheap (ANHE *heap, int N, int k)
1771{
1772 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1773 upheap (heap, k);
1774 else
1775 downheap (heap, N, k);
1776}
1777
1778/* rebuild the heap: this function is used only once and executed rarely */
1779inline_size void
1780reheap (ANHE *heap, int N)
1781{
1782 int i;
1783
1784 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1785 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1786 for (i = 0; i < N; ++i)
1787 upheap (heap, i + HEAP0);
1788}
1789
1790/*****************************************************************************/
1791
1792/* associate signal watchers to a signal signal */
1793typedef struct
1794{
1795 EV_ATOMIC_T pending;
1796#if EV_MULTIPLICITY
1797 EV_P;
1798#endif
1799 WL head;
1800} ANSIG;
1801
1802static ANSIG signals [EV_NSIG - 1];
1803
1804/*****************************************************************************/
1805
1806#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1807
1808static void noinline ecb_cold
1809evpipe_init (EV_P)
1810{
1811 if (!ev_is_active (&pipe_w))
1812 {
1813# if EV_USE_EVENTFD
1814 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1815 if (evfd < 0 && errno == EINVAL)
1816 evfd = eventfd (0, 0);
1817
1818 if (evfd >= 0)
1819 {
1820 evpipe [0] = -1;
1821 fd_intern (evfd); /* doing it twice doesn't hurt */
1822 ev_io_set (&pipe_w, evfd, EV_READ);
1823 }
1824 else
1825# endif
1826 {
1827 while (pipe (evpipe))
1828 ev_syserr ("(libev) error creating signal/async pipe");
1829
1830 fd_intern (evpipe [0]);
1831 fd_intern (evpipe [1]);
1832 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1833 }
1834
1835 ev_io_start (EV_A_ &pipe_w);
1836 ev_unref (EV_A); /* watcher should not keep loop alive */
1837 }
1838}
1839
1840inline_speed void
1841evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1842{
1843 if (expect_true (*flag))
1844 return;
1845
1846 *flag = 1;
1847
1848 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1849
1850 pipe_write_skipped = 1;
1851
1852 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1853
1854 if (pipe_write_wanted)
1855 {
1856 int old_errno;
1857
1858 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1859
1860 old_errno = errno; /* save errno because write will clobber it */
1861
1862#if EV_USE_EVENTFD
1863 if (evfd >= 0)
1864 {
1865 uint64_t counter = 1;
1866 write (evfd, &counter, sizeof (uint64_t));
1867 }
1868 else
1869#endif
1870 {
1871 /* win32 people keep sending patches that change this write() to send() */
1872 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1873 /* so when you think this write should be a send instead, please find out */
1874 /* where your send() is from - it's definitely not the microsoft send, and */
1875 /* tell me. thank you. */
1876 write (evpipe [1], &(evpipe [1]), 1);
1877 }
1878
1879 errno = old_errno;
1880 }
1881}
1882
1883/* called whenever the libev signal pipe */
1884/* got some events (signal, async) */
377static void 1885static void
378upheap (WT *timers, int k) 1886pipecb (EV_P_ ev_io *iow, int revents)
379{ 1887{
380 WT w = timers [k]; 1888 int i;
381 1889
382 while (k && timers [k >> 1]->at > w->at) 1890 if (revents & EV_READ)
383 {
384 timers [k] = timers [k >> 1];
385 timers [k]->active = k + 1;
386 k >>= 1;
387 } 1891 {
1892#if EV_USE_EVENTFD
1893 if (evfd >= 0)
1894 {
1895 uint64_t counter;
1896 read (evfd, &counter, sizeof (uint64_t));
1897 }
1898 else
1899#endif
1900 {
1901 char dummy;
1902 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1903 read (evpipe [0], &dummy, 1);
1904 }
1905 }
388 1906
389 timers [k] = w; 1907 pipe_write_skipped = 0;
390 timers [k]->active = k + 1;
391 1908
1909#if EV_SIGNAL_ENABLE
1910 if (sig_pending)
1911 {
1912 sig_pending = 0;
1913
1914 for (i = EV_NSIG - 1; i--; )
1915 if (expect_false (signals [i].pending))
1916 ev_feed_signal_event (EV_A_ i + 1);
1917 }
1918#endif
1919
1920#if EV_ASYNC_ENABLE
1921 if (async_pending)
1922 {
1923 async_pending = 0;
1924
1925 for (i = asynccnt; i--; )
1926 if (asyncs [i]->sent)
1927 {
1928 asyncs [i]->sent = 0;
1929 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1930 }
1931 }
1932#endif
1933}
1934
1935/*****************************************************************************/
1936
1937void
1938ev_feed_signal (int signum)
1939{
1940#if EV_MULTIPLICITY
1941 EV_P = signals [signum - 1].loop;
1942
1943 if (!EV_A)
1944 return;
1945#endif
1946
1947 if (!ev_active (&pipe_w))
1948 return;
1949
1950 signals [signum - 1].pending = 1;
1951 evpipe_write (EV_A_ &sig_pending);
392} 1952}
393 1953
394static void 1954static void
395downheap (WT *timers, int N, int k) 1955ev_sighandler (int signum)
396{ 1956{
397 WT w = timers [k]; 1957#ifdef _WIN32
1958 signal (signum, ev_sighandler);
1959#endif
398 1960
399 while (k < (N >> 1)) 1961 ev_feed_signal (signum);
400 { 1962}
401 int j = k << 1;
402 1963
403 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 1964void noinline
404 ++j; 1965ev_feed_signal_event (EV_P_ int signum)
1966{
1967 WL w;
405 1968
406 if (w->at <= timers [j]->at) 1969 if (expect_false (signum <= 0 || signum > EV_NSIG))
1970 return;
1971
1972 --signum;
1973
1974#if EV_MULTIPLICITY
1975 /* it is permissible to try to feed a signal to the wrong loop */
1976 /* or, likely more useful, feeding a signal nobody is waiting for */
1977
1978 if (expect_false (signals [signum].loop != EV_A))
1979 return;
1980#endif
1981
1982 signals [signum].pending = 0;
1983
1984 for (w = signals [signum].head; w; w = w->next)
1985 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1986}
1987
1988#if EV_USE_SIGNALFD
1989static void
1990sigfdcb (EV_P_ ev_io *iow, int revents)
1991{
1992 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1993
1994 for (;;)
1995 {
1996 ssize_t res = read (sigfd, si, sizeof (si));
1997
1998 /* not ISO-C, as res might be -1, but works with SuS */
1999 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2000 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2001
2002 if (res < (ssize_t)sizeof (si))
407 break; 2003 break;
408
409 timers [k] = timers [j];
410 timers [k]->active = k + 1;
411 k = j;
412 } 2004 }
413
414 timers [k] = w;
415 timers [k]->active = k + 1;
416} 2005}
2006#endif
2007
2008#endif
417 2009
418/*****************************************************************************/ 2010/*****************************************************************************/
419 2011
420typedef struct 2012#if EV_CHILD_ENABLE
421{ 2013static WL childs [EV_PID_HASHSIZE];
422 struct ev_watcher_list *head;
423 sig_atomic_t volatile gotsig;
424} ANSIG;
425 2014
426static ANSIG *signals;
427static int signalmax;
428
429static int sigpipe [2];
430static sig_atomic_t volatile gotsig;
431static struct ev_io sigev;
432
433static void
434signals_init (ANSIG *base, int count)
435{
436 while (count--)
437 {
438 base->head = 0;
439 base->gotsig = 0;
440
441 ++base;
442 }
443}
444
445static void
446sighandler (int signum)
447{
448 signals [signum - 1].gotsig = 1;
449
450 if (!gotsig)
451 {
452 int old_errno = errno;
453 gotsig = 1;
454 write (sigpipe [1], &signum, 1);
455 errno = old_errno;
456 }
457}
458
459static void
460sigcb (EV_P_ struct ev_io *iow, int revents)
461{
462 struct ev_watcher_list *w;
463 int signum;
464
465 read (sigpipe [0], &revents, 1);
466 gotsig = 0;
467
468 for (signum = signalmax; signum--; )
469 if (signals [signum].gotsig)
470 {
471 signals [signum].gotsig = 0;
472
473 for (w = signals [signum].head; w; w = w->next)
474 event (EV_A_ (W)w, EV_SIGNAL);
475 }
476}
477
478static void
479siginit (EV_P)
480{
481#ifndef WIN32
482 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
483 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
484
485 /* rather than sort out wether we really need nb, set it */
486 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
487 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
488#endif
489
490 ev_io_set (&sigev, sigpipe [0], EV_READ);
491 ev_io_start (&sigev);
492}
493
494/*****************************************************************************/
495
496static struct ev_idle **idles;
497static int idlemax, idlecnt;
498
499static struct ev_prepare **prepares;
500static int preparemax, preparecnt;
501
502static struct ev_check **checks;
503static int checkmax, checkcnt;
504
505/*****************************************************************************/
506
507static struct ev_child *childs [PID_HASHSIZE];
508static struct ev_signal childev; 2015static ev_signal childev;
509 2016
510#ifndef WIN32 2017#ifndef WIFCONTINUED
2018# define WIFCONTINUED(status) 0
2019#endif
2020
2021/* handle a single child status event */
2022inline_speed void
2023child_reap (EV_P_ int chain, int pid, int status)
2024{
2025 ev_child *w;
2026 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2027
2028 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2029 {
2030 if ((w->pid == pid || !w->pid)
2031 && (!traced || (w->flags & 1)))
2032 {
2033 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2034 w->rpid = pid;
2035 w->rstatus = status;
2036 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2037 }
2038 }
2039}
511 2040
512#ifndef WCONTINUED 2041#ifndef WCONTINUED
513# define WCONTINUED 0 2042# define WCONTINUED 0
514#endif 2043#endif
515 2044
2045/* called on sigchld etc., calls waitpid */
516static void 2046static void
517child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
518{
519 struct ev_child *w;
520
521 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
522 if (w->pid == pid || !w->pid)
523 {
524 w->priority = sw->priority; /* need to do it *now* */
525 w->rpid = pid;
526 w->rstatus = status;
527 event (EV_A_ (W)w, EV_CHILD);
528 }
529}
530
531static void
532childcb (EV_P_ struct ev_signal *sw, int revents) 2047childcb (EV_P_ ev_signal *sw, int revents)
533{ 2048{
534 int pid, status; 2049 int pid, status;
535 2050
2051 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
536 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 2052 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
537 { 2053 if (!WCONTINUED
2054 || errno != EINVAL
2055 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2056 return;
2057
538 /* make sure we are called again until all childs have been reaped */ 2058 /* make sure we are called again until all children have been reaped */
2059 /* we need to do it this way so that the callback gets called before we continue */
539 event (EV_A_ (W)sw, EV_SIGNAL); 2060 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
540 2061
541 child_reap (EV_A_ sw, pid, pid, status); 2062 child_reap (EV_A_ pid, pid, status);
2063 if ((EV_PID_HASHSIZE) > 1)
542 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 2064 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
543 }
544} 2065}
545 2066
546#endif 2067#endif
547 2068
548/*****************************************************************************/ 2069/*****************************************************************************/
549 2070
2071#if EV_USE_IOCP
2072# include "ev_iocp.c"
2073#endif
2074#if EV_USE_PORT
2075# include "ev_port.c"
2076#endif
550#if EV_USE_KQUEUE 2077#if EV_USE_KQUEUE
551# include "ev_kqueue.c" 2078# include "ev_kqueue.c"
552#endif 2079#endif
553#if EV_USE_EPOLL 2080#if EV_USE_EPOLL
554# include "ev_epoll.c" 2081# include "ev_epoll.c"
555#endif 2082#endif
556#if EV_USEV_POLL 2083#if EV_USE_POLL
557# include "ev_poll.c" 2084# include "ev_poll.c"
558#endif 2085#endif
559#if EV_USE_SELECT 2086#if EV_USE_SELECT
560# include "ev_select.c" 2087# include "ev_select.c"
561#endif 2088#endif
562 2089
563int 2090int ecb_cold
564ev_version_major (void) 2091ev_version_major (void)
565{ 2092{
566 return EV_VERSION_MAJOR; 2093 return EV_VERSION_MAJOR;
567} 2094}
568 2095
569int 2096int ecb_cold
570ev_version_minor (void) 2097ev_version_minor (void)
571{ 2098{
572 return EV_VERSION_MINOR; 2099 return EV_VERSION_MINOR;
573} 2100}
574 2101
575/* return true if we are running with elevated privileges and should ignore env variables */ 2102/* return true if we are running with elevated privileges and should ignore env variables */
576static int 2103int inline_size ecb_cold
577enable_secure (void) 2104enable_secure (void)
578{ 2105{
579#ifdef WIN32 2106#ifdef _WIN32
580 return 0; 2107 return 0;
581#else 2108#else
582 return getuid () != geteuid () 2109 return getuid () != geteuid ()
583 || getgid () != getegid (); 2110 || getgid () != getegid ();
584#endif 2111#endif
585} 2112}
586 2113
2114unsigned int ecb_cold
2115ev_supported_backends (void)
2116{
2117 unsigned int flags = 0;
2118
2119 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2120 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2121 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2122 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2123 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2124
2125 return flags;
2126}
2127
2128unsigned int ecb_cold
2129ev_recommended_backends (void)
2130{
2131 unsigned int flags = ev_supported_backends ();
2132
2133#ifndef __NetBSD__
2134 /* kqueue is borked on everything but netbsd apparently */
2135 /* it usually doesn't work correctly on anything but sockets and pipes */
2136 flags &= ~EVBACKEND_KQUEUE;
2137#endif
2138#ifdef __APPLE__
2139 /* only select works correctly on that "unix-certified" platform */
2140 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2141 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2142#endif
2143#ifdef __FreeBSD__
2144 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2145#endif
2146
2147 return flags;
2148}
2149
2150unsigned int ecb_cold
2151ev_embeddable_backends (void)
2152{
2153 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2154
2155 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2156 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2157 flags &= ~EVBACKEND_EPOLL;
2158
2159 return flags;
2160}
2161
2162unsigned int
2163ev_backend (EV_P)
2164{
2165 return backend;
2166}
2167
2168#if EV_FEATURE_API
2169unsigned int
2170ev_iteration (EV_P)
2171{
2172 return loop_count;
2173}
2174
2175unsigned int
2176ev_depth (EV_P)
2177{
2178 return loop_depth;
2179}
2180
2181void
2182ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
2183{
2184 io_blocktime = interval;
2185}
2186
2187void
2188ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
2189{
2190 timeout_blocktime = interval;
2191}
2192
2193void
2194ev_set_userdata (EV_P_ void *data)
2195{
2196 userdata = data;
2197}
2198
2199void *
2200ev_userdata (EV_P)
2201{
2202 return userdata;
2203}
2204
2205void
2206ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
2207{
2208 invoke_cb = invoke_pending_cb;
2209}
2210
2211void
2212ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
2213{
2214 release_cb = release;
2215 acquire_cb = acquire;
2216}
2217#endif
2218
2219/* initialise a loop structure, must be zero-initialised */
2220static void noinline ecb_cold
2221loop_init (EV_P_ unsigned int flags)
2222{
2223 if (!backend)
2224 {
2225 origflags = flags;
2226
2227#if EV_USE_REALTIME
2228 if (!have_realtime)
2229 {
2230 struct timespec ts;
2231
2232 if (!clock_gettime (CLOCK_REALTIME, &ts))
2233 have_realtime = 1;
2234 }
2235#endif
2236
2237#if EV_USE_MONOTONIC
2238 if (!have_monotonic)
2239 {
2240 struct timespec ts;
2241
2242 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2243 have_monotonic = 1;
2244 }
2245#endif
2246
2247 /* pid check not overridable via env */
2248#ifndef _WIN32
2249 if (flags & EVFLAG_FORKCHECK)
2250 curpid = getpid ();
2251#endif
2252
2253 if (!(flags & EVFLAG_NOENV)
2254 && !enable_secure ()
2255 && getenv ("LIBEV_FLAGS"))
2256 flags = atoi (getenv ("LIBEV_FLAGS"));
2257
2258 ev_rt_now = ev_time ();
2259 mn_now = get_clock ();
2260 now_floor = mn_now;
2261 rtmn_diff = ev_rt_now - mn_now;
2262#if EV_FEATURE_API
2263 invoke_cb = ev_invoke_pending;
2264#endif
2265
2266 io_blocktime = 0.;
2267 timeout_blocktime = 0.;
2268 backend = 0;
2269 backend_fd = -1;
2270 sig_pending = 0;
2271#if EV_ASYNC_ENABLE
2272 async_pending = 0;
2273#endif
2274 pipe_write_skipped = 0;
2275 pipe_write_wanted = 0;
2276#if EV_USE_INOTIFY
2277 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2278#endif
2279#if EV_USE_SIGNALFD
2280 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2281#endif
2282
2283 if (!(flags & EVBACKEND_MASK))
2284 flags |= ev_recommended_backends ();
2285
2286#if EV_USE_IOCP
2287 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2288#endif
2289#if EV_USE_PORT
2290 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2291#endif
2292#if EV_USE_KQUEUE
2293 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2294#endif
2295#if EV_USE_EPOLL
2296 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2297#endif
2298#if EV_USE_POLL
2299 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2300#endif
2301#if EV_USE_SELECT
2302 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2303#endif
2304
2305 ev_prepare_init (&pending_w, pendingcb);
2306
2307#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2308 ev_init (&pipe_w, pipecb);
2309 ev_set_priority (&pipe_w, EV_MAXPRI);
2310#endif
2311 }
2312}
2313
2314/* free up a loop structure */
2315void ecb_cold
2316ev_loop_destroy (EV_P)
2317{
2318 int i;
2319
2320#if EV_MULTIPLICITY
2321 /* mimic free (0) */
2322 if (!EV_A)
2323 return;
2324#endif
2325
2326#if EV_CLEANUP_ENABLE
2327 /* queue cleanup watchers (and execute them) */
2328 if (expect_false (cleanupcnt))
2329 {
2330 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2331 EV_INVOKE_PENDING;
2332 }
2333#endif
2334
2335#if EV_CHILD_ENABLE
2336 if (ev_is_active (&childev))
2337 {
2338 ev_ref (EV_A); /* child watcher */
2339 ev_signal_stop (EV_A_ &childev);
2340 }
2341#endif
2342
2343 if (ev_is_active (&pipe_w))
2344 {
2345 /*ev_ref (EV_A);*/
2346 /*ev_io_stop (EV_A_ &pipe_w);*/
2347
2348#if EV_USE_EVENTFD
2349 if (evfd >= 0)
2350 close (evfd);
2351#endif
2352
2353 if (evpipe [0] >= 0)
2354 {
2355 EV_WIN32_CLOSE_FD (evpipe [0]);
2356 EV_WIN32_CLOSE_FD (evpipe [1]);
2357 }
2358 }
2359
2360#if EV_USE_SIGNALFD
2361 if (ev_is_active (&sigfd_w))
2362 close (sigfd);
2363#endif
2364
2365#if EV_USE_INOTIFY
2366 if (fs_fd >= 0)
2367 close (fs_fd);
2368#endif
2369
2370 if (backend_fd >= 0)
2371 close (backend_fd);
2372
2373#if EV_USE_IOCP
2374 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2375#endif
2376#if EV_USE_PORT
2377 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2378#endif
2379#if EV_USE_KQUEUE
2380 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2381#endif
2382#if EV_USE_EPOLL
2383 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2384#endif
2385#if EV_USE_POLL
2386 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2387#endif
2388#if EV_USE_SELECT
2389 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2390#endif
2391
2392 for (i = NUMPRI; i--; )
2393 {
2394 array_free (pending, [i]);
2395#if EV_IDLE_ENABLE
2396 array_free (idle, [i]);
2397#endif
2398 }
2399
2400 ev_free (anfds); anfds = 0; anfdmax = 0;
2401
2402 /* have to use the microsoft-never-gets-it-right macro */
2403 array_free (rfeed, EMPTY);
2404 array_free (fdchange, EMPTY);
2405 array_free (timer, EMPTY);
2406#if EV_PERIODIC_ENABLE
2407 array_free (periodic, EMPTY);
2408#endif
2409#if EV_FORK_ENABLE
2410 array_free (fork, EMPTY);
2411#endif
2412#if EV_CLEANUP_ENABLE
2413 array_free (cleanup, EMPTY);
2414#endif
2415 array_free (prepare, EMPTY);
2416 array_free (check, EMPTY);
2417#if EV_ASYNC_ENABLE
2418 array_free (async, EMPTY);
2419#endif
2420
2421 backend = 0;
2422
2423#if EV_MULTIPLICITY
2424 if (ev_is_default_loop (EV_A))
2425#endif
2426 ev_default_loop_ptr = 0;
2427#if EV_MULTIPLICITY
2428 else
2429 ev_free (EV_A);
2430#endif
2431}
2432
2433#if EV_USE_INOTIFY
2434inline_size void infy_fork (EV_P);
2435#endif
2436
2437inline_size void
2438loop_fork (EV_P)
2439{
2440#if EV_USE_PORT
2441 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2442#endif
2443#if EV_USE_KQUEUE
2444 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2445#endif
2446#if EV_USE_EPOLL
2447 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2448#endif
2449#if EV_USE_INOTIFY
2450 infy_fork (EV_A);
2451#endif
2452
2453 if (ev_is_active (&pipe_w))
2454 {
2455 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2456
2457 ev_ref (EV_A);
2458 ev_io_stop (EV_A_ &pipe_w);
2459
2460#if EV_USE_EVENTFD
2461 if (evfd >= 0)
2462 close (evfd);
2463#endif
2464
2465 if (evpipe [0] >= 0)
2466 {
2467 EV_WIN32_CLOSE_FD (evpipe [0]);
2468 EV_WIN32_CLOSE_FD (evpipe [1]);
2469 }
2470
2471#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2472 evpipe_init (EV_A);
2473 /* now iterate over everything, in case we missed something */
2474 pipecb (EV_A_ &pipe_w, EV_READ);
2475#endif
2476 }
2477
2478 postfork = 0;
2479}
2480
2481#if EV_MULTIPLICITY
2482
2483struct ev_loop * ecb_cold
2484ev_loop_new (unsigned int flags)
2485{
2486 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2487
2488 memset (EV_A, 0, sizeof (struct ev_loop));
2489 loop_init (EV_A_ flags);
2490
2491 if (ev_backend (EV_A))
2492 return EV_A;
2493
2494 ev_free (EV_A);
2495 return 0;
2496}
2497
2498#endif /* multiplicity */
2499
2500#if EV_VERIFY
2501static void noinline ecb_cold
2502verify_watcher (EV_P_ W w)
2503{
2504 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2505
2506 if (w->pending)
2507 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2508}
2509
2510static void noinline ecb_cold
2511verify_heap (EV_P_ ANHE *heap, int N)
2512{
2513 int i;
2514
2515 for (i = HEAP0; i < N + HEAP0; ++i)
2516 {
2517 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2518 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2519 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2520
2521 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2522 }
2523}
2524
2525static void noinline ecb_cold
2526array_verify (EV_P_ W *ws, int cnt)
2527{
2528 while (cnt--)
2529 {
2530 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2531 verify_watcher (EV_A_ ws [cnt]);
2532 }
2533}
2534#endif
2535
2536#if EV_FEATURE_API
2537void ecb_cold
2538ev_verify (EV_P)
2539{
2540#if EV_VERIFY
2541 int i;
2542 WL w;
2543
2544 assert (activecnt >= -1);
2545
2546 assert (fdchangemax >= fdchangecnt);
2547 for (i = 0; i < fdchangecnt; ++i)
2548 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2549
2550 assert (anfdmax >= 0);
2551 for (i = 0; i < anfdmax; ++i)
2552 for (w = anfds [i].head; w; w = w->next)
2553 {
2554 verify_watcher (EV_A_ (W)w);
2555 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2556 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2557 }
2558
2559 assert (timermax >= timercnt);
2560 verify_heap (EV_A_ timers, timercnt);
2561
2562#if EV_PERIODIC_ENABLE
2563 assert (periodicmax >= periodiccnt);
2564 verify_heap (EV_A_ periodics, periodiccnt);
2565#endif
2566
2567 for (i = NUMPRI; i--; )
2568 {
2569 assert (pendingmax [i] >= pendingcnt [i]);
2570#if EV_IDLE_ENABLE
2571 assert (idleall >= 0);
2572 assert (idlemax [i] >= idlecnt [i]);
2573 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2574#endif
2575 }
2576
2577#if EV_FORK_ENABLE
2578 assert (forkmax >= forkcnt);
2579 array_verify (EV_A_ (W *)forks, forkcnt);
2580#endif
2581
2582#if EV_CLEANUP_ENABLE
2583 assert (cleanupmax >= cleanupcnt);
2584 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2585#endif
2586
2587#if EV_ASYNC_ENABLE
2588 assert (asyncmax >= asynccnt);
2589 array_verify (EV_A_ (W *)asyncs, asynccnt);
2590#endif
2591
2592#if EV_PREPARE_ENABLE
2593 assert (preparemax >= preparecnt);
2594 array_verify (EV_A_ (W *)prepares, preparecnt);
2595#endif
2596
2597#if EV_CHECK_ENABLE
2598 assert (checkmax >= checkcnt);
2599 array_verify (EV_A_ (W *)checks, checkcnt);
2600#endif
2601
2602# if 0
2603#if EV_CHILD_ENABLE
2604 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2605 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2606#endif
2607# endif
2608#endif
2609}
2610#endif
2611
2612#if EV_MULTIPLICITY
2613struct ev_loop * ecb_cold
2614#else
587int 2615int
588ev_method (EV_P) 2616#endif
2617ev_default_loop (unsigned int flags)
589{ 2618{
590 return method; 2619 if (!ev_default_loop_ptr)
591}
592
593int
594ev_init (EV_P_ int methods)
595{
596 if (!method)
597 {
598#if EV_USE_MONOTONIC
599 { 2620 {
600 struct timespec ts; 2621#if EV_MULTIPLICITY
601 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2622 EV_P = ev_default_loop_ptr = &default_loop_struct;
602 have_monotonic = 1; 2623#else
603 } 2624 ev_default_loop_ptr = 1;
604#endif 2625#endif
605 2626
606 rt_now = ev_time (); 2627 loop_init (EV_A_ flags);
607 mn_now = get_clock ();
608 now_floor = mn_now;
609 diff = rt_now - mn_now;
610 2628
611 if (pipe (sigpipe)) 2629 if (ev_backend (EV_A))
612 return 0;
613
614 if (methods == EVMETHOD_AUTO)
615 if (!enable_secure () && getenv ("LIBmethodS"))
616 methods = atoi (getenv ("LIBmethodS"));
617 else
618 methods = EVMETHOD_ANY;
619
620 method = 0;
621#if EV_USE_KQUEUE
622 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
623#endif
624#if EV_USE_EPOLL
625 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
626#endif
627#if EV_USEV_POLL
628 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
629#endif
630#if EV_USE_SELECT
631 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
632#endif
633
634 if (method)
635 { 2630 {
636 ev_watcher_init (&sigev, sigcb); 2631#if EV_CHILD_ENABLE
637 ev_set_priority (&sigev, EV_MAXPRI);
638 siginit (EV_A);
639
640#ifndef WIN32
641 ev_signal_init (&childev, childcb, SIGCHLD); 2632 ev_signal_init (&childev, childcb, SIGCHLD);
642 ev_set_priority (&childev, EV_MAXPRI); 2633 ev_set_priority (&childev, EV_MAXPRI);
643 ev_signal_start (EV_A_ &childev); 2634 ev_signal_start (EV_A_ &childev);
2635 ev_unref (EV_A); /* child watcher should not keep loop alive */
644#endif 2636#endif
645 } 2637 }
2638 else
2639 ev_default_loop_ptr = 0;
646 } 2640 }
647 2641
648 return method; 2642 return ev_default_loop_ptr;
2643}
2644
2645void
2646ev_loop_fork (EV_P)
2647{
2648 postfork = 1; /* must be in line with ev_default_fork */
649} 2649}
650 2650
651/*****************************************************************************/ 2651/*****************************************************************************/
652 2652
653void 2653void
654ev_fork_prepare (void) 2654ev_invoke (EV_P_ void *w, int revents)
655{ 2655{
656 /* nop */ 2656 EV_CB_INVOKE ((W)w, revents);
657} 2657}
658 2658
659void 2659unsigned int
660ev_fork_parent (void) 2660ev_pending_count (EV_P)
661{ 2661{
662 /* nop */ 2662 int pri;
663} 2663 unsigned int count = 0;
664 2664
665void 2665 for (pri = NUMPRI; pri--; )
666ev_fork_child (void) 2666 count += pendingcnt [pri];
667{
668#if EV_USE_EPOLL
669 if (method == EVMETHOD_EPOLL)
670 epoll_postfork_child ();
671#endif
672 2667
673 ev_io_stop (&sigev); 2668 return count;
674 close (sigpipe [0]);
675 close (sigpipe [1]);
676 pipe (sigpipe);
677 siginit ();
678} 2669}
679 2670
680/*****************************************************************************/ 2671void noinline
681 2672ev_invoke_pending (EV_P)
682static void
683call_pending (EV_P)
684{ 2673{
685 int pri; 2674 int pri;
686 2675
687 for (pri = NUMPRI; pri--; ) 2676 for (pri = NUMPRI; pri--; )
688 while (pendingcnt [pri]) 2677 while (pendingcnt [pri])
689 { 2678 {
690 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2679 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
691 2680
692 if (p->w)
693 {
694 p->w->pending = 0; 2681 p->w->pending = 0;
695 p->w->cb (EV_A_ p->w, p->events); 2682 EV_CB_INVOKE (p->w, p->events);
696 } 2683 EV_FREQUENT_CHECK;
697 } 2684 }
698} 2685}
699 2686
700static void 2687#if EV_IDLE_ENABLE
2688/* make idle watchers pending. this handles the "call-idle */
2689/* only when higher priorities are idle" logic */
2690inline_size void
701timers_reify (EV_P) 2691idle_reify (EV_P)
702{ 2692{
703 while (timercnt && timers [0]->at <= mn_now) 2693 if (expect_false (idleall))
704 { 2694 {
705 struct ev_timer *w = timers [0]; 2695 int pri;
706 2696
707 /* first reschedule or stop timer */ 2697 for (pri = NUMPRI; pri--; )
708 if (w->repeat)
709 { 2698 {
710 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2699 if (pendingcnt [pri])
711 w->at = mn_now + w->repeat; 2700 break;
712 downheap ((WT *)timers, timercnt, 0);
713 }
714 else
715 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
716 2701
717 event ((W)w, EV_TIMEOUT); 2702 if (idlecnt [pri])
718 }
719}
720
721static void
722periodics_reify (EV_P)
723{
724 while (periodiccnt && periodics [0]->at <= rt_now)
725 {
726 struct ev_periodic *w = periodics [0];
727
728 /* first reschedule or stop timer */
729 if (w->interval)
730 {
731 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
732 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
733 downheap ((WT *)periodics, periodiccnt, 0);
734 }
735 else
736 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
737
738 event (EV_A_ (W)w, EV_PERIODIC);
739 }
740}
741
742static void
743periodics_reschedule (EV_P_ ev_tstamp diff)
744{
745 int i;
746
747 /* adjust periodics after time jump */
748 for (i = 0; i < periodiccnt; ++i)
749 {
750 struct ev_periodic *w = periodics [i];
751
752 if (w->interval)
753 {
754 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
755
756 if (fabs (diff) >= 1e-4)
757 { 2703 {
758 ev_periodic_stop (EV_A_ w); 2704 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
759 ev_periodic_start (EV_A_ w); 2705 break;
760
761 i = 0; /* restart loop, inefficient, but time jumps should be rare */
762 } 2706 }
763 } 2707 }
764 } 2708 }
765} 2709}
2710#endif
766 2711
767inline int 2712/* make timers pending */
768time_update_monotonic (EV_P) 2713inline_size void
2714timers_reify (EV_P)
769{ 2715{
770 mn_now = get_clock (); 2716 EV_FREQUENT_CHECK;
771 2717
772 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2718 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
773 {
774 rt_now = mn_now + diff;
775 return 0;
776 } 2719 {
777 else 2720 do
2721 {
2722 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2723
2724 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2725
2726 /* first reschedule or stop timer */
2727 if (w->repeat)
2728 {
2729 ev_at (w) += w->repeat;
2730 if (ev_at (w) < mn_now)
2731 ev_at (w) = mn_now;
2732
2733 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2734
2735 ANHE_at_cache (timers [HEAP0]);
2736 downheap (timers, timercnt, HEAP0);
2737 }
2738 else
2739 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2740
2741 EV_FREQUENT_CHECK;
2742 feed_reverse (EV_A_ (W)w);
2743 }
2744 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2745
2746 feed_reverse_done (EV_A_ EV_TIMER);
778 { 2747 }
779 now_floor = mn_now; 2748}
780 rt_now = ev_time (); 2749
781 return 1; 2750#if EV_PERIODIC_ENABLE
2751
2752static void noinline
2753periodic_recalc (EV_P_ ev_periodic *w)
2754{
2755 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2756 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2757
2758 /* the above almost always errs on the low side */
2759 while (at <= ev_rt_now)
782 } 2760 {
783} 2761 ev_tstamp nat = at + w->interval;
784 2762
785static void 2763 /* when resolution fails us, we use ev_rt_now */
786time_update (EV_P) 2764 if (expect_false (nat == at))
2765 {
2766 at = ev_rt_now;
2767 break;
2768 }
2769
2770 at = nat;
2771 }
2772
2773 ev_at (w) = at;
2774}
2775
2776/* make periodics pending */
2777inline_size void
2778periodics_reify (EV_P)
2779{
2780 EV_FREQUENT_CHECK;
2781
2782 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2783 {
2784 int feed_count = 0;
2785
2786 do
2787 {
2788 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2789
2790 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2791
2792 /* first reschedule or stop timer */
2793 if (w->reschedule_cb)
2794 {
2795 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2796
2797 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2798
2799 ANHE_at_cache (periodics [HEAP0]);
2800 downheap (periodics, periodiccnt, HEAP0);
2801 }
2802 else if (w->interval)
2803 {
2804 periodic_recalc (EV_A_ w);
2805 ANHE_at_cache (periodics [HEAP0]);
2806 downheap (periodics, periodiccnt, HEAP0);
2807 }
2808 else
2809 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2810
2811 EV_FREQUENT_CHECK;
2812 feed_reverse (EV_A_ (W)w);
2813 }
2814 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2815
2816 feed_reverse_done (EV_A_ EV_PERIODIC);
2817 }
2818}
2819
2820/* simply recalculate all periodics */
2821/* TODO: maybe ensure that at least one event happens when jumping forward? */
2822static void noinline ecb_cold
2823periodics_reschedule (EV_P)
787{ 2824{
788 int i; 2825 int i;
789 2826
2827 /* adjust periodics after time jump */
2828 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2829 {
2830 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2831
2832 if (w->reschedule_cb)
2833 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2834 else if (w->interval)
2835 periodic_recalc (EV_A_ w);
2836
2837 ANHE_at_cache (periodics [i]);
2838 }
2839
2840 reheap (periodics, periodiccnt);
2841}
2842#endif
2843
2844/* adjust all timers by a given offset */
2845static void noinline ecb_cold
2846timers_reschedule (EV_P_ ev_tstamp adjust)
2847{
2848 int i;
2849
2850 for (i = 0; i < timercnt; ++i)
2851 {
2852 ANHE *he = timers + i + HEAP0;
2853 ANHE_w (*he)->at += adjust;
2854 ANHE_at_cache (*he);
2855 }
2856}
2857
2858/* fetch new monotonic and realtime times from the kernel */
2859/* also detect if there was a timejump, and act accordingly */
2860inline_speed void
2861time_update (EV_P_ ev_tstamp max_block)
2862{
790#if EV_USE_MONOTONIC 2863#if EV_USE_MONOTONIC
791 if (expect_true (have_monotonic)) 2864 if (expect_true (have_monotonic))
792 { 2865 {
793 if (time_update_monotonic (EV_A)) 2866 int i;
2867 ev_tstamp odiff = rtmn_diff;
2868
2869 mn_now = get_clock ();
2870
2871 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2872 /* interpolate in the meantime */
2873 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
794 { 2874 {
795 ev_tstamp odiff = diff; 2875 ev_rt_now = rtmn_diff + mn_now;
796 2876 return;
797 for (i = 4; --i; ) /* loop a few times, before making important decisions */
798 {
799 diff = rt_now - mn_now;
800
801 if (fabs (odiff - diff) < MIN_TIMEJUMP)
802 return; /* all is well */
803
804 rt_now = ev_time ();
805 mn_now = get_clock ();
806 now_floor = mn_now;
807 }
808
809 periodics_reschedule (EV_A_ diff - odiff);
810 /* no timer adjustment, as the monotonic clock doesn't jump */
811 } 2877 }
2878
2879 now_floor = mn_now;
2880 ev_rt_now = ev_time ();
2881
2882 /* loop a few times, before making important decisions.
2883 * on the choice of "4": one iteration isn't enough,
2884 * in case we get preempted during the calls to
2885 * ev_time and get_clock. a second call is almost guaranteed
2886 * to succeed in that case, though. and looping a few more times
2887 * doesn't hurt either as we only do this on time-jumps or
2888 * in the unlikely event of having been preempted here.
2889 */
2890 for (i = 4; --i; )
2891 {
2892 ev_tstamp diff;
2893 rtmn_diff = ev_rt_now - mn_now;
2894
2895 diff = odiff - rtmn_diff;
2896
2897 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
2898 return; /* all is well */
2899
2900 ev_rt_now = ev_time ();
2901 mn_now = get_clock ();
2902 now_floor = mn_now;
2903 }
2904
2905 /* no timer adjustment, as the monotonic clock doesn't jump */
2906 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2907# if EV_PERIODIC_ENABLE
2908 periodics_reschedule (EV_A);
2909# endif
812 } 2910 }
813 else 2911 else
814#endif 2912#endif
815 { 2913 {
816 rt_now = ev_time (); 2914 ev_rt_now = ev_time ();
817 2915
818 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2916 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
819 { 2917 {
820 periodics_reschedule (EV_A_ rt_now - mn_now);
821
822 /* adjust timers. this is easy, as the offset is the same for all */ 2918 /* adjust timers. this is easy, as the offset is the same for all of them */
823 for (i = 0; i < timercnt; ++i) 2919 timers_reschedule (EV_A_ ev_rt_now - mn_now);
824 timers [i]->at += diff; 2920#if EV_PERIODIC_ENABLE
2921 periodics_reschedule (EV_A);
2922#endif
825 } 2923 }
826 2924
827 mn_now = rt_now; 2925 mn_now = ev_rt_now;
828 } 2926 }
829} 2927}
830 2928
831void 2929void
832ev_ref (EV_P)
833{
834 ++activecnt;
835}
836
837void
838ev_unref (EV_P)
839{
840 --activecnt;
841}
842
843static int loop_done;
844
845void
846ev_loop (EV_P_ int flags) 2930ev_run (EV_P_ int flags)
847{ 2931{
848 double block; 2932#if EV_FEATURE_API
849 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2933 ++loop_depth;
2934#endif
2935
2936 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2937
2938 loop_done = EVBREAK_CANCEL;
2939
2940 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
850 2941
851 do 2942 do
852 { 2943 {
2944#if EV_VERIFY >= 2
2945 ev_verify (EV_A);
2946#endif
2947
2948#ifndef _WIN32
2949 if (expect_false (curpid)) /* penalise the forking check even more */
2950 if (expect_false (getpid () != curpid))
2951 {
2952 curpid = getpid ();
2953 postfork = 1;
2954 }
2955#endif
2956
2957#if EV_FORK_ENABLE
2958 /* we might have forked, so queue fork handlers */
2959 if (expect_false (postfork))
2960 if (forkcnt)
2961 {
2962 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2963 EV_INVOKE_PENDING;
2964 }
2965#endif
2966
2967#if EV_PREPARE_ENABLE
853 /* queue check watchers (and execute them) */ 2968 /* queue prepare watchers (and execute them) */
854 if (expect_false (preparecnt)) 2969 if (expect_false (preparecnt))
855 { 2970 {
856 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2971 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
857 call_pending (EV_A); 2972 EV_INVOKE_PENDING;
858 } 2973 }
2974#endif
2975
2976 if (expect_false (loop_done))
2977 break;
2978
2979 /* we might have forked, so reify kernel state if necessary */
2980 if (expect_false (postfork))
2981 loop_fork (EV_A);
859 2982
860 /* update fd-related kernel structures */ 2983 /* update fd-related kernel structures */
861 fd_reify (EV_A); 2984 fd_reify (EV_A);
862 2985
863 /* calculate blocking time */ 2986 /* calculate blocking time */
2987 {
2988 ev_tstamp waittime = 0.;
2989 ev_tstamp sleeptime = 0.;
864 2990
865 /* we only need this for !monotonic clockor timers, but as we basically 2991 /* remember old timestamp for io_blocktime calculation */
866 always have timers, we just calculate it always */ 2992 ev_tstamp prev_mn_now = mn_now;
867#if EV_USE_MONOTONIC 2993
868 if (expect_true (have_monotonic)) 2994 /* update time to cancel out callback processing overhead */
869 time_update_monotonic (EV_A); 2995 time_update (EV_A_ 1e100);
870 else 2996
871#endif 2997 /* from now on, we want a pipe-wake-up */
2998 pipe_write_wanted = 1;
2999
3000 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3001
3002 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
872 { 3003 {
873 rt_now = ev_time ();
874 mn_now = rt_now;
875 }
876
877 if (flags & EVLOOP_NONBLOCK || idlecnt)
878 block = 0.;
879 else
880 {
881 block = MAX_BLOCKTIME; 3004 waittime = MAX_BLOCKTIME;
882 3005
883 if (timercnt) 3006 if (timercnt)
884 { 3007 {
885 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 3008 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
886 if (block > to) block = to; 3009 if (waittime > to) waittime = to;
887 } 3010 }
888 3011
3012#if EV_PERIODIC_ENABLE
889 if (periodiccnt) 3013 if (periodiccnt)
890 { 3014 {
891 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 3015 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
892 if (block > to) block = to; 3016 if (waittime > to) waittime = to;
893 } 3017 }
3018#endif
894 3019
895 if (block < 0.) block = 0.; 3020 /* don't let timeouts decrease the waittime below timeout_blocktime */
3021 if (expect_false (waittime < timeout_blocktime))
3022 waittime = timeout_blocktime;
3023
3024 /* at this point, we NEED to wait, so we have to ensure */
3025 /* to pass a minimum nonzero value to the backend */
3026 if (expect_false (waittime < backend_mintime))
3027 waittime = backend_mintime;
3028
3029 /* extra check because io_blocktime is commonly 0 */
3030 if (expect_false (io_blocktime))
3031 {
3032 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3033
3034 if (sleeptime > waittime - backend_mintime)
3035 sleeptime = waittime - backend_mintime;
3036
3037 if (expect_true (sleeptime > 0.))
3038 {
3039 ev_sleep (sleeptime);
3040 waittime -= sleeptime;
3041 }
3042 }
896 } 3043 }
897 3044
898 method_poll (EV_A_ block); 3045#if EV_FEATURE_API
3046 ++loop_count;
3047#endif
3048 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3049 backend_poll (EV_A_ waittime);
3050 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
899 3051
3052 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3053
3054 if (pipe_write_skipped)
3055 {
3056 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3057 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3058 }
3059
3060
900 /* update rt_now, do magic */ 3061 /* update ev_rt_now, do magic */
901 time_update (EV_A); 3062 time_update (EV_A_ waittime + sleeptime);
3063 }
902 3064
903 /* queue pending timers and reschedule them */ 3065 /* queue pending timers and reschedule them */
904 timers_reify (EV_A); /* relative timers called last */ 3066 timers_reify (EV_A); /* relative timers called last */
3067#if EV_PERIODIC_ENABLE
905 periodics_reify (EV_A); /* absolute timers called first */ 3068 periodics_reify (EV_A); /* absolute timers called first */
3069#endif
906 3070
3071#if EV_IDLE_ENABLE
907 /* queue idle watchers unless io or timers are pending */ 3072 /* queue idle watchers unless other events are pending */
908 if (!pendingcnt) 3073 idle_reify (EV_A);
909 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 3074#endif
910 3075
3076#if EV_CHECK_ENABLE
911 /* queue check watchers, to be executed first */ 3077 /* queue check watchers, to be executed first */
912 if (checkcnt) 3078 if (expect_false (checkcnt))
913 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3079 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3080#endif
914 3081
915 call_pending (EV_A); 3082 EV_INVOKE_PENDING;
916 printf ("activecnt %d\n", activecnt);//D
917 } 3083 }
918 while (activecnt && !loop_done); 3084 while (expect_true (
3085 activecnt
3086 && !loop_done
3087 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3088 ));
919 3089
920 if (loop_done != 2) 3090 if (loop_done == EVBREAK_ONE)
921 loop_done = 0; 3091 loop_done = EVBREAK_CANCEL;
3092
3093#if EV_FEATURE_API
3094 --loop_depth;
3095#endif
922} 3096}
923 3097
924void 3098void
925ev_unloop (EV_P_ int how) 3099ev_break (EV_P_ int how)
926{ 3100{
927 loop_done = how; 3101 loop_done = how;
928} 3102}
929 3103
3104void
3105ev_ref (EV_P)
3106{
3107 ++activecnt;
3108}
3109
3110void
3111ev_unref (EV_P)
3112{
3113 --activecnt;
3114}
3115
3116void
3117ev_now_update (EV_P)
3118{
3119 time_update (EV_A_ 1e100);
3120}
3121
3122void
3123ev_suspend (EV_P)
3124{
3125 ev_now_update (EV_A);
3126}
3127
3128void
3129ev_resume (EV_P)
3130{
3131 ev_tstamp mn_prev = mn_now;
3132
3133 ev_now_update (EV_A);
3134 timers_reschedule (EV_A_ mn_now - mn_prev);
3135#if EV_PERIODIC_ENABLE
3136 /* TODO: really do this? */
3137 periodics_reschedule (EV_A);
3138#endif
3139}
3140
930/*****************************************************************************/ 3141/*****************************************************************************/
3142/* singly-linked list management, used when the expected list length is short */
931 3143
932inline void 3144inline_size void
933wlist_add (WL *head, WL elem) 3145wlist_add (WL *head, WL elem)
934{ 3146{
935 elem->next = *head; 3147 elem->next = *head;
936 *head = elem; 3148 *head = elem;
937} 3149}
938 3150
939inline void 3151inline_size void
940wlist_del (WL *head, WL elem) 3152wlist_del (WL *head, WL elem)
941{ 3153{
942 while (*head) 3154 while (*head)
943 { 3155 {
944 if (*head == elem) 3156 if (expect_true (*head == elem))
945 { 3157 {
946 *head = elem->next; 3158 *head = elem->next;
947 return; 3159 break;
948 } 3160 }
949 3161
950 head = &(*head)->next; 3162 head = &(*head)->next;
951 } 3163 }
952} 3164}
953 3165
3166/* internal, faster, version of ev_clear_pending */
954inline void 3167inline_speed void
955ev_clear_pending (EV_P_ W w) 3168clear_pending (EV_P_ W w)
956{ 3169{
957 if (w->pending) 3170 if (w->pending)
958 { 3171 {
959 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3172 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
960 w->pending = 0; 3173 w->pending = 0;
961 } 3174 }
962} 3175}
963 3176
3177int
3178ev_clear_pending (EV_P_ void *w)
3179{
3180 W w_ = (W)w;
3181 int pending = w_->pending;
3182
3183 if (expect_true (pending))
3184 {
3185 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3186 p->w = (W)&pending_w;
3187 w_->pending = 0;
3188 return p->events;
3189 }
3190 else
3191 return 0;
3192}
3193
964inline void 3194inline_size void
3195pri_adjust (EV_P_ W w)
3196{
3197 int pri = ev_priority (w);
3198 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3199 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3200 ev_set_priority (w, pri);
3201}
3202
3203inline_speed void
965ev_start (EV_P_ W w, int active) 3204ev_start (EV_P_ W w, int active)
966{ 3205{
967 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 3206 pri_adjust (EV_A_ w);
968 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
969
970 w->active = active; 3207 w->active = active;
971 ev_ref (EV_A); 3208 ev_ref (EV_A);
972} 3209}
973 3210
974inline void 3211inline_size void
975ev_stop (EV_P_ W w) 3212ev_stop (EV_P_ W w)
976{ 3213{
977 ev_unref (EV_A); 3214 ev_unref (EV_A);
978 w->active = 0; 3215 w->active = 0;
979} 3216}
980 3217
981/*****************************************************************************/ 3218/*****************************************************************************/
982 3219
983void 3220void noinline
984ev_io_start (EV_P_ struct ev_io *w) 3221ev_io_start (EV_P_ ev_io *w)
985{ 3222{
986 int fd = w->fd; 3223 int fd = w->fd;
987 3224
988 if (ev_is_active (w)) 3225 if (expect_false (ev_is_active (w)))
989 return; 3226 return;
990 3227
991 assert (("ev_io_start called with negative fd", fd >= 0)); 3228 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3229 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3230
3231 EV_FREQUENT_CHECK;
992 3232
993 ev_start (EV_A_ (W)w, 1); 3233 ev_start (EV_A_ (W)w, 1);
994 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 3234 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
995 wlist_add ((WL *)&anfds[fd].head, (WL)w); 3235 wlist_add (&anfds[fd].head, (WL)w);
996 3236
997 fd_change (EV_A_ fd); 3237 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
998} 3238 w->events &= ~EV__IOFDSET;
999 3239
1000void 3240 EV_FREQUENT_CHECK;
3241}
3242
3243void noinline
1001ev_io_stop (EV_P_ struct ev_io *w) 3244ev_io_stop (EV_P_ ev_io *w)
1002{ 3245{
1003 ev_clear_pending (EV_A_ (W)w); 3246 clear_pending (EV_A_ (W)w);
1004 if (!ev_is_active (w)) 3247 if (expect_false (!ev_is_active (w)))
1005 return; 3248 return;
1006 3249
3250 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3251
3252 EV_FREQUENT_CHECK;
3253
1007 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 3254 wlist_del (&anfds[w->fd].head, (WL)w);
1008 ev_stop (EV_A_ (W)w); 3255 ev_stop (EV_A_ (W)w);
1009 3256
1010 fd_change (EV_A_ w->fd); 3257 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1011}
1012 3258
1013void 3259 EV_FREQUENT_CHECK;
3260}
3261
3262void noinline
1014ev_timer_start (EV_P_ struct ev_timer *w) 3263ev_timer_start (EV_P_ ev_timer *w)
1015{ 3264{
1016 if (ev_is_active (w)) 3265 if (expect_false (ev_is_active (w)))
1017 return; 3266 return;
1018 3267
1019 w->at += mn_now; 3268 ev_at (w) += mn_now;
1020 3269
1021 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3270 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1022 3271
3272 EV_FREQUENT_CHECK;
3273
3274 ++timercnt;
1023 ev_start (EV_A_ (W)w, ++timercnt); 3275 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1024 array_needsize (timers, timermax, timercnt, ); 3276 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1025 timers [timercnt - 1] = w; 3277 ANHE_w (timers [ev_active (w)]) = (WT)w;
1026 upheap ((WT *)timers, timercnt - 1); 3278 ANHE_at_cache (timers [ev_active (w)]);
1027} 3279 upheap (timers, ev_active (w));
1028 3280
1029void 3281 EV_FREQUENT_CHECK;
3282
3283 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3284}
3285
3286void noinline
1030ev_timer_stop (EV_P_ struct ev_timer *w) 3287ev_timer_stop (EV_P_ ev_timer *w)
1031{ 3288{
1032 ev_clear_pending (EV_A_ (W)w); 3289 clear_pending (EV_A_ (W)w);
1033 if (!ev_is_active (w)) 3290 if (expect_false (!ev_is_active (w)))
1034 return; 3291 return;
1035 3292
1036 if (w->active < timercnt--) 3293 EV_FREQUENT_CHECK;
3294
3295 {
3296 int active = ev_active (w);
3297
3298 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3299
3300 --timercnt;
3301
3302 if (expect_true (active < timercnt + HEAP0))
1037 { 3303 {
1038 timers [w->active - 1] = timers [timercnt]; 3304 timers [active] = timers [timercnt + HEAP0];
1039 downheap ((WT *)timers, timercnt, w->active - 1); 3305 adjustheap (timers, timercnt, active);
1040 } 3306 }
3307 }
1041 3308
1042 w->at = w->repeat; 3309 ev_at (w) -= mn_now;
1043 3310
1044 ev_stop (EV_A_ (W)w); 3311 ev_stop (EV_A_ (W)w);
1045}
1046 3312
1047void 3313 EV_FREQUENT_CHECK;
3314}
3315
3316void noinline
1048ev_timer_again (EV_P_ struct ev_timer *w) 3317ev_timer_again (EV_P_ ev_timer *w)
1049{ 3318{
3319 EV_FREQUENT_CHECK;
3320
3321 clear_pending (EV_A_ (W)w);
3322
1050 if (ev_is_active (w)) 3323 if (ev_is_active (w))
1051 { 3324 {
1052 if (w->repeat) 3325 if (w->repeat)
1053 { 3326 {
1054 w->at = mn_now + w->repeat; 3327 ev_at (w) = mn_now + w->repeat;
3328 ANHE_at_cache (timers [ev_active (w)]);
1055 downheap ((WT *)timers, timercnt, w->active - 1); 3329 adjustheap (timers, timercnt, ev_active (w));
1056 } 3330 }
1057 else 3331 else
1058 ev_timer_stop (EV_A_ w); 3332 ev_timer_stop (EV_A_ w);
1059 } 3333 }
1060 else if (w->repeat) 3334 else if (w->repeat)
3335 {
3336 ev_at (w) = w->repeat;
1061 ev_timer_start (EV_A_ w); 3337 ev_timer_start (EV_A_ w);
1062} 3338 }
1063 3339
1064void 3340 EV_FREQUENT_CHECK;
3341}
3342
3343ev_tstamp
3344ev_timer_remaining (EV_P_ ev_timer *w)
3345{
3346 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3347}
3348
3349#if EV_PERIODIC_ENABLE
3350void noinline
1065ev_periodic_start (EV_P_ struct ev_periodic *w) 3351ev_periodic_start (EV_P_ ev_periodic *w)
1066{ 3352{
1067 if (ev_is_active (w)) 3353 if (expect_false (ev_is_active (w)))
1068 return; 3354 return;
1069 3355
3356 if (w->reschedule_cb)
3357 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3358 else if (w->interval)
3359 {
1070 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3360 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3361 periodic_recalc (EV_A_ w);
3362 }
3363 else
3364 ev_at (w) = w->offset;
1071 3365
1072 /* this formula differs from the one in periodic_reify because we do not always round up */ 3366 EV_FREQUENT_CHECK;
1073 if (w->interval)
1074 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval;
1075 3367
3368 ++periodiccnt;
1076 ev_start (EV_A_ (W)w, ++periodiccnt); 3369 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1077 array_needsize (periodics, periodicmax, periodiccnt, ); 3370 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1078 periodics [periodiccnt - 1] = w; 3371 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1079 upheap ((WT *)periodics, periodiccnt - 1); 3372 ANHE_at_cache (periodics [ev_active (w)]);
1080} 3373 upheap (periodics, ev_active (w));
1081 3374
1082void 3375 EV_FREQUENT_CHECK;
3376
3377 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3378}
3379
3380void noinline
1083ev_periodic_stop (EV_P_ struct ev_periodic *w) 3381ev_periodic_stop (EV_P_ ev_periodic *w)
1084{ 3382{
1085 ev_clear_pending (EV_A_ (W)w); 3383 clear_pending (EV_A_ (W)w);
1086 if (!ev_is_active (w)) 3384 if (expect_false (!ev_is_active (w)))
1087 return; 3385 return;
1088 3386
1089 if (w->active < periodiccnt--) 3387 EV_FREQUENT_CHECK;
3388
3389 {
3390 int active = ev_active (w);
3391
3392 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3393
3394 --periodiccnt;
3395
3396 if (expect_true (active < periodiccnt + HEAP0))
1090 { 3397 {
1091 periodics [w->active - 1] = periodics [periodiccnt]; 3398 periodics [active] = periodics [periodiccnt + HEAP0];
1092 downheap ((WT *)periodics, periodiccnt, w->active - 1); 3399 adjustheap (periodics, periodiccnt, active);
1093 } 3400 }
3401 }
1094 3402
1095 ev_stop (EV_A_ (W)w); 3403 ev_stop (EV_A_ (W)w);
3404
3405 EV_FREQUENT_CHECK;
1096} 3406}
3407
3408void noinline
3409ev_periodic_again (EV_P_ ev_periodic *w)
3410{
3411 /* TODO: use adjustheap and recalculation */
3412 ev_periodic_stop (EV_A_ w);
3413 ev_periodic_start (EV_A_ w);
3414}
3415#endif
1097 3416
1098#ifndef SA_RESTART 3417#ifndef SA_RESTART
1099# define SA_RESTART 0 3418# define SA_RESTART 0
1100#endif 3419#endif
1101 3420
3421#if EV_SIGNAL_ENABLE
3422
3423void noinline
3424ev_signal_start (EV_P_ ev_signal *w)
3425{
3426 if (expect_false (ev_is_active (w)))
3427 return;
3428
3429 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3430
3431#if EV_MULTIPLICITY
3432 assert (("libev: a signal must not be attached to two different loops",
3433 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3434
3435 signals [w->signum - 1].loop = EV_A;
3436#endif
3437
3438 EV_FREQUENT_CHECK;
3439
3440#if EV_USE_SIGNALFD
3441 if (sigfd == -2)
3442 {
3443 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3444 if (sigfd < 0 && errno == EINVAL)
3445 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3446
3447 if (sigfd >= 0)
3448 {
3449 fd_intern (sigfd); /* doing it twice will not hurt */
3450
3451 sigemptyset (&sigfd_set);
3452
3453 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3454 ev_set_priority (&sigfd_w, EV_MAXPRI);
3455 ev_io_start (EV_A_ &sigfd_w);
3456 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3457 }
3458 }
3459
3460 if (sigfd >= 0)
3461 {
3462 /* TODO: check .head */
3463 sigaddset (&sigfd_set, w->signum);
3464 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3465
3466 signalfd (sigfd, &sigfd_set, 0);
3467 }
3468#endif
3469
3470 ev_start (EV_A_ (W)w, 1);
3471 wlist_add (&signals [w->signum - 1].head, (WL)w);
3472
3473 if (!((WL)w)->next)
3474# if EV_USE_SIGNALFD
3475 if (sigfd < 0) /*TODO*/
3476# endif
3477 {
3478# ifdef _WIN32
3479 evpipe_init (EV_A);
3480
3481 signal (w->signum, ev_sighandler);
3482# else
3483 struct sigaction sa;
3484
3485 evpipe_init (EV_A);
3486
3487 sa.sa_handler = ev_sighandler;
3488 sigfillset (&sa.sa_mask);
3489 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3490 sigaction (w->signum, &sa, 0);
3491
3492 if (origflags & EVFLAG_NOSIGMASK)
3493 {
3494 sigemptyset (&sa.sa_mask);
3495 sigaddset (&sa.sa_mask, w->signum);
3496 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3497 }
3498#endif
3499 }
3500
3501 EV_FREQUENT_CHECK;
3502}
3503
3504void noinline
3505ev_signal_stop (EV_P_ ev_signal *w)
3506{
3507 clear_pending (EV_A_ (W)w);
3508 if (expect_false (!ev_is_active (w)))
3509 return;
3510
3511 EV_FREQUENT_CHECK;
3512
3513 wlist_del (&signals [w->signum - 1].head, (WL)w);
3514 ev_stop (EV_A_ (W)w);
3515
3516 if (!signals [w->signum - 1].head)
3517 {
3518#if EV_MULTIPLICITY
3519 signals [w->signum - 1].loop = 0; /* unattach from signal */
3520#endif
3521#if EV_USE_SIGNALFD
3522 if (sigfd >= 0)
3523 {
3524 sigset_t ss;
3525
3526 sigemptyset (&ss);
3527 sigaddset (&ss, w->signum);
3528 sigdelset (&sigfd_set, w->signum);
3529
3530 signalfd (sigfd, &sigfd_set, 0);
3531 sigprocmask (SIG_UNBLOCK, &ss, 0);
3532 }
3533 else
3534#endif
3535 signal (w->signum, SIG_DFL);
3536 }
3537
3538 EV_FREQUENT_CHECK;
3539}
3540
3541#endif
3542
3543#if EV_CHILD_ENABLE
3544
1102void 3545void
1103ev_signal_start (EV_P_ struct ev_signal *w) 3546ev_child_start (EV_P_ ev_child *w)
1104{ 3547{
3548#if EV_MULTIPLICITY
3549 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3550#endif
1105 if (ev_is_active (w)) 3551 if (expect_false (ev_is_active (w)))
1106 return; 3552 return;
1107 3553
1108 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3554 EV_FREQUENT_CHECK;
1109 3555
1110 ev_start (EV_A_ (W)w, 1); 3556 ev_start (EV_A_ (W)w, 1);
1111 array_needsize (signals, signalmax, w->signum, signals_init); 3557 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1112 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1113 3558
1114 if (!w->next) 3559 EV_FREQUENT_CHECK;
1115 {
1116 struct sigaction sa;
1117 sa.sa_handler = sighandler;
1118 sigfillset (&sa.sa_mask);
1119 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1120 sigaction (w->signum, &sa, 0);
1121 }
1122} 3560}
1123 3561
1124void 3562void
1125ev_signal_stop (EV_P_ struct ev_signal *w) 3563ev_child_stop (EV_P_ ev_child *w)
1126{ 3564{
1127 ev_clear_pending (EV_A_ (W)w); 3565 clear_pending (EV_A_ (W)w);
1128 if (!ev_is_active (w)) 3566 if (expect_false (!ev_is_active (w)))
1129 return; 3567 return;
1130 3568
1131 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3569 EV_FREQUENT_CHECK;
3570
3571 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1132 ev_stop (EV_A_ (W)w); 3572 ev_stop (EV_A_ (W)w);
1133 3573
1134 if (!signals [w->signum - 1].head) 3574 EV_FREQUENT_CHECK;
1135 signal (w->signum, SIG_DFL);
1136} 3575}
3576
3577#endif
3578
3579#if EV_STAT_ENABLE
3580
3581# ifdef _WIN32
3582# undef lstat
3583# define lstat(a,b) _stati64 (a,b)
3584# endif
3585
3586#define DEF_STAT_INTERVAL 5.0074891
3587#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3588#define MIN_STAT_INTERVAL 0.1074891
3589
3590static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3591
3592#if EV_USE_INOTIFY
3593
3594/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3595# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3596
3597static void noinline
3598infy_add (EV_P_ ev_stat *w)
3599{
3600 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3601
3602 if (w->wd >= 0)
3603 {
3604 struct statfs sfs;
3605
3606 /* now local changes will be tracked by inotify, but remote changes won't */
3607 /* unless the filesystem is known to be local, we therefore still poll */
3608 /* also do poll on <2.6.25, but with normal frequency */
3609
3610 if (!fs_2625)
3611 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3612 else if (!statfs (w->path, &sfs)
3613 && (sfs.f_type == 0x1373 /* devfs */
3614 || sfs.f_type == 0xEF53 /* ext2/3 */
3615 || sfs.f_type == 0x3153464a /* jfs */
3616 || sfs.f_type == 0x52654973 /* reiser3 */
3617 || sfs.f_type == 0x01021994 /* tempfs */
3618 || sfs.f_type == 0x58465342 /* xfs */))
3619 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3620 else
3621 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3622 }
3623 else
3624 {
3625 /* can't use inotify, continue to stat */
3626 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3627
3628 /* if path is not there, monitor some parent directory for speedup hints */
3629 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3630 /* but an efficiency issue only */
3631 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3632 {
3633 char path [4096];
3634 strcpy (path, w->path);
3635
3636 do
3637 {
3638 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3639 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3640
3641 char *pend = strrchr (path, '/');
3642
3643 if (!pend || pend == path)
3644 break;
3645
3646 *pend = 0;
3647 w->wd = inotify_add_watch (fs_fd, path, mask);
3648 }
3649 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3650 }
3651 }
3652
3653 if (w->wd >= 0)
3654 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3655
3656 /* now re-arm timer, if required */
3657 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3658 ev_timer_again (EV_A_ &w->timer);
3659 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3660}
3661
3662static void noinline
3663infy_del (EV_P_ ev_stat *w)
3664{
3665 int slot;
3666 int wd = w->wd;
3667
3668 if (wd < 0)
3669 return;
3670
3671 w->wd = -2;
3672 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3673 wlist_del (&fs_hash [slot].head, (WL)w);
3674
3675 /* remove this watcher, if others are watching it, they will rearm */
3676 inotify_rm_watch (fs_fd, wd);
3677}
3678
3679static void noinline
3680infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3681{
3682 if (slot < 0)
3683 /* overflow, need to check for all hash slots */
3684 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3685 infy_wd (EV_A_ slot, wd, ev);
3686 else
3687 {
3688 WL w_;
3689
3690 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3691 {
3692 ev_stat *w = (ev_stat *)w_;
3693 w_ = w_->next; /* lets us remove this watcher and all before it */
3694
3695 if (w->wd == wd || wd == -1)
3696 {
3697 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3698 {
3699 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3700 w->wd = -1;
3701 infy_add (EV_A_ w); /* re-add, no matter what */
3702 }
3703
3704 stat_timer_cb (EV_A_ &w->timer, 0);
3705 }
3706 }
3707 }
3708}
3709
3710static void
3711infy_cb (EV_P_ ev_io *w, int revents)
3712{
3713 char buf [EV_INOTIFY_BUFSIZE];
3714 int ofs;
3715 int len = read (fs_fd, buf, sizeof (buf));
3716
3717 for (ofs = 0; ofs < len; )
3718 {
3719 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3720 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3721 ofs += sizeof (struct inotify_event) + ev->len;
3722 }
3723}
3724
3725inline_size void ecb_cold
3726ev_check_2625 (EV_P)
3727{
3728 /* kernels < 2.6.25 are borked
3729 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3730 */
3731 if (ev_linux_version () < 0x020619)
3732 return;
3733
3734 fs_2625 = 1;
3735}
3736
3737inline_size int
3738infy_newfd (void)
3739{
3740#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3741 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3742 if (fd >= 0)
3743 return fd;
3744#endif
3745 return inotify_init ();
3746}
3747
3748inline_size void
3749infy_init (EV_P)
3750{
3751 if (fs_fd != -2)
3752 return;
3753
3754 fs_fd = -1;
3755
3756 ev_check_2625 (EV_A);
3757
3758 fs_fd = infy_newfd ();
3759
3760 if (fs_fd >= 0)
3761 {
3762 fd_intern (fs_fd);
3763 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3764 ev_set_priority (&fs_w, EV_MAXPRI);
3765 ev_io_start (EV_A_ &fs_w);
3766 ev_unref (EV_A);
3767 }
3768}
3769
3770inline_size void
3771infy_fork (EV_P)
3772{
3773 int slot;
3774
3775 if (fs_fd < 0)
3776 return;
3777
3778 ev_ref (EV_A);
3779 ev_io_stop (EV_A_ &fs_w);
3780 close (fs_fd);
3781 fs_fd = infy_newfd ();
3782
3783 if (fs_fd >= 0)
3784 {
3785 fd_intern (fs_fd);
3786 ev_io_set (&fs_w, fs_fd, EV_READ);
3787 ev_io_start (EV_A_ &fs_w);
3788 ev_unref (EV_A);
3789 }
3790
3791 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3792 {
3793 WL w_ = fs_hash [slot].head;
3794 fs_hash [slot].head = 0;
3795
3796 while (w_)
3797 {
3798 ev_stat *w = (ev_stat *)w_;
3799 w_ = w_->next; /* lets us add this watcher */
3800
3801 w->wd = -1;
3802
3803 if (fs_fd >= 0)
3804 infy_add (EV_A_ w); /* re-add, no matter what */
3805 else
3806 {
3807 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3808 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3809 ev_timer_again (EV_A_ &w->timer);
3810 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3811 }
3812 }
3813 }
3814}
3815
3816#endif
3817
3818#ifdef _WIN32
3819# define EV_LSTAT(p,b) _stati64 (p, b)
3820#else
3821# define EV_LSTAT(p,b) lstat (p, b)
3822#endif
1137 3823
1138void 3824void
1139ev_idle_start (EV_P_ struct ev_idle *w) 3825ev_stat_stat (EV_P_ ev_stat *w)
1140{ 3826{
3827 if (lstat (w->path, &w->attr) < 0)
3828 w->attr.st_nlink = 0;
3829 else if (!w->attr.st_nlink)
3830 w->attr.st_nlink = 1;
3831}
3832
3833static void noinline
3834stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3835{
3836 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3837
3838 ev_statdata prev = w->attr;
3839 ev_stat_stat (EV_A_ w);
3840
3841 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3842 if (
3843 prev.st_dev != w->attr.st_dev
3844 || prev.st_ino != w->attr.st_ino
3845 || prev.st_mode != w->attr.st_mode
3846 || prev.st_nlink != w->attr.st_nlink
3847 || prev.st_uid != w->attr.st_uid
3848 || prev.st_gid != w->attr.st_gid
3849 || prev.st_rdev != w->attr.st_rdev
3850 || prev.st_size != w->attr.st_size
3851 || prev.st_atime != w->attr.st_atime
3852 || prev.st_mtime != w->attr.st_mtime
3853 || prev.st_ctime != w->attr.st_ctime
3854 ) {
3855 /* we only update w->prev on actual differences */
3856 /* in case we test more often than invoke the callback, */
3857 /* to ensure that prev is always different to attr */
3858 w->prev = prev;
3859
3860 #if EV_USE_INOTIFY
3861 if (fs_fd >= 0)
3862 {
3863 infy_del (EV_A_ w);
3864 infy_add (EV_A_ w);
3865 ev_stat_stat (EV_A_ w); /* avoid race... */
3866 }
3867 #endif
3868
3869 ev_feed_event (EV_A_ w, EV_STAT);
3870 }
3871}
3872
3873void
3874ev_stat_start (EV_P_ ev_stat *w)
3875{
1141 if (ev_is_active (w)) 3876 if (expect_false (ev_is_active (w)))
1142 return; 3877 return;
1143 3878
3879 ev_stat_stat (EV_A_ w);
3880
3881 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3882 w->interval = MIN_STAT_INTERVAL;
3883
3884 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3885 ev_set_priority (&w->timer, ev_priority (w));
3886
3887#if EV_USE_INOTIFY
3888 infy_init (EV_A);
3889
3890 if (fs_fd >= 0)
3891 infy_add (EV_A_ w);
3892 else
3893#endif
3894 {
3895 ev_timer_again (EV_A_ &w->timer);
3896 ev_unref (EV_A);
3897 }
3898
1144 ev_start (EV_A_ (W)w, ++idlecnt); 3899 ev_start (EV_A_ (W)w, 1);
1145 array_needsize (idles, idlemax, idlecnt, ); 3900
1146 idles [idlecnt - 1] = w; 3901 EV_FREQUENT_CHECK;
1147} 3902}
1148 3903
1149void 3904void
1150ev_idle_stop (EV_P_ struct ev_idle *w) 3905ev_stat_stop (EV_P_ ev_stat *w)
1151{ 3906{
1152 ev_clear_pending (EV_A_ (W)w); 3907 clear_pending (EV_A_ (W)w);
1153 if (ev_is_active (w)) 3908 if (expect_false (!ev_is_active (w)))
1154 return; 3909 return;
1155 3910
1156 idles [w->active - 1] = idles [--idlecnt]; 3911 EV_FREQUENT_CHECK;
3912
3913#if EV_USE_INOTIFY
3914 infy_del (EV_A_ w);
3915#endif
3916
3917 if (ev_is_active (&w->timer))
3918 {
3919 ev_ref (EV_A);
3920 ev_timer_stop (EV_A_ &w->timer);
3921 }
3922
1157 ev_stop (EV_A_ (W)w); 3923 ev_stop (EV_A_ (W)w);
1158}
1159 3924
3925 EV_FREQUENT_CHECK;
3926}
3927#endif
3928
3929#if EV_IDLE_ENABLE
1160void 3930void
1161ev_prepare_start (EV_P_ struct ev_prepare *w) 3931ev_idle_start (EV_P_ ev_idle *w)
1162{ 3932{
1163 if (ev_is_active (w)) 3933 if (expect_false (ev_is_active (w)))
1164 return; 3934 return;
1165 3935
3936 pri_adjust (EV_A_ (W)w);
3937
3938 EV_FREQUENT_CHECK;
3939
3940 {
3941 int active = ++idlecnt [ABSPRI (w)];
3942
3943 ++idleall;
3944 ev_start (EV_A_ (W)w, active);
3945
3946 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3947 idles [ABSPRI (w)][active - 1] = w;
3948 }
3949
3950 EV_FREQUENT_CHECK;
3951}
3952
3953void
3954ev_idle_stop (EV_P_ ev_idle *w)
3955{
3956 clear_pending (EV_A_ (W)w);
3957 if (expect_false (!ev_is_active (w)))
3958 return;
3959
3960 EV_FREQUENT_CHECK;
3961
3962 {
3963 int active = ev_active (w);
3964
3965 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3966 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3967
3968 ev_stop (EV_A_ (W)w);
3969 --idleall;
3970 }
3971
3972 EV_FREQUENT_CHECK;
3973}
3974#endif
3975
3976#if EV_PREPARE_ENABLE
3977void
3978ev_prepare_start (EV_P_ ev_prepare *w)
3979{
3980 if (expect_false (ev_is_active (w)))
3981 return;
3982
3983 EV_FREQUENT_CHECK;
3984
1166 ev_start (EV_A_ (W)w, ++preparecnt); 3985 ev_start (EV_A_ (W)w, ++preparecnt);
1167 array_needsize (prepares, preparemax, preparecnt, ); 3986 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1168 prepares [preparecnt - 1] = w; 3987 prepares [preparecnt - 1] = w;
3988
3989 EV_FREQUENT_CHECK;
1169} 3990}
1170 3991
1171void 3992void
1172ev_prepare_stop (EV_P_ struct ev_prepare *w) 3993ev_prepare_stop (EV_P_ ev_prepare *w)
1173{ 3994{
1174 ev_clear_pending (EV_A_ (W)w); 3995 clear_pending (EV_A_ (W)w);
1175 if (ev_is_active (w)) 3996 if (expect_false (!ev_is_active (w)))
1176 return; 3997 return;
1177 3998
3999 EV_FREQUENT_CHECK;
4000
4001 {
4002 int active = ev_active (w);
4003
1178 prepares [w->active - 1] = prepares [--preparecnt]; 4004 prepares [active - 1] = prepares [--preparecnt];
4005 ev_active (prepares [active - 1]) = active;
4006 }
4007
1179 ev_stop (EV_A_ (W)w); 4008 ev_stop (EV_A_ (W)w);
1180}
1181 4009
4010 EV_FREQUENT_CHECK;
4011}
4012#endif
4013
4014#if EV_CHECK_ENABLE
1182void 4015void
1183ev_check_start (EV_P_ struct ev_check *w) 4016ev_check_start (EV_P_ ev_check *w)
1184{ 4017{
1185 if (ev_is_active (w)) 4018 if (expect_false (ev_is_active (w)))
1186 return; 4019 return;
1187 4020
4021 EV_FREQUENT_CHECK;
4022
1188 ev_start (EV_A_ (W)w, ++checkcnt); 4023 ev_start (EV_A_ (W)w, ++checkcnt);
1189 array_needsize (checks, checkmax, checkcnt, ); 4024 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1190 checks [checkcnt - 1] = w; 4025 checks [checkcnt - 1] = w;
4026
4027 EV_FREQUENT_CHECK;
1191} 4028}
1192 4029
1193void 4030void
1194ev_check_stop (EV_P_ struct ev_check *w) 4031ev_check_stop (EV_P_ ev_check *w)
1195{ 4032{
1196 ev_clear_pending (EV_A_ (W)w); 4033 clear_pending (EV_A_ (W)w);
1197 if (ev_is_active (w)) 4034 if (expect_false (!ev_is_active (w)))
1198 return; 4035 return;
1199 4036
4037 EV_FREQUENT_CHECK;
4038
4039 {
4040 int active = ev_active (w);
4041
1200 checks [w->active - 1] = checks [--checkcnt]; 4042 checks [active - 1] = checks [--checkcnt];
4043 ev_active (checks [active - 1]) = active;
4044 }
4045
1201 ev_stop (EV_A_ (W)w); 4046 ev_stop (EV_A_ (W)w);
4047
4048 EV_FREQUENT_CHECK;
1202} 4049}
4050#endif
4051
4052#if EV_EMBED_ENABLE
4053void noinline
4054ev_embed_sweep (EV_P_ ev_embed *w)
4055{
4056 ev_run (w->other, EVRUN_NOWAIT);
4057}
4058
4059static void
4060embed_io_cb (EV_P_ ev_io *io, int revents)
4061{
4062 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4063
4064 if (ev_cb (w))
4065 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4066 else
4067 ev_run (w->other, EVRUN_NOWAIT);
4068}
4069
4070static void
4071embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4072{
4073 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4074
4075 {
4076 EV_P = w->other;
4077
4078 while (fdchangecnt)
4079 {
4080 fd_reify (EV_A);
4081 ev_run (EV_A_ EVRUN_NOWAIT);
4082 }
4083 }
4084}
4085
4086static void
4087embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4088{
4089 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4090
4091 ev_embed_stop (EV_A_ w);
4092
4093 {
4094 EV_P = w->other;
4095
4096 ev_loop_fork (EV_A);
4097 ev_run (EV_A_ EVRUN_NOWAIT);
4098 }
4099
4100 ev_embed_start (EV_A_ w);
4101}
4102
4103#if 0
4104static void
4105embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4106{
4107 ev_idle_stop (EV_A_ idle);
4108}
4109#endif
1203 4110
1204void 4111void
1205ev_child_start (EV_P_ struct ev_child *w) 4112ev_embed_start (EV_P_ ev_embed *w)
1206{ 4113{
1207 if (ev_is_active (w)) 4114 if (expect_false (ev_is_active (w)))
1208 return; 4115 return;
1209 4116
4117 {
4118 EV_P = w->other;
4119 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4120 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4121 }
4122
4123 EV_FREQUENT_CHECK;
4124
4125 ev_set_priority (&w->io, ev_priority (w));
4126 ev_io_start (EV_A_ &w->io);
4127
4128 ev_prepare_init (&w->prepare, embed_prepare_cb);
4129 ev_set_priority (&w->prepare, EV_MINPRI);
4130 ev_prepare_start (EV_A_ &w->prepare);
4131
4132 ev_fork_init (&w->fork, embed_fork_cb);
4133 ev_fork_start (EV_A_ &w->fork);
4134
4135 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4136
1210 ev_start (EV_A_ (W)w, 1); 4137 ev_start (EV_A_ (W)w, 1);
1211 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4138
4139 EV_FREQUENT_CHECK;
1212} 4140}
1213 4141
1214void 4142void
1215ev_child_stop (EV_P_ struct ev_child *w) 4143ev_embed_stop (EV_P_ ev_embed *w)
1216{ 4144{
1217 ev_clear_pending (EV_A_ (W)w); 4145 clear_pending (EV_A_ (W)w);
1218 if (ev_is_active (w)) 4146 if (expect_false (!ev_is_active (w)))
1219 return; 4147 return;
1220 4148
1221 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4149 EV_FREQUENT_CHECK;
4150
4151 ev_io_stop (EV_A_ &w->io);
4152 ev_prepare_stop (EV_A_ &w->prepare);
4153 ev_fork_stop (EV_A_ &w->fork);
4154
1222 ev_stop (EV_A_ (W)w); 4155 ev_stop (EV_A_ (W)w);
4156
4157 EV_FREQUENT_CHECK;
1223} 4158}
4159#endif
4160
4161#if EV_FORK_ENABLE
4162void
4163ev_fork_start (EV_P_ ev_fork *w)
4164{
4165 if (expect_false (ev_is_active (w)))
4166 return;
4167
4168 EV_FREQUENT_CHECK;
4169
4170 ev_start (EV_A_ (W)w, ++forkcnt);
4171 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4172 forks [forkcnt - 1] = w;
4173
4174 EV_FREQUENT_CHECK;
4175}
4176
4177void
4178ev_fork_stop (EV_P_ ev_fork *w)
4179{
4180 clear_pending (EV_A_ (W)w);
4181 if (expect_false (!ev_is_active (w)))
4182 return;
4183
4184 EV_FREQUENT_CHECK;
4185
4186 {
4187 int active = ev_active (w);
4188
4189 forks [active - 1] = forks [--forkcnt];
4190 ev_active (forks [active - 1]) = active;
4191 }
4192
4193 ev_stop (EV_A_ (W)w);
4194
4195 EV_FREQUENT_CHECK;
4196}
4197#endif
4198
4199#if EV_CLEANUP_ENABLE
4200void
4201ev_cleanup_start (EV_P_ ev_cleanup *w)
4202{
4203 if (expect_false (ev_is_active (w)))
4204 return;
4205
4206 EV_FREQUENT_CHECK;
4207
4208 ev_start (EV_A_ (W)w, ++cleanupcnt);
4209 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4210 cleanups [cleanupcnt - 1] = w;
4211
4212 /* cleanup watchers should never keep a refcount on the loop */
4213 ev_unref (EV_A);
4214 EV_FREQUENT_CHECK;
4215}
4216
4217void
4218ev_cleanup_stop (EV_P_ ev_cleanup *w)
4219{
4220 clear_pending (EV_A_ (W)w);
4221 if (expect_false (!ev_is_active (w)))
4222 return;
4223
4224 EV_FREQUENT_CHECK;
4225 ev_ref (EV_A);
4226
4227 {
4228 int active = ev_active (w);
4229
4230 cleanups [active - 1] = cleanups [--cleanupcnt];
4231 ev_active (cleanups [active - 1]) = active;
4232 }
4233
4234 ev_stop (EV_A_ (W)w);
4235
4236 EV_FREQUENT_CHECK;
4237}
4238#endif
4239
4240#if EV_ASYNC_ENABLE
4241void
4242ev_async_start (EV_P_ ev_async *w)
4243{
4244 if (expect_false (ev_is_active (w)))
4245 return;
4246
4247 w->sent = 0;
4248
4249 evpipe_init (EV_A);
4250
4251 EV_FREQUENT_CHECK;
4252
4253 ev_start (EV_A_ (W)w, ++asynccnt);
4254 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4255 asyncs [asynccnt - 1] = w;
4256
4257 EV_FREQUENT_CHECK;
4258}
4259
4260void
4261ev_async_stop (EV_P_ ev_async *w)
4262{
4263 clear_pending (EV_A_ (W)w);
4264 if (expect_false (!ev_is_active (w)))
4265 return;
4266
4267 EV_FREQUENT_CHECK;
4268
4269 {
4270 int active = ev_active (w);
4271
4272 asyncs [active - 1] = asyncs [--asynccnt];
4273 ev_active (asyncs [active - 1]) = active;
4274 }
4275
4276 ev_stop (EV_A_ (W)w);
4277
4278 EV_FREQUENT_CHECK;
4279}
4280
4281void
4282ev_async_send (EV_P_ ev_async *w)
4283{
4284 w->sent = 1;
4285 evpipe_write (EV_A_ &async_pending);
4286}
4287#endif
1224 4288
1225/*****************************************************************************/ 4289/*****************************************************************************/
1226 4290
1227struct ev_once 4291struct ev_once
1228{ 4292{
1229 struct ev_io io; 4293 ev_io io;
1230 struct ev_timer to; 4294 ev_timer to;
1231 void (*cb)(int revents, void *arg); 4295 void (*cb)(int revents, void *arg);
1232 void *arg; 4296 void *arg;
1233}; 4297};
1234 4298
1235static void 4299static void
1236once_cb (EV_P_ struct ev_once *once, int revents) 4300once_cb (EV_P_ struct ev_once *once, int revents)
1237{ 4301{
1238 void (*cb)(int revents, void *arg) = once->cb; 4302 void (*cb)(int revents, void *arg) = once->cb;
1239 void *arg = once->arg; 4303 void *arg = once->arg;
1240 4304
1241 ev_io_stop (EV_A_ &once->io); 4305 ev_io_stop (EV_A_ &once->io);
1242 ev_timer_stop (EV_A_ &once->to); 4306 ev_timer_stop (EV_A_ &once->to);
1243 free (once); 4307 ev_free (once);
1244 4308
1245 cb (revents, arg); 4309 cb (revents, arg);
1246} 4310}
1247 4311
1248static void 4312static void
1249once_cb_io (EV_P_ struct ev_io *w, int revents) 4313once_cb_io (EV_P_ ev_io *w, int revents)
1250{ 4314{
1251 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4315 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4316
4317 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1252} 4318}
1253 4319
1254static void 4320static void
1255once_cb_to (EV_P_ struct ev_timer *w, int revents) 4321once_cb_to (EV_P_ ev_timer *w, int revents)
1256{ 4322{
1257 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4323 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4324
4325 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1258} 4326}
1259 4327
1260void 4328void
1261ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4329ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1262{ 4330{
1263 struct ev_once *once = malloc (sizeof (struct ev_once)); 4331 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1264 4332
1265 if (!once) 4333 if (expect_false (!once))
4334 {
1266 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4335 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1267 else 4336 return;
1268 { 4337 }
4338
1269 once->cb = cb; 4339 once->cb = cb;
1270 once->arg = arg; 4340 once->arg = arg;
1271 4341
1272 ev_watcher_init (&once->io, once_cb_io); 4342 ev_init (&once->io, once_cb_io);
1273 if (fd >= 0) 4343 if (fd >= 0)
4344 {
4345 ev_io_set (&once->io, fd, events);
4346 ev_io_start (EV_A_ &once->io);
4347 }
4348
4349 ev_init (&once->to, once_cb_to);
4350 if (timeout >= 0.)
4351 {
4352 ev_timer_set (&once->to, timeout, 0.);
4353 ev_timer_start (EV_A_ &once->to);
4354 }
4355}
4356
4357/*****************************************************************************/
4358
4359#if EV_WALK_ENABLE
4360void ecb_cold
4361ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
4362{
4363 int i, j;
4364 ev_watcher_list *wl, *wn;
4365
4366 if (types & (EV_IO | EV_EMBED))
4367 for (i = 0; i < anfdmax; ++i)
4368 for (wl = anfds [i].head; wl; )
1274 { 4369 {
1275 ev_io_set (&once->io, fd, events); 4370 wn = wl->next;
1276 ev_io_start (EV_A_ &once->io); 4371
4372#if EV_EMBED_ENABLE
4373 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4374 {
4375 if (types & EV_EMBED)
4376 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4377 }
4378 else
4379#endif
4380#if EV_USE_INOTIFY
4381 if (ev_cb ((ev_io *)wl) == infy_cb)
4382 ;
4383 else
4384#endif
4385 if ((ev_io *)wl != &pipe_w)
4386 if (types & EV_IO)
4387 cb (EV_A_ EV_IO, wl);
4388
4389 wl = wn;
1277 } 4390 }
1278 4391
1279 ev_watcher_init (&once->to, once_cb_to); 4392 if (types & (EV_TIMER | EV_STAT))
1280 if (timeout >= 0.) 4393 for (i = timercnt + HEAP0; i-- > HEAP0; )
4394#if EV_STAT_ENABLE
4395 /*TODO: timer is not always active*/
4396 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1281 { 4397 {
1282 ev_timer_set (&once->to, timeout, 0.); 4398 if (types & EV_STAT)
1283 ev_timer_start (EV_A_ &once->to); 4399 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1284 } 4400 }
1285 } 4401 else
1286} 4402#endif
4403 if (types & EV_TIMER)
4404 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1287 4405
1288/*****************************************************************************/ 4406#if EV_PERIODIC_ENABLE
4407 if (types & EV_PERIODIC)
4408 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4409 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4410#endif
1289 4411
1290#if 0 4412#if EV_IDLE_ENABLE
4413 if (types & EV_IDLE)
4414 for (j = NUMPRI; j--; )
4415 for (i = idlecnt [j]; i--; )
4416 cb (EV_A_ EV_IDLE, idles [j][i]);
4417#endif
1291 4418
1292struct ev_io wio; 4419#if EV_FORK_ENABLE
4420 if (types & EV_FORK)
4421 for (i = forkcnt; i--; )
4422 if (ev_cb (forks [i]) != embed_fork_cb)
4423 cb (EV_A_ EV_FORK, forks [i]);
4424#endif
1293 4425
1294static void 4426#if EV_ASYNC_ENABLE
1295sin_cb (struct ev_io *w, int revents) 4427 if (types & EV_ASYNC)
1296{ 4428 for (i = asynccnt; i--; )
1297 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents); 4429 cb (EV_A_ EV_ASYNC, asyncs [i]);
1298} 4430#endif
1299 4431
1300static void 4432#if EV_PREPARE_ENABLE
1301ocb (struct ev_timer *w, int revents) 4433 if (types & EV_PREPARE)
1302{ 4434 for (i = preparecnt; i--; )
1303 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data); 4435# if EV_EMBED_ENABLE
1304 ev_timer_stop (w); 4436 if (ev_cb (prepares [i]) != embed_prepare_cb)
1305 ev_timer_start (w);
1306}
1307
1308static void
1309scb (struct ev_signal *w, int revents)
1310{
1311 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1312 ev_io_stop (&wio);
1313 ev_io_start (&wio);
1314}
1315
1316static void
1317gcb (struct ev_signal *w, int revents)
1318{
1319 fprintf (stderr, "generic %x\n", revents);
1320
1321}
1322
1323int main (void)
1324{
1325 ev_init (0);
1326
1327 ev_io_init (&wio, sin_cb, 0, EV_READ);
1328 ev_io_start (&wio);
1329
1330 struct ev_timer t[10000];
1331
1332#if 0
1333 int i;
1334 for (i = 0; i < 10000; ++i)
1335 {
1336 struct ev_timer *w = t + i;
1337 ev_watcher_init (w, ocb, i);
1338 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1339 ev_timer_start (w);
1340 if (drand48 () < 0.5)
1341 ev_timer_stop (w);
1342 }
1343#endif 4437# endif
1344 4438 cb (EV_A_ EV_PREPARE, prepares [i]);
1345 struct ev_timer t1;
1346 ev_timer_init (&t1, ocb, 5, 10);
1347 ev_timer_start (&t1);
1348
1349 struct ev_signal sig;
1350 ev_signal_init (&sig, scb, SIGQUIT);
1351 ev_signal_start (&sig);
1352
1353 struct ev_check cw;
1354 ev_check_init (&cw, gcb);
1355 ev_check_start (&cw);
1356
1357 struct ev_idle iw;
1358 ev_idle_init (&iw, gcb);
1359 ev_idle_start (&iw);
1360
1361 ev_loop (0);
1362
1363 return 0;
1364}
1365
1366#endif 4439#endif
1367 4440
4441#if EV_CHECK_ENABLE
4442 if (types & EV_CHECK)
4443 for (i = checkcnt; i--; )
4444 cb (EV_A_ EV_CHECK, checks [i]);
4445#endif
1368 4446
4447#if EV_SIGNAL_ENABLE
4448 if (types & EV_SIGNAL)
4449 for (i = 0; i < EV_NSIG - 1; ++i)
4450 for (wl = signals [i].head; wl; )
4451 {
4452 wn = wl->next;
4453 cb (EV_A_ EV_SIGNAL, wl);
4454 wl = wn;
4455 }
4456#endif
1369 4457
4458#if EV_CHILD_ENABLE
4459 if (types & EV_CHILD)
4460 for (i = (EV_PID_HASHSIZE); i--; )
4461 for (wl = childs [i]; wl; )
4462 {
4463 wn = wl->next;
4464 cb (EV_A_ EV_CHILD, wl);
4465 wl = wn;
4466 }
4467#endif
4468/* EV_STAT 0x00001000 /* stat data changed */
4469/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4470}
4471#endif
1370 4472
4473#if EV_MULTIPLICITY
4474 #include "ev_wrap.h"
4475#endif
4476

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines