ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.38 by root, Thu Nov 1 15:21:13 2007 UTC vs.
Revision 1.512 by root, Fri Nov 22 19:54:38 2019 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
39
40/* this big block deduces configuration from config.h */
41#ifndef EV_STANDALONE
31#if EV_USE_CONFIG_H 42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
32# include "config.h" 45# include "config.h"
33#endif 46# endif
34 47
35#include <math.h> 48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
68# if HAVE_CLOCK_GETTIME
69# ifndef EV_USE_MONOTONIC
70# define EV_USE_MONOTONIC 1
71# endif
72# ifndef EV_USE_REALTIME
73# define EV_USE_REALTIME 0
74# endif
75# else
76# ifndef EV_USE_MONOTONIC
77# define EV_USE_MONOTONIC 0
78# endif
79# ifndef EV_USE_REALTIME
80# define EV_USE_REALTIME 0
81# endif
82# endif
83
84# if HAVE_NANOSLEEP
85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
109# endif
110
111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
118# endif
119
120# if HAVE_LINUX_AIO_ABI_H
121# ifndef EV_USE_LINUXAIO
122# define EV_USE_LINUXAIO EV_FEATURE_BACKENDS
123# endif
124# else
125# undef EV_USE_LINUXAIO
126# define EV_USE_LINUXAIO 0
127# endif
128
129# if HAVE_LINUX_FS_H && HAVE_SYS_TIMERFD_H && HAVE_KERNEL_RWF_T
130# ifndef EV_USE_IOURING
131# define EV_USE_IOURING EV_FEATURE_BACKENDS
132# endif
133# else
134# undef EV_USE_IOURING
135# define EV_USE_IOURING 0
136# endif
137
138# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
139# ifndef EV_USE_KQUEUE
140# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
141# endif
142# else
143# undef EV_USE_KQUEUE
144# define EV_USE_KQUEUE 0
145# endif
146
147# if HAVE_PORT_H && HAVE_PORT_CREATE
148# ifndef EV_USE_PORT
149# define EV_USE_PORT EV_FEATURE_BACKENDS
150# endif
151# else
152# undef EV_USE_PORT
153# define EV_USE_PORT 0
154# endif
155
156# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
157# ifndef EV_USE_INOTIFY
158# define EV_USE_INOTIFY EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_INOTIFY
162# define EV_USE_INOTIFY 0
163# endif
164
165# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
166# ifndef EV_USE_SIGNALFD
167# define EV_USE_SIGNALFD EV_FEATURE_OS
168# endif
169# else
170# undef EV_USE_SIGNALFD
171# define EV_USE_SIGNALFD 0
172# endif
173
174# if HAVE_EVENTFD
175# ifndef EV_USE_EVENTFD
176# define EV_USE_EVENTFD EV_FEATURE_OS
177# endif
178# else
179# undef EV_USE_EVENTFD
180# define EV_USE_EVENTFD 0
181# endif
182
183#endif
184
185/* OS X, in its infinite idiocy, actually HARDCODES
186 * a limit of 1024 into their select. Where people have brains,
187 * OS X engineers apparently have a vacuum. Or maybe they were
188 * ordered to have a vacuum, or they do anything for money.
189 * This might help. Or not.
190 * Note that this must be defined early, as other include files
191 * will rely on this define as well.
192 */
193#define _DARWIN_UNLIMITED_SELECT 1
194
36#include <stdlib.h> 195#include <stdlib.h>
37#include <unistd.h> 196#include <string.h>
38#include <fcntl.h> 197#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 198#include <stddef.h>
41 199
42#include <stdio.h> 200#include <stdio.h>
43 201
44#include <assert.h> 202#include <assert.h>
45#include <errno.h> 203#include <errno.h>
46#include <sys/types.h> 204#include <sys/types.h>
47#include <sys/wait.h>
48#include <sys/time.h>
49#include <time.h> 205#include <time.h>
206#include <limits.h>
207
208#include <signal.h>
209
210#ifdef EV_H
211# include EV_H
212#else
213# include "ev.h"
214#endif
215
216#if EV_NO_THREADS
217# undef EV_NO_SMP
218# define EV_NO_SMP 1
219# undef ECB_NO_THREADS
220# define ECB_NO_THREADS 1
221#endif
222#if EV_NO_SMP
223# undef EV_NO_SMP
224# define ECB_NO_SMP 1
225#endif
226
227#ifndef _WIN32
228# include <sys/time.h>
229# include <sys/wait.h>
230# include <unistd.h>
231#else
232# include <io.h>
233# define WIN32_LEAN_AND_MEAN
234# include <winsock2.h>
235# include <windows.h>
236# ifndef EV_SELECT_IS_WINSOCKET
237# define EV_SELECT_IS_WINSOCKET 1
238# endif
239# undef EV_AVOID_STDIO
240#endif
241
242/* this block tries to deduce configuration from header-defined symbols and defaults */
243
244/* try to deduce the maximum number of signals on this platform */
245#if defined EV_NSIG
246/* use what's provided */
247#elif defined NSIG
248# define EV_NSIG (NSIG)
249#elif defined _NSIG
250# define EV_NSIG (_NSIG)
251#elif defined SIGMAX
252# define EV_NSIG (SIGMAX+1)
253#elif defined SIG_MAX
254# define EV_NSIG (SIG_MAX+1)
255#elif defined _SIG_MAX
256# define EV_NSIG (_SIG_MAX+1)
257#elif defined MAXSIG
258# define EV_NSIG (MAXSIG+1)
259#elif defined MAX_SIG
260# define EV_NSIG (MAX_SIG+1)
261#elif defined SIGARRAYSIZE
262# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
263#elif defined _sys_nsig
264# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
265#else
266# define EV_NSIG (8 * sizeof (sigset_t) + 1)
267#endif
268
269#ifndef EV_USE_FLOOR
270# define EV_USE_FLOOR 0
271#endif
272
273#ifndef EV_USE_CLOCK_SYSCALL
274# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
275# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
276# else
277# define EV_USE_CLOCK_SYSCALL 0
278# endif
279#endif
280
281#if !(_POSIX_TIMERS > 0)
282# ifndef EV_USE_MONOTONIC
283# define EV_USE_MONOTONIC 0
284# endif
285# ifndef EV_USE_REALTIME
286# define EV_USE_REALTIME 0
287# endif
288#endif
50 289
51#ifndef EV_USE_MONOTONIC 290#ifndef EV_USE_MONOTONIC
291# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
292# define EV_USE_MONOTONIC EV_FEATURE_OS
293# else
294# define EV_USE_MONOTONIC 0
295# endif
296#endif
297
298#ifndef EV_USE_REALTIME
299# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
300#endif
301
302#ifndef EV_USE_NANOSLEEP
303# if _POSIX_C_SOURCE >= 199309L
304# define EV_USE_NANOSLEEP EV_FEATURE_OS
305# else
306# define EV_USE_NANOSLEEP 0
307# endif
308#endif
309
310#ifndef EV_USE_SELECT
311# define EV_USE_SELECT EV_FEATURE_BACKENDS
312#endif
313
314#ifndef EV_USE_POLL
315# ifdef _WIN32
316# define EV_USE_POLL 0
317# else
318# define EV_USE_POLL EV_FEATURE_BACKENDS
319# endif
320#endif
321
322#ifndef EV_USE_EPOLL
323# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
324# define EV_USE_EPOLL EV_FEATURE_BACKENDS
325# else
326# define EV_USE_EPOLL 0
327# endif
328#endif
329
330#ifndef EV_USE_KQUEUE
331# define EV_USE_KQUEUE 0
332#endif
333
334#ifndef EV_USE_PORT
335# define EV_USE_PORT 0
336#endif
337
338#ifndef EV_USE_LINUXAIO
339# if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
340# define EV_USE_LINUXAIO 1
341# else
342# define EV_USE_LINUXAIO 0
343# endif
344#endif
345
346#ifndef EV_USE_IOURING
347# if __linux /* later checks might disable again */
348# define EV_USE_IOURING 1
349# else
350# define EV_USE_IOURING 0
351# endif
352#endif
353
354#ifndef EV_USE_INOTIFY
355# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
356# define EV_USE_INOTIFY EV_FEATURE_OS
357# else
358# define EV_USE_INOTIFY 0
359# endif
360#endif
361
362#ifndef EV_PID_HASHSIZE
363# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
364#endif
365
366#ifndef EV_INOTIFY_HASHSIZE
367# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
368#endif
369
370#ifndef EV_USE_EVENTFD
371# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
372# define EV_USE_EVENTFD EV_FEATURE_OS
373# else
374# define EV_USE_EVENTFD 0
375# endif
376#endif
377
378#ifndef EV_USE_SIGNALFD
379# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
380# define EV_USE_SIGNALFD EV_FEATURE_OS
381# else
382# define EV_USE_SIGNALFD 0
383# endif
384#endif
385
386#if 0 /* debugging */
387# define EV_VERIFY 3
388# define EV_USE_4HEAP 1
389# define EV_HEAP_CACHE_AT 1
390#endif
391
392#ifndef EV_VERIFY
393# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
394#endif
395
396#ifndef EV_USE_4HEAP
397# define EV_USE_4HEAP EV_FEATURE_DATA
398#endif
399
400#ifndef EV_HEAP_CACHE_AT
401# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
402#endif
403
404#ifdef __ANDROID__
405/* supposedly, android doesn't typedef fd_mask */
406# undef EV_USE_SELECT
407# define EV_USE_SELECT 0
408/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
409# undef EV_USE_CLOCK_SYSCALL
410# define EV_USE_CLOCK_SYSCALL 0
411#endif
412
413/* aix's poll.h seems to cause lots of trouble */
414#ifdef _AIX
415/* AIX has a completely broken poll.h header */
416# undef EV_USE_POLL
417# define EV_USE_POLL 0
418#endif
419
420/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
421/* which makes programs even slower. might work on other unices, too. */
422#if EV_USE_CLOCK_SYSCALL
423# include <sys/syscall.h>
424# ifdef SYS_clock_gettime
425# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
426# undef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 1 427# define EV_USE_MONOTONIC 1
428# define EV_NEED_SYSCALL 1
429# else
430# undef EV_USE_CLOCK_SYSCALL
431# define EV_USE_CLOCK_SYSCALL 0
53#endif 432# endif
433#endif
434
435/* this block fixes any misconfiguration where we know we run into trouble otherwise */
54 436
55#ifndef CLOCK_MONOTONIC 437#ifndef CLOCK_MONOTONIC
56# undef EV_USE_MONOTONIC 438# undef EV_USE_MONOTONIC
57# define EV_USE_MONOTONIC 0 439# define EV_USE_MONOTONIC 0
58#endif 440#endif
59 441
60#ifndef EV_USE_SELECT
61# define EV_USE_SELECT 1
62#endif
63
64#ifndef EV_USE_EPOLL
65# define EV_USE_EPOLL 0
66#endif
67
68#ifndef CLOCK_REALTIME 442#ifndef CLOCK_REALTIME
443# undef EV_USE_REALTIME
69# define EV_USE_REALTIME 0 444# define EV_USE_REALTIME 0
70#endif 445#endif
71#ifndef EV_USE_REALTIME 446
72# define EV_USE_REALTIME 1 /* posix requirement, but might be slower */ 447#if !EV_STAT_ENABLE
448# undef EV_USE_INOTIFY
449# define EV_USE_INOTIFY 0
450#endif
451
452#if __linux && EV_USE_IOURING
453# include <linux/version.h>
454# if LINUX_VERSION_CODE < KERNEL_VERSION(4,14,0)
455# undef EV_USE_IOURING
456# define EV_USE_IOURING 0
73#endif 457# endif
458#endif
74 459
75#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 460#if !EV_USE_NANOSLEEP
76#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detetc time jumps) */ 461/* hp-ux has it in sys/time.h, which we unconditionally include above */
77#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 462# if !defined _WIN32 && !defined __hpux
78#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 463# include <sys/select.h>
464# endif
465#endif
79 466
80#include "ev.h" 467#if EV_USE_LINUXAIO
468# include <sys/syscall.h>
469# if SYS_io_getevents && EV_USE_EPOLL /* linuxaio backend requires epoll backend */
470# define EV_NEED_SYSCALL 1
471# else
472# undef EV_USE_LINUXAIO
473# define EV_USE_LINUXAIO 0
474# endif
475#endif
81 476
82typedef struct ev_watcher *W; 477#if EV_USE_IOURING
83typedef struct ev_watcher_list *WL; 478# include <sys/syscall.h>
84typedef struct ev_watcher_time *WT; 479# if !SYS_io_uring_setup && __linux && !__alpha
480# define SYS_io_uring_setup 425
481# define SYS_io_uring_enter 426
482# define SYS_io_uring_wregister 427
483# endif
484# if SYS_io_uring_setup && EV_USE_EPOLL /* iouring backend requires epoll backend */
485# define EV_NEED_SYSCALL 1
486# else
487# undef EV_USE_IOURING
488# define EV_USE_IOURING 0
489# endif
490#endif
85 491
86static ev_tstamp now, diff; /* monotonic clock */ 492#if EV_USE_INOTIFY
87ev_tstamp ev_now; 493# include <sys/statfs.h>
88int ev_method; 494# include <sys/inotify.h>
495/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
496# ifndef IN_DONT_FOLLOW
497# undef EV_USE_INOTIFY
498# define EV_USE_INOTIFY 0
499# endif
500#endif
89 501
90static int have_monotonic; /* runtime */ 502#if EV_USE_EVENTFD
503/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
504# include <stdint.h>
505# ifndef EFD_NONBLOCK
506# define EFD_NONBLOCK O_NONBLOCK
507# endif
508# ifndef EFD_CLOEXEC
509# ifdef O_CLOEXEC
510# define EFD_CLOEXEC O_CLOEXEC
511# else
512# define EFD_CLOEXEC 02000000
513# endif
514# endif
515EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
516#endif
91 517
92static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 518#if EV_USE_SIGNALFD
93static void (*method_modify)(int fd, int oev, int nev); 519/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
94static void (*method_poll)(ev_tstamp timeout); 520# include <stdint.h>
521# ifndef SFD_NONBLOCK
522# define SFD_NONBLOCK O_NONBLOCK
523# endif
524# ifndef SFD_CLOEXEC
525# ifdef O_CLOEXEC
526# define SFD_CLOEXEC O_CLOEXEC
527# else
528# define SFD_CLOEXEC 02000000
529# endif
530# endif
531EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
532
533struct signalfd_siginfo
534{
535 uint32_t ssi_signo;
536 char pad[128 - sizeof (uint32_t)];
537};
538#endif
95 539
96/*****************************************************************************/ 540/*****************************************************************************/
97 541
542#if EV_VERIFY >= 3
543# define EV_FREQUENT_CHECK ev_verify (EV_A)
544#else
545# define EV_FREQUENT_CHECK do { } while (0)
546#endif
547
548/*
549 * This is used to work around floating point rounding problems.
550 * This value is good at least till the year 4000.
551 */
552#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
553/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
554
555#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
556#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
557
558/* find a portable timestamp that is "always" in the future but fits into time_t.
559 * this is quite hard, and we are mostly guessing - we handle 32 bit signed/unsigned time_t,
560 * and sizes larger than 32 bit, and maybe the unlikely floating point time_t */
561#define EV_TSTAMP_HUGE \
562 (sizeof (time_t) >= 8 ? 10000000000000. \
563 : 0 < (time_t)4294967295 ? 4294967295. \
564 : 2147483647.) \
565
566#ifndef EV_TS_CONST
567# define EV_TS_CONST(nv) nv
568# define EV_TS_TO_MSEC(a) a * 1e3 + 0.9999
569# define EV_TS_FROM_USEC(us) us * 1e-6
570# define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
571# define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
572# define EV_TV_GET(tv) ((tv).tv_sec + (tv).tv_usec * 1e-6)
573# define EV_TS_GET(ts) ((ts).tv_sec + (ts).tv_nsec * 1e-9)
574#endif
575
576/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
577/* ECB.H BEGIN */
578/*
579 * libecb - http://software.schmorp.de/pkg/libecb
580 *
581 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
582 * Copyright (©) 2011 Emanuele Giaquinta
583 * All rights reserved.
584 *
585 * Redistribution and use in source and binary forms, with or without modifica-
586 * tion, are permitted provided that the following conditions are met:
587 *
588 * 1. Redistributions of source code must retain the above copyright notice,
589 * this list of conditions and the following disclaimer.
590 *
591 * 2. Redistributions in binary form must reproduce the above copyright
592 * notice, this list of conditions and the following disclaimer in the
593 * documentation and/or other materials provided with the distribution.
594 *
595 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
596 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
597 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
598 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
599 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
600 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
601 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
602 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
603 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
604 * OF THE POSSIBILITY OF SUCH DAMAGE.
605 *
606 * Alternatively, the contents of this file may be used under the terms of
607 * the GNU General Public License ("GPL") version 2 or any later version,
608 * in which case the provisions of the GPL are applicable instead of
609 * the above. If you wish to allow the use of your version of this file
610 * only under the terms of the GPL and not to allow others to use your
611 * version of this file under the BSD license, indicate your decision
612 * by deleting the provisions above and replace them with the notice
613 * and other provisions required by the GPL. If you do not delete the
614 * provisions above, a recipient may use your version of this file under
615 * either the BSD or the GPL.
616 */
617
618#ifndef ECB_H
619#define ECB_H
620
621/* 16 bits major, 16 bits minor */
622#define ECB_VERSION 0x00010006
623
624#ifdef _WIN32
625 typedef signed char int8_t;
626 typedef unsigned char uint8_t;
627 typedef signed short int16_t;
628 typedef unsigned short uint16_t;
629 typedef signed int int32_t;
630 typedef unsigned int uint32_t;
631 #if __GNUC__
632 typedef signed long long int64_t;
633 typedef unsigned long long uint64_t;
634 #else /* _MSC_VER || __BORLANDC__ */
635 typedef signed __int64 int64_t;
636 typedef unsigned __int64 uint64_t;
637 #endif
638 #ifdef _WIN64
639 #define ECB_PTRSIZE 8
640 typedef uint64_t uintptr_t;
641 typedef int64_t intptr_t;
642 #else
643 #define ECB_PTRSIZE 4
644 typedef uint32_t uintptr_t;
645 typedef int32_t intptr_t;
646 #endif
647#else
648 #include <inttypes.h>
649 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
650 #define ECB_PTRSIZE 8
651 #else
652 #define ECB_PTRSIZE 4
653 #endif
654#endif
655
656#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
657#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
658
659/* work around x32 idiocy by defining proper macros */
660#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
661 #if _ILP32
662 #define ECB_AMD64_X32 1
663 #else
664 #define ECB_AMD64 1
665 #endif
666#endif
667
668/* many compilers define _GNUC_ to some versions but then only implement
669 * what their idiot authors think are the "more important" extensions,
670 * causing enormous grief in return for some better fake benchmark numbers.
671 * or so.
672 * we try to detect these and simply assume they are not gcc - if they have
673 * an issue with that they should have done it right in the first place.
674 */
675#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
676 #define ECB_GCC_VERSION(major,minor) 0
677#else
678 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
679#endif
680
681#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
682
683#if __clang__ && defined __has_builtin
684 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
685#else
686 #define ECB_CLANG_BUILTIN(x) 0
687#endif
688
689#if __clang__ && defined __has_extension
690 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
691#else
692 #define ECB_CLANG_EXTENSION(x) 0
693#endif
694
695#define ECB_CPP (__cplusplus+0)
696#define ECB_CPP11 (__cplusplus >= 201103L)
697#define ECB_CPP14 (__cplusplus >= 201402L)
698#define ECB_CPP17 (__cplusplus >= 201703L)
699
700#if ECB_CPP
701 #define ECB_C 0
702 #define ECB_STDC_VERSION 0
703#else
704 #define ECB_C 1
705 #define ECB_STDC_VERSION __STDC_VERSION__
706#endif
707
708#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
709#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
710#define ECB_C17 (ECB_STDC_VERSION >= 201710L)
711
712#if ECB_CPP
713 #define ECB_EXTERN_C extern "C"
714 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
715 #define ECB_EXTERN_C_END }
716#else
717 #define ECB_EXTERN_C extern
718 #define ECB_EXTERN_C_BEG
719 #define ECB_EXTERN_C_END
720#endif
721
722/*****************************************************************************/
723
724/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
725/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
726
727#if ECB_NO_THREADS
728 #define ECB_NO_SMP 1
729#endif
730
731#if ECB_NO_SMP
732 #define ECB_MEMORY_FENCE do { } while (0)
733#endif
734
735/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
736#if __xlC__ && ECB_CPP
737 #include <builtins.h>
738#endif
739
740#if 1400 <= _MSC_VER
741 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
742#endif
743
744#ifndef ECB_MEMORY_FENCE
745 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
746 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
747 #if __i386 || __i386__
748 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
749 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
750 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
751 #elif ECB_GCC_AMD64
752 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
753 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
754 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
755 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
756 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
757 #elif defined __ARM_ARCH_2__ \
758 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
759 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
760 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
761 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
762 || defined __ARM_ARCH_5TEJ__
763 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
764 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
765 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
766 || defined __ARM_ARCH_6T2__
767 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
768 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
769 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
770 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
771 #elif __aarch64__
772 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
773 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
774 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
775 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
776 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
777 #elif defined __s390__ || defined __s390x__
778 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
779 #elif defined __mips__
780 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
781 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
782 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
783 #elif defined __alpha__
784 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
785 #elif defined __hppa__
786 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
787 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
788 #elif defined __ia64__
789 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
790 #elif defined __m68k__
791 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
792 #elif defined __m88k__
793 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
794 #elif defined __sh__
795 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
796 #endif
797 #endif
798#endif
799
800#ifndef ECB_MEMORY_FENCE
801 #if ECB_GCC_VERSION(4,7)
802 /* see comment below (stdatomic.h) about the C11 memory model. */
803 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
804 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
805 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
806 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
807
808 #elif ECB_CLANG_EXTENSION(c_atomic)
809 /* see comment below (stdatomic.h) about the C11 memory model. */
810 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
811 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
812 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
813 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
814
815 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
816 #define ECB_MEMORY_FENCE __sync_synchronize ()
817 #elif _MSC_VER >= 1500 /* VC++ 2008 */
818 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
819 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
820 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
821 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
822 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
823 #elif _MSC_VER >= 1400 /* VC++ 2005 */
824 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
825 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
826 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
827 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
828 #elif defined _WIN32
829 #include <WinNT.h>
830 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
831 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
832 #include <mbarrier.h>
833 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
834 #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
835 #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
836 #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
837 #elif __xlC__
838 #define ECB_MEMORY_FENCE __sync ()
839 #endif
840#endif
841
842#ifndef ECB_MEMORY_FENCE
843 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
844 /* we assume that these memory fences work on all variables/all memory accesses, */
845 /* not just C11 atomics and atomic accesses */
846 #include <stdatomic.h>
847 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
848 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
849 #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
850 #endif
851#endif
852
853#ifndef ECB_MEMORY_FENCE
854 #if !ECB_AVOID_PTHREADS
855 /*
856 * if you get undefined symbol references to pthread_mutex_lock,
857 * or failure to find pthread.h, then you should implement
858 * the ECB_MEMORY_FENCE operations for your cpu/compiler
859 * OR provide pthread.h and link against the posix thread library
860 * of your system.
861 */
862 #include <pthread.h>
863 #define ECB_NEEDS_PTHREADS 1
864 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
865
866 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
867 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
868 #endif
869#endif
870
871#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
872 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
873#endif
874
875#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
876 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
877#endif
878
879#if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
880 #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
881#endif
882
883/*****************************************************************************/
884
885#if ECB_CPP
886 #define ecb_inline static inline
887#elif ECB_GCC_VERSION(2,5)
888 #define ecb_inline static __inline__
889#elif ECB_C99
890 #define ecb_inline static inline
891#else
892 #define ecb_inline static
893#endif
894
895#if ECB_GCC_VERSION(3,3)
896 #define ecb_restrict __restrict__
897#elif ECB_C99
898 #define ecb_restrict restrict
899#else
900 #define ecb_restrict
901#endif
902
903typedef int ecb_bool;
904
905#define ECB_CONCAT_(a, b) a ## b
906#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
907#define ECB_STRINGIFY_(a) # a
908#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
909#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
910
911#define ecb_function_ ecb_inline
912
913#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
914 #define ecb_attribute(attrlist) __attribute__ (attrlist)
915#else
916 #define ecb_attribute(attrlist)
917#endif
918
919#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
920 #define ecb_is_constant(expr) __builtin_constant_p (expr)
921#else
922 /* possible C11 impl for integral types
923 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
924 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
925
926 #define ecb_is_constant(expr) 0
927#endif
928
929#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
930 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
931#else
932 #define ecb_expect(expr,value) (expr)
933#endif
934
935#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
936 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
937#else
938 #define ecb_prefetch(addr,rw,locality)
939#endif
940
941/* no emulation for ecb_decltype */
942#if ECB_CPP11
943 // older implementations might have problems with decltype(x)::type, work around it
944 template<class T> struct ecb_decltype_t { typedef T type; };
945 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
946#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
947 #define ecb_decltype(x) __typeof__ (x)
948#endif
949
950#if _MSC_VER >= 1300
951 #define ecb_deprecated __declspec (deprecated)
952#else
953 #define ecb_deprecated ecb_attribute ((__deprecated__))
954#endif
955
956#if _MSC_VER >= 1500
957 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
958#elif ECB_GCC_VERSION(4,5)
959 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
960#else
961 #define ecb_deprecated_message(msg) ecb_deprecated
962#endif
963
964#if _MSC_VER >= 1400
965 #define ecb_noinline __declspec (noinline)
966#else
967 #define ecb_noinline ecb_attribute ((__noinline__))
968#endif
969
970#define ecb_unused ecb_attribute ((__unused__))
971#define ecb_const ecb_attribute ((__const__))
972#define ecb_pure ecb_attribute ((__pure__))
973
974#if ECB_C11 || __IBMC_NORETURN
975 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
976 #define ecb_noreturn _Noreturn
977#elif ECB_CPP11
978 #define ecb_noreturn [[noreturn]]
979#elif _MSC_VER >= 1200
980 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
981 #define ecb_noreturn __declspec (noreturn)
982#else
983 #define ecb_noreturn ecb_attribute ((__noreturn__))
984#endif
985
986#if ECB_GCC_VERSION(4,3)
987 #define ecb_artificial ecb_attribute ((__artificial__))
988 #define ecb_hot ecb_attribute ((__hot__))
989 #define ecb_cold ecb_attribute ((__cold__))
990#else
991 #define ecb_artificial
992 #define ecb_hot
993 #define ecb_cold
994#endif
995
996/* put around conditional expressions if you are very sure that the */
997/* expression is mostly true or mostly false. note that these return */
998/* booleans, not the expression. */
999#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
1000#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
1001/* for compatibility to the rest of the world */
1002#define ecb_likely(expr) ecb_expect_true (expr)
1003#define ecb_unlikely(expr) ecb_expect_false (expr)
1004
1005/* count trailing zero bits and count # of one bits */
1006#if ECB_GCC_VERSION(3,4) \
1007 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
1008 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
1009 && ECB_CLANG_BUILTIN(__builtin_popcount))
1010 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
1011 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
1012 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
1013 #define ecb_ctz32(x) __builtin_ctz (x)
1014 #define ecb_ctz64(x) __builtin_ctzll (x)
1015 #define ecb_popcount32(x) __builtin_popcount (x)
1016 /* no popcountll */
1017#else
1018 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
1019 ecb_function_ ecb_const int
1020 ecb_ctz32 (uint32_t x)
1021 {
1022#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1023 unsigned long r;
1024 _BitScanForward (&r, x);
1025 return (int)r;
1026#else
1027 int r = 0;
1028
1029 x &= ~x + 1; /* this isolates the lowest bit */
1030
1031#if ECB_branchless_on_i386
1032 r += !!(x & 0xaaaaaaaa) << 0;
1033 r += !!(x & 0xcccccccc) << 1;
1034 r += !!(x & 0xf0f0f0f0) << 2;
1035 r += !!(x & 0xff00ff00) << 3;
1036 r += !!(x & 0xffff0000) << 4;
1037#else
1038 if (x & 0xaaaaaaaa) r += 1;
1039 if (x & 0xcccccccc) r += 2;
1040 if (x & 0xf0f0f0f0) r += 4;
1041 if (x & 0xff00ff00) r += 8;
1042 if (x & 0xffff0000) r += 16;
1043#endif
1044
1045 return r;
1046#endif
1047 }
1048
1049 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
1050 ecb_function_ ecb_const int
1051 ecb_ctz64 (uint64_t x)
1052 {
1053#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1054 unsigned long r;
1055 _BitScanForward64 (&r, x);
1056 return (int)r;
1057#else
1058 int shift = x & 0xffffffff ? 0 : 32;
1059 return ecb_ctz32 (x >> shift) + shift;
1060#endif
1061 }
1062
1063 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1064 ecb_function_ ecb_const int
1065 ecb_popcount32 (uint32_t x)
1066 {
1067 x -= (x >> 1) & 0x55555555;
1068 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1069 x = ((x >> 4) + x) & 0x0f0f0f0f;
1070 x *= 0x01010101;
1071
1072 return x >> 24;
1073 }
1074
1075 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1076 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1077 {
1078#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1079 unsigned long r;
1080 _BitScanReverse (&r, x);
1081 return (int)r;
1082#else
1083 int r = 0;
1084
1085 if (x >> 16) { x >>= 16; r += 16; }
1086 if (x >> 8) { x >>= 8; r += 8; }
1087 if (x >> 4) { x >>= 4; r += 4; }
1088 if (x >> 2) { x >>= 2; r += 2; }
1089 if (x >> 1) { r += 1; }
1090
1091 return r;
1092#endif
1093 }
1094
1095 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1096 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1097 {
1098#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1099 unsigned long r;
1100 _BitScanReverse64 (&r, x);
1101 return (int)r;
1102#else
1103 int r = 0;
1104
1105 if (x >> 32) { x >>= 32; r += 32; }
1106
1107 return r + ecb_ld32 (x);
1108#endif
1109 }
1110#endif
1111
1112ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1113ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1114ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1115ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1116
1117ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1118ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1119{
1120 return ( (x * 0x0802U & 0x22110U)
1121 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1122}
1123
1124ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1125ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1126{
1127 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1128 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1129 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1130 x = ( x >> 8 ) | ( x << 8);
1131
1132 return x;
1133}
1134
1135ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1136ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1137{
1138 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1139 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1140 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1141 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1142 x = ( x >> 16 ) | ( x << 16);
1143
1144 return x;
1145}
1146
1147/* popcount64 is only available on 64 bit cpus as gcc builtin */
1148/* so for this version we are lazy */
1149ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1150ecb_function_ ecb_const int
1151ecb_popcount64 (uint64_t x)
1152{
1153 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1154}
1155
1156ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1157ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1158ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1159ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1160ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1161ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1162ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1163ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1164
1165ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1166ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1167ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1168ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1169ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1170ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1171ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1172ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1173
1174#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1175 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1176 #define ecb_bswap16(x) __builtin_bswap16 (x)
1177 #else
1178 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1179 #endif
1180 #define ecb_bswap32(x) __builtin_bswap32 (x)
1181 #define ecb_bswap64(x) __builtin_bswap64 (x)
1182#elif _MSC_VER
1183 #include <stdlib.h>
1184 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1185 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1186 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1187#else
1188 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1189 ecb_function_ ecb_const uint16_t
1190 ecb_bswap16 (uint16_t x)
1191 {
1192 return ecb_rotl16 (x, 8);
1193 }
1194
1195 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1196 ecb_function_ ecb_const uint32_t
1197 ecb_bswap32 (uint32_t x)
1198 {
1199 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1200 }
1201
1202 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1203 ecb_function_ ecb_const uint64_t
1204 ecb_bswap64 (uint64_t x)
1205 {
1206 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1207 }
1208#endif
1209
1210#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1211 #define ecb_unreachable() __builtin_unreachable ()
1212#else
1213 /* this seems to work fine, but gcc always emits a warning for it :/ */
1214 ecb_inline ecb_noreturn void ecb_unreachable (void);
1215 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1216#endif
1217
1218/* try to tell the compiler that some condition is definitely true */
1219#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1220
1221ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1222ecb_inline ecb_const uint32_t
1223ecb_byteorder_helper (void)
1224{
1225 /* the union code still generates code under pressure in gcc, */
1226 /* but less than using pointers, and always seems to */
1227 /* successfully return a constant. */
1228 /* the reason why we have this horrible preprocessor mess */
1229 /* is to avoid it in all cases, at least on common architectures */
1230 /* or when using a recent enough gcc version (>= 4.6) */
1231#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1232 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1233 #define ECB_LITTLE_ENDIAN 1
1234 return 0x44332211;
1235#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1236 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1237 #define ECB_BIG_ENDIAN 1
1238 return 0x11223344;
1239#else
1240 union
1241 {
1242 uint8_t c[4];
1243 uint32_t u;
1244 } u = { 0x11, 0x22, 0x33, 0x44 };
1245 return u.u;
1246#endif
1247}
1248
1249ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1250ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1251ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1252ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1253
1254#if ECB_GCC_VERSION(3,0) || ECB_C99
1255 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1256#else
1257 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1258#endif
1259
1260#if ECB_CPP
1261 template<typename T>
1262 static inline T ecb_div_rd (T val, T div)
1263 {
1264 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1265 }
1266 template<typename T>
1267 static inline T ecb_div_ru (T val, T div)
1268 {
1269 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1270 }
1271#else
1272 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1273 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1274#endif
1275
1276#if ecb_cplusplus_does_not_suck
1277 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1278 template<typename T, int N>
1279 static inline int ecb_array_length (const T (&arr)[N])
1280 {
1281 return N;
1282 }
1283#else
1284 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1285#endif
1286
1287ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1288ecb_function_ ecb_const uint32_t
1289ecb_binary16_to_binary32 (uint32_t x)
1290{
1291 unsigned int s = (x & 0x8000) << (31 - 15);
1292 int e = (x >> 10) & 0x001f;
1293 unsigned int m = x & 0x03ff;
1294
1295 if (ecb_expect_false (e == 31))
1296 /* infinity or NaN */
1297 e = 255 - (127 - 15);
1298 else if (ecb_expect_false (!e))
1299 {
1300 if (ecb_expect_true (!m))
1301 /* zero, handled by code below by forcing e to 0 */
1302 e = 0 - (127 - 15);
1303 else
1304 {
1305 /* subnormal, renormalise */
1306 unsigned int s = 10 - ecb_ld32 (m);
1307
1308 m = (m << s) & 0x3ff; /* mask implicit bit */
1309 e -= s - 1;
1310 }
1311 }
1312
1313 /* e and m now are normalised, or zero, (or inf or nan) */
1314 e += 127 - 15;
1315
1316 return s | (e << 23) | (m << (23 - 10));
1317}
1318
1319ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1320ecb_function_ ecb_const uint16_t
1321ecb_binary32_to_binary16 (uint32_t x)
1322{
1323 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1324 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1325 unsigned int m = x & 0x007fffff;
1326
1327 x &= 0x7fffffff;
1328
1329 /* if it's within range of binary16 normals, use fast path */
1330 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1331 {
1332 /* mantissa round-to-even */
1333 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1334
1335 /* handle overflow */
1336 if (ecb_expect_false (m >= 0x00800000))
1337 {
1338 m >>= 1;
1339 e += 1;
1340 }
1341
1342 return s | (e << 10) | (m >> (23 - 10));
1343 }
1344
1345 /* handle large numbers and infinity */
1346 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1347 return s | 0x7c00;
1348
1349 /* handle zero, subnormals and small numbers */
1350 if (ecb_expect_true (x < 0x38800000))
1351 {
1352 /* zero */
1353 if (ecb_expect_true (!x))
1354 return s;
1355
1356 /* handle subnormals */
1357
1358 /* too small, will be zero */
1359 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1360 return s;
1361
1362 m |= 0x00800000; /* make implicit bit explicit */
1363
1364 /* very tricky - we need to round to the nearest e (+10) bit value */
1365 {
1366 unsigned int bits = 14 - e;
1367 unsigned int half = (1 << (bits - 1)) - 1;
1368 unsigned int even = (m >> bits) & 1;
1369
1370 /* if this overflows, we will end up with a normalised number */
1371 m = (m + half + even) >> bits;
1372 }
1373
1374 return s | m;
1375 }
1376
1377 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1378 m >>= 13;
1379
1380 return s | 0x7c00 | m | !m;
1381}
1382
1383/*******************************************************************************/
1384/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1385
1386/* basically, everything uses "ieee pure-endian" floating point numbers */
1387/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1388#if 0 \
1389 || __i386 || __i386__ \
1390 || ECB_GCC_AMD64 \
1391 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1392 || defined __s390__ || defined __s390x__ \
1393 || defined __mips__ \
1394 || defined __alpha__ \
1395 || defined __hppa__ \
1396 || defined __ia64__ \
1397 || defined __m68k__ \
1398 || defined __m88k__ \
1399 || defined __sh__ \
1400 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1401 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1402 || defined __aarch64__
1403 #define ECB_STDFP 1
1404 #include <string.h> /* for memcpy */
1405#else
1406 #define ECB_STDFP 0
1407#endif
1408
1409#ifndef ECB_NO_LIBM
1410
1411 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1412
1413 /* only the oldest of old doesn't have this one. solaris. */
1414 #ifdef INFINITY
1415 #define ECB_INFINITY INFINITY
1416 #else
1417 #define ECB_INFINITY HUGE_VAL
1418 #endif
1419
1420 #ifdef NAN
1421 #define ECB_NAN NAN
1422 #else
1423 #define ECB_NAN ECB_INFINITY
1424 #endif
1425
1426 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1427 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1428 #define ecb_frexpf(x,e) frexpf ((x), (e))
1429 #else
1430 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1431 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1432 #endif
1433
1434 /* convert a float to ieee single/binary32 */
1435 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1436 ecb_function_ ecb_const uint32_t
1437 ecb_float_to_binary32 (float x)
1438 {
1439 uint32_t r;
1440
1441 #if ECB_STDFP
1442 memcpy (&r, &x, 4);
1443 #else
1444 /* slow emulation, works for anything but -0 */
1445 uint32_t m;
1446 int e;
1447
1448 if (x == 0e0f ) return 0x00000000U;
1449 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1450 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1451 if (x != x ) return 0x7fbfffffU;
1452
1453 m = ecb_frexpf (x, &e) * 0x1000000U;
1454
1455 r = m & 0x80000000U;
1456
1457 if (r)
1458 m = -m;
1459
1460 if (e <= -126)
1461 {
1462 m &= 0xffffffU;
1463 m >>= (-125 - e);
1464 e = -126;
1465 }
1466
1467 r |= (e + 126) << 23;
1468 r |= m & 0x7fffffU;
1469 #endif
1470
1471 return r;
1472 }
1473
1474 /* converts an ieee single/binary32 to a float */
1475 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1476 ecb_function_ ecb_const float
1477 ecb_binary32_to_float (uint32_t x)
1478 {
1479 float r;
1480
1481 #if ECB_STDFP
1482 memcpy (&r, &x, 4);
1483 #else
1484 /* emulation, only works for normals and subnormals and +0 */
1485 int neg = x >> 31;
1486 int e = (x >> 23) & 0xffU;
1487
1488 x &= 0x7fffffU;
1489
1490 if (e)
1491 x |= 0x800000U;
1492 else
1493 e = 1;
1494
1495 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1496 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1497
1498 r = neg ? -r : r;
1499 #endif
1500
1501 return r;
1502 }
1503
1504 /* convert a double to ieee double/binary64 */
1505 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1506 ecb_function_ ecb_const uint64_t
1507 ecb_double_to_binary64 (double x)
1508 {
1509 uint64_t r;
1510
1511 #if ECB_STDFP
1512 memcpy (&r, &x, 8);
1513 #else
1514 /* slow emulation, works for anything but -0 */
1515 uint64_t m;
1516 int e;
1517
1518 if (x == 0e0 ) return 0x0000000000000000U;
1519 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1520 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1521 if (x != x ) return 0X7ff7ffffffffffffU;
1522
1523 m = frexp (x, &e) * 0x20000000000000U;
1524
1525 r = m & 0x8000000000000000;;
1526
1527 if (r)
1528 m = -m;
1529
1530 if (e <= -1022)
1531 {
1532 m &= 0x1fffffffffffffU;
1533 m >>= (-1021 - e);
1534 e = -1022;
1535 }
1536
1537 r |= ((uint64_t)(e + 1022)) << 52;
1538 r |= m & 0xfffffffffffffU;
1539 #endif
1540
1541 return r;
1542 }
1543
1544 /* converts an ieee double/binary64 to a double */
1545 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1546 ecb_function_ ecb_const double
1547 ecb_binary64_to_double (uint64_t x)
1548 {
1549 double r;
1550
1551 #if ECB_STDFP
1552 memcpy (&r, &x, 8);
1553 #else
1554 /* emulation, only works for normals and subnormals and +0 */
1555 int neg = x >> 63;
1556 int e = (x >> 52) & 0x7ffU;
1557
1558 x &= 0xfffffffffffffU;
1559
1560 if (e)
1561 x |= 0x10000000000000U;
1562 else
1563 e = 1;
1564
1565 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1566 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1567
1568 r = neg ? -r : r;
1569 #endif
1570
1571 return r;
1572 }
1573
1574 /* convert a float to ieee half/binary16 */
1575 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1576 ecb_function_ ecb_const uint16_t
1577 ecb_float_to_binary16 (float x)
1578 {
1579 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1580 }
1581
1582 /* convert an ieee half/binary16 to float */
1583 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1584 ecb_function_ ecb_const float
1585 ecb_binary16_to_float (uint16_t x)
1586 {
1587 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1588 }
1589
1590#endif
1591
1592#endif
1593
1594/* ECB.H END */
1595
1596#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1597/* if your architecture doesn't need memory fences, e.g. because it is
1598 * single-cpu/core, or if you use libev in a project that doesn't use libev
1599 * from multiple threads, then you can define ECB_NO_THREADS when compiling
1600 * libev, in which cases the memory fences become nops.
1601 * alternatively, you can remove this #error and link against libpthread,
1602 * which will then provide the memory fences.
1603 */
1604# error "memory fences not defined for your architecture, please report"
1605#endif
1606
1607#ifndef ECB_MEMORY_FENCE
1608# define ECB_MEMORY_FENCE do { } while (0)
1609# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1610# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1611#endif
1612
1613#define inline_size ecb_inline
1614
1615#if EV_FEATURE_CODE
1616# define inline_speed ecb_inline
1617#else
1618# define inline_speed ecb_noinline static
1619#endif
1620
1621/*****************************************************************************/
1622/* raw syscall wrappers */
1623
1624#if EV_NEED_SYSCALL
1625
1626#include <sys/syscall.h>
1627
1628/*
1629 * define some syscall wrappers for common architectures
1630 * this is mostly for nice looks during debugging, not performance.
1631 * our syscalls return < 0, not == -1, on error. which is good
1632 * enough for linux aio.
1633 * TODO: arm is also common nowadays, maybe even mips and x86
1634 * TODO: after implementing this, it suddenly looks like overkill, but its hard to remove...
1635 */
1636#if __GNUC__ && __linux && ECB_AMD64 && !defined __OPTIMIZE_SIZE__
1637 /* the costly errno access probably kills this for size optimisation */
1638
1639 #define ev_syscall(nr,narg,arg1,arg2,arg3,arg4,arg5,arg6) \
1640 ({ \
1641 long res; \
1642 register unsigned long r6 __asm__ ("r9" ); \
1643 register unsigned long r5 __asm__ ("r8" ); \
1644 register unsigned long r4 __asm__ ("r10"); \
1645 register unsigned long r3 __asm__ ("rdx"); \
1646 register unsigned long r2 __asm__ ("rsi"); \
1647 register unsigned long r1 __asm__ ("rdi"); \
1648 if (narg >= 6) r6 = (unsigned long)(arg6); \
1649 if (narg >= 5) r5 = (unsigned long)(arg5); \
1650 if (narg >= 4) r4 = (unsigned long)(arg4); \
1651 if (narg >= 3) r3 = (unsigned long)(arg3); \
1652 if (narg >= 2) r2 = (unsigned long)(arg2); \
1653 if (narg >= 1) r1 = (unsigned long)(arg1); \
1654 __asm__ __volatile__ ( \
1655 "syscall\n\t" \
1656 : "=a" (res) \
1657 : "0" (nr), "r" (r1), "r" (r2), "r" (r3), "r" (r4), "r" (r5) \
1658 : "cc", "r11", "cx", "memory"); \
1659 errno = -res; \
1660 res; \
1661 })
1662
1663#endif
1664
1665#ifdef ev_syscall
1666 #define ev_syscall0(nr) ev_syscall (nr, 0, 0, 0, 0, 0, 0, 0)
1667 #define ev_syscall1(nr,arg1) ev_syscall (nr, 1, arg1, 0, 0, 0, 0, 0)
1668 #define ev_syscall2(nr,arg1,arg2) ev_syscall (nr, 2, arg1, arg2, 0, 0, 0, 0)
1669 #define ev_syscall3(nr,arg1,arg2,arg3) ev_syscall (nr, 3, arg1, arg2, arg3, 0, 0, 0)
1670 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) ev_syscall (nr, 3, arg1, arg2, arg3, arg4, 0, 0)
1671 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) ev_syscall (nr, 5, arg1, arg2, arg3, arg4, arg5, 0)
1672 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) ev_syscall (nr, 6, arg1, arg2, arg3, arg4, arg5,arg6)
1673#else
1674 #define ev_syscall0(nr) syscall (nr)
1675 #define ev_syscall1(nr,arg1) syscall (nr, arg1)
1676 #define ev_syscall2(nr,arg1,arg2) syscall (nr, arg1, arg2)
1677 #define ev_syscall3(nr,arg1,arg2,arg3) syscall (nr, arg1, arg2, arg3)
1678 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) syscall (nr, arg1, arg2, arg3, arg4)
1679 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) syscall (nr, arg1, arg2, arg3, arg4, arg5)
1680 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) syscall (nr, arg1, arg2, arg3, arg4, arg5,arg6)
1681#endif
1682
1683#endif
1684
1685/*****************************************************************************/
1686
1687#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1688
1689#if EV_MINPRI == EV_MAXPRI
1690# define ABSPRI(w) (((W)w), 0)
1691#else
1692# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1693#endif
1694
1695#define EMPTY /* required for microsofts broken pseudo-c compiler */
1696
1697typedef ev_watcher *W;
1698typedef ev_watcher_list *WL;
1699typedef ev_watcher_time *WT;
1700
1701#define ev_active(w) ((W)(w))->active
1702#define ev_at(w) ((WT)(w))->at
1703
1704#if EV_USE_REALTIME
1705/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1706/* giving it a reasonably high chance of working on typical architectures */
1707static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1708#endif
1709
1710#if EV_USE_MONOTONIC
1711static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1712#endif
1713
1714#ifndef EV_FD_TO_WIN32_HANDLE
1715# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1716#endif
1717#ifndef EV_WIN32_HANDLE_TO_FD
1718# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1719#endif
1720#ifndef EV_WIN32_CLOSE_FD
1721# define EV_WIN32_CLOSE_FD(fd) close (fd)
1722#endif
1723
1724#ifdef _WIN32
1725# include "ev_win32.c"
1726#endif
1727
1728/*****************************************************************************/
1729
1730#if EV_USE_LINUXAIO
1731# include <linux/aio_abi.h> /* probably only needed for aio_context_t */
1732#endif
1733
1734/* define a suitable floor function (only used by periodics atm) */
1735
1736#if EV_USE_FLOOR
1737# include <math.h>
1738# define ev_floor(v) floor (v)
1739#else
1740
1741#include <float.h>
1742
1743/* a floor() replacement function, should be independent of ev_tstamp type */
1744ecb_noinline
1745static ev_tstamp
1746ev_floor (ev_tstamp v)
1747{
1748 /* the choice of shift factor is not terribly important */
1749#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1750 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1751#else
1752 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1753#endif
1754
1755 /* special treatment for negative arguments */
1756 if (ecb_expect_false (v < 0.))
1757 {
1758 ev_tstamp f = -ev_floor (-v);
1759
1760 return f - (f == v ? 0 : 1);
1761 }
1762
1763 /* argument too large for an unsigned long? then reduce it */
1764 if (ecb_expect_false (v >= shift))
1765 {
1766 ev_tstamp f;
1767
1768 if (v == v - 1.)
1769 return v; /* very large numbers are assumed to be integer */
1770
1771 f = shift * ev_floor (v * (1. / shift));
1772 return f + ev_floor (v - f);
1773 }
1774
1775 /* fits into an unsigned long */
1776 return (unsigned long)v;
1777}
1778
1779#endif
1780
1781/*****************************************************************************/
1782
1783#ifdef __linux
1784# include <sys/utsname.h>
1785#endif
1786
1787ecb_noinline ecb_cold
1788static unsigned int
1789ev_linux_version (void)
1790{
1791#ifdef __linux
1792 unsigned int v = 0;
1793 struct utsname buf;
1794 int i;
1795 char *p = buf.release;
1796
1797 if (uname (&buf))
1798 return 0;
1799
1800 for (i = 3+1; --i; )
1801 {
1802 unsigned int c = 0;
1803
1804 for (;;)
1805 {
1806 if (*p >= '0' && *p <= '9')
1807 c = c * 10 + *p++ - '0';
1808 else
1809 {
1810 p += *p == '.';
1811 break;
1812 }
1813 }
1814
1815 v = (v << 8) | c;
1816 }
1817
1818 return v;
1819#else
1820 return 0;
1821#endif
1822}
1823
1824/*****************************************************************************/
1825
1826#if EV_AVOID_STDIO
1827ecb_noinline ecb_cold
1828static void
1829ev_printerr (const char *msg)
1830{
1831 write (STDERR_FILENO, msg, strlen (msg));
1832}
1833#endif
1834
1835static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
1836
1837ecb_cold
1838void
1839ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
1840{
1841 syserr_cb = cb;
1842}
1843
1844ecb_noinline ecb_cold
1845static void
1846ev_syserr (const char *msg)
1847{
1848 if (!msg)
1849 msg = "(libev) system error";
1850
1851 if (syserr_cb)
1852 syserr_cb (msg);
1853 else
1854 {
1855#if EV_AVOID_STDIO
1856 ev_printerr (msg);
1857 ev_printerr (": ");
1858 ev_printerr (strerror (errno));
1859 ev_printerr ("\n");
1860#else
1861 perror (msg);
1862#endif
1863 abort ();
1864 }
1865}
1866
1867static void *
1868ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
1869{
1870 /* some systems, notably openbsd and darwin, fail to properly
1871 * implement realloc (x, 0) (as required by both ansi c-89 and
1872 * the single unix specification, so work around them here.
1873 * recently, also (at least) fedora and debian started breaking it,
1874 * despite documenting it otherwise.
1875 */
1876
1877 if (size)
1878 return realloc (ptr, size);
1879
1880 free (ptr);
1881 return 0;
1882}
1883
1884static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
1885
1886ecb_cold
1887void
1888ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
1889{
1890 alloc = cb;
1891}
1892
1893inline_speed void *
1894ev_realloc (void *ptr, long size)
1895{
1896 ptr = alloc (ptr, size);
1897
1898 if (!ptr && size)
1899 {
1900#if EV_AVOID_STDIO
1901 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1902#else
1903 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1904#endif
1905 abort ();
1906 }
1907
1908 return ptr;
1909}
1910
1911#define ev_malloc(size) ev_realloc (0, (size))
1912#define ev_free(ptr) ev_realloc ((ptr), 0)
1913
1914/*****************************************************************************/
1915
1916/* set in reify when reification needed */
1917#define EV_ANFD_REIFY 1
1918
1919/* file descriptor info structure */
1920typedef struct
1921{
1922 WL head;
1923 unsigned char events; /* the events watched for */
1924 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1925 unsigned char emask; /* some backends store the actual kernel mask in here */
1926 unsigned char eflags; /* flags field for use by backends */
1927#if EV_USE_EPOLL
1928 unsigned int egen; /* generation counter to counter epoll bugs */
1929#endif
1930#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1931 SOCKET handle;
1932#endif
1933#if EV_USE_IOCP
1934 OVERLAPPED or, ow;
1935#endif
1936} ANFD;
1937
1938/* stores the pending event set for a given watcher */
1939typedef struct
1940{
1941 W w;
1942 int events; /* the pending event set for the given watcher */
1943} ANPENDING;
1944
1945#if EV_USE_INOTIFY
1946/* hash table entry per inotify-id */
1947typedef struct
1948{
1949 WL head;
1950} ANFS;
1951#endif
1952
1953/* Heap Entry */
1954#if EV_HEAP_CACHE_AT
1955 /* a heap element */
1956 typedef struct {
1957 ev_tstamp at;
1958 WT w;
1959 } ANHE;
1960
1961 #define ANHE_w(he) (he).w /* access watcher, read-write */
1962 #define ANHE_at(he) (he).at /* access cached at, read-only */
1963 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1964#else
1965 /* a heap element */
1966 typedef WT ANHE;
1967
1968 #define ANHE_w(he) (he)
1969 #define ANHE_at(he) (he)->at
1970 #define ANHE_at_cache(he)
1971#endif
1972
1973#if EV_MULTIPLICITY
1974
1975 struct ev_loop
1976 {
1977 ev_tstamp ev_rt_now;
1978 #define ev_rt_now ((loop)->ev_rt_now)
1979 #define VAR(name,decl) decl;
1980 #include "ev_vars.h"
1981 #undef VAR
1982 };
1983 #include "ev_wrap.h"
1984
1985 static struct ev_loop default_loop_struct;
1986 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1987
1988#else
1989
1990 EV_API_DECL ev_tstamp ev_rt_now = EV_TS_CONST (0.); /* needs to be initialised to make it a definition despite extern */
1991 #define VAR(name,decl) static decl;
1992 #include "ev_vars.h"
1993 #undef VAR
1994
1995 static int ev_default_loop_ptr;
1996
1997#endif
1998
1999#if EV_FEATURE_API
2000# define EV_RELEASE_CB if (ecb_expect_false (release_cb)) release_cb (EV_A)
2001# define EV_ACQUIRE_CB if (ecb_expect_false (acquire_cb)) acquire_cb (EV_A)
2002# define EV_INVOKE_PENDING invoke_cb (EV_A)
2003#else
2004# define EV_RELEASE_CB (void)0
2005# define EV_ACQUIRE_CB (void)0
2006# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
2007#endif
2008
2009#define EVBREAK_RECURSE 0x80
2010
2011/*****************************************************************************/
2012
2013#ifndef EV_HAVE_EV_TIME
98ev_tstamp 2014ev_tstamp
99ev_time (void) 2015ev_time (void) EV_NOEXCEPT
100{ 2016{
101#if EV_USE_REALTIME 2017#if EV_USE_REALTIME
2018 if (ecb_expect_true (have_realtime))
2019 {
102 struct timespec ts; 2020 struct timespec ts;
103 clock_gettime (CLOCK_REALTIME, &ts); 2021 clock_gettime (CLOCK_REALTIME, &ts);
104 return ts.tv_sec + ts.tv_nsec * 1e-9; 2022 return EV_TS_GET (ts);
105#else 2023 }
2024#endif
2025
2026 {
106 struct timeval tv; 2027 struct timeval tv;
107 gettimeofday (&tv, 0); 2028 gettimeofday (&tv, 0);
108 return tv.tv_sec + tv.tv_usec * 1e-6; 2029 return EV_TV_GET (tv);
109#endif 2030 }
110} 2031}
2032#endif
111 2033
112static ev_tstamp 2034inline_size ev_tstamp
113get_clock (void) 2035get_clock (void)
114{ 2036{
115#if EV_USE_MONOTONIC 2037#if EV_USE_MONOTONIC
116 if (have_monotonic) 2038 if (ecb_expect_true (have_monotonic))
117 { 2039 {
118 struct timespec ts; 2040 struct timespec ts;
119 clock_gettime (CLOCK_MONOTONIC, &ts); 2041 clock_gettime (CLOCK_MONOTONIC, &ts);
120 return ts.tv_sec + ts.tv_nsec * 1e-9; 2042 return EV_TS_GET (ts);
121 } 2043 }
122#endif 2044#endif
123 2045
124 return ev_time (); 2046 return ev_time ();
125} 2047}
126 2048
127#define array_roundsize(base,n) ((n) | 4 & ~3) 2049#if EV_MULTIPLICITY
2050ev_tstamp
2051ev_now (EV_P) EV_NOEXCEPT
2052{
2053 return ev_rt_now;
2054}
2055#endif
128 2056
129#define array_needsize(base,cur,cnt,init) \ 2057void
130 if ((cnt) > cur) \ 2058ev_sleep (ev_tstamp delay) EV_NOEXCEPT
131 { \ 2059{
132 int newcnt = cur; \ 2060 if (delay > EV_TS_CONST (0.))
133 do \
134 { \
135 newcnt = array_roundsize (base, newcnt << 1); \
136 } \
137 while ((cnt) > newcnt); \
138 \
139 base = realloc (base, sizeof (*base) * (newcnt)); \
140 init (base + cur, newcnt - cur); \
141 cur = newcnt; \
142 } 2061 {
2062#if EV_USE_NANOSLEEP
2063 struct timespec ts;
2064
2065 EV_TS_SET (ts, delay);
2066 nanosleep (&ts, 0);
2067#elif defined _WIN32
2068 /* maybe this should round up, as ms is very low resolution */
2069 /* compared to select (µs) or nanosleep (ns) */
2070 Sleep ((unsigned long)(EV_TS_TO_MSEC (delay)));
2071#else
2072 struct timeval tv;
2073
2074 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
2075 /* something not guaranteed by newer posix versions, but guaranteed */
2076 /* by older ones */
2077 EV_TV_SET (tv, delay);
2078 select (0, 0, 0, 0, &tv);
2079#endif
2080 }
2081}
143 2082
144/*****************************************************************************/ 2083/*****************************************************************************/
145 2084
146typedef struct 2085#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
147{
148 struct ev_io *head;
149 unsigned char events;
150 unsigned char reify;
151} ANFD;
152 2086
153static ANFD *anfds; 2087/* find a suitable new size for the given array, */
154static int anfdmax; 2088/* hopefully by rounding to a nice-to-malloc size */
2089inline_size int
2090array_nextsize (int elem, int cur, int cnt)
2091{
2092 int ncur = cur + 1;
155 2093
2094 do
2095 ncur <<= 1;
2096 while (cnt > ncur);
2097
2098 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
2099 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
2100 {
2101 ncur *= elem;
2102 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
2103 ncur = ncur - sizeof (void *) * 4;
2104 ncur /= elem;
2105 }
2106
2107 return ncur;
2108}
2109
2110ecb_noinline ecb_cold
2111static void *
2112array_realloc (int elem, void *base, int *cur, int cnt)
2113{
2114 *cur = array_nextsize (elem, *cur, cnt);
2115 return ev_realloc (base, elem * *cur);
2116}
2117
2118#define array_needsize_noinit(base,offset,count)
2119
2120#define array_needsize_zerofill(base,offset,count) \
2121 memset ((void *)(base + offset), 0, sizeof (*(base)) * (count))
2122
2123#define array_needsize(type,base,cur,cnt,init) \
2124 if (ecb_expect_false ((cnt) > (cur))) \
2125 { \
2126 ecb_unused int ocur_ = (cur); \
2127 (base) = (type *)array_realloc \
2128 (sizeof (type), (base), &(cur), (cnt)); \
2129 init ((base), ocur_, ((cur) - ocur_)); \
2130 }
2131
2132#if 0
2133#define array_slim(type,stem) \
2134 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
2135 { \
2136 stem ## max = array_roundsize (stem ## cnt >> 1); \
2137 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
2138 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
2139 }
2140#endif
2141
2142#define array_free(stem, idx) \
2143 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
2144
2145/*****************************************************************************/
2146
2147/* dummy callback for pending events */
2148ecb_noinline
156static void 2149static void
157anfds_init (ANFD *base, int count) 2150pendingcb (EV_P_ ev_prepare *w, int revents)
158{ 2151{
159 while (count--) 2152}
160 {
161 base->head = 0;
162 base->events = EV_NONE;
163 base->reify = 0;
164 2153
165 ++base; 2154ecb_noinline
2155void
2156ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
2157{
2158 W w_ = (W)w;
2159 int pri = ABSPRI (w_);
2160
2161 if (ecb_expect_false (w_->pending))
2162 pendings [pri][w_->pending - 1].events |= revents;
2163 else
166 } 2164 {
167} 2165 w_->pending = ++pendingcnt [pri];
168 2166 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
169typedef struct 2167 pendings [pri][w_->pending - 1].w = w_;
170{
171 W w;
172 int events;
173} ANPENDING;
174
175static ANPENDING *pendings;
176static int pendingmax, pendingcnt;
177
178static void
179event (W w, int events)
180{
181 if (w->pending)
182 {
183 pendings [w->pending - 1].events |= events; 2168 pendings [pri][w_->pending - 1].events = revents;
184 return;
185 } 2169 }
186 2170
187 w->pending = ++pendingcnt; 2171 pendingpri = NUMPRI - 1;
188 array_needsize (pendings, pendingmax, pendingcnt, );
189 pendings [pendingcnt - 1].w = w;
190 pendings [pendingcnt - 1].events = events;
191} 2172}
192 2173
193static void 2174inline_speed void
2175feed_reverse (EV_P_ W w)
2176{
2177 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2178 rfeeds [rfeedcnt++] = w;
2179}
2180
2181inline_size void
2182feed_reverse_done (EV_P_ int revents)
2183{
2184 do
2185 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2186 while (rfeedcnt);
2187}
2188
2189inline_speed void
194queue_events (W *events, int eventcnt, int type) 2190queue_events (EV_P_ W *events, int eventcnt, int type)
195{ 2191{
196 int i; 2192 int i;
197 2193
198 for (i = 0; i < eventcnt; ++i) 2194 for (i = 0; i < eventcnt; ++i)
199 event (events [i], type); 2195 ev_feed_event (EV_A_ events [i], type);
200} 2196}
201 2197
202static void 2198/*****************************************************************************/
2199
2200inline_speed void
203fd_event (int fd, int events) 2201fd_event_nocheck (EV_P_ int fd, int revents)
204{ 2202{
205 ANFD *anfd = anfds + fd; 2203 ANFD *anfd = anfds + fd;
206 struct ev_io *w; 2204 ev_io *w;
207 2205
208 for (w = anfd->head; w; w = w->next) 2206 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
209 { 2207 {
210 int ev = w->events & events; 2208 int ev = w->events & revents;
211 2209
212 if (ev) 2210 if (ev)
213 event ((W)w, ev); 2211 ev_feed_event (EV_A_ (W)w, ev);
214 } 2212 }
215} 2213}
216 2214
217/*****************************************************************************/ 2215/* do not submit kernel events for fds that have reify set */
2216/* because that means they changed while we were polling for new events */
2217inline_speed void
2218fd_event (EV_P_ int fd, int revents)
2219{
2220 ANFD *anfd = anfds + fd;
218 2221
219static int *fdchanges; 2222 if (ecb_expect_true (!anfd->reify))
220static int fdchangemax, fdchangecnt; 2223 fd_event_nocheck (EV_A_ fd, revents);
2224}
221 2225
222static void 2226void
223fd_reify (void) 2227ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
2228{
2229 if (fd >= 0 && fd < anfdmax)
2230 fd_event_nocheck (EV_A_ fd, revents);
2231}
2232
2233/* make sure the external fd watch events are in-sync */
2234/* with the kernel/libev internal state */
2235inline_size void
2236fd_reify (EV_P)
224{ 2237{
225 int i; 2238 int i;
226 2239
2240#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
227 for (i = 0; i < fdchangecnt; ++i) 2241 for (i = 0; i < fdchangecnt; ++i)
228 { 2242 {
229 int fd = fdchanges [i]; 2243 int fd = fdchanges [i];
230 ANFD *anfd = anfds + fd; 2244 ANFD *anfd = anfds + fd;
2245
2246 if (anfd->reify & EV__IOFDSET && anfd->head)
2247 {
2248 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2249
2250 if (handle != anfd->handle)
2251 {
2252 unsigned long arg;
2253
2254 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2255
2256 /* handle changed, but fd didn't - we need to do it in two steps */
2257 backend_modify (EV_A_ fd, anfd->events, 0);
2258 anfd->events = 0;
2259 anfd->handle = handle;
2260 }
2261 }
2262 }
2263#endif
2264
2265 for (i = 0; i < fdchangecnt; ++i)
2266 {
2267 int fd = fdchanges [i];
2268 ANFD *anfd = anfds + fd;
231 struct ev_io *w; 2269 ev_io *w;
232 2270
233 int events = 0; 2271 unsigned char o_events = anfd->events;
234 2272 unsigned char o_reify = anfd->reify;
235 for (w = anfd->head; w; w = w->next)
236 events |= w->events;
237 2273
238 anfd->reify = 0; 2274 anfd->reify = 0;
239 2275
240 if (anfd->events != events) 2276 /*if (ecb_expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
241 { 2277 {
242 method_modify (fd, anfd->events, events);
243 anfd->events = events; 2278 anfd->events = 0;
2279
2280 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2281 anfd->events |= (unsigned char)w->events;
2282
2283 if (o_events != anfd->events)
2284 o_reify = EV__IOFDSET; /* actually |= */
244 } 2285 }
2286
2287 if (o_reify & EV__IOFDSET)
2288 backend_modify (EV_A_ fd, o_events, anfd->events);
245 } 2289 }
246 2290
247 fdchangecnt = 0; 2291 fdchangecnt = 0;
248} 2292}
249 2293
2294/* something about the given fd changed */
2295inline_size
2296void
2297fd_change (EV_P_ int fd, int flags)
2298{
2299 unsigned char reify = anfds [fd].reify;
2300 anfds [fd].reify |= flags;
2301
2302 if (ecb_expect_true (!reify))
2303 {
2304 ++fdchangecnt;
2305 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
2306 fdchanges [fdchangecnt - 1] = fd;
2307 }
2308}
2309
2310/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2311inline_speed ecb_cold void
2312fd_kill (EV_P_ int fd)
2313{
2314 ev_io *w;
2315
2316 while ((w = (ev_io *)anfds [fd].head))
2317 {
2318 ev_io_stop (EV_A_ w);
2319 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
2320 }
2321}
2322
2323/* check whether the given fd is actually valid, for error recovery */
2324inline_size ecb_cold int
2325fd_valid (int fd)
2326{
2327#ifdef _WIN32
2328 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
2329#else
2330 return fcntl (fd, F_GETFD) != -1;
2331#endif
2332}
2333
2334/* called on EBADF to verify fds */
2335ecb_noinline ecb_cold
250static void 2336static void
251fd_change (int fd) 2337fd_ebadf (EV_P)
252{
253 if (anfds [fd].reify || fdchangecnt < 0)
254 return;
255
256 anfds [fd].reify = 1;
257
258 ++fdchangecnt;
259 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
260 fdchanges [fdchangecnt - 1] = fd;
261}
262
263/* called on EBADF to verify fds */
264static void
265fd_recheck (void)
266{ 2338{
267 int fd; 2339 int fd;
268 2340
269 for (fd = 0; fd < anfdmax; ++fd) 2341 for (fd = 0; fd < anfdmax; ++fd)
270 if (anfds [fd].events) 2342 if (anfds [fd].events)
271 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 2343 if (!fd_valid (fd) && errno == EBADF)
272 while (anfds [fd].head) 2344 fd_kill (EV_A_ fd);
2345}
2346
2347/* called on ENOMEM in select/poll to kill some fds and retry */
2348ecb_noinline ecb_cold
2349static void
2350fd_enomem (EV_P)
2351{
2352 int fd;
2353
2354 for (fd = anfdmax; fd--; )
2355 if (anfds [fd].events)
2356 {
2357 fd_kill (EV_A_ fd);
2358 break;
2359 }
2360}
2361
2362/* usually called after fork if backend needs to re-arm all fds from scratch */
2363ecb_noinline
2364static void
2365fd_rearm_all (EV_P)
2366{
2367 int fd;
2368
2369 for (fd = 0; fd < anfdmax; ++fd)
2370 if (anfds [fd].events)
2371 {
2372 anfds [fd].events = 0;
2373 anfds [fd].emask = 0;
2374 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
2375 }
2376}
2377
2378/* used to prepare libev internal fd's */
2379/* this is not fork-safe */
2380inline_speed void
2381fd_intern (int fd)
2382{
2383#ifdef _WIN32
2384 unsigned long arg = 1;
2385 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2386#else
2387 fcntl (fd, F_SETFD, FD_CLOEXEC);
2388 fcntl (fd, F_SETFL, O_NONBLOCK);
2389#endif
2390}
2391
2392/*****************************************************************************/
2393
2394/*
2395 * the heap functions want a real array index. array index 0 is guaranteed to not
2396 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2397 * the branching factor of the d-tree.
2398 */
2399
2400/*
2401 * at the moment we allow libev the luxury of two heaps,
2402 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2403 * which is more cache-efficient.
2404 * the difference is about 5% with 50000+ watchers.
2405 */
2406#if EV_USE_4HEAP
2407
2408#define DHEAP 4
2409#define HEAP0 (DHEAP - 1) /* index of first element in heap */
2410#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2411#define UPHEAP_DONE(p,k) ((p) == (k))
2412
2413/* away from the root */
2414inline_speed void
2415downheap (ANHE *heap, int N, int k)
2416{
2417 ANHE he = heap [k];
2418 ANHE *E = heap + N + HEAP0;
2419
2420 for (;;)
2421 {
2422 ev_tstamp minat;
2423 ANHE *minpos;
2424 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2425
2426 /* find minimum child */
2427 if (ecb_expect_true (pos + DHEAP - 1 < E))
2428 {
2429 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2430 if ( minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2431 if ( minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2432 if ( minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2433 }
2434 else if (pos < E)
2435 {
2436 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2437 if (pos + 1 < E && minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2438 if (pos + 2 < E && minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2439 if (pos + 3 < E && minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2440 }
2441 else
2442 break;
2443
2444 if (ANHE_at (he) <= minat)
2445 break;
2446
2447 heap [k] = *minpos;
2448 ev_active (ANHE_w (*minpos)) = k;
2449
2450 k = minpos - heap;
2451 }
2452
2453 heap [k] = he;
2454 ev_active (ANHE_w (he)) = k;
2455}
2456
2457#else /* not 4HEAP */
2458
2459#define HEAP0 1
2460#define HPARENT(k) ((k) >> 1)
2461#define UPHEAP_DONE(p,k) (!(p))
2462
2463/* away from the root */
2464inline_speed void
2465downheap (ANHE *heap, int N, int k)
2466{
2467 ANHE he = heap [k];
2468
2469 for (;;)
2470 {
2471 int c = k << 1;
2472
2473 if (c >= N + HEAP0)
2474 break;
2475
2476 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2477 ? 1 : 0;
2478
2479 if (ANHE_at (he) <= ANHE_at (heap [c]))
2480 break;
2481
2482 heap [k] = heap [c];
2483 ev_active (ANHE_w (heap [k])) = k;
2484
2485 k = c;
2486 }
2487
2488 heap [k] = he;
2489 ev_active (ANHE_w (he)) = k;
2490}
2491#endif
2492
2493/* towards the root */
2494inline_speed void
2495upheap (ANHE *heap, int k)
2496{
2497 ANHE he = heap [k];
2498
2499 for (;;)
2500 {
2501 int p = HPARENT (k);
2502
2503 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2504 break;
2505
2506 heap [k] = heap [p];
2507 ev_active (ANHE_w (heap [k])) = k;
2508 k = p;
2509 }
2510
2511 heap [k] = he;
2512 ev_active (ANHE_w (he)) = k;
2513}
2514
2515/* move an element suitably so it is in a correct place */
2516inline_size void
2517adjustheap (ANHE *heap, int N, int k)
2518{
2519 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2520 upheap (heap, k);
2521 else
2522 downheap (heap, N, k);
2523}
2524
2525/* rebuild the heap: this function is used only once and executed rarely */
2526inline_size void
2527reheap (ANHE *heap, int N)
2528{
2529 int i;
2530
2531 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2532 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2533 for (i = 0; i < N; ++i)
2534 upheap (heap, i + HEAP0);
2535}
2536
2537/*****************************************************************************/
2538
2539/* associate signal watchers to a signal signal */
2540typedef struct
2541{
2542 EV_ATOMIC_T pending;
2543#if EV_MULTIPLICITY
2544 EV_P;
2545#endif
2546 WL head;
2547} ANSIG;
2548
2549static ANSIG signals [EV_NSIG - 1];
2550
2551/*****************************************************************************/
2552
2553#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2554
2555ecb_noinline ecb_cold
2556static void
2557evpipe_init (EV_P)
2558{
2559 if (!ev_is_active (&pipe_w))
2560 {
2561 int fds [2];
2562
2563# if EV_USE_EVENTFD
2564 fds [0] = -1;
2565 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2566 if (fds [1] < 0 && errno == EINVAL)
2567 fds [1] = eventfd (0, 0);
2568
2569 if (fds [1] < 0)
2570# endif
2571 {
2572 while (pipe (fds))
2573 ev_syserr ("(libev) error creating signal/async pipe");
2574
2575 fd_intern (fds [0]);
2576 }
2577
2578 evpipe [0] = fds [0];
2579
2580 if (evpipe [1] < 0)
2581 evpipe [1] = fds [1]; /* first call, set write fd */
2582 else
2583 {
2584 /* on subsequent calls, do not change evpipe [1] */
2585 /* so that evpipe_write can always rely on its value. */
2586 /* this branch does not do anything sensible on windows, */
2587 /* so must not be executed on windows */
2588
2589 dup2 (fds [1], evpipe [1]);
2590 close (fds [1]);
2591 }
2592
2593 fd_intern (evpipe [1]);
2594
2595 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2596 ev_io_start (EV_A_ &pipe_w);
2597 ev_unref (EV_A); /* watcher should not keep loop alive */
2598 }
2599}
2600
2601inline_speed void
2602evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2603{
2604 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2605
2606 if (ecb_expect_true (*flag))
2607 return;
2608
2609 *flag = 1;
2610 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2611
2612 pipe_write_skipped = 1;
2613
2614 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2615
2616 if (pipe_write_wanted)
2617 {
2618 int old_errno;
2619
2620 pipe_write_skipped = 0;
2621 ECB_MEMORY_FENCE_RELEASE;
2622
2623 old_errno = errno; /* save errno because write will clobber it */
2624
2625#if EV_USE_EVENTFD
2626 if (evpipe [0] < 0)
2627 {
2628 uint64_t counter = 1;
2629 write (evpipe [1], &counter, sizeof (uint64_t));
2630 }
2631 else
2632#endif
2633 {
2634#ifdef _WIN32
2635 WSABUF buf;
2636 DWORD sent;
2637 buf.buf = (char *)&buf;
2638 buf.len = 1;
2639 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2640#else
2641 write (evpipe [1], &(evpipe [1]), 1);
2642#endif
2643 }
2644
2645 errno = old_errno;
2646 }
2647}
2648
2649/* called whenever the libev signal pipe */
2650/* got some events (signal, async) */
2651static void
2652pipecb (EV_P_ ev_io *iow, int revents)
2653{
2654 int i;
2655
2656 if (revents & EV_READ)
2657 {
2658#if EV_USE_EVENTFD
2659 if (evpipe [0] < 0)
2660 {
2661 uint64_t counter;
2662 read (evpipe [1], &counter, sizeof (uint64_t));
2663 }
2664 else
2665#endif
2666 {
2667 char dummy[4];
2668#ifdef _WIN32
2669 WSABUF buf;
2670 DWORD recvd;
2671 DWORD flags = 0;
2672 buf.buf = dummy;
2673 buf.len = sizeof (dummy);
2674 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2675#else
2676 read (evpipe [0], &dummy, sizeof (dummy));
2677#endif
2678 }
2679 }
2680
2681 pipe_write_skipped = 0;
2682
2683 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2684
2685#if EV_SIGNAL_ENABLE
2686 if (sig_pending)
2687 {
2688 sig_pending = 0;
2689
2690 ECB_MEMORY_FENCE;
2691
2692 for (i = EV_NSIG - 1; i--; )
2693 if (ecb_expect_false (signals [i].pending))
2694 ev_feed_signal_event (EV_A_ i + 1);
2695 }
2696#endif
2697
2698#if EV_ASYNC_ENABLE
2699 if (async_pending)
2700 {
2701 async_pending = 0;
2702
2703 ECB_MEMORY_FENCE;
2704
2705 for (i = asynccnt; i--; )
2706 if (asyncs [i]->sent)
273 { 2707 {
274 ev_io_stop (anfds [fd].head); 2708 asyncs [i]->sent = 0;
275 event ((W)anfds [fd].head, EV_ERROR | EV_READ | EV_WRITE); 2709 ECB_MEMORY_FENCE_RELEASE;
2710 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
276 } 2711 }
2712 }
2713#endif
277} 2714}
278 2715
279/*****************************************************************************/ 2716/*****************************************************************************/
280 2717
281static struct ev_timer **timers; 2718void
282static int timermax, timercnt; 2719ev_feed_signal (int signum) EV_NOEXCEPT
2720{
2721#if EV_MULTIPLICITY
2722 EV_P;
2723 ECB_MEMORY_FENCE_ACQUIRE;
2724 EV_A = signals [signum - 1].loop;
283 2725
284static struct ev_periodic **periodics; 2726 if (!EV_A)
285static int periodicmax, periodiccnt; 2727 return;
2728#endif
2729
2730 signals [signum - 1].pending = 1;
2731 evpipe_write (EV_A_ &sig_pending);
2732}
286 2733
287static void 2734static void
288upheap (WT *timers, int k) 2735ev_sighandler (int signum)
289{ 2736{
290 WT w = timers [k]; 2737#ifdef _WIN32
2738 signal (signum, ev_sighandler);
2739#endif
291 2740
292 while (k && timers [k >> 1]->at > w->at) 2741 ev_feed_signal (signum);
293 {
294 timers [k] = timers [k >> 1];
295 timers [k]->active = k + 1;
296 k >>= 1;
297 }
298
299 timers [k] = w;
300 timers [k]->active = k + 1;
301
302} 2742}
303 2743
2744ecb_noinline
2745void
2746ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2747{
2748 WL w;
2749
2750 if (ecb_expect_false (signum <= 0 || signum >= EV_NSIG))
2751 return;
2752
2753 --signum;
2754
2755#if EV_MULTIPLICITY
2756 /* it is permissible to try to feed a signal to the wrong loop */
2757 /* or, likely more useful, feeding a signal nobody is waiting for */
2758
2759 if (ecb_expect_false (signals [signum].loop != EV_A))
2760 return;
2761#endif
2762
2763 signals [signum].pending = 0;
2764 ECB_MEMORY_FENCE_RELEASE;
2765
2766 for (w = signals [signum].head; w; w = w->next)
2767 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2768}
2769
2770#if EV_USE_SIGNALFD
304static void 2771static void
305downheap (WT *timers, int N, int k) 2772sigfdcb (EV_P_ ev_io *iow, int revents)
306{ 2773{
307 WT w = timers [k]; 2774 struct signalfd_siginfo si[2], *sip; /* these structs are big */
308 2775
309 while (k < (N >> 1)) 2776 for (;;)
310 { 2777 {
311 int j = k << 1; 2778 ssize_t res = read (sigfd, si, sizeof (si));
312 2779
313 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 2780 /* not ISO-C, as res might be -1, but works with SuS */
314 ++j; 2781 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2782 ev_feed_signal_event (EV_A_ sip->ssi_signo);
315 2783
316 if (w->at <= timers [j]->at) 2784 if (res < (ssize_t)sizeof (si))
317 break; 2785 break;
318
319 timers [k] = timers [j];
320 timers [k]->active = k + 1;
321 k = j;
322 } 2786 }
323
324 timers [k] = w;
325 timers [k]->active = k + 1;
326} 2787}
2788#endif
2789
2790#endif
327 2791
328/*****************************************************************************/ 2792/*****************************************************************************/
329 2793
330typedef struct 2794#if EV_CHILD_ENABLE
331{ 2795static WL childs [EV_PID_HASHSIZE];
332 struct ev_signal *head;
333 sig_atomic_t volatile gotsig;
334} ANSIG;
335 2796
336static ANSIG *signals;
337static int signalmax;
338
339static int sigpipe [2];
340static sig_atomic_t volatile gotsig;
341static struct ev_io sigev;
342
343static void
344signals_init (ANSIG *base, int count)
345{
346 while (count--)
347 {
348 base->head = 0;
349 base->gotsig = 0;
350
351 ++base;
352 }
353}
354
355static void
356sighandler (int signum)
357{
358 signals [signum - 1].gotsig = 1;
359
360 if (!gotsig)
361 {
362 gotsig = 1;
363 write (sigpipe [1], &signum, 1);
364 }
365}
366
367static void
368sigcb (struct ev_io *iow, int revents)
369{
370 struct ev_signal *w;
371 int signum;
372
373 read (sigpipe [0], &revents, 1);
374 gotsig = 0;
375
376 for (signum = signalmax; signum--; )
377 if (signals [signum].gotsig)
378 {
379 signals [signum].gotsig = 0;
380
381 for (w = signals [signum].head; w; w = w->next)
382 event ((W)w, EV_SIGNAL);
383 }
384}
385
386static void
387siginit (void)
388{
389 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
390 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
391
392 /* rather than sort out wether we really need nb, set it */
393 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
394 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
395
396 ev_io_set (&sigev, sigpipe [0], EV_READ);
397 ev_io_start (&sigev);
398}
399
400/*****************************************************************************/
401
402static struct ev_idle **idles;
403static int idlemax, idlecnt;
404
405static struct ev_prepare **prepares;
406static int preparemax, preparecnt;
407
408static struct ev_check **checks;
409static int checkmax, checkcnt;
410
411/*****************************************************************************/
412
413static struct ev_child *childs [PID_HASHSIZE];
414static struct ev_signal childev; 2797static ev_signal childev;
2798
2799#ifndef WIFCONTINUED
2800# define WIFCONTINUED(status) 0
2801#endif
2802
2803/* handle a single child status event */
2804inline_speed void
2805child_reap (EV_P_ int chain, int pid, int status)
2806{
2807 ev_child *w;
2808 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2809
2810 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2811 {
2812 if ((w->pid == pid || !w->pid)
2813 && (!traced || (w->flags & 1)))
2814 {
2815 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2816 w->rpid = pid;
2817 w->rstatus = status;
2818 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2819 }
2820 }
2821}
415 2822
416#ifndef WCONTINUED 2823#ifndef WCONTINUED
417# define WCONTINUED 0 2824# define WCONTINUED 0
418#endif 2825#endif
419 2826
2827/* called on sigchld etc., calls waitpid */
420static void 2828static void
421childcb (struct ev_signal *sw, int revents) 2829childcb (EV_P_ ev_signal *sw, int revents)
422{ 2830{
423 struct ev_child *w;
424 int pid, status; 2831 int pid, status;
425 2832
2833 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
426 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 2834 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
427 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 2835 if (!WCONTINUED
428 if (w->pid == pid || w->pid == -1) 2836 || errno != EINVAL
429 { 2837 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
430 w->status = status; 2838 return;
431 event ((W)w, EV_CHILD); 2839
432 } 2840 /* make sure we are called again until all children have been reaped */
2841 /* we need to do it this way so that the callback gets called before we continue */
2842 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2843
2844 child_reap (EV_A_ pid, pid, status);
2845 if ((EV_PID_HASHSIZE) > 1)
2846 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
433} 2847}
2848
2849#endif
434 2850
435/*****************************************************************************/ 2851/*****************************************************************************/
436 2852
2853#if EV_USE_IOCP
2854# include "ev_iocp.c"
2855#endif
2856#if EV_USE_PORT
2857# include "ev_port.c"
2858#endif
2859#if EV_USE_KQUEUE
2860# include "ev_kqueue.c"
2861#endif
437#if EV_USE_EPOLL 2862#if EV_USE_EPOLL
438# include "ev_epoll.c" 2863# include "ev_epoll.c"
439#endif 2864#endif
2865#if EV_USE_LINUXAIO
2866# include "ev_linuxaio.c"
2867#endif
2868#if EV_USE_IOURING
2869# include "ev_iouring.c"
2870#endif
2871#if EV_USE_POLL
2872# include "ev_poll.c"
2873#endif
440#if EV_USE_SELECT 2874#if EV_USE_SELECT
441# include "ev_select.c" 2875# include "ev_select.c"
442#endif 2876#endif
443 2877
2878ecb_cold int
2879ev_version_major (void) EV_NOEXCEPT
2880{
2881 return EV_VERSION_MAJOR;
2882}
2883
2884ecb_cold int
2885ev_version_minor (void) EV_NOEXCEPT
2886{
2887 return EV_VERSION_MINOR;
2888}
2889
2890/* return true if we are running with elevated privileges and should ignore env variables */
2891inline_size ecb_cold int
2892enable_secure (void)
2893{
2894#ifdef _WIN32
2895 return 0;
2896#else
2897 return getuid () != geteuid ()
2898 || getgid () != getegid ();
2899#endif
2900}
2901
2902ecb_cold
2903unsigned int
2904ev_supported_backends (void) EV_NOEXCEPT
2905{
2906 unsigned int flags = 0;
2907
2908 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2909 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
2910 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2911 if (EV_USE_LINUXAIO) flags |= EVBACKEND_LINUXAIO;
2912 if (EV_USE_IOURING ) flags |= EVBACKEND_IOURING;
2913 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2914 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
2915
2916 return flags;
2917}
2918
2919ecb_cold
2920unsigned int
2921ev_recommended_backends (void) EV_NOEXCEPT
2922{
2923 unsigned int flags = ev_supported_backends ();
2924
2925#ifndef __NetBSD__
2926 /* kqueue is borked on everything but netbsd apparently */
2927 /* it usually doesn't work correctly on anything but sockets and pipes */
2928 flags &= ~EVBACKEND_KQUEUE;
2929#endif
2930#ifdef __APPLE__
2931 /* only select works correctly on that "unix-certified" platform */
2932 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2933 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2934#endif
2935#ifdef __FreeBSD__
2936 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2937#endif
2938
2939 /* TODO: linuxaio is very experimental */
2940#if !EV_RECOMMEND_LINUXAIO
2941 flags &= ~EVBACKEND_LINUXAIO;
2942#endif
2943 /* TODO: linuxaio is super experimental */
2944#if !EV_RECOMMEND_IOURING
2945 flags &= ~EVBACKEND_IOURING;
2946#endif
2947
2948 return flags;
2949}
2950
2951ecb_cold
2952unsigned int
2953ev_embeddable_backends (void) EV_NOEXCEPT
2954{
2955 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2956
2957 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2958 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2959 flags &= ~EVBACKEND_EPOLL;
2960
2961 /* EVBACKEND_LINUXAIO is theoretically embeddable, but suffers from a performance overhead */
2962
2963 /* EVBACKEND_IOURING is practically embeddable, but the current implementation is not
2964 * because our backend_fd is the epoll fd we need as fallback.
2965 * if the kernel ever is fixed, this might change...
2966 */
2967
2968 return flags;
2969}
2970
2971unsigned int
2972ev_backend (EV_P) EV_NOEXCEPT
2973{
2974 return backend;
2975}
2976
2977#if EV_FEATURE_API
2978unsigned int
2979ev_iteration (EV_P) EV_NOEXCEPT
2980{
2981 return loop_count;
2982}
2983
2984unsigned int
2985ev_depth (EV_P) EV_NOEXCEPT
2986{
2987 return loop_depth;
2988}
2989
2990void
2991ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2992{
2993 io_blocktime = interval;
2994}
2995
2996void
2997ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2998{
2999 timeout_blocktime = interval;
3000}
3001
3002void
3003ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
3004{
3005 userdata = data;
3006}
3007
3008void *
3009ev_userdata (EV_P) EV_NOEXCEPT
3010{
3011 return userdata;
3012}
3013
3014void
3015ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
3016{
3017 invoke_cb = invoke_pending_cb;
3018}
3019
3020void
3021ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
3022{
3023 release_cb = release;
3024 acquire_cb = acquire;
3025}
3026#endif
3027
3028/* initialise a loop structure, must be zero-initialised */
3029ecb_noinline ecb_cold
3030static void
3031loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
3032{
3033 if (!backend)
3034 {
3035 origflags = flags;
3036
3037#if EV_USE_REALTIME
3038 if (!have_realtime)
3039 {
3040 struct timespec ts;
3041
3042 if (!clock_gettime (CLOCK_REALTIME, &ts))
3043 have_realtime = 1;
3044 }
3045#endif
3046
3047#if EV_USE_MONOTONIC
3048 if (!have_monotonic)
3049 {
3050 struct timespec ts;
3051
3052 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
3053 have_monotonic = 1;
3054 }
3055#endif
3056
3057 /* pid check not overridable via env */
3058#ifndef _WIN32
3059 if (flags & EVFLAG_FORKCHECK)
3060 curpid = getpid ();
3061#endif
3062
3063 if (!(flags & EVFLAG_NOENV)
3064 && !enable_secure ()
3065 && getenv ("LIBEV_FLAGS"))
3066 flags = atoi (getenv ("LIBEV_FLAGS"));
3067
3068 ev_rt_now = ev_time ();
3069 mn_now = get_clock ();
3070 now_floor = mn_now;
3071 rtmn_diff = ev_rt_now - mn_now;
3072#if EV_FEATURE_API
3073 invoke_cb = ev_invoke_pending;
3074#endif
3075
3076 io_blocktime = 0.;
3077 timeout_blocktime = 0.;
3078 backend = 0;
3079 backend_fd = -1;
3080 sig_pending = 0;
3081#if EV_ASYNC_ENABLE
3082 async_pending = 0;
3083#endif
3084 pipe_write_skipped = 0;
3085 pipe_write_wanted = 0;
3086 evpipe [0] = -1;
3087 evpipe [1] = -1;
3088#if EV_USE_INOTIFY
3089 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
3090#endif
3091#if EV_USE_SIGNALFD
3092 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
3093#endif
3094
3095 if (!(flags & EVBACKEND_MASK))
3096 flags |= ev_recommended_backends ();
3097
3098#if EV_USE_IOCP
3099 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
3100#endif
3101#if EV_USE_PORT
3102 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
3103#endif
3104#if EV_USE_KQUEUE
3105 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
3106#endif
3107#if EV_USE_IOURING
3108 if (!backend && (flags & EVBACKEND_IOURING )) backend = iouring_init (EV_A_ flags);
3109#endif
3110#if EV_USE_LINUXAIO
3111 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
3112#endif
3113#if EV_USE_EPOLL
3114 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
3115#endif
3116#if EV_USE_POLL
3117 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
3118#endif
3119#if EV_USE_SELECT
3120 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
3121#endif
3122
3123 ev_prepare_init (&pending_w, pendingcb);
3124
3125#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3126 ev_init (&pipe_w, pipecb);
3127 ev_set_priority (&pipe_w, EV_MAXPRI);
3128#endif
3129 }
3130}
3131
3132/* free up a loop structure */
3133ecb_cold
3134void
3135ev_loop_destroy (EV_P)
3136{
3137 int i;
3138
3139#if EV_MULTIPLICITY
3140 /* mimic free (0) */
3141 if (!EV_A)
3142 return;
3143#endif
3144
3145#if EV_CLEANUP_ENABLE
3146 /* queue cleanup watchers (and execute them) */
3147 if (ecb_expect_false (cleanupcnt))
3148 {
3149 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3150 EV_INVOKE_PENDING;
3151 }
3152#endif
3153
3154#if EV_CHILD_ENABLE
3155 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3156 {
3157 ev_ref (EV_A); /* child watcher */
3158 ev_signal_stop (EV_A_ &childev);
3159 }
3160#endif
3161
3162 if (ev_is_active (&pipe_w))
3163 {
3164 /*ev_ref (EV_A);*/
3165 /*ev_io_stop (EV_A_ &pipe_w);*/
3166
3167 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3168 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3169 }
3170
3171#if EV_USE_SIGNALFD
3172 if (ev_is_active (&sigfd_w))
3173 close (sigfd);
3174#endif
3175
3176#if EV_USE_INOTIFY
3177 if (fs_fd >= 0)
3178 close (fs_fd);
3179#endif
3180
3181 if (backend_fd >= 0)
3182 close (backend_fd);
3183
3184#if EV_USE_IOCP
3185 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3186#endif
3187#if EV_USE_PORT
3188 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
3189#endif
3190#if EV_USE_KQUEUE
3191 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3192#endif
3193#if EV_USE_IOURING
3194 if (backend == EVBACKEND_IOURING ) iouring_destroy (EV_A);
3195#endif
3196#if EV_USE_LINUXAIO
3197 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
3198#endif
3199#if EV_USE_EPOLL
3200 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
3201#endif
3202#if EV_USE_POLL
3203 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
3204#endif
3205#if EV_USE_SELECT
3206 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
3207#endif
3208
3209 for (i = NUMPRI; i--; )
3210 {
3211 array_free (pending, [i]);
3212#if EV_IDLE_ENABLE
3213 array_free (idle, [i]);
3214#endif
3215 }
3216
3217 ev_free (anfds); anfds = 0; anfdmax = 0;
3218
3219 /* have to use the microsoft-never-gets-it-right macro */
3220 array_free (rfeed, EMPTY);
3221 array_free (fdchange, EMPTY);
3222 array_free (timer, EMPTY);
3223#if EV_PERIODIC_ENABLE
3224 array_free (periodic, EMPTY);
3225#endif
3226#if EV_FORK_ENABLE
3227 array_free (fork, EMPTY);
3228#endif
3229#if EV_CLEANUP_ENABLE
3230 array_free (cleanup, EMPTY);
3231#endif
3232 array_free (prepare, EMPTY);
3233 array_free (check, EMPTY);
3234#if EV_ASYNC_ENABLE
3235 array_free (async, EMPTY);
3236#endif
3237
3238 backend = 0;
3239
3240#if EV_MULTIPLICITY
3241 if (ev_is_default_loop (EV_A))
3242#endif
3243 ev_default_loop_ptr = 0;
3244#if EV_MULTIPLICITY
3245 else
3246 ev_free (EV_A);
3247#endif
3248}
3249
3250#if EV_USE_INOTIFY
3251inline_size void infy_fork (EV_P);
3252#endif
3253
3254inline_size void
3255loop_fork (EV_P)
3256{
3257#if EV_USE_PORT
3258 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
3259#endif
3260#if EV_USE_KQUEUE
3261 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3262#endif
3263#if EV_USE_IOURING
3264 if (backend == EVBACKEND_IOURING ) iouring_fork (EV_A);
3265#endif
3266#if EV_USE_LINUXAIO
3267 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
3268#endif
3269#if EV_USE_EPOLL
3270 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
3271#endif
3272#if EV_USE_INOTIFY
3273 infy_fork (EV_A);
3274#endif
3275
3276#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3277 if (ev_is_active (&pipe_w) && postfork != 2)
3278 {
3279 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3280
3281 ev_ref (EV_A);
3282 ev_io_stop (EV_A_ &pipe_w);
3283
3284 if (evpipe [0] >= 0)
3285 EV_WIN32_CLOSE_FD (evpipe [0]);
3286
3287 evpipe_init (EV_A);
3288 /* iterate over everything, in case we missed something before */
3289 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3290 }
3291#endif
3292
3293 postfork = 0;
3294}
3295
3296#if EV_MULTIPLICITY
3297
3298ecb_cold
3299struct ev_loop *
3300ev_loop_new (unsigned int flags) EV_NOEXCEPT
3301{
3302 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3303
3304 memset (EV_A, 0, sizeof (struct ev_loop));
3305 loop_init (EV_A_ flags);
3306
3307 if (ev_backend (EV_A))
3308 return EV_A;
3309
3310 ev_free (EV_A);
3311 return 0;
3312}
3313
3314#endif /* multiplicity */
3315
3316#if EV_VERIFY
3317ecb_noinline ecb_cold
3318static void
3319verify_watcher (EV_P_ W w)
3320{
3321 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
3322
3323 if (w->pending)
3324 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3325}
3326
3327ecb_noinline ecb_cold
3328static void
3329verify_heap (EV_P_ ANHE *heap, int N)
3330{
3331 int i;
3332
3333 for (i = HEAP0; i < N + HEAP0; ++i)
3334 {
3335 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3336 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3337 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3338
3339 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3340 }
3341}
3342
3343ecb_noinline ecb_cold
3344static void
3345array_verify (EV_P_ W *ws, int cnt)
3346{
3347 while (cnt--)
3348 {
3349 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3350 verify_watcher (EV_A_ ws [cnt]);
3351 }
3352}
3353#endif
3354
3355#if EV_FEATURE_API
3356void ecb_cold
3357ev_verify (EV_P) EV_NOEXCEPT
3358{
3359#if EV_VERIFY
3360 int i;
3361 WL w, w2;
3362
3363 assert (activecnt >= -1);
3364
3365 assert (fdchangemax >= fdchangecnt);
3366 for (i = 0; i < fdchangecnt; ++i)
3367 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3368
3369 assert (anfdmax >= 0);
3370 for (i = 0; i < anfdmax; ++i)
3371 {
3372 int j = 0;
3373
3374 for (w = w2 = anfds [i].head; w; w = w->next)
3375 {
3376 verify_watcher (EV_A_ (W)w);
3377
3378 if (j++ & 1)
3379 {
3380 assert (("libev: io watcher list contains a loop", w != w2));
3381 w2 = w2->next;
3382 }
3383
3384 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3385 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3386 }
3387 }
3388
3389 assert (timermax >= timercnt);
3390 verify_heap (EV_A_ timers, timercnt);
3391
3392#if EV_PERIODIC_ENABLE
3393 assert (periodicmax >= periodiccnt);
3394 verify_heap (EV_A_ periodics, periodiccnt);
3395#endif
3396
3397 for (i = NUMPRI; i--; )
3398 {
3399 assert (pendingmax [i] >= pendingcnt [i]);
3400#if EV_IDLE_ENABLE
3401 assert (idleall >= 0);
3402 assert (idlemax [i] >= idlecnt [i]);
3403 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3404#endif
3405 }
3406
3407#if EV_FORK_ENABLE
3408 assert (forkmax >= forkcnt);
3409 array_verify (EV_A_ (W *)forks, forkcnt);
3410#endif
3411
3412#if EV_CLEANUP_ENABLE
3413 assert (cleanupmax >= cleanupcnt);
3414 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3415#endif
3416
3417#if EV_ASYNC_ENABLE
3418 assert (asyncmax >= asynccnt);
3419 array_verify (EV_A_ (W *)asyncs, asynccnt);
3420#endif
3421
3422#if EV_PREPARE_ENABLE
3423 assert (preparemax >= preparecnt);
3424 array_verify (EV_A_ (W *)prepares, preparecnt);
3425#endif
3426
3427#if EV_CHECK_ENABLE
3428 assert (checkmax >= checkcnt);
3429 array_verify (EV_A_ (W *)checks, checkcnt);
3430#endif
3431
3432# if 0
3433#if EV_CHILD_ENABLE
3434 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3435 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3436#endif
3437# endif
3438#endif
3439}
3440#endif
3441
3442#if EV_MULTIPLICITY
3443ecb_cold
3444struct ev_loop *
3445#else
444int 3446int
445ev_version_major (void) 3447#endif
3448ev_default_loop (unsigned int flags) EV_NOEXCEPT
446{ 3449{
447 return EV_VERSION_MAJOR; 3450 if (!ev_default_loop_ptr)
3451 {
3452#if EV_MULTIPLICITY
3453 EV_P = ev_default_loop_ptr = &default_loop_struct;
3454#else
3455 ev_default_loop_ptr = 1;
3456#endif
3457
3458 loop_init (EV_A_ flags);
3459
3460 if (ev_backend (EV_A))
3461 {
3462#if EV_CHILD_ENABLE
3463 ev_signal_init (&childev, childcb, SIGCHLD);
3464 ev_set_priority (&childev, EV_MAXPRI);
3465 ev_signal_start (EV_A_ &childev);
3466 ev_unref (EV_A); /* child watcher should not keep loop alive */
3467#endif
3468 }
3469 else
3470 ev_default_loop_ptr = 0;
3471 }
3472
3473 return ev_default_loop_ptr;
3474}
3475
3476void
3477ev_loop_fork (EV_P) EV_NOEXCEPT
3478{
3479 postfork = 1;
3480}
3481
3482/*****************************************************************************/
3483
3484void
3485ev_invoke (EV_P_ void *w, int revents)
3486{
3487 EV_CB_INVOKE ((W)w, revents);
3488}
3489
3490unsigned int
3491ev_pending_count (EV_P) EV_NOEXCEPT
3492{
3493 int pri;
3494 unsigned int count = 0;
3495
3496 for (pri = NUMPRI; pri--; )
3497 count += pendingcnt [pri];
3498
3499 return count;
3500}
3501
3502ecb_noinline
3503void
3504ev_invoke_pending (EV_P)
3505{
3506 pendingpri = NUMPRI;
3507
3508 do
3509 {
3510 --pendingpri;
3511
3512 /* pendingpri possibly gets modified in the inner loop */
3513 while (pendingcnt [pendingpri])
3514 {
3515 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3516
3517 p->w->pending = 0;
3518 EV_CB_INVOKE (p->w, p->events);
3519 EV_FREQUENT_CHECK;
3520 }
3521 }
3522 while (pendingpri);
3523}
3524
3525#if EV_IDLE_ENABLE
3526/* make idle watchers pending. this handles the "call-idle */
3527/* only when higher priorities are idle" logic */
3528inline_size void
3529idle_reify (EV_P)
3530{
3531 if (ecb_expect_false (idleall))
3532 {
3533 int pri;
3534
3535 for (pri = NUMPRI; pri--; )
3536 {
3537 if (pendingcnt [pri])
3538 break;
3539
3540 if (idlecnt [pri])
3541 {
3542 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3543 break;
3544 }
3545 }
3546 }
3547}
3548#endif
3549
3550/* make timers pending */
3551inline_size void
3552timers_reify (EV_P)
3553{
3554 EV_FREQUENT_CHECK;
3555
3556 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3557 {
3558 do
3559 {
3560 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3561
3562 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3563
3564 /* first reschedule or stop timer */
3565 if (w->repeat)
3566 {
3567 ev_at (w) += w->repeat;
3568 if (ev_at (w) < mn_now)
3569 ev_at (w) = mn_now;
3570
3571 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > EV_TS_CONST (0.)));
3572
3573 ANHE_at_cache (timers [HEAP0]);
3574 downheap (timers, timercnt, HEAP0);
3575 }
3576 else
3577 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3578
3579 EV_FREQUENT_CHECK;
3580 feed_reverse (EV_A_ (W)w);
3581 }
3582 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3583
3584 feed_reverse_done (EV_A_ EV_TIMER);
3585 }
3586}
3587
3588#if EV_PERIODIC_ENABLE
3589
3590ecb_noinline
3591static void
3592periodic_recalc (EV_P_ ev_periodic *w)
3593{
3594 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3595 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3596
3597 /* the above almost always errs on the low side */
3598 while (at <= ev_rt_now)
3599 {
3600 ev_tstamp nat = at + w->interval;
3601
3602 /* when resolution fails us, we use ev_rt_now */
3603 if (ecb_expect_false (nat == at))
3604 {
3605 at = ev_rt_now;
3606 break;
3607 }
3608
3609 at = nat;
3610 }
3611
3612 ev_at (w) = at;
3613}
3614
3615/* make periodics pending */
3616inline_size void
3617periodics_reify (EV_P)
3618{
3619 EV_FREQUENT_CHECK;
3620
3621 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3622 {
3623 do
3624 {
3625 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3626
3627 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3628
3629 /* first reschedule or stop timer */
3630 if (w->reschedule_cb)
3631 {
3632 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3633
3634 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3635
3636 ANHE_at_cache (periodics [HEAP0]);
3637 downheap (periodics, periodiccnt, HEAP0);
3638 }
3639 else if (w->interval)
3640 {
3641 periodic_recalc (EV_A_ w);
3642 ANHE_at_cache (periodics [HEAP0]);
3643 downheap (periodics, periodiccnt, HEAP0);
3644 }
3645 else
3646 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3647
3648 EV_FREQUENT_CHECK;
3649 feed_reverse (EV_A_ (W)w);
3650 }
3651 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3652
3653 feed_reverse_done (EV_A_ EV_PERIODIC);
3654 }
3655}
3656
3657/* simply recalculate all periodics */
3658/* TODO: maybe ensure that at least one event happens when jumping forward? */
3659ecb_noinline ecb_cold
3660static void
3661periodics_reschedule (EV_P)
3662{
3663 int i;
3664
3665 /* adjust periodics after time jump */
3666 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3667 {
3668 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3669
3670 if (w->reschedule_cb)
3671 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3672 else if (w->interval)
3673 periodic_recalc (EV_A_ w);
3674
3675 ANHE_at_cache (periodics [i]);
3676 }
3677
3678 reheap (periodics, periodiccnt);
3679}
3680#endif
3681
3682/* adjust all timers by a given offset */
3683ecb_noinline ecb_cold
3684static void
3685timers_reschedule (EV_P_ ev_tstamp adjust)
3686{
3687 int i;
3688
3689 for (i = 0; i < timercnt; ++i)
3690 {
3691 ANHE *he = timers + i + HEAP0;
3692 ANHE_w (*he)->at += adjust;
3693 ANHE_at_cache (*he);
3694 }
3695}
3696
3697/* fetch new monotonic and realtime times from the kernel */
3698/* also detect if there was a timejump, and act accordingly */
3699inline_speed void
3700time_update (EV_P_ ev_tstamp max_block)
3701{
3702#if EV_USE_MONOTONIC
3703 if (ecb_expect_true (have_monotonic))
3704 {
3705 int i;
3706 ev_tstamp odiff = rtmn_diff;
3707
3708 mn_now = get_clock ();
3709
3710 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3711 /* interpolate in the meantime */
3712 if (ecb_expect_true (mn_now - now_floor < EV_TS_CONST (MIN_TIMEJUMP * .5)))
3713 {
3714 ev_rt_now = rtmn_diff + mn_now;
3715 return;
3716 }
3717
3718 now_floor = mn_now;
3719 ev_rt_now = ev_time ();
3720
3721 /* loop a few times, before making important decisions.
3722 * on the choice of "4": one iteration isn't enough,
3723 * in case we get preempted during the calls to
3724 * ev_time and get_clock. a second call is almost guaranteed
3725 * to succeed in that case, though. and looping a few more times
3726 * doesn't hurt either as we only do this on time-jumps or
3727 * in the unlikely event of having been preempted here.
3728 */
3729 for (i = 4; --i; )
3730 {
3731 ev_tstamp diff;
3732 rtmn_diff = ev_rt_now - mn_now;
3733
3734 diff = odiff - rtmn_diff;
3735
3736 if (ecb_expect_true ((diff < EV_TS_CONST (0.) ? -diff : diff) < EV_TS_CONST (MIN_TIMEJUMP)))
3737 return; /* all is well */
3738
3739 ev_rt_now = ev_time ();
3740 mn_now = get_clock ();
3741 now_floor = mn_now;
3742 }
3743
3744 /* no timer adjustment, as the monotonic clock doesn't jump */
3745 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3746# if EV_PERIODIC_ENABLE
3747 periodics_reschedule (EV_A);
3748# endif
3749 }
3750 else
3751#endif
3752 {
3753 ev_rt_now = ev_time ();
3754
3755 if (ecb_expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + EV_TS_CONST (MIN_TIMEJUMP)))
3756 {
3757 /* adjust timers. this is easy, as the offset is the same for all of them */
3758 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3759#if EV_PERIODIC_ENABLE
3760 periodics_reschedule (EV_A);
3761#endif
3762 }
3763
3764 mn_now = ev_rt_now;
3765 }
448} 3766}
449 3767
450int 3768int
451ev_version_minor (void) 3769ev_run (EV_P_ int flags)
452{ 3770{
453 return EV_VERSION_MINOR; 3771#if EV_FEATURE_API
454} 3772 ++loop_depth;
3773#endif
455 3774
456int ev_init (int flags) 3775 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
457{ 3776
458 if (!ev_method) 3777 loop_done = EVBREAK_CANCEL;
3778
3779 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3780
3781 do
459 { 3782 {
460#if EV_USE_MONOTONIC 3783#if EV_VERIFY >= 2
3784 ev_verify (EV_A);
3785#endif
3786
3787#ifndef _WIN32
3788 if (ecb_expect_false (curpid)) /* penalise the forking check even more */
3789 if (ecb_expect_false (getpid () != curpid))
3790 {
3791 curpid = getpid ();
3792 postfork = 1;
3793 }
3794#endif
3795
3796#if EV_FORK_ENABLE
3797 /* we might have forked, so queue fork handlers */
3798 if (ecb_expect_false (postfork))
3799 if (forkcnt)
3800 {
3801 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3802 EV_INVOKE_PENDING;
3803 }
3804#endif
3805
3806#if EV_PREPARE_ENABLE
3807 /* queue prepare watchers (and execute them) */
3808 if (ecb_expect_false (preparecnt))
3809 {
3810 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3811 EV_INVOKE_PENDING;
3812 }
3813#endif
3814
3815 if (ecb_expect_false (loop_done))
3816 break;
3817
3818 /* we might have forked, so reify kernel state if necessary */
3819 if (ecb_expect_false (postfork))
3820 loop_fork (EV_A);
3821
3822 /* update fd-related kernel structures */
3823 fd_reify (EV_A);
3824
3825 /* calculate blocking time */
461 { 3826 {
462 struct timespec ts; 3827 ev_tstamp waittime = 0.;
463 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 3828 ev_tstamp sleeptime = 0.;
464 have_monotonic = 1; 3829
3830 /* remember old timestamp for io_blocktime calculation */
3831 ev_tstamp prev_mn_now = mn_now;
3832
3833 /* update time to cancel out callback processing overhead */
3834 time_update (EV_A_ EV_TS_CONST (EV_TSTAMP_HUGE));
3835
3836 /* from now on, we want a pipe-wake-up */
3837 pipe_write_wanted = 1;
3838
3839 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3840
3841 if (ecb_expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3842 {
3843 waittime = EV_TS_CONST (MAX_BLOCKTIME);
3844
3845 if (timercnt)
3846 {
3847 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3848 if (waittime > to) waittime = to;
3849 }
3850
3851#if EV_PERIODIC_ENABLE
3852 if (periodiccnt)
3853 {
3854 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3855 if (waittime > to) waittime = to;
3856 }
3857#endif
3858
3859 /* don't let timeouts decrease the waittime below timeout_blocktime */
3860 if (ecb_expect_false (waittime < timeout_blocktime))
3861 waittime = timeout_blocktime;
3862
3863 /* at this point, we NEED to wait, so we have to ensure */
3864 /* to pass a minimum nonzero value to the backend */
3865 if (ecb_expect_false (waittime < backend_mintime))
3866 waittime = backend_mintime;
3867
3868 /* extra check because io_blocktime is commonly 0 */
3869 if (ecb_expect_false (io_blocktime))
3870 {
3871 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3872
3873 if (sleeptime > waittime - backend_mintime)
3874 sleeptime = waittime - backend_mintime;
3875
3876 if (ecb_expect_true (sleeptime > EV_TS_CONST (0.)))
3877 {
3878 ev_sleep (sleeptime);
3879 waittime -= sleeptime;
3880 }
3881 }
3882 }
3883
3884#if EV_FEATURE_API
3885 ++loop_count;
3886#endif
3887 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3888 backend_poll (EV_A_ waittime);
3889 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3890
3891 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3892
3893 ECB_MEMORY_FENCE_ACQUIRE;
3894 if (pipe_write_skipped)
3895 {
3896 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3897 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3898 }
3899
3900 /* update ev_rt_now, do magic */
3901 time_update (EV_A_ waittime + sleeptime);
465 } 3902 }
466#endif
467 3903
468 ev_now = ev_time (); 3904 /* queue pending timers and reschedule them */
469 now = get_clock (); 3905 timers_reify (EV_A); /* relative timers called last */
470 diff = ev_now - now; 3906#if EV_PERIODIC_ENABLE
471 3907 periodics_reify (EV_A); /* absolute timers called first */
472 if (pipe (sigpipe))
473 return 0;
474
475 ev_method = EVMETHOD_NONE;
476#if EV_USE_EPOLL
477 if (ev_method == EVMETHOD_NONE) epoll_init (flags);
478#endif 3908#endif
479#if EV_USE_SELECT
480 if (ev_method == EVMETHOD_NONE) select_init (flags);
481#endif
482 3909
483 if (ev_method) 3910#if EV_IDLE_ENABLE
3911 /* queue idle watchers unless other events are pending */
3912 idle_reify (EV_A);
3913#endif
3914
3915#if EV_CHECK_ENABLE
3916 /* queue check watchers, to be executed first */
3917 if (ecb_expect_false (checkcnt))
3918 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3919#endif
3920
3921 EV_INVOKE_PENDING;
3922 }
3923 while (ecb_expect_true (
3924 activecnt
3925 && !loop_done
3926 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3927 ));
3928
3929 if (loop_done == EVBREAK_ONE)
3930 loop_done = EVBREAK_CANCEL;
3931
3932#if EV_FEATURE_API
3933 --loop_depth;
3934#endif
3935
3936 return activecnt;
3937}
3938
3939void
3940ev_break (EV_P_ int how) EV_NOEXCEPT
3941{
3942 loop_done = how;
3943}
3944
3945void
3946ev_ref (EV_P) EV_NOEXCEPT
3947{
3948 ++activecnt;
3949}
3950
3951void
3952ev_unref (EV_P) EV_NOEXCEPT
3953{
3954 --activecnt;
3955}
3956
3957void
3958ev_now_update (EV_P) EV_NOEXCEPT
3959{
3960 time_update (EV_A_ EV_TSTAMP_HUGE);
3961}
3962
3963void
3964ev_suspend (EV_P) EV_NOEXCEPT
3965{
3966 ev_now_update (EV_A);
3967}
3968
3969void
3970ev_resume (EV_P) EV_NOEXCEPT
3971{
3972 ev_tstamp mn_prev = mn_now;
3973
3974 ev_now_update (EV_A);
3975 timers_reschedule (EV_A_ mn_now - mn_prev);
3976#if EV_PERIODIC_ENABLE
3977 /* TODO: really do this? */
3978 periodics_reschedule (EV_A);
3979#endif
3980}
3981
3982/*****************************************************************************/
3983/* singly-linked list management, used when the expected list length is short */
3984
3985inline_size void
3986wlist_add (WL *head, WL elem)
3987{
3988 elem->next = *head;
3989 *head = elem;
3990}
3991
3992inline_size void
3993wlist_del (WL *head, WL elem)
3994{
3995 while (*head)
3996 {
3997 if (ecb_expect_true (*head == elem))
484 { 3998 {
485 ev_watcher_init (&sigev, sigcb); 3999 *head = elem->next;
486 siginit (); 4000 break;
487
488 ev_signal_init (&childev, childcb, SIGCHLD);
489 ev_signal_start (&childev);
490 } 4001 }
4002
4003 head = &(*head)->next;
4004 }
4005}
4006
4007/* internal, faster, version of ev_clear_pending */
4008inline_speed void
4009clear_pending (EV_P_ W w)
4010{
4011 if (w->pending)
491 } 4012 {
4013 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
4014 w->pending = 0;
4015 }
4016}
492 4017
493 return ev_method; 4018int
4019ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
4020{
4021 W w_ = (W)w;
4022 int pending = w_->pending;
4023
4024 if (ecb_expect_true (pending))
4025 {
4026 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
4027 p->w = (W)&pending_w;
4028 w_->pending = 0;
4029 return p->events;
4030 }
4031 else
4032 return 0;
4033}
4034
4035inline_size void
4036pri_adjust (EV_P_ W w)
4037{
4038 int pri = ev_priority (w);
4039 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
4040 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
4041 ev_set_priority (w, pri);
4042}
4043
4044inline_speed void
4045ev_start (EV_P_ W w, int active)
4046{
4047 pri_adjust (EV_A_ w);
4048 w->active = active;
4049 ev_ref (EV_A);
4050}
4051
4052inline_size void
4053ev_stop (EV_P_ W w)
4054{
4055 ev_unref (EV_A);
4056 w->active = 0;
494} 4057}
495 4058
496/*****************************************************************************/ 4059/*****************************************************************************/
497 4060
4061ecb_noinline
498void 4062void
499ev_fork_prepare (void) 4063ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
500{ 4064{
501 /* nop */ 4065 int fd = w->fd;
502}
503 4066
504void 4067 if (ecb_expect_false (ev_is_active (w)))
505ev_fork_parent (void) 4068 return;
506{
507 /* nop */
508}
509 4069
510void 4070 assert (("libev: ev_io_start called with negative fd", fd >= 0));
511ev_fork_child (void) 4071 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
512{
513#if EV_USE_EPOLL
514 if (ev_method == EVMETHOD_EPOLL)
515 epoll_postfork_child ();
516#endif
517 4072
518 ev_io_stop (&sigev); 4073#if EV_VERIFY >= 2
519 close (sigpipe [0]); 4074 assert (("libev: ev_io_start called on watcher with invalid fd", fd_valid (fd)));
520 close (sigpipe [1]); 4075#endif
521 pipe (sigpipe); 4076 EV_FREQUENT_CHECK;
522 siginit ();
523}
524 4077
525/*****************************************************************************/ 4078 ev_start (EV_A_ (W)w, 1);
4079 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
4080 wlist_add (&anfds[fd].head, (WL)w);
526 4081
527static void 4082 /* common bug, apparently */
528call_pending (void) 4083 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
4084
4085 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
4086 w->events &= ~EV__IOFDSET;
4087
4088 EV_FREQUENT_CHECK;
4089}
4090
4091ecb_noinline
4092void
4093ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
529{ 4094{
530 while (pendingcnt) 4095 clear_pending (EV_A_ (W)w);
4096 if (ecb_expect_false (!ev_is_active (w)))
4097 return;
4098
4099 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
4100
4101#if EV_VERIFY >= 2
4102 assert (("libev: ev_io_stop called on watcher with invalid fd", fd_valid (w->fd)));
4103#endif
4104 EV_FREQUENT_CHECK;
4105
4106 wlist_del (&anfds[w->fd].head, (WL)w);
4107 ev_stop (EV_A_ (W)w);
4108
4109 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
4110
4111 EV_FREQUENT_CHECK;
4112}
4113
4114ecb_noinline
4115void
4116ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
4117{
4118 if (ecb_expect_false (ev_is_active (w)))
4119 return;
4120
4121 ev_at (w) += mn_now;
4122
4123 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
4124
4125 EV_FREQUENT_CHECK;
4126
4127 ++timercnt;
4128 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
4129 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
4130 ANHE_w (timers [ev_active (w)]) = (WT)w;
4131 ANHE_at_cache (timers [ev_active (w)]);
4132 upheap (timers, ev_active (w));
4133
4134 EV_FREQUENT_CHECK;
4135
4136 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
4137}
4138
4139ecb_noinline
4140void
4141ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
4142{
4143 clear_pending (EV_A_ (W)w);
4144 if (ecb_expect_false (!ev_is_active (w)))
4145 return;
4146
4147 EV_FREQUENT_CHECK;
4148
531 { 4149 {
532 ANPENDING *p = pendings + --pendingcnt; 4150 int active = ev_active (w);
533 4151
534 if (p->w) 4152 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
4153
4154 --timercnt;
4155
4156 if (ecb_expect_true (active < timercnt + HEAP0))
535 { 4157 {
536 p->w->pending = 0; 4158 timers [active] = timers [timercnt + HEAP0];
537 p->w->cb (p->w, p->events); 4159 adjustheap (timers, timercnt, active);
538 } 4160 }
4161 }
4162
4163 ev_at (w) -= mn_now;
4164
4165 ev_stop (EV_A_ (W)w);
4166
4167 EV_FREQUENT_CHECK;
4168}
4169
4170ecb_noinline
4171void
4172ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
4173{
4174 EV_FREQUENT_CHECK;
4175
4176 clear_pending (EV_A_ (W)w);
4177
4178 if (ev_is_active (w))
539 } 4179 {
540}
541
542static void
543timers_reify (void)
544{
545 while (timercnt && timers [0]->at <= now)
546 {
547 struct ev_timer *w = timers [0];
548
549 /* first reschedule or stop timer */
550 if (w->repeat) 4180 if (w->repeat)
551 { 4181 {
552 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
553 w->at = now + w->repeat; 4182 ev_at (w) = mn_now + w->repeat;
554 downheap ((WT *)timers, timercnt, 0); 4183 ANHE_at_cache (timers [ev_active (w)]);
4184 adjustheap (timers, timercnt, ev_active (w));
555 } 4185 }
556 else 4186 else
557 ev_timer_stop (w); /* nonrepeating: stop timer */ 4187 ev_timer_stop (EV_A_ w);
558
559 event ((W)w, EV_TIMEOUT);
560 }
561}
562
563static void
564periodics_reify (void)
565{
566 while (periodiccnt && periodics [0]->at <= ev_now)
567 { 4188 }
568 struct ev_periodic *w = periodics [0]; 4189 else if (w->repeat)
4190 {
4191 ev_at (w) = w->repeat;
4192 ev_timer_start (EV_A_ w);
4193 }
569 4194
570 /* first reschedule or stop timer */ 4195 EV_FREQUENT_CHECK;
4196}
4197
4198ev_tstamp
4199ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4200{
4201 return ev_at (w) - (ev_is_active (w) ? mn_now : EV_TS_CONST (0.));
4202}
4203
4204#if EV_PERIODIC_ENABLE
4205ecb_noinline
4206void
4207ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
4208{
4209 if (ecb_expect_false (ev_is_active (w)))
4210 return;
4211
4212 if (w->reschedule_cb)
4213 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
571 if (w->interval) 4214 else if (w->interval)
4215 {
4216 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
4217 periodic_recalc (EV_A_ w);
4218 }
4219 else
4220 ev_at (w) = w->offset;
4221
4222 EV_FREQUENT_CHECK;
4223
4224 ++periodiccnt;
4225 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
4226 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
4227 ANHE_w (periodics [ev_active (w)]) = (WT)w;
4228 ANHE_at_cache (periodics [ev_active (w)]);
4229 upheap (periodics, ev_active (w));
4230
4231 EV_FREQUENT_CHECK;
4232
4233 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
4234}
4235
4236ecb_noinline
4237void
4238ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
4239{
4240 clear_pending (EV_A_ (W)w);
4241 if (ecb_expect_false (!ev_is_active (w)))
4242 return;
4243
4244 EV_FREQUENT_CHECK;
4245
4246 {
4247 int active = ev_active (w);
4248
4249 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
4250
4251 --periodiccnt;
4252
4253 if (ecb_expect_true (active < periodiccnt + HEAP0))
4254 {
4255 periodics [active] = periodics [periodiccnt + HEAP0];
4256 adjustheap (periodics, periodiccnt, active);
4257 }
4258 }
4259
4260 ev_stop (EV_A_ (W)w);
4261
4262 EV_FREQUENT_CHECK;
4263}
4264
4265ecb_noinline
4266void
4267ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
4268{
4269 /* TODO: use adjustheap and recalculation */
4270 ev_periodic_stop (EV_A_ w);
4271 ev_periodic_start (EV_A_ w);
4272}
4273#endif
4274
4275#ifndef SA_RESTART
4276# define SA_RESTART 0
4277#endif
4278
4279#if EV_SIGNAL_ENABLE
4280
4281ecb_noinline
4282void
4283ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
4284{
4285 if (ecb_expect_false (ev_is_active (w)))
4286 return;
4287
4288 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4289
4290#if EV_MULTIPLICITY
4291 assert (("libev: a signal must not be attached to two different loops",
4292 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4293
4294 signals [w->signum - 1].loop = EV_A;
4295 ECB_MEMORY_FENCE_RELEASE;
4296#endif
4297
4298 EV_FREQUENT_CHECK;
4299
4300#if EV_USE_SIGNALFD
4301 if (sigfd == -2)
4302 {
4303 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
4304 if (sigfd < 0 && errno == EINVAL)
4305 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
4306
4307 if (sigfd >= 0)
572 { 4308 {
573 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 4309 fd_intern (sigfd); /* doing it twice will not hurt */
574 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 4310
575 downheap ((WT *)periodics, periodiccnt, 0); 4311 sigemptyset (&sigfd_set);
4312
4313 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4314 ev_set_priority (&sigfd_w, EV_MAXPRI);
4315 ev_io_start (EV_A_ &sigfd_w);
4316 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4317 }
4318 }
4319
4320 if (sigfd >= 0)
4321 {
4322 /* TODO: check .head */
4323 sigaddset (&sigfd_set, w->signum);
4324 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4325
4326 signalfd (sigfd, &sigfd_set, 0);
4327 }
4328#endif
4329
4330 ev_start (EV_A_ (W)w, 1);
4331 wlist_add (&signals [w->signum - 1].head, (WL)w);
4332
4333 if (!((WL)w)->next)
4334# if EV_USE_SIGNALFD
4335 if (sigfd < 0) /*TODO*/
4336# endif
4337 {
4338# ifdef _WIN32
4339 evpipe_init (EV_A);
4340
4341 signal (w->signum, ev_sighandler);
4342# else
4343 struct sigaction sa;
4344
4345 evpipe_init (EV_A);
4346
4347 sa.sa_handler = ev_sighandler;
4348 sigfillset (&sa.sa_mask);
4349 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
4350 sigaction (w->signum, &sa, 0);
4351
4352 if (origflags & EVFLAG_NOSIGMASK)
4353 {
4354 sigemptyset (&sa.sa_mask);
4355 sigaddset (&sa.sa_mask, w->signum);
4356 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4357 }
4358#endif
4359 }
4360
4361 EV_FREQUENT_CHECK;
4362}
4363
4364ecb_noinline
4365void
4366ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
4367{
4368 clear_pending (EV_A_ (W)w);
4369 if (ecb_expect_false (!ev_is_active (w)))
4370 return;
4371
4372 EV_FREQUENT_CHECK;
4373
4374 wlist_del (&signals [w->signum - 1].head, (WL)w);
4375 ev_stop (EV_A_ (W)w);
4376
4377 if (!signals [w->signum - 1].head)
4378 {
4379#if EV_MULTIPLICITY
4380 signals [w->signum - 1].loop = 0; /* unattach from signal */
4381#endif
4382#if EV_USE_SIGNALFD
4383 if (sigfd >= 0)
4384 {
4385 sigset_t ss;
4386
4387 sigemptyset (&ss);
4388 sigaddset (&ss, w->signum);
4389 sigdelset (&sigfd_set, w->signum);
4390
4391 signalfd (sigfd, &sigfd_set, 0);
4392 sigprocmask (SIG_UNBLOCK, &ss, 0);
576 } 4393 }
577 else 4394 else
578 ev_periodic_stop (w); /* nonrepeating: stop timer */ 4395#endif
579 4396 signal (w->signum, SIG_DFL);
580 event ((W)w, EV_PERIODIC);
581 } 4397 }
582}
583 4398
4399 EV_FREQUENT_CHECK;
4400}
4401
4402#endif
4403
4404#if EV_CHILD_ENABLE
4405
4406void
4407ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4408{
4409#if EV_MULTIPLICITY
4410 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
4411#endif
4412 if (ecb_expect_false (ev_is_active (w)))
4413 return;
4414
4415 EV_FREQUENT_CHECK;
4416
4417 ev_start (EV_A_ (W)w, 1);
4418 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4419
4420 EV_FREQUENT_CHECK;
4421}
4422
4423void
4424ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
4425{
4426 clear_pending (EV_A_ (W)w);
4427 if (ecb_expect_false (!ev_is_active (w)))
4428 return;
4429
4430 EV_FREQUENT_CHECK;
4431
4432 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4433 ev_stop (EV_A_ (W)w);
4434
4435 EV_FREQUENT_CHECK;
4436}
4437
4438#endif
4439
4440#if EV_STAT_ENABLE
4441
4442# ifdef _WIN32
4443# undef lstat
4444# define lstat(a,b) _stati64 (a,b)
4445# endif
4446
4447#define DEF_STAT_INTERVAL 5.0074891
4448#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4449#define MIN_STAT_INTERVAL 0.1074891
4450
4451ecb_noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4452
4453#if EV_USE_INOTIFY
4454
4455/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4456# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4457
4458ecb_noinline
584static void 4459static void
585periodics_reschedule (ev_tstamp diff) 4460infy_add (EV_P_ ev_stat *w)
586{ 4461{
587 int i; 4462 w->wd = inotify_add_watch (fs_fd, w->path,
4463 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4464 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4465 | IN_DONT_FOLLOW | IN_MASK_ADD);
588 4466
589 /* adjust periodics after time jump */ 4467 if (w->wd >= 0)
590 for (i = 0; i < periodiccnt; ++i) 4468 {
4469 struct statfs sfs;
4470
4471 /* now local changes will be tracked by inotify, but remote changes won't */
4472 /* unless the filesystem is known to be local, we therefore still poll */
4473 /* also do poll on <2.6.25, but with normal frequency */
4474
4475 if (!fs_2625)
4476 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4477 else if (!statfs (w->path, &sfs)
4478 && (sfs.f_type == 0x1373 /* devfs */
4479 || sfs.f_type == 0x4006 /* fat */
4480 || sfs.f_type == 0x4d44 /* msdos */
4481 || sfs.f_type == 0xEF53 /* ext2/3 */
4482 || sfs.f_type == 0x72b6 /* jffs2 */
4483 || sfs.f_type == 0x858458f6 /* ramfs */
4484 || sfs.f_type == 0x5346544e /* ntfs */
4485 || sfs.f_type == 0x3153464a /* jfs */
4486 || sfs.f_type == 0x9123683e /* btrfs */
4487 || sfs.f_type == 0x52654973 /* reiser3 */
4488 || sfs.f_type == 0x01021994 /* tmpfs */
4489 || sfs.f_type == 0x58465342 /* xfs */))
4490 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4491 else
4492 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
591 { 4493 }
592 struct ev_periodic *w = periodics [i]; 4494 else
4495 {
4496 /* can't use inotify, continue to stat */
4497 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
593 4498
594 if (w->interval) 4499 /* if path is not there, monitor some parent directory for speedup hints */
4500 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4501 /* but an efficiency issue only */
4502 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
595 { 4503 {
596 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 4504 char path [4096];
4505 strcpy (path, w->path);
597 4506
598 if (fabs (diff) >= 1e-4) 4507 do
599 { 4508 {
600 ev_periodic_stop (w); 4509 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
601 ev_periodic_start (w); 4510 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
602 4511
603 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 4512 char *pend = strrchr (path, '/');
4513
4514 if (!pend || pend == path)
4515 break;
4516
4517 *pend = 0;
4518 w->wd = inotify_add_watch (fs_fd, path, mask);
4519 }
4520 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4521 }
4522 }
4523
4524 if (w->wd >= 0)
4525 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4526
4527 /* now re-arm timer, if required */
4528 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4529 ev_timer_again (EV_A_ &w->timer);
4530 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4531}
4532
4533ecb_noinline
4534static void
4535infy_del (EV_P_ ev_stat *w)
4536{
4537 int slot;
4538 int wd = w->wd;
4539
4540 if (wd < 0)
4541 return;
4542
4543 w->wd = -2;
4544 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4545 wlist_del (&fs_hash [slot].head, (WL)w);
4546
4547 /* remove this watcher, if others are watching it, they will rearm */
4548 inotify_rm_watch (fs_fd, wd);
4549}
4550
4551ecb_noinline
4552static void
4553infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4554{
4555 if (slot < 0)
4556 /* overflow, need to check for all hash slots */
4557 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4558 infy_wd (EV_A_ slot, wd, ev);
4559 else
4560 {
4561 WL w_;
4562
4563 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4564 {
4565 ev_stat *w = (ev_stat *)w_;
4566 w_ = w_->next; /* lets us remove this watcher and all before it */
4567
4568 if (w->wd == wd || wd == -1)
4569 {
4570 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4571 {
4572 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4573 w->wd = -1;
4574 infy_add (EV_A_ w); /* re-add, no matter what */
4575 }
4576
4577 stat_timer_cb (EV_A_ &w->timer, 0);
604 } 4578 }
605 } 4579 }
606 } 4580 }
607} 4581}
608 4582
609static void 4583static void
610time_update (void) 4584infy_cb (EV_P_ ev_io *w, int revents)
611{ 4585{
4586 char buf [EV_INOTIFY_BUFSIZE];
612 int i; 4587 int ofs;
4588 int len = read (fs_fd, buf, sizeof (buf));
613 4589
614 ev_now = ev_time (); 4590 for (ofs = 0; ofs < len; )
615 4591 {
616 if (have_monotonic) 4592 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4593 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4594 ofs += sizeof (struct inotify_event) + ev->len;
617 { 4595 }
618 ev_tstamp odiff = diff; 4596}
619 4597
620 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 4598inline_size ecb_cold
4599void
4600ev_check_2625 (EV_P)
4601{
4602 /* kernels < 2.6.25 are borked
4603 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4604 */
4605 if (ev_linux_version () < 0x020619)
4606 return;
4607
4608 fs_2625 = 1;
4609}
4610
4611inline_size int
4612infy_newfd (void)
4613{
4614#if defined IN_CLOEXEC && defined IN_NONBLOCK
4615 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4616 if (fd >= 0)
4617 return fd;
4618#endif
4619 return inotify_init ();
4620}
4621
4622inline_size void
4623infy_init (EV_P)
4624{
4625 if (fs_fd != -2)
4626 return;
4627
4628 fs_fd = -1;
4629
4630 ev_check_2625 (EV_A);
4631
4632 fs_fd = infy_newfd ();
4633
4634 if (fs_fd >= 0)
4635 {
4636 fd_intern (fs_fd);
4637 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4638 ev_set_priority (&fs_w, EV_MAXPRI);
4639 ev_io_start (EV_A_ &fs_w);
4640 ev_unref (EV_A);
4641 }
4642}
4643
4644inline_size void
4645infy_fork (EV_P)
4646{
4647 int slot;
4648
4649 if (fs_fd < 0)
4650 return;
4651
4652 ev_ref (EV_A);
4653 ev_io_stop (EV_A_ &fs_w);
4654 close (fs_fd);
4655 fs_fd = infy_newfd ();
4656
4657 if (fs_fd >= 0)
4658 {
4659 fd_intern (fs_fd);
4660 ev_io_set (&fs_w, fs_fd, EV_READ);
4661 ev_io_start (EV_A_ &fs_w);
4662 ev_unref (EV_A);
4663 }
4664
4665 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4666 {
4667 WL w_ = fs_hash [slot].head;
4668 fs_hash [slot].head = 0;
4669
4670 while (w_)
621 { 4671 {
622 now = get_clock (); 4672 ev_stat *w = (ev_stat *)w_;
623 diff = ev_now - now; 4673 w_ = w_->next; /* lets us add this watcher */
624 4674
625 if (fabs (odiff - diff) < MIN_TIMEJUMP) 4675 w->wd = -1;
626 return; /* all is well */
627 4676
628 ev_now = ev_time (); 4677 if (fs_fd >= 0)
4678 infy_add (EV_A_ w); /* re-add, no matter what */
4679 else
4680 {
4681 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4682 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4683 ev_timer_again (EV_A_ &w->timer);
4684 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4685 }
629 } 4686 }
630
631 periodics_reschedule (diff - odiff);
632 /* no timer adjustment, as the monotonic clock doesn't jump */
633 } 4687 }
4688}
4689
4690#endif
4691
4692#ifdef _WIN32
4693# define EV_LSTAT(p,b) _stati64 (p, b)
4694#else
4695# define EV_LSTAT(p,b) lstat (p, b)
4696#endif
4697
4698void
4699ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
4700{
4701 if (lstat (w->path, &w->attr) < 0)
4702 w->attr.st_nlink = 0;
4703 else if (!w->attr.st_nlink)
4704 w->attr.st_nlink = 1;
4705}
4706
4707ecb_noinline
4708static void
4709stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4710{
4711 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4712
4713 ev_statdata prev = w->attr;
4714 ev_stat_stat (EV_A_ w);
4715
4716 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4717 if (
4718 prev.st_dev != w->attr.st_dev
4719 || prev.st_ino != w->attr.st_ino
4720 || prev.st_mode != w->attr.st_mode
4721 || prev.st_nlink != w->attr.st_nlink
4722 || prev.st_uid != w->attr.st_uid
4723 || prev.st_gid != w->attr.st_gid
4724 || prev.st_rdev != w->attr.st_rdev
4725 || prev.st_size != w->attr.st_size
4726 || prev.st_atime != w->attr.st_atime
4727 || prev.st_mtime != w->attr.st_mtime
4728 || prev.st_ctime != w->attr.st_ctime
4729 ) {
4730 /* we only update w->prev on actual differences */
4731 /* in case we test more often than invoke the callback, */
4732 /* to ensure that prev is always different to attr */
4733 w->prev = prev;
4734
4735 #if EV_USE_INOTIFY
4736 if (fs_fd >= 0)
4737 {
4738 infy_del (EV_A_ w);
4739 infy_add (EV_A_ w);
4740 ev_stat_stat (EV_A_ w); /* avoid race... */
4741 }
4742 #endif
4743
4744 ev_feed_event (EV_A_ w, EV_STAT);
4745 }
4746}
4747
4748void
4749ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
4750{
4751 if (ecb_expect_false (ev_is_active (w)))
4752 return;
4753
4754 ev_stat_stat (EV_A_ w);
4755
4756 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4757 w->interval = MIN_STAT_INTERVAL;
4758
4759 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4760 ev_set_priority (&w->timer, ev_priority (w));
4761
4762#if EV_USE_INOTIFY
4763 infy_init (EV_A);
4764
4765 if (fs_fd >= 0)
4766 infy_add (EV_A_ w);
634 else 4767 else
4768#endif
4769 {
4770 ev_timer_again (EV_A_ &w->timer);
4771 ev_unref (EV_A);
635 { 4772 }
636 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 4773
4774 ev_start (EV_A_ (W)w, 1);
4775
4776 EV_FREQUENT_CHECK;
4777}
4778
4779void
4780ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
4781{
4782 clear_pending (EV_A_ (W)w);
4783 if (ecb_expect_false (!ev_is_active (w)))
4784 return;
4785
4786 EV_FREQUENT_CHECK;
4787
4788#if EV_USE_INOTIFY
4789 infy_del (EV_A_ w);
4790#endif
4791
4792 if (ev_is_active (&w->timer))
4793 {
4794 ev_ref (EV_A);
4795 ev_timer_stop (EV_A_ &w->timer);
4796 }
4797
4798 ev_stop (EV_A_ (W)w);
4799
4800 EV_FREQUENT_CHECK;
4801}
4802#endif
4803
4804#if EV_IDLE_ENABLE
4805void
4806ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
4807{
4808 if (ecb_expect_false (ev_is_active (w)))
4809 return;
4810
4811 pri_adjust (EV_A_ (W)w);
4812
4813 EV_FREQUENT_CHECK;
4814
4815 {
4816 int active = ++idlecnt [ABSPRI (w)];
4817
4818 ++idleall;
4819 ev_start (EV_A_ (W)w, active);
4820
4821 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
4822 idles [ABSPRI (w)][active - 1] = w;
4823 }
4824
4825 EV_FREQUENT_CHECK;
4826}
4827
4828void
4829ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
4830{
4831 clear_pending (EV_A_ (W)w);
4832 if (ecb_expect_false (!ev_is_active (w)))
4833 return;
4834
4835 EV_FREQUENT_CHECK;
4836
4837 {
4838 int active = ev_active (w);
4839
4840 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4841 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4842
4843 ev_stop (EV_A_ (W)w);
4844 --idleall;
4845 }
4846
4847 EV_FREQUENT_CHECK;
4848}
4849#endif
4850
4851#if EV_PREPARE_ENABLE
4852void
4853ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
4854{
4855 if (ecb_expect_false (ev_is_active (w)))
4856 return;
4857
4858 EV_FREQUENT_CHECK;
4859
4860 ev_start (EV_A_ (W)w, ++preparecnt);
4861 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
4862 prepares [preparecnt - 1] = w;
4863
4864 EV_FREQUENT_CHECK;
4865}
4866
4867void
4868ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
4869{
4870 clear_pending (EV_A_ (W)w);
4871 if (ecb_expect_false (!ev_is_active (w)))
4872 return;
4873
4874 EV_FREQUENT_CHECK;
4875
4876 {
4877 int active = ev_active (w);
4878
4879 prepares [active - 1] = prepares [--preparecnt];
4880 ev_active (prepares [active - 1]) = active;
4881 }
4882
4883 ev_stop (EV_A_ (W)w);
4884
4885 EV_FREQUENT_CHECK;
4886}
4887#endif
4888
4889#if EV_CHECK_ENABLE
4890void
4891ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
4892{
4893 if (ecb_expect_false (ev_is_active (w)))
4894 return;
4895
4896 EV_FREQUENT_CHECK;
4897
4898 ev_start (EV_A_ (W)w, ++checkcnt);
4899 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
4900 checks [checkcnt - 1] = w;
4901
4902 EV_FREQUENT_CHECK;
4903}
4904
4905void
4906ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
4907{
4908 clear_pending (EV_A_ (W)w);
4909 if (ecb_expect_false (!ev_is_active (w)))
4910 return;
4911
4912 EV_FREQUENT_CHECK;
4913
4914 {
4915 int active = ev_active (w);
4916
4917 checks [active - 1] = checks [--checkcnt];
4918 ev_active (checks [active - 1]) = active;
4919 }
4920
4921 ev_stop (EV_A_ (W)w);
4922
4923 EV_FREQUENT_CHECK;
4924}
4925#endif
4926
4927#if EV_EMBED_ENABLE
4928ecb_noinline
4929void
4930ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
4931{
4932 ev_run (w->other, EVRUN_NOWAIT);
4933}
4934
4935static void
4936embed_io_cb (EV_P_ ev_io *io, int revents)
4937{
4938 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4939
4940 if (ev_cb (w))
4941 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4942 else
4943 ev_run (w->other, EVRUN_NOWAIT);
4944}
4945
4946static void
4947embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4948{
4949 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4950
4951 {
4952 EV_P = w->other;
4953
4954 while (fdchangecnt)
637 { 4955 {
638 periodics_reschedule (ev_now - now); 4956 fd_reify (EV_A);
639 4957 ev_run (EV_A_ EVRUN_NOWAIT);
640 /* adjust timers. this is easy, as the offset is the same for all */
641 for (i = 0; i < timercnt; ++i)
642 timers [i]->at += diff;
643 } 4958 }
644
645 now = ev_now;
646 } 4959 }
647} 4960}
648 4961
649int ev_loop_done; 4962static void
650 4963embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
651void ev_loop (int flags)
652{ 4964{
653 double block; 4965 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
654 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
655 4966
656 do 4967 ev_embed_stop (EV_A_ w);
4968
657 { 4969 {
658 /* queue check watchers (and execute them) */ 4970 EV_P = w->other;
659 if (preparecnt)
660 {
661 queue_events ((W *)prepares, preparecnt, EV_PREPARE);
662 call_pending ();
663 }
664 4971
665 /* update fd-related kernel structures */ 4972 ev_loop_fork (EV_A);
666 fd_reify (); 4973 ev_run (EV_A_ EVRUN_NOWAIT);
667
668 /* calculate blocking time */
669
670 /* we only need this for !monotonic clockor timers, but as we basically
671 always have timers, we just calculate it always */
672 ev_now = ev_time ();
673
674 if (flags & EVLOOP_NONBLOCK || idlecnt)
675 block = 0.;
676 else
677 {
678 block = MAX_BLOCKTIME;
679
680 if (timercnt)
681 {
682 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge;
683 if (block > to) block = to;
684 }
685
686 if (periodiccnt)
687 {
688 ev_tstamp to = periodics [0]->at - ev_now + method_fudge;
689 if (block > to) block = to;
690 }
691
692 if (block < 0.) block = 0.;
693 }
694
695 method_poll (block);
696
697 /* update ev_now, do magic */
698 time_update ();
699
700 /* queue pending timers and reschedule them */
701 timers_reify (); /* relative timers called last */
702 periodics_reify (); /* absolute timers called first */
703
704 /* queue idle watchers unless io or timers are pending */
705 if (!pendingcnt)
706 queue_events ((W *)idles, idlecnt, EV_IDLE);
707
708 /* queue check watchers, to be executed first */
709 if (checkcnt)
710 queue_events ((W *)checks, checkcnt, EV_CHECK);
711
712 call_pending ();
713 } 4974 }
714 while (!ev_loop_done);
715 4975
716 if (ev_loop_done != 2) 4976 ev_embed_start (EV_A_ w);
717 ev_loop_done = 0;
718} 4977}
4978
4979#if 0
4980static void
4981embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4982{
4983 ev_idle_stop (EV_A_ idle);
4984}
4985#endif
4986
4987void
4988ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
4989{
4990 if (ecb_expect_false (ev_is_active (w)))
4991 return;
4992
4993 {
4994 EV_P = w->other;
4995 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4996 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4997 }
4998
4999 EV_FREQUENT_CHECK;
5000
5001 ev_set_priority (&w->io, ev_priority (w));
5002 ev_io_start (EV_A_ &w->io);
5003
5004 ev_prepare_init (&w->prepare, embed_prepare_cb);
5005 ev_set_priority (&w->prepare, EV_MINPRI);
5006 ev_prepare_start (EV_A_ &w->prepare);
5007
5008 ev_fork_init (&w->fork, embed_fork_cb);
5009 ev_fork_start (EV_A_ &w->fork);
5010
5011 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
5012
5013 ev_start (EV_A_ (W)w, 1);
5014
5015 EV_FREQUENT_CHECK;
5016}
5017
5018void
5019ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
5020{
5021 clear_pending (EV_A_ (W)w);
5022 if (ecb_expect_false (!ev_is_active (w)))
5023 return;
5024
5025 EV_FREQUENT_CHECK;
5026
5027 ev_io_stop (EV_A_ &w->io);
5028 ev_prepare_stop (EV_A_ &w->prepare);
5029 ev_fork_stop (EV_A_ &w->fork);
5030
5031 ev_stop (EV_A_ (W)w);
5032
5033 EV_FREQUENT_CHECK;
5034}
5035#endif
5036
5037#if EV_FORK_ENABLE
5038void
5039ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
5040{
5041 if (ecb_expect_false (ev_is_active (w)))
5042 return;
5043
5044 EV_FREQUENT_CHECK;
5045
5046 ev_start (EV_A_ (W)w, ++forkcnt);
5047 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
5048 forks [forkcnt - 1] = w;
5049
5050 EV_FREQUENT_CHECK;
5051}
5052
5053void
5054ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
5055{
5056 clear_pending (EV_A_ (W)w);
5057 if (ecb_expect_false (!ev_is_active (w)))
5058 return;
5059
5060 EV_FREQUENT_CHECK;
5061
5062 {
5063 int active = ev_active (w);
5064
5065 forks [active - 1] = forks [--forkcnt];
5066 ev_active (forks [active - 1]) = active;
5067 }
5068
5069 ev_stop (EV_A_ (W)w);
5070
5071 EV_FREQUENT_CHECK;
5072}
5073#endif
5074
5075#if EV_CLEANUP_ENABLE
5076void
5077ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5078{
5079 if (ecb_expect_false (ev_is_active (w)))
5080 return;
5081
5082 EV_FREQUENT_CHECK;
5083
5084 ev_start (EV_A_ (W)w, ++cleanupcnt);
5085 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
5086 cleanups [cleanupcnt - 1] = w;
5087
5088 /* cleanup watchers should never keep a refcount on the loop */
5089 ev_unref (EV_A);
5090 EV_FREQUENT_CHECK;
5091}
5092
5093void
5094ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5095{
5096 clear_pending (EV_A_ (W)w);
5097 if (ecb_expect_false (!ev_is_active (w)))
5098 return;
5099
5100 EV_FREQUENT_CHECK;
5101 ev_ref (EV_A);
5102
5103 {
5104 int active = ev_active (w);
5105
5106 cleanups [active - 1] = cleanups [--cleanupcnt];
5107 ev_active (cleanups [active - 1]) = active;
5108 }
5109
5110 ev_stop (EV_A_ (W)w);
5111
5112 EV_FREQUENT_CHECK;
5113}
5114#endif
5115
5116#if EV_ASYNC_ENABLE
5117void
5118ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
5119{
5120 if (ecb_expect_false (ev_is_active (w)))
5121 return;
5122
5123 w->sent = 0;
5124
5125 evpipe_init (EV_A);
5126
5127 EV_FREQUENT_CHECK;
5128
5129 ev_start (EV_A_ (W)w, ++asynccnt);
5130 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
5131 asyncs [asynccnt - 1] = w;
5132
5133 EV_FREQUENT_CHECK;
5134}
5135
5136void
5137ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
5138{
5139 clear_pending (EV_A_ (W)w);
5140 if (ecb_expect_false (!ev_is_active (w)))
5141 return;
5142
5143 EV_FREQUENT_CHECK;
5144
5145 {
5146 int active = ev_active (w);
5147
5148 asyncs [active - 1] = asyncs [--asynccnt];
5149 ev_active (asyncs [active - 1]) = active;
5150 }
5151
5152 ev_stop (EV_A_ (W)w);
5153
5154 EV_FREQUENT_CHECK;
5155}
5156
5157void
5158ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
5159{
5160 w->sent = 1;
5161 evpipe_write (EV_A_ &async_pending);
5162}
5163#endif
719 5164
720/*****************************************************************************/ 5165/*****************************************************************************/
721 5166
722static void
723wlist_add (WL *head, WL elem)
724{
725 elem->next = *head;
726 *head = elem;
727}
728
729static void
730wlist_del (WL *head, WL elem)
731{
732 while (*head)
733 {
734 if (*head == elem)
735 {
736 *head = elem->next;
737 return;
738 }
739
740 head = &(*head)->next;
741 }
742}
743
744static void
745ev_clear_pending (W w)
746{
747 if (w->pending)
748 {
749 pendings [w->pending - 1].w = 0;
750 w->pending = 0;
751 }
752}
753
754static void
755ev_start (W w, int active)
756{
757 w->active = active;
758}
759
760static void
761ev_stop (W w)
762{
763 w->active = 0;
764}
765
766/*****************************************************************************/
767
768void
769ev_io_start (struct ev_io *w)
770{
771 int fd = w->fd;
772
773 if (ev_is_active (w))
774 return;
775
776 assert (("ev_io_start called with negative fd", fd >= 0));
777
778 ev_start ((W)w, 1);
779 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
780 wlist_add ((WL *)&anfds[fd].head, (WL)w);
781
782 fd_change (fd);
783}
784
785void
786ev_io_stop (struct ev_io *w)
787{
788 ev_clear_pending ((W)w);
789 if (!ev_is_active (w))
790 return;
791
792 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
793 ev_stop ((W)w);
794
795 fd_change (w->fd);
796}
797
798void
799ev_timer_start (struct ev_timer *w)
800{
801 if (ev_is_active (w))
802 return;
803
804 w->at += now;
805
806 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
807
808 ev_start ((W)w, ++timercnt);
809 array_needsize (timers, timermax, timercnt, );
810 timers [timercnt - 1] = w;
811 upheap ((WT *)timers, timercnt - 1);
812}
813
814void
815ev_timer_stop (struct ev_timer *w)
816{
817 ev_clear_pending ((W)w);
818 if (!ev_is_active (w))
819 return;
820
821 if (w->active < timercnt--)
822 {
823 timers [w->active - 1] = timers [timercnt];
824 downheap ((WT *)timers, timercnt, w->active - 1);
825 }
826
827 w->at = w->repeat;
828
829 ev_stop ((W)w);
830}
831
832void
833ev_timer_again (struct ev_timer *w)
834{
835 if (ev_is_active (w))
836 {
837 if (w->repeat)
838 {
839 w->at = now + w->repeat;
840 downheap ((WT *)timers, timercnt, w->active - 1);
841 }
842 else
843 ev_timer_stop (w);
844 }
845 else if (w->repeat)
846 ev_timer_start (w);
847}
848
849void
850ev_periodic_start (struct ev_periodic *w)
851{
852 if (ev_is_active (w))
853 return;
854
855 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
856
857 /* this formula differs from the one in periodic_reify because we do not always round up */
858 if (w->interval)
859 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval;
860
861 ev_start ((W)w, ++periodiccnt);
862 array_needsize (periodics, periodicmax, periodiccnt, );
863 periodics [periodiccnt - 1] = w;
864 upheap ((WT *)periodics, periodiccnt - 1);
865}
866
867void
868ev_periodic_stop (struct ev_periodic *w)
869{
870 ev_clear_pending ((W)w);
871 if (!ev_is_active (w))
872 return;
873
874 if (w->active < periodiccnt--)
875 {
876 periodics [w->active - 1] = periodics [periodiccnt];
877 downheap ((WT *)periodics, periodiccnt, w->active - 1);
878 }
879
880 ev_stop ((W)w);
881}
882
883void
884ev_signal_start (struct ev_signal *w)
885{
886 if (ev_is_active (w))
887 return;
888
889 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
890
891 ev_start ((W)w, 1);
892 array_needsize (signals, signalmax, w->signum, signals_init);
893 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
894
895 if (!w->next)
896 {
897 struct sigaction sa;
898 sa.sa_handler = sighandler;
899 sigfillset (&sa.sa_mask);
900 sa.sa_flags = 0;
901 sigaction (w->signum, &sa, 0);
902 }
903}
904
905void
906ev_signal_stop (struct ev_signal *w)
907{
908 ev_clear_pending ((W)w);
909 if (!ev_is_active (w))
910 return;
911
912 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
913 ev_stop ((W)w);
914
915 if (!signals [w->signum - 1].head)
916 signal (w->signum, SIG_DFL);
917}
918
919void
920ev_idle_start (struct ev_idle *w)
921{
922 if (ev_is_active (w))
923 return;
924
925 ev_start ((W)w, ++idlecnt);
926 array_needsize (idles, idlemax, idlecnt, );
927 idles [idlecnt - 1] = w;
928}
929
930void
931ev_idle_stop (struct ev_idle *w)
932{
933 ev_clear_pending ((W)w);
934 if (ev_is_active (w))
935 return;
936
937 idles [w->active - 1] = idles [--idlecnt];
938 ev_stop ((W)w);
939}
940
941void
942ev_prepare_start (struct ev_prepare *w)
943{
944 if (ev_is_active (w))
945 return;
946
947 ev_start ((W)w, ++preparecnt);
948 array_needsize (prepares, preparemax, preparecnt, );
949 prepares [preparecnt - 1] = w;
950}
951
952void
953ev_prepare_stop (struct ev_prepare *w)
954{
955 ev_clear_pending ((W)w);
956 if (ev_is_active (w))
957 return;
958
959 prepares [w->active - 1] = prepares [--preparecnt];
960 ev_stop ((W)w);
961}
962
963void
964ev_check_start (struct ev_check *w)
965{
966 if (ev_is_active (w))
967 return;
968
969 ev_start ((W)w, ++checkcnt);
970 array_needsize (checks, checkmax, checkcnt, );
971 checks [checkcnt - 1] = w;
972}
973
974void
975ev_check_stop (struct ev_check *w)
976{
977 ev_clear_pending ((W)w);
978 if (ev_is_active (w))
979 return;
980
981 checks [w->active - 1] = checks [--checkcnt];
982 ev_stop ((W)w);
983}
984
985void
986ev_child_start (struct ev_child *w)
987{
988 if (ev_is_active (w))
989 return;
990
991 ev_start ((W)w, 1);
992 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
993}
994
995void
996ev_child_stop (struct ev_child *w)
997{
998 ev_clear_pending ((W)w);
999 if (ev_is_active (w))
1000 return;
1001
1002 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1003 ev_stop ((W)w);
1004}
1005
1006/*****************************************************************************/
1007
1008struct ev_once 5167struct ev_once
1009{ 5168{
1010 struct ev_io io; 5169 ev_io io;
1011 struct ev_timer to; 5170 ev_timer to;
1012 void (*cb)(int revents, void *arg); 5171 void (*cb)(int revents, void *arg);
1013 void *arg; 5172 void *arg;
1014}; 5173};
1015 5174
1016static void 5175static void
1017once_cb (struct ev_once *once, int revents) 5176once_cb (EV_P_ struct ev_once *once, int revents)
1018{ 5177{
1019 void (*cb)(int revents, void *arg) = once->cb; 5178 void (*cb)(int revents, void *arg) = once->cb;
1020 void *arg = once->arg; 5179 void *arg = once->arg;
1021 5180
1022 ev_io_stop (&once->io); 5181 ev_io_stop (EV_A_ &once->io);
1023 ev_timer_stop (&once->to); 5182 ev_timer_stop (EV_A_ &once->to);
1024 free (once); 5183 ev_free (once);
1025 5184
1026 cb (revents, arg); 5185 cb (revents, arg);
1027} 5186}
1028 5187
1029static void 5188static void
1030once_cb_io (struct ev_io *w, int revents) 5189once_cb_io (EV_P_ ev_io *w, int revents)
1031{ 5190{
1032 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 5191 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
5192
5193 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1033} 5194}
1034 5195
1035static void 5196static void
1036once_cb_to (struct ev_timer *w, int revents) 5197once_cb_to (EV_P_ ev_timer *w, int revents)
1037{ 5198{
1038 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 5199 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
1039}
1040 5200
5201 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
5202}
5203
1041void 5204void
1042ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 5205ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
1043{ 5206{
1044 struct ev_once *once = malloc (sizeof (struct ev_once)); 5207 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1045 5208
1046 if (!once)
1047 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1048 else
1049 {
1050 once->cb = cb; 5209 once->cb = cb;
1051 once->arg = arg; 5210 once->arg = arg;
1052 5211
1053 ev_watcher_init (&once->io, once_cb_io); 5212 ev_init (&once->io, once_cb_io);
1054 if (fd >= 0) 5213 if (fd >= 0)
5214 {
5215 ev_io_set (&once->io, fd, events);
5216 ev_io_start (EV_A_ &once->io);
5217 }
5218
5219 ev_init (&once->to, once_cb_to);
5220 if (timeout >= 0.)
5221 {
5222 ev_timer_set (&once->to, timeout, 0.);
5223 ev_timer_start (EV_A_ &once->to);
5224 }
5225}
5226
5227/*****************************************************************************/
5228
5229#if EV_WALK_ENABLE
5230ecb_cold
5231void
5232ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5233{
5234 int i, j;
5235 ev_watcher_list *wl, *wn;
5236
5237 if (types & (EV_IO | EV_EMBED))
5238 for (i = 0; i < anfdmax; ++i)
5239 for (wl = anfds [i].head; wl; )
1055 { 5240 {
1056 ev_io_set (&once->io, fd, events); 5241 wn = wl->next;
1057 ev_io_start (&once->io); 5242
5243#if EV_EMBED_ENABLE
5244 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5245 {
5246 if (types & EV_EMBED)
5247 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5248 }
5249 else
5250#endif
5251#if EV_USE_INOTIFY
5252 if (ev_cb ((ev_io *)wl) == infy_cb)
5253 ;
5254 else
5255#endif
5256 if ((ev_io *)wl != &pipe_w)
5257 if (types & EV_IO)
5258 cb (EV_A_ EV_IO, wl);
5259
5260 wl = wn;
1058 } 5261 }
1059 5262
1060 ev_watcher_init (&once->to, once_cb_to); 5263 if (types & (EV_TIMER | EV_STAT))
1061 if (timeout >= 0.) 5264 for (i = timercnt + HEAP0; i-- > HEAP0; )
5265#if EV_STAT_ENABLE
5266 /*TODO: timer is not always active*/
5267 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1062 { 5268 {
1063 ev_timer_set (&once->to, timeout, 0.); 5269 if (types & EV_STAT)
1064 ev_timer_start (&once->to); 5270 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1065 } 5271 }
1066 } 5272 else
1067} 5273#endif
5274 if (types & EV_TIMER)
5275 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1068 5276
1069/*****************************************************************************/ 5277#if EV_PERIODIC_ENABLE
5278 if (types & EV_PERIODIC)
5279 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5280 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5281#endif
1070 5282
1071#if 0 5283#if EV_IDLE_ENABLE
5284 if (types & EV_IDLE)
5285 for (j = NUMPRI; j--; )
5286 for (i = idlecnt [j]; i--; )
5287 cb (EV_A_ EV_IDLE, idles [j][i]);
5288#endif
1072 5289
1073struct ev_io wio; 5290#if EV_FORK_ENABLE
5291 if (types & EV_FORK)
5292 for (i = forkcnt; i--; )
5293 if (ev_cb (forks [i]) != embed_fork_cb)
5294 cb (EV_A_ EV_FORK, forks [i]);
5295#endif
1074 5296
1075static void 5297#if EV_ASYNC_ENABLE
1076sin_cb (struct ev_io *w, int revents) 5298 if (types & EV_ASYNC)
1077{ 5299 for (i = asynccnt; i--; )
1078 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents); 5300 cb (EV_A_ EV_ASYNC, asyncs [i]);
1079} 5301#endif
1080 5302
1081static void 5303#if EV_PREPARE_ENABLE
1082ocb (struct ev_timer *w, int revents) 5304 if (types & EV_PREPARE)
1083{ 5305 for (i = preparecnt; i--; )
1084 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data); 5306# if EV_EMBED_ENABLE
1085 ev_timer_stop (w); 5307 if (ev_cb (prepares [i]) != embed_prepare_cb)
1086 ev_timer_start (w);
1087}
1088
1089static void
1090scb (struct ev_signal *w, int revents)
1091{
1092 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1093 ev_io_stop (&wio);
1094 ev_io_start (&wio);
1095}
1096
1097static void
1098gcb (struct ev_signal *w, int revents)
1099{
1100 fprintf (stderr, "generic %x\n", revents);
1101
1102}
1103
1104int main (void)
1105{
1106 ev_init (0);
1107
1108 ev_io_init (&wio, sin_cb, 0, EV_READ);
1109 ev_io_start (&wio);
1110
1111 struct ev_timer t[10000];
1112
1113#if 0
1114 int i;
1115 for (i = 0; i < 10000; ++i)
1116 {
1117 struct ev_timer *w = t + i;
1118 ev_watcher_init (w, ocb, i);
1119 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1120 ev_timer_start (w);
1121 if (drand48 () < 0.5)
1122 ev_timer_stop (w);
1123 }
1124#endif 5308# endif
1125 5309 cb (EV_A_ EV_PREPARE, prepares [i]);
1126 struct ev_timer t1;
1127 ev_timer_init (&t1, ocb, 5, 10);
1128 ev_timer_start (&t1);
1129
1130 struct ev_signal sig;
1131 ev_signal_init (&sig, scb, SIGQUIT);
1132 ev_signal_start (&sig);
1133
1134 struct ev_check cw;
1135 ev_check_init (&cw, gcb);
1136 ev_check_start (&cw);
1137
1138 struct ev_idle iw;
1139 ev_idle_init (&iw, gcb);
1140 ev_idle_start (&iw);
1141
1142 ev_loop (0);
1143
1144 return 0;
1145}
1146
1147#endif 5310#endif
1148 5311
5312#if EV_CHECK_ENABLE
5313 if (types & EV_CHECK)
5314 for (i = checkcnt; i--; )
5315 cb (EV_A_ EV_CHECK, checks [i]);
5316#endif
1149 5317
5318#if EV_SIGNAL_ENABLE
5319 if (types & EV_SIGNAL)
5320 for (i = 0; i < EV_NSIG - 1; ++i)
5321 for (wl = signals [i].head; wl; )
5322 {
5323 wn = wl->next;
5324 cb (EV_A_ EV_SIGNAL, wl);
5325 wl = wn;
5326 }
5327#endif
1150 5328
5329#if EV_CHILD_ENABLE
5330 if (types & EV_CHILD)
5331 for (i = (EV_PID_HASHSIZE); i--; )
5332 for (wl = childs [i]; wl; )
5333 {
5334 wn = wl->next;
5335 cb (EV_A_ EV_CHILD, wl);
5336 wl = wn;
5337 }
5338#endif
5339/* EV_STAT 0x00001000 /* stat data changed */
5340/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5341}
5342#endif
1151 5343
5344#if EV_MULTIPLICITY
5345 #include "ev_wrap.h"
5346#endif
5347

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines