ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.51 by root, Sat Nov 3 21:58:51 2007 UTC vs.
Revision 1.510 by root, Wed Aug 28 09:45:49 2019 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
39
40/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
32# include "config.h" 45# include "config.h"
33#endif 46# endif
34 47
35#include <math.h> 48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
68# if HAVE_CLOCK_GETTIME
69# ifndef EV_USE_MONOTONIC
70# define EV_USE_MONOTONIC 1
71# endif
72# ifndef EV_USE_REALTIME
73# define EV_USE_REALTIME 0
74# endif
75# else
76# ifndef EV_USE_MONOTONIC
77# define EV_USE_MONOTONIC 0
78# endif
79# ifndef EV_USE_REALTIME
80# define EV_USE_REALTIME 0
81# endif
82# endif
83
84# if HAVE_NANOSLEEP
85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
109# endif
110
111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
118# endif
119
120# if HAVE_LINUX_AIO_ABI_H
121# ifndef EV_USE_LINUXAIO
122# define EV_USE_LINUXAIO EV_FEATURE_BACKENDS
123# endif
124# else
125# undef EV_USE_LINUXAIO
126# define EV_USE_LINUXAIO 0
127# endif
128
129# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
130# ifndef EV_USE_KQUEUE
131# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
132# endif
133# else
134# undef EV_USE_KQUEUE
135# define EV_USE_KQUEUE 0
136# endif
137
138# if HAVE_PORT_H && HAVE_PORT_CREATE
139# ifndef EV_USE_PORT
140# define EV_USE_PORT EV_FEATURE_BACKENDS
141# endif
142# else
143# undef EV_USE_PORT
144# define EV_USE_PORT 0
145# endif
146
147# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
148# ifndef EV_USE_INOTIFY
149# define EV_USE_INOTIFY EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_INOTIFY
153# define EV_USE_INOTIFY 0
154# endif
155
156# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
157# ifndef EV_USE_SIGNALFD
158# define EV_USE_SIGNALFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_SIGNALFD
162# define EV_USE_SIGNALFD 0
163# endif
164
165# if HAVE_EVENTFD
166# ifndef EV_USE_EVENTFD
167# define EV_USE_EVENTFD EV_FEATURE_OS
168# endif
169# else
170# undef EV_USE_EVENTFD
171# define EV_USE_EVENTFD 0
172# endif
173
174#endif
175
176/* OS X, in its infinite idiocy, actually HARDCODES
177 * a limit of 1024 into their select. Where people have brains,
178 * OS X engineers apparently have a vacuum. Or maybe they were
179 * ordered to have a vacuum, or they do anything for money.
180 * This might help. Or not.
181 * Note that this must be defined early, as other include files
182 * will rely on this define as well.
183 */
184#define _DARWIN_UNLIMITED_SELECT 1
185
36#include <stdlib.h> 186#include <stdlib.h>
37#include <unistd.h> 187#include <string.h>
38#include <fcntl.h> 188#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 189#include <stddef.h>
41 190
42#include <stdio.h> 191#include <stdio.h>
43 192
44#include <assert.h> 193#include <assert.h>
45#include <errno.h> 194#include <errno.h>
46#include <sys/types.h> 195#include <sys/types.h>
196#include <time.h>
197#include <limits.h>
198
199#include <signal.h>
200
201#ifdef EV_H
202# include EV_H
203#else
204# include "ev.h"
205#endif
206
207#if EV_NO_THREADS
208# undef EV_NO_SMP
209# define EV_NO_SMP 1
210# undef ECB_NO_THREADS
211# define ECB_NO_THREADS 1
212#endif
213#if EV_NO_SMP
214# undef EV_NO_SMP
215# define ECB_NO_SMP 1
216#endif
217
47#ifndef WIN32 218#ifndef _WIN32
219# include <sys/time.h>
48# include <sys/wait.h> 220# include <sys/wait.h>
221# include <unistd.h>
222#else
223# include <io.h>
224# define WIN32_LEAN_AND_MEAN
225# include <winsock2.h>
226# include <windows.h>
227# ifndef EV_SELECT_IS_WINSOCKET
228# define EV_SELECT_IS_WINSOCKET 1
49#endif 229# endif
50#include <sys/time.h> 230# undef EV_AVOID_STDIO
51#include <time.h> 231#endif
52 232
53/**/ 233/* this block tries to deduce configuration from header-defined symbols and defaults */
234
235/* try to deduce the maximum number of signals on this platform */
236#if defined EV_NSIG
237/* use what's provided */
238#elif defined NSIG
239# define EV_NSIG (NSIG)
240#elif defined _NSIG
241# define EV_NSIG (_NSIG)
242#elif defined SIGMAX
243# define EV_NSIG (SIGMAX+1)
244#elif defined SIG_MAX
245# define EV_NSIG (SIG_MAX+1)
246#elif defined _SIG_MAX
247# define EV_NSIG (_SIG_MAX+1)
248#elif defined MAXSIG
249# define EV_NSIG (MAXSIG+1)
250#elif defined MAX_SIG
251# define EV_NSIG (MAX_SIG+1)
252#elif defined SIGARRAYSIZE
253# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
254#elif defined _sys_nsig
255# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
256#else
257# define EV_NSIG (8 * sizeof (sigset_t) + 1)
258#endif
259
260#ifndef EV_USE_FLOOR
261# define EV_USE_FLOOR 0
262#endif
263
264#ifndef EV_USE_CLOCK_SYSCALL
265# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
266# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
267# else
268# define EV_USE_CLOCK_SYSCALL 0
269# endif
270#endif
271
272#if !(_POSIX_TIMERS > 0)
273# ifndef EV_USE_MONOTONIC
274# define EV_USE_MONOTONIC 0
275# endif
276# ifndef EV_USE_REALTIME
277# define EV_USE_REALTIME 0
278# endif
279#endif
54 280
55#ifndef EV_USE_MONOTONIC 281#ifndef EV_USE_MONOTONIC
282# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
283# define EV_USE_MONOTONIC EV_FEATURE_OS
284# else
56# define EV_USE_MONOTONIC 1 285# define EV_USE_MONOTONIC 0
286# endif
287#endif
288
289#ifndef EV_USE_REALTIME
290# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
291#endif
292
293#ifndef EV_USE_NANOSLEEP
294# if _POSIX_C_SOURCE >= 199309L
295# define EV_USE_NANOSLEEP EV_FEATURE_OS
296# else
297# define EV_USE_NANOSLEEP 0
298# endif
57#endif 299#endif
58 300
59#ifndef EV_USE_SELECT 301#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1 302# define EV_USE_SELECT EV_FEATURE_BACKENDS
61#endif 303#endif
62 304
63#ifndef EV_USEV_POLL 305#ifndef EV_USE_POLL
64# define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */ 306# ifdef _WIN32
307# define EV_USE_POLL 0
308# else
309# define EV_USE_POLL EV_FEATURE_BACKENDS
310# endif
65#endif 311#endif
66 312
67#ifndef EV_USE_EPOLL 313#ifndef EV_USE_EPOLL
314# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
315# define EV_USE_EPOLL EV_FEATURE_BACKENDS
316# else
68# define EV_USE_EPOLL 0 317# define EV_USE_EPOLL 0
318# endif
69#endif 319#endif
70 320
71#ifndef EV_USE_KQUEUE 321#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 322# define EV_USE_KQUEUE 0
73#endif 323#endif
74 324
75#ifndef EV_USE_REALTIME 325#ifndef EV_USE_PORT
326# define EV_USE_PORT 0
327#endif
328
329#ifndef EV_USE_LINUXAIO
330# if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
76# define EV_USE_REALTIME 1 331# define EV_USE_LINUXAIO 1
332# else
333# define EV_USE_LINUXAIO 0
77#endif 334# endif
335#endif
78 336
79/**/ 337#ifndef EV_USE_IOURING
338# if __linux
339# define EV_USE_IOURING 0
340# else
341# define EV_USE_IOURING 0
342# endif
343#endif
344
345#ifndef EV_USE_INOTIFY
346# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
347# define EV_USE_INOTIFY EV_FEATURE_OS
348# else
349# define EV_USE_INOTIFY 0
350# endif
351#endif
352
353#ifndef EV_PID_HASHSIZE
354# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
355#endif
356
357#ifndef EV_INOTIFY_HASHSIZE
358# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
359#endif
360
361#ifndef EV_USE_EVENTFD
362# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
363# define EV_USE_EVENTFD EV_FEATURE_OS
364# else
365# define EV_USE_EVENTFD 0
366# endif
367#endif
368
369#ifndef EV_USE_SIGNALFD
370# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
371# define EV_USE_SIGNALFD EV_FEATURE_OS
372# else
373# define EV_USE_SIGNALFD 0
374# endif
375#endif
376
377#if 0 /* debugging */
378# define EV_VERIFY 3
379# define EV_USE_4HEAP 1
380# define EV_HEAP_CACHE_AT 1
381#endif
382
383#ifndef EV_VERIFY
384# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
385#endif
386
387#ifndef EV_USE_4HEAP
388# define EV_USE_4HEAP EV_FEATURE_DATA
389#endif
390
391#ifndef EV_HEAP_CACHE_AT
392# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
393#endif
394
395#ifdef __ANDROID__
396/* supposedly, android doesn't typedef fd_mask */
397# undef EV_USE_SELECT
398# define EV_USE_SELECT 0
399/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
400# undef EV_USE_CLOCK_SYSCALL
401# define EV_USE_CLOCK_SYSCALL 0
402#endif
403
404/* aix's poll.h seems to cause lots of trouble */
405#ifdef _AIX
406/* AIX has a completely broken poll.h header */
407# undef EV_USE_POLL
408# define EV_USE_POLL 0
409#endif
410
411/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
412/* which makes programs even slower. might work on other unices, too. */
413#if EV_USE_CLOCK_SYSCALL
414# include <sys/syscall.h>
415# ifdef SYS_clock_gettime
416# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
417# undef EV_USE_MONOTONIC
418# define EV_USE_MONOTONIC 1
419# define EV_NEED_SYSCALL 1
420# else
421# undef EV_USE_CLOCK_SYSCALL
422# define EV_USE_CLOCK_SYSCALL 0
423# endif
424#endif
425
426/* this block fixes any misconfiguration where we know we run into trouble otherwise */
80 427
81#ifndef CLOCK_MONOTONIC 428#ifndef CLOCK_MONOTONIC
82# undef EV_USE_MONOTONIC 429# undef EV_USE_MONOTONIC
83# define EV_USE_MONOTONIC 0 430# define EV_USE_MONOTONIC 0
84#endif 431#endif
86#ifndef CLOCK_REALTIME 433#ifndef CLOCK_REALTIME
87# undef EV_USE_REALTIME 434# undef EV_USE_REALTIME
88# define EV_USE_REALTIME 0 435# define EV_USE_REALTIME 0
89#endif 436#endif
90 437
91/**/ 438#if !EV_STAT_ENABLE
439# undef EV_USE_INOTIFY
440# define EV_USE_INOTIFY 0
441#endif
92 442
93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 443#if !EV_USE_NANOSLEEP
94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 444/* hp-ux has it in sys/time.h, which we unconditionally include above */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 445# if !defined _WIN32 && !defined __hpux
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 446# include <sys/select.h>
447# endif
448#endif
97 449
98#include "ev.h" 450#if EV_USE_LINUXAIO
451# include <sys/syscall.h>
452# if SYS_io_getevents && EV_USE_EPOLL /* linuxaio backend requires epoll backend */
453# define EV_NEED_SYSCALL 1
454# else
455# undef EV_USE_LINUXAIO
456# define EV_USE_LINUXAIO 0
457# endif
458#endif
99 459
100#if __GNUC__ >= 3 460#if EV_USE_IOURING
101# define expect(expr,value) __builtin_expect ((expr),(value)) 461# include <sys/syscall.h>
102# define inline inline 462# if !SYS_io_uring_setup && __linux && !__alpha
463# define SYS_io_uring_setup 425
464# define SYS_io_uring_enter 426
465# define SYS_io_uring_wregister 427
466# endif
467# if SYS_io_uring_setup && EV_USE_EPOLL /* iouring backend requires epoll backend */
468# define EV_NEED_SYSCALL 1
469# else
470# undef EV_USE_IOURING
471# define EV_USE_IOURING 0
472# endif
473#endif
474
475#if EV_USE_INOTIFY
476# include <sys/statfs.h>
477# include <sys/inotify.h>
478/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
479# ifndef IN_DONT_FOLLOW
480# undef EV_USE_INOTIFY
481# define EV_USE_INOTIFY 0
482# endif
483#endif
484
485#if EV_USE_EVENTFD
486/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
487# include <stdint.h>
488# ifndef EFD_NONBLOCK
489# define EFD_NONBLOCK O_NONBLOCK
490# endif
491# ifndef EFD_CLOEXEC
492# ifdef O_CLOEXEC
493# define EFD_CLOEXEC O_CLOEXEC
494# else
495# define EFD_CLOEXEC 02000000
496# endif
497# endif
498EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
499#endif
500
501#if EV_USE_SIGNALFD
502/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
503# include <stdint.h>
504# ifndef SFD_NONBLOCK
505# define SFD_NONBLOCK O_NONBLOCK
506# endif
507# ifndef SFD_CLOEXEC
508# ifdef O_CLOEXEC
509# define SFD_CLOEXEC O_CLOEXEC
510# else
511# define SFD_CLOEXEC 02000000
512# endif
513# endif
514EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
515
516struct signalfd_siginfo
517{
518 uint32_t ssi_signo;
519 char pad[128 - sizeof (uint32_t)];
520};
521#endif
522
523/*****************************************************************************/
524
525#if EV_VERIFY >= 3
526# define EV_FREQUENT_CHECK ev_verify (EV_A)
103#else 527#else
528# define EV_FREQUENT_CHECK do { } while (0)
529#endif
530
531/*
532 * This is used to work around floating point rounding problems.
533 * This value is good at least till the year 4000.
534 */
535#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
536/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
537
538#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
539#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
540
541/* find a portable timestamp that is "always" in the future but fits into time_t.
542 * this is quite hard, and we are mostly guessing - we handle 32 bit signed/unsigned time_t,
543 * and sizes larger than 32 bit, and maybe the unlikely floating point time_t */
544#define EV_TSTAMP_HUGE \
545 (sizeof (time_t) >= 8 ? 10000000000000. \
546 : 0 < (time_t)4294967295 ? 4294967295. \
547 : 2147483647.) \
548
549#ifndef EV_TS_CONST
550# define EV_TS_CONST(nv) nv
551# define EV_TS_TO_MSEC(a) a * 1e3 + 0.9999
552# define EV_TS_FROM_USEC(us) us * 1e-6
553# define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
554# define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
555# define EV_TV_GET(tv) ((tv).tv_sec + (tv).tv_usec * 1e-6)
556# define EV_TS_GET(ts) ((ts).tv_sec + (ts).tv_nsec * 1e-9)
557#endif
558
559/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
560/* ECB.H BEGIN */
561/*
562 * libecb - http://software.schmorp.de/pkg/libecb
563 *
564 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
565 * Copyright (©) 2011 Emanuele Giaquinta
566 * All rights reserved.
567 *
568 * Redistribution and use in source and binary forms, with or without modifica-
569 * tion, are permitted provided that the following conditions are met:
570 *
571 * 1. Redistributions of source code must retain the above copyright notice,
572 * this list of conditions and the following disclaimer.
573 *
574 * 2. Redistributions in binary form must reproduce the above copyright
575 * notice, this list of conditions and the following disclaimer in the
576 * documentation and/or other materials provided with the distribution.
577 *
578 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
579 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
580 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
581 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
582 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
583 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
584 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
585 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
586 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
587 * OF THE POSSIBILITY OF SUCH DAMAGE.
588 *
589 * Alternatively, the contents of this file may be used under the terms of
590 * the GNU General Public License ("GPL") version 2 or any later version,
591 * in which case the provisions of the GPL are applicable instead of
592 * the above. If you wish to allow the use of your version of this file
593 * only under the terms of the GPL and not to allow others to use your
594 * version of this file under the BSD license, indicate your decision
595 * by deleting the provisions above and replace them with the notice
596 * and other provisions required by the GPL. If you do not delete the
597 * provisions above, a recipient may use your version of this file under
598 * either the BSD or the GPL.
599 */
600
601#ifndef ECB_H
602#define ECB_H
603
604/* 16 bits major, 16 bits minor */
605#define ECB_VERSION 0x00010006
606
607#ifdef _WIN32
608 typedef signed char int8_t;
609 typedef unsigned char uint8_t;
610 typedef signed short int16_t;
611 typedef unsigned short uint16_t;
612 typedef signed int int32_t;
613 typedef unsigned int uint32_t;
614 #if __GNUC__
615 typedef signed long long int64_t;
616 typedef unsigned long long uint64_t;
617 #else /* _MSC_VER || __BORLANDC__ */
618 typedef signed __int64 int64_t;
619 typedef unsigned __int64 uint64_t;
620 #endif
621 #ifdef _WIN64
622 #define ECB_PTRSIZE 8
623 typedef uint64_t uintptr_t;
624 typedef int64_t intptr_t;
625 #else
626 #define ECB_PTRSIZE 4
627 typedef uint32_t uintptr_t;
628 typedef int32_t intptr_t;
629 #endif
630#else
631 #include <inttypes.h>
632 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
633 #define ECB_PTRSIZE 8
634 #else
635 #define ECB_PTRSIZE 4
636 #endif
637#endif
638
639#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
640#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
641
642/* work around x32 idiocy by defining proper macros */
643#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
644 #if _ILP32
645 #define ECB_AMD64_X32 1
646 #else
647 #define ECB_AMD64 1
648 #endif
649#endif
650
651/* many compilers define _GNUC_ to some versions but then only implement
652 * what their idiot authors think are the "more important" extensions,
653 * causing enormous grief in return for some better fake benchmark numbers.
654 * or so.
655 * we try to detect these and simply assume they are not gcc - if they have
656 * an issue with that they should have done it right in the first place.
657 */
658#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
659 #define ECB_GCC_VERSION(major,minor) 0
660#else
661 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
662#endif
663
664#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
665
666#if __clang__ && defined __has_builtin
667 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
668#else
669 #define ECB_CLANG_BUILTIN(x) 0
670#endif
671
672#if __clang__ && defined __has_extension
673 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
674#else
675 #define ECB_CLANG_EXTENSION(x) 0
676#endif
677
678#define ECB_CPP (__cplusplus+0)
679#define ECB_CPP11 (__cplusplus >= 201103L)
680#define ECB_CPP14 (__cplusplus >= 201402L)
681#define ECB_CPP17 (__cplusplus >= 201703L)
682
683#if ECB_CPP
684 #define ECB_C 0
685 #define ECB_STDC_VERSION 0
686#else
687 #define ECB_C 1
688 #define ECB_STDC_VERSION __STDC_VERSION__
689#endif
690
691#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
692#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
693#define ECB_C17 (ECB_STDC_VERSION >= 201710L)
694
695#if ECB_CPP
696 #define ECB_EXTERN_C extern "C"
697 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
698 #define ECB_EXTERN_C_END }
699#else
700 #define ECB_EXTERN_C extern
701 #define ECB_EXTERN_C_BEG
702 #define ECB_EXTERN_C_END
703#endif
704
705/*****************************************************************************/
706
707/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
708/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
709
710#if ECB_NO_THREADS
711 #define ECB_NO_SMP 1
712#endif
713
714#if ECB_NO_SMP
715 #define ECB_MEMORY_FENCE do { } while (0)
716#endif
717
718/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
719#if __xlC__ && ECB_CPP
720 #include <builtins.h>
721#endif
722
723#if 1400 <= _MSC_VER
724 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
725#endif
726
727#ifndef ECB_MEMORY_FENCE
728 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
729 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
730 #if __i386 || __i386__
731 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
732 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
733 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
734 #elif ECB_GCC_AMD64
735 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
736 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
737 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
738 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
739 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
740 #elif defined __ARM_ARCH_2__ \
741 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
742 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
743 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
744 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
745 || defined __ARM_ARCH_5TEJ__
746 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
747 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
748 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
749 || defined __ARM_ARCH_6T2__
750 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
751 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
752 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
753 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
754 #elif __aarch64__
755 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
756 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
757 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
758 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
759 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
760 #elif defined __s390__ || defined __s390x__
761 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
762 #elif defined __mips__
763 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
764 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
765 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
766 #elif defined __alpha__
767 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
768 #elif defined __hppa__
769 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
770 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
771 #elif defined __ia64__
772 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
773 #elif defined __m68k__
774 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
775 #elif defined __m88k__
776 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
777 #elif defined __sh__
778 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
779 #endif
780 #endif
781#endif
782
783#ifndef ECB_MEMORY_FENCE
784 #if ECB_GCC_VERSION(4,7)
785 /* see comment below (stdatomic.h) about the C11 memory model. */
786 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
787 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
788 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
789 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
790
791 #elif ECB_CLANG_EXTENSION(c_atomic)
792 /* see comment below (stdatomic.h) about the C11 memory model. */
793 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
794 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
795 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
796 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
797
798 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
799 #define ECB_MEMORY_FENCE __sync_synchronize ()
800 #elif _MSC_VER >= 1500 /* VC++ 2008 */
801 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
802 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
803 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
804 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
805 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
806 #elif _MSC_VER >= 1400 /* VC++ 2005 */
807 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
808 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
809 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
810 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
811 #elif defined _WIN32
812 #include <WinNT.h>
813 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
814 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
815 #include <mbarrier.h>
816 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
817 #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
818 #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
819 #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
820 #elif __xlC__
821 #define ECB_MEMORY_FENCE __sync ()
822 #endif
823#endif
824
825#ifndef ECB_MEMORY_FENCE
826 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
827 /* we assume that these memory fences work on all variables/all memory accesses, */
828 /* not just C11 atomics and atomic accesses */
829 #include <stdatomic.h>
830 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
831 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
832 #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
833 #endif
834#endif
835
836#ifndef ECB_MEMORY_FENCE
837 #if !ECB_AVOID_PTHREADS
838 /*
839 * if you get undefined symbol references to pthread_mutex_lock,
840 * or failure to find pthread.h, then you should implement
841 * the ECB_MEMORY_FENCE operations for your cpu/compiler
842 * OR provide pthread.h and link against the posix thread library
843 * of your system.
844 */
845 #include <pthread.h>
846 #define ECB_NEEDS_PTHREADS 1
847 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
848
849 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
850 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
851 #endif
852#endif
853
854#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
855 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
856#endif
857
858#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
859 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
860#endif
861
862#if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
863 #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
864#endif
865
866/*****************************************************************************/
867
868#if ECB_CPP
869 #define ecb_inline static inline
870#elif ECB_GCC_VERSION(2,5)
871 #define ecb_inline static __inline__
872#elif ECB_C99
873 #define ecb_inline static inline
874#else
875 #define ecb_inline static
876#endif
877
878#if ECB_GCC_VERSION(3,3)
879 #define ecb_restrict __restrict__
880#elif ECB_C99
881 #define ecb_restrict restrict
882#else
883 #define ecb_restrict
884#endif
885
886typedef int ecb_bool;
887
888#define ECB_CONCAT_(a, b) a ## b
889#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
890#define ECB_STRINGIFY_(a) # a
891#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
892#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
893
894#define ecb_function_ ecb_inline
895
896#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
897 #define ecb_attribute(attrlist) __attribute__ (attrlist)
898#else
899 #define ecb_attribute(attrlist)
900#endif
901
902#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
903 #define ecb_is_constant(expr) __builtin_constant_p (expr)
904#else
905 /* possible C11 impl for integral types
906 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
907 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
908
909 #define ecb_is_constant(expr) 0
910#endif
911
912#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
913 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
914#else
104# define expect(expr,value) (expr) 915 #define ecb_expect(expr,value) (expr)
105# define inline static
106#endif 916#endif
107 917
918#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
919 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
920#else
921 #define ecb_prefetch(addr,rw,locality)
922#endif
923
924/* no emulation for ecb_decltype */
925#if ECB_CPP11
926 // older implementations might have problems with decltype(x)::type, work around it
927 template<class T> struct ecb_decltype_t { typedef T type; };
928 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
929#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
930 #define ecb_decltype(x) __typeof__ (x)
931#endif
932
933#if _MSC_VER >= 1300
934 #define ecb_deprecated __declspec (deprecated)
935#else
936 #define ecb_deprecated ecb_attribute ((__deprecated__))
937#endif
938
939#if _MSC_VER >= 1500
940 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
941#elif ECB_GCC_VERSION(4,5)
942 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
943#else
944 #define ecb_deprecated_message(msg) ecb_deprecated
945#endif
946
947#if _MSC_VER >= 1400
948 #define ecb_noinline __declspec (noinline)
949#else
950 #define ecb_noinline ecb_attribute ((__noinline__))
951#endif
952
953#define ecb_unused ecb_attribute ((__unused__))
954#define ecb_const ecb_attribute ((__const__))
955#define ecb_pure ecb_attribute ((__pure__))
956
957#if ECB_C11 || __IBMC_NORETURN
958 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
959 #define ecb_noreturn _Noreturn
960#elif ECB_CPP11
961 #define ecb_noreturn [[noreturn]]
962#elif _MSC_VER >= 1200
963 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
964 #define ecb_noreturn __declspec (noreturn)
965#else
966 #define ecb_noreturn ecb_attribute ((__noreturn__))
967#endif
968
969#if ECB_GCC_VERSION(4,3)
970 #define ecb_artificial ecb_attribute ((__artificial__))
971 #define ecb_hot ecb_attribute ((__hot__))
972 #define ecb_cold ecb_attribute ((__cold__))
973#else
974 #define ecb_artificial
975 #define ecb_hot
976 #define ecb_cold
977#endif
978
979/* put around conditional expressions if you are very sure that the */
980/* expression is mostly true or mostly false. note that these return */
981/* booleans, not the expression. */
108#define expect_false(expr) expect ((expr) != 0, 0) 982#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
109#define expect_true(expr) expect ((expr) != 0, 1) 983#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
984/* for compatibility to the rest of the world */
985#define ecb_likely(expr) ecb_expect_true (expr)
986#define ecb_unlikely(expr) ecb_expect_false (expr)
110 987
988/* count trailing zero bits and count # of one bits */
989#if ECB_GCC_VERSION(3,4) \
990 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
991 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
992 && ECB_CLANG_BUILTIN(__builtin_popcount))
993 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
994 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
995 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
996 #define ecb_ctz32(x) __builtin_ctz (x)
997 #define ecb_ctz64(x) __builtin_ctzll (x)
998 #define ecb_popcount32(x) __builtin_popcount (x)
999 /* no popcountll */
1000#else
1001 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
1002 ecb_function_ ecb_const int
1003 ecb_ctz32 (uint32_t x)
1004 {
1005#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1006 unsigned long r;
1007 _BitScanForward (&r, x);
1008 return (int)r;
1009#else
1010 int r = 0;
1011
1012 x &= ~x + 1; /* this isolates the lowest bit */
1013
1014#if ECB_branchless_on_i386
1015 r += !!(x & 0xaaaaaaaa) << 0;
1016 r += !!(x & 0xcccccccc) << 1;
1017 r += !!(x & 0xf0f0f0f0) << 2;
1018 r += !!(x & 0xff00ff00) << 3;
1019 r += !!(x & 0xffff0000) << 4;
1020#else
1021 if (x & 0xaaaaaaaa) r += 1;
1022 if (x & 0xcccccccc) r += 2;
1023 if (x & 0xf0f0f0f0) r += 4;
1024 if (x & 0xff00ff00) r += 8;
1025 if (x & 0xffff0000) r += 16;
1026#endif
1027
1028 return r;
1029#endif
1030 }
1031
1032 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
1033 ecb_function_ ecb_const int
1034 ecb_ctz64 (uint64_t x)
1035 {
1036#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1037 unsigned long r;
1038 _BitScanForward64 (&r, x);
1039 return (int)r;
1040#else
1041 int shift = x & 0xffffffff ? 0 : 32;
1042 return ecb_ctz32 (x >> shift) + shift;
1043#endif
1044 }
1045
1046 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1047 ecb_function_ ecb_const int
1048 ecb_popcount32 (uint32_t x)
1049 {
1050 x -= (x >> 1) & 0x55555555;
1051 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1052 x = ((x >> 4) + x) & 0x0f0f0f0f;
1053 x *= 0x01010101;
1054
1055 return x >> 24;
1056 }
1057
1058 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1059 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1060 {
1061#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1062 unsigned long r;
1063 _BitScanReverse (&r, x);
1064 return (int)r;
1065#else
1066 int r = 0;
1067
1068 if (x >> 16) { x >>= 16; r += 16; }
1069 if (x >> 8) { x >>= 8; r += 8; }
1070 if (x >> 4) { x >>= 4; r += 4; }
1071 if (x >> 2) { x >>= 2; r += 2; }
1072 if (x >> 1) { r += 1; }
1073
1074 return r;
1075#endif
1076 }
1077
1078 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1079 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1080 {
1081#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1082 unsigned long r;
1083 _BitScanReverse64 (&r, x);
1084 return (int)r;
1085#else
1086 int r = 0;
1087
1088 if (x >> 32) { x >>= 32; r += 32; }
1089
1090 return r + ecb_ld32 (x);
1091#endif
1092 }
1093#endif
1094
1095ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1096ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1097ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1098ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1099
1100ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1101ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1102{
1103 return ( (x * 0x0802U & 0x22110U)
1104 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1105}
1106
1107ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1108ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1109{
1110 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1111 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1112 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1113 x = ( x >> 8 ) | ( x << 8);
1114
1115 return x;
1116}
1117
1118ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1119ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1120{
1121 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1122 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1123 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1124 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1125 x = ( x >> 16 ) | ( x << 16);
1126
1127 return x;
1128}
1129
1130/* popcount64 is only available on 64 bit cpus as gcc builtin */
1131/* so for this version we are lazy */
1132ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1133ecb_function_ ecb_const int
1134ecb_popcount64 (uint64_t x)
1135{
1136 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1137}
1138
1139ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1140ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1141ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1142ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1143ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1144ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1145ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1146ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1147
1148ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1149ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1150ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1151ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1152ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1153ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1154ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1155ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1156
1157#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1158 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1159 #define ecb_bswap16(x) __builtin_bswap16 (x)
1160 #else
1161 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1162 #endif
1163 #define ecb_bswap32(x) __builtin_bswap32 (x)
1164 #define ecb_bswap64(x) __builtin_bswap64 (x)
1165#elif _MSC_VER
1166 #include <stdlib.h>
1167 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1168 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1169 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1170#else
1171 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1172 ecb_function_ ecb_const uint16_t
1173 ecb_bswap16 (uint16_t x)
1174 {
1175 return ecb_rotl16 (x, 8);
1176 }
1177
1178 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1179 ecb_function_ ecb_const uint32_t
1180 ecb_bswap32 (uint32_t x)
1181 {
1182 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1183 }
1184
1185 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1186 ecb_function_ ecb_const uint64_t
1187 ecb_bswap64 (uint64_t x)
1188 {
1189 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1190 }
1191#endif
1192
1193#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1194 #define ecb_unreachable() __builtin_unreachable ()
1195#else
1196 /* this seems to work fine, but gcc always emits a warning for it :/ */
1197 ecb_inline ecb_noreturn void ecb_unreachable (void);
1198 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1199#endif
1200
1201/* try to tell the compiler that some condition is definitely true */
1202#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1203
1204ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1205ecb_inline ecb_const uint32_t
1206ecb_byteorder_helper (void)
1207{
1208 /* the union code still generates code under pressure in gcc, */
1209 /* but less than using pointers, and always seems to */
1210 /* successfully return a constant. */
1211 /* the reason why we have this horrible preprocessor mess */
1212 /* is to avoid it in all cases, at least on common architectures */
1213 /* or when using a recent enough gcc version (>= 4.6) */
1214#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1215 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1216 #define ECB_LITTLE_ENDIAN 1
1217 return 0x44332211;
1218#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1219 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1220 #define ECB_BIG_ENDIAN 1
1221 return 0x11223344;
1222#else
1223 union
1224 {
1225 uint8_t c[4];
1226 uint32_t u;
1227 } u = { 0x11, 0x22, 0x33, 0x44 };
1228 return u.u;
1229#endif
1230}
1231
1232ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1233ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1234ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1235ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1236
1237#if ECB_GCC_VERSION(3,0) || ECB_C99
1238 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1239#else
1240 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1241#endif
1242
1243#if ECB_CPP
1244 template<typename T>
1245 static inline T ecb_div_rd (T val, T div)
1246 {
1247 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1248 }
1249 template<typename T>
1250 static inline T ecb_div_ru (T val, T div)
1251 {
1252 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1253 }
1254#else
1255 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1256 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1257#endif
1258
1259#if ecb_cplusplus_does_not_suck
1260 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1261 template<typename T, int N>
1262 static inline int ecb_array_length (const T (&arr)[N])
1263 {
1264 return N;
1265 }
1266#else
1267 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1268#endif
1269
1270ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1271ecb_function_ ecb_const uint32_t
1272ecb_binary16_to_binary32 (uint32_t x)
1273{
1274 unsigned int s = (x & 0x8000) << (31 - 15);
1275 int e = (x >> 10) & 0x001f;
1276 unsigned int m = x & 0x03ff;
1277
1278 if (ecb_expect_false (e == 31))
1279 /* infinity or NaN */
1280 e = 255 - (127 - 15);
1281 else if (ecb_expect_false (!e))
1282 {
1283 if (ecb_expect_true (!m))
1284 /* zero, handled by code below by forcing e to 0 */
1285 e = 0 - (127 - 15);
1286 else
1287 {
1288 /* subnormal, renormalise */
1289 unsigned int s = 10 - ecb_ld32 (m);
1290
1291 m = (m << s) & 0x3ff; /* mask implicit bit */
1292 e -= s - 1;
1293 }
1294 }
1295
1296 /* e and m now are normalised, or zero, (or inf or nan) */
1297 e += 127 - 15;
1298
1299 return s | (e << 23) | (m << (23 - 10));
1300}
1301
1302ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1303ecb_function_ ecb_const uint16_t
1304ecb_binary32_to_binary16 (uint32_t x)
1305{
1306 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1307 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1308 unsigned int m = x & 0x007fffff;
1309
1310 x &= 0x7fffffff;
1311
1312 /* if it's within range of binary16 normals, use fast path */
1313 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1314 {
1315 /* mantissa round-to-even */
1316 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1317
1318 /* handle overflow */
1319 if (ecb_expect_false (m >= 0x00800000))
1320 {
1321 m >>= 1;
1322 e += 1;
1323 }
1324
1325 return s | (e << 10) | (m >> (23 - 10));
1326 }
1327
1328 /* handle large numbers and infinity */
1329 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1330 return s | 0x7c00;
1331
1332 /* handle zero, subnormals and small numbers */
1333 if (ecb_expect_true (x < 0x38800000))
1334 {
1335 /* zero */
1336 if (ecb_expect_true (!x))
1337 return s;
1338
1339 /* handle subnormals */
1340
1341 /* too small, will be zero */
1342 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1343 return s;
1344
1345 m |= 0x00800000; /* make implicit bit explicit */
1346
1347 /* very tricky - we need to round to the nearest e (+10) bit value */
1348 {
1349 unsigned int bits = 14 - e;
1350 unsigned int half = (1 << (bits - 1)) - 1;
1351 unsigned int even = (m >> bits) & 1;
1352
1353 /* if this overflows, we will end up with a normalised number */
1354 m = (m + half + even) >> bits;
1355 }
1356
1357 return s | m;
1358 }
1359
1360 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1361 m >>= 13;
1362
1363 return s | 0x7c00 | m | !m;
1364}
1365
1366/*******************************************************************************/
1367/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1368
1369/* basically, everything uses "ieee pure-endian" floating point numbers */
1370/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1371#if 0 \
1372 || __i386 || __i386__ \
1373 || ECB_GCC_AMD64 \
1374 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1375 || defined __s390__ || defined __s390x__ \
1376 || defined __mips__ \
1377 || defined __alpha__ \
1378 || defined __hppa__ \
1379 || defined __ia64__ \
1380 || defined __m68k__ \
1381 || defined __m88k__ \
1382 || defined __sh__ \
1383 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1384 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1385 || defined __aarch64__
1386 #define ECB_STDFP 1
1387 #include <string.h> /* for memcpy */
1388#else
1389 #define ECB_STDFP 0
1390#endif
1391
1392#ifndef ECB_NO_LIBM
1393
1394 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1395
1396 /* only the oldest of old doesn't have this one. solaris. */
1397 #ifdef INFINITY
1398 #define ECB_INFINITY INFINITY
1399 #else
1400 #define ECB_INFINITY HUGE_VAL
1401 #endif
1402
1403 #ifdef NAN
1404 #define ECB_NAN NAN
1405 #else
1406 #define ECB_NAN ECB_INFINITY
1407 #endif
1408
1409 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1410 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1411 #define ecb_frexpf(x,e) frexpf ((x), (e))
1412 #else
1413 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1414 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1415 #endif
1416
1417 /* convert a float to ieee single/binary32 */
1418 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1419 ecb_function_ ecb_const uint32_t
1420 ecb_float_to_binary32 (float x)
1421 {
1422 uint32_t r;
1423
1424 #if ECB_STDFP
1425 memcpy (&r, &x, 4);
1426 #else
1427 /* slow emulation, works for anything but -0 */
1428 uint32_t m;
1429 int e;
1430
1431 if (x == 0e0f ) return 0x00000000U;
1432 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1433 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1434 if (x != x ) return 0x7fbfffffU;
1435
1436 m = ecb_frexpf (x, &e) * 0x1000000U;
1437
1438 r = m & 0x80000000U;
1439
1440 if (r)
1441 m = -m;
1442
1443 if (e <= -126)
1444 {
1445 m &= 0xffffffU;
1446 m >>= (-125 - e);
1447 e = -126;
1448 }
1449
1450 r |= (e + 126) << 23;
1451 r |= m & 0x7fffffU;
1452 #endif
1453
1454 return r;
1455 }
1456
1457 /* converts an ieee single/binary32 to a float */
1458 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1459 ecb_function_ ecb_const float
1460 ecb_binary32_to_float (uint32_t x)
1461 {
1462 float r;
1463
1464 #if ECB_STDFP
1465 memcpy (&r, &x, 4);
1466 #else
1467 /* emulation, only works for normals and subnormals and +0 */
1468 int neg = x >> 31;
1469 int e = (x >> 23) & 0xffU;
1470
1471 x &= 0x7fffffU;
1472
1473 if (e)
1474 x |= 0x800000U;
1475 else
1476 e = 1;
1477
1478 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1479 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1480
1481 r = neg ? -r : r;
1482 #endif
1483
1484 return r;
1485 }
1486
1487 /* convert a double to ieee double/binary64 */
1488 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1489 ecb_function_ ecb_const uint64_t
1490 ecb_double_to_binary64 (double x)
1491 {
1492 uint64_t r;
1493
1494 #if ECB_STDFP
1495 memcpy (&r, &x, 8);
1496 #else
1497 /* slow emulation, works for anything but -0 */
1498 uint64_t m;
1499 int e;
1500
1501 if (x == 0e0 ) return 0x0000000000000000U;
1502 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1503 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1504 if (x != x ) return 0X7ff7ffffffffffffU;
1505
1506 m = frexp (x, &e) * 0x20000000000000U;
1507
1508 r = m & 0x8000000000000000;;
1509
1510 if (r)
1511 m = -m;
1512
1513 if (e <= -1022)
1514 {
1515 m &= 0x1fffffffffffffU;
1516 m >>= (-1021 - e);
1517 e = -1022;
1518 }
1519
1520 r |= ((uint64_t)(e + 1022)) << 52;
1521 r |= m & 0xfffffffffffffU;
1522 #endif
1523
1524 return r;
1525 }
1526
1527 /* converts an ieee double/binary64 to a double */
1528 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1529 ecb_function_ ecb_const double
1530 ecb_binary64_to_double (uint64_t x)
1531 {
1532 double r;
1533
1534 #if ECB_STDFP
1535 memcpy (&r, &x, 8);
1536 #else
1537 /* emulation, only works for normals and subnormals and +0 */
1538 int neg = x >> 63;
1539 int e = (x >> 52) & 0x7ffU;
1540
1541 x &= 0xfffffffffffffU;
1542
1543 if (e)
1544 x |= 0x10000000000000U;
1545 else
1546 e = 1;
1547
1548 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1549 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1550
1551 r = neg ? -r : r;
1552 #endif
1553
1554 return r;
1555 }
1556
1557 /* convert a float to ieee half/binary16 */
1558 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1559 ecb_function_ ecb_const uint16_t
1560 ecb_float_to_binary16 (float x)
1561 {
1562 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1563 }
1564
1565 /* convert an ieee half/binary16 to float */
1566 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1567 ecb_function_ ecb_const float
1568 ecb_binary16_to_float (uint16_t x)
1569 {
1570 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1571 }
1572
1573#endif
1574
1575#endif
1576
1577/* ECB.H END */
1578
1579#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1580/* if your architecture doesn't need memory fences, e.g. because it is
1581 * single-cpu/core, or if you use libev in a project that doesn't use libev
1582 * from multiple threads, then you can define ECB_NO_THREADS when compiling
1583 * libev, in which cases the memory fences become nops.
1584 * alternatively, you can remove this #error and link against libpthread,
1585 * which will then provide the memory fences.
1586 */
1587# error "memory fences not defined for your architecture, please report"
1588#endif
1589
1590#ifndef ECB_MEMORY_FENCE
1591# define ECB_MEMORY_FENCE do { } while (0)
1592# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1593# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1594#endif
1595
1596#define inline_size ecb_inline
1597
1598#if EV_FEATURE_CODE
1599# define inline_speed ecb_inline
1600#else
1601# define inline_speed ecb_noinline static
1602#endif
1603
1604/*****************************************************************************/
1605/* raw syscall wrappers */
1606
1607#if EV_NEED_SYSCALL
1608
1609#include <sys/syscall.h>
1610
1611/*
1612 * define some syscall wrappers for common architectures
1613 * this is mostly for nice looks during debugging, not performance.
1614 * our syscalls return < 0, not == -1, on error. which is good
1615 * enough for linux aio.
1616 * TODO: arm is also common nowadays, maybe even mips and x86
1617 * TODO: after implementing this, it suddenly looks like overkill, but its hard to remove...
1618 */
1619#if __GNUC__ && __linux && ECB_AMD64 && !defined __OPTIMIZE_SIZE__
1620 /* the costly errno access probably kills this for size optimisation */
1621
1622 #define ev_syscall(nr,narg,arg1,arg2,arg3,arg4,arg5,arg6) \
1623 ({ \
1624 long res; \
1625 register unsigned long r6 __asm__ ("r9" ); \
1626 register unsigned long r5 __asm__ ("r8" ); \
1627 register unsigned long r4 __asm__ ("r10"); \
1628 register unsigned long r3 __asm__ ("rdx"); \
1629 register unsigned long r2 __asm__ ("rsi"); \
1630 register unsigned long r1 __asm__ ("rdi"); \
1631 if (narg >= 6) r6 = (unsigned long)(arg6); \
1632 if (narg >= 5) r5 = (unsigned long)(arg5); \
1633 if (narg >= 4) r4 = (unsigned long)(arg4); \
1634 if (narg >= 3) r3 = (unsigned long)(arg3); \
1635 if (narg >= 2) r2 = (unsigned long)(arg2); \
1636 if (narg >= 1) r1 = (unsigned long)(arg1); \
1637 __asm__ __volatile__ ( \
1638 "syscall\n\t" \
1639 : "=a" (res) \
1640 : "0" (nr), "r" (r1), "r" (r2), "r" (r3), "r" (r4), "r" (r5) \
1641 : "cc", "r11", "cx", "memory"); \
1642 errno = -res; \
1643 res; \
1644 })
1645
1646#endif
1647
1648#ifdef ev_syscall
1649 #define ev_syscall0(nr) ev_syscall (nr, 0, 0, 0, 0, 0, 0, 0)
1650 #define ev_syscall1(nr,arg1) ev_syscall (nr, 1, arg1, 0, 0, 0, 0, 0)
1651 #define ev_syscall2(nr,arg1,arg2) ev_syscall (nr, 2, arg1, arg2, 0, 0, 0, 0)
1652 #define ev_syscall3(nr,arg1,arg2,arg3) ev_syscall (nr, 3, arg1, arg2, arg3, 0, 0, 0)
1653 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) ev_syscall (nr, 3, arg1, arg2, arg3, arg4, 0, 0)
1654 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) ev_syscall (nr, 5, arg1, arg2, arg3, arg4, arg5, 0)
1655 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) ev_syscall (nr, 6, arg1, arg2, arg3, arg4, arg5,arg6)
1656#else
1657 #define ev_syscall0(nr) syscall (nr)
1658 #define ev_syscall1(nr,arg1) syscall (nr, arg1)
1659 #define ev_syscall2(nr,arg1,arg2) syscall (nr, arg1, arg2)
1660 #define ev_syscall3(nr,arg1,arg2,arg3) syscall (nr, arg1, arg2, arg3)
1661 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) syscall (nr, arg1, arg2, arg3, arg4)
1662 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) syscall (nr, arg1, arg2, arg3, arg4, arg5)
1663 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) syscall (nr, arg1, arg2, arg3, arg4, arg5,arg6)
1664#endif
1665
1666#endif
1667
1668/*****************************************************************************/
1669
111#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1670#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1671
1672#if EV_MINPRI == EV_MAXPRI
1673# define ABSPRI(w) (((W)w), 0)
1674#else
112#define ABSPRI(w) ((w)->priority - EV_MINPRI) 1675# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1676#endif
113 1677
1678#define EMPTY /* required for microsofts broken pseudo-c compiler */
1679
114typedef struct ev_watcher *W; 1680typedef ev_watcher *W;
115typedef struct ev_watcher_list *WL; 1681typedef ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT; 1682typedef ev_watcher_time *WT;
117 1683
118static ev_tstamp now_floor, mn_now, diff; /* monotonic clock */ 1684#define ev_active(w) ((W)(w))->active
1685#define ev_at(w) ((WT)(w))->at
1686
1687#if EV_USE_REALTIME
1688/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1689/* giving it a reasonably high chance of working on typical architectures */
1690static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1691#endif
1692
1693#if EV_USE_MONOTONIC
1694static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1695#endif
1696
1697#ifndef EV_FD_TO_WIN32_HANDLE
1698# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1699#endif
1700#ifndef EV_WIN32_HANDLE_TO_FD
1701# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1702#endif
1703#ifndef EV_WIN32_CLOSE_FD
1704# define EV_WIN32_CLOSE_FD(fd) close (fd)
1705#endif
1706
1707#ifdef _WIN32
1708# include "ev_win32.c"
1709#endif
1710
1711/*****************************************************************************/
1712
1713#if EV_USE_LINUXAIO
1714# include <linux/aio_abi.h> /* probably only needed for aio_context_t */
1715#endif
1716
1717/* define a suitable floor function (only used by periodics atm) */
1718
1719#if EV_USE_FLOOR
1720# include <math.h>
1721# define ev_floor(v) floor (v)
1722#else
1723
1724#include <float.h>
1725
1726/* a floor() replacement function, should be independent of ev_tstamp type */
1727ecb_noinline
119static ev_tstamp rt_now; 1728static ev_tstamp
120static int method; 1729ev_floor (ev_tstamp v)
121 1730{
122static int have_monotonic; /* runtime */ 1731 /* the choice of shift factor is not terribly important */
123 1732#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
124static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 1733 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
125static void (*method_modify)(EV_P_ int fd, int oev, int nev); 1734#else
126static void (*method_poll)(EV_P_ ev_tstamp timeout); 1735 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
127
128static int activecnt; /* number of active events */
129
130#if EV_USE_SELECT
131static unsigned char *vec_ri, *vec_ro, *vec_wi, *vec_wo;
132static int vec_max;
133#endif 1736#endif
134 1737
135#if EV_USEV_POLL 1738 /* special treatment for negative arguments */
136static struct pollfd *polls; 1739 if (ecb_expect_false (v < 0.))
137static int pollmax, pollcnt; 1740 {
138static int *pollidxs; /* maps fds into structure indices */ 1741 ev_tstamp f = -ev_floor (-v);
139static int pollidxmax;
140#endif
141 1742
1743 return f - (f == v ? 0 : 1);
1744 }
1745
1746 /* argument too large for an unsigned long? then reduce it */
1747 if (ecb_expect_false (v >= shift))
1748 {
1749 ev_tstamp f;
1750
1751 if (v == v - 1.)
1752 return v; /* very large numbers are assumed to be integer */
1753
1754 f = shift * ev_floor (v * (1. / shift));
1755 return f + ev_floor (v - f);
1756 }
1757
1758 /* fits into an unsigned long */
1759 return (unsigned long)v;
1760}
1761
1762#endif
1763
1764/*****************************************************************************/
1765
1766#ifdef __linux
1767# include <sys/utsname.h>
1768#endif
1769
1770ecb_noinline ecb_cold
1771static unsigned int
1772ev_linux_version (void)
1773{
1774#ifdef __linux
1775 unsigned int v = 0;
1776 struct utsname buf;
1777 int i;
1778 char *p = buf.release;
1779
1780 if (uname (&buf))
1781 return 0;
1782
1783 for (i = 3+1; --i; )
1784 {
1785 unsigned int c = 0;
1786
1787 for (;;)
1788 {
1789 if (*p >= '0' && *p <= '9')
1790 c = c * 10 + *p++ - '0';
1791 else
1792 {
1793 p += *p == '.';
1794 break;
1795 }
1796 }
1797
1798 v = (v << 8) | c;
1799 }
1800
1801 return v;
1802#else
1803 return 0;
1804#endif
1805}
1806
1807/*****************************************************************************/
1808
1809#if EV_AVOID_STDIO
1810ecb_noinline ecb_cold
1811static void
1812ev_printerr (const char *msg)
1813{
1814 write (STDERR_FILENO, msg, strlen (msg));
1815}
1816#endif
1817
1818static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
1819
1820ecb_cold
1821void
1822ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
1823{
1824 syserr_cb = cb;
1825}
1826
1827ecb_noinline ecb_cold
1828static void
1829ev_syserr (const char *msg)
1830{
1831 if (!msg)
1832 msg = "(libev) system error";
1833
1834 if (syserr_cb)
1835 syserr_cb (msg);
1836 else
1837 {
1838#if EV_AVOID_STDIO
1839 ev_printerr (msg);
1840 ev_printerr (": ");
1841 ev_printerr (strerror (errno));
1842 ev_printerr ("\n");
1843#else
1844 perror (msg);
1845#endif
1846 abort ();
1847 }
1848}
1849
1850static void *
1851ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
1852{
1853 /* some systems, notably openbsd and darwin, fail to properly
1854 * implement realloc (x, 0) (as required by both ansi c-89 and
1855 * the single unix specification, so work around them here.
1856 * recently, also (at least) fedora and debian started breaking it,
1857 * despite documenting it otherwise.
1858 */
1859
1860 if (size)
1861 return realloc (ptr, size);
1862
1863 free (ptr);
1864 return 0;
1865}
1866
1867static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
1868
1869ecb_cold
1870void
1871ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
1872{
1873 alloc = cb;
1874}
1875
1876inline_speed void *
1877ev_realloc (void *ptr, long size)
1878{
1879 ptr = alloc (ptr, size);
1880
1881 if (!ptr && size)
1882 {
1883#if EV_AVOID_STDIO
1884 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1885#else
1886 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1887#endif
1888 abort ();
1889 }
1890
1891 return ptr;
1892}
1893
1894#define ev_malloc(size) ev_realloc (0, (size))
1895#define ev_free(ptr) ev_realloc ((ptr), 0)
1896
1897/*****************************************************************************/
1898
1899/* set in reify when reification needed */
1900#define EV_ANFD_REIFY 1
1901
1902/* file descriptor info structure */
1903typedef struct
1904{
1905 WL head;
1906 unsigned char events; /* the events watched for */
1907 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1908 unsigned char emask; /* some backends store the actual kernel mask in here */
1909 unsigned char eflags; /* flags field for use by backends */
142#if EV_USE_EPOLL 1910#if EV_USE_EPOLL
143static int epoll_fd = -1; 1911 unsigned int egen; /* generation counter to counter epoll bugs */
144
145static struct epoll_event *events;
146static int eventmax;
147#endif 1912#endif
148 1913#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
149#if EV_USE_KQUEUE 1914 SOCKET handle;
150static int kqueue_fd;
151static struct kevent *kqueue_changes;
152static int kqueue_changemax, kqueue_changecnt;
153static struct kevent *kqueue_events;
154static int kqueue_eventmax;
155#endif 1915#endif
1916#if EV_USE_IOCP
1917 OVERLAPPED or, ow;
1918#endif
1919} ANFD;
1920
1921/* stores the pending event set for a given watcher */
1922typedef struct
1923{
1924 W w;
1925 int events; /* the pending event set for the given watcher */
1926} ANPENDING;
1927
1928#if EV_USE_INOTIFY
1929/* hash table entry per inotify-id */
1930typedef struct
1931{
1932 WL head;
1933} ANFS;
1934#endif
1935
1936/* Heap Entry */
1937#if EV_HEAP_CACHE_AT
1938 /* a heap element */
1939 typedef struct {
1940 ev_tstamp at;
1941 WT w;
1942 } ANHE;
1943
1944 #define ANHE_w(he) (he).w /* access watcher, read-write */
1945 #define ANHE_at(he) (he).at /* access cached at, read-only */
1946 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1947#else
1948 /* a heap element */
1949 typedef WT ANHE;
1950
1951 #define ANHE_w(he) (he)
1952 #define ANHE_at(he) (he)->at
1953 #define ANHE_at_cache(he)
1954#endif
1955
1956#if EV_MULTIPLICITY
1957
1958 struct ev_loop
1959 {
1960 ev_tstamp ev_rt_now;
1961 #define ev_rt_now ((loop)->ev_rt_now)
1962 #define VAR(name,decl) decl;
1963 #include "ev_vars.h"
1964 #undef VAR
1965 };
1966 #include "ev_wrap.h"
1967
1968 static struct ev_loop default_loop_struct;
1969 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1970
1971#else
1972
1973 EV_API_DECL ev_tstamp ev_rt_now = EV_TS_CONST (0.); /* needs to be initialised to make it a definition despite extern */
1974 #define VAR(name,decl) static decl;
1975 #include "ev_vars.h"
1976 #undef VAR
1977
1978 static int ev_default_loop_ptr;
1979
1980#endif
1981
1982#if EV_FEATURE_API
1983# define EV_RELEASE_CB if (ecb_expect_false (release_cb)) release_cb (EV_A)
1984# define EV_ACQUIRE_CB if (ecb_expect_false (acquire_cb)) acquire_cb (EV_A)
1985# define EV_INVOKE_PENDING invoke_cb (EV_A)
1986#else
1987# define EV_RELEASE_CB (void)0
1988# define EV_ACQUIRE_CB (void)0
1989# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1990#endif
1991
1992#define EVBREAK_RECURSE 0x80
156 1993
157/*****************************************************************************/ 1994/*****************************************************************************/
158 1995
159inline ev_tstamp 1996#ifndef EV_HAVE_EV_TIME
160ev_time (void) 1997ev_tstamp
1998ev_time (void) EV_NOEXCEPT
161{ 1999{
162#if EV_USE_REALTIME 2000#if EV_USE_REALTIME
2001 if (ecb_expect_true (have_realtime))
2002 {
163 struct timespec ts; 2003 struct timespec ts;
164 clock_gettime (CLOCK_REALTIME, &ts); 2004 clock_gettime (CLOCK_REALTIME, &ts);
165 return ts.tv_sec + ts.tv_nsec * 1e-9; 2005 return EV_TS_GET (ts);
166#else 2006 }
2007#endif
2008
2009 {
167 struct timeval tv; 2010 struct timeval tv;
168 gettimeofday (&tv, 0); 2011 gettimeofday (&tv, 0);
169 return tv.tv_sec + tv.tv_usec * 1e-6; 2012 return EV_TV_GET (tv);
170#endif 2013 }
171} 2014}
2015#endif
172 2016
173inline ev_tstamp 2017inline_size ev_tstamp
174get_clock (void) 2018get_clock (void)
175{ 2019{
176#if EV_USE_MONOTONIC 2020#if EV_USE_MONOTONIC
177 if (expect_true (have_monotonic)) 2021 if (ecb_expect_true (have_monotonic))
178 { 2022 {
179 struct timespec ts; 2023 struct timespec ts;
180 clock_gettime (CLOCK_MONOTONIC, &ts); 2024 clock_gettime (CLOCK_MONOTONIC, &ts);
181 return ts.tv_sec + ts.tv_nsec * 1e-9; 2025 return EV_TS_GET (ts);
182 } 2026 }
183#endif 2027#endif
184 2028
185 return ev_time (); 2029 return ev_time ();
186} 2030}
187 2031
2032#if EV_MULTIPLICITY
188ev_tstamp 2033ev_tstamp
189ev_now (EV_P) 2034ev_now (EV_P) EV_NOEXCEPT
190{ 2035{
191 return rt_now; 2036 return ev_rt_now;
192} 2037}
2038#endif
193 2039
194#define array_roundsize(base,n) ((n) | 4 & ~3) 2040void
195 2041ev_sleep (ev_tstamp delay) EV_NOEXCEPT
196#define array_needsize(base,cur,cnt,init) \ 2042{
197 if (expect_false ((cnt) > cur)) \ 2043 if (delay > EV_TS_CONST (0.))
198 { \
199 int newcnt = cur; \
200 do \
201 { \
202 newcnt = array_roundsize (base, newcnt << 1); \
203 } \
204 while ((cnt) > newcnt); \
205 \
206 base = realloc (base, sizeof (*base) * (newcnt)); \
207 init (base + cur, newcnt - cur); \
208 cur = newcnt; \
209 } 2044 {
2045#if EV_USE_NANOSLEEP
2046 struct timespec ts;
2047
2048 EV_TS_SET (ts, delay);
2049 nanosleep (&ts, 0);
2050#elif defined _WIN32
2051 /* maybe this should round up, as ms is very low resolution */
2052 /* compared to select (µs) or nanosleep (ns) */
2053 Sleep ((unsigned long)(EV_TS_TO_MSEC (delay)));
2054#else
2055 struct timeval tv;
2056
2057 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
2058 /* something not guaranteed by newer posix versions, but guaranteed */
2059 /* by older ones */
2060 EV_TV_SET (tv, delay);
2061 select (0, 0, 0, 0, &tv);
2062#endif
2063 }
2064}
210 2065
211/*****************************************************************************/ 2066/*****************************************************************************/
212 2067
213typedef struct 2068#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
214{
215 struct ev_watcher_list *head;
216 unsigned char events;
217 unsigned char reify;
218} ANFD;
219 2069
220static ANFD *anfds; 2070/* find a suitable new size for the given array, */
221static int anfdmax; 2071/* hopefully by rounding to a nice-to-malloc size */
2072inline_size int
2073array_nextsize (int elem, int cur, int cnt)
2074{
2075 int ncur = cur + 1;
222 2076
2077 do
2078 ncur <<= 1;
2079 while (cnt > ncur);
2080
2081 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
2082 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
2083 {
2084 ncur *= elem;
2085 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
2086 ncur = ncur - sizeof (void *) * 4;
2087 ncur /= elem;
2088 }
2089
2090 return ncur;
2091}
2092
2093ecb_noinline ecb_cold
2094static void *
2095array_realloc (int elem, void *base, int *cur, int cnt)
2096{
2097 *cur = array_nextsize (elem, *cur, cnt);
2098 return ev_realloc (base, elem * *cur);
2099}
2100
2101#define array_needsize_noinit(base,offset,count)
2102
2103#define array_needsize_zerofill(base,offset,count) \
2104 memset ((void *)(base + offset), 0, sizeof (*(base)) * (count))
2105
2106#define array_needsize(type,base,cur,cnt,init) \
2107 if (ecb_expect_false ((cnt) > (cur))) \
2108 { \
2109 ecb_unused int ocur_ = (cur); \
2110 (base) = (type *)array_realloc \
2111 (sizeof (type), (base), &(cur), (cnt)); \
2112 init ((base), ocur_, ((cur) - ocur_)); \
2113 }
2114
2115#if 0
2116#define array_slim(type,stem) \
2117 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
2118 { \
2119 stem ## max = array_roundsize (stem ## cnt >> 1); \
2120 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
2121 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
2122 }
2123#endif
2124
2125#define array_free(stem, idx) \
2126 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
2127
2128/*****************************************************************************/
2129
2130/* dummy callback for pending events */
2131ecb_noinline
223static void 2132static void
224anfds_init (ANFD *base, int count) 2133pendingcb (EV_P_ ev_prepare *w, int revents)
225{ 2134{
226 while (count--) 2135}
227 {
228 base->head = 0;
229 base->events = EV_NONE;
230 base->reify = 0;
231 2136
232 ++base; 2137ecb_noinline
2138void
2139ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
2140{
2141 W w_ = (W)w;
2142 int pri = ABSPRI (w_);
2143
2144 if (ecb_expect_false (w_->pending))
2145 pendings [pri][w_->pending - 1].events |= revents;
2146 else
233 } 2147 {
234} 2148 w_->pending = ++pendingcnt [pri];
235 2149 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
236typedef struct 2150 pendings [pri][w_->pending - 1].w = w_;
237{
238 W w;
239 int events;
240} ANPENDING;
241
242static ANPENDING *pendings [NUMPRI];
243static int pendingmax [NUMPRI], pendingcnt [NUMPRI];
244
245static void
246event (EV_P_ W w, int events)
247{
248 if (w->pending)
249 {
250 pendings [ABSPRI (w)][w->pending - 1].events |= events; 2151 pendings [pri][w_->pending - 1].events = revents;
251 return;
252 } 2152 }
253 2153
254 w->pending = ++pendingcnt [ABSPRI (w)]; 2154 pendingpri = NUMPRI - 1;
255 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
256 pendings [ABSPRI (w)][w->pending - 1].w = w;
257 pendings [ABSPRI (w)][w->pending - 1].events = events;
258} 2155}
259 2156
260static void 2157inline_speed void
2158feed_reverse (EV_P_ W w)
2159{
2160 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2161 rfeeds [rfeedcnt++] = w;
2162}
2163
2164inline_size void
2165feed_reverse_done (EV_P_ int revents)
2166{
2167 do
2168 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2169 while (rfeedcnt);
2170}
2171
2172inline_speed void
261queue_events (EV_P_ W *events, int eventcnt, int type) 2173queue_events (EV_P_ W *events, int eventcnt, int type)
262{ 2174{
263 int i; 2175 int i;
264 2176
265 for (i = 0; i < eventcnt; ++i) 2177 for (i = 0; i < eventcnt; ++i)
266 event (EV_A_ events [i], type); 2178 ev_feed_event (EV_A_ events [i], type);
267} 2179}
268 2180
269static void 2181/*****************************************************************************/
2182
2183inline_speed void
270fd_event (EV_P_ int fd, int events) 2184fd_event_nocheck (EV_P_ int fd, int revents)
271{ 2185{
272 ANFD *anfd = anfds + fd; 2186 ANFD *anfd = anfds + fd;
273 struct ev_io *w; 2187 ev_io *w;
274 2188
275 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 2189 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
276 { 2190 {
277 int ev = w->events & events; 2191 int ev = w->events & revents;
278 2192
279 if (ev) 2193 if (ev)
280 event (EV_A_ (W)w, ev); 2194 ev_feed_event (EV_A_ (W)w, ev);
281 } 2195 }
282} 2196}
283 2197
284/*****************************************************************************/ 2198/* do not submit kernel events for fds that have reify set */
2199/* because that means they changed while we were polling for new events */
2200inline_speed void
2201fd_event (EV_P_ int fd, int revents)
2202{
2203 ANFD *anfd = anfds + fd;
285 2204
286static int *fdchanges; 2205 if (ecb_expect_true (!anfd->reify))
287static int fdchangemax, fdchangecnt; 2206 fd_event_nocheck (EV_A_ fd, revents);
2207}
288 2208
289static void 2209void
2210ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
2211{
2212 if (fd >= 0 && fd < anfdmax)
2213 fd_event_nocheck (EV_A_ fd, revents);
2214}
2215
2216/* make sure the external fd watch events are in-sync */
2217/* with the kernel/libev internal state */
2218inline_size void
290fd_reify (EV_P) 2219fd_reify (EV_P)
291{ 2220{
292 int i; 2221 int i;
293 2222
2223#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
294 for (i = 0; i < fdchangecnt; ++i) 2224 for (i = 0; i < fdchangecnt; ++i)
295 { 2225 {
296 int fd = fdchanges [i]; 2226 int fd = fdchanges [i];
297 ANFD *anfd = anfds + fd; 2227 ANFD *anfd = anfds + fd;
2228
2229 if (anfd->reify & EV__IOFDSET && anfd->head)
2230 {
2231 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2232
2233 if (handle != anfd->handle)
2234 {
2235 unsigned long arg;
2236
2237 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2238
2239 /* handle changed, but fd didn't - we need to do it in two steps */
2240 backend_modify (EV_A_ fd, anfd->events, 0);
2241 anfd->events = 0;
2242 anfd->handle = handle;
2243 }
2244 }
2245 }
2246#endif
2247
2248 for (i = 0; i < fdchangecnt; ++i)
2249 {
2250 int fd = fdchanges [i];
2251 ANFD *anfd = anfds + fd;
298 struct ev_io *w; 2252 ev_io *w;
299 2253
300 int events = 0; 2254 unsigned char o_events = anfd->events;
301 2255 unsigned char o_reify = anfd->reify;
302 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
303 events |= w->events;
304 2256
305 anfd->reify = 0; 2257 anfd->reify = 0;
306 2258
307 if (anfd->events != events) 2259 /*if (ecb_expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
308 { 2260 {
309 method_modify (EV_A_ fd, anfd->events, events);
310 anfd->events = events; 2261 anfd->events = 0;
2262
2263 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2264 anfd->events |= (unsigned char)w->events;
2265
2266 if (o_events != anfd->events)
2267 o_reify = EV__IOFDSET; /* actually |= */
311 } 2268 }
2269
2270 if (o_reify & EV__IOFDSET)
2271 backend_modify (EV_A_ fd, o_events, anfd->events);
312 } 2272 }
313 2273
314 fdchangecnt = 0; 2274 fdchangecnt = 0;
315} 2275}
316 2276
317static void 2277/* something about the given fd changed */
2278inline_size
2279void
318fd_change (EV_P_ int fd) 2280fd_change (EV_P_ int fd, int flags)
319{ 2281{
320 if (anfds [fd].reify || fdchangecnt < 0) 2282 unsigned char reify = anfds [fd].reify;
321 return;
322
323 anfds [fd].reify = 1; 2283 anfds [fd].reify |= flags;
324 2284
2285 if (ecb_expect_true (!reify))
2286 {
325 ++fdchangecnt; 2287 ++fdchangecnt;
326 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 2288 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
327 fdchanges [fdchangecnt - 1] = fd; 2289 fdchanges [fdchangecnt - 1] = fd;
2290 }
328} 2291}
329 2292
330static void 2293/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2294inline_speed ecb_cold void
331fd_kill (EV_P_ int fd) 2295fd_kill (EV_P_ int fd)
332{ 2296{
333 struct ev_io *w; 2297 ev_io *w;
334 2298
335 while ((w = (struct ev_io *)anfds [fd].head)) 2299 while ((w = (ev_io *)anfds [fd].head))
336 { 2300 {
337 ev_io_stop (EV_A_ w); 2301 ev_io_stop (EV_A_ w);
338 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2302 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
339 } 2303 }
2304}
2305
2306/* check whether the given fd is actually valid, for error recovery */
2307inline_size ecb_cold int
2308fd_valid (int fd)
2309{
2310#ifdef _WIN32
2311 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
2312#else
2313 return fcntl (fd, F_GETFD) != -1;
2314#endif
340} 2315}
341 2316
342/* called on EBADF to verify fds */ 2317/* called on EBADF to verify fds */
2318ecb_noinline ecb_cold
343static void 2319static void
344fd_ebadf (EV_P) 2320fd_ebadf (EV_P)
345{ 2321{
346 int fd; 2322 int fd;
347 2323
348 for (fd = 0; fd < anfdmax; ++fd) 2324 for (fd = 0; fd < anfdmax; ++fd)
349 if (anfds [fd].events) 2325 if (anfds [fd].events)
350 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 2326 if (!fd_valid (fd) && errno == EBADF)
351 fd_kill (EV_A_ fd); 2327 fd_kill (EV_A_ fd);
352} 2328}
353 2329
354/* called on ENOMEM in select/poll to kill some fds and retry */ 2330/* called on ENOMEM in select/poll to kill some fds and retry */
2331ecb_noinline ecb_cold
355static void 2332static void
356fd_enomem (EV_P) 2333fd_enomem (EV_P)
357{ 2334{
358 int fd = anfdmax; 2335 int fd;
359 2336
360 while (fd--) 2337 for (fd = anfdmax; fd--; )
361 if (anfds [fd].events) 2338 if (anfds [fd].events)
362 { 2339 {
363 close (fd);
364 fd_kill (EV_A_ fd); 2340 fd_kill (EV_A_ fd);
365 return; 2341 break;
366 } 2342 }
367} 2343}
368 2344
2345/* usually called after fork if backend needs to re-arm all fds from scratch */
2346ecb_noinline
2347static void
2348fd_rearm_all (EV_P)
2349{
2350 int fd;
2351
2352 for (fd = 0; fd < anfdmax; ++fd)
2353 if (anfds [fd].events)
2354 {
2355 anfds [fd].events = 0;
2356 anfds [fd].emask = 0;
2357 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
2358 }
2359}
2360
2361/* used to prepare libev internal fd's */
2362/* this is not fork-safe */
2363inline_speed void
2364fd_intern (int fd)
2365{
2366#ifdef _WIN32
2367 unsigned long arg = 1;
2368 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2369#else
2370 fcntl (fd, F_SETFD, FD_CLOEXEC);
2371 fcntl (fd, F_SETFL, O_NONBLOCK);
2372#endif
2373}
2374
369/*****************************************************************************/ 2375/*****************************************************************************/
370 2376
371static struct ev_timer **timers; 2377/*
372static int timermax, timercnt; 2378 * the heap functions want a real array index. array index 0 is guaranteed to not
2379 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2380 * the branching factor of the d-tree.
2381 */
373 2382
374static struct ev_periodic **periodics; 2383/*
375static int periodicmax, periodiccnt; 2384 * at the moment we allow libev the luxury of two heaps,
2385 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2386 * which is more cache-efficient.
2387 * the difference is about 5% with 50000+ watchers.
2388 */
2389#if EV_USE_4HEAP
376 2390
2391#define DHEAP 4
2392#define HEAP0 (DHEAP - 1) /* index of first element in heap */
2393#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2394#define UPHEAP_DONE(p,k) ((p) == (k))
2395
2396/* away from the root */
2397inline_speed void
2398downheap (ANHE *heap, int N, int k)
2399{
2400 ANHE he = heap [k];
2401 ANHE *E = heap + N + HEAP0;
2402
2403 for (;;)
2404 {
2405 ev_tstamp minat;
2406 ANHE *minpos;
2407 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2408
2409 /* find minimum child */
2410 if (ecb_expect_true (pos + DHEAP - 1 < E))
2411 {
2412 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2413 if ( minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2414 if ( minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2415 if ( minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2416 }
2417 else if (pos < E)
2418 {
2419 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2420 if (pos + 1 < E && minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2421 if (pos + 2 < E && minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2422 if (pos + 3 < E && minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2423 }
2424 else
2425 break;
2426
2427 if (ANHE_at (he) <= minat)
2428 break;
2429
2430 heap [k] = *minpos;
2431 ev_active (ANHE_w (*minpos)) = k;
2432
2433 k = minpos - heap;
2434 }
2435
2436 heap [k] = he;
2437 ev_active (ANHE_w (he)) = k;
2438}
2439
2440#else /* not 4HEAP */
2441
2442#define HEAP0 1
2443#define HPARENT(k) ((k) >> 1)
2444#define UPHEAP_DONE(p,k) (!(p))
2445
2446/* away from the root */
2447inline_speed void
2448downheap (ANHE *heap, int N, int k)
2449{
2450 ANHE he = heap [k];
2451
2452 for (;;)
2453 {
2454 int c = k << 1;
2455
2456 if (c >= N + HEAP0)
2457 break;
2458
2459 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2460 ? 1 : 0;
2461
2462 if (ANHE_at (he) <= ANHE_at (heap [c]))
2463 break;
2464
2465 heap [k] = heap [c];
2466 ev_active (ANHE_w (heap [k])) = k;
2467
2468 k = c;
2469 }
2470
2471 heap [k] = he;
2472 ev_active (ANHE_w (he)) = k;
2473}
2474#endif
2475
2476/* towards the root */
2477inline_speed void
2478upheap (ANHE *heap, int k)
2479{
2480 ANHE he = heap [k];
2481
2482 for (;;)
2483 {
2484 int p = HPARENT (k);
2485
2486 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2487 break;
2488
2489 heap [k] = heap [p];
2490 ev_active (ANHE_w (heap [k])) = k;
2491 k = p;
2492 }
2493
2494 heap [k] = he;
2495 ev_active (ANHE_w (he)) = k;
2496}
2497
2498/* move an element suitably so it is in a correct place */
2499inline_size void
2500adjustheap (ANHE *heap, int N, int k)
2501{
2502 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2503 upheap (heap, k);
2504 else
2505 downheap (heap, N, k);
2506}
2507
2508/* rebuild the heap: this function is used only once and executed rarely */
2509inline_size void
2510reheap (ANHE *heap, int N)
2511{
2512 int i;
2513
2514 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2515 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2516 for (i = 0; i < N; ++i)
2517 upheap (heap, i + HEAP0);
2518}
2519
2520/*****************************************************************************/
2521
2522/* associate signal watchers to a signal signal */
2523typedef struct
2524{
2525 EV_ATOMIC_T pending;
2526#if EV_MULTIPLICITY
2527 EV_P;
2528#endif
2529 WL head;
2530} ANSIG;
2531
2532static ANSIG signals [EV_NSIG - 1];
2533
2534/*****************************************************************************/
2535
2536#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2537
2538ecb_noinline ecb_cold
377static void 2539static void
378upheap (WT *timers, int k) 2540evpipe_init (EV_P)
379{ 2541{
380 WT w = timers [k]; 2542 if (!ev_is_active (&pipe_w))
381
382 while (k && timers [k >> 1]->at > w->at)
383 {
384 timers [k] = timers [k >> 1];
385 timers [k]->active = k + 1;
386 k >>= 1;
387 } 2543 {
2544 int fds [2];
388 2545
389 timers [k] = w; 2546# if EV_USE_EVENTFD
390 timers [k]->active = k + 1; 2547 fds [0] = -1;
2548 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2549 if (fds [1] < 0 && errno == EINVAL)
2550 fds [1] = eventfd (0, 0);
391 2551
392} 2552 if (fds [1] < 0)
2553# endif
2554 {
2555 while (pipe (fds))
2556 ev_syserr ("(libev) error creating signal/async pipe");
393 2557
2558 fd_intern (fds [0]);
2559 }
2560
2561 evpipe [0] = fds [0];
2562
2563 if (evpipe [1] < 0)
2564 evpipe [1] = fds [1]; /* first call, set write fd */
2565 else
2566 {
2567 /* on subsequent calls, do not change evpipe [1] */
2568 /* so that evpipe_write can always rely on its value. */
2569 /* this branch does not do anything sensible on windows, */
2570 /* so must not be executed on windows */
2571
2572 dup2 (fds [1], evpipe [1]);
2573 close (fds [1]);
2574 }
2575
2576 fd_intern (evpipe [1]);
2577
2578 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2579 ev_io_start (EV_A_ &pipe_w);
2580 ev_unref (EV_A); /* watcher should not keep loop alive */
2581 }
2582}
2583
2584inline_speed void
2585evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2586{
2587 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2588
2589 if (ecb_expect_true (*flag))
2590 return;
2591
2592 *flag = 1;
2593 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2594
2595 pipe_write_skipped = 1;
2596
2597 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2598
2599 if (pipe_write_wanted)
2600 {
2601 int old_errno;
2602
2603 pipe_write_skipped = 0;
2604 ECB_MEMORY_FENCE_RELEASE;
2605
2606 old_errno = errno; /* save errno because write will clobber it */
2607
2608#if EV_USE_EVENTFD
2609 if (evpipe [0] < 0)
2610 {
2611 uint64_t counter = 1;
2612 write (evpipe [1], &counter, sizeof (uint64_t));
2613 }
2614 else
2615#endif
2616 {
2617#ifdef _WIN32
2618 WSABUF buf;
2619 DWORD sent;
2620 buf.buf = (char *)&buf;
2621 buf.len = 1;
2622 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2623#else
2624 write (evpipe [1], &(evpipe [1]), 1);
2625#endif
2626 }
2627
2628 errno = old_errno;
2629 }
2630}
2631
2632/* called whenever the libev signal pipe */
2633/* got some events (signal, async) */
394static void 2634static void
395downheap (WT *timers, int N, int k) 2635pipecb (EV_P_ ev_io *iow, int revents)
396{ 2636{
397 WT w = timers [k]; 2637 int i;
398 2638
399 while (k < (N >> 1)) 2639 if (revents & EV_READ)
2640 {
2641#if EV_USE_EVENTFD
2642 if (evpipe [0] < 0)
2643 {
2644 uint64_t counter;
2645 read (evpipe [1], &counter, sizeof (uint64_t));
2646 }
2647 else
2648#endif
2649 {
2650 char dummy[4];
2651#ifdef _WIN32
2652 WSABUF buf;
2653 DWORD recvd;
2654 DWORD flags = 0;
2655 buf.buf = dummy;
2656 buf.len = sizeof (dummy);
2657 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2658#else
2659 read (evpipe [0], &dummy, sizeof (dummy));
2660#endif
2661 }
400 { 2662 }
401 int j = k << 1;
402 2663
403 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 2664 pipe_write_skipped = 0;
404 ++j;
405 2665
406 if (w->at <= timers [j]->at) 2666 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2667
2668#if EV_SIGNAL_ENABLE
2669 if (sig_pending)
2670 {
2671 sig_pending = 0;
2672
2673 ECB_MEMORY_FENCE;
2674
2675 for (i = EV_NSIG - 1; i--; )
2676 if (ecb_expect_false (signals [i].pending))
2677 ev_feed_signal_event (EV_A_ i + 1);
2678 }
2679#endif
2680
2681#if EV_ASYNC_ENABLE
2682 if (async_pending)
2683 {
2684 async_pending = 0;
2685
2686 ECB_MEMORY_FENCE;
2687
2688 for (i = asynccnt; i--; )
2689 if (asyncs [i]->sent)
2690 {
2691 asyncs [i]->sent = 0;
2692 ECB_MEMORY_FENCE_RELEASE;
2693 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2694 }
2695 }
2696#endif
2697}
2698
2699/*****************************************************************************/
2700
2701void
2702ev_feed_signal (int signum) EV_NOEXCEPT
2703{
2704#if EV_MULTIPLICITY
2705 EV_P;
2706 ECB_MEMORY_FENCE_ACQUIRE;
2707 EV_A = signals [signum - 1].loop;
2708
2709 if (!EV_A)
2710 return;
2711#endif
2712
2713 signals [signum - 1].pending = 1;
2714 evpipe_write (EV_A_ &sig_pending);
2715}
2716
2717static void
2718ev_sighandler (int signum)
2719{
2720#ifdef _WIN32
2721 signal (signum, ev_sighandler);
2722#endif
2723
2724 ev_feed_signal (signum);
2725}
2726
2727ecb_noinline
2728void
2729ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2730{
2731 WL w;
2732
2733 if (ecb_expect_false (signum <= 0 || signum >= EV_NSIG))
2734 return;
2735
2736 --signum;
2737
2738#if EV_MULTIPLICITY
2739 /* it is permissible to try to feed a signal to the wrong loop */
2740 /* or, likely more useful, feeding a signal nobody is waiting for */
2741
2742 if (ecb_expect_false (signals [signum].loop != EV_A))
2743 return;
2744#endif
2745
2746 signals [signum].pending = 0;
2747 ECB_MEMORY_FENCE_RELEASE;
2748
2749 for (w = signals [signum].head; w; w = w->next)
2750 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2751}
2752
2753#if EV_USE_SIGNALFD
2754static void
2755sigfdcb (EV_P_ ev_io *iow, int revents)
2756{
2757 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2758
2759 for (;;)
2760 {
2761 ssize_t res = read (sigfd, si, sizeof (si));
2762
2763 /* not ISO-C, as res might be -1, but works with SuS */
2764 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2765 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2766
2767 if (res < (ssize_t)sizeof (si))
407 break; 2768 break;
408
409 timers [k] = timers [j];
410 timers [k]->active = k + 1;
411 k = j;
412 } 2769 }
413
414 timers [k] = w;
415 timers [k]->active = k + 1;
416} 2770}
2771#endif
2772
2773#endif
417 2774
418/*****************************************************************************/ 2775/*****************************************************************************/
419 2776
420typedef struct 2777#if EV_CHILD_ENABLE
421{ 2778static WL childs [EV_PID_HASHSIZE];
422 struct ev_watcher_list *head;
423 sig_atomic_t volatile gotsig;
424} ANSIG;
425 2779
426static ANSIG *signals;
427static int signalmax;
428
429static int sigpipe [2];
430static sig_atomic_t volatile gotsig;
431static struct ev_io sigev;
432
433static void
434signals_init (ANSIG *base, int count)
435{
436 while (count--)
437 {
438 base->head = 0;
439 base->gotsig = 0;
440
441 ++base;
442 }
443}
444
445static void
446sighandler (int signum)
447{
448 signals [signum - 1].gotsig = 1;
449
450 if (!gotsig)
451 {
452 int old_errno = errno;
453 gotsig = 1;
454 write (sigpipe [1], &signum, 1);
455 errno = old_errno;
456 }
457}
458
459static void
460sigcb (EV_P_ struct ev_io *iow, int revents)
461{
462 struct ev_watcher_list *w;
463 int signum;
464
465 read (sigpipe [0], &revents, 1);
466 gotsig = 0;
467
468 for (signum = signalmax; signum--; )
469 if (signals [signum].gotsig)
470 {
471 signals [signum].gotsig = 0;
472
473 for (w = signals [signum].head; w; w = w->next)
474 event (EV_A_ (W)w, EV_SIGNAL);
475 }
476}
477
478static void
479siginit (EV_P)
480{
481#ifndef WIN32
482 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
483 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
484
485 /* rather than sort out wether we really need nb, set it */
486 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
487 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
488#endif
489
490 ev_io_set (&sigev, sigpipe [0], EV_READ);
491 ev_io_start (&sigev);
492}
493
494/*****************************************************************************/
495
496static struct ev_idle **idles;
497static int idlemax, idlecnt;
498
499static struct ev_prepare **prepares;
500static int preparemax, preparecnt;
501
502static struct ev_check **checks;
503static int checkmax, checkcnt;
504
505/*****************************************************************************/
506
507static struct ev_child *childs [PID_HASHSIZE];
508static struct ev_signal childev; 2780static ev_signal childev;
509 2781
510#ifndef WIN32 2782#ifndef WIFCONTINUED
2783# define WIFCONTINUED(status) 0
2784#endif
2785
2786/* handle a single child status event */
2787inline_speed void
2788child_reap (EV_P_ int chain, int pid, int status)
2789{
2790 ev_child *w;
2791 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2792
2793 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2794 {
2795 if ((w->pid == pid || !w->pid)
2796 && (!traced || (w->flags & 1)))
2797 {
2798 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2799 w->rpid = pid;
2800 w->rstatus = status;
2801 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2802 }
2803 }
2804}
511 2805
512#ifndef WCONTINUED 2806#ifndef WCONTINUED
513# define WCONTINUED 0 2807# define WCONTINUED 0
514#endif 2808#endif
515 2809
2810/* called on sigchld etc., calls waitpid */
516static void 2811static void
517child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
518{
519 struct ev_child *w;
520
521 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
522 if (w->pid == pid || !w->pid)
523 {
524 w->priority = sw->priority; /* need to do it *now* */
525 w->rpid = pid;
526 w->rstatus = status;
527 event (EV_A_ (W)w, EV_CHILD);
528 }
529}
530
531static void
532childcb (EV_P_ struct ev_signal *sw, int revents) 2812childcb (EV_P_ ev_signal *sw, int revents)
533{ 2813{
534 int pid, status; 2814 int pid, status;
535 2815
2816 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
536 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 2817 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
537 { 2818 if (!WCONTINUED
2819 || errno != EINVAL
2820 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2821 return;
2822
538 /* make sure we are called again until all childs have been reaped */ 2823 /* make sure we are called again until all children have been reaped */
2824 /* we need to do it this way so that the callback gets called before we continue */
539 event (EV_A_ (W)sw, EV_SIGNAL); 2825 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
540 2826
541 child_reap (EV_A_ sw, pid, pid, status); 2827 child_reap (EV_A_ pid, pid, status);
2828 if ((EV_PID_HASHSIZE) > 1)
542 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 2829 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
543 }
544} 2830}
545 2831
546#endif 2832#endif
547 2833
548/*****************************************************************************/ 2834/*****************************************************************************/
549 2835
2836#if EV_USE_IOCP
2837# include "ev_iocp.c"
2838#endif
2839#if EV_USE_PORT
2840# include "ev_port.c"
2841#endif
550#if EV_USE_KQUEUE 2842#if EV_USE_KQUEUE
551# include "ev_kqueue.c" 2843# include "ev_kqueue.c"
552#endif 2844#endif
553#if EV_USE_EPOLL 2845#if EV_USE_EPOLL
554# include "ev_epoll.c" 2846# include "ev_epoll.c"
555#endif 2847#endif
2848#if EV_USE_LINUXAIO
2849# include "ev_linuxaio.c"
2850#endif
2851#if EV_USE_IOURING
2852# include "ev_iouring.c"
2853#endif
556#if EV_USEV_POLL 2854#if EV_USE_POLL
557# include "ev_poll.c" 2855# include "ev_poll.c"
558#endif 2856#endif
559#if EV_USE_SELECT 2857#if EV_USE_SELECT
560# include "ev_select.c" 2858# include "ev_select.c"
561#endif 2859#endif
562 2860
563int 2861ecb_cold int
564ev_version_major (void) 2862ev_version_major (void) EV_NOEXCEPT
565{ 2863{
566 return EV_VERSION_MAJOR; 2864 return EV_VERSION_MAJOR;
567} 2865}
568 2866
569int 2867ecb_cold int
570ev_version_minor (void) 2868ev_version_minor (void) EV_NOEXCEPT
571{ 2869{
572 return EV_VERSION_MINOR; 2870 return EV_VERSION_MINOR;
573} 2871}
574 2872
575/* return true if we are running with elevated privileges and should ignore env variables */ 2873/* return true if we are running with elevated privileges and should ignore env variables */
576static int 2874inline_size ecb_cold int
577enable_secure (void) 2875enable_secure (void)
578{ 2876{
579#ifdef WIN32 2877#ifdef _WIN32
580 return 0; 2878 return 0;
581#else 2879#else
582 return getuid () != geteuid () 2880 return getuid () != geteuid ()
583 || getgid () != getegid (); 2881 || getgid () != getegid ();
584#endif 2882#endif
585} 2883}
586 2884
2885ecb_cold
2886unsigned int
2887ev_supported_backends (void) EV_NOEXCEPT
2888{
2889 unsigned int flags = 0;
2890
2891 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2892 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
2893 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2894 if (EV_USE_LINUXAIO) flags |= EVBACKEND_LINUXAIO;
2895 if (EV_USE_IOURING ) flags |= EVBACKEND_IOURING;
2896 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2897 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
2898
2899 return flags;
2900}
2901
2902ecb_cold
2903unsigned int
2904ev_recommended_backends (void) EV_NOEXCEPT
2905{
2906 unsigned int flags = ev_supported_backends ();
2907
2908#ifndef __NetBSD__
2909 /* kqueue is borked on everything but netbsd apparently */
2910 /* it usually doesn't work correctly on anything but sockets and pipes */
2911 flags &= ~EVBACKEND_KQUEUE;
2912#endif
2913#ifdef __APPLE__
2914 /* only select works correctly on that "unix-certified" platform */
2915 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2916 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2917#endif
2918#ifdef __FreeBSD__
2919 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2920#endif
2921
2922 /* TODO: linuxaio is very experimental */
2923#if !EV_RECOMMEND_LINUXAIO
2924 flags &= ~EVBACKEND_LINUXAIO;
2925#endif
2926 /* TODO: linuxaio is super experimental */
2927#if !EV_RECOMMEND_IOURING
2928 flags &= ~EVBACKEND_IOURING;
2929#endif
2930
2931 return flags;
2932}
2933
2934ecb_cold
2935unsigned int
2936ev_embeddable_backends (void) EV_NOEXCEPT
2937{
2938 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2939
2940 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2941 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2942 flags &= ~EVBACKEND_EPOLL;
2943
2944 /* EVBACKEND_LINUXAIO is theoretically embeddable, but suffers from a performance overhead */
2945
2946 /* EVBACKEND_IOURING is practically embeddable, but the current implementation is not
2947 * because our backend_fd is the epoll fd we need as fallback.
2948 * if the kernel ever is fixed, this might change...
2949 */
2950
2951 return flags;
2952}
2953
2954unsigned int
2955ev_backend (EV_P) EV_NOEXCEPT
2956{
2957 return backend;
2958}
2959
2960#if EV_FEATURE_API
2961unsigned int
2962ev_iteration (EV_P) EV_NOEXCEPT
2963{
2964 return loop_count;
2965}
2966
2967unsigned int
2968ev_depth (EV_P) EV_NOEXCEPT
2969{
2970 return loop_depth;
2971}
2972
2973void
2974ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2975{
2976 io_blocktime = interval;
2977}
2978
2979void
2980ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2981{
2982 timeout_blocktime = interval;
2983}
2984
2985void
2986ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
2987{
2988 userdata = data;
2989}
2990
2991void *
2992ev_userdata (EV_P) EV_NOEXCEPT
2993{
2994 return userdata;
2995}
2996
2997void
2998ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
2999{
3000 invoke_cb = invoke_pending_cb;
3001}
3002
3003void
3004ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
3005{
3006 release_cb = release;
3007 acquire_cb = acquire;
3008}
3009#endif
3010
3011/* initialise a loop structure, must be zero-initialised */
3012ecb_noinline ecb_cold
3013static void
3014loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
3015{
3016 if (!backend)
3017 {
3018 origflags = flags;
3019
3020#if EV_USE_REALTIME
3021 if (!have_realtime)
3022 {
3023 struct timespec ts;
3024
3025 if (!clock_gettime (CLOCK_REALTIME, &ts))
3026 have_realtime = 1;
3027 }
3028#endif
3029
3030#if EV_USE_MONOTONIC
3031 if (!have_monotonic)
3032 {
3033 struct timespec ts;
3034
3035 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
3036 have_monotonic = 1;
3037 }
3038#endif
3039
3040 /* pid check not overridable via env */
3041#ifndef _WIN32
3042 if (flags & EVFLAG_FORKCHECK)
3043 curpid = getpid ();
3044#endif
3045
3046 if (!(flags & EVFLAG_NOENV)
3047 && !enable_secure ()
3048 && getenv ("LIBEV_FLAGS"))
3049 flags = atoi (getenv ("LIBEV_FLAGS"));
3050
3051 ev_rt_now = ev_time ();
3052 mn_now = get_clock ();
3053 now_floor = mn_now;
3054 rtmn_diff = ev_rt_now - mn_now;
3055#if EV_FEATURE_API
3056 invoke_cb = ev_invoke_pending;
3057#endif
3058
3059 io_blocktime = 0.;
3060 timeout_blocktime = 0.;
3061 backend = 0;
3062 backend_fd = -1;
3063 sig_pending = 0;
3064#if EV_ASYNC_ENABLE
3065 async_pending = 0;
3066#endif
3067 pipe_write_skipped = 0;
3068 pipe_write_wanted = 0;
3069 evpipe [0] = -1;
3070 evpipe [1] = -1;
3071#if EV_USE_INOTIFY
3072 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
3073#endif
3074#if EV_USE_SIGNALFD
3075 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
3076#endif
3077
3078 if (!(flags & EVBACKEND_MASK))
3079 flags |= ev_recommended_backends ();
3080
3081#if EV_USE_IOCP
3082 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
3083#endif
3084#if EV_USE_PORT
3085 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
3086#endif
3087#if EV_USE_KQUEUE
3088 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
3089#endif
3090#if EV_USE_IOURING
3091 if (!backend && (flags & EVBACKEND_IOURING )) backend = iouring_init (EV_A_ flags);
3092#endif
3093#if EV_USE_LINUXAIO
3094 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
3095#endif
3096#if EV_USE_EPOLL
3097 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
3098#endif
3099#if EV_USE_POLL
3100 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
3101#endif
3102#if EV_USE_SELECT
3103 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
3104#endif
3105
3106 ev_prepare_init (&pending_w, pendingcb);
3107
3108#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3109 ev_init (&pipe_w, pipecb);
3110 ev_set_priority (&pipe_w, EV_MAXPRI);
3111#endif
3112 }
3113}
3114
3115/* free up a loop structure */
3116ecb_cold
3117void
3118ev_loop_destroy (EV_P)
3119{
3120 int i;
3121
3122#if EV_MULTIPLICITY
3123 /* mimic free (0) */
3124 if (!EV_A)
3125 return;
3126#endif
3127
3128#if EV_CLEANUP_ENABLE
3129 /* queue cleanup watchers (and execute them) */
3130 if (ecb_expect_false (cleanupcnt))
3131 {
3132 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3133 EV_INVOKE_PENDING;
3134 }
3135#endif
3136
3137#if EV_CHILD_ENABLE
3138 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3139 {
3140 ev_ref (EV_A); /* child watcher */
3141 ev_signal_stop (EV_A_ &childev);
3142 }
3143#endif
3144
3145 if (ev_is_active (&pipe_w))
3146 {
3147 /*ev_ref (EV_A);*/
3148 /*ev_io_stop (EV_A_ &pipe_w);*/
3149
3150 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3151 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3152 }
3153
3154#if EV_USE_SIGNALFD
3155 if (ev_is_active (&sigfd_w))
3156 close (sigfd);
3157#endif
3158
3159#if EV_USE_INOTIFY
3160 if (fs_fd >= 0)
3161 close (fs_fd);
3162#endif
3163
3164 if (backend_fd >= 0)
3165 close (backend_fd);
3166
3167#if EV_USE_IOCP
3168 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3169#endif
3170#if EV_USE_PORT
3171 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
3172#endif
3173#if EV_USE_KQUEUE
3174 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3175#endif
3176#if EV_USE_IOURING
3177 if (backend == EVBACKEND_IOURING ) iouring_destroy (EV_A);
3178#endif
3179#if EV_USE_LINUXAIO
3180 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
3181#endif
3182#if EV_USE_EPOLL
3183 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
3184#endif
3185#if EV_USE_POLL
3186 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
3187#endif
3188#if EV_USE_SELECT
3189 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
3190#endif
3191
3192 for (i = NUMPRI; i--; )
3193 {
3194 array_free (pending, [i]);
3195#if EV_IDLE_ENABLE
3196 array_free (idle, [i]);
3197#endif
3198 }
3199
3200 ev_free (anfds); anfds = 0; anfdmax = 0;
3201
3202 /* have to use the microsoft-never-gets-it-right macro */
3203 array_free (rfeed, EMPTY);
3204 array_free (fdchange, EMPTY);
3205 array_free (timer, EMPTY);
3206#if EV_PERIODIC_ENABLE
3207 array_free (periodic, EMPTY);
3208#endif
3209#if EV_FORK_ENABLE
3210 array_free (fork, EMPTY);
3211#endif
3212#if EV_CLEANUP_ENABLE
3213 array_free (cleanup, EMPTY);
3214#endif
3215 array_free (prepare, EMPTY);
3216 array_free (check, EMPTY);
3217#if EV_ASYNC_ENABLE
3218 array_free (async, EMPTY);
3219#endif
3220
3221 backend = 0;
3222
3223#if EV_MULTIPLICITY
3224 if (ev_is_default_loop (EV_A))
3225#endif
3226 ev_default_loop_ptr = 0;
3227#if EV_MULTIPLICITY
3228 else
3229 ev_free (EV_A);
3230#endif
3231}
3232
3233#if EV_USE_INOTIFY
3234inline_size void infy_fork (EV_P);
3235#endif
3236
3237inline_size void
3238loop_fork (EV_P)
3239{
3240#if EV_USE_PORT
3241 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
3242#endif
3243#if EV_USE_KQUEUE
3244 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3245#endif
3246#if EV_USE_IOURING
3247 if (backend == EVBACKEND_IOURING ) iouring_fork (EV_A);
3248#endif
3249#if EV_USE_LINUXAIO
3250 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
3251#endif
3252#if EV_USE_EPOLL
3253 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
3254#endif
3255#if EV_USE_INOTIFY
3256 infy_fork (EV_A);
3257#endif
3258
3259#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3260 if (ev_is_active (&pipe_w) && postfork != 2)
3261 {
3262 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3263
3264 ev_ref (EV_A);
3265 ev_io_stop (EV_A_ &pipe_w);
3266
3267 if (evpipe [0] >= 0)
3268 EV_WIN32_CLOSE_FD (evpipe [0]);
3269
3270 evpipe_init (EV_A);
3271 /* iterate over everything, in case we missed something before */
3272 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3273 }
3274#endif
3275
3276 postfork = 0;
3277}
3278
3279#if EV_MULTIPLICITY
3280
3281ecb_cold
3282struct ev_loop *
3283ev_loop_new (unsigned int flags) EV_NOEXCEPT
3284{
3285 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3286
3287 memset (EV_A, 0, sizeof (struct ev_loop));
3288 loop_init (EV_A_ flags);
3289
3290 if (ev_backend (EV_A))
3291 return EV_A;
3292
3293 ev_free (EV_A);
3294 return 0;
3295}
3296
3297#endif /* multiplicity */
3298
3299#if EV_VERIFY
3300ecb_noinline ecb_cold
3301static void
3302verify_watcher (EV_P_ W w)
3303{
3304 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
3305
3306 if (w->pending)
3307 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3308}
3309
3310ecb_noinline ecb_cold
3311static void
3312verify_heap (EV_P_ ANHE *heap, int N)
3313{
3314 int i;
3315
3316 for (i = HEAP0; i < N + HEAP0; ++i)
3317 {
3318 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3319 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3320 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3321
3322 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3323 }
3324}
3325
3326ecb_noinline ecb_cold
3327static void
3328array_verify (EV_P_ W *ws, int cnt)
3329{
3330 while (cnt--)
3331 {
3332 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3333 verify_watcher (EV_A_ ws [cnt]);
3334 }
3335}
3336#endif
3337
3338#if EV_FEATURE_API
3339void ecb_cold
3340ev_verify (EV_P) EV_NOEXCEPT
3341{
3342#if EV_VERIFY
3343 int i;
3344 WL w, w2;
3345
3346 assert (activecnt >= -1);
3347
3348 assert (fdchangemax >= fdchangecnt);
3349 for (i = 0; i < fdchangecnt; ++i)
3350 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3351
3352 assert (anfdmax >= 0);
3353 for (i = 0; i < anfdmax; ++i)
3354 {
3355 int j = 0;
3356
3357 for (w = w2 = anfds [i].head; w; w = w->next)
3358 {
3359 verify_watcher (EV_A_ (W)w);
3360
3361 if (j++ & 1)
3362 {
3363 assert (("libev: io watcher list contains a loop", w != w2));
3364 w2 = w2->next;
3365 }
3366
3367 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3368 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3369 }
3370 }
3371
3372 assert (timermax >= timercnt);
3373 verify_heap (EV_A_ timers, timercnt);
3374
3375#if EV_PERIODIC_ENABLE
3376 assert (periodicmax >= periodiccnt);
3377 verify_heap (EV_A_ periodics, periodiccnt);
3378#endif
3379
3380 for (i = NUMPRI; i--; )
3381 {
3382 assert (pendingmax [i] >= pendingcnt [i]);
3383#if EV_IDLE_ENABLE
3384 assert (idleall >= 0);
3385 assert (idlemax [i] >= idlecnt [i]);
3386 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3387#endif
3388 }
3389
3390#if EV_FORK_ENABLE
3391 assert (forkmax >= forkcnt);
3392 array_verify (EV_A_ (W *)forks, forkcnt);
3393#endif
3394
3395#if EV_CLEANUP_ENABLE
3396 assert (cleanupmax >= cleanupcnt);
3397 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3398#endif
3399
3400#if EV_ASYNC_ENABLE
3401 assert (asyncmax >= asynccnt);
3402 array_verify (EV_A_ (W *)asyncs, asynccnt);
3403#endif
3404
3405#if EV_PREPARE_ENABLE
3406 assert (preparemax >= preparecnt);
3407 array_verify (EV_A_ (W *)prepares, preparecnt);
3408#endif
3409
3410#if EV_CHECK_ENABLE
3411 assert (checkmax >= checkcnt);
3412 array_verify (EV_A_ (W *)checks, checkcnt);
3413#endif
3414
3415# if 0
3416#if EV_CHILD_ENABLE
3417 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3418 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3419#endif
3420# endif
3421#endif
3422}
3423#endif
3424
3425#if EV_MULTIPLICITY
3426ecb_cold
3427struct ev_loop *
3428#else
587int 3429int
588ev_method (EV_P) 3430#endif
3431ev_default_loop (unsigned int flags) EV_NOEXCEPT
589{ 3432{
590 return method; 3433 if (!ev_default_loop_ptr)
591}
592
593int
594ev_init (EV_P_ int methods)
595{
596 if (!method)
597 {
598#if EV_USE_MONOTONIC
599 { 3434 {
600 struct timespec ts; 3435#if EV_MULTIPLICITY
601 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 3436 EV_P = ev_default_loop_ptr = &default_loop_struct;
602 have_monotonic = 1; 3437#else
603 } 3438 ev_default_loop_ptr = 1;
604#endif 3439#endif
605 3440
606 rt_now = ev_time (); 3441 loop_init (EV_A_ flags);
607 mn_now = get_clock ();
608 now_floor = mn_now;
609 diff = rt_now - mn_now;
610 3442
611 if (pipe (sigpipe)) 3443 if (ev_backend (EV_A))
612 return 0;
613
614 if (methods == EVMETHOD_AUTO)
615 if (!enable_secure () && getenv ("LIBmethodS"))
616 methods = atoi (getenv ("LIBmethodS"));
617 else
618 methods = EVMETHOD_ANY;
619
620 method = 0;
621#if EV_USE_KQUEUE
622 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
623#endif
624#if EV_USE_EPOLL
625 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
626#endif
627#if EV_USEV_POLL
628 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
629#endif
630#if EV_USE_SELECT
631 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
632#endif
633
634 if (method)
635 { 3444 {
636 ev_watcher_init (&sigev, sigcb); 3445#if EV_CHILD_ENABLE
637 ev_set_priority (&sigev, EV_MAXPRI);
638 siginit (EV_A);
639
640#ifndef WIN32
641 ev_signal_init (&childev, childcb, SIGCHLD); 3446 ev_signal_init (&childev, childcb, SIGCHLD);
642 ev_set_priority (&childev, EV_MAXPRI); 3447 ev_set_priority (&childev, EV_MAXPRI);
643 ev_signal_start (EV_A_ &childev); 3448 ev_signal_start (EV_A_ &childev);
3449 ev_unref (EV_A); /* child watcher should not keep loop alive */
644#endif 3450#endif
645 } 3451 }
3452 else
3453 ev_default_loop_ptr = 0;
646 } 3454 }
647 3455
648 return method; 3456 return ev_default_loop_ptr;
3457}
3458
3459void
3460ev_loop_fork (EV_P) EV_NOEXCEPT
3461{
3462 postfork = 1;
649} 3463}
650 3464
651/*****************************************************************************/ 3465/*****************************************************************************/
652 3466
653void 3467void
654ev_fork_prepare (void) 3468ev_invoke (EV_P_ void *w, int revents)
655{ 3469{
656 /* nop */ 3470 EV_CB_INVOKE ((W)w, revents);
657} 3471}
658 3472
659void 3473unsigned int
660ev_fork_parent (void) 3474ev_pending_count (EV_P) EV_NOEXCEPT
661{ 3475{
662 /* nop */ 3476 int pri;
663} 3477 unsigned int count = 0;
664 3478
3479 for (pri = NUMPRI; pri--; )
3480 count += pendingcnt [pri];
3481
3482 return count;
3483}
3484
3485ecb_noinline
665void 3486void
666ev_fork_child (void) 3487ev_invoke_pending (EV_P)
667{ 3488{
668#if EV_USE_EPOLL 3489 pendingpri = NUMPRI;
669 if (method == EVMETHOD_EPOLL) 3490
670 epoll_postfork_child (); 3491 do
3492 {
3493 --pendingpri;
3494
3495 /* pendingpri possibly gets modified in the inner loop */
3496 while (pendingcnt [pendingpri])
3497 {
3498 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3499
3500 p->w->pending = 0;
3501 EV_CB_INVOKE (p->w, p->events);
3502 EV_FREQUENT_CHECK;
3503 }
3504 }
3505 while (pendingpri);
3506}
3507
3508#if EV_IDLE_ENABLE
3509/* make idle watchers pending. this handles the "call-idle */
3510/* only when higher priorities are idle" logic */
3511inline_size void
3512idle_reify (EV_P)
3513{
3514 if (ecb_expect_false (idleall))
3515 {
3516 int pri;
3517
3518 for (pri = NUMPRI; pri--; )
3519 {
3520 if (pendingcnt [pri])
3521 break;
3522
3523 if (idlecnt [pri])
3524 {
3525 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3526 break;
3527 }
3528 }
3529 }
3530}
3531#endif
3532
3533/* make timers pending */
3534inline_size void
3535timers_reify (EV_P)
3536{
3537 EV_FREQUENT_CHECK;
3538
3539 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3540 {
3541 do
3542 {
3543 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3544
3545 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3546
3547 /* first reschedule or stop timer */
3548 if (w->repeat)
3549 {
3550 ev_at (w) += w->repeat;
3551 if (ev_at (w) < mn_now)
3552 ev_at (w) = mn_now;
3553
3554 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > EV_TS_CONST (0.)));
3555
3556 ANHE_at_cache (timers [HEAP0]);
3557 downheap (timers, timercnt, HEAP0);
3558 }
3559 else
3560 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3561
3562 EV_FREQUENT_CHECK;
3563 feed_reverse (EV_A_ (W)w);
3564 }
3565 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3566
3567 feed_reverse_done (EV_A_ EV_TIMER);
3568 }
3569}
3570
3571#if EV_PERIODIC_ENABLE
3572
3573ecb_noinline
3574static void
3575periodic_recalc (EV_P_ ev_periodic *w)
3576{
3577 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3578 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3579
3580 /* the above almost always errs on the low side */
3581 while (at <= ev_rt_now)
3582 {
3583 ev_tstamp nat = at + w->interval;
3584
3585 /* when resolution fails us, we use ev_rt_now */
3586 if (ecb_expect_false (nat == at))
3587 {
3588 at = ev_rt_now;
3589 break;
3590 }
3591
3592 at = nat;
3593 }
3594
3595 ev_at (w) = at;
3596}
3597
3598/* make periodics pending */
3599inline_size void
3600periodics_reify (EV_P)
3601{
3602 EV_FREQUENT_CHECK;
3603
3604 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3605 {
3606 do
3607 {
3608 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3609
3610 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3611
3612 /* first reschedule or stop timer */
3613 if (w->reschedule_cb)
3614 {
3615 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3616
3617 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3618
3619 ANHE_at_cache (periodics [HEAP0]);
3620 downheap (periodics, periodiccnt, HEAP0);
3621 }
3622 else if (w->interval)
3623 {
3624 periodic_recalc (EV_A_ w);
3625 ANHE_at_cache (periodics [HEAP0]);
3626 downheap (periodics, periodiccnt, HEAP0);
3627 }
3628 else
3629 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3630
3631 EV_FREQUENT_CHECK;
3632 feed_reverse (EV_A_ (W)w);
3633 }
3634 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3635
3636 feed_reverse_done (EV_A_ EV_PERIODIC);
3637 }
3638}
3639
3640/* simply recalculate all periodics */
3641/* TODO: maybe ensure that at least one event happens when jumping forward? */
3642ecb_noinline ecb_cold
3643static void
3644periodics_reschedule (EV_P)
3645{
3646 int i;
3647
3648 /* adjust periodics after time jump */
3649 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3650 {
3651 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3652
3653 if (w->reschedule_cb)
3654 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3655 else if (w->interval)
3656 periodic_recalc (EV_A_ w);
3657
3658 ANHE_at_cache (periodics [i]);
3659 }
3660
3661 reheap (periodics, periodiccnt);
3662}
3663#endif
3664
3665/* adjust all timers by a given offset */
3666ecb_noinline ecb_cold
3667static void
3668timers_reschedule (EV_P_ ev_tstamp adjust)
3669{
3670 int i;
3671
3672 for (i = 0; i < timercnt; ++i)
3673 {
3674 ANHE *he = timers + i + HEAP0;
3675 ANHE_w (*he)->at += adjust;
3676 ANHE_at_cache (*he);
3677 }
3678}
3679
3680/* fetch new monotonic and realtime times from the kernel */
3681/* also detect if there was a timejump, and act accordingly */
3682inline_speed void
3683time_update (EV_P_ ev_tstamp max_block)
3684{
3685#if EV_USE_MONOTONIC
3686 if (ecb_expect_true (have_monotonic))
3687 {
3688 int i;
3689 ev_tstamp odiff = rtmn_diff;
3690
3691 mn_now = get_clock ();
3692
3693 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3694 /* interpolate in the meantime */
3695 if (ecb_expect_true (mn_now - now_floor < EV_TS_CONST (MIN_TIMEJUMP * .5)))
3696 {
3697 ev_rt_now = rtmn_diff + mn_now;
3698 return;
3699 }
3700
3701 now_floor = mn_now;
3702 ev_rt_now = ev_time ();
3703
3704 /* loop a few times, before making important decisions.
3705 * on the choice of "4": one iteration isn't enough,
3706 * in case we get preempted during the calls to
3707 * ev_time and get_clock. a second call is almost guaranteed
3708 * to succeed in that case, though. and looping a few more times
3709 * doesn't hurt either as we only do this on time-jumps or
3710 * in the unlikely event of having been preempted here.
3711 */
3712 for (i = 4; --i; )
3713 {
3714 ev_tstamp diff;
3715 rtmn_diff = ev_rt_now - mn_now;
3716
3717 diff = odiff - rtmn_diff;
3718
3719 if (ecb_expect_true ((diff < EV_TS_CONST (0.) ? -diff : diff) < EV_TS_CONST (MIN_TIMEJUMP)))
3720 return; /* all is well */
3721
3722 ev_rt_now = ev_time ();
3723 mn_now = get_clock ();
3724 now_floor = mn_now;
3725 }
3726
3727 /* no timer adjustment, as the monotonic clock doesn't jump */
3728 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3729# if EV_PERIODIC_ENABLE
3730 periodics_reschedule (EV_A);
671#endif 3731# endif
3732 }
3733 else
3734#endif
3735 {
3736 ev_rt_now = ev_time ();
672 3737
673 ev_io_stop (&sigev); 3738 if (ecb_expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + EV_TS_CONST (MIN_TIMEJUMP)))
674 close (sigpipe [0]); 3739 {
675 close (sigpipe [1]); 3740 /* adjust timers. this is easy, as the offset is the same for all of them */
676 pipe (sigpipe); 3741 timers_reschedule (EV_A_ ev_rt_now - mn_now);
677 siginit (); 3742#if EV_PERIODIC_ENABLE
3743 periodics_reschedule (EV_A);
3744#endif
3745 }
3746
3747 mn_now = ev_rt_now;
3748 }
3749}
3750
3751int
3752ev_run (EV_P_ int flags)
3753{
3754#if EV_FEATURE_API
3755 ++loop_depth;
3756#endif
3757
3758 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3759
3760 loop_done = EVBREAK_CANCEL;
3761
3762 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3763
3764 do
3765 {
3766#if EV_VERIFY >= 2
3767 ev_verify (EV_A);
3768#endif
3769
3770#ifndef _WIN32
3771 if (ecb_expect_false (curpid)) /* penalise the forking check even more */
3772 if (ecb_expect_false (getpid () != curpid))
3773 {
3774 curpid = getpid ();
3775 postfork = 1;
3776 }
3777#endif
3778
3779#if EV_FORK_ENABLE
3780 /* we might have forked, so queue fork handlers */
3781 if (ecb_expect_false (postfork))
3782 if (forkcnt)
3783 {
3784 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3785 EV_INVOKE_PENDING;
3786 }
3787#endif
3788
3789#if EV_PREPARE_ENABLE
3790 /* queue prepare watchers (and execute them) */
3791 if (ecb_expect_false (preparecnt))
3792 {
3793 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3794 EV_INVOKE_PENDING;
3795 }
3796#endif
3797
3798 if (ecb_expect_false (loop_done))
3799 break;
3800
3801 /* we might have forked, so reify kernel state if necessary */
3802 if (ecb_expect_false (postfork))
3803 loop_fork (EV_A);
3804
3805 /* update fd-related kernel structures */
3806 fd_reify (EV_A);
3807
3808 /* calculate blocking time */
3809 {
3810 ev_tstamp waittime = 0.;
3811 ev_tstamp sleeptime = 0.;
3812
3813 /* remember old timestamp for io_blocktime calculation */
3814 ev_tstamp prev_mn_now = mn_now;
3815
3816 /* update time to cancel out callback processing overhead */
3817 time_update (EV_A_ EV_TS_CONST (EV_TSTAMP_HUGE));
3818
3819 /* from now on, we want a pipe-wake-up */
3820 pipe_write_wanted = 1;
3821
3822 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3823
3824 if (ecb_expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3825 {
3826 waittime = EV_TS_CONST (MAX_BLOCKTIME);
3827
3828 if (timercnt)
3829 {
3830 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3831 if (waittime > to) waittime = to;
3832 }
3833
3834#if EV_PERIODIC_ENABLE
3835 if (periodiccnt)
3836 {
3837 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3838 if (waittime > to) waittime = to;
3839 }
3840#endif
3841
3842 /* don't let timeouts decrease the waittime below timeout_blocktime */
3843 if (ecb_expect_false (waittime < timeout_blocktime))
3844 waittime = timeout_blocktime;
3845
3846 /* at this point, we NEED to wait, so we have to ensure */
3847 /* to pass a minimum nonzero value to the backend */
3848 if (ecb_expect_false (waittime < backend_mintime))
3849 waittime = backend_mintime;
3850
3851 /* extra check because io_blocktime is commonly 0 */
3852 if (ecb_expect_false (io_blocktime))
3853 {
3854 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3855
3856 if (sleeptime > waittime - backend_mintime)
3857 sleeptime = waittime - backend_mintime;
3858
3859 if (ecb_expect_true (sleeptime > EV_TS_CONST (0.)))
3860 {
3861 ev_sleep (sleeptime);
3862 waittime -= sleeptime;
3863 }
3864 }
3865 }
3866
3867#if EV_FEATURE_API
3868 ++loop_count;
3869#endif
3870 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3871 backend_poll (EV_A_ waittime);
3872 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3873
3874 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3875
3876 ECB_MEMORY_FENCE_ACQUIRE;
3877 if (pipe_write_skipped)
3878 {
3879 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3880 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3881 }
3882
3883 /* update ev_rt_now, do magic */
3884 time_update (EV_A_ waittime + sleeptime);
3885 }
3886
3887 /* queue pending timers and reschedule them */
3888 timers_reify (EV_A); /* relative timers called last */
3889#if EV_PERIODIC_ENABLE
3890 periodics_reify (EV_A); /* absolute timers called first */
3891#endif
3892
3893#if EV_IDLE_ENABLE
3894 /* queue idle watchers unless other events are pending */
3895 idle_reify (EV_A);
3896#endif
3897
3898#if EV_CHECK_ENABLE
3899 /* queue check watchers, to be executed first */
3900 if (ecb_expect_false (checkcnt))
3901 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3902#endif
3903
3904 EV_INVOKE_PENDING;
3905 }
3906 while (ecb_expect_true (
3907 activecnt
3908 && !loop_done
3909 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3910 ));
3911
3912 if (loop_done == EVBREAK_ONE)
3913 loop_done = EVBREAK_CANCEL;
3914
3915#if EV_FEATURE_API
3916 --loop_depth;
3917#endif
3918
3919 return activecnt;
3920}
3921
3922void
3923ev_break (EV_P_ int how) EV_NOEXCEPT
3924{
3925 loop_done = how;
3926}
3927
3928void
3929ev_ref (EV_P) EV_NOEXCEPT
3930{
3931 ++activecnt;
3932}
3933
3934void
3935ev_unref (EV_P) EV_NOEXCEPT
3936{
3937 --activecnt;
3938}
3939
3940void
3941ev_now_update (EV_P) EV_NOEXCEPT
3942{
3943 time_update (EV_A_ EV_TSTAMP_HUGE);
3944}
3945
3946void
3947ev_suspend (EV_P) EV_NOEXCEPT
3948{
3949 ev_now_update (EV_A);
3950}
3951
3952void
3953ev_resume (EV_P) EV_NOEXCEPT
3954{
3955 ev_tstamp mn_prev = mn_now;
3956
3957 ev_now_update (EV_A);
3958 timers_reschedule (EV_A_ mn_now - mn_prev);
3959#if EV_PERIODIC_ENABLE
3960 /* TODO: really do this? */
3961 periodics_reschedule (EV_A);
3962#endif
678} 3963}
679 3964
680/*****************************************************************************/ 3965/*****************************************************************************/
3966/* singly-linked list management, used when the expected list length is short */
681 3967
682static void 3968inline_size void
3969wlist_add (WL *head, WL elem)
3970{
3971 elem->next = *head;
3972 *head = elem;
3973}
3974
3975inline_size void
3976wlist_del (WL *head, WL elem)
3977{
3978 while (*head)
3979 {
3980 if (ecb_expect_true (*head == elem))
3981 {
3982 *head = elem->next;
3983 break;
3984 }
3985
3986 head = &(*head)->next;
3987 }
3988}
3989
3990/* internal, faster, version of ev_clear_pending */
3991inline_speed void
683call_pending (EV_P) 3992clear_pending (EV_P_ W w)
684{ 3993{
685 int pri; 3994 if (w->pending)
3995 {
3996 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3997 w->pending = 0;
3998 }
3999}
686 4000
687 for (pri = NUMPRI; pri--; ) 4001int
688 while (pendingcnt [pri]) 4002ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
4003{
4004 W w_ = (W)w;
4005 int pending = w_->pending;
4006
4007 if (ecb_expect_true (pending))
4008 {
4009 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
4010 p->w = (W)&pending_w;
4011 w_->pending = 0;
4012 return p->events;
4013 }
4014 else
4015 return 0;
4016}
4017
4018inline_size void
4019pri_adjust (EV_P_ W w)
4020{
4021 int pri = ev_priority (w);
4022 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
4023 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
4024 ev_set_priority (w, pri);
4025}
4026
4027inline_speed void
4028ev_start (EV_P_ W w, int active)
4029{
4030 pri_adjust (EV_A_ w);
4031 w->active = active;
4032 ev_ref (EV_A);
4033}
4034
4035inline_size void
4036ev_stop (EV_P_ W w)
4037{
4038 ev_unref (EV_A);
4039 w->active = 0;
4040}
4041
4042/*****************************************************************************/
4043
4044ecb_noinline
4045void
4046ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
4047{
4048 int fd = w->fd;
4049
4050 if (ecb_expect_false (ev_is_active (w)))
4051 return;
4052
4053 assert (("libev: ev_io_start called with negative fd", fd >= 0));
4054 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
4055
4056#if EV_VERIFY >= 2
4057 assert (("libev: ev_io_start called on watcher with invalid fd", fd_valid (fd)));
4058#endif
4059 EV_FREQUENT_CHECK;
4060
4061 ev_start (EV_A_ (W)w, 1);
4062 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
4063 wlist_add (&anfds[fd].head, (WL)w);
4064
4065 /* common bug, apparently */
4066 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
4067
4068 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
4069 w->events &= ~EV__IOFDSET;
4070
4071 EV_FREQUENT_CHECK;
4072}
4073
4074ecb_noinline
4075void
4076ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
4077{
4078 clear_pending (EV_A_ (W)w);
4079 if (ecb_expect_false (!ev_is_active (w)))
4080 return;
4081
4082 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
4083
4084#if EV_VERIFY >= 2
4085 assert (("libev: ev_io_stop called on watcher with invalid fd", fd_valid (w->fd)));
4086#endif
4087 EV_FREQUENT_CHECK;
4088
4089 wlist_del (&anfds[w->fd].head, (WL)w);
4090 ev_stop (EV_A_ (W)w);
4091
4092 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
4093
4094 EV_FREQUENT_CHECK;
4095}
4096
4097ecb_noinline
4098void
4099ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
4100{
4101 if (ecb_expect_false (ev_is_active (w)))
4102 return;
4103
4104 ev_at (w) += mn_now;
4105
4106 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
4107
4108 EV_FREQUENT_CHECK;
4109
4110 ++timercnt;
4111 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
4112 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
4113 ANHE_w (timers [ev_active (w)]) = (WT)w;
4114 ANHE_at_cache (timers [ev_active (w)]);
4115 upheap (timers, ev_active (w));
4116
4117 EV_FREQUENT_CHECK;
4118
4119 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
4120}
4121
4122ecb_noinline
4123void
4124ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
4125{
4126 clear_pending (EV_A_ (W)w);
4127 if (ecb_expect_false (!ev_is_active (w)))
4128 return;
4129
4130 EV_FREQUENT_CHECK;
4131
4132 {
4133 int active = ev_active (w);
4134
4135 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
4136
4137 --timercnt;
4138
4139 if (ecb_expect_true (active < timercnt + HEAP0))
689 { 4140 {
690 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 4141 timers [active] = timers [timercnt + HEAP0];
691 4142 adjustheap (timers, timercnt, active);
692 if (p->w)
693 {
694 p->w->pending = 0;
695 p->w->cb (EV_A_ p->w, p->events);
696 }
697 } 4143 }
698} 4144 }
699 4145
700static void 4146 ev_at (w) -= mn_now;
701timers_reify (EV_P)
702{
703 while (timercnt && timers [0]->at <= mn_now)
704 {
705 struct ev_timer *w = timers [0];
706 4147
707 /* first reschedule or stop timer */ 4148 ev_stop (EV_A_ (W)w);
4149
4150 EV_FREQUENT_CHECK;
4151}
4152
4153ecb_noinline
4154void
4155ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
4156{
4157 EV_FREQUENT_CHECK;
4158
4159 clear_pending (EV_A_ (W)w);
4160
4161 if (ev_is_active (w))
4162 {
708 if (w->repeat) 4163 if (w->repeat)
709 { 4164 {
710 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
711 w->at = mn_now + w->repeat; 4165 ev_at (w) = mn_now + w->repeat;
712 downheap ((WT *)timers, timercnt, 0); 4166 ANHE_at_cache (timers [ev_active (w)]);
713 }
714 else
715 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
716
717 event ((W)w, EV_TIMEOUT);
718 }
719}
720
721static void
722periodics_reify (EV_P)
723{
724 while (periodiccnt && periodics [0]->at <= rt_now)
725 {
726 struct ev_periodic *w = periodics [0];
727
728 /* first reschedule or stop timer */
729 if (w->interval)
730 {
731 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
732 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
733 downheap ((WT *)periodics, periodiccnt, 0);
734 }
735 else
736 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
737
738 event (EV_A_ (W)w, EV_PERIODIC);
739 }
740}
741
742static void
743periodics_reschedule (EV_P_ ev_tstamp diff)
744{
745 int i;
746
747 /* adjust periodics after time jump */
748 for (i = 0; i < periodiccnt; ++i)
749 {
750 struct ev_periodic *w = periodics [i];
751
752 if (w->interval)
753 {
754 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
755
756 if (fabs (diff) >= 1e-4)
757 {
758 ev_periodic_stop (EV_A_ w);
759 ev_periodic_start (EV_A_ w);
760
761 i = 0; /* restart loop, inefficient, but time jumps should be rare */
762 }
763 }
764 }
765}
766
767inline int
768time_update_monotonic (EV_P)
769{
770 mn_now = get_clock ();
771
772 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
773 {
774 rt_now = mn_now + diff;
775 return 0;
776 }
777 else
778 {
779 now_floor = mn_now;
780 rt_now = ev_time ();
781 return 1;
782 }
783}
784
785static void
786time_update (EV_P)
787{
788 int i;
789
790#if EV_USE_MONOTONIC
791 if (expect_true (have_monotonic))
792 {
793 if (time_update_monotonic (EV_A))
794 {
795 ev_tstamp odiff = diff;
796
797 for (i = 4; --i; ) /* loop a few times, before making important decisions */
798 {
799 diff = rt_now - mn_now;
800
801 if (fabs (odiff - diff) < MIN_TIMEJUMP)
802 return; /* all is well */
803
804 rt_now = ev_time ();
805 mn_now = get_clock ();
806 now_floor = mn_now;
807 }
808
809 periodics_reschedule (EV_A_ diff - odiff);
810 /* no timer adjustment, as the monotonic clock doesn't jump */
811 }
812 }
813 else
814#endif
815 {
816 rt_now = ev_time ();
817
818 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
819 {
820 periodics_reschedule (EV_A_ rt_now - mn_now);
821
822 /* adjust timers. this is easy, as the offset is the same for all */
823 for (i = 0; i < timercnt; ++i)
824 timers [i]->at += diff;
825 }
826
827 mn_now = rt_now;
828 }
829}
830
831void
832ev_ref (EV_P)
833{
834 ++activecnt;
835}
836
837void
838ev_unref (EV_P)
839{
840 --activecnt;
841}
842
843static int loop_done;
844
845void
846ev_loop (EV_P_ int flags)
847{
848 double block;
849 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
850
851 do
852 {
853 /* queue check watchers (and execute them) */
854 if (expect_false (preparecnt))
855 {
856 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
857 call_pending (EV_A);
858 }
859
860 /* update fd-related kernel structures */
861 fd_reify (EV_A);
862
863 /* calculate blocking time */
864
865 /* we only need this for !monotonic clockor timers, but as we basically
866 always have timers, we just calculate it always */
867#if EV_USE_MONOTONIC
868 if (expect_true (have_monotonic))
869 time_update_monotonic (EV_A);
870 else
871#endif
872 {
873 rt_now = ev_time ();
874 mn_now = rt_now;
875 }
876
877 if (flags & EVLOOP_NONBLOCK || idlecnt)
878 block = 0.;
879 else
880 {
881 block = MAX_BLOCKTIME;
882
883 if (timercnt)
884 {
885 ev_tstamp to = timers [0]->at - mn_now + method_fudge;
886 if (block > to) block = to;
887 }
888
889 if (periodiccnt)
890 {
891 ev_tstamp to = periodics [0]->at - rt_now + method_fudge;
892 if (block > to) block = to;
893 }
894
895 if (block < 0.) block = 0.;
896 }
897
898 method_poll (EV_A_ block);
899
900 /* update rt_now, do magic */
901 time_update (EV_A);
902
903 /* queue pending timers and reschedule them */
904 timers_reify (EV_A); /* relative timers called last */
905 periodics_reify (EV_A); /* absolute timers called first */
906
907 /* queue idle watchers unless io or timers are pending */
908 if (!pendingcnt)
909 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
910
911 /* queue check watchers, to be executed first */
912 if (checkcnt)
913 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
914
915 call_pending (EV_A);
916 printf ("activecnt %d\n", activecnt);//D
917 }
918 while (activecnt && !loop_done);
919
920 if (loop_done != 2)
921 loop_done = 0;
922}
923
924void
925ev_unloop (EV_P_ int how)
926{
927 loop_done = how;
928}
929
930/*****************************************************************************/
931
932inline void
933wlist_add (WL *head, WL elem)
934{
935 elem->next = *head;
936 *head = elem;
937}
938
939inline void
940wlist_del (WL *head, WL elem)
941{
942 while (*head)
943 {
944 if (*head == elem)
945 {
946 *head = elem->next;
947 return;
948 }
949
950 head = &(*head)->next;
951 }
952}
953
954inline void
955ev_clear_pending (EV_P_ W w)
956{
957 if (w->pending)
958 {
959 pendings [ABSPRI (w)][w->pending - 1].w = 0;
960 w->pending = 0;
961 }
962}
963
964inline void
965ev_start (EV_P_ W w, int active)
966{
967 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
968 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
969
970 w->active = active;
971 ev_ref (EV_A);
972}
973
974inline void
975ev_stop (EV_P_ W w)
976{
977 ev_unref (EV_A);
978 w->active = 0;
979}
980
981/*****************************************************************************/
982
983void
984ev_io_start (EV_P_ struct ev_io *w)
985{
986 int fd = w->fd;
987
988 if (ev_is_active (w))
989 return;
990
991 assert (("ev_io_start called with negative fd", fd >= 0));
992
993 ev_start (EV_A_ (W)w, 1);
994 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
995 wlist_add ((WL *)&anfds[fd].head, (WL)w);
996
997 fd_change (EV_A_ fd);
998}
999
1000void
1001ev_io_stop (EV_P_ struct ev_io *w)
1002{
1003 ev_clear_pending (EV_A_ (W)w);
1004 if (!ev_is_active (w))
1005 return;
1006
1007 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1008 ev_stop (EV_A_ (W)w);
1009
1010 fd_change (EV_A_ w->fd);
1011}
1012
1013void
1014ev_timer_start (EV_P_ struct ev_timer *w)
1015{
1016 if (ev_is_active (w))
1017 return;
1018
1019 w->at += mn_now;
1020
1021 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1022
1023 ev_start (EV_A_ (W)w, ++timercnt);
1024 array_needsize (timers, timermax, timercnt, );
1025 timers [timercnt - 1] = w;
1026 upheap ((WT *)timers, timercnt - 1);
1027}
1028
1029void
1030ev_timer_stop (EV_P_ struct ev_timer *w)
1031{
1032 ev_clear_pending (EV_A_ (W)w);
1033 if (!ev_is_active (w))
1034 return;
1035
1036 if (w->active < timercnt--)
1037 {
1038 timers [w->active - 1] = timers [timercnt];
1039 downheap ((WT *)timers, timercnt, w->active - 1);
1040 }
1041
1042 w->at = w->repeat;
1043
1044 ev_stop (EV_A_ (W)w);
1045}
1046
1047void
1048ev_timer_again (EV_P_ struct ev_timer *w)
1049{
1050 if (ev_is_active (w))
1051 {
1052 if (w->repeat)
1053 {
1054 w->at = mn_now + w->repeat;
1055 downheap ((WT *)timers, timercnt, w->active - 1); 4167 adjustheap (timers, timercnt, ev_active (w));
1056 } 4168 }
1057 else 4169 else
1058 ev_timer_stop (EV_A_ w); 4170 ev_timer_stop (EV_A_ w);
1059 } 4171 }
1060 else if (w->repeat) 4172 else if (w->repeat)
4173 {
4174 ev_at (w) = w->repeat;
1061 ev_timer_start (EV_A_ w); 4175 ev_timer_start (EV_A_ w);
1062} 4176 }
1063 4177
4178 EV_FREQUENT_CHECK;
4179}
4180
4181ev_tstamp
4182ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4183{
4184 return ev_at (w) - (ev_is_active (w) ? mn_now : EV_TS_CONST (0.));
4185}
4186
4187#if EV_PERIODIC_ENABLE
4188ecb_noinline
1064void 4189void
1065ev_periodic_start (EV_P_ struct ev_periodic *w) 4190ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
1066{ 4191{
1067 if (ev_is_active (w)) 4192 if (ecb_expect_false (ev_is_active (w)))
1068 return; 4193 return;
1069 4194
4195 if (w->reschedule_cb)
4196 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
4197 else if (w->interval)
4198 {
1070 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 4199 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
4200 periodic_recalc (EV_A_ w);
4201 }
4202 else
4203 ev_at (w) = w->offset;
1071 4204
1072 /* this formula differs from the one in periodic_reify because we do not always round up */ 4205 EV_FREQUENT_CHECK;
1073 if (w->interval)
1074 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval;
1075 4206
4207 ++periodiccnt;
1076 ev_start (EV_A_ (W)w, ++periodiccnt); 4208 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1077 array_needsize (periodics, periodicmax, periodiccnt, ); 4209 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
1078 periodics [periodiccnt - 1] = w; 4210 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1079 upheap ((WT *)periodics, periodiccnt - 1); 4211 ANHE_at_cache (periodics [ev_active (w)]);
1080} 4212 upheap (periodics, ev_active (w));
1081 4213
4214 EV_FREQUENT_CHECK;
4215
4216 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
4217}
4218
4219ecb_noinline
1082void 4220void
1083ev_periodic_stop (EV_P_ struct ev_periodic *w) 4221ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
1084{ 4222{
1085 ev_clear_pending (EV_A_ (W)w); 4223 clear_pending (EV_A_ (W)w);
1086 if (!ev_is_active (w)) 4224 if (ecb_expect_false (!ev_is_active (w)))
1087 return; 4225 return;
1088 4226
1089 if (w->active < periodiccnt--) 4227 EV_FREQUENT_CHECK;
4228
4229 {
4230 int active = ev_active (w);
4231
4232 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
4233
4234 --periodiccnt;
4235
4236 if (ecb_expect_true (active < periodiccnt + HEAP0))
1090 { 4237 {
1091 periodics [w->active - 1] = periodics [periodiccnt]; 4238 periodics [active] = periodics [periodiccnt + HEAP0];
1092 downheap ((WT *)periodics, periodiccnt, w->active - 1); 4239 adjustheap (periodics, periodiccnt, active);
1093 } 4240 }
4241 }
1094 4242
1095 ev_stop (EV_A_ (W)w); 4243 ev_stop (EV_A_ (W)w);
4244
4245 EV_FREQUENT_CHECK;
1096} 4246}
4247
4248ecb_noinline
4249void
4250ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
4251{
4252 /* TODO: use adjustheap and recalculation */
4253 ev_periodic_stop (EV_A_ w);
4254 ev_periodic_start (EV_A_ w);
4255}
4256#endif
1097 4257
1098#ifndef SA_RESTART 4258#ifndef SA_RESTART
1099# define SA_RESTART 0 4259# define SA_RESTART 0
1100#endif 4260#endif
1101 4261
4262#if EV_SIGNAL_ENABLE
4263
4264ecb_noinline
1102void 4265void
1103ev_signal_start (EV_P_ struct ev_signal *w) 4266ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
1104{ 4267{
1105 if (ev_is_active (w)) 4268 if (ecb_expect_false (ev_is_active (w)))
1106 return; 4269 return;
1107 4270
1108 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 4271 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4272
4273#if EV_MULTIPLICITY
4274 assert (("libev: a signal must not be attached to two different loops",
4275 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4276
4277 signals [w->signum - 1].loop = EV_A;
4278 ECB_MEMORY_FENCE_RELEASE;
4279#endif
4280
4281 EV_FREQUENT_CHECK;
4282
4283#if EV_USE_SIGNALFD
4284 if (sigfd == -2)
4285 {
4286 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
4287 if (sigfd < 0 && errno == EINVAL)
4288 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
4289
4290 if (sigfd >= 0)
4291 {
4292 fd_intern (sigfd); /* doing it twice will not hurt */
4293
4294 sigemptyset (&sigfd_set);
4295
4296 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4297 ev_set_priority (&sigfd_w, EV_MAXPRI);
4298 ev_io_start (EV_A_ &sigfd_w);
4299 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4300 }
4301 }
4302
4303 if (sigfd >= 0)
4304 {
4305 /* TODO: check .head */
4306 sigaddset (&sigfd_set, w->signum);
4307 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4308
4309 signalfd (sigfd, &sigfd_set, 0);
4310 }
4311#endif
1109 4312
1110 ev_start (EV_A_ (W)w, 1); 4313 ev_start (EV_A_ (W)w, 1);
1111 array_needsize (signals, signalmax, w->signum, signals_init);
1112 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 4314 wlist_add (&signals [w->signum - 1].head, (WL)w);
1113 4315
1114 if (!w->next) 4316 if (!((WL)w)->next)
4317# if EV_USE_SIGNALFD
4318 if (sigfd < 0) /*TODO*/
4319# endif
1115 { 4320 {
4321# ifdef _WIN32
4322 evpipe_init (EV_A);
4323
4324 signal (w->signum, ev_sighandler);
4325# else
1116 struct sigaction sa; 4326 struct sigaction sa;
4327
4328 evpipe_init (EV_A);
4329
1117 sa.sa_handler = sighandler; 4330 sa.sa_handler = ev_sighandler;
1118 sigfillset (&sa.sa_mask); 4331 sigfillset (&sa.sa_mask);
1119 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 4332 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1120 sigaction (w->signum, &sa, 0); 4333 sigaction (w->signum, &sa, 0);
4334
4335 if (origflags & EVFLAG_NOSIGMASK)
4336 {
4337 sigemptyset (&sa.sa_mask);
4338 sigaddset (&sa.sa_mask, w->signum);
4339 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4340 }
4341#endif
1121 } 4342 }
1122}
1123 4343
4344 EV_FREQUENT_CHECK;
4345}
4346
4347ecb_noinline
1124void 4348void
1125ev_signal_stop (EV_P_ struct ev_signal *w) 4349ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
1126{ 4350{
1127 ev_clear_pending (EV_A_ (W)w); 4351 clear_pending (EV_A_ (W)w);
1128 if (!ev_is_active (w)) 4352 if (ecb_expect_false (!ev_is_active (w)))
1129 return; 4353 return;
1130 4354
4355 EV_FREQUENT_CHECK;
4356
1131 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 4357 wlist_del (&signals [w->signum - 1].head, (WL)w);
1132 ev_stop (EV_A_ (W)w); 4358 ev_stop (EV_A_ (W)w);
1133 4359
1134 if (!signals [w->signum - 1].head) 4360 if (!signals [w->signum - 1].head)
4361 {
4362#if EV_MULTIPLICITY
4363 signals [w->signum - 1].loop = 0; /* unattach from signal */
4364#endif
4365#if EV_USE_SIGNALFD
4366 if (sigfd >= 0)
4367 {
4368 sigset_t ss;
4369
4370 sigemptyset (&ss);
4371 sigaddset (&ss, w->signum);
4372 sigdelset (&sigfd_set, w->signum);
4373
4374 signalfd (sigfd, &sigfd_set, 0);
4375 sigprocmask (SIG_UNBLOCK, &ss, 0);
4376 }
4377 else
4378#endif
1135 signal (w->signum, SIG_DFL); 4379 signal (w->signum, SIG_DFL);
1136} 4380 }
1137 4381
4382 EV_FREQUENT_CHECK;
4383}
4384
4385#endif
4386
4387#if EV_CHILD_ENABLE
4388
1138void 4389void
1139ev_idle_start (EV_P_ struct ev_idle *w) 4390ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
1140{ 4391{
1141 if (ev_is_active (w)) 4392#if EV_MULTIPLICITY
4393 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
4394#endif
4395 if (ecb_expect_false (ev_is_active (w)))
1142 return; 4396 return;
1143 4397
4398 EV_FREQUENT_CHECK;
4399
1144 ev_start (EV_A_ (W)w, ++idlecnt); 4400 ev_start (EV_A_ (W)w, 1);
1145 array_needsize (idles, idlemax, idlecnt, ); 4401 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1146 idles [idlecnt - 1] = w;
1147}
1148 4402
4403 EV_FREQUENT_CHECK;
4404}
4405
1149void 4406void
1150ev_idle_stop (EV_P_ struct ev_idle *w) 4407ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
1151{ 4408{
1152 ev_clear_pending (EV_A_ (W)w); 4409 clear_pending (EV_A_ (W)w);
1153 if (ev_is_active (w)) 4410 if (ecb_expect_false (!ev_is_active (w)))
1154 return; 4411 return;
1155 4412
1156 idles [w->active - 1] = idles [--idlecnt]; 4413 EV_FREQUENT_CHECK;
4414
4415 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1157 ev_stop (EV_A_ (W)w); 4416 ev_stop (EV_A_ (W)w);
1158}
1159 4417
1160void 4418 EV_FREQUENT_CHECK;
1161ev_prepare_start (EV_P_ struct ev_prepare *w) 4419}
4420
4421#endif
4422
4423#if EV_STAT_ENABLE
4424
4425# ifdef _WIN32
4426# undef lstat
4427# define lstat(a,b) _stati64 (a,b)
4428# endif
4429
4430#define DEF_STAT_INTERVAL 5.0074891
4431#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4432#define MIN_STAT_INTERVAL 0.1074891
4433
4434ecb_noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4435
4436#if EV_USE_INOTIFY
4437
4438/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4439# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4440
4441ecb_noinline
4442static void
4443infy_add (EV_P_ ev_stat *w)
1162{ 4444{
1163 if (ev_is_active (w)) 4445 w->wd = inotify_add_watch (fs_fd, w->path,
4446 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4447 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4448 | IN_DONT_FOLLOW | IN_MASK_ADD);
4449
4450 if (w->wd >= 0)
4451 {
4452 struct statfs sfs;
4453
4454 /* now local changes will be tracked by inotify, but remote changes won't */
4455 /* unless the filesystem is known to be local, we therefore still poll */
4456 /* also do poll on <2.6.25, but with normal frequency */
4457
4458 if (!fs_2625)
4459 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4460 else if (!statfs (w->path, &sfs)
4461 && (sfs.f_type == 0x1373 /* devfs */
4462 || sfs.f_type == 0x4006 /* fat */
4463 || sfs.f_type == 0x4d44 /* msdos */
4464 || sfs.f_type == 0xEF53 /* ext2/3 */
4465 || sfs.f_type == 0x72b6 /* jffs2 */
4466 || sfs.f_type == 0x858458f6 /* ramfs */
4467 || sfs.f_type == 0x5346544e /* ntfs */
4468 || sfs.f_type == 0x3153464a /* jfs */
4469 || sfs.f_type == 0x9123683e /* btrfs */
4470 || sfs.f_type == 0x52654973 /* reiser3 */
4471 || sfs.f_type == 0x01021994 /* tmpfs */
4472 || sfs.f_type == 0x58465342 /* xfs */))
4473 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4474 else
4475 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
4476 }
4477 else
4478 {
4479 /* can't use inotify, continue to stat */
4480 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4481
4482 /* if path is not there, monitor some parent directory for speedup hints */
4483 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4484 /* but an efficiency issue only */
4485 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4486 {
4487 char path [4096];
4488 strcpy (path, w->path);
4489
4490 do
4491 {
4492 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4493 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4494
4495 char *pend = strrchr (path, '/');
4496
4497 if (!pend || pend == path)
4498 break;
4499
4500 *pend = 0;
4501 w->wd = inotify_add_watch (fs_fd, path, mask);
4502 }
4503 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4504 }
4505 }
4506
4507 if (w->wd >= 0)
4508 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4509
4510 /* now re-arm timer, if required */
4511 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4512 ev_timer_again (EV_A_ &w->timer);
4513 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4514}
4515
4516ecb_noinline
4517static void
4518infy_del (EV_P_ ev_stat *w)
4519{
4520 int slot;
4521 int wd = w->wd;
4522
4523 if (wd < 0)
1164 return; 4524 return;
1165 4525
4526 w->wd = -2;
4527 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4528 wlist_del (&fs_hash [slot].head, (WL)w);
4529
4530 /* remove this watcher, if others are watching it, they will rearm */
4531 inotify_rm_watch (fs_fd, wd);
4532}
4533
4534ecb_noinline
4535static void
4536infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4537{
4538 if (slot < 0)
4539 /* overflow, need to check for all hash slots */
4540 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4541 infy_wd (EV_A_ slot, wd, ev);
4542 else
4543 {
4544 WL w_;
4545
4546 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4547 {
4548 ev_stat *w = (ev_stat *)w_;
4549 w_ = w_->next; /* lets us remove this watcher and all before it */
4550
4551 if (w->wd == wd || wd == -1)
4552 {
4553 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4554 {
4555 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4556 w->wd = -1;
4557 infy_add (EV_A_ w); /* re-add, no matter what */
4558 }
4559
4560 stat_timer_cb (EV_A_ &w->timer, 0);
4561 }
4562 }
4563 }
4564}
4565
4566static void
4567infy_cb (EV_P_ ev_io *w, int revents)
4568{
4569 char buf [EV_INOTIFY_BUFSIZE];
4570 int ofs;
4571 int len = read (fs_fd, buf, sizeof (buf));
4572
4573 for (ofs = 0; ofs < len; )
4574 {
4575 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4576 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4577 ofs += sizeof (struct inotify_event) + ev->len;
4578 }
4579}
4580
4581inline_size ecb_cold
4582void
4583ev_check_2625 (EV_P)
4584{
4585 /* kernels < 2.6.25 are borked
4586 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4587 */
4588 if (ev_linux_version () < 0x020619)
4589 return;
4590
4591 fs_2625 = 1;
4592}
4593
4594inline_size int
4595infy_newfd (void)
4596{
4597#if defined IN_CLOEXEC && defined IN_NONBLOCK
4598 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4599 if (fd >= 0)
4600 return fd;
4601#endif
4602 return inotify_init ();
4603}
4604
4605inline_size void
4606infy_init (EV_P)
4607{
4608 if (fs_fd != -2)
4609 return;
4610
4611 fs_fd = -1;
4612
4613 ev_check_2625 (EV_A);
4614
4615 fs_fd = infy_newfd ();
4616
4617 if (fs_fd >= 0)
4618 {
4619 fd_intern (fs_fd);
4620 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4621 ev_set_priority (&fs_w, EV_MAXPRI);
4622 ev_io_start (EV_A_ &fs_w);
4623 ev_unref (EV_A);
4624 }
4625}
4626
4627inline_size void
4628infy_fork (EV_P)
4629{
4630 int slot;
4631
4632 if (fs_fd < 0)
4633 return;
4634
4635 ev_ref (EV_A);
4636 ev_io_stop (EV_A_ &fs_w);
4637 close (fs_fd);
4638 fs_fd = infy_newfd ();
4639
4640 if (fs_fd >= 0)
4641 {
4642 fd_intern (fs_fd);
4643 ev_io_set (&fs_w, fs_fd, EV_READ);
4644 ev_io_start (EV_A_ &fs_w);
4645 ev_unref (EV_A);
4646 }
4647
4648 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4649 {
4650 WL w_ = fs_hash [slot].head;
4651 fs_hash [slot].head = 0;
4652
4653 while (w_)
4654 {
4655 ev_stat *w = (ev_stat *)w_;
4656 w_ = w_->next; /* lets us add this watcher */
4657
4658 w->wd = -1;
4659
4660 if (fs_fd >= 0)
4661 infy_add (EV_A_ w); /* re-add, no matter what */
4662 else
4663 {
4664 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4665 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4666 ev_timer_again (EV_A_ &w->timer);
4667 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4668 }
4669 }
4670 }
4671}
4672
4673#endif
4674
4675#ifdef _WIN32
4676# define EV_LSTAT(p,b) _stati64 (p, b)
4677#else
4678# define EV_LSTAT(p,b) lstat (p, b)
4679#endif
4680
4681void
4682ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
4683{
4684 if (lstat (w->path, &w->attr) < 0)
4685 w->attr.st_nlink = 0;
4686 else if (!w->attr.st_nlink)
4687 w->attr.st_nlink = 1;
4688}
4689
4690ecb_noinline
4691static void
4692stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4693{
4694 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4695
4696 ev_statdata prev = w->attr;
4697 ev_stat_stat (EV_A_ w);
4698
4699 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4700 if (
4701 prev.st_dev != w->attr.st_dev
4702 || prev.st_ino != w->attr.st_ino
4703 || prev.st_mode != w->attr.st_mode
4704 || prev.st_nlink != w->attr.st_nlink
4705 || prev.st_uid != w->attr.st_uid
4706 || prev.st_gid != w->attr.st_gid
4707 || prev.st_rdev != w->attr.st_rdev
4708 || prev.st_size != w->attr.st_size
4709 || prev.st_atime != w->attr.st_atime
4710 || prev.st_mtime != w->attr.st_mtime
4711 || prev.st_ctime != w->attr.st_ctime
4712 ) {
4713 /* we only update w->prev on actual differences */
4714 /* in case we test more often than invoke the callback, */
4715 /* to ensure that prev is always different to attr */
4716 w->prev = prev;
4717
4718 #if EV_USE_INOTIFY
4719 if (fs_fd >= 0)
4720 {
4721 infy_del (EV_A_ w);
4722 infy_add (EV_A_ w);
4723 ev_stat_stat (EV_A_ w); /* avoid race... */
4724 }
4725 #endif
4726
4727 ev_feed_event (EV_A_ w, EV_STAT);
4728 }
4729}
4730
4731void
4732ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
4733{
4734 if (ecb_expect_false (ev_is_active (w)))
4735 return;
4736
4737 ev_stat_stat (EV_A_ w);
4738
4739 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4740 w->interval = MIN_STAT_INTERVAL;
4741
4742 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4743 ev_set_priority (&w->timer, ev_priority (w));
4744
4745#if EV_USE_INOTIFY
4746 infy_init (EV_A);
4747
4748 if (fs_fd >= 0)
4749 infy_add (EV_A_ w);
4750 else
4751#endif
4752 {
4753 ev_timer_again (EV_A_ &w->timer);
4754 ev_unref (EV_A);
4755 }
4756
4757 ev_start (EV_A_ (W)w, 1);
4758
4759 EV_FREQUENT_CHECK;
4760}
4761
4762void
4763ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
4764{
4765 clear_pending (EV_A_ (W)w);
4766 if (ecb_expect_false (!ev_is_active (w)))
4767 return;
4768
4769 EV_FREQUENT_CHECK;
4770
4771#if EV_USE_INOTIFY
4772 infy_del (EV_A_ w);
4773#endif
4774
4775 if (ev_is_active (&w->timer))
4776 {
4777 ev_ref (EV_A);
4778 ev_timer_stop (EV_A_ &w->timer);
4779 }
4780
4781 ev_stop (EV_A_ (W)w);
4782
4783 EV_FREQUENT_CHECK;
4784}
4785#endif
4786
4787#if EV_IDLE_ENABLE
4788void
4789ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
4790{
4791 if (ecb_expect_false (ev_is_active (w)))
4792 return;
4793
4794 pri_adjust (EV_A_ (W)w);
4795
4796 EV_FREQUENT_CHECK;
4797
4798 {
4799 int active = ++idlecnt [ABSPRI (w)];
4800
4801 ++idleall;
4802 ev_start (EV_A_ (W)w, active);
4803
4804 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
4805 idles [ABSPRI (w)][active - 1] = w;
4806 }
4807
4808 EV_FREQUENT_CHECK;
4809}
4810
4811void
4812ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
4813{
4814 clear_pending (EV_A_ (W)w);
4815 if (ecb_expect_false (!ev_is_active (w)))
4816 return;
4817
4818 EV_FREQUENT_CHECK;
4819
4820 {
4821 int active = ev_active (w);
4822
4823 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4824 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4825
4826 ev_stop (EV_A_ (W)w);
4827 --idleall;
4828 }
4829
4830 EV_FREQUENT_CHECK;
4831}
4832#endif
4833
4834#if EV_PREPARE_ENABLE
4835void
4836ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
4837{
4838 if (ecb_expect_false (ev_is_active (w)))
4839 return;
4840
4841 EV_FREQUENT_CHECK;
4842
1166 ev_start (EV_A_ (W)w, ++preparecnt); 4843 ev_start (EV_A_ (W)w, ++preparecnt);
1167 array_needsize (prepares, preparemax, preparecnt, ); 4844 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
1168 prepares [preparecnt - 1] = w; 4845 prepares [preparecnt - 1] = w;
1169}
1170 4846
4847 EV_FREQUENT_CHECK;
4848}
4849
1171void 4850void
1172ev_prepare_stop (EV_P_ struct ev_prepare *w) 4851ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
1173{ 4852{
1174 ev_clear_pending (EV_A_ (W)w); 4853 clear_pending (EV_A_ (W)w);
1175 if (ev_is_active (w)) 4854 if (ecb_expect_false (!ev_is_active (w)))
1176 return; 4855 return;
1177 4856
4857 EV_FREQUENT_CHECK;
4858
4859 {
4860 int active = ev_active (w);
4861
1178 prepares [w->active - 1] = prepares [--preparecnt]; 4862 prepares [active - 1] = prepares [--preparecnt];
4863 ev_active (prepares [active - 1]) = active;
4864 }
4865
1179 ev_stop (EV_A_ (W)w); 4866 ev_stop (EV_A_ (W)w);
1180}
1181 4867
4868 EV_FREQUENT_CHECK;
4869}
4870#endif
4871
4872#if EV_CHECK_ENABLE
1182void 4873void
1183ev_check_start (EV_P_ struct ev_check *w) 4874ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
1184{ 4875{
1185 if (ev_is_active (w)) 4876 if (ecb_expect_false (ev_is_active (w)))
1186 return; 4877 return;
1187 4878
4879 EV_FREQUENT_CHECK;
4880
1188 ev_start (EV_A_ (W)w, ++checkcnt); 4881 ev_start (EV_A_ (W)w, ++checkcnt);
1189 array_needsize (checks, checkmax, checkcnt, ); 4882 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
1190 checks [checkcnt - 1] = w; 4883 checks [checkcnt - 1] = w;
1191}
1192 4884
4885 EV_FREQUENT_CHECK;
4886}
4887
1193void 4888void
1194ev_check_stop (EV_P_ struct ev_check *w) 4889ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
1195{ 4890{
1196 ev_clear_pending (EV_A_ (W)w); 4891 clear_pending (EV_A_ (W)w);
1197 if (ev_is_active (w)) 4892 if (ecb_expect_false (!ev_is_active (w)))
1198 return; 4893 return;
1199 4894
4895 EV_FREQUENT_CHECK;
4896
4897 {
4898 int active = ev_active (w);
4899
1200 checks [w->active - 1] = checks [--checkcnt]; 4900 checks [active - 1] = checks [--checkcnt];
4901 ev_active (checks [active - 1]) = active;
4902 }
4903
1201 ev_stop (EV_A_ (W)w); 4904 ev_stop (EV_A_ (W)w);
1202}
1203 4905
4906 EV_FREQUENT_CHECK;
4907}
4908#endif
4909
4910#if EV_EMBED_ENABLE
4911ecb_noinline
1204void 4912void
1205ev_child_start (EV_P_ struct ev_child *w) 4913ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
1206{ 4914{
4915 ev_run (w->other, EVRUN_NOWAIT);
4916}
4917
4918static void
4919embed_io_cb (EV_P_ ev_io *io, int revents)
4920{
4921 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4922
1207 if (ev_is_active (w)) 4923 if (ev_cb (w))
4924 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4925 else
4926 ev_run (w->other, EVRUN_NOWAIT);
4927}
4928
4929static void
4930embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4931{
4932 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4933
4934 {
4935 EV_P = w->other;
4936
4937 while (fdchangecnt)
4938 {
4939 fd_reify (EV_A);
4940 ev_run (EV_A_ EVRUN_NOWAIT);
4941 }
4942 }
4943}
4944
4945static void
4946embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4947{
4948 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4949
4950 ev_embed_stop (EV_A_ w);
4951
4952 {
4953 EV_P = w->other;
4954
4955 ev_loop_fork (EV_A);
4956 ev_run (EV_A_ EVRUN_NOWAIT);
4957 }
4958
4959 ev_embed_start (EV_A_ w);
4960}
4961
4962#if 0
4963static void
4964embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4965{
4966 ev_idle_stop (EV_A_ idle);
4967}
4968#endif
4969
4970void
4971ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
4972{
4973 if (ecb_expect_false (ev_is_active (w)))
1208 return; 4974 return;
1209 4975
4976 {
4977 EV_P = w->other;
4978 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4979 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4980 }
4981
4982 EV_FREQUENT_CHECK;
4983
4984 ev_set_priority (&w->io, ev_priority (w));
4985 ev_io_start (EV_A_ &w->io);
4986
4987 ev_prepare_init (&w->prepare, embed_prepare_cb);
4988 ev_set_priority (&w->prepare, EV_MINPRI);
4989 ev_prepare_start (EV_A_ &w->prepare);
4990
4991 ev_fork_init (&w->fork, embed_fork_cb);
4992 ev_fork_start (EV_A_ &w->fork);
4993
4994 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4995
1210 ev_start (EV_A_ (W)w, 1); 4996 ev_start (EV_A_ (W)w, 1);
1211 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1212}
1213 4997
4998 EV_FREQUENT_CHECK;
4999}
5000
1214void 5001void
1215ev_child_stop (EV_P_ struct ev_child *w) 5002ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
1216{ 5003{
1217 ev_clear_pending (EV_A_ (W)w); 5004 clear_pending (EV_A_ (W)w);
1218 if (ev_is_active (w)) 5005 if (ecb_expect_false (!ev_is_active (w)))
1219 return; 5006 return;
1220 5007
1221 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 5008 EV_FREQUENT_CHECK;
5009
5010 ev_io_stop (EV_A_ &w->io);
5011 ev_prepare_stop (EV_A_ &w->prepare);
5012 ev_fork_stop (EV_A_ &w->fork);
5013
1222 ev_stop (EV_A_ (W)w); 5014 ev_stop (EV_A_ (W)w);
5015
5016 EV_FREQUENT_CHECK;
1223} 5017}
5018#endif
5019
5020#if EV_FORK_ENABLE
5021void
5022ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
5023{
5024 if (ecb_expect_false (ev_is_active (w)))
5025 return;
5026
5027 EV_FREQUENT_CHECK;
5028
5029 ev_start (EV_A_ (W)w, ++forkcnt);
5030 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
5031 forks [forkcnt - 1] = w;
5032
5033 EV_FREQUENT_CHECK;
5034}
5035
5036void
5037ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
5038{
5039 clear_pending (EV_A_ (W)w);
5040 if (ecb_expect_false (!ev_is_active (w)))
5041 return;
5042
5043 EV_FREQUENT_CHECK;
5044
5045 {
5046 int active = ev_active (w);
5047
5048 forks [active - 1] = forks [--forkcnt];
5049 ev_active (forks [active - 1]) = active;
5050 }
5051
5052 ev_stop (EV_A_ (W)w);
5053
5054 EV_FREQUENT_CHECK;
5055}
5056#endif
5057
5058#if EV_CLEANUP_ENABLE
5059void
5060ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5061{
5062 if (ecb_expect_false (ev_is_active (w)))
5063 return;
5064
5065 EV_FREQUENT_CHECK;
5066
5067 ev_start (EV_A_ (W)w, ++cleanupcnt);
5068 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
5069 cleanups [cleanupcnt - 1] = w;
5070
5071 /* cleanup watchers should never keep a refcount on the loop */
5072 ev_unref (EV_A);
5073 EV_FREQUENT_CHECK;
5074}
5075
5076void
5077ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5078{
5079 clear_pending (EV_A_ (W)w);
5080 if (ecb_expect_false (!ev_is_active (w)))
5081 return;
5082
5083 EV_FREQUENT_CHECK;
5084 ev_ref (EV_A);
5085
5086 {
5087 int active = ev_active (w);
5088
5089 cleanups [active - 1] = cleanups [--cleanupcnt];
5090 ev_active (cleanups [active - 1]) = active;
5091 }
5092
5093 ev_stop (EV_A_ (W)w);
5094
5095 EV_FREQUENT_CHECK;
5096}
5097#endif
5098
5099#if EV_ASYNC_ENABLE
5100void
5101ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
5102{
5103 if (ecb_expect_false (ev_is_active (w)))
5104 return;
5105
5106 w->sent = 0;
5107
5108 evpipe_init (EV_A);
5109
5110 EV_FREQUENT_CHECK;
5111
5112 ev_start (EV_A_ (W)w, ++asynccnt);
5113 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
5114 asyncs [asynccnt - 1] = w;
5115
5116 EV_FREQUENT_CHECK;
5117}
5118
5119void
5120ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
5121{
5122 clear_pending (EV_A_ (W)w);
5123 if (ecb_expect_false (!ev_is_active (w)))
5124 return;
5125
5126 EV_FREQUENT_CHECK;
5127
5128 {
5129 int active = ev_active (w);
5130
5131 asyncs [active - 1] = asyncs [--asynccnt];
5132 ev_active (asyncs [active - 1]) = active;
5133 }
5134
5135 ev_stop (EV_A_ (W)w);
5136
5137 EV_FREQUENT_CHECK;
5138}
5139
5140void
5141ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
5142{
5143 w->sent = 1;
5144 evpipe_write (EV_A_ &async_pending);
5145}
5146#endif
1224 5147
1225/*****************************************************************************/ 5148/*****************************************************************************/
1226 5149
1227struct ev_once 5150struct ev_once
1228{ 5151{
1229 struct ev_io io; 5152 ev_io io;
1230 struct ev_timer to; 5153 ev_timer to;
1231 void (*cb)(int revents, void *arg); 5154 void (*cb)(int revents, void *arg);
1232 void *arg; 5155 void *arg;
1233}; 5156};
1234 5157
1235static void 5158static void
1236once_cb (EV_P_ struct ev_once *once, int revents) 5159once_cb (EV_P_ struct ev_once *once, int revents)
1237{ 5160{
1238 void (*cb)(int revents, void *arg) = once->cb; 5161 void (*cb)(int revents, void *arg) = once->cb;
1239 void *arg = once->arg; 5162 void *arg = once->arg;
1240 5163
1241 ev_io_stop (EV_A_ &once->io); 5164 ev_io_stop (EV_A_ &once->io);
1242 ev_timer_stop (EV_A_ &once->to); 5165 ev_timer_stop (EV_A_ &once->to);
1243 free (once); 5166 ev_free (once);
1244 5167
1245 cb (revents, arg); 5168 cb (revents, arg);
1246} 5169}
1247 5170
1248static void 5171static void
1249once_cb_io (EV_P_ struct ev_io *w, int revents) 5172once_cb_io (EV_P_ ev_io *w, int revents)
1250{ 5173{
1251 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 5174 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
5175
5176 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1252} 5177}
1253 5178
1254static void 5179static void
1255once_cb_to (EV_P_ struct ev_timer *w, int revents) 5180once_cb_to (EV_P_ ev_timer *w, int revents)
1256{ 5181{
1257 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 5182 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
1258}
1259 5183
5184 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
5185}
5186
1260void 5187void
1261ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 5188ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
1262{ 5189{
1263 struct ev_once *once = malloc (sizeof (struct ev_once)); 5190 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1264 5191
1265 if (!once)
1266 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1267 else
1268 {
1269 once->cb = cb; 5192 once->cb = cb;
1270 once->arg = arg; 5193 once->arg = arg;
1271 5194
1272 ev_watcher_init (&once->io, once_cb_io); 5195 ev_init (&once->io, once_cb_io);
1273 if (fd >= 0) 5196 if (fd >= 0)
5197 {
5198 ev_io_set (&once->io, fd, events);
5199 ev_io_start (EV_A_ &once->io);
5200 }
5201
5202 ev_init (&once->to, once_cb_to);
5203 if (timeout >= 0.)
5204 {
5205 ev_timer_set (&once->to, timeout, 0.);
5206 ev_timer_start (EV_A_ &once->to);
5207 }
5208}
5209
5210/*****************************************************************************/
5211
5212#if EV_WALK_ENABLE
5213ecb_cold
5214void
5215ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5216{
5217 int i, j;
5218 ev_watcher_list *wl, *wn;
5219
5220 if (types & (EV_IO | EV_EMBED))
5221 for (i = 0; i < anfdmax; ++i)
5222 for (wl = anfds [i].head; wl; )
1274 { 5223 {
1275 ev_io_set (&once->io, fd, events); 5224 wn = wl->next;
1276 ev_io_start (EV_A_ &once->io); 5225
5226#if EV_EMBED_ENABLE
5227 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5228 {
5229 if (types & EV_EMBED)
5230 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5231 }
5232 else
5233#endif
5234#if EV_USE_INOTIFY
5235 if (ev_cb ((ev_io *)wl) == infy_cb)
5236 ;
5237 else
5238#endif
5239 if ((ev_io *)wl != &pipe_w)
5240 if (types & EV_IO)
5241 cb (EV_A_ EV_IO, wl);
5242
5243 wl = wn;
1277 } 5244 }
1278 5245
1279 ev_watcher_init (&once->to, once_cb_to); 5246 if (types & (EV_TIMER | EV_STAT))
1280 if (timeout >= 0.) 5247 for (i = timercnt + HEAP0; i-- > HEAP0; )
5248#if EV_STAT_ENABLE
5249 /*TODO: timer is not always active*/
5250 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1281 { 5251 {
1282 ev_timer_set (&once->to, timeout, 0.); 5252 if (types & EV_STAT)
1283 ev_timer_start (EV_A_ &once->to); 5253 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1284 } 5254 }
1285 } 5255 else
1286} 5256#endif
5257 if (types & EV_TIMER)
5258 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1287 5259
1288/*****************************************************************************/ 5260#if EV_PERIODIC_ENABLE
5261 if (types & EV_PERIODIC)
5262 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5263 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5264#endif
1289 5265
1290#if 0 5266#if EV_IDLE_ENABLE
5267 if (types & EV_IDLE)
5268 for (j = NUMPRI; j--; )
5269 for (i = idlecnt [j]; i--; )
5270 cb (EV_A_ EV_IDLE, idles [j][i]);
5271#endif
1291 5272
1292struct ev_io wio; 5273#if EV_FORK_ENABLE
5274 if (types & EV_FORK)
5275 for (i = forkcnt; i--; )
5276 if (ev_cb (forks [i]) != embed_fork_cb)
5277 cb (EV_A_ EV_FORK, forks [i]);
5278#endif
1293 5279
1294static void 5280#if EV_ASYNC_ENABLE
1295sin_cb (struct ev_io *w, int revents) 5281 if (types & EV_ASYNC)
1296{ 5282 for (i = asynccnt; i--; )
1297 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents); 5283 cb (EV_A_ EV_ASYNC, asyncs [i]);
1298} 5284#endif
1299 5285
1300static void 5286#if EV_PREPARE_ENABLE
1301ocb (struct ev_timer *w, int revents) 5287 if (types & EV_PREPARE)
1302{ 5288 for (i = preparecnt; i--; )
1303 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data); 5289# if EV_EMBED_ENABLE
1304 ev_timer_stop (w); 5290 if (ev_cb (prepares [i]) != embed_prepare_cb)
1305 ev_timer_start (w);
1306}
1307
1308static void
1309scb (struct ev_signal *w, int revents)
1310{
1311 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1312 ev_io_stop (&wio);
1313 ev_io_start (&wio);
1314}
1315
1316static void
1317gcb (struct ev_signal *w, int revents)
1318{
1319 fprintf (stderr, "generic %x\n", revents);
1320
1321}
1322
1323int main (void)
1324{
1325 ev_init (0);
1326
1327 ev_io_init (&wio, sin_cb, 0, EV_READ);
1328 ev_io_start (&wio);
1329
1330 struct ev_timer t[10000];
1331
1332#if 0
1333 int i;
1334 for (i = 0; i < 10000; ++i)
1335 {
1336 struct ev_timer *w = t + i;
1337 ev_watcher_init (w, ocb, i);
1338 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1339 ev_timer_start (w);
1340 if (drand48 () < 0.5)
1341 ev_timer_stop (w);
1342 }
1343#endif 5291# endif
1344 5292 cb (EV_A_ EV_PREPARE, prepares [i]);
1345 struct ev_timer t1;
1346 ev_timer_init (&t1, ocb, 5, 10);
1347 ev_timer_start (&t1);
1348
1349 struct ev_signal sig;
1350 ev_signal_init (&sig, scb, SIGQUIT);
1351 ev_signal_start (&sig);
1352
1353 struct ev_check cw;
1354 ev_check_init (&cw, gcb);
1355 ev_check_start (&cw);
1356
1357 struct ev_idle iw;
1358 ev_idle_init (&iw, gcb);
1359 ev_idle_start (&iw);
1360
1361 ev_loop (0);
1362
1363 return 0;
1364}
1365
1366#endif 5293#endif
1367 5294
5295#if EV_CHECK_ENABLE
5296 if (types & EV_CHECK)
5297 for (i = checkcnt; i--; )
5298 cb (EV_A_ EV_CHECK, checks [i]);
5299#endif
1368 5300
5301#if EV_SIGNAL_ENABLE
5302 if (types & EV_SIGNAL)
5303 for (i = 0; i < EV_NSIG - 1; ++i)
5304 for (wl = signals [i].head; wl; )
5305 {
5306 wn = wl->next;
5307 cb (EV_A_ EV_SIGNAL, wl);
5308 wl = wn;
5309 }
5310#endif
1369 5311
5312#if EV_CHILD_ENABLE
5313 if (types & EV_CHILD)
5314 for (i = (EV_PID_HASHSIZE); i--; )
5315 for (wl = childs [i]; wl; )
5316 {
5317 wn = wl->next;
5318 cb (EV_A_ EV_CHILD, wl);
5319 wl = wn;
5320 }
5321#endif
5322/* EV_STAT 0x00001000 /* stat data changed */
5323/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5324}
5325#endif
1370 5326
5327#if EV_MULTIPLICITY
5328 #include "ev_wrap.h"
5329#endif
5330

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines