ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.270 by root, Thu Oct 30 13:07:10 2008 UTC vs.
Revision 1.514 by root, Fri Dec 20 05:20:50 2019 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
100# ifndef EV_USE_KQUEUE 120# if HAVE_LINUX_AIO_ABI_H
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 121# ifndef EV_USE_LINUXAIO
102# define EV_USE_KQUEUE 1 122# define EV_USE_LINUXAIO EV_FEATURE_BACKENDS
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_LINUXAIO
126# define EV_USE_LINUXAIO 0
106# endif 127# endif
107 128
129# if HAVE_LINUX_FS_H && HAVE_SYS_TIMERFD_H && HAVE_KERNEL_RWF_T
108# ifndef EV_USE_PORT 130# ifndef EV_USE_IOURING
109# if HAVE_PORT_H && HAVE_PORT_CREATE 131# define EV_USE_IOURING EV_FEATURE_BACKENDS
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif 132# endif
114# endif
115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else 133# else
134# undef EV_USE_IOURING
120# define EV_USE_INOTIFY 0 135# define EV_USE_IOURING 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif 136# endif
131 137
138# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
139# ifndef EV_USE_KQUEUE
140# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
141# endif
142# else
143# undef EV_USE_KQUEUE
144# define EV_USE_KQUEUE 0
132#endif 145# endif
146
147# if HAVE_PORT_H && HAVE_PORT_CREATE
148# ifndef EV_USE_PORT
149# define EV_USE_PORT EV_FEATURE_BACKENDS
150# endif
151# else
152# undef EV_USE_PORT
153# define EV_USE_PORT 0
154# endif
133 155
134#include <math.h> 156# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
157# ifndef EV_USE_INOTIFY
158# define EV_USE_INOTIFY EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_INOTIFY
162# define EV_USE_INOTIFY 0
163# endif
164
165# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
166# ifndef EV_USE_SIGNALFD
167# define EV_USE_SIGNALFD EV_FEATURE_OS
168# endif
169# else
170# undef EV_USE_SIGNALFD
171# define EV_USE_SIGNALFD 0
172# endif
173
174# if HAVE_EVENTFD
175# ifndef EV_USE_EVENTFD
176# define EV_USE_EVENTFD EV_FEATURE_OS
177# endif
178# else
179# undef EV_USE_EVENTFD
180# define EV_USE_EVENTFD 0
181# endif
182
183#endif
184
185/* OS X, in its infinite idiocy, actually HARDCODES
186 * a limit of 1024 into their select. Where people have brains,
187 * OS X engineers apparently have a vacuum. Or maybe they were
188 * ordered to have a vacuum, or they do anything for money.
189 * This might help. Or not.
190 * Note that this must be defined early, as other include files
191 * will rely on this define as well.
192 */
193#define _DARWIN_UNLIMITED_SELECT 1
194
135#include <stdlib.h> 195#include <stdlib.h>
196#include <string.h>
136#include <fcntl.h> 197#include <fcntl.h>
137#include <stddef.h> 198#include <stddef.h>
138 199
139#include <stdio.h> 200#include <stdio.h>
140 201
141#include <assert.h> 202#include <assert.h>
142#include <errno.h> 203#include <errno.h>
143#include <sys/types.h> 204#include <sys/types.h>
144#include <time.h> 205#include <time.h>
206#include <limits.h>
145 207
146#include <signal.h> 208#include <signal.h>
147 209
148#ifdef EV_H 210#ifdef EV_H
149# include EV_H 211# include EV_H
150#else 212#else
151# include "ev.h" 213# include "ev.h"
214#endif
215
216#if EV_NO_THREADS
217# undef EV_NO_SMP
218# define EV_NO_SMP 1
219# undef ECB_NO_THREADS
220# define ECB_NO_THREADS 1
221#endif
222#if EV_NO_SMP
223# undef EV_NO_SMP
224# define ECB_NO_SMP 1
152#endif 225#endif
153 226
154#ifndef _WIN32 227#ifndef _WIN32
155# include <sys/time.h> 228# include <sys/time.h>
156# include <sys/wait.h> 229# include <sys/wait.h>
157# include <unistd.h> 230# include <unistd.h>
158#else 231#else
159# include <io.h> 232# include <io.h>
160# define WIN32_LEAN_AND_MEAN 233# define WIN32_LEAN_AND_MEAN
234# include <winsock2.h>
161# include <windows.h> 235# include <windows.h>
162# ifndef EV_SELECT_IS_WINSOCKET 236# ifndef EV_SELECT_IS_WINSOCKET
163# define EV_SELECT_IS_WINSOCKET 1 237# define EV_SELECT_IS_WINSOCKET 1
164# endif 238# endif
239# undef EV_AVOID_STDIO
165#endif 240#endif
166 241
167/* this block tries to deduce configuration from header-defined symbols and defaults */ 242/* this block tries to deduce configuration from header-defined symbols and defaults */
168 243
244/* try to deduce the maximum number of signals on this platform */
245#if defined EV_NSIG
246/* use what's provided */
247#elif defined NSIG
248# define EV_NSIG (NSIG)
249#elif defined _NSIG
250# define EV_NSIG (_NSIG)
251#elif defined SIGMAX
252# define EV_NSIG (SIGMAX+1)
253#elif defined SIG_MAX
254# define EV_NSIG (SIG_MAX+1)
255#elif defined _SIG_MAX
256# define EV_NSIG (_SIG_MAX+1)
257#elif defined MAXSIG
258# define EV_NSIG (MAXSIG+1)
259#elif defined MAX_SIG
260# define EV_NSIG (MAX_SIG+1)
261#elif defined SIGARRAYSIZE
262# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
263#elif defined _sys_nsig
264# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
265#else
266# define EV_NSIG (8 * sizeof (sigset_t) + 1)
267#endif
268
269#ifndef EV_USE_FLOOR
270# define EV_USE_FLOOR 0
271#endif
272
273#ifndef EV_USE_CLOCK_SYSCALL
274# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
275# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
276# else
277# define EV_USE_CLOCK_SYSCALL 0
278# endif
279#endif
280
281#if !(_POSIX_TIMERS > 0)
282# ifndef EV_USE_MONOTONIC
283# define EV_USE_MONOTONIC 0
284# endif
285# ifndef EV_USE_REALTIME
286# define EV_USE_REALTIME 0
287# endif
288#endif
289
169#ifndef EV_USE_MONOTONIC 290#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 291# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1 292# define EV_USE_MONOTONIC EV_FEATURE_OS
172# else 293# else
173# define EV_USE_MONOTONIC 0 294# define EV_USE_MONOTONIC 0
174# endif 295# endif
175#endif 296#endif
176 297
177#ifndef EV_USE_REALTIME 298#ifndef EV_USE_REALTIME
178# define EV_USE_REALTIME 0 299# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
179#endif 300#endif
180 301
181#ifndef EV_USE_NANOSLEEP 302#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L 303# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1 304# define EV_USE_NANOSLEEP EV_FEATURE_OS
184# else 305# else
185# define EV_USE_NANOSLEEP 0 306# define EV_USE_NANOSLEEP 0
186# endif 307# endif
187#endif 308#endif
188 309
189#ifndef EV_USE_SELECT 310#ifndef EV_USE_SELECT
190# define EV_USE_SELECT 1 311# define EV_USE_SELECT EV_FEATURE_BACKENDS
191#endif 312#endif
192 313
193#ifndef EV_USE_POLL 314#ifndef EV_USE_POLL
194# ifdef _WIN32 315# ifdef _WIN32
195# define EV_USE_POLL 0 316# define EV_USE_POLL 0
196# else 317# else
197# define EV_USE_POLL 1 318# define EV_USE_POLL EV_FEATURE_BACKENDS
198# endif 319# endif
199#endif 320#endif
200 321
201#ifndef EV_USE_EPOLL 322#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 323# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1 324# define EV_USE_EPOLL EV_FEATURE_BACKENDS
204# else 325# else
205# define EV_USE_EPOLL 0 326# define EV_USE_EPOLL 0
206# endif 327# endif
207#endif 328#endif
208 329
212 333
213#ifndef EV_USE_PORT 334#ifndef EV_USE_PORT
214# define EV_USE_PORT 0 335# define EV_USE_PORT 0
215#endif 336#endif
216 337
338#ifndef EV_USE_LINUXAIO
339# if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
340# define EV_USE_LINUXAIO 1
341# else
342# define EV_USE_LINUXAIO 0
343# endif
344#endif
345
346#ifndef EV_USE_IOURING
347# if __linux /* later checks might disable again */
348# define EV_USE_IOURING 1
349# else
350# define EV_USE_IOURING 0
351# endif
352#endif
353
217#ifndef EV_USE_INOTIFY 354#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 355# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1 356# define EV_USE_INOTIFY EV_FEATURE_OS
220# else 357# else
221# define EV_USE_INOTIFY 0 358# define EV_USE_INOTIFY 0
222# endif 359# endif
223#endif 360#endif
224 361
225#ifndef EV_PID_HASHSIZE 362#ifndef EV_PID_HASHSIZE
226# if EV_MINIMAL 363# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
227# define EV_PID_HASHSIZE 1
228# else
229# define EV_PID_HASHSIZE 16
230# endif
231#endif 364#endif
232 365
233#ifndef EV_INOTIFY_HASHSIZE 366#ifndef EV_INOTIFY_HASHSIZE
234# if EV_MINIMAL 367# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
235# define EV_INOTIFY_HASHSIZE 1
236# else
237# define EV_INOTIFY_HASHSIZE 16
238# endif
239#endif 368#endif
240 369
241#ifndef EV_USE_EVENTFD 370#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 371# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1 372# define EV_USE_EVENTFD EV_FEATURE_OS
244# else 373# else
245# define EV_USE_EVENTFD 0 374# define EV_USE_EVENTFD 0
375# endif
376#endif
377
378#ifndef EV_USE_SIGNALFD
379# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
380# define EV_USE_SIGNALFD EV_FEATURE_OS
381# else
382# define EV_USE_SIGNALFD 0
246# endif 383# endif
247#endif 384#endif
248 385
249#if 0 /* debugging */ 386#if 0 /* debugging */
250# define EV_VERIFY 3 387# define EV_VERIFY 3
251# define EV_USE_4HEAP 1 388# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1 389# define EV_HEAP_CACHE_AT 1
253#endif 390#endif
254 391
255#ifndef EV_VERIFY 392#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL 393# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
257#endif 394#endif
258 395
259#ifndef EV_USE_4HEAP 396#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL 397# define EV_USE_4HEAP EV_FEATURE_DATA
261#endif 398#endif
262 399
263#ifndef EV_HEAP_CACHE_AT 400#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL 401# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
402#endif
403
404#ifdef __ANDROID__
405/* supposedly, android doesn't typedef fd_mask */
406# undef EV_USE_SELECT
407# define EV_USE_SELECT 0
408/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
409# undef EV_USE_CLOCK_SYSCALL
410# define EV_USE_CLOCK_SYSCALL 0
411#endif
412
413/* aix's poll.h seems to cause lots of trouble */
414#ifdef _AIX
415/* AIX has a completely broken poll.h header */
416# undef EV_USE_POLL
417# define EV_USE_POLL 0
418#endif
419
420/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
421/* which makes programs even slower. might work on other unices, too. */
422#if EV_USE_CLOCK_SYSCALL
423# include <sys/syscall.h>
424# ifdef SYS_clock_gettime
425# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
426# undef EV_USE_MONOTONIC
427# define EV_USE_MONOTONIC 1
428# define EV_NEED_SYSCALL 1
429# else
430# undef EV_USE_CLOCK_SYSCALL
431# define EV_USE_CLOCK_SYSCALL 0
432# endif
265#endif 433#endif
266 434
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 435/* this block fixes any misconfiguration where we know we run into trouble otherwise */
268 436
269#ifndef CLOCK_MONOTONIC 437#ifndef CLOCK_MONOTONIC
279#if !EV_STAT_ENABLE 447#if !EV_STAT_ENABLE
280# undef EV_USE_INOTIFY 448# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0 449# define EV_USE_INOTIFY 0
282#endif 450#endif
283 451
452#if __linux && EV_USE_IOURING
453# include <linux/version.h>
454# if LINUX_VERSION_CODE < KERNEL_VERSION(4,14,0)
455# undef EV_USE_IOURING
456# define EV_USE_IOURING 0
457# endif
458#endif
459
284#if !EV_USE_NANOSLEEP 460#if !EV_USE_NANOSLEEP
285# ifndef _WIN32 461/* hp-ux has it in sys/time.h, which we unconditionally include above */
462# if !defined _WIN32 && !defined __hpux
286# include <sys/select.h> 463# include <sys/select.h>
287# endif 464# endif
288#endif 465#endif
289 466
467#if EV_USE_LINUXAIO
468# include <sys/syscall.h>
469# if SYS_io_getevents && EV_USE_EPOLL /* linuxaio backend requires epoll backend */
470# define EV_NEED_SYSCALL 1
471# else
472# undef EV_USE_LINUXAIO
473# define EV_USE_LINUXAIO 0
474# endif
475#endif
476
477#if EV_USE_IOURING
478# include <sys/syscall.h>
479# if !SYS_io_uring_setup && __linux && !__alpha
480# define SYS_io_uring_setup 425
481# define SYS_io_uring_enter 426
482# define SYS_io_uring_wregister 427
483# endif
484# if SYS_io_uring_setup && EV_USE_EPOLL /* iouring backend requires epoll backend */
485# define EV_NEED_SYSCALL 1
486# else
487# undef EV_USE_IOURING
488# define EV_USE_IOURING 0
489# endif
490#endif
491
290#if EV_USE_INOTIFY 492#if EV_USE_INOTIFY
291# include <sys/utsname.h> 493# include <sys/statfs.h>
292# include <sys/inotify.h> 494# include <sys/inotify.h>
293/* some very old inotify.h headers don't have IN_DONT_FOLLOW */ 495/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
294# ifndef IN_DONT_FOLLOW 496# ifndef IN_DONT_FOLLOW
295# undef EV_USE_INOTIFY 497# undef EV_USE_INOTIFY
296# define EV_USE_INOTIFY 0 498# define EV_USE_INOTIFY 0
297# endif 499# endif
298#endif 500#endif
299 501
300#if EV_SELECT_IS_WINSOCKET
301# include <winsock.h>
302#endif
303
304#if EV_USE_EVENTFD 502#if EV_USE_EVENTFD
305/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 503/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
306# include <stdint.h> 504# include <stdint.h>
307# ifdef __cplusplus 505# ifndef EFD_NONBLOCK
308extern "C" { 506# define EFD_NONBLOCK O_NONBLOCK
309# endif 507# endif
310int eventfd (unsigned int initval, int flags); 508# ifndef EFD_CLOEXEC
311# ifdef __cplusplus 509# ifdef O_CLOEXEC
312} 510# define EFD_CLOEXEC O_CLOEXEC
511# else
512# define EFD_CLOEXEC 02000000
513# endif
313# endif 514# endif
515EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
516#endif
517
518#if EV_USE_SIGNALFD
519/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
520# include <stdint.h>
521# ifndef SFD_NONBLOCK
522# define SFD_NONBLOCK O_NONBLOCK
314#endif 523# endif
524# ifndef SFD_CLOEXEC
525# ifdef O_CLOEXEC
526# define SFD_CLOEXEC O_CLOEXEC
527# else
528# define SFD_CLOEXEC 02000000
529# endif
530# endif
531EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
315 532
316/**/ 533struct signalfd_siginfo
534{
535 uint32_t ssi_signo;
536 char pad[128 - sizeof (uint32_t)];
537};
538#endif
539
540/*****************************************************************************/
317 541
318#if EV_VERIFY >= 3 542#if EV_VERIFY >= 3
319# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 543# define EV_FREQUENT_CHECK ev_verify (EV_A)
320#else 544#else
321# define EV_FREQUENT_CHECK do { } while (0) 545# define EV_FREQUENT_CHECK do { } while (0)
322#endif 546#endif
323 547
324/* 548/*
325 * This is used to avoid floating point rounding problems. 549 * This is used to work around floating point rounding problems.
326 * It is added to ev_rt_now when scheduling periodics
327 * to ensure progress, time-wise, even when rounding
328 * errors are against us.
329 * This value is good at least till the year 4000. 550 * This value is good at least till the year 4000.
330 * Better solutions welcome.
331 */ 551 */
332#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 552#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
553/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
333 554
334#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 555#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
335#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 556#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
336/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
337 557
558/* find a portable timestamp that is "always" in the future but fits into time_t.
559 * this is quite hard, and we are mostly guessing - we handle 32 bit signed/unsigned time_t,
560 * and sizes larger than 32 bit, and maybe the unlikely floating point time_t */
561#define EV_TSTAMP_HUGE \
562 (sizeof (time_t) >= 8 ? 10000000000000. \
563 : 0 < (time_t)4294967295 ? 4294967295. \
564 : 2147483647.) \
565
566#ifndef EV_TS_CONST
567# define EV_TS_CONST(nv) nv
568# define EV_TS_TO_MSEC(a) a * 1e3 + 0.9999
569# define EV_TS_FROM_USEC(us) us * 1e-6
570# define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
571# define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
572# define EV_TV_GET(tv) ((tv).tv_sec + (tv).tv_usec * 1e-6)
573# define EV_TS_GET(ts) ((ts).tv_sec + (ts).tv_nsec * 1e-9)
574#endif
575
576/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
577/* ECB.H BEGIN */
578/*
579 * libecb - http://software.schmorp.de/pkg/libecb
580 *
581 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
582 * Copyright (©) 2011 Emanuele Giaquinta
583 * All rights reserved.
584 *
585 * Redistribution and use in source and binary forms, with or without modifica-
586 * tion, are permitted provided that the following conditions are met:
587 *
588 * 1. Redistributions of source code must retain the above copyright notice,
589 * this list of conditions and the following disclaimer.
590 *
591 * 2. Redistributions in binary form must reproduce the above copyright
592 * notice, this list of conditions and the following disclaimer in the
593 * documentation and/or other materials provided with the distribution.
594 *
595 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
596 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
597 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
598 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
599 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
600 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
601 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
602 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
603 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
604 * OF THE POSSIBILITY OF SUCH DAMAGE.
605 *
606 * Alternatively, the contents of this file may be used under the terms of
607 * the GNU General Public License ("GPL") version 2 or any later version,
608 * in which case the provisions of the GPL are applicable instead of
609 * the above. If you wish to allow the use of your version of this file
610 * only under the terms of the GPL and not to allow others to use your
611 * version of this file under the BSD license, indicate your decision
612 * by deleting the provisions above and replace them with the notice
613 * and other provisions required by the GPL. If you do not delete the
614 * provisions above, a recipient may use your version of this file under
615 * either the BSD or the GPL.
616 */
617
618#ifndef ECB_H
619#define ECB_H
620
621/* 16 bits major, 16 bits minor */
622#define ECB_VERSION 0x00010006
623
624#ifdef _WIN32
625 typedef signed char int8_t;
626 typedef unsigned char uint8_t;
627 typedef signed short int16_t;
628 typedef unsigned short uint16_t;
629 typedef signed int int32_t;
630 typedef unsigned int uint32_t;
338#if __GNUC__ >= 4 631 #if __GNUC__
339# define expect(expr,value) __builtin_expect ((expr),(value)) 632 typedef signed long long int64_t;
340# define noinline __attribute__ ((noinline)) 633 typedef unsigned long long uint64_t;
634 #else /* _MSC_VER || __BORLANDC__ */
635 typedef signed __int64 int64_t;
636 typedef unsigned __int64 uint64_t;
637 #endif
638 #ifdef _WIN64
639 #define ECB_PTRSIZE 8
640 typedef uint64_t uintptr_t;
641 typedef int64_t intptr_t;
642 #else
643 #define ECB_PTRSIZE 4
644 typedef uint32_t uintptr_t;
645 typedef int32_t intptr_t;
646 #endif
341#else 647#else
342# define expect(expr,value) (expr) 648 #include <inttypes.h>
343# define noinline 649 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
344# if __STDC_VERSION__ < 199901L && __GNUC__ < 2 650 #define ECB_PTRSIZE 8
345# define inline 651 #else
652 #define ECB_PTRSIZE 4
653 #endif
346# endif 654#endif
655
656#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
657#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
658
659/* work around x32 idiocy by defining proper macros */
660#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
661 #if _ILP32
662 #define ECB_AMD64_X32 1
663 #else
664 #define ECB_AMD64 1
347#endif 665 #endif
666#endif
348 667
349#define expect_false(expr) expect ((expr) != 0, 0) 668/* many compilers define _GNUC_ to some versions but then only implement
350#define expect_true(expr) expect ((expr) != 0, 1) 669 * what their idiot authors think are the "more important" extensions,
351#define inline_size static inline 670 * causing enormous grief in return for some better fake benchmark numbers.
352 671 * or so.
353#if EV_MINIMAL 672 * we try to detect these and simply assume they are not gcc - if they have
354# define inline_speed static noinline 673 * an issue with that they should have done it right in the first place.
674 */
675#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
676 #define ECB_GCC_VERSION(major,minor) 0
355#else 677#else
678 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
679#endif
680
681#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
682
683#if __clang__ && defined __has_builtin
684 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
685#else
686 #define ECB_CLANG_BUILTIN(x) 0
687#endif
688
689#if __clang__ && defined __has_extension
690 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
691#else
692 #define ECB_CLANG_EXTENSION(x) 0
693#endif
694
695#define ECB_CPP (__cplusplus+0)
696#define ECB_CPP11 (__cplusplus >= 201103L)
697#define ECB_CPP14 (__cplusplus >= 201402L)
698#define ECB_CPP17 (__cplusplus >= 201703L)
699
700#if ECB_CPP
701 #define ECB_C 0
702 #define ECB_STDC_VERSION 0
703#else
704 #define ECB_C 1
705 #define ECB_STDC_VERSION __STDC_VERSION__
706#endif
707
708#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
709#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
710#define ECB_C17 (ECB_STDC_VERSION >= 201710L)
711
712#if ECB_CPP
713 #define ECB_EXTERN_C extern "C"
714 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
715 #define ECB_EXTERN_C_END }
716#else
717 #define ECB_EXTERN_C extern
718 #define ECB_EXTERN_C_BEG
719 #define ECB_EXTERN_C_END
720#endif
721
722/*****************************************************************************/
723
724/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
725/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
726
727#if ECB_NO_THREADS
728 #define ECB_NO_SMP 1
729#endif
730
731#if ECB_NO_SMP
732 #define ECB_MEMORY_FENCE do { } while (0)
733#endif
734
735/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
736#if __xlC__ && ECB_CPP
737 #include <builtins.h>
738#endif
739
740#if 1400 <= _MSC_VER
741 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
742#endif
743
744#ifndef ECB_MEMORY_FENCE
745 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
746 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
747 #if __i386 || __i386__
748 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
749 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
750 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
751 #elif ECB_GCC_AMD64
752 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
753 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
754 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
755 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
756 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
757 #elif defined __ARM_ARCH_2__ \
758 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
759 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
760 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
761 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
762 || defined __ARM_ARCH_5TEJ__
763 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
764 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
765 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
766 || defined __ARM_ARCH_6T2__
767 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
768 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
769 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
770 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
771 #elif __aarch64__
772 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
773 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
774 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
775 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
776 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
777 #elif defined __s390__ || defined __s390x__
778 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
779 #elif defined __mips__
780 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
781 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
782 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
783 #elif defined __alpha__
784 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
785 #elif defined __hppa__
786 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
787 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
788 #elif defined __ia64__
789 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
790 #elif defined __m68k__
791 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
792 #elif defined __m88k__
793 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
794 #elif defined __sh__
795 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
796 #endif
797 #endif
798#endif
799
800#ifndef ECB_MEMORY_FENCE
801 #if ECB_GCC_VERSION(4,7)
802 /* see comment below (stdatomic.h) about the C11 memory model. */
803 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
804 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
805 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
806 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
807
808 #elif ECB_CLANG_EXTENSION(c_atomic)
809 /* see comment below (stdatomic.h) about the C11 memory model. */
810 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
811 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
812 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
813 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
814
815 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
816 #define ECB_MEMORY_FENCE __sync_synchronize ()
817 #elif _MSC_VER >= 1500 /* VC++ 2008 */
818 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
819 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
820 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
821 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
822 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
823 #elif _MSC_VER >= 1400 /* VC++ 2005 */
824 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
825 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
826 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
827 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
828 #elif defined _WIN32
829 #include <WinNT.h>
830 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
831 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
832 #include <mbarrier.h>
833 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
834 #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
835 #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
836 #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
837 #elif __xlC__
838 #define ECB_MEMORY_FENCE __sync ()
839 #endif
840#endif
841
842#ifndef ECB_MEMORY_FENCE
843 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
844 /* we assume that these memory fences work on all variables/all memory accesses, */
845 /* not just C11 atomics and atomic accesses */
846 #include <stdatomic.h>
847 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
848 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
849 #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
850 #endif
851#endif
852
853#ifndef ECB_MEMORY_FENCE
854 #if !ECB_AVOID_PTHREADS
855 /*
856 * if you get undefined symbol references to pthread_mutex_lock,
857 * or failure to find pthread.h, then you should implement
858 * the ECB_MEMORY_FENCE operations for your cpu/compiler
859 * OR provide pthread.h and link against the posix thread library
860 * of your system.
861 */
862 #include <pthread.h>
863 #define ECB_NEEDS_PTHREADS 1
864 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
865
866 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
867 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
868 #endif
869#endif
870
871#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
872 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
873#endif
874
875#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
876 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
877#endif
878
879#if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
880 #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
881#endif
882
883/*****************************************************************************/
884
885#if ECB_CPP
886 #define ecb_inline static inline
887#elif ECB_GCC_VERSION(2,5)
888 #define ecb_inline static __inline__
889#elif ECB_C99
890 #define ecb_inline static inline
891#else
892 #define ecb_inline static
893#endif
894
895#if ECB_GCC_VERSION(3,3)
896 #define ecb_restrict __restrict__
897#elif ECB_C99
898 #define ecb_restrict restrict
899#else
900 #define ecb_restrict
901#endif
902
903typedef int ecb_bool;
904
905#define ECB_CONCAT_(a, b) a ## b
906#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
907#define ECB_STRINGIFY_(a) # a
908#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
909#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
910
911#define ecb_function_ ecb_inline
912
913#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
914 #define ecb_attribute(attrlist) __attribute__ (attrlist)
915#else
916 #define ecb_attribute(attrlist)
917#endif
918
919#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
920 #define ecb_is_constant(expr) __builtin_constant_p (expr)
921#else
922 /* possible C11 impl for integral types
923 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
924 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
925
926 #define ecb_is_constant(expr) 0
927#endif
928
929#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
930 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
931#else
932 #define ecb_expect(expr,value) (expr)
933#endif
934
935#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
936 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
937#else
938 #define ecb_prefetch(addr,rw,locality)
939#endif
940
941/* no emulation for ecb_decltype */
942#if ECB_CPP11
943 // older implementations might have problems with decltype(x)::type, work around it
944 template<class T> struct ecb_decltype_t { typedef T type; };
945 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
946#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
947 #define ecb_decltype(x) __typeof__ (x)
948#endif
949
950#if _MSC_VER >= 1300
951 #define ecb_deprecated __declspec (deprecated)
952#else
953 #define ecb_deprecated ecb_attribute ((__deprecated__))
954#endif
955
956#if _MSC_VER >= 1500
957 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
958#elif ECB_GCC_VERSION(4,5)
959 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
960#else
961 #define ecb_deprecated_message(msg) ecb_deprecated
962#endif
963
964#if _MSC_VER >= 1400
965 #define ecb_noinline __declspec (noinline)
966#else
967 #define ecb_noinline ecb_attribute ((__noinline__))
968#endif
969
970#define ecb_unused ecb_attribute ((__unused__))
971#define ecb_const ecb_attribute ((__const__))
972#define ecb_pure ecb_attribute ((__pure__))
973
974#if ECB_C11 || __IBMC_NORETURN
975 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
976 #define ecb_noreturn _Noreturn
977#elif ECB_CPP11
978 #define ecb_noreturn [[noreturn]]
979#elif _MSC_VER >= 1200
980 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
981 #define ecb_noreturn __declspec (noreturn)
982#else
983 #define ecb_noreturn ecb_attribute ((__noreturn__))
984#endif
985
986#if ECB_GCC_VERSION(4,3)
987 #define ecb_artificial ecb_attribute ((__artificial__))
988 #define ecb_hot ecb_attribute ((__hot__))
989 #define ecb_cold ecb_attribute ((__cold__))
990#else
991 #define ecb_artificial
992 #define ecb_hot
993 #define ecb_cold
994#endif
995
996/* put around conditional expressions if you are very sure that the */
997/* expression is mostly true or mostly false. note that these return */
998/* booleans, not the expression. */
999#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
1000#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
1001/* for compatibility to the rest of the world */
1002#define ecb_likely(expr) ecb_expect_true (expr)
1003#define ecb_unlikely(expr) ecb_expect_false (expr)
1004
1005/* count trailing zero bits and count # of one bits */
1006#if ECB_GCC_VERSION(3,4) \
1007 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
1008 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
1009 && ECB_CLANG_BUILTIN(__builtin_popcount))
1010 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
1011 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
1012 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
1013 #define ecb_ctz32(x) __builtin_ctz (x)
1014 #define ecb_ctz64(x) __builtin_ctzll (x)
1015 #define ecb_popcount32(x) __builtin_popcount (x)
1016 /* no popcountll */
1017#else
1018 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
1019 ecb_function_ ecb_const int
1020 ecb_ctz32 (uint32_t x)
1021 {
1022#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1023 unsigned long r;
1024 _BitScanForward (&r, x);
1025 return (int)r;
1026#else
1027 int r = 0;
1028
1029 x &= ~x + 1; /* this isolates the lowest bit */
1030
1031#if ECB_branchless_on_i386
1032 r += !!(x & 0xaaaaaaaa) << 0;
1033 r += !!(x & 0xcccccccc) << 1;
1034 r += !!(x & 0xf0f0f0f0) << 2;
1035 r += !!(x & 0xff00ff00) << 3;
1036 r += !!(x & 0xffff0000) << 4;
1037#else
1038 if (x & 0xaaaaaaaa) r += 1;
1039 if (x & 0xcccccccc) r += 2;
1040 if (x & 0xf0f0f0f0) r += 4;
1041 if (x & 0xff00ff00) r += 8;
1042 if (x & 0xffff0000) r += 16;
1043#endif
1044
1045 return r;
1046#endif
1047 }
1048
1049 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
1050 ecb_function_ ecb_const int
1051 ecb_ctz64 (uint64_t x)
1052 {
1053#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1054 unsigned long r;
1055 _BitScanForward64 (&r, x);
1056 return (int)r;
1057#else
1058 int shift = x & 0xffffffff ? 0 : 32;
1059 return ecb_ctz32 (x >> shift) + shift;
1060#endif
1061 }
1062
1063 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1064 ecb_function_ ecb_const int
1065 ecb_popcount32 (uint32_t x)
1066 {
1067 x -= (x >> 1) & 0x55555555;
1068 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1069 x = ((x >> 4) + x) & 0x0f0f0f0f;
1070 x *= 0x01010101;
1071
1072 return x >> 24;
1073 }
1074
1075 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1076 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1077 {
1078#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1079 unsigned long r;
1080 _BitScanReverse (&r, x);
1081 return (int)r;
1082#else
1083 int r = 0;
1084
1085 if (x >> 16) { x >>= 16; r += 16; }
1086 if (x >> 8) { x >>= 8; r += 8; }
1087 if (x >> 4) { x >>= 4; r += 4; }
1088 if (x >> 2) { x >>= 2; r += 2; }
1089 if (x >> 1) { r += 1; }
1090
1091 return r;
1092#endif
1093 }
1094
1095 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1096 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1097 {
1098#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1099 unsigned long r;
1100 _BitScanReverse64 (&r, x);
1101 return (int)r;
1102#else
1103 int r = 0;
1104
1105 if (x >> 32) { x >>= 32; r += 32; }
1106
1107 return r + ecb_ld32 (x);
1108#endif
1109 }
1110#endif
1111
1112ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1113ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1114ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1115ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1116
1117ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1118ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1119{
1120 return ( (x * 0x0802U & 0x22110U)
1121 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1122}
1123
1124ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1125ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1126{
1127 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1128 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1129 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1130 x = ( x >> 8 ) | ( x << 8);
1131
1132 return x;
1133}
1134
1135ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1136ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1137{
1138 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1139 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1140 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1141 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1142 x = ( x >> 16 ) | ( x << 16);
1143
1144 return x;
1145}
1146
1147/* popcount64 is only available on 64 bit cpus as gcc builtin */
1148/* so for this version we are lazy */
1149ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1150ecb_function_ ecb_const int
1151ecb_popcount64 (uint64_t x)
1152{
1153 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1154}
1155
1156ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1157ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1158ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1159ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1160ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1161ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1162ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1163ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1164
1165ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1166ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1167ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1168ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1169ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1170ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1171ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1172ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1173
1174#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1175 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1176 #define ecb_bswap16(x) __builtin_bswap16 (x)
1177 #else
1178 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1179 #endif
1180 #define ecb_bswap32(x) __builtin_bswap32 (x)
1181 #define ecb_bswap64(x) __builtin_bswap64 (x)
1182#elif _MSC_VER
1183 #include <stdlib.h>
1184 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1185 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1186 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1187#else
1188 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1189 ecb_function_ ecb_const uint16_t
1190 ecb_bswap16 (uint16_t x)
1191 {
1192 return ecb_rotl16 (x, 8);
1193 }
1194
1195 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1196 ecb_function_ ecb_const uint32_t
1197 ecb_bswap32 (uint32_t x)
1198 {
1199 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1200 }
1201
1202 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1203 ecb_function_ ecb_const uint64_t
1204 ecb_bswap64 (uint64_t x)
1205 {
1206 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1207 }
1208#endif
1209
1210#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1211 #define ecb_unreachable() __builtin_unreachable ()
1212#else
1213 /* this seems to work fine, but gcc always emits a warning for it :/ */
1214 ecb_inline ecb_noreturn void ecb_unreachable (void);
1215 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1216#endif
1217
1218/* try to tell the compiler that some condition is definitely true */
1219#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1220
1221ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1222ecb_inline ecb_const uint32_t
1223ecb_byteorder_helper (void)
1224{
1225 /* the union code still generates code under pressure in gcc, */
1226 /* but less than using pointers, and always seems to */
1227 /* successfully return a constant. */
1228 /* the reason why we have this horrible preprocessor mess */
1229 /* is to avoid it in all cases, at least on common architectures */
1230 /* or when using a recent enough gcc version (>= 4.6) */
1231#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1232 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1233 #define ECB_LITTLE_ENDIAN 1
1234 return 0x44332211;
1235#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1236 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1237 #define ECB_BIG_ENDIAN 1
1238 return 0x11223344;
1239#else
1240 union
1241 {
1242 uint8_t c[4];
1243 uint32_t u;
1244 } u = { 0x11, 0x22, 0x33, 0x44 };
1245 return u.u;
1246#endif
1247}
1248
1249ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1250ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1251ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1252ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1253
1254#if ECB_GCC_VERSION(3,0) || ECB_C99
1255 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1256#else
1257 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1258#endif
1259
1260#if ECB_CPP
1261 template<typename T>
1262 static inline T ecb_div_rd (T val, T div)
1263 {
1264 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1265 }
1266 template<typename T>
1267 static inline T ecb_div_ru (T val, T div)
1268 {
1269 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1270 }
1271#else
1272 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1273 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1274#endif
1275
1276#if ecb_cplusplus_does_not_suck
1277 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1278 template<typename T, int N>
1279 static inline int ecb_array_length (const T (&arr)[N])
1280 {
1281 return N;
1282 }
1283#else
1284 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1285#endif
1286
1287ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1288ecb_function_ ecb_const uint32_t
1289ecb_binary16_to_binary32 (uint32_t x)
1290{
1291 unsigned int s = (x & 0x8000) << (31 - 15);
1292 int e = (x >> 10) & 0x001f;
1293 unsigned int m = x & 0x03ff;
1294
1295 if (ecb_expect_false (e == 31))
1296 /* infinity or NaN */
1297 e = 255 - (127 - 15);
1298 else if (ecb_expect_false (!e))
1299 {
1300 if (ecb_expect_true (!m))
1301 /* zero, handled by code below by forcing e to 0 */
1302 e = 0 - (127 - 15);
1303 else
1304 {
1305 /* subnormal, renormalise */
1306 unsigned int s = 10 - ecb_ld32 (m);
1307
1308 m = (m << s) & 0x3ff; /* mask implicit bit */
1309 e -= s - 1;
1310 }
1311 }
1312
1313 /* e and m now are normalised, or zero, (or inf or nan) */
1314 e += 127 - 15;
1315
1316 return s | (e << 23) | (m << (23 - 10));
1317}
1318
1319ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1320ecb_function_ ecb_const uint16_t
1321ecb_binary32_to_binary16 (uint32_t x)
1322{
1323 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1324 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1325 unsigned int m = x & 0x007fffff;
1326
1327 x &= 0x7fffffff;
1328
1329 /* if it's within range of binary16 normals, use fast path */
1330 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1331 {
1332 /* mantissa round-to-even */
1333 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1334
1335 /* handle overflow */
1336 if (ecb_expect_false (m >= 0x00800000))
1337 {
1338 m >>= 1;
1339 e += 1;
1340 }
1341
1342 return s | (e << 10) | (m >> (23 - 10));
1343 }
1344
1345 /* handle large numbers and infinity */
1346 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1347 return s | 0x7c00;
1348
1349 /* handle zero, subnormals and small numbers */
1350 if (ecb_expect_true (x < 0x38800000))
1351 {
1352 /* zero */
1353 if (ecb_expect_true (!x))
1354 return s;
1355
1356 /* handle subnormals */
1357
1358 /* too small, will be zero */
1359 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1360 return s;
1361
1362 m |= 0x00800000; /* make implicit bit explicit */
1363
1364 /* very tricky - we need to round to the nearest e (+10) bit value */
1365 {
1366 unsigned int bits = 14 - e;
1367 unsigned int half = (1 << (bits - 1)) - 1;
1368 unsigned int even = (m >> bits) & 1;
1369
1370 /* if this overflows, we will end up with a normalised number */
1371 m = (m + half + even) >> bits;
1372 }
1373
1374 return s | m;
1375 }
1376
1377 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1378 m >>= 13;
1379
1380 return s | 0x7c00 | m | !m;
1381}
1382
1383/*******************************************************************************/
1384/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1385
1386/* basically, everything uses "ieee pure-endian" floating point numbers */
1387/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1388#if 0 \
1389 || __i386 || __i386__ \
1390 || ECB_GCC_AMD64 \
1391 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1392 || defined __s390__ || defined __s390x__ \
1393 || defined __mips__ \
1394 || defined __alpha__ \
1395 || defined __hppa__ \
1396 || defined __ia64__ \
1397 || defined __m68k__ \
1398 || defined __m88k__ \
1399 || defined __sh__ \
1400 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1401 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1402 || defined __aarch64__
1403 #define ECB_STDFP 1
1404 #include <string.h> /* for memcpy */
1405#else
1406 #define ECB_STDFP 0
1407#endif
1408
1409#ifndef ECB_NO_LIBM
1410
1411 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1412
1413 /* only the oldest of old doesn't have this one. solaris. */
1414 #ifdef INFINITY
1415 #define ECB_INFINITY INFINITY
1416 #else
1417 #define ECB_INFINITY HUGE_VAL
1418 #endif
1419
1420 #ifdef NAN
1421 #define ECB_NAN NAN
1422 #else
1423 #define ECB_NAN ECB_INFINITY
1424 #endif
1425
1426 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1427 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1428 #define ecb_frexpf(x,e) frexpf ((x), (e))
1429 #else
1430 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1431 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1432 #endif
1433
1434 /* convert a float to ieee single/binary32 */
1435 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1436 ecb_function_ ecb_const uint32_t
1437 ecb_float_to_binary32 (float x)
1438 {
1439 uint32_t r;
1440
1441 #if ECB_STDFP
1442 memcpy (&r, &x, 4);
1443 #else
1444 /* slow emulation, works for anything but -0 */
1445 uint32_t m;
1446 int e;
1447
1448 if (x == 0e0f ) return 0x00000000U;
1449 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1450 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1451 if (x != x ) return 0x7fbfffffU;
1452
1453 m = ecb_frexpf (x, &e) * 0x1000000U;
1454
1455 r = m & 0x80000000U;
1456
1457 if (r)
1458 m = -m;
1459
1460 if (e <= -126)
1461 {
1462 m &= 0xffffffU;
1463 m >>= (-125 - e);
1464 e = -126;
1465 }
1466
1467 r |= (e + 126) << 23;
1468 r |= m & 0x7fffffU;
1469 #endif
1470
1471 return r;
1472 }
1473
1474 /* converts an ieee single/binary32 to a float */
1475 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1476 ecb_function_ ecb_const float
1477 ecb_binary32_to_float (uint32_t x)
1478 {
1479 float r;
1480
1481 #if ECB_STDFP
1482 memcpy (&r, &x, 4);
1483 #else
1484 /* emulation, only works for normals and subnormals and +0 */
1485 int neg = x >> 31;
1486 int e = (x >> 23) & 0xffU;
1487
1488 x &= 0x7fffffU;
1489
1490 if (e)
1491 x |= 0x800000U;
1492 else
1493 e = 1;
1494
1495 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1496 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1497
1498 r = neg ? -r : r;
1499 #endif
1500
1501 return r;
1502 }
1503
1504 /* convert a double to ieee double/binary64 */
1505 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1506 ecb_function_ ecb_const uint64_t
1507 ecb_double_to_binary64 (double x)
1508 {
1509 uint64_t r;
1510
1511 #if ECB_STDFP
1512 memcpy (&r, &x, 8);
1513 #else
1514 /* slow emulation, works for anything but -0 */
1515 uint64_t m;
1516 int e;
1517
1518 if (x == 0e0 ) return 0x0000000000000000U;
1519 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1520 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1521 if (x != x ) return 0X7ff7ffffffffffffU;
1522
1523 m = frexp (x, &e) * 0x20000000000000U;
1524
1525 r = m & 0x8000000000000000;;
1526
1527 if (r)
1528 m = -m;
1529
1530 if (e <= -1022)
1531 {
1532 m &= 0x1fffffffffffffU;
1533 m >>= (-1021 - e);
1534 e = -1022;
1535 }
1536
1537 r |= ((uint64_t)(e + 1022)) << 52;
1538 r |= m & 0xfffffffffffffU;
1539 #endif
1540
1541 return r;
1542 }
1543
1544 /* converts an ieee double/binary64 to a double */
1545 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1546 ecb_function_ ecb_const double
1547 ecb_binary64_to_double (uint64_t x)
1548 {
1549 double r;
1550
1551 #if ECB_STDFP
1552 memcpy (&r, &x, 8);
1553 #else
1554 /* emulation, only works for normals and subnormals and +0 */
1555 int neg = x >> 63;
1556 int e = (x >> 52) & 0x7ffU;
1557
1558 x &= 0xfffffffffffffU;
1559
1560 if (e)
1561 x |= 0x10000000000000U;
1562 else
1563 e = 1;
1564
1565 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1566 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1567
1568 r = neg ? -r : r;
1569 #endif
1570
1571 return r;
1572 }
1573
1574 /* convert a float to ieee half/binary16 */
1575 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1576 ecb_function_ ecb_const uint16_t
1577 ecb_float_to_binary16 (float x)
1578 {
1579 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1580 }
1581
1582 /* convert an ieee half/binary16 to float */
1583 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1584 ecb_function_ ecb_const float
1585 ecb_binary16_to_float (uint16_t x)
1586 {
1587 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1588 }
1589
1590#endif
1591
1592#endif
1593
1594/* ECB.H END */
1595
1596#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1597/* if your architecture doesn't need memory fences, e.g. because it is
1598 * single-cpu/core, or if you use libev in a project that doesn't use libev
1599 * from multiple threads, then you can define ECB_NO_THREADS when compiling
1600 * libev, in which cases the memory fences become nops.
1601 * alternatively, you can remove this #error and link against libpthread,
1602 * which will then provide the memory fences.
1603 */
1604# error "memory fences not defined for your architecture, please report"
1605#endif
1606
1607#ifndef ECB_MEMORY_FENCE
1608# define ECB_MEMORY_FENCE do { } while (0)
1609# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1610# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1611#endif
1612
1613#define inline_size ecb_inline
1614
1615#if EV_FEATURE_CODE
356# define inline_speed static inline 1616# define inline_speed ecb_inline
1617#else
1618# define inline_speed ecb_noinline static
357#endif 1619#endif
358 1620
1621/*****************************************************************************/
1622/* raw syscall wrappers */
1623
1624#if EV_NEED_SYSCALL
1625
1626#include <sys/syscall.h>
1627
1628/*
1629 * define some syscall wrappers for common architectures
1630 * this is mostly for nice looks during debugging, not performance.
1631 * our syscalls return < 0, not == -1, on error. which is good
1632 * enough for linux aio.
1633 * TODO: arm is also common nowadays, maybe even mips and x86
1634 * TODO: after implementing this, it suddenly looks like overkill, but its hard to remove...
1635 */
1636#if __GNUC__ && __linux && ECB_AMD64 && !defined __OPTIMIZE_SIZE__
1637 /* the costly errno access probably kills this for size optimisation */
1638
1639 #define ev_syscall(nr,narg,arg1,arg2,arg3,arg4,arg5,arg6) \
1640 ({ \
1641 long res; \
1642 register unsigned long r6 __asm__ ("r9" ); \
1643 register unsigned long r5 __asm__ ("r8" ); \
1644 register unsigned long r4 __asm__ ("r10"); \
1645 register unsigned long r3 __asm__ ("rdx"); \
1646 register unsigned long r2 __asm__ ("rsi"); \
1647 register unsigned long r1 __asm__ ("rdi"); \
1648 if (narg >= 6) r6 = (unsigned long)(arg6); \
1649 if (narg >= 5) r5 = (unsigned long)(arg5); \
1650 if (narg >= 4) r4 = (unsigned long)(arg4); \
1651 if (narg >= 3) r3 = (unsigned long)(arg3); \
1652 if (narg >= 2) r2 = (unsigned long)(arg2); \
1653 if (narg >= 1) r1 = (unsigned long)(arg1); \
1654 __asm__ __volatile__ ( \
1655 "syscall\n\t" \
1656 : "=a" (res) \
1657 : "0" (nr), "r" (r1), "r" (r2), "r" (r3), "r" (r4), "r" (r5) \
1658 : "cc", "r11", "cx", "memory"); \
1659 errno = -res; \
1660 res; \
1661 })
1662
1663#endif
1664
1665#ifdef ev_syscall
1666 #define ev_syscall0(nr) ev_syscall (nr, 0, 0, 0, 0, 0, 0, 0)
1667 #define ev_syscall1(nr,arg1) ev_syscall (nr, 1, arg1, 0, 0, 0, 0, 0)
1668 #define ev_syscall2(nr,arg1,arg2) ev_syscall (nr, 2, arg1, arg2, 0, 0, 0, 0)
1669 #define ev_syscall3(nr,arg1,arg2,arg3) ev_syscall (nr, 3, arg1, arg2, arg3, 0, 0, 0)
1670 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) ev_syscall (nr, 3, arg1, arg2, arg3, arg4, 0, 0)
1671 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) ev_syscall (nr, 5, arg1, arg2, arg3, arg4, arg5, 0)
1672 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) ev_syscall (nr, 6, arg1, arg2, arg3, arg4, arg5,arg6)
1673#else
1674 #define ev_syscall0(nr) syscall (nr)
1675 #define ev_syscall1(nr,arg1) syscall (nr, arg1)
1676 #define ev_syscall2(nr,arg1,arg2) syscall (nr, arg1, arg2)
1677 #define ev_syscall3(nr,arg1,arg2,arg3) syscall (nr, arg1, arg2, arg3)
1678 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) syscall (nr, arg1, arg2, arg3, arg4)
1679 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) syscall (nr, arg1, arg2, arg3, arg4, arg5)
1680 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) syscall (nr, arg1, arg2, arg3, arg4, arg5,arg6)
1681#endif
1682
1683#endif
1684
1685/*****************************************************************************/
1686
359#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1687#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1688
1689#if EV_MINPRI == EV_MAXPRI
1690# define ABSPRI(w) (((W)w), 0)
1691#else
360#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1692# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1693#endif
361 1694
362#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1695#define EMPTY /* required for microsofts broken pseudo-c compiler */
363#define EMPTY2(a,b) /* used to suppress some warnings */
364 1696
365typedef ev_watcher *W; 1697typedef ev_watcher *W;
366typedef ev_watcher_list *WL; 1698typedef ev_watcher_list *WL;
367typedef ev_watcher_time *WT; 1699typedef ev_watcher_time *WT;
368 1700
369#define ev_active(w) ((W)(w))->active 1701#define ev_active(w) ((W)(w))->active
370#define ev_at(w) ((WT)(w))->at 1702#define ev_at(w) ((WT)(w))->at
371 1703
1704#if EV_USE_REALTIME
1705/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1706/* giving it a reasonably high chance of working on typical architectures */
1707static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1708#endif
1709
372#if EV_USE_MONOTONIC 1710#if EV_USE_MONOTONIC
373/* sig_atomic_t is used to avoid per-thread variables or locking but still */
374/* giving it a reasonably high chance of working on typical architetcures */
375static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1711static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1712#endif
1713
1714#ifndef EV_FD_TO_WIN32_HANDLE
1715# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1716#endif
1717#ifndef EV_WIN32_HANDLE_TO_FD
1718# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1719#endif
1720#ifndef EV_WIN32_CLOSE_FD
1721# define EV_WIN32_CLOSE_FD(fd) close (fd)
376#endif 1722#endif
377 1723
378#ifdef _WIN32 1724#ifdef _WIN32
379# include "ev_win32.c" 1725# include "ev_win32.c"
380#endif 1726#endif
381 1727
382/*****************************************************************************/ 1728/*****************************************************************************/
383 1729
1730#if EV_USE_LINUXAIO
1731# include <linux/aio_abi.h> /* probably only needed for aio_context_t */
1732#endif
1733
1734/* define a suitable floor function (only used by periodics atm) */
1735
1736#if EV_USE_FLOOR
1737# include <math.h>
1738# define ev_floor(v) floor (v)
1739#else
1740
1741#include <float.h>
1742
1743/* a floor() replacement function, should be independent of ev_tstamp type */
1744ecb_noinline
1745static ev_tstamp
1746ev_floor (ev_tstamp v)
1747{
1748 /* the choice of shift factor is not terribly important */
1749#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1750 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1751#else
1752 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1753#endif
1754
1755 /* special treatment for negative arguments */
1756 if (ecb_expect_false (v < 0.))
1757 {
1758 ev_tstamp f = -ev_floor (-v);
1759
1760 return f - (f == v ? 0 : 1);
1761 }
1762
1763 /* argument too large for an unsigned long? then reduce it */
1764 if (ecb_expect_false (v >= shift))
1765 {
1766 ev_tstamp f;
1767
1768 if (v == v - 1.)
1769 return v; /* very large numbers are assumed to be integer */
1770
1771 f = shift * ev_floor (v * (1. / shift));
1772 return f + ev_floor (v - f);
1773 }
1774
1775 /* fits into an unsigned long */
1776 return (unsigned long)v;
1777}
1778
1779#endif
1780
1781/*****************************************************************************/
1782
1783#ifdef __linux
1784# include <sys/utsname.h>
1785#endif
1786
1787ecb_noinline ecb_cold
1788static unsigned int
1789ev_linux_version (void)
1790{
1791#ifdef __linux
1792 unsigned int v = 0;
1793 struct utsname buf;
1794 int i;
1795 char *p = buf.release;
1796
1797 if (uname (&buf))
1798 return 0;
1799
1800 for (i = 3+1; --i; )
1801 {
1802 unsigned int c = 0;
1803
1804 for (;;)
1805 {
1806 if (*p >= '0' && *p <= '9')
1807 c = c * 10 + *p++ - '0';
1808 else
1809 {
1810 p += *p == '.';
1811 break;
1812 }
1813 }
1814
1815 v = (v << 8) | c;
1816 }
1817
1818 return v;
1819#else
1820 return 0;
1821#endif
1822}
1823
1824/*****************************************************************************/
1825
1826#if EV_AVOID_STDIO
1827ecb_noinline ecb_cold
1828static void
1829ev_printerr (const char *msg)
1830{
1831 write (STDERR_FILENO, msg, strlen (msg));
1832}
1833#endif
1834
384static void (*syserr_cb)(const char *msg); 1835static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
385 1836
1837ecb_cold
386void 1838void
387ev_set_syserr_cb (void (*cb)(const char *msg)) 1839ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
388{ 1840{
389 syserr_cb = cb; 1841 syserr_cb = cb;
390} 1842}
391 1843
392static void noinline 1844ecb_noinline ecb_cold
1845static void
393ev_syserr (const char *msg) 1846ev_syserr (const char *msg)
394{ 1847{
395 if (!msg) 1848 if (!msg)
396 msg = "(libev) system error"; 1849 msg = "(libev) system error";
397 1850
398 if (syserr_cb) 1851 if (syserr_cb)
399 syserr_cb (msg); 1852 syserr_cb (msg);
400 else 1853 else
401 { 1854 {
1855#if EV_AVOID_STDIO
1856 ev_printerr (msg);
1857 ev_printerr (": ");
1858 ev_printerr (strerror (errno));
1859 ev_printerr ("\n");
1860#else
402 perror (msg); 1861 perror (msg);
1862#endif
403 abort (); 1863 abort ();
404 } 1864 }
405} 1865}
406 1866
407static void * 1867static void *
408ev_realloc_emul (void *ptr, long size) 1868ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
409{ 1869{
410 /* some systems, notably openbsd and darwin, fail to properly 1870 /* some systems, notably openbsd and darwin, fail to properly
411 * implement realloc (x, 0) (as required by both ansi c-98 and 1871 * implement realloc (x, 0) (as required by both ansi c-89 and
412 * the single unix specification, so work around them here. 1872 * the single unix specification, so work around them here.
1873 * recently, also (at least) fedora and debian started breaking it,
1874 * despite documenting it otherwise.
413 */ 1875 */
414 1876
415 if (size) 1877 if (size)
416 return realloc (ptr, size); 1878 return realloc (ptr, size);
417 1879
418 free (ptr); 1880 free (ptr);
419 return 0; 1881 return 0;
420} 1882}
421 1883
422static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1884static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
423 1885
1886ecb_cold
424void 1887void
425ev_set_allocator (void *(*cb)(void *ptr, long size)) 1888ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
426{ 1889{
427 alloc = cb; 1890 alloc = cb;
428} 1891}
429 1892
430inline_speed void * 1893inline_speed void *
432{ 1895{
433 ptr = alloc (ptr, size); 1896 ptr = alloc (ptr, size);
434 1897
435 if (!ptr && size) 1898 if (!ptr && size)
436 { 1899 {
1900#if EV_AVOID_STDIO
1901 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1902#else
437 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1903 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1904#endif
438 abort (); 1905 abort ();
439 } 1906 }
440 1907
441 return ptr; 1908 return ptr;
442} 1909}
444#define ev_malloc(size) ev_realloc (0, (size)) 1911#define ev_malloc(size) ev_realloc (0, (size))
445#define ev_free(ptr) ev_realloc ((ptr), 0) 1912#define ev_free(ptr) ev_realloc ((ptr), 0)
446 1913
447/*****************************************************************************/ 1914/*****************************************************************************/
448 1915
1916/* set in reify when reification needed */
1917#define EV_ANFD_REIFY 1
1918
1919/* file descriptor info structure */
449typedef struct 1920typedef struct
450{ 1921{
451 WL head; 1922 WL head;
452 unsigned char events; 1923 unsigned char events; /* the events watched for */
453 unsigned char reify; 1924 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
454 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ 1925 unsigned char emask; /* some backends store the actual kernel mask in here */
455 unsigned char unused; 1926 unsigned char eflags; /* flags field for use by backends */
456#if EV_USE_EPOLL 1927#if EV_USE_EPOLL
457 unsigned int egen; /* generation counter to counter epoll bugs */ 1928 unsigned int egen; /* generation counter to counter epoll bugs */
458#endif 1929#endif
459#if EV_SELECT_IS_WINSOCKET 1930#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
460 SOCKET handle; 1931 SOCKET handle;
461#endif 1932#endif
1933#if EV_USE_IOCP
1934 OVERLAPPED or, ow;
1935#endif
462} ANFD; 1936} ANFD;
463 1937
1938/* stores the pending event set for a given watcher */
464typedef struct 1939typedef struct
465{ 1940{
466 W w; 1941 W w;
467 int events; 1942 int events; /* the pending event set for the given watcher */
468} ANPENDING; 1943} ANPENDING;
469 1944
470#if EV_USE_INOTIFY 1945#if EV_USE_INOTIFY
471/* hash table entry per inotify-id */ 1946/* hash table entry per inotify-id */
472typedef struct 1947typedef struct
475} ANFS; 1950} ANFS;
476#endif 1951#endif
477 1952
478/* Heap Entry */ 1953/* Heap Entry */
479#if EV_HEAP_CACHE_AT 1954#if EV_HEAP_CACHE_AT
1955 /* a heap element */
480 typedef struct { 1956 typedef struct {
481 ev_tstamp at; 1957 ev_tstamp at;
482 WT w; 1958 WT w;
483 } ANHE; 1959 } ANHE;
484 1960
485 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1961 #define ANHE_w(he) (he).w /* access watcher, read-write */
486 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1962 #define ANHE_at(he) (he).at /* access cached at, read-only */
487 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 1963 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
488#else 1964#else
1965 /* a heap element */
489 typedef WT ANHE; 1966 typedef WT ANHE;
490 1967
491 #define ANHE_w(he) (he) 1968 #define ANHE_w(he) (he)
492 #define ANHE_at(he) (he)->at 1969 #define ANHE_at(he) (he)->at
493 #define ANHE_at_cache(he) 1970 #define ANHE_at_cache(he)
504 #undef VAR 1981 #undef VAR
505 }; 1982 };
506 #include "ev_wrap.h" 1983 #include "ev_wrap.h"
507 1984
508 static struct ev_loop default_loop_struct; 1985 static struct ev_loop default_loop_struct;
509 struct ev_loop *ev_default_loop_ptr; 1986 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
510 1987
511#else 1988#else
512 1989
513 ev_tstamp ev_rt_now; 1990 EV_API_DECL ev_tstamp ev_rt_now = EV_TS_CONST (0.); /* needs to be initialised to make it a definition despite extern */
514 #define VAR(name,decl) static decl; 1991 #define VAR(name,decl) static decl;
515 #include "ev_vars.h" 1992 #include "ev_vars.h"
516 #undef VAR 1993 #undef VAR
517 1994
518 static int ev_default_loop_ptr; 1995 static int ev_default_loop_ptr;
519 1996
520#endif 1997#endif
521 1998
1999#if EV_FEATURE_API
2000# define EV_RELEASE_CB if (ecb_expect_false (release_cb)) release_cb (EV_A)
2001# define EV_ACQUIRE_CB if (ecb_expect_false (acquire_cb)) acquire_cb (EV_A)
2002# define EV_INVOKE_PENDING invoke_cb (EV_A)
2003#else
2004# define EV_RELEASE_CB (void)0
2005# define EV_ACQUIRE_CB (void)0
2006# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
2007#endif
2008
2009#define EVBREAK_RECURSE 0x80
2010
522/*****************************************************************************/ 2011/*****************************************************************************/
523 2012
2013#ifndef EV_HAVE_EV_TIME
524ev_tstamp 2014ev_tstamp
525ev_time (void) 2015ev_time (void) EV_NOEXCEPT
526{ 2016{
527#if EV_USE_REALTIME 2017#if EV_USE_REALTIME
2018 if (ecb_expect_true (have_realtime))
2019 {
528 struct timespec ts; 2020 struct timespec ts;
529 clock_gettime (CLOCK_REALTIME, &ts); 2021 clock_gettime (CLOCK_REALTIME, &ts);
530 return ts.tv_sec + ts.tv_nsec * 1e-9; 2022 return EV_TS_GET (ts);
531#else 2023 }
2024#endif
2025
2026 {
532 struct timeval tv; 2027 struct timeval tv;
533 gettimeofday (&tv, 0); 2028 gettimeofday (&tv, 0);
534 return tv.tv_sec + tv.tv_usec * 1e-6; 2029 return EV_TV_GET (tv);
535#endif 2030 }
536} 2031}
2032#endif
537 2033
538ev_tstamp inline_size 2034inline_size ev_tstamp
539get_clock (void) 2035get_clock (void)
540{ 2036{
541#if EV_USE_MONOTONIC 2037#if EV_USE_MONOTONIC
542 if (expect_true (have_monotonic)) 2038 if (ecb_expect_true (have_monotonic))
543 { 2039 {
544 struct timespec ts; 2040 struct timespec ts;
545 clock_gettime (CLOCK_MONOTONIC, &ts); 2041 clock_gettime (CLOCK_MONOTONIC, &ts);
546 return ts.tv_sec + ts.tv_nsec * 1e-9; 2042 return EV_TS_GET (ts);
547 } 2043 }
548#endif 2044#endif
549 2045
550 return ev_time (); 2046 return ev_time ();
551} 2047}
552 2048
553#if EV_MULTIPLICITY 2049#if EV_MULTIPLICITY
554ev_tstamp 2050ev_tstamp
555ev_now (EV_P) 2051ev_now (EV_P) EV_NOEXCEPT
556{ 2052{
557 return ev_rt_now; 2053 return ev_rt_now;
558} 2054}
559#endif 2055#endif
560 2056
561void 2057void
562ev_sleep (ev_tstamp delay) 2058ev_sleep (ev_tstamp delay) EV_NOEXCEPT
563{ 2059{
564 if (delay > 0.) 2060 if (delay > EV_TS_CONST (0.))
565 { 2061 {
566#if EV_USE_NANOSLEEP 2062#if EV_USE_NANOSLEEP
567 struct timespec ts; 2063 struct timespec ts;
568 2064
569 ts.tv_sec = (time_t)delay; 2065 EV_TS_SET (ts, delay);
570 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
571
572 nanosleep (&ts, 0); 2066 nanosleep (&ts, 0);
573#elif defined(_WIN32) 2067#elif defined _WIN32
2068 /* maybe this should round up, as ms is very low resolution */
2069 /* compared to select (µs) or nanosleep (ns) */
574 Sleep ((unsigned long)(delay * 1e3)); 2070 Sleep ((unsigned long)(EV_TS_TO_MSEC (delay)));
575#else 2071#else
576 struct timeval tv; 2072 struct timeval tv;
577 2073
578 tv.tv_sec = (time_t)delay;
579 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
580
581 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 2074 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
582 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 2075 /* something not guaranteed by newer posix versions, but guaranteed */
583 /* by older ones */ 2076 /* by older ones */
2077 EV_TV_SET (tv, delay);
584 select (0, 0, 0, 0, &tv); 2078 select (0, 0, 0, 0, &tv);
585#endif 2079#endif
586 } 2080 }
587} 2081}
588 2082
589/*****************************************************************************/ 2083/*****************************************************************************/
590 2084
591#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 2085#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
592 2086
593int inline_size 2087/* find a suitable new size for the given array, */
2088/* hopefully by rounding to a nice-to-malloc size */
2089inline_size int
594array_nextsize (int elem, int cur, int cnt) 2090array_nextsize (int elem, int cur, int cnt)
595{ 2091{
596 int ncur = cur + 1; 2092 int ncur = cur + 1;
597 2093
598 do 2094 do
599 ncur <<= 1; 2095 ncur <<= 1;
600 while (cnt > ncur); 2096 while (cnt > ncur);
601 2097
602 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 2098 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
603 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 2099 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
604 { 2100 {
605 ncur *= elem; 2101 ncur *= elem;
606 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 2102 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
607 ncur = ncur - sizeof (void *) * 4; 2103 ncur = ncur - sizeof (void *) * 4;
609 } 2105 }
610 2106
611 return ncur; 2107 return ncur;
612} 2108}
613 2109
614static noinline void * 2110ecb_noinline ecb_cold
2111static void *
615array_realloc (int elem, void *base, int *cur, int cnt) 2112array_realloc (int elem, void *base, int *cur, int cnt)
616{ 2113{
617 *cur = array_nextsize (elem, *cur, cnt); 2114 *cur = array_nextsize (elem, *cur, cnt);
618 return ev_realloc (base, elem * *cur); 2115 return ev_realloc (base, elem * *cur);
619} 2116}
620 2117
2118#define array_needsize_noinit(base,offset,count)
2119
621#define array_init_zero(base,count) \ 2120#define array_needsize_zerofill(base,offset,count) \
622 memset ((void *)(base), 0, sizeof (*(base)) * (count)) 2121 memset ((void *)(base + offset), 0, sizeof (*(base)) * (count))
623 2122
624#define array_needsize(type,base,cur,cnt,init) \ 2123#define array_needsize(type,base,cur,cnt,init) \
625 if (expect_false ((cnt) > (cur))) \ 2124 if (ecb_expect_false ((cnt) > (cur))) \
626 { \ 2125 { \
627 int ocur_ = (cur); \ 2126 ecb_unused int ocur_ = (cur); \
628 (base) = (type *)array_realloc \ 2127 (base) = (type *)array_realloc \
629 (sizeof (type), (base), &(cur), (cnt)); \ 2128 (sizeof (type), (base), &(cur), (cnt)); \
630 init ((base) + (ocur_), (cur) - ocur_); \ 2129 init ((base), ocur_, ((cur) - ocur_)); \
631 } 2130 }
632 2131
633#if 0 2132#if 0
634#define array_slim(type,stem) \ 2133#define array_slim(type,stem) \
635 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 2134 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
639 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 2138 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
640 } 2139 }
641#endif 2140#endif
642 2141
643#define array_free(stem, idx) \ 2142#define array_free(stem, idx) \
644 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 2143 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
645 2144
646/*****************************************************************************/ 2145/*****************************************************************************/
647 2146
648void noinline 2147/* dummy callback for pending events */
2148ecb_noinline
2149static void
2150pendingcb (EV_P_ ev_prepare *w, int revents)
2151{
2152}
2153
2154ecb_noinline
2155void
649ev_feed_event (EV_P_ void *w, int revents) 2156ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
650{ 2157{
651 W w_ = (W)w; 2158 W w_ = (W)w;
652 int pri = ABSPRI (w_); 2159 int pri = ABSPRI (w_);
653 2160
654 if (expect_false (w_->pending)) 2161 if (ecb_expect_false (w_->pending))
655 pendings [pri][w_->pending - 1].events |= revents; 2162 pendings [pri][w_->pending - 1].events |= revents;
656 else 2163 else
657 { 2164 {
658 w_->pending = ++pendingcnt [pri]; 2165 w_->pending = ++pendingcnt [pri];
659 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 2166 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
660 pendings [pri][w_->pending - 1].w = w_; 2167 pendings [pri][w_->pending - 1].w = w_;
661 pendings [pri][w_->pending - 1].events = revents; 2168 pendings [pri][w_->pending - 1].events = revents;
662 } 2169 }
663}
664 2170
665void inline_speed 2171 pendingpri = NUMPRI - 1;
2172}
2173
2174inline_speed void
2175feed_reverse (EV_P_ W w)
2176{
2177 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2178 rfeeds [rfeedcnt++] = w;
2179}
2180
2181inline_size void
2182feed_reverse_done (EV_P_ int revents)
2183{
2184 do
2185 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2186 while (rfeedcnt);
2187}
2188
2189inline_speed void
666queue_events (EV_P_ W *events, int eventcnt, int type) 2190queue_events (EV_P_ W *events, int eventcnt, int type)
667{ 2191{
668 int i; 2192 int i;
669 2193
670 for (i = 0; i < eventcnt; ++i) 2194 for (i = 0; i < eventcnt; ++i)
671 ev_feed_event (EV_A_ events [i], type); 2195 ev_feed_event (EV_A_ events [i], type);
672} 2196}
673 2197
674/*****************************************************************************/ 2198/*****************************************************************************/
675 2199
676void inline_speed 2200inline_speed void
677fd_event (EV_P_ int fd, int revents) 2201fd_event_nocheck (EV_P_ int fd, int revents)
678{ 2202{
679 ANFD *anfd = anfds + fd; 2203 ANFD *anfd = anfds + fd;
680 ev_io *w; 2204 ev_io *w;
681 2205
682 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2206 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
686 if (ev) 2210 if (ev)
687 ev_feed_event (EV_A_ (W)w, ev); 2211 ev_feed_event (EV_A_ (W)w, ev);
688 } 2212 }
689} 2213}
690 2214
691void 2215/* do not submit kernel events for fds that have reify set */
2216/* because that means they changed while we were polling for new events */
2217inline_speed void
692ev_feed_fd_event (EV_P_ int fd, int revents) 2218fd_event (EV_P_ int fd, int revents)
2219{
2220 ANFD *anfd = anfds + fd;
2221
2222 if (ecb_expect_true (!anfd->reify))
2223 fd_event_nocheck (EV_A_ fd, revents);
2224}
2225
2226void
2227ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
693{ 2228{
694 if (fd >= 0 && fd < anfdmax) 2229 if (fd >= 0 && fd < anfdmax)
695 fd_event (EV_A_ fd, revents); 2230 fd_event_nocheck (EV_A_ fd, revents);
696} 2231}
697 2232
698void inline_size 2233/* make sure the external fd watch events are in-sync */
2234/* with the kernel/libev internal state */
2235inline_size void
699fd_reify (EV_P) 2236fd_reify (EV_P)
700{ 2237{
701 int i; 2238 int i;
2239
2240#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2241 for (i = 0; i < fdchangecnt; ++i)
2242 {
2243 int fd = fdchanges [i];
2244 ANFD *anfd = anfds + fd;
2245
2246 if (anfd->reify & EV__IOFDSET && anfd->head)
2247 {
2248 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2249
2250 if (handle != anfd->handle)
2251 {
2252 unsigned long arg;
2253
2254 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2255
2256 /* handle changed, but fd didn't - we need to do it in two steps */
2257 backend_modify (EV_A_ fd, anfd->events, 0);
2258 anfd->events = 0;
2259 anfd->handle = handle;
2260 }
2261 }
2262 }
2263#endif
702 2264
703 for (i = 0; i < fdchangecnt; ++i) 2265 for (i = 0; i < fdchangecnt; ++i)
704 { 2266 {
705 int fd = fdchanges [i]; 2267 int fd = fdchanges [i];
706 ANFD *anfd = anfds + fd; 2268 ANFD *anfd = anfds + fd;
707 ev_io *w; 2269 ev_io *w;
708 2270
709 unsigned char events = 0; 2271 unsigned char o_events = anfd->events;
2272 unsigned char o_reify = anfd->reify;
710 2273
711 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2274 anfd->reify = 0;
712 events |= (unsigned char)w->events;
713 2275
714#if EV_SELECT_IS_WINSOCKET 2276 /*if (ecb_expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
715 if (events)
716 { 2277 {
717 unsigned long arg; 2278 anfd->events = 0;
718 #ifdef EV_FD_TO_WIN32_HANDLE 2279
719 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 2280 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
720 #else 2281 anfd->events |= (unsigned char)w->events;
721 anfd->handle = _get_osfhandle (fd); 2282
722 #endif 2283 if (o_events != anfd->events)
723 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 2284 o_reify = EV__IOFDSET; /* actually |= */
724 } 2285 }
725#endif
726 2286
727 { 2287 if (o_reify & EV__IOFDSET)
728 unsigned char o_events = anfd->events;
729 unsigned char o_reify = anfd->reify;
730
731 anfd->reify = 0;
732 anfd->events = events;
733
734 if (o_events != events || o_reify & EV_IOFDSET)
735 backend_modify (EV_A_ fd, o_events, events); 2288 backend_modify (EV_A_ fd, o_events, anfd->events);
736 }
737 } 2289 }
738 2290
739 fdchangecnt = 0; 2291 fdchangecnt = 0;
740} 2292}
741 2293
2294/* something about the given fd changed */
742void inline_size 2295inline_size
2296void
743fd_change (EV_P_ int fd, int flags) 2297fd_change (EV_P_ int fd, int flags)
744{ 2298{
745 unsigned char reify = anfds [fd].reify; 2299 unsigned char reify = anfds [fd].reify;
746 anfds [fd].reify |= flags; 2300 anfds [fd].reify |= flags;
747 2301
748 if (expect_true (!reify)) 2302 if (ecb_expect_true (!reify))
749 { 2303 {
750 ++fdchangecnt; 2304 ++fdchangecnt;
751 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 2305 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
752 fdchanges [fdchangecnt - 1] = fd; 2306 fdchanges [fdchangecnt - 1] = fd;
753 } 2307 }
754} 2308}
755 2309
756void inline_speed 2310/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2311inline_speed ecb_cold void
757fd_kill (EV_P_ int fd) 2312fd_kill (EV_P_ int fd)
758{ 2313{
759 ev_io *w; 2314 ev_io *w;
760 2315
761 while ((w = (ev_io *)anfds [fd].head)) 2316 while ((w = (ev_io *)anfds [fd].head))
763 ev_io_stop (EV_A_ w); 2318 ev_io_stop (EV_A_ w);
764 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2319 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
765 } 2320 }
766} 2321}
767 2322
768int inline_size 2323/* check whether the given fd is actually valid, for error recovery */
2324inline_size ecb_cold int
769fd_valid (int fd) 2325fd_valid (int fd)
770{ 2326{
771#ifdef _WIN32 2327#ifdef _WIN32
772 return _get_osfhandle (fd) != -1; 2328 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
773#else 2329#else
774 return fcntl (fd, F_GETFD) != -1; 2330 return fcntl (fd, F_GETFD) != -1;
775#endif 2331#endif
776} 2332}
777 2333
778/* called on EBADF to verify fds */ 2334/* called on EBADF to verify fds */
779static void noinline 2335ecb_noinline ecb_cold
2336static void
780fd_ebadf (EV_P) 2337fd_ebadf (EV_P)
781{ 2338{
782 int fd; 2339 int fd;
783 2340
784 for (fd = 0; fd < anfdmax; ++fd) 2341 for (fd = 0; fd < anfdmax; ++fd)
786 if (!fd_valid (fd) && errno == EBADF) 2343 if (!fd_valid (fd) && errno == EBADF)
787 fd_kill (EV_A_ fd); 2344 fd_kill (EV_A_ fd);
788} 2345}
789 2346
790/* called on ENOMEM in select/poll to kill some fds and retry */ 2347/* called on ENOMEM in select/poll to kill some fds and retry */
791static void noinline 2348ecb_noinline ecb_cold
2349static void
792fd_enomem (EV_P) 2350fd_enomem (EV_P)
793{ 2351{
794 int fd; 2352 int fd;
795 2353
796 for (fd = anfdmax; fd--; ) 2354 for (fd = anfdmax; fd--; )
797 if (anfds [fd].events) 2355 if (anfds [fd].events)
798 { 2356 {
799 fd_kill (EV_A_ fd); 2357 fd_kill (EV_A_ fd);
800 return; 2358 break;
801 } 2359 }
802} 2360}
803 2361
804/* usually called after fork if backend needs to re-arm all fds from scratch */ 2362/* usually called after fork if backend needs to re-arm all fds from scratch */
805static void noinline 2363ecb_noinline
2364static void
806fd_rearm_all (EV_P) 2365fd_rearm_all (EV_P)
807{ 2366{
808 int fd; 2367 int fd;
809 2368
810 for (fd = 0; fd < anfdmax; ++fd) 2369 for (fd = 0; fd < anfdmax; ++fd)
811 if (anfds [fd].events) 2370 if (anfds [fd].events)
812 { 2371 {
813 anfds [fd].events = 0; 2372 anfds [fd].events = 0;
814 anfds [fd].emask = 0; 2373 anfds [fd].emask = 0;
815 fd_change (EV_A_ fd, EV_IOFDSET | 1); 2374 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
816 } 2375 }
817} 2376}
818 2377
2378/* used to prepare libev internal fd's */
2379/* this is not fork-safe */
2380inline_speed void
2381fd_intern (int fd)
2382{
2383#ifdef _WIN32
2384 unsigned long arg = 1;
2385 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2386#else
2387 fcntl (fd, F_SETFD, FD_CLOEXEC);
2388 fcntl (fd, F_SETFL, O_NONBLOCK);
2389#endif
2390}
2391
819/*****************************************************************************/ 2392/*****************************************************************************/
820 2393
821/* 2394/*
822 * the heap functions want a real array index. array index 0 uis guaranteed to not 2395 * the heap functions want a real array index. array index 0 is guaranteed to not
823 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 2396 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
824 * the branching factor of the d-tree. 2397 * the branching factor of the d-tree.
825 */ 2398 */
826 2399
827/* 2400/*
836#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 2409#define HEAP0 (DHEAP - 1) /* index of first element in heap */
837#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 2410#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
838#define UPHEAP_DONE(p,k) ((p) == (k)) 2411#define UPHEAP_DONE(p,k) ((p) == (k))
839 2412
840/* away from the root */ 2413/* away from the root */
841void inline_speed 2414inline_speed void
842downheap (ANHE *heap, int N, int k) 2415downheap (ANHE *heap, int N, int k)
843{ 2416{
844 ANHE he = heap [k]; 2417 ANHE he = heap [k];
845 ANHE *E = heap + N + HEAP0; 2418 ANHE *E = heap + N + HEAP0;
846 2419
849 ev_tstamp minat; 2422 ev_tstamp minat;
850 ANHE *minpos; 2423 ANHE *minpos;
851 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1; 2424 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
852 2425
853 /* find minimum child */ 2426 /* find minimum child */
854 if (expect_true (pos + DHEAP - 1 < E)) 2427 if (ecb_expect_true (pos + DHEAP - 1 < E))
855 { 2428 {
856 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 2429 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
857 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 2430 if ( minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
858 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 2431 if ( minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
859 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); 2432 if ( minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
860 } 2433 }
861 else if (pos < E) 2434 else if (pos < E)
862 { 2435 {
863 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 2436 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
864 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 2437 if (pos + 1 < E && minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
865 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 2438 if (pos + 2 < E && minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
866 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); 2439 if (pos + 3 < E && minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
867 } 2440 }
868 else 2441 else
869 break; 2442 break;
870 2443
871 if (ANHE_at (he) <= minat) 2444 if (ANHE_at (he) <= minat)
879 2452
880 heap [k] = he; 2453 heap [k] = he;
881 ev_active (ANHE_w (he)) = k; 2454 ev_active (ANHE_w (he)) = k;
882} 2455}
883 2456
884#else /* 4HEAP */ 2457#else /* not 4HEAP */
885 2458
886#define HEAP0 1 2459#define HEAP0 1
887#define HPARENT(k) ((k) >> 1) 2460#define HPARENT(k) ((k) >> 1)
888#define UPHEAP_DONE(p,k) (!(p)) 2461#define UPHEAP_DONE(p,k) (!(p))
889 2462
890/* away from the root */ 2463/* away from the root */
891void inline_speed 2464inline_speed void
892downheap (ANHE *heap, int N, int k) 2465downheap (ANHE *heap, int N, int k)
893{ 2466{
894 ANHE he = heap [k]; 2467 ANHE he = heap [k];
895 2468
896 for (;;) 2469 for (;;)
897 { 2470 {
898 int c = k << 1; 2471 int c = k << 1;
899 2472
900 if (c > N + HEAP0 - 1) 2473 if (c >= N + HEAP0)
901 break; 2474 break;
902 2475
903 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 2476 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
904 ? 1 : 0; 2477 ? 1 : 0;
905 2478
916 ev_active (ANHE_w (he)) = k; 2489 ev_active (ANHE_w (he)) = k;
917} 2490}
918#endif 2491#endif
919 2492
920/* towards the root */ 2493/* towards the root */
921void inline_speed 2494inline_speed void
922upheap (ANHE *heap, int k) 2495upheap (ANHE *heap, int k)
923{ 2496{
924 ANHE he = heap [k]; 2497 ANHE he = heap [k];
925 2498
926 for (;;) 2499 for (;;)
937 2510
938 heap [k] = he; 2511 heap [k] = he;
939 ev_active (ANHE_w (he)) = k; 2512 ev_active (ANHE_w (he)) = k;
940} 2513}
941 2514
942void inline_size 2515/* move an element suitably so it is in a correct place */
2516inline_size void
943adjustheap (ANHE *heap, int N, int k) 2517adjustheap (ANHE *heap, int N, int k)
944{ 2518{
945 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 2519 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
946 upheap (heap, k); 2520 upheap (heap, k);
947 else 2521 else
948 downheap (heap, N, k); 2522 downheap (heap, N, k);
949} 2523}
950 2524
951/* rebuild the heap: this function is used only once and executed rarely */ 2525/* rebuild the heap: this function is used only once and executed rarely */
952void inline_size 2526inline_size void
953reheap (ANHE *heap, int N) 2527reheap (ANHE *heap, int N)
954{ 2528{
955 int i; 2529 int i;
956 2530
957 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 2531 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
960 upheap (heap, i + HEAP0); 2534 upheap (heap, i + HEAP0);
961} 2535}
962 2536
963/*****************************************************************************/ 2537/*****************************************************************************/
964 2538
2539/* associate signal watchers to a signal signal */
965typedef struct 2540typedef struct
966{ 2541{
2542 EV_ATOMIC_T pending;
2543#if EV_MULTIPLICITY
2544 EV_P;
2545#endif
967 WL head; 2546 WL head;
968 EV_ATOMIC_T gotsig;
969} ANSIG; 2547} ANSIG;
970 2548
971static ANSIG *signals; 2549static ANSIG signals [EV_NSIG - 1];
972static int signalmax;
973
974static EV_ATOMIC_T gotsig;
975 2550
976/*****************************************************************************/ 2551/*****************************************************************************/
977 2552
978void inline_speed 2553#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
979fd_intern (int fd)
980{
981#ifdef _WIN32
982 unsigned long arg = 1;
983 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
984#else
985 fcntl (fd, F_SETFD, FD_CLOEXEC);
986 fcntl (fd, F_SETFL, O_NONBLOCK);
987#endif
988}
989 2554
990static void noinline 2555ecb_noinline ecb_cold
2556static void
991evpipe_init (EV_P) 2557evpipe_init (EV_P)
992{ 2558{
993 if (!ev_is_active (&pipeev)) 2559 if (!ev_is_active (&pipe_w))
2560 {
2561 int fds [2];
2562
2563# if EV_USE_EVENTFD
2564 fds [0] = -1;
2565 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2566 if (fds [1] < 0 && errno == EINVAL)
2567 fds [1] = eventfd (0, 0);
2568
2569 if (fds [1] < 0)
2570# endif
2571 {
2572 while (pipe (fds))
2573 ev_syserr ("(libev) error creating signal/async pipe");
2574
2575 fd_intern (fds [0]);
2576 }
2577
2578 evpipe [0] = fds [0];
2579
2580 if (evpipe [1] < 0)
2581 evpipe [1] = fds [1]; /* first call, set write fd */
2582 else
2583 {
2584 /* on subsequent calls, do not change evpipe [1] */
2585 /* so that evpipe_write can always rely on its value. */
2586 /* this branch does not do anything sensible on windows, */
2587 /* so must not be executed on windows */
2588
2589 dup2 (fds [1], evpipe [1]);
2590 close (fds [1]);
2591 }
2592
2593 fd_intern (evpipe [1]);
2594
2595 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2596 ev_io_start (EV_A_ &pipe_w);
2597 ev_unref (EV_A); /* watcher should not keep loop alive */
994 { 2598 }
2599}
2600
2601inline_speed void
2602evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2603{
2604 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2605
2606 if (ecb_expect_true (*flag))
2607 return;
2608
2609 *flag = 1;
2610 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2611
2612 pipe_write_skipped = 1;
2613
2614 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2615
2616 if (pipe_write_wanted)
2617 {
2618 int old_errno;
2619
2620 pipe_write_skipped = 0;
2621 ECB_MEMORY_FENCE_RELEASE;
2622
2623 old_errno = errno; /* save errno because write will clobber it */
2624
995#if EV_USE_EVENTFD 2625#if EV_USE_EVENTFD
996 if ((evfd = eventfd (0, 0)) >= 0) 2626 if (evpipe [0] < 0)
997 { 2627 {
998 evpipe [0] = -1; 2628 uint64_t counter = 1;
999 fd_intern (evfd); 2629 write (evpipe [1], &counter, sizeof (uint64_t));
1000 ev_io_set (&pipeev, evfd, EV_READ);
1001 } 2630 }
1002 else 2631 else
1003#endif 2632#endif
1004 { 2633 {
1005 while (pipe (evpipe)) 2634#ifdef _WIN32
1006 ev_syserr ("(libev) error creating signal/async pipe"); 2635 WSABUF buf;
1007 2636 DWORD sent;
1008 fd_intern (evpipe [0]); 2637 buf.buf = (char *)&buf;
1009 fd_intern (evpipe [1]); 2638 buf.len = 1;
1010 ev_io_set (&pipeev, evpipe [0], EV_READ); 2639 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2640#else
2641 write (evpipe [1], &(evpipe [1]), 1);
2642#endif
1011 } 2643 }
1012 2644
1013 ev_io_start (EV_A_ &pipeev); 2645 errno = old_errno;
1014 ev_unref (EV_A); /* watcher should not keep loop alive */
1015 }
1016}
1017
1018void inline_size
1019evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1020{
1021 if (!*flag)
1022 { 2646 }
1023 int old_errno = errno; /* save errno because write might clobber it */ 2647}
1024 2648
1025 *flag = 1; 2649/* called whenever the libev signal pipe */
2650/* got some events (signal, async) */
2651static void
2652pipecb (EV_P_ ev_io *iow, int revents)
2653{
2654 int i;
1026 2655
2656 if (revents & EV_READ)
2657 {
1027#if EV_USE_EVENTFD 2658#if EV_USE_EVENTFD
1028 if (evfd >= 0) 2659 if (evpipe [0] < 0)
1029 { 2660 {
1030 uint64_t counter = 1; 2661 uint64_t counter;
1031 write (evfd, &counter, sizeof (uint64_t)); 2662 read (evpipe [1], &counter, sizeof (uint64_t));
1032 } 2663 }
1033 else 2664 else
1034#endif 2665#endif
1035 write (evpipe [1], &old_errno, 1); 2666 {
1036
1037 errno = old_errno;
1038 }
1039}
1040
1041static void
1042pipecb (EV_P_ ev_io *iow, int revents)
1043{
1044#if EV_USE_EVENTFD
1045 if (evfd >= 0)
1046 {
1047 uint64_t counter;
1048 read (evfd, &counter, sizeof (uint64_t));
1049 }
1050 else
1051#endif
1052 {
1053 char dummy; 2667 char dummy[4];
2668#ifdef _WIN32
2669 WSABUF buf;
2670 DWORD recvd;
2671 DWORD flags = 0;
2672 buf.buf = dummy;
2673 buf.len = sizeof (dummy);
2674 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2675#else
1054 read (evpipe [0], &dummy, 1); 2676 read (evpipe [0], &dummy, sizeof (dummy));
2677#endif
2678 }
2679 }
2680
2681 pipe_write_skipped = 0;
2682
2683 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2684
2685#if EV_SIGNAL_ENABLE
2686 if (sig_pending)
1055 } 2687 {
2688 sig_pending = 0;
1056 2689
1057 if (gotsig && ev_is_default_loop (EV_A)) 2690 ECB_MEMORY_FENCE;
1058 {
1059 int signum;
1060 gotsig = 0;
1061 2691
1062 for (signum = signalmax; signum--; ) 2692 for (i = EV_NSIG - 1; i--; )
1063 if (signals [signum].gotsig) 2693 if (ecb_expect_false (signals [i].pending))
1064 ev_feed_signal_event (EV_A_ signum + 1); 2694 ev_feed_signal_event (EV_A_ i + 1);
1065 } 2695 }
2696#endif
1066 2697
1067#if EV_ASYNC_ENABLE 2698#if EV_ASYNC_ENABLE
1068 if (gotasync) 2699 if (async_pending)
1069 { 2700 {
1070 int i; 2701 async_pending = 0;
1071 gotasync = 0; 2702
2703 ECB_MEMORY_FENCE;
1072 2704
1073 for (i = asynccnt; i--; ) 2705 for (i = asynccnt; i--; )
1074 if (asyncs [i]->sent) 2706 if (asyncs [i]->sent)
1075 { 2707 {
1076 asyncs [i]->sent = 0; 2708 asyncs [i]->sent = 0;
2709 ECB_MEMORY_FENCE_RELEASE;
1077 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2710 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1078 } 2711 }
1079 } 2712 }
1080#endif 2713#endif
1081} 2714}
1082 2715
1083/*****************************************************************************/ 2716/*****************************************************************************/
1084 2717
2718void
2719ev_feed_signal (int signum) EV_NOEXCEPT
2720{
2721#if EV_MULTIPLICITY
2722 EV_P;
2723 ECB_MEMORY_FENCE_ACQUIRE;
2724 EV_A = signals [signum - 1].loop;
2725
2726 if (!EV_A)
2727 return;
2728#endif
2729
2730 signals [signum - 1].pending = 1;
2731 evpipe_write (EV_A_ &sig_pending);
2732}
2733
1085static void 2734static void
1086ev_sighandler (int signum) 2735ev_sighandler (int signum)
1087{ 2736{
2737#ifdef _WIN32
2738 signal (signum, ev_sighandler);
2739#endif
2740
2741 ev_feed_signal (signum);
2742}
2743
2744ecb_noinline
2745void
2746ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2747{
2748 WL w;
2749
2750 if (ecb_expect_false (signum <= 0 || signum >= EV_NSIG))
2751 return;
2752
2753 --signum;
2754
1088#if EV_MULTIPLICITY 2755#if EV_MULTIPLICITY
1089 struct ev_loop *loop = &default_loop_struct; 2756 /* it is permissible to try to feed a signal to the wrong loop */
1090#endif 2757 /* or, likely more useful, feeding a signal nobody is waiting for */
1091 2758
1092#if _WIN32 2759 if (ecb_expect_false (signals [signum].loop != EV_A))
1093 signal (signum, ev_sighandler);
1094#endif
1095
1096 signals [signum - 1].gotsig = 1;
1097 evpipe_write (EV_A_ &gotsig);
1098}
1099
1100void noinline
1101ev_feed_signal_event (EV_P_ int signum)
1102{
1103 WL w;
1104
1105#if EV_MULTIPLICITY
1106 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1107#endif
1108
1109 --signum;
1110
1111 if (signum < 0 || signum >= signalmax)
1112 return; 2760 return;
2761#endif
1113 2762
1114 signals [signum].gotsig = 0; 2763 signals [signum].pending = 0;
2764 ECB_MEMORY_FENCE_RELEASE;
1115 2765
1116 for (w = signals [signum].head; w; w = w->next) 2766 for (w = signals [signum].head; w; w = w->next)
1117 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2767 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1118} 2768}
1119 2769
2770#if EV_USE_SIGNALFD
2771static void
2772sigfdcb (EV_P_ ev_io *iow, int revents)
2773{
2774 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2775
2776 for (;;)
2777 {
2778 ssize_t res = read (sigfd, si, sizeof (si));
2779
2780 /* not ISO-C, as res might be -1, but works with SuS */
2781 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2782 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2783
2784 if (res < (ssize_t)sizeof (si))
2785 break;
2786 }
2787}
2788#endif
2789
2790#endif
2791
1120/*****************************************************************************/ 2792/*****************************************************************************/
1121 2793
2794#if EV_CHILD_ENABLE
1122static WL childs [EV_PID_HASHSIZE]; 2795static WL childs [EV_PID_HASHSIZE];
1123
1124#ifndef _WIN32
1125 2796
1126static ev_signal childev; 2797static ev_signal childev;
1127 2798
1128#ifndef WIFCONTINUED 2799#ifndef WIFCONTINUED
1129# define WIFCONTINUED(status) 0 2800# define WIFCONTINUED(status) 0
1130#endif 2801#endif
1131 2802
1132void inline_speed 2803/* handle a single child status event */
2804inline_speed void
1133child_reap (EV_P_ int chain, int pid, int status) 2805child_reap (EV_P_ int chain, int pid, int status)
1134{ 2806{
1135 ev_child *w; 2807 ev_child *w;
1136 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2808 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1137 2809
1138 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2810 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1139 { 2811 {
1140 if ((w->pid == pid || !w->pid) 2812 if ((w->pid == pid || !w->pid)
1141 && (!traced || (w->flags & 1))) 2813 && (!traced || (w->flags & 1)))
1142 { 2814 {
1143 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2815 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1150 2822
1151#ifndef WCONTINUED 2823#ifndef WCONTINUED
1152# define WCONTINUED 0 2824# define WCONTINUED 0
1153#endif 2825#endif
1154 2826
2827/* called on sigchld etc., calls waitpid */
1155static void 2828static void
1156childcb (EV_P_ ev_signal *sw, int revents) 2829childcb (EV_P_ ev_signal *sw, int revents)
1157{ 2830{
1158 int pid, status; 2831 int pid, status;
1159 2832
1167 /* make sure we are called again until all children have been reaped */ 2840 /* make sure we are called again until all children have been reaped */
1168 /* we need to do it this way so that the callback gets called before we continue */ 2841 /* we need to do it this way so that the callback gets called before we continue */
1169 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2842 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1170 2843
1171 child_reap (EV_A_ pid, pid, status); 2844 child_reap (EV_A_ pid, pid, status);
1172 if (EV_PID_HASHSIZE > 1) 2845 if ((EV_PID_HASHSIZE) > 1)
1173 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2846 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1174} 2847}
1175 2848
1176#endif 2849#endif
1177 2850
1178/*****************************************************************************/ 2851/*****************************************************************************/
1179 2852
2853#if EV_USE_IOCP
2854# include "ev_iocp.c"
2855#endif
1180#if EV_USE_PORT 2856#if EV_USE_PORT
1181# include "ev_port.c" 2857# include "ev_port.c"
1182#endif 2858#endif
1183#if EV_USE_KQUEUE 2859#if EV_USE_KQUEUE
1184# include "ev_kqueue.c" 2860# include "ev_kqueue.c"
1185#endif 2861#endif
1186#if EV_USE_EPOLL 2862#if EV_USE_EPOLL
1187# include "ev_epoll.c" 2863# include "ev_epoll.c"
1188#endif 2864#endif
2865#if EV_USE_LINUXAIO
2866# include "ev_linuxaio.c"
2867#endif
2868#if EV_USE_IOURING
2869# include "ev_iouring.c"
2870#endif
1189#if EV_USE_POLL 2871#if EV_USE_POLL
1190# include "ev_poll.c" 2872# include "ev_poll.c"
1191#endif 2873#endif
1192#if EV_USE_SELECT 2874#if EV_USE_SELECT
1193# include "ev_select.c" 2875# include "ev_select.c"
1194#endif 2876#endif
1195 2877
1196int 2878ecb_cold int
1197ev_version_major (void) 2879ev_version_major (void) EV_NOEXCEPT
1198{ 2880{
1199 return EV_VERSION_MAJOR; 2881 return EV_VERSION_MAJOR;
1200} 2882}
1201 2883
1202int 2884ecb_cold int
1203ev_version_minor (void) 2885ev_version_minor (void) EV_NOEXCEPT
1204{ 2886{
1205 return EV_VERSION_MINOR; 2887 return EV_VERSION_MINOR;
1206} 2888}
1207 2889
1208/* return true if we are running with elevated privileges and should ignore env variables */ 2890/* return true if we are running with elevated privileges and should ignore env variables */
1209int inline_size 2891inline_size ecb_cold int
1210enable_secure (void) 2892enable_secure (void)
1211{ 2893{
1212#ifdef _WIN32 2894#ifdef _WIN32
1213 return 0; 2895 return 0;
1214#else 2896#else
1215 return getuid () != geteuid () 2897 return getuid () != geteuid ()
1216 || getgid () != getegid (); 2898 || getgid () != getegid ();
1217#endif 2899#endif
1218} 2900}
1219 2901
2902ecb_cold
1220unsigned int 2903unsigned int
1221ev_supported_backends (void) 2904ev_supported_backends (void) EV_NOEXCEPT
1222{ 2905{
1223 unsigned int flags = 0; 2906 unsigned int flags = 0;
1224 2907
1225 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2908 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1226 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2909 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
1227 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL; 2910 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2911 if (EV_USE_LINUXAIO) flags |= EVBACKEND_LINUXAIO;
2912 if (EV_USE_IOURING ) flags |= EVBACKEND_IOURING;
1228 if (EV_USE_POLL ) flags |= EVBACKEND_POLL; 2913 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1229 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2914 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
1230 2915
1231 return flags; 2916 return flags;
1232} 2917}
1233 2918
2919ecb_cold
1234unsigned int 2920unsigned int
1235ev_recommended_backends (void) 2921ev_recommended_backends (void) EV_NOEXCEPT
1236{ 2922{
1237 unsigned int flags = ev_supported_backends (); 2923 unsigned int flags = ev_supported_backends ();
1238 2924
1239#ifndef __NetBSD__ 2925#ifndef __NetBSD__
1240 /* kqueue is borked on everything but netbsd apparently */ 2926 /* kqueue is borked on everything but netbsd apparently */
1241 /* it usually doesn't work correctly on anything but sockets and pipes */ 2927 /* it usually doesn't work correctly on anything but sockets and pipes */
1242 flags &= ~EVBACKEND_KQUEUE; 2928 flags &= ~EVBACKEND_KQUEUE;
1243#endif 2929#endif
1244#ifdef __APPLE__ 2930#ifdef __APPLE__
1245 // flags &= ~EVBACKEND_KQUEUE; for documentation 2931 /* only select works correctly on that "unix-certified" platform */
2932 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2933 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2934#endif
2935#ifdef __FreeBSD__
2936 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2937#endif
2938
2939 /* TODO: linuxaio is very experimental */
2940#if !EV_RECOMMEND_LINUXAIO
2941 flags &= ~EVBACKEND_LINUXAIO;
2942#endif
2943 /* TODO: linuxaio is super experimental */
2944#if !EV_RECOMMEND_IOURING
1246 flags &= ~EVBACKEND_POLL; 2945 flags &= ~EVBACKEND_IOURING;
1247#endif 2946#endif
1248 2947
1249 return flags; 2948 return flags;
1250} 2949}
1251 2950
2951ecb_cold
1252unsigned int 2952unsigned int
1253ev_embeddable_backends (void) 2953ev_embeddable_backends (void) EV_NOEXCEPT
1254{ 2954{
1255 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2955 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1256 2956
1257 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 2957 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1258 /* please fix it and tell me how to detect the fix */ 2958 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1259 flags &= ~EVBACKEND_EPOLL; 2959 flags &= ~EVBACKEND_EPOLL;
2960
2961 /* EVBACKEND_LINUXAIO is theoretically embeddable, but suffers from a performance overhead */
2962
2963 /* EVBACKEND_IOURING is practically embeddable, but the current implementation is not
2964 * because our backend_fd is the epoll fd we need as fallback.
2965 * if the kernel ever is fixed, this might change...
2966 */
1260 2967
1261 return flags; 2968 return flags;
1262} 2969}
1263 2970
1264unsigned int 2971unsigned int
1265ev_backend (EV_P) 2972ev_backend (EV_P) EV_NOEXCEPT
1266{ 2973{
1267 return backend; 2974 return backend;
1268} 2975}
1269 2976
2977#if EV_FEATURE_API
1270unsigned int 2978unsigned int
1271ev_loop_count (EV_P) 2979ev_iteration (EV_P) EV_NOEXCEPT
1272{ 2980{
1273 return loop_count; 2981 return loop_count;
1274} 2982}
1275 2983
2984unsigned int
2985ev_depth (EV_P) EV_NOEXCEPT
2986{
2987 return loop_depth;
2988}
2989
1276void 2990void
1277ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2991ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
1278{ 2992{
1279 io_blocktime = interval; 2993 io_blocktime = interval;
1280} 2994}
1281 2995
1282void 2996void
1283ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2997ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
1284{ 2998{
1285 timeout_blocktime = interval; 2999 timeout_blocktime = interval;
1286} 3000}
1287 3001
1288static void noinline 3002void
3003ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
3004{
3005 userdata = data;
3006}
3007
3008void *
3009ev_userdata (EV_P) EV_NOEXCEPT
3010{
3011 return userdata;
3012}
3013
3014void
3015ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
3016{
3017 invoke_cb = invoke_pending_cb;
3018}
3019
3020void
3021ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
3022{
3023 release_cb = release;
3024 acquire_cb = acquire;
3025}
3026#endif
3027
3028/* initialise a loop structure, must be zero-initialised */
3029ecb_noinline ecb_cold
3030static void
1289loop_init (EV_P_ unsigned int flags) 3031loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
1290{ 3032{
1291 if (!backend) 3033 if (!backend)
1292 { 3034 {
3035 origflags = flags;
3036
3037#if EV_USE_REALTIME
3038 if (!have_realtime)
3039 {
3040 struct timespec ts;
3041
3042 if (!clock_gettime (CLOCK_REALTIME, &ts))
3043 have_realtime = 1;
3044 }
3045#endif
3046
1293#if EV_USE_MONOTONIC 3047#if EV_USE_MONOTONIC
3048 if (!have_monotonic)
1294 { 3049 {
1295 struct timespec ts; 3050 struct timespec ts;
3051
1296 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 3052 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1297 have_monotonic = 1; 3053 have_monotonic = 1;
1298 } 3054 }
1299#endif
1300
1301 ev_rt_now = ev_time ();
1302 mn_now = get_clock ();
1303 now_floor = mn_now;
1304 rtmn_diff = ev_rt_now - mn_now;
1305
1306 io_blocktime = 0.;
1307 timeout_blocktime = 0.;
1308 backend = 0;
1309 backend_fd = -1;
1310 gotasync = 0;
1311#if EV_USE_INOTIFY
1312 fs_fd = -2;
1313#endif 3055#endif
1314 3056
1315 /* pid check not overridable via env */ 3057 /* pid check not overridable via env */
1316#ifndef _WIN32 3058#ifndef _WIN32
1317 if (flags & EVFLAG_FORKCHECK) 3059 if (flags & EVFLAG_FORKCHECK)
1321 if (!(flags & EVFLAG_NOENV) 3063 if (!(flags & EVFLAG_NOENV)
1322 && !enable_secure () 3064 && !enable_secure ()
1323 && getenv ("LIBEV_FLAGS")) 3065 && getenv ("LIBEV_FLAGS"))
1324 flags = atoi (getenv ("LIBEV_FLAGS")); 3066 flags = atoi (getenv ("LIBEV_FLAGS"));
1325 3067
1326 if (!(flags & 0x0000ffffU)) 3068 ev_rt_now = ev_time ();
3069 mn_now = get_clock ();
3070 now_floor = mn_now;
3071 rtmn_diff = ev_rt_now - mn_now;
3072#if EV_FEATURE_API
3073 invoke_cb = ev_invoke_pending;
3074#endif
3075
3076 io_blocktime = 0.;
3077 timeout_blocktime = 0.;
3078 backend = 0;
3079 backend_fd = -1;
3080 sig_pending = 0;
3081#if EV_ASYNC_ENABLE
3082 async_pending = 0;
3083#endif
3084 pipe_write_skipped = 0;
3085 pipe_write_wanted = 0;
3086 evpipe [0] = -1;
3087 evpipe [1] = -1;
3088#if EV_USE_INOTIFY
3089 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
3090#endif
3091#if EV_USE_SIGNALFD
3092 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
3093#endif
3094
3095 if (!(flags & EVBACKEND_MASK))
1327 flags |= ev_recommended_backends (); 3096 flags |= ev_recommended_backends ();
1328 3097
3098#if EV_USE_IOCP
3099 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
3100#endif
1329#if EV_USE_PORT 3101#if EV_USE_PORT
1330 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 3102 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1331#endif 3103#endif
1332#if EV_USE_KQUEUE 3104#if EV_USE_KQUEUE
1333 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 3105 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
3106#endif
3107#if EV_USE_IOURING
3108 if (!backend && (flags & EVBACKEND_IOURING )) backend = iouring_init (EV_A_ flags);
3109#endif
3110#if EV_USE_LINUXAIO
3111 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
1334#endif 3112#endif
1335#if EV_USE_EPOLL 3113#if EV_USE_EPOLL
1336 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags); 3114 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1337#endif 3115#endif
1338#if EV_USE_POLL 3116#if EV_USE_POLL
1339 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags); 3117 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1340#endif 3118#endif
1341#if EV_USE_SELECT 3119#if EV_USE_SELECT
1342 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 3120 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
1343#endif 3121#endif
1344 3122
3123 ev_prepare_init (&pending_w, pendingcb);
3124
3125#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1345 ev_init (&pipeev, pipecb); 3126 ev_init (&pipe_w, pipecb);
1346 ev_set_priority (&pipeev, EV_MAXPRI); 3127 ev_set_priority (&pipe_w, EV_MAXPRI);
3128#endif
1347 } 3129 }
1348} 3130}
1349 3131
1350static void noinline 3132/* free up a loop structure */
3133ecb_cold
3134void
1351loop_destroy (EV_P) 3135ev_loop_destroy (EV_P)
1352{ 3136{
1353 int i; 3137 int i;
1354 3138
3139#if EV_MULTIPLICITY
3140 /* mimic free (0) */
3141 if (!EV_A)
3142 return;
3143#endif
3144
3145#if EV_CLEANUP_ENABLE
3146 /* queue cleanup watchers (and execute them) */
3147 if (ecb_expect_false (cleanupcnt))
3148 {
3149 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3150 EV_INVOKE_PENDING;
3151 }
3152#endif
3153
3154#if EV_CHILD_ENABLE
3155 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3156 {
3157 ev_ref (EV_A); /* child watcher */
3158 ev_signal_stop (EV_A_ &childev);
3159 }
3160#endif
3161
1355 if (ev_is_active (&pipeev)) 3162 if (ev_is_active (&pipe_w))
1356 { 3163 {
1357 ev_ref (EV_A); /* signal watcher */ 3164 /*ev_ref (EV_A);*/
1358 ev_io_stop (EV_A_ &pipeev); 3165 /*ev_io_stop (EV_A_ &pipe_w);*/
1359 3166
3167 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3168 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3169 }
3170
1360#if EV_USE_EVENTFD 3171#if EV_USE_SIGNALFD
1361 if (evfd >= 0) 3172 if (ev_is_active (&sigfd_w))
1362 close (evfd); 3173 close (sigfd);
1363#endif 3174#endif
1364
1365 if (evpipe [0] >= 0)
1366 {
1367 close (evpipe [0]);
1368 close (evpipe [1]);
1369 }
1370 }
1371 3175
1372#if EV_USE_INOTIFY 3176#if EV_USE_INOTIFY
1373 if (fs_fd >= 0) 3177 if (fs_fd >= 0)
1374 close (fs_fd); 3178 close (fs_fd);
1375#endif 3179#endif
1376 3180
1377 if (backend_fd >= 0) 3181 if (backend_fd >= 0)
1378 close (backend_fd); 3182 close (backend_fd);
1379 3183
3184#if EV_USE_IOCP
3185 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3186#endif
1380#if EV_USE_PORT 3187#if EV_USE_PORT
1381 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 3188 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1382#endif 3189#endif
1383#if EV_USE_KQUEUE 3190#if EV_USE_KQUEUE
1384 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 3191 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3192#endif
3193#if EV_USE_IOURING
3194 if (backend == EVBACKEND_IOURING ) iouring_destroy (EV_A);
3195#endif
3196#if EV_USE_LINUXAIO
3197 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
1385#endif 3198#endif
1386#if EV_USE_EPOLL 3199#if EV_USE_EPOLL
1387 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A); 3200 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1388#endif 3201#endif
1389#if EV_USE_POLL 3202#if EV_USE_POLL
1390 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A); 3203 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1391#endif 3204#endif
1392#if EV_USE_SELECT 3205#if EV_USE_SELECT
1393 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 3206 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
1394#endif 3207#endif
1395 3208
1396 for (i = NUMPRI; i--; ) 3209 for (i = NUMPRI; i--; )
1397 { 3210 {
1398 array_free (pending, [i]); 3211 array_free (pending, [i]);
1399#if EV_IDLE_ENABLE 3212#if EV_IDLE_ENABLE
1400 array_free (idle, [i]); 3213 array_free (idle, [i]);
1401#endif 3214#endif
1402 } 3215 }
1403 3216
1404 ev_free (anfds); anfdmax = 0; 3217 ev_free (anfds); anfds = 0; anfdmax = 0;
1405 3218
1406 /* have to use the microsoft-never-gets-it-right macro */ 3219 /* have to use the microsoft-never-gets-it-right macro */
3220 array_free (rfeed, EMPTY);
1407 array_free (fdchange, EMPTY); 3221 array_free (fdchange, EMPTY);
1408 array_free (timer, EMPTY); 3222 array_free (timer, EMPTY);
1409#if EV_PERIODIC_ENABLE 3223#if EV_PERIODIC_ENABLE
1410 array_free (periodic, EMPTY); 3224 array_free (periodic, EMPTY);
1411#endif 3225#endif
1412#if EV_FORK_ENABLE 3226#if EV_FORK_ENABLE
1413 array_free (fork, EMPTY); 3227 array_free (fork, EMPTY);
1414#endif 3228#endif
3229#if EV_CLEANUP_ENABLE
3230 array_free (cleanup, EMPTY);
3231#endif
1415 array_free (prepare, EMPTY); 3232 array_free (prepare, EMPTY);
1416 array_free (check, EMPTY); 3233 array_free (check, EMPTY);
1417#if EV_ASYNC_ENABLE 3234#if EV_ASYNC_ENABLE
1418 array_free (async, EMPTY); 3235 array_free (async, EMPTY);
1419#endif 3236#endif
1420 3237
1421 backend = 0; 3238 backend = 0;
3239
3240#if EV_MULTIPLICITY
3241 if (ev_is_default_loop (EV_A))
3242#endif
3243 ev_default_loop_ptr = 0;
3244#if EV_MULTIPLICITY
3245 else
3246 ev_free (EV_A);
3247#endif
1422} 3248}
1423 3249
1424#if EV_USE_INOTIFY 3250#if EV_USE_INOTIFY
1425void inline_size infy_fork (EV_P); 3251inline_size void infy_fork (EV_P);
1426#endif 3252#endif
1427 3253
1428void inline_size 3254inline_size void
1429loop_fork (EV_P) 3255loop_fork (EV_P)
1430{ 3256{
1431#if EV_USE_PORT 3257#if EV_USE_PORT
1432 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 3258 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1433#endif 3259#endif
1434#if EV_USE_KQUEUE 3260#if EV_USE_KQUEUE
1435 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 3261 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3262#endif
3263#if EV_USE_IOURING
3264 if (backend == EVBACKEND_IOURING ) iouring_fork (EV_A);
3265#endif
3266#if EV_USE_LINUXAIO
3267 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
1436#endif 3268#endif
1437#if EV_USE_EPOLL 3269#if EV_USE_EPOLL
1438 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 3270 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1439#endif 3271#endif
1440#if EV_USE_INOTIFY 3272#if EV_USE_INOTIFY
1441 infy_fork (EV_A); 3273 infy_fork (EV_A);
1442#endif 3274#endif
1443 3275
1444 if (ev_is_active (&pipeev)) 3276#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3277 if (ev_is_active (&pipe_w) && postfork != 2)
1445 { 3278 {
1446 /* this "locks" the handlers against writing to the pipe */ 3279 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1447 /* while we modify the fd vars */
1448 gotsig = 1;
1449#if EV_ASYNC_ENABLE
1450 gotasync = 1;
1451#endif
1452 3280
1453 ev_ref (EV_A); 3281 ev_ref (EV_A);
1454 ev_io_stop (EV_A_ &pipeev); 3282 ev_io_stop (EV_A_ &pipe_w);
1455
1456#if EV_USE_EVENTFD
1457 if (evfd >= 0)
1458 close (evfd);
1459#endif
1460 3283
1461 if (evpipe [0] >= 0) 3284 if (evpipe [0] >= 0)
1462 { 3285 EV_WIN32_CLOSE_FD (evpipe [0]);
1463 close (evpipe [0]);
1464 close (evpipe [1]);
1465 }
1466 3286
1467 evpipe_init (EV_A); 3287 evpipe_init (EV_A);
1468 /* now iterate over everything, in case we missed something */ 3288 /* iterate over everything, in case we missed something before */
1469 pipecb (EV_A_ &pipeev, EV_READ); 3289 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1470 } 3290 }
3291#endif
1471 3292
1472 postfork = 0; 3293 postfork = 0;
1473} 3294}
1474 3295
1475#if EV_MULTIPLICITY 3296#if EV_MULTIPLICITY
1476 3297
3298ecb_cold
1477struct ev_loop * 3299struct ev_loop *
1478ev_loop_new (unsigned int flags) 3300ev_loop_new (unsigned int flags) EV_NOEXCEPT
1479{ 3301{
1480 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 3302 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1481 3303
1482 memset (loop, 0, sizeof (struct ev_loop)); 3304 memset (EV_A, 0, sizeof (struct ev_loop));
1483
1484 loop_init (EV_A_ flags); 3305 loop_init (EV_A_ flags);
1485 3306
1486 if (ev_backend (EV_A)) 3307 if (ev_backend (EV_A))
1487 return loop; 3308 return EV_A;
1488 3309
3310 ev_free (EV_A);
1489 return 0; 3311 return 0;
1490} 3312}
1491 3313
1492void 3314#endif /* multiplicity */
1493ev_loop_destroy (EV_P)
1494{
1495 loop_destroy (EV_A);
1496 ev_free (loop);
1497}
1498
1499void
1500ev_loop_fork (EV_P)
1501{
1502 postfork = 1; /* must be in line with ev_default_fork */
1503}
1504 3315
1505#if EV_VERIFY 3316#if EV_VERIFY
1506static void noinline 3317ecb_noinline ecb_cold
3318static void
1507verify_watcher (EV_P_ W w) 3319verify_watcher (EV_P_ W w)
1508{ 3320{
1509 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 3321 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1510 3322
1511 if (w->pending) 3323 if (w->pending)
1512 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 3324 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1513} 3325}
1514 3326
1515static void noinline 3327ecb_noinline ecb_cold
3328static void
1516verify_heap (EV_P_ ANHE *heap, int N) 3329verify_heap (EV_P_ ANHE *heap, int N)
1517{ 3330{
1518 int i; 3331 int i;
1519 3332
1520 for (i = HEAP0; i < N + HEAP0; ++i) 3333 for (i = HEAP0; i < N + HEAP0; ++i)
1521 { 3334 {
1522 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 3335 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1523 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 3336 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1524 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 3337 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1525 3338
1526 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 3339 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1527 } 3340 }
1528} 3341}
1529 3342
1530static void noinline 3343ecb_noinline ecb_cold
3344static void
1531array_verify (EV_P_ W *ws, int cnt) 3345array_verify (EV_P_ W *ws, int cnt)
1532{ 3346{
1533 while (cnt--) 3347 while (cnt--)
1534 { 3348 {
1535 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 3349 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1536 verify_watcher (EV_A_ ws [cnt]); 3350 verify_watcher (EV_A_ ws [cnt]);
1537 } 3351 }
1538} 3352}
1539#endif 3353#endif
1540 3354
1541void 3355#if EV_FEATURE_API
1542ev_loop_verify (EV_P) 3356void ecb_cold
3357ev_verify (EV_P) EV_NOEXCEPT
1543{ 3358{
1544#if EV_VERIFY 3359#if EV_VERIFY
1545 int i; 3360 int i;
1546 WL w; 3361 WL w, w2;
1547 3362
1548 assert (activecnt >= -1); 3363 assert (activecnt >= -1);
1549 3364
1550 assert (fdchangemax >= fdchangecnt); 3365 assert (fdchangemax >= fdchangecnt);
1551 for (i = 0; i < fdchangecnt; ++i) 3366 for (i = 0; i < fdchangecnt; ++i)
1552 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 3367 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1553 3368
1554 assert (anfdmax >= 0); 3369 assert (anfdmax >= 0);
1555 for (i = 0; i < anfdmax; ++i) 3370 for (i = 0; i < anfdmax; ++i)
3371 {
3372 int j = 0;
3373
1556 for (w = anfds [i].head; w; w = w->next) 3374 for (w = w2 = anfds [i].head; w; w = w->next)
1557 { 3375 {
1558 verify_watcher (EV_A_ (W)w); 3376 verify_watcher (EV_A_ (W)w);
3377
3378 if (j++ & 1)
3379 {
3380 assert (("libev: io watcher list contains a loop", w != w2));
3381 w2 = w2->next;
3382 }
3383
1559 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 3384 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1560 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 3385 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1561 } 3386 }
3387 }
1562 3388
1563 assert (timermax >= timercnt); 3389 assert (timermax >= timercnt);
1564 verify_heap (EV_A_ timers, timercnt); 3390 verify_heap (EV_A_ timers, timercnt);
1565 3391
1566#if EV_PERIODIC_ENABLE 3392#if EV_PERIODIC_ENABLE
1581#if EV_FORK_ENABLE 3407#if EV_FORK_ENABLE
1582 assert (forkmax >= forkcnt); 3408 assert (forkmax >= forkcnt);
1583 array_verify (EV_A_ (W *)forks, forkcnt); 3409 array_verify (EV_A_ (W *)forks, forkcnt);
1584#endif 3410#endif
1585 3411
3412#if EV_CLEANUP_ENABLE
3413 assert (cleanupmax >= cleanupcnt);
3414 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3415#endif
3416
1586#if EV_ASYNC_ENABLE 3417#if EV_ASYNC_ENABLE
1587 assert (asyncmax >= asynccnt); 3418 assert (asyncmax >= asynccnt);
1588 array_verify (EV_A_ (W *)asyncs, asynccnt); 3419 array_verify (EV_A_ (W *)asyncs, asynccnt);
1589#endif 3420#endif
1590 3421
3422#if EV_PREPARE_ENABLE
1591 assert (preparemax >= preparecnt); 3423 assert (preparemax >= preparecnt);
1592 array_verify (EV_A_ (W *)prepares, preparecnt); 3424 array_verify (EV_A_ (W *)prepares, preparecnt);
3425#endif
1593 3426
3427#if EV_CHECK_ENABLE
1594 assert (checkmax >= checkcnt); 3428 assert (checkmax >= checkcnt);
1595 array_verify (EV_A_ (W *)checks, checkcnt); 3429 array_verify (EV_A_ (W *)checks, checkcnt);
3430#endif
1596 3431
1597# if 0 3432# if 0
3433#if EV_CHILD_ENABLE
1598 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 3434 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1599 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 3435 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3436#endif
1600# endif 3437# endif
1601#endif 3438#endif
1602} 3439}
1603 3440#endif
1604#endif /* multiplicity */
1605 3441
1606#if EV_MULTIPLICITY 3442#if EV_MULTIPLICITY
3443ecb_cold
1607struct ev_loop * 3444struct ev_loop *
1608ev_default_loop_init (unsigned int flags)
1609#else 3445#else
1610int 3446int
3447#endif
1611ev_default_loop (unsigned int flags) 3448ev_default_loop (unsigned int flags) EV_NOEXCEPT
1612#endif
1613{ 3449{
1614 if (!ev_default_loop_ptr) 3450 if (!ev_default_loop_ptr)
1615 { 3451 {
1616#if EV_MULTIPLICITY 3452#if EV_MULTIPLICITY
1617 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3453 EV_P = ev_default_loop_ptr = &default_loop_struct;
1618#else 3454#else
1619 ev_default_loop_ptr = 1; 3455 ev_default_loop_ptr = 1;
1620#endif 3456#endif
1621 3457
1622 loop_init (EV_A_ flags); 3458 loop_init (EV_A_ flags);
1623 3459
1624 if (ev_backend (EV_A)) 3460 if (ev_backend (EV_A))
1625 { 3461 {
1626#ifndef _WIN32 3462#if EV_CHILD_ENABLE
1627 ev_signal_init (&childev, childcb, SIGCHLD); 3463 ev_signal_init (&childev, childcb, SIGCHLD);
1628 ev_set_priority (&childev, EV_MAXPRI); 3464 ev_set_priority (&childev, EV_MAXPRI);
1629 ev_signal_start (EV_A_ &childev); 3465 ev_signal_start (EV_A_ &childev);
1630 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3466 ev_unref (EV_A); /* child watcher should not keep loop alive */
1631#endif 3467#endif
1636 3472
1637 return ev_default_loop_ptr; 3473 return ev_default_loop_ptr;
1638} 3474}
1639 3475
1640void 3476void
1641ev_default_destroy (void) 3477ev_loop_fork (EV_P) EV_NOEXCEPT
1642{ 3478{
1643#if EV_MULTIPLICITY 3479 postfork = 1;
1644 struct ev_loop *loop = ev_default_loop_ptr;
1645#endif
1646
1647 ev_default_loop_ptr = 0;
1648
1649#ifndef _WIN32
1650 ev_ref (EV_A); /* child watcher */
1651 ev_signal_stop (EV_A_ &childev);
1652#endif
1653
1654 loop_destroy (EV_A);
1655}
1656
1657void
1658ev_default_fork (void)
1659{
1660#if EV_MULTIPLICITY
1661 struct ev_loop *loop = ev_default_loop_ptr;
1662#endif
1663
1664 postfork = 1; /* must be in line with ev_loop_fork */
1665} 3480}
1666 3481
1667/*****************************************************************************/ 3482/*****************************************************************************/
1668 3483
1669void 3484void
1670ev_invoke (EV_P_ void *w, int revents) 3485ev_invoke (EV_P_ void *w, int revents)
1671{ 3486{
1672 EV_CB_INVOKE ((W)w, revents); 3487 EV_CB_INVOKE ((W)w, revents);
1673} 3488}
1674 3489
1675void inline_speed 3490unsigned int
1676call_pending (EV_P) 3491ev_pending_count (EV_P) EV_NOEXCEPT
1677{ 3492{
1678 int pri; 3493 int pri;
3494 unsigned int count = 0;
1679 3495
1680 for (pri = NUMPRI; pri--; ) 3496 for (pri = NUMPRI; pri--; )
3497 count += pendingcnt [pri];
3498
3499 return count;
3500}
3501
3502ecb_noinline
3503void
3504ev_invoke_pending (EV_P)
3505{
3506 pendingpri = NUMPRI;
3507
3508 do
3509 {
3510 --pendingpri;
3511
3512 /* pendingpri possibly gets modified in the inner loop */
1681 while (pendingcnt [pri]) 3513 while (pendingcnt [pendingpri])
1682 {
1683 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1684
1685 if (expect_true (p->w))
1686 { 3514 {
1687 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 3515 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1688 3516
1689 p->w->pending = 0; 3517 p->w->pending = 0;
1690 EV_CB_INVOKE (p->w, p->events); 3518 EV_CB_INVOKE (p->w, p->events);
1691 EV_FREQUENT_CHECK; 3519 EV_FREQUENT_CHECK;
1692 } 3520 }
1693 } 3521 }
3522 while (pendingpri);
1694} 3523}
1695 3524
1696#if EV_IDLE_ENABLE 3525#if EV_IDLE_ENABLE
1697void inline_size 3526/* make idle watchers pending. this handles the "call-idle */
3527/* only when higher priorities are idle" logic */
3528inline_size void
1698idle_reify (EV_P) 3529idle_reify (EV_P)
1699{ 3530{
1700 if (expect_false (idleall)) 3531 if (ecb_expect_false (idleall))
1701 { 3532 {
1702 int pri; 3533 int pri;
1703 3534
1704 for (pri = NUMPRI; pri--; ) 3535 for (pri = NUMPRI; pri--; )
1705 { 3536 {
1714 } 3545 }
1715 } 3546 }
1716} 3547}
1717#endif 3548#endif
1718 3549
1719void inline_size 3550/* make timers pending */
3551inline_size void
1720timers_reify (EV_P) 3552timers_reify (EV_P)
1721{ 3553{
1722 EV_FREQUENT_CHECK; 3554 EV_FREQUENT_CHECK;
1723 3555
1724 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 3556 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1725 { 3557 {
1726 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 3558 do
1727
1728 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1729
1730 /* first reschedule or stop timer */
1731 if (w->repeat)
1732 { 3559 {
3560 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3561
3562 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3563
3564 /* first reschedule or stop timer */
3565 if (w->repeat)
3566 {
1733 ev_at (w) += w->repeat; 3567 ev_at (w) += w->repeat;
1734 if (ev_at (w) < mn_now) 3568 if (ev_at (w) < mn_now)
1735 ev_at (w) = mn_now; 3569 ev_at (w) = mn_now;
1736 3570
1737 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3571 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > EV_TS_CONST (0.)));
1738 3572
1739 ANHE_at_cache (timers [HEAP0]); 3573 ANHE_at_cache (timers [HEAP0]);
1740 downheap (timers, timercnt, HEAP0); 3574 downheap (timers, timercnt, HEAP0);
3575 }
3576 else
3577 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3578
3579 EV_FREQUENT_CHECK;
3580 feed_reverse (EV_A_ (W)w);
1741 } 3581 }
1742 else 3582 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1743 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1744 3583
1745 EV_FREQUENT_CHECK; 3584 feed_reverse_done (EV_A_ EV_TIMER);
1746 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1747 } 3585 }
1748} 3586}
1749 3587
1750#if EV_PERIODIC_ENABLE 3588#if EV_PERIODIC_ENABLE
1751void inline_size 3589
3590ecb_noinline
3591static void
3592periodic_recalc (EV_P_ ev_periodic *w)
3593{
3594 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3595 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3596
3597 /* the above almost always errs on the low side */
3598 while (at <= ev_rt_now)
3599 {
3600 ev_tstamp nat = at + w->interval;
3601
3602 /* when resolution fails us, we use ev_rt_now */
3603 if (ecb_expect_false (nat == at))
3604 {
3605 at = ev_rt_now;
3606 break;
3607 }
3608
3609 at = nat;
3610 }
3611
3612 ev_at (w) = at;
3613}
3614
3615/* make periodics pending */
3616inline_size void
1752periodics_reify (EV_P) 3617periodics_reify (EV_P)
1753{ 3618{
1754 EV_FREQUENT_CHECK; 3619 EV_FREQUENT_CHECK;
1755 3620
1756 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 3621 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1757 { 3622 {
1758 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 3623 do
1759
1760 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1761
1762 /* first reschedule or stop timer */
1763 if (w->reschedule_cb)
1764 { 3624 {
3625 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3626
3627 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3628
3629 /* first reschedule or stop timer */
3630 if (w->reschedule_cb)
3631 {
1765 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3632 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1766 3633
1767 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 3634 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1768 3635
1769 ANHE_at_cache (periodics [HEAP0]); 3636 ANHE_at_cache (periodics [HEAP0]);
1770 downheap (periodics, periodiccnt, HEAP0); 3637 downheap (periodics, periodiccnt, HEAP0);
3638 }
3639 else if (w->interval)
3640 {
3641 periodic_recalc (EV_A_ w);
3642 ANHE_at_cache (periodics [HEAP0]);
3643 downheap (periodics, periodiccnt, HEAP0);
3644 }
3645 else
3646 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3647
3648 EV_FREQUENT_CHECK;
3649 feed_reverse (EV_A_ (W)w);
1771 } 3650 }
1772 else if (w->interval) 3651 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1773 {
1774 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1775 /* if next trigger time is not sufficiently in the future, put it there */
1776 /* this might happen because of floating point inexactness */
1777 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1778 {
1779 ev_at (w) += w->interval;
1780 3652
1781 /* if interval is unreasonably low we might still have a time in the past */
1782 /* so correct this. this will make the periodic very inexact, but the user */
1783 /* has effectively asked to get triggered more often than possible */
1784 if (ev_at (w) < ev_rt_now)
1785 ev_at (w) = ev_rt_now;
1786 }
1787
1788 ANHE_at_cache (periodics [HEAP0]);
1789 downheap (periodics, periodiccnt, HEAP0);
1790 }
1791 else
1792 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1793
1794 EV_FREQUENT_CHECK;
1795 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 3653 feed_reverse_done (EV_A_ EV_PERIODIC);
1796 } 3654 }
1797} 3655}
1798 3656
1799static void noinline 3657/* simply recalculate all periodics */
3658/* TODO: maybe ensure that at least one event happens when jumping forward? */
3659ecb_noinline ecb_cold
3660static void
1800periodics_reschedule (EV_P) 3661periodics_reschedule (EV_P)
1801{ 3662{
1802 int i; 3663 int i;
1803 3664
1804 /* adjust periodics after time jump */ 3665 /* adjust periodics after time jump */
1807 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 3668 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1808 3669
1809 if (w->reschedule_cb) 3670 if (w->reschedule_cb)
1810 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3671 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1811 else if (w->interval) 3672 else if (w->interval)
1812 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 3673 periodic_recalc (EV_A_ w);
1813 3674
1814 ANHE_at_cache (periodics [i]); 3675 ANHE_at_cache (periodics [i]);
1815 } 3676 }
1816 3677
1817 reheap (periodics, periodiccnt); 3678 reheap (periodics, periodiccnt);
1818} 3679}
1819#endif 3680#endif
1820 3681
1821void inline_speed 3682/* adjust all timers by a given offset */
3683ecb_noinline ecb_cold
3684static void
3685timers_reschedule (EV_P_ ev_tstamp adjust)
3686{
3687 int i;
3688
3689 for (i = 0; i < timercnt; ++i)
3690 {
3691 ANHE *he = timers + i + HEAP0;
3692 ANHE_w (*he)->at += adjust;
3693 ANHE_at_cache (*he);
3694 }
3695}
3696
3697/* fetch new monotonic and realtime times from the kernel */
3698/* also detect if there was a timejump, and act accordingly */
3699inline_speed void
1822time_update (EV_P_ ev_tstamp max_block) 3700time_update (EV_P_ ev_tstamp max_block)
1823{ 3701{
1824 int i;
1825
1826#if EV_USE_MONOTONIC 3702#if EV_USE_MONOTONIC
1827 if (expect_true (have_monotonic)) 3703 if (ecb_expect_true (have_monotonic))
1828 { 3704 {
3705 int i;
1829 ev_tstamp odiff = rtmn_diff; 3706 ev_tstamp odiff = rtmn_diff;
1830 3707
1831 mn_now = get_clock (); 3708 mn_now = get_clock ();
1832 3709
1833 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3710 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1834 /* interpolate in the meantime */ 3711 /* interpolate in the meantime */
1835 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 3712 if (ecb_expect_true (mn_now - now_floor < EV_TS_CONST (MIN_TIMEJUMP * .5)))
1836 { 3713 {
1837 ev_rt_now = rtmn_diff + mn_now; 3714 ev_rt_now = rtmn_diff + mn_now;
1838 return; 3715 return;
1839 } 3716 }
1840 3717
1849 * doesn't hurt either as we only do this on time-jumps or 3726 * doesn't hurt either as we only do this on time-jumps or
1850 * in the unlikely event of having been preempted here. 3727 * in the unlikely event of having been preempted here.
1851 */ 3728 */
1852 for (i = 4; --i; ) 3729 for (i = 4; --i; )
1853 { 3730 {
3731 ev_tstamp diff;
1854 rtmn_diff = ev_rt_now - mn_now; 3732 rtmn_diff = ev_rt_now - mn_now;
1855 3733
1856 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 3734 diff = odiff - rtmn_diff;
3735
3736 if (ecb_expect_true ((diff < EV_TS_CONST (0.) ? -diff : diff) < EV_TS_CONST (MIN_TIMEJUMP)))
1857 return; /* all is well */ 3737 return; /* all is well */
1858 3738
1859 ev_rt_now = ev_time (); 3739 ev_rt_now = ev_time ();
1860 mn_now = get_clock (); 3740 mn_now = get_clock ();
1861 now_floor = mn_now; 3741 now_floor = mn_now;
1862 } 3742 }
1863 3743
3744 /* no timer adjustment, as the monotonic clock doesn't jump */
3745 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1864# if EV_PERIODIC_ENABLE 3746# if EV_PERIODIC_ENABLE
1865 periodics_reschedule (EV_A); 3747 periodics_reschedule (EV_A);
1866# endif 3748# endif
1867 /* no timer adjustment, as the monotonic clock doesn't jump */
1868 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1869 } 3749 }
1870 else 3750 else
1871#endif 3751#endif
1872 { 3752 {
1873 ev_rt_now = ev_time (); 3753 ev_rt_now = ev_time ();
1874 3754
1875 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3755 if (ecb_expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + EV_TS_CONST (MIN_TIMEJUMP)))
1876 { 3756 {
3757 /* adjust timers. this is easy, as the offset is the same for all of them */
3758 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1877#if EV_PERIODIC_ENABLE 3759#if EV_PERIODIC_ENABLE
1878 periodics_reschedule (EV_A); 3760 periodics_reschedule (EV_A);
1879#endif 3761#endif
1880 /* adjust timers. this is easy, as the offset is the same for all of them */
1881 for (i = 0; i < timercnt; ++i)
1882 {
1883 ANHE *he = timers + i + HEAP0;
1884 ANHE_w (*he)->at += ev_rt_now - mn_now;
1885 ANHE_at_cache (*he);
1886 }
1887 } 3762 }
1888 3763
1889 mn_now = ev_rt_now; 3764 mn_now = ev_rt_now;
1890 } 3765 }
1891} 3766}
1892 3767
1893void 3768int
1894ev_ref (EV_P)
1895{
1896 ++activecnt;
1897}
1898
1899void
1900ev_unref (EV_P)
1901{
1902 --activecnt;
1903}
1904
1905void
1906ev_now_update (EV_P)
1907{
1908 time_update (EV_A_ 1e100);
1909}
1910
1911static int loop_done;
1912
1913void
1914ev_loop (EV_P_ int flags) 3769ev_run (EV_P_ int flags)
1915{ 3770{
3771#if EV_FEATURE_API
3772 ++loop_depth;
3773#endif
3774
3775 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3776
1916 loop_done = EVUNLOOP_CANCEL; 3777 loop_done = EVBREAK_CANCEL;
1917 3778
1918 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3779 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1919 3780
1920 do 3781 do
1921 { 3782 {
1922#if EV_VERIFY >= 2 3783#if EV_VERIFY >= 2
1923 ev_loop_verify (EV_A); 3784 ev_verify (EV_A);
1924#endif 3785#endif
1925 3786
1926#ifndef _WIN32 3787#ifndef _WIN32
1927 if (expect_false (curpid)) /* penalise the forking check even more */ 3788 if (ecb_expect_false (curpid)) /* penalise the forking check even more */
1928 if (expect_false (getpid () != curpid)) 3789 if (ecb_expect_false (getpid () != curpid))
1929 { 3790 {
1930 curpid = getpid (); 3791 curpid = getpid ();
1931 postfork = 1; 3792 postfork = 1;
1932 } 3793 }
1933#endif 3794#endif
1934 3795
1935#if EV_FORK_ENABLE 3796#if EV_FORK_ENABLE
1936 /* we might have forked, so queue fork handlers */ 3797 /* we might have forked, so queue fork handlers */
1937 if (expect_false (postfork)) 3798 if (ecb_expect_false (postfork))
1938 if (forkcnt) 3799 if (forkcnt)
1939 { 3800 {
1940 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3801 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1941 call_pending (EV_A); 3802 EV_INVOKE_PENDING;
1942 } 3803 }
1943#endif 3804#endif
1944 3805
3806#if EV_PREPARE_ENABLE
1945 /* queue prepare watchers (and execute them) */ 3807 /* queue prepare watchers (and execute them) */
1946 if (expect_false (preparecnt)) 3808 if (ecb_expect_false (preparecnt))
1947 { 3809 {
1948 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3810 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1949 call_pending (EV_A); 3811 EV_INVOKE_PENDING;
1950 } 3812 }
3813#endif
1951 3814
1952 if (expect_false (!activecnt)) 3815 if (ecb_expect_false (loop_done))
1953 break; 3816 break;
1954 3817
1955 /* we might have forked, so reify kernel state if necessary */ 3818 /* we might have forked, so reify kernel state if necessary */
1956 if (expect_false (postfork)) 3819 if (ecb_expect_false (postfork))
1957 loop_fork (EV_A); 3820 loop_fork (EV_A);
1958 3821
1959 /* update fd-related kernel structures */ 3822 /* update fd-related kernel structures */
1960 fd_reify (EV_A); 3823 fd_reify (EV_A);
1961 3824
1962 /* calculate blocking time */ 3825 /* calculate blocking time */
1963 { 3826 {
1964 ev_tstamp waittime = 0.; 3827 ev_tstamp waittime = 0.;
1965 ev_tstamp sleeptime = 0.; 3828 ev_tstamp sleeptime = 0.;
1966 3829
3830 /* remember old timestamp for io_blocktime calculation */
3831 ev_tstamp prev_mn_now = mn_now;
3832
3833 /* update time to cancel out callback processing overhead */
3834 time_update (EV_A_ EV_TS_CONST (EV_TSTAMP_HUGE));
3835
3836 /* from now on, we want a pipe-wake-up */
3837 pipe_write_wanted = 1;
3838
3839 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3840
1967 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3841 if (ecb_expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1968 { 3842 {
1969 /* update time to cancel out callback processing overhead */
1970 time_update (EV_A_ 1e100);
1971
1972 waittime = MAX_BLOCKTIME; 3843 waittime = EV_TS_CONST (MAX_BLOCKTIME);
1973 3844
1974 if (timercnt) 3845 if (timercnt)
1975 { 3846 {
1976 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 3847 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1977 if (waittime > to) waittime = to; 3848 if (waittime > to) waittime = to;
1978 } 3849 }
1979 3850
1980#if EV_PERIODIC_ENABLE 3851#if EV_PERIODIC_ENABLE
1981 if (periodiccnt) 3852 if (periodiccnt)
1982 { 3853 {
1983 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3854 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1984 if (waittime > to) waittime = to; 3855 if (waittime > to) waittime = to;
1985 } 3856 }
1986#endif 3857#endif
1987 3858
3859 /* don't let timeouts decrease the waittime below timeout_blocktime */
1988 if (expect_false (waittime < timeout_blocktime)) 3860 if (ecb_expect_false (waittime < timeout_blocktime))
1989 waittime = timeout_blocktime; 3861 waittime = timeout_blocktime;
1990 3862
1991 sleeptime = waittime - backend_fudge; 3863 /* now there are two more special cases left, either we have
3864 * already-expired timers, so we should not sleep, or we have timers
3865 * that expire very soon, in which case we need to wait for a minimum
3866 * amount of time for some event loop backends.
3867 */
3868 if (ecb_expect_false (waittime < backend_mintime))
3869 waittime = waittime <= EV_TS_CONST (0.)
3870 ? EV_TS_CONST (0.)
3871 : backend_mintime;
1992 3872
3873 /* extra check because io_blocktime is commonly 0 */
1993 if (expect_true (sleeptime > io_blocktime)) 3874 if (ecb_expect_false (io_blocktime))
1994 sleeptime = io_blocktime;
1995
1996 if (sleeptime)
1997 { 3875 {
3876 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3877
3878 if (sleeptime > waittime - backend_mintime)
3879 sleeptime = waittime - backend_mintime;
3880
3881 if (ecb_expect_true (sleeptime > EV_TS_CONST (0.)))
3882 {
1998 ev_sleep (sleeptime); 3883 ev_sleep (sleeptime);
1999 waittime -= sleeptime; 3884 waittime -= sleeptime;
3885 }
2000 } 3886 }
2001 } 3887 }
2002 3888
3889#if EV_FEATURE_API
2003 ++loop_count; 3890 ++loop_count;
3891#endif
3892 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2004 backend_poll (EV_A_ waittime); 3893 backend_poll (EV_A_ waittime);
3894 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3895
3896 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3897
3898 ECB_MEMORY_FENCE_ACQUIRE;
3899 if (pipe_write_skipped)
3900 {
3901 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3902 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3903 }
2005 3904
2006 /* update ev_rt_now, do magic */ 3905 /* update ev_rt_now, do magic */
2007 time_update (EV_A_ waittime + sleeptime); 3906 time_update (EV_A_ waittime + sleeptime);
2008 } 3907 }
2009 3908
2016#if EV_IDLE_ENABLE 3915#if EV_IDLE_ENABLE
2017 /* queue idle watchers unless other events are pending */ 3916 /* queue idle watchers unless other events are pending */
2018 idle_reify (EV_A); 3917 idle_reify (EV_A);
2019#endif 3918#endif
2020 3919
3920#if EV_CHECK_ENABLE
2021 /* queue check watchers, to be executed first */ 3921 /* queue check watchers, to be executed first */
2022 if (expect_false (checkcnt)) 3922 if (ecb_expect_false (checkcnt))
2023 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3923 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3924#endif
2024 3925
2025 call_pending (EV_A); 3926 EV_INVOKE_PENDING;
2026 } 3927 }
2027 while (expect_true ( 3928 while (ecb_expect_true (
2028 activecnt 3929 activecnt
2029 && !loop_done 3930 && !loop_done
2030 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3931 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2031 )); 3932 ));
2032 3933
2033 if (loop_done == EVUNLOOP_ONE) 3934 if (loop_done == EVBREAK_ONE)
2034 loop_done = EVUNLOOP_CANCEL; 3935 loop_done = EVBREAK_CANCEL;
2035}
2036 3936
3937#if EV_FEATURE_API
3938 --loop_depth;
3939#endif
3940
3941 return activecnt;
3942}
3943
2037void 3944void
2038ev_unloop (EV_P_ int how) 3945ev_break (EV_P_ int how) EV_NOEXCEPT
2039{ 3946{
2040 loop_done = how; 3947 loop_done = how;
2041} 3948}
2042 3949
3950void
3951ev_ref (EV_P) EV_NOEXCEPT
3952{
3953 ++activecnt;
3954}
3955
3956void
3957ev_unref (EV_P) EV_NOEXCEPT
3958{
3959 --activecnt;
3960}
3961
3962void
3963ev_now_update (EV_P) EV_NOEXCEPT
3964{
3965 time_update (EV_A_ EV_TSTAMP_HUGE);
3966}
3967
3968void
3969ev_suspend (EV_P) EV_NOEXCEPT
3970{
3971 ev_now_update (EV_A);
3972}
3973
3974void
3975ev_resume (EV_P) EV_NOEXCEPT
3976{
3977 ev_tstamp mn_prev = mn_now;
3978
3979 ev_now_update (EV_A);
3980 timers_reschedule (EV_A_ mn_now - mn_prev);
3981#if EV_PERIODIC_ENABLE
3982 /* TODO: really do this? */
3983 periodics_reschedule (EV_A);
3984#endif
3985}
3986
2043/*****************************************************************************/ 3987/*****************************************************************************/
3988/* singly-linked list management, used when the expected list length is short */
2044 3989
2045void inline_size 3990inline_size void
2046wlist_add (WL *head, WL elem) 3991wlist_add (WL *head, WL elem)
2047{ 3992{
2048 elem->next = *head; 3993 elem->next = *head;
2049 *head = elem; 3994 *head = elem;
2050} 3995}
2051 3996
2052void inline_size 3997inline_size void
2053wlist_del (WL *head, WL elem) 3998wlist_del (WL *head, WL elem)
2054{ 3999{
2055 while (*head) 4000 while (*head)
2056 { 4001 {
2057 if (*head == elem) 4002 if (ecb_expect_true (*head == elem))
2058 { 4003 {
2059 *head = elem->next; 4004 *head = elem->next;
2060 return; 4005 break;
2061 } 4006 }
2062 4007
2063 head = &(*head)->next; 4008 head = &(*head)->next;
2064 } 4009 }
2065} 4010}
2066 4011
2067void inline_speed 4012/* internal, faster, version of ev_clear_pending */
4013inline_speed void
2068clear_pending (EV_P_ W w) 4014clear_pending (EV_P_ W w)
2069{ 4015{
2070 if (w->pending) 4016 if (w->pending)
2071 { 4017 {
2072 pendings [ABSPRI (w)][w->pending - 1].w = 0; 4018 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2073 w->pending = 0; 4019 w->pending = 0;
2074 } 4020 }
2075} 4021}
2076 4022
2077int 4023int
2078ev_clear_pending (EV_P_ void *w) 4024ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
2079{ 4025{
2080 W w_ = (W)w; 4026 W w_ = (W)w;
2081 int pending = w_->pending; 4027 int pending = w_->pending;
2082 4028
2083 if (expect_true (pending)) 4029 if (ecb_expect_true (pending))
2084 { 4030 {
2085 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 4031 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
4032 p->w = (W)&pending_w;
2086 w_->pending = 0; 4033 w_->pending = 0;
2087 p->w = 0;
2088 return p->events; 4034 return p->events;
2089 } 4035 }
2090 else 4036 else
2091 return 0; 4037 return 0;
2092} 4038}
2093 4039
2094void inline_size 4040inline_size void
2095pri_adjust (EV_P_ W w) 4041pri_adjust (EV_P_ W w)
2096{ 4042{
2097 int pri = w->priority; 4043 int pri = ev_priority (w);
2098 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 4044 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2099 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 4045 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2100 w->priority = pri; 4046 ev_set_priority (w, pri);
2101} 4047}
2102 4048
2103void inline_speed 4049inline_speed void
2104ev_start (EV_P_ W w, int active) 4050ev_start (EV_P_ W w, int active)
2105{ 4051{
2106 pri_adjust (EV_A_ w); 4052 pri_adjust (EV_A_ w);
2107 w->active = active; 4053 w->active = active;
2108 ev_ref (EV_A); 4054 ev_ref (EV_A);
2109} 4055}
2110 4056
2111void inline_size 4057inline_size void
2112ev_stop (EV_P_ W w) 4058ev_stop (EV_P_ W w)
2113{ 4059{
2114 ev_unref (EV_A); 4060 ev_unref (EV_A);
2115 w->active = 0; 4061 w->active = 0;
2116} 4062}
2117 4063
2118/*****************************************************************************/ 4064/*****************************************************************************/
2119 4065
2120void noinline 4066ecb_noinline
4067void
2121ev_io_start (EV_P_ ev_io *w) 4068ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
2122{ 4069{
2123 int fd = w->fd; 4070 int fd = w->fd;
2124 4071
2125 if (expect_false (ev_is_active (w))) 4072 if (ecb_expect_false (ev_is_active (w)))
2126 return; 4073 return;
2127 4074
2128 assert (("ev_io_start called with negative fd", fd >= 0)); 4075 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2129 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE)))); 4076 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2130 4077
4078#if EV_VERIFY >= 2
4079 assert (("libev: ev_io_start called on watcher with invalid fd", fd_valid (fd)));
4080#endif
2131 EV_FREQUENT_CHECK; 4081 EV_FREQUENT_CHECK;
2132 4082
2133 ev_start (EV_A_ (W)w, 1); 4083 ev_start (EV_A_ (W)w, 1);
2134 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); 4084 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
2135 wlist_add (&anfds[fd].head, (WL)w); 4085 wlist_add (&anfds[fd].head, (WL)w);
2136 4086
4087 /* common bug, apparently */
4088 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
4089
2137 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 4090 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2138 w->events &= ~EV_IOFDSET; 4091 w->events &= ~EV__IOFDSET;
2139 4092
2140 EV_FREQUENT_CHECK; 4093 EV_FREQUENT_CHECK;
2141} 4094}
2142 4095
2143void noinline 4096ecb_noinline
4097void
2144ev_io_stop (EV_P_ ev_io *w) 4098ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
2145{ 4099{
2146 clear_pending (EV_A_ (W)w); 4100 clear_pending (EV_A_ (W)w);
2147 if (expect_false (!ev_is_active (w))) 4101 if (ecb_expect_false (!ev_is_active (w)))
2148 return; 4102 return;
2149 4103
2150 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 4104 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2151 4105
4106#if EV_VERIFY >= 2
4107 assert (("libev: ev_io_stop called on watcher with invalid fd", fd_valid (w->fd)));
4108#endif
2152 EV_FREQUENT_CHECK; 4109 EV_FREQUENT_CHECK;
2153 4110
2154 wlist_del (&anfds[w->fd].head, (WL)w); 4111 wlist_del (&anfds[w->fd].head, (WL)w);
2155 ev_stop (EV_A_ (W)w); 4112 ev_stop (EV_A_ (W)w);
2156 4113
2157 fd_change (EV_A_ w->fd, 1); 4114 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2158 4115
2159 EV_FREQUENT_CHECK; 4116 EV_FREQUENT_CHECK;
2160} 4117}
2161 4118
2162void noinline 4119ecb_noinline
4120void
2163ev_timer_start (EV_P_ ev_timer *w) 4121ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
2164{ 4122{
2165 if (expect_false (ev_is_active (w))) 4123 if (ecb_expect_false (ev_is_active (w)))
2166 return; 4124 return;
2167 4125
2168 ev_at (w) += mn_now; 4126 ev_at (w) += mn_now;
2169 4127
2170 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 4128 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2171 4129
2172 EV_FREQUENT_CHECK; 4130 EV_FREQUENT_CHECK;
2173 4131
2174 ++timercnt; 4132 ++timercnt;
2175 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 4133 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2176 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 4134 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
2177 ANHE_w (timers [ev_active (w)]) = (WT)w; 4135 ANHE_w (timers [ev_active (w)]) = (WT)w;
2178 ANHE_at_cache (timers [ev_active (w)]); 4136 ANHE_at_cache (timers [ev_active (w)]);
2179 upheap (timers, ev_active (w)); 4137 upheap (timers, ev_active (w));
2180 4138
2181 EV_FREQUENT_CHECK; 4139 EV_FREQUENT_CHECK;
2182 4140
2183 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 4141 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2184} 4142}
2185 4143
2186void noinline 4144ecb_noinline
4145void
2187ev_timer_stop (EV_P_ ev_timer *w) 4146ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
2188{ 4147{
2189 clear_pending (EV_A_ (W)w); 4148 clear_pending (EV_A_ (W)w);
2190 if (expect_false (!ev_is_active (w))) 4149 if (ecb_expect_false (!ev_is_active (w)))
2191 return; 4150 return;
2192 4151
2193 EV_FREQUENT_CHECK; 4152 EV_FREQUENT_CHECK;
2194 4153
2195 { 4154 {
2196 int active = ev_active (w); 4155 int active = ev_active (w);
2197 4156
2198 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 4157 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2199 4158
2200 --timercnt; 4159 --timercnt;
2201 4160
2202 if (expect_true (active < timercnt + HEAP0)) 4161 if (ecb_expect_true (active < timercnt + HEAP0))
2203 { 4162 {
2204 timers [active] = timers [timercnt + HEAP0]; 4163 timers [active] = timers [timercnt + HEAP0];
2205 adjustheap (timers, timercnt, active); 4164 adjustheap (timers, timercnt, active);
2206 } 4165 }
2207 } 4166 }
2208 4167
2209 EV_FREQUENT_CHECK;
2210
2211 ev_at (w) -= mn_now; 4168 ev_at (w) -= mn_now;
2212 4169
2213 ev_stop (EV_A_ (W)w); 4170 ev_stop (EV_A_ (W)w);
2214}
2215 4171
2216void noinline 4172 EV_FREQUENT_CHECK;
4173}
4174
4175ecb_noinline
4176void
2217ev_timer_again (EV_P_ ev_timer *w) 4177ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
2218{ 4178{
2219 EV_FREQUENT_CHECK; 4179 EV_FREQUENT_CHECK;
4180
4181 clear_pending (EV_A_ (W)w);
2220 4182
2221 if (ev_is_active (w)) 4183 if (ev_is_active (w))
2222 { 4184 {
2223 if (w->repeat) 4185 if (w->repeat)
2224 { 4186 {
2236 } 4198 }
2237 4199
2238 EV_FREQUENT_CHECK; 4200 EV_FREQUENT_CHECK;
2239} 4201}
2240 4202
4203ev_tstamp
4204ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4205{
4206 return ev_at (w) - (ev_is_active (w) ? mn_now : EV_TS_CONST (0.));
4207}
4208
2241#if EV_PERIODIC_ENABLE 4209#if EV_PERIODIC_ENABLE
2242void noinline 4210ecb_noinline
4211void
2243ev_periodic_start (EV_P_ ev_periodic *w) 4212ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
2244{ 4213{
2245 if (expect_false (ev_is_active (w))) 4214 if (ecb_expect_false (ev_is_active (w)))
2246 return; 4215 return;
2247 4216
2248 if (w->reschedule_cb) 4217 if (w->reschedule_cb)
2249 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 4218 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2250 else if (w->interval) 4219 else if (w->interval)
2251 { 4220 {
2252 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 4221 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2253 /* this formula differs from the one in periodic_reify because we do not always round up */ 4222 periodic_recalc (EV_A_ w);
2254 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2255 } 4223 }
2256 else 4224 else
2257 ev_at (w) = w->offset; 4225 ev_at (w) = w->offset;
2258 4226
2259 EV_FREQUENT_CHECK; 4227 EV_FREQUENT_CHECK;
2260 4228
2261 ++periodiccnt; 4229 ++periodiccnt;
2262 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1); 4230 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2263 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 4231 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
2264 ANHE_w (periodics [ev_active (w)]) = (WT)w; 4232 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2265 ANHE_at_cache (periodics [ev_active (w)]); 4233 ANHE_at_cache (periodics [ev_active (w)]);
2266 upheap (periodics, ev_active (w)); 4234 upheap (periodics, ev_active (w));
2267 4235
2268 EV_FREQUENT_CHECK; 4236 EV_FREQUENT_CHECK;
2269 4237
2270 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 4238 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2271} 4239}
2272 4240
2273void noinline 4241ecb_noinline
4242void
2274ev_periodic_stop (EV_P_ ev_periodic *w) 4243ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
2275{ 4244{
2276 clear_pending (EV_A_ (W)w); 4245 clear_pending (EV_A_ (W)w);
2277 if (expect_false (!ev_is_active (w))) 4246 if (ecb_expect_false (!ev_is_active (w)))
2278 return; 4247 return;
2279 4248
2280 EV_FREQUENT_CHECK; 4249 EV_FREQUENT_CHECK;
2281 4250
2282 { 4251 {
2283 int active = ev_active (w); 4252 int active = ev_active (w);
2284 4253
2285 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 4254 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2286 4255
2287 --periodiccnt; 4256 --periodiccnt;
2288 4257
2289 if (expect_true (active < periodiccnt + HEAP0)) 4258 if (ecb_expect_true (active < periodiccnt + HEAP0))
2290 { 4259 {
2291 periodics [active] = periodics [periodiccnt + HEAP0]; 4260 periodics [active] = periodics [periodiccnt + HEAP0];
2292 adjustheap (periodics, periodiccnt, active); 4261 adjustheap (periodics, periodiccnt, active);
2293 } 4262 }
2294 } 4263 }
2295 4264
2296 EV_FREQUENT_CHECK;
2297
2298 ev_stop (EV_A_ (W)w); 4265 ev_stop (EV_A_ (W)w);
2299}
2300 4266
2301void noinline 4267 EV_FREQUENT_CHECK;
4268}
4269
4270ecb_noinline
4271void
2302ev_periodic_again (EV_P_ ev_periodic *w) 4272ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
2303{ 4273{
2304 /* TODO: use adjustheap and recalculation */ 4274 /* TODO: use adjustheap and recalculation */
2305 ev_periodic_stop (EV_A_ w); 4275 ev_periodic_stop (EV_A_ w);
2306 ev_periodic_start (EV_A_ w); 4276 ev_periodic_start (EV_A_ w);
2307} 4277}
2309 4279
2310#ifndef SA_RESTART 4280#ifndef SA_RESTART
2311# define SA_RESTART 0 4281# define SA_RESTART 0
2312#endif 4282#endif
2313 4283
2314void noinline 4284#if EV_SIGNAL_ENABLE
4285
4286ecb_noinline
4287void
2315ev_signal_start (EV_P_ ev_signal *w) 4288ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
2316{ 4289{
4290 if (ecb_expect_false (ev_is_active (w)))
4291 return;
4292
4293 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4294
2317#if EV_MULTIPLICITY 4295#if EV_MULTIPLICITY
2318 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4296 assert (("libev: a signal must not be attached to two different loops",
2319#endif 4297 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2320 if (expect_false (ev_is_active (w)))
2321 return;
2322 4298
2323 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 4299 signals [w->signum - 1].loop = EV_A;
4300 ECB_MEMORY_FENCE_RELEASE;
4301#endif
2324 4302
2325 evpipe_init (EV_A);
2326
2327 EV_FREQUENT_CHECK; 4303 EV_FREQUENT_CHECK;
2328 4304
4305#if EV_USE_SIGNALFD
4306 if (sigfd == -2)
2329 { 4307 {
2330#ifndef _WIN32 4308 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2331 sigset_t full, prev; 4309 if (sigfd < 0 && errno == EINVAL)
2332 sigfillset (&full); 4310 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2333 sigprocmask (SIG_SETMASK, &full, &prev);
2334#endif
2335 4311
2336 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero); 4312 if (sigfd >= 0)
4313 {
4314 fd_intern (sigfd); /* doing it twice will not hurt */
2337 4315
2338#ifndef _WIN32 4316 sigemptyset (&sigfd_set);
2339 sigprocmask (SIG_SETMASK, &prev, 0); 4317
2340#endif 4318 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4319 ev_set_priority (&sigfd_w, EV_MAXPRI);
4320 ev_io_start (EV_A_ &sigfd_w);
4321 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4322 }
2341 } 4323 }
4324
4325 if (sigfd >= 0)
4326 {
4327 /* TODO: check .head */
4328 sigaddset (&sigfd_set, w->signum);
4329 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4330
4331 signalfd (sigfd, &sigfd_set, 0);
4332 }
4333#endif
2342 4334
2343 ev_start (EV_A_ (W)w, 1); 4335 ev_start (EV_A_ (W)w, 1);
2344 wlist_add (&signals [w->signum - 1].head, (WL)w); 4336 wlist_add (&signals [w->signum - 1].head, (WL)w);
2345 4337
2346 if (!((WL)w)->next) 4338 if (!((WL)w)->next)
4339# if EV_USE_SIGNALFD
4340 if (sigfd < 0) /*TODO*/
4341# endif
2347 { 4342 {
2348#if _WIN32 4343# ifdef _WIN32
4344 evpipe_init (EV_A);
4345
2349 signal (w->signum, ev_sighandler); 4346 signal (w->signum, ev_sighandler);
2350#else 4347# else
2351 struct sigaction sa; 4348 struct sigaction sa;
4349
4350 evpipe_init (EV_A);
4351
2352 sa.sa_handler = ev_sighandler; 4352 sa.sa_handler = ev_sighandler;
2353 sigfillset (&sa.sa_mask); 4353 sigfillset (&sa.sa_mask);
2354 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 4354 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2355 sigaction (w->signum, &sa, 0); 4355 sigaction (w->signum, &sa, 0);
4356
4357 if (origflags & EVFLAG_NOSIGMASK)
4358 {
4359 sigemptyset (&sa.sa_mask);
4360 sigaddset (&sa.sa_mask, w->signum);
4361 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4362 }
2356#endif 4363#endif
2357 } 4364 }
2358 4365
2359 EV_FREQUENT_CHECK; 4366 EV_FREQUENT_CHECK;
2360} 4367}
2361 4368
2362void noinline 4369ecb_noinline
4370void
2363ev_signal_stop (EV_P_ ev_signal *w) 4371ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
2364{ 4372{
2365 clear_pending (EV_A_ (W)w); 4373 clear_pending (EV_A_ (W)w);
2366 if (expect_false (!ev_is_active (w))) 4374 if (ecb_expect_false (!ev_is_active (w)))
2367 return; 4375 return;
2368 4376
2369 EV_FREQUENT_CHECK; 4377 EV_FREQUENT_CHECK;
2370 4378
2371 wlist_del (&signals [w->signum - 1].head, (WL)w); 4379 wlist_del (&signals [w->signum - 1].head, (WL)w);
2372 ev_stop (EV_A_ (W)w); 4380 ev_stop (EV_A_ (W)w);
2373 4381
2374 if (!signals [w->signum - 1].head) 4382 if (!signals [w->signum - 1].head)
2375 signal (w->signum, SIG_DFL); 4383 {
2376
2377 EV_FREQUENT_CHECK;
2378}
2379
2380void
2381ev_child_start (EV_P_ ev_child *w)
2382{
2383#if EV_MULTIPLICITY 4384#if EV_MULTIPLICITY
4385 signals [w->signum - 1].loop = 0; /* unattach from signal */
4386#endif
4387#if EV_USE_SIGNALFD
4388 if (sigfd >= 0)
4389 {
4390 sigset_t ss;
4391
4392 sigemptyset (&ss);
4393 sigaddset (&ss, w->signum);
4394 sigdelset (&sigfd_set, w->signum);
4395
4396 signalfd (sigfd, &sigfd_set, 0);
4397 sigprocmask (SIG_UNBLOCK, &ss, 0);
4398 }
4399 else
4400#endif
4401 signal (w->signum, SIG_DFL);
4402 }
4403
4404 EV_FREQUENT_CHECK;
4405}
4406
4407#endif
4408
4409#if EV_CHILD_ENABLE
4410
4411void
4412ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4413{
4414#if EV_MULTIPLICITY
2384 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4415 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2385#endif 4416#endif
2386 if (expect_false (ev_is_active (w))) 4417 if (ecb_expect_false (ev_is_active (w)))
2387 return; 4418 return;
2388 4419
2389 EV_FREQUENT_CHECK; 4420 EV_FREQUENT_CHECK;
2390 4421
2391 ev_start (EV_A_ (W)w, 1); 4422 ev_start (EV_A_ (W)w, 1);
2392 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4423 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2393 4424
2394 EV_FREQUENT_CHECK; 4425 EV_FREQUENT_CHECK;
2395} 4426}
2396 4427
2397void 4428void
2398ev_child_stop (EV_P_ ev_child *w) 4429ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
2399{ 4430{
2400 clear_pending (EV_A_ (W)w); 4431 clear_pending (EV_A_ (W)w);
2401 if (expect_false (!ev_is_active (w))) 4432 if (ecb_expect_false (!ev_is_active (w)))
2402 return; 4433 return;
2403 4434
2404 EV_FREQUENT_CHECK; 4435 EV_FREQUENT_CHECK;
2405 4436
2406 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4437 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2407 ev_stop (EV_A_ (W)w); 4438 ev_stop (EV_A_ (W)w);
2408 4439
2409 EV_FREQUENT_CHECK; 4440 EV_FREQUENT_CHECK;
2410} 4441}
4442
4443#endif
2411 4444
2412#if EV_STAT_ENABLE 4445#if EV_STAT_ENABLE
2413 4446
2414# ifdef _WIN32 4447# ifdef _WIN32
2415# undef lstat 4448# undef lstat
2416# define lstat(a,b) _stati64 (a,b) 4449# define lstat(a,b) _stati64 (a,b)
2417# endif 4450# endif
2418 4451
2419#define DEF_STAT_INTERVAL 5.0074891 4452#define DEF_STAT_INTERVAL 5.0074891
4453#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2420#define MIN_STAT_INTERVAL 0.1074891 4454#define MIN_STAT_INTERVAL 0.1074891
2421 4455
2422static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 4456ecb_noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2423 4457
2424#if EV_USE_INOTIFY 4458#if EV_USE_INOTIFY
2425# define EV_INOTIFY_BUFSIZE 8192
2426 4459
2427static void noinline 4460/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4461# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4462
4463ecb_noinline
4464static void
2428infy_add (EV_P_ ev_stat *w) 4465infy_add (EV_P_ ev_stat *w)
2429{ 4466{
2430 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 4467 w->wd = inotify_add_watch (fs_fd, w->path,
4468 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4469 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4470 | IN_DONT_FOLLOW | IN_MASK_ADD);
2431 4471
2432 if (w->wd < 0) 4472 if (w->wd >= 0)
4473 {
4474 struct statfs sfs;
4475
4476 /* now local changes will be tracked by inotify, but remote changes won't */
4477 /* unless the filesystem is known to be local, we therefore still poll */
4478 /* also do poll on <2.6.25, but with normal frequency */
4479
4480 if (!fs_2625)
4481 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4482 else if (!statfs (w->path, &sfs)
4483 && (sfs.f_type == 0x1373 /* devfs */
4484 || sfs.f_type == 0x4006 /* fat */
4485 || sfs.f_type == 0x4d44 /* msdos */
4486 || sfs.f_type == 0xEF53 /* ext2/3 */
4487 || sfs.f_type == 0x72b6 /* jffs2 */
4488 || sfs.f_type == 0x858458f6 /* ramfs */
4489 || sfs.f_type == 0x5346544e /* ntfs */
4490 || sfs.f_type == 0x3153464a /* jfs */
4491 || sfs.f_type == 0x9123683e /* btrfs */
4492 || sfs.f_type == 0x52654973 /* reiser3 */
4493 || sfs.f_type == 0x01021994 /* tmpfs */
4494 || sfs.f_type == 0x58465342 /* xfs */))
4495 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4496 else
4497 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2433 { 4498 }
2434 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 4499 else
4500 {
4501 /* can't use inotify, continue to stat */
4502 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2435 4503
2436 /* monitor some parent directory for speedup hints */ 4504 /* if path is not there, monitor some parent directory for speedup hints */
2437 /* note that exceeding the hardcoded limit is not a correctness issue, */ 4505 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2438 /* but an efficiency issue only */ 4506 /* but an efficiency issue only */
2439 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4507 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2440 { 4508 {
2441 char path [4096]; 4509 char path [4096];
2442 strcpy (path, w->path); 4510 strcpy (path, w->path);
2446 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 4514 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2447 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 4515 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2448 4516
2449 char *pend = strrchr (path, '/'); 4517 char *pend = strrchr (path, '/');
2450 4518
2451 if (!pend) 4519 if (!pend || pend == path)
2452 break; /* whoops, no '/', complain to your admin */ 4520 break;
2453 4521
2454 *pend = 0; 4522 *pend = 0;
2455 w->wd = inotify_add_watch (fs_fd, path, mask); 4523 w->wd = inotify_add_watch (fs_fd, path, mask);
2456 } 4524 }
2457 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4525 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2458 } 4526 }
2459 } 4527 }
2460 else
2461 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2462 4528
2463 if (w->wd >= 0) 4529 if (w->wd >= 0)
2464 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4530 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2465}
2466 4531
2467static void noinline 4532 /* now re-arm timer, if required */
4533 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4534 ev_timer_again (EV_A_ &w->timer);
4535 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4536}
4537
4538ecb_noinline
4539static void
2468infy_del (EV_P_ ev_stat *w) 4540infy_del (EV_P_ ev_stat *w)
2469{ 4541{
2470 int slot; 4542 int slot;
2471 int wd = w->wd; 4543 int wd = w->wd;
2472 4544
2473 if (wd < 0) 4545 if (wd < 0)
2474 return; 4546 return;
2475 4547
2476 w->wd = -2; 4548 w->wd = -2;
2477 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4549 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2478 wlist_del (&fs_hash [slot].head, (WL)w); 4550 wlist_del (&fs_hash [slot].head, (WL)w);
2479 4551
2480 /* remove this watcher, if others are watching it, they will rearm */ 4552 /* remove this watcher, if others are watching it, they will rearm */
2481 inotify_rm_watch (fs_fd, wd); 4553 inotify_rm_watch (fs_fd, wd);
2482} 4554}
2483 4555
2484static void noinline 4556ecb_noinline
4557static void
2485infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4558infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2486{ 4559{
2487 if (slot < 0) 4560 if (slot < 0)
2488 /* overflow, need to check for all hash slots */ 4561 /* overflow, need to check for all hash slots */
2489 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4562 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2490 infy_wd (EV_A_ slot, wd, ev); 4563 infy_wd (EV_A_ slot, wd, ev);
2491 else 4564 else
2492 { 4565 {
2493 WL w_; 4566 WL w_;
2494 4567
2495 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4568 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2496 { 4569 {
2497 ev_stat *w = (ev_stat *)w_; 4570 ev_stat *w = (ev_stat *)w_;
2498 w_ = w_->next; /* lets us remove this watcher and all before it */ 4571 w_ = w_->next; /* lets us remove this watcher and all before it */
2499 4572
2500 if (w->wd == wd || wd == -1) 4573 if (w->wd == wd || wd == -1)
2501 { 4574 {
2502 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4575 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2503 { 4576 {
4577 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2504 w->wd = -1; 4578 w->wd = -1;
2505 infy_add (EV_A_ w); /* re-add, no matter what */ 4579 infy_add (EV_A_ w); /* re-add, no matter what */
2506 } 4580 }
2507 4581
2508 stat_timer_cb (EV_A_ &w->timer, 0); 4582 stat_timer_cb (EV_A_ &w->timer, 0);
2513 4587
2514static void 4588static void
2515infy_cb (EV_P_ ev_io *w, int revents) 4589infy_cb (EV_P_ ev_io *w, int revents)
2516{ 4590{
2517 char buf [EV_INOTIFY_BUFSIZE]; 4591 char buf [EV_INOTIFY_BUFSIZE];
2518 struct inotify_event *ev = (struct inotify_event *)buf;
2519 int ofs; 4592 int ofs;
2520 int len = read (fs_fd, buf, sizeof (buf)); 4593 int len = read (fs_fd, buf, sizeof (buf));
2521 4594
2522 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4595 for (ofs = 0; ofs < len; )
4596 {
4597 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2523 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4598 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4599 ofs += sizeof (struct inotify_event) + ev->len;
4600 }
2524} 4601}
2525 4602
2526void inline_size 4603inline_size ecb_cold
2527infy_init (EV_P) 4604void
4605ev_check_2625 (EV_P)
2528{ 4606{
2529 if (fs_fd != -2)
2530 return;
2531
2532 /* kernels < 2.6.25 are borked 4607 /* kernels < 2.6.25 are borked
2533 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 4608 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2534 */ 4609 */
2535 { 4610 if (ev_linux_version () < 0x020619)
2536 struct utsname buf; 4611 return;
2537 int major, minor, micro;
2538 4612
4613 fs_2625 = 1;
4614}
4615
4616inline_size int
4617infy_newfd (void)
4618{
4619#if defined IN_CLOEXEC && defined IN_NONBLOCK
4620 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4621 if (fd >= 0)
4622 return fd;
4623#endif
4624 return inotify_init ();
4625}
4626
4627inline_size void
4628infy_init (EV_P)
4629{
4630 if (fs_fd != -2)
4631 return;
4632
2539 fs_fd = -1; 4633 fs_fd = -1;
2540 4634
2541 if (uname (&buf)) 4635 ev_check_2625 (EV_A);
2542 return;
2543 4636
2544 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2545 return;
2546
2547 if (major < 2
2548 || (major == 2 && minor < 6)
2549 || (major == 2 && minor == 6 && micro < 25))
2550 return;
2551 }
2552
2553 fs_fd = inotify_init (); 4637 fs_fd = infy_newfd ();
2554 4638
2555 if (fs_fd >= 0) 4639 if (fs_fd >= 0)
2556 { 4640 {
4641 fd_intern (fs_fd);
2557 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4642 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2558 ev_set_priority (&fs_w, EV_MAXPRI); 4643 ev_set_priority (&fs_w, EV_MAXPRI);
2559 ev_io_start (EV_A_ &fs_w); 4644 ev_io_start (EV_A_ &fs_w);
4645 ev_unref (EV_A);
2560 } 4646 }
2561} 4647}
2562 4648
2563void inline_size 4649inline_size void
2564infy_fork (EV_P) 4650infy_fork (EV_P)
2565{ 4651{
2566 int slot; 4652 int slot;
2567 4653
2568 if (fs_fd < 0) 4654 if (fs_fd < 0)
2569 return; 4655 return;
2570 4656
4657 ev_ref (EV_A);
4658 ev_io_stop (EV_A_ &fs_w);
2571 close (fs_fd); 4659 close (fs_fd);
2572 fs_fd = inotify_init (); 4660 fs_fd = infy_newfd ();
2573 4661
4662 if (fs_fd >= 0)
4663 {
4664 fd_intern (fs_fd);
4665 ev_io_set (&fs_w, fs_fd, EV_READ);
4666 ev_io_start (EV_A_ &fs_w);
4667 ev_unref (EV_A);
4668 }
4669
2574 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4670 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2575 { 4671 {
2576 WL w_ = fs_hash [slot].head; 4672 WL w_ = fs_hash [slot].head;
2577 fs_hash [slot].head = 0; 4673 fs_hash [slot].head = 0;
2578 4674
2579 while (w_) 4675 while (w_)
2584 w->wd = -1; 4680 w->wd = -1;
2585 4681
2586 if (fs_fd >= 0) 4682 if (fs_fd >= 0)
2587 infy_add (EV_A_ w); /* re-add, no matter what */ 4683 infy_add (EV_A_ w); /* re-add, no matter what */
2588 else 4684 else
4685 {
4686 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4687 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2589 ev_timer_start (EV_A_ &w->timer); 4688 ev_timer_again (EV_A_ &w->timer);
4689 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4690 }
2590 } 4691 }
2591 } 4692 }
2592} 4693}
2593 4694
2594#endif 4695#endif
2598#else 4699#else
2599# define EV_LSTAT(p,b) lstat (p, b) 4700# define EV_LSTAT(p,b) lstat (p, b)
2600#endif 4701#endif
2601 4702
2602void 4703void
2603ev_stat_stat (EV_P_ ev_stat *w) 4704ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
2604{ 4705{
2605 if (lstat (w->path, &w->attr) < 0) 4706 if (lstat (w->path, &w->attr) < 0)
2606 w->attr.st_nlink = 0; 4707 w->attr.st_nlink = 0;
2607 else if (!w->attr.st_nlink) 4708 else if (!w->attr.st_nlink)
2608 w->attr.st_nlink = 1; 4709 w->attr.st_nlink = 1;
2609} 4710}
2610 4711
2611static void noinline 4712ecb_noinline
4713static void
2612stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4714stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2613{ 4715{
2614 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4716 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2615 4717
2616 /* we copy this here each the time so that */ 4718 ev_statdata prev = w->attr;
2617 /* prev has the old value when the callback gets invoked */
2618 w->prev = w->attr;
2619 ev_stat_stat (EV_A_ w); 4719 ev_stat_stat (EV_A_ w);
2620 4720
2621 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4721 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2622 if ( 4722 if (
2623 w->prev.st_dev != w->attr.st_dev 4723 prev.st_dev != w->attr.st_dev
2624 || w->prev.st_ino != w->attr.st_ino 4724 || prev.st_ino != w->attr.st_ino
2625 || w->prev.st_mode != w->attr.st_mode 4725 || prev.st_mode != w->attr.st_mode
2626 || w->prev.st_nlink != w->attr.st_nlink 4726 || prev.st_nlink != w->attr.st_nlink
2627 || w->prev.st_uid != w->attr.st_uid 4727 || prev.st_uid != w->attr.st_uid
2628 || w->prev.st_gid != w->attr.st_gid 4728 || prev.st_gid != w->attr.st_gid
2629 || w->prev.st_rdev != w->attr.st_rdev 4729 || prev.st_rdev != w->attr.st_rdev
2630 || w->prev.st_size != w->attr.st_size 4730 || prev.st_size != w->attr.st_size
2631 || w->prev.st_atime != w->attr.st_atime 4731 || prev.st_atime != w->attr.st_atime
2632 || w->prev.st_mtime != w->attr.st_mtime 4732 || prev.st_mtime != w->attr.st_mtime
2633 || w->prev.st_ctime != w->attr.st_ctime 4733 || prev.st_ctime != w->attr.st_ctime
2634 ) { 4734 ) {
4735 /* we only update w->prev on actual differences */
4736 /* in case we test more often than invoke the callback, */
4737 /* to ensure that prev is always different to attr */
4738 w->prev = prev;
4739
2635 #if EV_USE_INOTIFY 4740 #if EV_USE_INOTIFY
2636 if (fs_fd >= 0) 4741 if (fs_fd >= 0)
2637 { 4742 {
2638 infy_del (EV_A_ w); 4743 infy_del (EV_A_ w);
2639 infy_add (EV_A_ w); 4744 infy_add (EV_A_ w);
2644 ev_feed_event (EV_A_ w, EV_STAT); 4749 ev_feed_event (EV_A_ w, EV_STAT);
2645 } 4750 }
2646} 4751}
2647 4752
2648void 4753void
2649ev_stat_start (EV_P_ ev_stat *w) 4754ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
2650{ 4755{
2651 if (expect_false (ev_is_active (w))) 4756 if (ecb_expect_false (ev_is_active (w)))
2652 return; 4757 return;
2653 4758
2654 /* since we use memcmp, we need to clear any padding data etc. */
2655 memset (&w->prev, 0, sizeof (ev_statdata));
2656 memset (&w->attr, 0, sizeof (ev_statdata));
2657
2658 ev_stat_stat (EV_A_ w); 4759 ev_stat_stat (EV_A_ w);
2659 4760
4761 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2660 if (w->interval < MIN_STAT_INTERVAL) 4762 w->interval = MIN_STAT_INTERVAL;
2661 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2662 4763
2663 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4764 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2664 ev_set_priority (&w->timer, ev_priority (w)); 4765 ev_set_priority (&w->timer, ev_priority (w));
2665 4766
2666#if EV_USE_INOTIFY 4767#if EV_USE_INOTIFY
2667 infy_init (EV_A); 4768 infy_init (EV_A);
2668 4769
2669 if (fs_fd >= 0) 4770 if (fs_fd >= 0)
2670 infy_add (EV_A_ w); 4771 infy_add (EV_A_ w);
2671 else 4772 else
2672#endif 4773#endif
4774 {
2673 ev_timer_start (EV_A_ &w->timer); 4775 ev_timer_again (EV_A_ &w->timer);
4776 ev_unref (EV_A);
4777 }
2674 4778
2675 ev_start (EV_A_ (W)w, 1); 4779 ev_start (EV_A_ (W)w, 1);
2676 4780
2677 EV_FREQUENT_CHECK; 4781 EV_FREQUENT_CHECK;
2678} 4782}
2679 4783
2680void 4784void
2681ev_stat_stop (EV_P_ ev_stat *w) 4785ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
2682{ 4786{
2683 clear_pending (EV_A_ (W)w); 4787 clear_pending (EV_A_ (W)w);
2684 if (expect_false (!ev_is_active (w))) 4788 if (ecb_expect_false (!ev_is_active (w)))
2685 return; 4789 return;
2686 4790
2687 EV_FREQUENT_CHECK; 4791 EV_FREQUENT_CHECK;
2688 4792
2689#if EV_USE_INOTIFY 4793#if EV_USE_INOTIFY
2690 infy_del (EV_A_ w); 4794 infy_del (EV_A_ w);
2691#endif 4795#endif
4796
4797 if (ev_is_active (&w->timer))
4798 {
4799 ev_ref (EV_A);
2692 ev_timer_stop (EV_A_ &w->timer); 4800 ev_timer_stop (EV_A_ &w->timer);
4801 }
2693 4802
2694 ev_stop (EV_A_ (W)w); 4803 ev_stop (EV_A_ (W)w);
2695 4804
2696 EV_FREQUENT_CHECK; 4805 EV_FREQUENT_CHECK;
2697} 4806}
2698#endif 4807#endif
2699 4808
2700#if EV_IDLE_ENABLE 4809#if EV_IDLE_ENABLE
2701void 4810void
2702ev_idle_start (EV_P_ ev_idle *w) 4811ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
2703{ 4812{
2704 if (expect_false (ev_is_active (w))) 4813 if (ecb_expect_false (ev_is_active (w)))
2705 return; 4814 return;
2706 4815
2707 pri_adjust (EV_A_ (W)w); 4816 pri_adjust (EV_A_ (W)w);
2708 4817
2709 EV_FREQUENT_CHECK; 4818 EV_FREQUENT_CHECK;
2712 int active = ++idlecnt [ABSPRI (w)]; 4821 int active = ++idlecnt [ABSPRI (w)];
2713 4822
2714 ++idleall; 4823 ++idleall;
2715 ev_start (EV_A_ (W)w, active); 4824 ev_start (EV_A_ (W)w, active);
2716 4825
2717 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 4826 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
2718 idles [ABSPRI (w)][active - 1] = w; 4827 idles [ABSPRI (w)][active - 1] = w;
2719 } 4828 }
2720 4829
2721 EV_FREQUENT_CHECK; 4830 EV_FREQUENT_CHECK;
2722} 4831}
2723 4832
2724void 4833void
2725ev_idle_stop (EV_P_ ev_idle *w) 4834ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
2726{ 4835{
2727 clear_pending (EV_A_ (W)w); 4836 clear_pending (EV_A_ (W)w);
2728 if (expect_false (!ev_is_active (w))) 4837 if (ecb_expect_false (!ev_is_active (w)))
2729 return; 4838 return;
2730 4839
2731 EV_FREQUENT_CHECK; 4840 EV_FREQUENT_CHECK;
2732 4841
2733 { 4842 {
2742 4851
2743 EV_FREQUENT_CHECK; 4852 EV_FREQUENT_CHECK;
2744} 4853}
2745#endif 4854#endif
2746 4855
4856#if EV_PREPARE_ENABLE
2747void 4857void
2748ev_prepare_start (EV_P_ ev_prepare *w) 4858ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
2749{ 4859{
2750 if (expect_false (ev_is_active (w))) 4860 if (ecb_expect_false (ev_is_active (w)))
2751 return; 4861 return;
2752 4862
2753 EV_FREQUENT_CHECK; 4863 EV_FREQUENT_CHECK;
2754 4864
2755 ev_start (EV_A_ (W)w, ++preparecnt); 4865 ev_start (EV_A_ (W)w, ++preparecnt);
2756 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4866 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
2757 prepares [preparecnt - 1] = w; 4867 prepares [preparecnt - 1] = w;
2758 4868
2759 EV_FREQUENT_CHECK; 4869 EV_FREQUENT_CHECK;
2760} 4870}
2761 4871
2762void 4872void
2763ev_prepare_stop (EV_P_ ev_prepare *w) 4873ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
2764{ 4874{
2765 clear_pending (EV_A_ (W)w); 4875 clear_pending (EV_A_ (W)w);
2766 if (expect_false (!ev_is_active (w))) 4876 if (ecb_expect_false (!ev_is_active (w)))
2767 return; 4877 return;
2768 4878
2769 EV_FREQUENT_CHECK; 4879 EV_FREQUENT_CHECK;
2770 4880
2771 { 4881 {
2777 4887
2778 ev_stop (EV_A_ (W)w); 4888 ev_stop (EV_A_ (W)w);
2779 4889
2780 EV_FREQUENT_CHECK; 4890 EV_FREQUENT_CHECK;
2781} 4891}
4892#endif
2782 4893
4894#if EV_CHECK_ENABLE
2783void 4895void
2784ev_check_start (EV_P_ ev_check *w) 4896ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
2785{ 4897{
2786 if (expect_false (ev_is_active (w))) 4898 if (ecb_expect_false (ev_is_active (w)))
2787 return; 4899 return;
2788 4900
2789 EV_FREQUENT_CHECK; 4901 EV_FREQUENT_CHECK;
2790 4902
2791 ev_start (EV_A_ (W)w, ++checkcnt); 4903 ev_start (EV_A_ (W)w, ++checkcnt);
2792 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4904 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
2793 checks [checkcnt - 1] = w; 4905 checks [checkcnt - 1] = w;
2794 4906
2795 EV_FREQUENT_CHECK; 4907 EV_FREQUENT_CHECK;
2796} 4908}
2797 4909
2798void 4910void
2799ev_check_stop (EV_P_ ev_check *w) 4911ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
2800{ 4912{
2801 clear_pending (EV_A_ (W)w); 4913 clear_pending (EV_A_ (W)w);
2802 if (expect_false (!ev_is_active (w))) 4914 if (ecb_expect_false (!ev_is_active (w)))
2803 return; 4915 return;
2804 4916
2805 EV_FREQUENT_CHECK; 4917 EV_FREQUENT_CHECK;
2806 4918
2807 { 4919 {
2813 4925
2814 ev_stop (EV_A_ (W)w); 4926 ev_stop (EV_A_ (W)w);
2815 4927
2816 EV_FREQUENT_CHECK; 4928 EV_FREQUENT_CHECK;
2817} 4929}
4930#endif
2818 4931
2819#if EV_EMBED_ENABLE 4932#if EV_EMBED_ENABLE
2820void noinline 4933ecb_noinline
4934void
2821ev_embed_sweep (EV_P_ ev_embed *w) 4935ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
2822{ 4936{
2823 ev_loop (w->other, EVLOOP_NONBLOCK); 4937 ev_run (w->other, EVRUN_NOWAIT);
2824} 4938}
2825 4939
2826static void 4940static void
2827embed_io_cb (EV_P_ ev_io *io, int revents) 4941embed_io_cb (EV_P_ ev_io *io, int revents)
2828{ 4942{
2829 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4943 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2830 4944
2831 if (ev_cb (w)) 4945 if (ev_cb (w))
2832 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4946 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2833 else 4947 else
2834 ev_loop (w->other, EVLOOP_NONBLOCK); 4948 ev_run (w->other, EVRUN_NOWAIT);
2835} 4949}
2836 4950
2837static void 4951static void
2838embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4952embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2839{ 4953{
2840 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4954 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2841 4955
2842 { 4956 {
2843 struct ev_loop *loop = w->other; 4957 EV_P = w->other;
2844 4958
2845 while (fdchangecnt) 4959 while (fdchangecnt)
2846 { 4960 {
2847 fd_reify (EV_A); 4961 fd_reify (EV_A);
2848 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4962 ev_run (EV_A_ EVRUN_NOWAIT);
2849 } 4963 }
2850 } 4964 }
2851} 4965}
2852 4966
2853static void 4967static void
2854embed_fork_cb (EV_P_ ev_fork *fork_w, int revents) 4968embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2855{ 4969{
2856 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 4970 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2857 4971
4972 ev_embed_stop (EV_A_ w);
4973
2858 { 4974 {
2859 struct ev_loop *loop = w->other; 4975 EV_P = w->other;
2860 4976
2861 ev_loop_fork (EV_A); 4977 ev_loop_fork (EV_A);
4978 ev_run (EV_A_ EVRUN_NOWAIT);
2862 } 4979 }
4980
4981 ev_embed_start (EV_A_ w);
2863} 4982}
2864 4983
2865#if 0 4984#if 0
2866static void 4985static void
2867embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4986embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2869 ev_idle_stop (EV_A_ idle); 4988 ev_idle_stop (EV_A_ idle);
2870} 4989}
2871#endif 4990#endif
2872 4991
2873void 4992void
2874ev_embed_start (EV_P_ ev_embed *w) 4993ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
2875{ 4994{
2876 if (expect_false (ev_is_active (w))) 4995 if (ecb_expect_false (ev_is_active (w)))
2877 return; 4996 return;
2878 4997
2879 { 4998 {
2880 struct ev_loop *loop = w->other; 4999 EV_P = w->other;
2881 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 5000 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2882 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 5001 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2883 } 5002 }
2884 5003
2885 EV_FREQUENT_CHECK; 5004 EV_FREQUENT_CHECK;
2886 5005
2900 5019
2901 EV_FREQUENT_CHECK; 5020 EV_FREQUENT_CHECK;
2902} 5021}
2903 5022
2904void 5023void
2905ev_embed_stop (EV_P_ ev_embed *w) 5024ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
2906{ 5025{
2907 clear_pending (EV_A_ (W)w); 5026 clear_pending (EV_A_ (W)w);
2908 if (expect_false (!ev_is_active (w))) 5027 if (ecb_expect_false (!ev_is_active (w)))
2909 return; 5028 return;
2910 5029
2911 EV_FREQUENT_CHECK; 5030 EV_FREQUENT_CHECK;
2912 5031
2913 ev_io_stop (EV_A_ &w->io); 5032 ev_io_stop (EV_A_ &w->io);
2914 ev_prepare_stop (EV_A_ &w->prepare); 5033 ev_prepare_stop (EV_A_ &w->prepare);
2915 ev_fork_stop (EV_A_ &w->fork); 5034 ev_fork_stop (EV_A_ &w->fork);
2916 5035
5036 ev_stop (EV_A_ (W)w);
5037
2917 EV_FREQUENT_CHECK; 5038 EV_FREQUENT_CHECK;
2918} 5039}
2919#endif 5040#endif
2920 5041
2921#if EV_FORK_ENABLE 5042#if EV_FORK_ENABLE
2922void 5043void
2923ev_fork_start (EV_P_ ev_fork *w) 5044ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
2924{ 5045{
2925 if (expect_false (ev_is_active (w))) 5046 if (ecb_expect_false (ev_is_active (w)))
2926 return; 5047 return;
2927 5048
2928 EV_FREQUENT_CHECK; 5049 EV_FREQUENT_CHECK;
2929 5050
2930 ev_start (EV_A_ (W)w, ++forkcnt); 5051 ev_start (EV_A_ (W)w, ++forkcnt);
2931 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 5052 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
2932 forks [forkcnt - 1] = w; 5053 forks [forkcnt - 1] = w;
2933 5054
2934 EV_FREQUENT_CHECK; 5055 EV_FREQUENT_CHECK;
2935} 5056}
2936 5057
2937void 5058void
2938ev_fork_stop (EV_P_ ev_fork *w) 5059ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
2939{ 5060{
2940 clear_pending (EV_A_ (W)w); 5061 clear_pending (EV_A_ (W)w);
2941 if (expect_false (!ev_is_active (w))) 5062 if (ecb_expect_false (!ev_is_active (w)))
2942 return; 5063 return;
2943 5064
2944 EV_FREQUENT_CHECK; 5065 EV_FREQUENT_CHECK;
2945 5066
2946 { 5067 {
2954 5075
2955 EV_FREQUENT_CHECK; 5076 EV_FREQUENT_CHECK;
2956} 5077}
2957#endif 5078#endif
2958 5079
5080#if EV_CLEANUP_ENABLE
5081void
5082ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5083{
5084 if (ecb_expect_false (ev_is_active (w)))
5085 return;
5086
5087 EV_FREQUENT_CHECK;
5088
5089 ev_start (EV_A_ (W)w, ++cleanupcnt);
5090 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
5091 cleanups [cleanupcnt - 1] = w;
5092
5093 /* cleanup watchers should never keep a refcount on the loop */
5094 ev_unref (EV_A);
5095 EV_FREQUENT_CHECK;
5096}
5097
5098void
5099ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5100{
5101 clear_pending (EV_A_ (W)w);
5102 if (ecb_expect_false (!ev_is_active (w)))
5103 return;
5104
5105 EV_FREQUENT_CHECK;
5106 ev_ref (EV_A);
5107
5108 {
5109 int active = ev_active (w);
5110
5111 cleanups [active - 1] = cleanups [--cleanupcnt];
5112 ev_active (cleanups [active - 1]) = active;
5113 }
5114
5115 ev_stop (EV_A_ (W)w);
5116
5117 EV_FREQUENT_CHECK;
5118}
5119#endif
5120
2959#if EV_ASYNC_ENABLE 5121#if EV_ASYNC_ENABLE
2960void 5122void
2961ev_async_start (EV_P_ ev_async *w) 5123ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
2962{ 5124{
2963 if (expect_false (ev_is_active (w))) 5125 if (ecb_expect_false (ev_is_active (w)))
2964 return; 5126 return;
2965 5127
5128 w->sent = 0;
5129
2966 evpipe_init (EV_A); 5130 evpipe_init (EV_A);
2967 5131
2968 EV_FREQUENT_CHECK; 5132 EV_FREQUENT_CHECK;
2969 5133
2970 ev_start (EV_A_ (W)w, ++asynccnt); 5134 ev_start (EV_A_ (W)w, ++asynccnt);
2971 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 5135 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
2972 asyncs [asynccnt - 1] = w; 5136 asyncs [asynccnt - 1] = w;
2973 5137
2974 EV_FREQUENT_CHECK; 5138 EV_FREQUENT_CHECK;
2975} 5139}
2976 5140
2977void 5141void
2978ev_async_stop (EV_P_ ev_async *w) 5142ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
2979{ 5143{
2980 clear_pending (EV_A_ (W)w); 5144 clear_pending (EV_A_ (W)w);
2981 if (expect_false (!ev_is_active (w))) 5145 if (ecb_expect_false (!ev_is_active (w)))
2982 return; 5146 return;
2983 5147
2984 EV_FREQUENT_CHECK; 5148 EV_FREQUENT_CHECK;
2985 5149
2986 { 5150 {
2994 5158
2995 EV_FREQUENT_CHECK; 5159 EV_FREQUENT_CHECK;
2996} 5160}
2997 5161
2998void 5162void
2999ev_async_send (EV_P_ ev_async *w) 5163ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
3000{ 5164{
3001 w->sent = 1; 5165 w->sent = 1;
3002 evpipe_write (EV_A_ &gotasync); 5166 evpipe_write (EV_A_ &async_pending);
3003} 5167}
3004#endif 5168#endif
3005 5169
3006/*****************************************************************************/ 5170/*****************************************************************************/
3007 5171
3041 5205
3042 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io)); 5206 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3043} 5207}
3044 5208
3045void 5209void
3046ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 5210ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
3047{ 5211{
3048 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 5212 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3049
3050 if (expect_false (!once))
3051 {
3052 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
3053 return;
3054 }
3055 5213
3056 once->cb = cb; 5214 once->cb = cb;
3057 once->arg = arg; 5215 once->arg = arg;
3058 5216
3059 ev_init (&once->io, once_cb_io); 5217 ev_init (&once->io, once_cb_io);
3069 ev_timer_set (&once->to, timeout, 0.); 5227 ev_timer_set (&once->to, timeout, 0.);
3070 ev_timer_start (EV_A_ &once->to); 5228 ev_timer_start (EV_A_ &once->to);
3071 } 5229 }
3072} 5230}
3073 5231
5232/*****************************************************************************/
5233
5234#if EV_WALK_ENABLE
5235ecb_cold
5236void
5237ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5238{
5239 int i, j;
5240 ev_watcher_list *wl, *wn;
5241
5242 if (types & (EV_IO | EV_EMBED))
5243 for (i = 0; i < anfdmax; ++i)
5244 for (wl = anfds [i].head; wl; )
5245 {
5246 wn = wl->next;
5247
5248#if EV_EMBED_ENABLE
5249 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5250 {
5251 if (types & EV_EMBED)
5252 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5253 }
5254 else
5255#endif
5256#if EV_USE_INOTIFY
5257 if (ev_cb ((ev_io *)wl) == infy_cb)
5258 ;
5259 else
5260#endif
5261 if ((ev_io *)wl != &pipe_w)
5262 if (types & EV_IO)
5263 cb (EV_A_ EV_IO, wl);
5264
5265 wl = wn;
5266 }
5267
5268 if (types & (EV_TIMER | EV_STAT))
5269 for (i = timercnt + HEAP0; i-- > HEAP0; )
5270#if EV_STAT_ENABLE
5271 /*TODO: timer is not always active*/
5272 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5273 {
5274 if (types & EV_STAT)
5275 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5276 }
5277 else
5278#endif
5279 if (types & EV_TIMER)
5280 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5281
5282#if EV_PERIODIC_ENABLE
5283 if (types & EV_PERIODIC)
5284 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5285 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5286#endif
5287
5288#if EV_IDLE_ENABLE
5289 if (types & EV_IDLE)
5290 for (j = NUMPRI; j--; )
5291 for (i = idlecnt [j]; i--; )
5292 cb (EV_A_ EV_IDLE, idles [j][i]);
5293#endif
5294
5295#if EV_FORK_ENABLE
5296 if (types & EV_FORK)
5297 for (i = forkcnt; i--; )
5298 if (ev_cb (forks [i]) != embed_fork_cb)
5299 cb (EV_A_ EV_FORK, forks [i]);
5300#endif
5301
5302#if EV_ASYNC_ENABLE
5303 if (types & EV_ASYNC)
5304 for (i = asynccnt; i--; )
5305 cb (EV_A_ EV_ASYNC, asyncs [i]);
5306#endif
5307
5308#if EV_PREPARE_ENABLE
5309 if (types & EV_PREPARE)
5310 for (i = preparecnt; i--; )
5311# if EV_EMBED_ENABLE
5312 if (ev_cb (prepares [i]) != embed_prepare_cb)
5313# endif
5314 cb (EV_A_ EV_PREPARE, prepares [i]);
5315#endif
5316
5317#if EV_CHECK_ENABLE
5318 if (types & EV_CHECK)
5319 for (i = checkcnt; i--; )
5320 cb (EV_A_ EV_CHECK, checks [i]);
5321#endif
5322
5323#if EV_SIGNAL_ENABLE
5324 if (types & EV_SIGNAL)
5325 for (i = 0; i < EV_NSIG - 1; ++i)
5326 for (wl = signals [i].head; wl; )
5327 {
5328 wn = wl->next;
5329 cb (EV_A_ EV_SIGNAL, wl);
5330 wl = wn;
5331 }
5332#endif
5333
5334#if EV_CHILD_ENABLE
5335 if (types & EV_CHILD)
5336 for (i = (EV_PID_HASHSIZE); i--; )
5337 for (wl = childs [i]; wl; )
5338 {
5339 wn = wl->next;
5340 cb (EV_A_ EV_CHILD, wl);
5341 wl = wn;
5342 }
5343#endif
5344/* EV_STAT 0x00001000 /* stat data changed */
5345/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5346}
5347#endif
5348
3074#if EV_MULTIPLICITY 5349#if EV_MULTIPLICITY
3075 #include "ev_wrap.h" 5350 #include "ev_wrap.h"
3076#endif 5351#endif
3077 5352
3078#ifdef __cplusplus
3079}
3080#endif
3081

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines