ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.264 by root, Mon Oct 13 23:20:12 2008 UTC vs.
Revision 1.515 by root, Fri Dec 20 20:51:46 2019 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
100# ifndef EV_USE_KQUEUE 120# if HAVE_LINUX_AIO_ABI_H
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 121# ifndef EV_USE_LINUXAIO
102# define EV_USE_KQUEUE 1 122# define EV_USE_LINUXAIO EV_FEATURE_BACKENDS
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_LINUXAIO
126# define EV_USE_LINUXAIO 0
106# endif 127# endif
107 128
129# if HAVE_LINUX_FS_H && HAVE_SYS_TIMERFD_H && HAVE_KERNEL_RWF_T
108# ifndef EV_USE_PORT 130# ifndef EV_USE_IOURING
109# if HAVE_PORT_H && HAVE_PORT_CREATE 131# define EV_USE_IOURING EV_FEATURE_BACKENDS
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif 132# endif
114# endif
115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else 133# else
134# undef EV_USE_IOURING
120# define EV_USE_INOTIFY 0 135# define EV_USE_IOURING 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif 136# endif
131 137
138# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
139# ifndef EV_USE_KQUEUE
140# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
141# endif
142# else
143# undef EV_USE_KQUEUE
144# define EV_USE_KQUEUE 0
132#endif 145# endif
146
147# if HAVE_PORT_H && HAVE_PORT_CREATE
148# ifndef EV_USE_PORT
149# define EV_USE_PORT EV_FEATURE_BACKENDS
150# endif
151# else
152# undef EV_USE_PORT
153# define EV_USE_PORT 0
154# endif
133 155
134#include <math.h> 156# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
157# ifndef EV_USE_INOTIFY
158# define EV_USE_INOTIFY EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_INOTIFY
162# define EV_USE_INOTIFY 0
163# endif
164
165# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
166# ifndef EV_USE_SIGNALFD
167# define EV_USE_SIGNALFD EV_FEATURE_OS
168# endif
169# else
170# undef EV_USE_SIGNALFD
171# define EV_USE_SIGNALFD 0
172# endif
173
174# if HAVE_EVENTFD
175# ifndef EV_USE_EVENTFD
176# define EV_USE_EVENTFD EV_FEATURE_OS
177# endif
178# else
179# undef EV_USE_EVENTFD
180# define EV_USE_EVENTFD 0
181# endif
182
183# if HAVE_SYS_TIMERFD_H
184# ifndef EV_USE_TIMERFD
185# define EV_USE_TIMERFD EV_FEATURE_OS
186# endif
187# else
188# undef EV_USE_TIMERFD
189# define EV_USE_TIMERFD 0
190# endif
191
192#endif
193
194/* OS X, in its infinite idiocy, actually HARDCODES
195 * a limit of 1024 into their select. Where people have brains,
196 * OS X engineers apparently have a vacuum. Or maybe they were
197 * ordered to have a vacuum, or they do anything for money.
198 * This might help. Or not.
199 * Note that this must be defined early, as other include files
200 * will rely on this define as well.
201 */
202#define _DARWIN_UNLIMITED_SELECT 1
203
135#include <stdlib.h> 204#include <stdlib.h>
205#include <string.h>
136#include <fcntl.h> 206#include <fcntl.h>
137#include <stddef.h> 207#include <stddef.h>
138 208
139#include <stdio.h> 209#include <stdio.h>
140 210
141#include <assert.h> 211#include <assert.h>
142#include <errno.h> 212#include <errno.h>
143#include <sys/types.h> 213#include <sys/types.h>
144#include <time.h> 214#include <time.h>
215#include <limits.h>
145 216
146#include <signal.h> 217#include <signal.h>
147 218
148#ifdef EV_H 219#ifdef EV_H
149# include EV_H 220# include EV_H
150#else 221#else
151# include "ev.h" 222# include "ev.h"
223#endif
224
225#if EV_NO_THREADS
226# undef EV_NO_SMP
227# define EV_NO_SMP 1
228# undef ECB_NO_THREADS
229# define ECB_NO_THREADS 1
230#endif
231#if EV_NO_SMP
232# undef EV_NO_SMP
233# define ECB_NO_SMP 1
152#endif 234#endif
153 235
154#ifndef _WIN32 236#ifndef _WIN32
155# include <sys/time.h> 237# include <sys/time.h>
156# include <sys/wait.h> 238# include <sys/wait.h>
157# include <unistd.h> 239# include <unistd.h>
158#else 240#else
159# include <io.h> 241# include <io.h>
160# define WIN32_LEAN_AND_MEAN 242# define WIN32_LEAN_AND_MEAN
243# include <winsock2.h>
161# include <windows.h> 244# include <windows.h>
162# ifndef EV_SELECT_IS_WINSOCKET 245# ifndef EV_SELECT_IS_WINSOCKET
163# define EV_SELECT_IS_WINSOCKET 1 246# define EV_SELECT_IS_WINSOCKET 1
164# endif 247# endif
248# undef EV_AVOID_STDIO
165#endif 249#endif
166 250
167/* this block tries to deduce configuration from header-defined symbols and defaults */ 251/* this block tries to deduce configuration from header-defined symbols and defaults */
168 252
253/* try to deduce the maximum number of signals on this platform */
254#if defined EV_NSIG
255/* use what's provided */
256#elif defined NSIG
257# define EV_NSIG (NSIG)
258#elif defined _NSIG
259# define EV_NSIG (_NSIG)
260#elif defined SIGMAX
261# define EV_NSIG (SIGMAX+1)
262#elif defined SIG_MAX
263# define EV_NSIG (SIG_MAX+1)
264#elif defined _SIG_MAX
265# define EV_NSIG (_SIG_MAX+1)
266#elif defined MAXSIG
267# define EV_NSIG (MAXSIG+1)
268#elif defined MAX_SIG
269# define EV_NSIG (MAX_SIG+1)
270#elif defined SIGARRAYSIZE
271# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
272#elif defined _sys_nsig
273# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
274#else
275# define EV_NSIG (8 * sizeof (sigset_t) + 1)
276#endif
277
278#ifndef EV_USE_FLOOR
279# define EV_USE_FLOOR 0
280#endif
281
282#ifndef EV_USE_CLOCK_SYSCALL
283# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
284# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
285# else
286# define EV_USE_CLOCK_SYSCALL 0
287# endif
288#endif
289
290#if !(_POSIX_TIMERS > 0)
291# ifndef EV_USE_MONOTONIC
292# define EV_USE_MONOTONIC 0
293# endif
294# ifndef EV_USE_REALTIME
295# define EV_USE_REALTIME 0
296# endif
297#endif
298
169#ifndef EV_USE_MONOTONIC 299#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 300# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1 301# define EV_USE_MONOTONIC EV_FEATURE_OS
172# else 302# else
173# define EV_USE_MONOTONIC 0 303# define EV_USE_MONOTONIC 0
174# endif 304# endif
175#endif 305#endif
176 306
177#ifndef EV_USE_REALTIME 307#ifndef EV_USE_REALTIME
178# define EV_USE_REALTIME 0 308# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
179#endif 309#endif
180 310
181#ifndef EV_USE_NANOSLEEP 311#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L 312# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1 313# define EV_USE_NANOSLEEP EV_FEATURE_OS
184# else 314# else
185# define EV_USE_NANOSLEEP 0 315# define EV_USE_NANOSLEEP 0
186# endif 316# endif
187#endif 317#endif
188 318
189#ifndef EV_USE_SELECT 319#ifndef EV_USE_SELECT
190# define EV_USE_SELECT 1 320# define EV_USE_SELECT EV_FEATURE_BACKENDS
191#endif 321#endif
192 322
193#ifndef EV_USE_POLL 323#ifndef EV_USE_POLL
194# ifdef _WIN32 324# ifdef _WIN32
195# define EV_USE_POLL 0 325# define EV_USE_POLL 0
196# else 326# else
197# define EV_USE_POLL 1 327# define EV_USE_POLL EV_FEATURE_BACKENDS
198# endif 328# endif
199#endif 329#endif
200 330
201#ifndef EV_USE_EPOLL 331#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 332# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1 333# define EV_USE_EPOLL EV_FEATURE_BACKENDS
204# else 334# else
205# define EV_USE_EPOLL 0 335# define EV_USE_EPOLL 0
206# endif 336# endif
207#endif 337#endif
208 338
212 342
213#ifndef EV_USE_PORT 343#ifndef EV_USE_PORT
214# define EV_USE_PORT 0 344# define EV_USE_PORT 0
215#endif 345#endif
216 346
347#ifndef EV_USE_LINUXAIO
348# if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
349# define EV_USE_LINUXAIO 1
350# else
351# define EV_USE_LINUXAIO 0
352# endif
353#endif
354
355#ifndef EV_USE_IOURING
356# if __linux /* later checks might disable again */
357# define EV_USE_IOURING 1
358# else
359# define EV_USE_IOURING 0
360# endif
361#endif
362
217#ifndef EV_USE_INOTIFY 363#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 364# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1 365# define EV_USE_INOTIFY EV_FEATURE_OS
220# else 366# else
221# define EV_USE_INOTIFY 0 367# define EV_USE_INOTIFY 0
222# endif 368# endif
223#endif 369#endif
224 370
225#ifndef EV_PID_HASHSIZE 371#ifndef EV_PID_HASHSIZE
226# if EV_MINIMAL 372# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
227# define EV_PID_HASHSIZE 1
228# else
229# define EV_PID_HASHSIZE 16
230# endif
231#endif 373#endif
232 374
233#ifndef EV_INOTIFY_HASHSIZE 375#ifndef EV_INOTIFY_HASHSIZE
234# if EV_MINIMAL 376# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
235# define EV_INOTIFY_HASHSIZE 1
236# else
237# define EV_INOTIFY_HASHSIZE 16
238# endif
239#endif 377#endif
240 378
241#ifndef EV_USE_EVENTFD 379#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 380# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1 381# define EV_USE_EVENTFD EV_FEATURE_OS
244# else 382# else
245# define EV_USE_EVENTFD 0 383# define EV_USE_EVENTFD 0
384# endif
385#endif
386
387#ifndef EV_USE_SIGNALFD
388# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
389# define EV_USE_SIGNALFD EV_FEATURE_OS
390# else
391# define EV_USE_SIGNALFD 0
392# endif
393#endif
394
395#ifndef EV_USE_TIMERFD
396# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 8))
397# define EV_USE_TIMERFD EV_FEATURE_OS
398# else
399# define EV_USE_TIMERFD 0
246# endif 400# endif
247#endif 401#endif
248 402
249#if 0 /* debugging */ 403#if 0 /* debugging */
250# define EV_VERIFY 3 404# define EV_VERIFY 3
251# define EV_USE_4HEAP 1 405# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1 406# define EV_HEAP_CACHE_AT 1
253#endif 407#endif
254 408
255#ifndef EV_VERIFY 409#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL 410# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
257#endif 411#endif
258 412
259#ifndef EV_USE_4HEAP 413#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL 414# define EV_USE_4HEAP EV_FEATURE_DATA
261#endif 415#endif
262 416
263#ifndef EV_HEAP_CACHE_AT 417#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL 418# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
419#endif
420
421#ifdef __ANDROID__
422/* supposedly, android doesn't typedef fd_mask */
423# undef EV_USE_SELECT
424# define EV_USE_SELECT 0
425/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
426# undef EV_USE_CLOCK_SYSCALL
427# define EV_USE_CLOCK_SYSCALL 0
428#endif
429
430/* aix's poll.h seems to cause lots of trouble */
431#ifdef _AIX
432/* AIX has a completely broken poll.h header */
433# undef EV_USE_POLL
434# define EV_USE_POLL 0
435#endif
436
437/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
438/* which makes programs even slower. might work on other unices, too. */
439#if EV_USE_CLOCK_SYSCALL
440# include <sys/syscall.h>
441# ifdef SYS_clock_gettime
442# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
443# undef EV_USE_MONOTONIC
444# define EV_USE_MONOTONIC 1
445# define EV_NEED_SYSCALL 1
446# else
447# undef EV_USE_CLOCK_SYSCALL
448# define EV_USE_CLOCK_SYSCALL 0
449# endif
265#endif 450#endif
266 451
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 452/* this block fixes any misconfiguration where we know we run into trouble otherwise */
268 453
269#ifndef CLOCK_MONOTONIC 454#ifndef CLOCK_MONOTONIC
279#if !EV_STAT_ENABLE 464#if !EV_STAT_ENABLE
280# undef EV_USE_INOTIFY 465# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0 466# define EV_USE_INOTIFY 0
282#endif 467#endif
283 468
469#if __linux && EV_USE_IOURING
470# include <linux/version.h>
471# if LINUX_VERSION_CODE < KERNEL_VERSION(4,14,0)
472# undef EV_USE_IOURING
473# define EV_USE_IOURING 0
474# endif
475#endif
476
284#if !EV_USE_NANOSLEEP 477#if !EV_USE_NANOSLEEP
285# ifndef _WIN32 478/* hp-ux has it in sys/time.h, which we unconditionally include above */
479# if !defined _WIN32 && !defined __hpux
286# include <sys/select.h> 480# include <sys/select.h>
287# endif 481# endif
288#endif 482#endif
289 483
484#if EV_USE_LINUXAIO
485# include <sys/syscall.h>
486# if SYS_io_getevents && EV_USE_EPOLL /* linuxaio backend requires epoll backend */
487# define EV_NEED_SYSCALL 1
488# else
489# undef EV_USE_LINUXAIO
490# define EV_USE_LINUXAIO 0
491# endif
492#endif
493
494#if EV_USE_IOURING
495# include <sys/syscall.h>
496# if !SYS_io_uring_setup && __linux && !__alpha
497# define SYS_io_uring_setup 425
498# define SYS_io_uring_enter 426
499# define SYS_io_uring_wregister 427
500# endif
501# if SYS_io_uring_setup && EV_USE_EPOLL /* iouring backend requires epoll backend */
502# define EV_NEED_SYSCALL 1
503# else
504# undef EV_USE_IOURING
505# define EV_USE_IOURING 0
506# endif
507#endif
508
290#if EV_USE_INOTIFY 509#if EV_USE_INOTIFY
291# include <sys/utsname.h> 510# include <sys/statfs.h>
292# include <sys/inotify.h> 511# include <sys/inotify.h>
293/* some very old inotify.h headers don't have IN_DONT_FOLLOW */ 512/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
294# ifndef IN_DONT_FOLLOW 513# ifndef IN_DONT_FOLLOW
295# undef EV_USE_INOTIFY 514# undef EV_USE_INOTIFY
296# define EV_USE_INOTIFY 0 515# define EV_USE_INOTIFY 0
297# endif 516# endif
298#endif 517#endif
299 518
300#if EV_SELECT_IS_WINSOCKET
301# include <winsock.h>
302#endif
303
304#if EV_USE_EVENTFD 519#if EV_USE_EVENTFD
305/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 520/* our minimum requirement is glibc 2.7 which has the stub, but not the full header */
306# include <stdint.h> 521# include <stdint.h>
307# ifdef __cplusplus 522# ifndef EFD_NONBLOCK
308extern "C" { 523# define EFD_NONBLOCK O_NONBLOCK
309# endif 524# endif
310int eventfd (unsigned int initval, int flags); 525# ifndef EFD_CLOEXEC
311# ifdef __cplusplus 526# ifdef O_CLOEXEC
312} 527# define EFD_CLOEXEC O_CLOEXEC
528# else
529# define EFD_CLOEXEC 02000000
530# endif
313# endif 531# endif
532EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
533#endif
534
535#if EV_USE_SIGNALFD
536/* our minimum requirement is glibc 2.7 which has the stub, but not the full header */
537# include <stdint.h>
538# ifndef SFD_NONBLOCK
539# define SFD_NONBLOCK O_NONBLOCK
314#endif 540# endif
541# ifndef SFD_CLOEXEC
542# ifdef O_CLOEXEC
543# define SFD_CLOEXEC O_CLOEXEC
544# else
545# define SFD_CLOEXEC 02000000
546# endif
547# endif
548EV_CPP (extern "C") int (signalfd) (int fd, const sigset_t *mask, int flags);
315 549
316/**/ 550struct signalfd_siginfo
551{
552 uint32_t ssi_signo;
553 char pad[128 - sizeof (uint32_t)];
554};
555#endif
556
557/* for timerfd, libev core requires TFD_TIMER_CANCEL_ON_SET &c */
558#if EV_USE_TIMERFD
559# include <sys/timerfd.h>
560/* timerfd is only used for periodics */
561# if !(defined (TFD_TIMER_CANCEL_ON_SET) && defined (TFD_CLOEXEC) && defined (TFD_NONBLOCK)) || !EV_PERIODIC_ENABLE
562# undef EV_USE_TIMERFD
563# define EV_USE_TIMERFD 0
564# endif
565#endif
566
567/*****************************************************************************/
317 568
318#if EV_VERIFY >= 3 569#if EV_VERIFY >= 3
319# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 570# define EV_FREQUENT_CHECK ev_verify (EV_A)
320#else 571#else
321# define EV_FREQUENT_CHECK do { } while (0) 572# define EV_FREQUENT_CHECK do { } while (0)
322#endif 573#endif
323 574
324/* 575/*
325 * This is used to avoid floating point rounding problems. 576 * This is used to work around floating point rounding problems.
326 * It is added to ev_rt_now when scheduling periodics
327 * to ensure progress, time-wise, even when rounding
328 * errors are against us.
329 * This value is good at least till the year 4000. 577 * This value is good at least till the year 4000.
330 * Better solutions welcome.
331 */ 578 */
332#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 579#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
580/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
333 581
334#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 582#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
335#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 583#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
336/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
337 584
585/* find a portable timestamp that is "always" in the future but fits into time_t.
586 * this is quite hard, and we are mostly guessing - we handle 32 bit signed/unsigned time_t,
587 * and sizes larger than 32 bit, and maybe the unlikely floating point time_t */
588#define EV_TSTAMP_HUGE \
589 (sizeof (time_t) >= 8 ? 10000000000000. \
590 : 0 < (time_t)4294967295 ? 4294967295. \
591 : 2147483647.) \
592
593#ifndef EV_TS_CONST
594# define EV_TS_CONST(nv) nv
595# define EV_TS_TO_MSEC(a) a * 1e3 + 0.9999
596# define EV_TS_FROM_USEC(us) us * 1e-6
597# define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
598# define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
599# define EV_TV_GET(tv) ((tv).tv_sec + (tv).tv_usec * 1e-6)
600# define EV_TS_GET(ts) ((ts).tv_sec + (ts).tv_nsec * 1e-9)
601#endif
602
603/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
604/* ECB.H BEGIN */
605/*
606 * libecb - http://software.schmorp.de/pkg/libecb
607 *
608 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
609 * Copyright (©) 2011 Emanuele Giaquinta
610 * All rights reserved.
611 *
612 * Redistribution and use in source and binary forms, with or without modifica-
613 * tion, are permitted provided that the following conditions are met:
614 *
615 * 1. Redistributions of source code must retain the above copyright notice,
616 * this list of conditions and the following disclaimer.
617 *
618 * 2. Redistributions in binary form must reproduce the above copyright
619 * notice, this list of conditions and the following disclaimer in the
620 * documentation and/or other materials provided with the distribution.
621 *
622 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
623 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
624 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
625 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
626 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
627 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
628 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
629 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
630 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
631 * OF THE POSSIBILITY OF SUCH DAMAGE.
632 *
633 * Alternatively, the contents of this file may be used under the terms of
634 * the GNU General Public License ("GPL") version 2 or any later version,
635 * in which case the provisions of the GPL are applicable instead of
636 * the above. If you wish to allow the use of your version of this file
637 * only under the terms of the GPL and not to allow others to use your
638 * version of this file under the BSD license, indicate your decision
639 * by deleting the provisions above and replace them with the notice
640 * and other provisions required by the GPL. If you do not delete the
641 * provisions above, a recipient may use your version of this file under
642 * either the BSD or the GPL.
643 */
644
645#ifndef ECB_H
646#define ECB_H
647
648/* 16 bits major, 16 bits minor */
649#define ECB_VERSION 0x00010006
650
651#ifdef _WIN32
652 typedef signed char int8_t;
653 typedef unsigned char uint8_t;
654 typedef signed short int16_t;
655 typedef unsigned short uint16_t;
656 typedef signed int int32_t;
657 typedef unsigned int uint32_t;
338#if __GNUC__ >= 4 658 #if __GNUC__
339# define expect(expr,value) __builtin_expect ((expr),(value)) 659 typedef signed long long int64_t;
340# define noinline __attribute__ ((noinline)) 660 typedef unsigned long long uint64_t;
661 #else /* _MSC_VER || __BORLANDC__ */
662 typedef signed __int64 int64_t;
663 typedef unsigned __int64 uint64_t;
664 #endif
665 #ifdef _WIN64
666 #define ECB_PTRSIZE 8
667 typedef uint64_t uintptr_t;
668 typedef int64_t intptr_t;
669 #else
670 #define ECB_PTRSIZE 4
671 typedef uint32_t uintptr_t;
672 typedef int32_t intptr_t;
673 #endif
341#else 674#else
342# define expect(expr,value) (expr) 675 #include <inttypes.h>
343# define noinline 676 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
344# if __STDC_VERSION__ < 199901L && __GNUC__ < 2 677 #define ECB_PTRSIZE 8
345# define inline 678 #else
679 #define ECB_PTRSIZE 4
680 #endif
346# endif 681#endif
682
683#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
684#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
685
686/* work around x32 idiocy by defining proper macros */
687#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
688 #if _ILP32
689 #define ECB_AMD64_X32 1
690 #else
691 #define ECB_AMD64 1
347#endif 692 #endif
693#endif
348 694
349#define expect_false(expr) expect ((expr) != 0, 0) 695/* many compilers define _GNUC_ to some versions but then only implement
350#define expect_true(expr) expect ((expr) != 0, 1) 696 * what their idiot authors think are the "more important" extensions,
351#define inline_size static inline 697 * causing enormous grief in return for some better fake benchmark numbers.
352 698 * or so.
353#if EV_MINIMAL 699 * we try to detect these and simply assume they are not gcc - if they have
354# define inline_speed static noinline 700 * an issue with that they should have done it right in the first place.
701 */
702#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
703 #define ECB_GCC_VERSION(major,minor) 0
355#else 704#else
705 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
706#endif
707
708#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
709
710#if __clang__ && defined __has_builtin
711 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
712#else
713 #define ECB_CLANG_BUILTIN(x) 0
714#endif
715
716#if __clang__ && defined __has_extension
717 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
718#else
719 #define ECB_CLANG_EXTENSION(x) 0
720#endif
721
722#define ECB_CPP (__cplusplus+0)
723#define ECB_CPP11 (__cplusplus >= 201103L)
724#define ECB_CPP14 (__cplusplus >= 201402L)
725#define ECB_CPP17 (__cplusplus >= 201703L)
726
727#if ECB_CPP
728 #define ECB_C 0
729 #define ECB_STDC_VERSION 0
730#else
731 #define ECB_C 1
732 #define ECB_STDC_VERSION __STDC_VERSION__
733#endif
734
735#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
736#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
737#define ECB_C17 (ECB_STDC_VERSION >= 201710L)
738
739#if ECB_CPP
740 #define ECB_EXTERN_C extern "C"
741 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
742 #define ECB_EXTERN_C_END }
743#else
744 #define ECB_EXTERN_C extern
745 #define ECB_EXTERN_C_BEG
746 #define ECB_EXTERN_C_END
747#endif
748
749/*****************************************************************************/
750
751/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
752/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
753
754#if ECB_NO_THREADS
755 #define ECB_NO_SMP 1
756#endif
757
758#if ECB_NO_SMP
759 #define ECB_MEMORY_FENCE do { } while (0)
760#endif
761
762/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
763#if __xlC__ && ECB_CPP
764 #include <builtins.h>
765#endif
766
767#if 1400 <= _MSC_VER
768 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
769#endif
770
771#ifndef ECB_MEMORY_FENCE
772 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
773 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
774 #if __i386 || __i386__
775 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
776 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
777 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
778 #elif ECB_GCC_AMD64
779 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
780 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
781 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
782 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
783 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
784 #elif defined __ARM_ARCH_2__ \
785 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
786 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
787 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
788 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
789 || defined __ARM_ARCH_5TEJ__
790 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
791 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
792 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
793 || defined __ARM_ARCH_6T2__
794 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
795 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
796 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
797 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
798 #elif __aarch64__
799 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
800 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
801 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
802 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
803 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
804 #elif defined __s390__ || defined __s390x__
805 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
806 #elif defined __mips__
807 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
808 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
809 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
810 #elif defined __alpha__
811 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
812 #elif defined __hppa__
813 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
814 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
815 #elif defined __ia64__
816 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
817 #elif defined __m68k__
818 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
819 #elif defined __m88k__
820 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
821 #elif defined __sh__
822 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
823 #endif
824 #endif
825#endif
826
827#ifndef ECB_MEMORY_FENCE
828 #if ECB_GCC_VERSION(4,7)
829 /* see comment below (stdatomic.h) about the C11 memory model. */
830 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
831 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
832 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
833 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
834
835 #elif ECB_CLANG_EXTENSION(c_atomic)
836 /* see comment below (stdatomic.h) about the C11 memory model. */
837 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
838 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
839 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
840 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
841
842 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
843 #define ECB_MEMORY_FENCE __sync_synchronize ()
844 #elif _MSC_VER >= 1500 /* VC++ 2008 */
845 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
846 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
847 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
848 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
849 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
850 #elif _MSC_VER >= 1400 /* VC++ 2005 */
851 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
852 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
853 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
854 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
855 #elif defined _WIN32
856 #include <WinNT.h>
857 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
858 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
859 #include <mbarrier.h>
860 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
861 #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
862 #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
863 #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
864 #elif __xlC__
865 #define ECB_MEMORY_FENCE __sync ()
866 #endif
867#endif
868
869#ifndef ECB_MEMORY_FENCE
870 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
871 /* we assume that these memory fences work on all variables/all memory accesses, */
872 /* not just C11 atomics and atomic accesses */
873 #include <stdatomic.h>
874 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
875 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
876 #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
877 #endif
878#endif
879
880#ifndef ECB_MEMORY_FENCE
881 #if !ECB_AVOID_PTHREADS
882 /*
883 * if you get undefined symbol references to pthread_mutex_lock,
884 * or failure to find pthread.h, then you should implement
885 * the ECB_MEMORY_FENCE operations for your cpu/compiler
886 * OR provide pthread.h and link against the posix thread library
887 * of your system.
888 */
889 #include <pthread.h>
890 #define ECB_NEEDS_PTHREADS 1
891 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
892
893 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
894 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
895 #endif
896#endif
897
898#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
899 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
900#endif
901
902#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
903 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
904#endif
905
906#if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
907 #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
908#endif
909
910/*****************************************************************************/
911
912#if ECB_CPP
913 #define ecb_inline static inline
914#elif ECB_GCC_VERSION(2,5)
915 #define ecb_inline static __inline__
916#elif ECB_C99
917 #define ecb_inline static inline
918#else
919 #define ecb_inline static
920#endif
921
922#if ECB_GCC_VERSION(3,3)
923 #define ecb_restrict __restrict__
924#elif ECB_C99
925 #define ecb_restrict restrict
926#else
927 #define ecb_restrict
928#endif
929
930typedef int ecb_bool;
931
932#define ECB_CONCAT_(a, b) a ## b
933#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
934#define ECB_STRINGIFY_(a) # a
935#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
936#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
937
938#define ecb_function_ ecb_inline
939
940#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
941 #define ecb_attribute(attrlist) __attribute__ (attrlist)
942#else
943 #define ecb_attribute(attrlist)
944#endif
945
946#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
947 #define ecb_is_constant(expr) __builtin_constant_p (expr)
948#else
949 /* possible C11 impl for integral types
950 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
951 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
952
953 #define ecb_is_constant(expr) 0
954#endif
955
956#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
957 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
958#else
959 #define ecb_expect(expr,value) (expr)
960#endif
961
962#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
963 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
964#else
965 #define ecb_prefetch(addr,rw,locality)
966#endif
967
968/* no emulation for ecb_decltype */
969#if ECB_CPP11
970 // older implementations might have problems with decltype(x)::type, work around it
971 template<class T> struct ecb_decltype_t { typedef T type; };
972 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
973#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
974 #define ecb_decltype(x) __typeof__ (x)
975#endif
976
977#if _MSC_VER >= 1300
978 #define ecb_deprecated __declspec (deprecated)
979#else
980 #define ecb_deprecated ecb_attribute ((__deprecated__))
981#endif
982
983#if _MSC_VER >= 1500
984 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
985#elif ECB_GCC_VERSION(4,5)
986 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
987#else
988 #define ecb_deprecated_message(msg) ecb_deprecated
989#endif
990
991#if _MSC_VER >= 1400
992 #define ecb_noinline __declspec (noinline)
993#else
994 #define ecb_noinline ecb_attribute ((__noinline__))
995#endif
996
997#define ecb_unused ecb_attribute ((__unused__))
998#define ecb_const ecb_attribute ((__const__))
999#define ecb_pure ecb_attribute ((__pure__))
1000
1001#if ECB_C11 || __IBMC_NORETURN
1002 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
1003 #define ecb_noreturn _Noreturn
1004#elif ECB_CPP11
1005 #define ecb_noreturn [[noreturn]]
1006#elif _MSC_VER >= 1200
1007 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
1008 #define ecb_noreturn __declspec (noreturn)
1009#else
1010 #define ecb_noreturn ecb_attribute ((__noreturn__))
1011#endif
1012
1013#if ECB_GCC_VERSION(4,3)
1014 #define ecb_artificial ecb_attribute ((__artificial__))
1015 #define ecb_hot ecb_attribute ((__hot__))
1016 #define ecb_cold ecb_attribute ((__cold__))
1017#else
1018 #define ecb_artificial
1019 #define ecb_hot
1020 #define ecb_cold
1021#endif
1022
1023/* put around conditional expressions if you are very sure that the */
1024/* expression is mostly true or mostly false. note that these return */
1025/* booleans, not the expression. */
1026#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
1027#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
1028/* for compatibility to the rest of the world */
1029#define ecb_likely(expr) ecb_expect_true (expr)
1030#define ecb_unlikely(expr) ecb_expect_false (expr)
1031
1032/* count trailing zero bits and count # of one bits */
1033#if ECB_GCC_VERSION(3,4) \
1034 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
1035 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
1036 && ECB_CLANG_BUILTIN(__builtin_popcount))
1037 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
1038 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
1039 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
1040 #define ecb_ctz32(x) __builtin_ctz (x)
1041 #define ecb_ctz64(x) __builtin_ctzll (x)
1042 #define ecb_popcount32(x) __builtin_popcount (x)
1043 /* no popcountll */
1044#else
1045 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
1046 ecb_function_ ecb_const int
1047 ecb_ctz32 (uint32_t x)
1048 {
1049#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1050 unsigned long r;
1051 _BitScanForward (&r, x);
1052 return (int)r;
1053#else
1054 int r = 0;
1055
1056 x &= ~x + 1; /* this isolates the lowest bit */
1057
1058#if ECB_branchless_on_i386
1059 r += !!(x & 0xaaaaaaaa) << 0;
1060 r += !!(x & 0xcccccccc) << 1;
1061 r += !!(x & 0xf0f0f0f0) << 2;
1062 r += !!(x & 0xff00ff00) << 3;
1063 r += !!(x & 0xffff0000) << 4;
1064#else
1065 if (x & 0xaaaaaaaa) r += 1;
1066 if (x & 0xcccccccc) r += 2;
1067 if (x & 0xf0f0f0f0) r += 4;
1068 if (x & 0xff00ff00) r += 8;
1069 if (x & 0xffff0000) r += 16;
1070#endif
1071
1072 return r;
1073#endif
1074 }
1075
1076 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
1077 ecb_function_ ecb_const int
1078 ecb_ctz64 (uint64_t x)
1079 {
1080#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1081 unsigned long r;
1082 _BitScanForward64 (&r, x);
1083 return (int)r;
1084#else
1085 int shift = x & 0xffffffff ? 0 : 32;
1086 return ecb_ctz32 (x >> shift) + shift;
1087#endif
1088 }
1089
1090 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1091 ecb_function_ ecb_const int
1092 ecb_popcount32 (uint32_t x)
1093 {
1094 x -= (x >> 1) & 0x55555555;
1095 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1096 x = ((x >> 4) + x) & 0x0f0f0f0f;
1097 x *= 0x01010101;
1098
1099 return x >> 24;
1100 }
1101
1102 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1103 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1104 {
1105#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1106 unsigned long r;
1107 _BitScanReverse (&r, x);
1108 return (int)r;
1109#else
1110 int r = 0;
1111
1112 if (x >> 16) { x >>= 16; r += 16; }
1113 if (x >> 8) { x >>= 8; r += 8; }
1114 if (x >> 4) { x >>= 4; r += 4; }
1115 if (x >> 2) { x >>= 2; r += 2; }
1116 if (x >> 1) { r += 1; }
1117
1118 return r;
1119#endif
1120 }
1121
1122 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1123 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1124 {
1125#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1126 unsigned long r;
1127 _BitScanReverse64 (&r, x);
1128 return (int)r;
1129#else
1130 int r = 0;
1131
1132 if (x >> 32) { x >>= 32; r += 32; }
1133
1134 return r + ecb_ld32 (x);
1135#endif
1136 }
1137#endif
1138
1139ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1140ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1141ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1142ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1143
1144ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1145ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1146{
1147 return ( (x * 0x0802U & 0x22110U)
1148 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1149}
1150
1151ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1152ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1153{
1154 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1155 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1156 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1157 x = ( x >> 8 ) | ( x << 8);
1158
1159 return x;
1160}
1161
1162ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1163ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1164{
1165 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1166 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1167 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1168 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1169 x = ( x >> 16 ) | ( x << 16);
1170
1171 return x;
1172}
1173
1174/* popcount64 is only available on 64 bit cpus as gcc builtin */
1175/* so for this version we are lazy */
1176ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1177ecb_function_ ecb_const int
1178ecb_popcount64 (uint64_t x)
1179{
1180 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1181}
1182
1183ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1184ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1185ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1186ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1187ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1188ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1189ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1190ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1191
1192ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1193ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1194ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1195ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1196ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1197ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1198ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1199ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1200
1201#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1202 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1203 #define ecb_bswap16(x) __builtin_bswap16 (x)
1204 #else
1205 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1206 #endif
1207 #define ecb_bswap32(x) __builtin_bswap32 (x)
1208 #define ecb_bswap64(x) __builtin_bswap64 (x)
1209#elif _MSC_VER
1210 #include <stdlib.h>
1211 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1212 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1213 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1214#else
1215 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1216 ecb_function_ ecb_const uint16_t
1217 ecb_bswap16 (uint16_t x)
1218 {
1219 return ecb_rotl16 (x, 8);
1220 }
1221
1222 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1223 ecb_function_ ecb_const uint32_t
1224 ecb_bswap32 (uint32_t x)
1225 {
1226 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1227 }
1228
1229 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1230 ecb_function_ ecb_const uint64_t
1231 ecb_bswap64 (uint64_t x)
1232 {
1233 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1234 }
1235#endif
1236
1237#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1238 #define ecb_unreachable() __builtin_unreachable ()
1239#else
1240 /* this seems to work fine, but gcc always emits a warning for it :/ */
1241 ecb_inline ecb_noreturn void ecb_unreachable (void);
1242 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1243#endif
1244
1245/* try to tell the compiler that some condition is definitely true */
1246#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1247
1248ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1249ecb_inline ecb_const uint32_t
1250ecb_byteorder_helper (void)
1251{
1252 /* the union code still generates code under pressure in gcc, */
1253 /* but less than using pointers, and always seems to */
1254 /* successfully return a constant. */
1255 /* the reason why we have this horrible preprocessor mess */
1256 /* is to avoid it in all cases, at least on common architectures */
1257 /* or when using a recent enough gcc version (>= 4.6) */
1258#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1259 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1260 #define ECB_LITTLE_ENDIAN 1
1261 return 0x44332211;
1262#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1263 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1264 #define ECB_BIG_ENDIAN 1
1265 return 0x11223344;
1266#else
1267 union
1268 {
1269 uint8_t c[4];
1270 uint32_t u;
1271 } u = { 0x11, 0x22, 0x33, 0x44 };
1272 return u.u;
1273#endif
1274}
1275
1276ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1277ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1278ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1279ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1280
1281#if ECB_GCC_VERSION(3,0) || ECB_C99
1282 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1283#else
1284 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1285#endif
1286
1287#if ECB_CPP
1288 template<typename T>
1289 static inline T ecb_div_rd (T val, T div)
1290 {
1291 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1292 }
1293 template<typename T>
1294 static inline T ecb_div_ru (T val, T div)
1295 {
1296 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1297 }
1298#else
1299 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1300 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1301#endif
1302
1303#if ecb_cplusplus_does_not_suck
1304 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1305 template<typename T, int N>
1306 static inline int ecb_array_length (const T (&arr)[N])
1307 {
1308 return N;
1309 }
1310#else
1311 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1312#endif
1313
1314ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1315ecb_function_ ecb_const uint32_t
1316ecb_binary16_to_binary32 (uint32_t x)
1317{
1318 unsigned int s = (x & 0x8000) << (31 - 15);
1319 int e = (x >> 10) & 0x001f;
1320 unsigned int m = x & 0x03ff;
1321
1322 if (ecb_expect_false (e == 31))
1323 /* infinity or NaN */
1324 e = 255 - (127 - 15);
1325 else if (ecb_expect_false (!e))
1326 {
1327 if (ecb_expect_true (!m))
1328 /* zero, handled by code below by forcing e to 0 */
1329 e = 0 - (127 - 15);
1330 else
1331 {
1332 /* subnormal, renormalise */
1333 unsigned int s = 10 - ecb_ld32 (m);
1334
1335 m = (m << s) & 0x3ff; /* mask implicit bit */
1336 e -= s - 1;
1337 }
1338 }
1339
1340 /* e and m now are normalised, or zero, (or inf or nan) */
1341 e += 127 - 15;
1342
1343 return s | (e << 23) | (m << (23 - 10));
1344}
1345
1346ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1347ecb_function_ ecb_const uint16_t
1348ecb_binary32_to_binary16 (uint32_t x)
1349{
1350 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1351 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1352 unsigned int m = x & 0x007fffff;
1353
1354 x &= 0x7fffffff;
1355
1356 /* if it's within range of binary16 normals, use fast path */
1357 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1358 {
1359 /* mantissa round-to-even */
1360 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1361
1362 /* handle overflow */
1363 if (ecb_expect_false (m >= 0x00800000))
1364 {
1365 m >>= 1;
1366 e += 1;
1367 }
1368
1369 return s | (e << 10) | (m >> (23 - 10));
1370 }
1371
1372 /* handle large numbers and infinity */
1373 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1374 return s | 0x7c00;
1375
1376 /* handle zero, subnormals and small numbers */
1377 if (ecb_expect_true (x < 0x38800000))
1378 {
1379 /* zero */
1380 if (ecb_expect_true (!x))
1381 return s;
1382
1383 /* handle subnormals */
1384
1385 /* too small, will be zero */
1386 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1387 return s;
1388
1389 m |= 0x00800000; /* make implicit bit explicit */
1390
1391 /* very tricky - we need to round to the nearest e (+10) bit value */
1392 {
1393 unsigned int bits = 14 - e;
1394 unsigned int half = (1 << (bits - 1)) - 1;
1395 unsigned int even = (m >> bits) & 1;
1396
1397 /* if this overflows, we will end up with a normalised number */
1398 m = (m + half + even) >> bits;
1399 }
1400
1401 return s | m;
1402 }
1403
1404 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1405 m >>= 13;
1406
1407 return s | 0x7c00 | m | !m;
1408}
1409
1410/*******************************************************************************/
1411/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1412
1413/* basically, everything uses "ieee pure-endian" floating point numbers */
1414/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1415#if 0 \
1416 || __i386 || __i386__ \
1417 || ECB_GCC_AMD64 \
1418 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1419 || defined __s390__ || defined __s390x__ \
1420 || defined __mips__ \
1421 || defined __alpha__ \
1422 || defined __hppa__ \
1423 || defined __ia64__ \
1424 || defined __m68k__ \
1425 || defined __m88k__ \
1426 || defined __sh__ \
1427 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1428 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1429 || defined __aarch64__
1430 #define ECB_STDFP 1
1431 #include <string.h> /* for memcpy */
1432#else
1433 #define ECB_STDFP 0
1434#endif
1435
1436#ifndef ECB_NO_LIBM
1437
1438 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1439
1440 /* only the oldest of old doesn't have this one. solaris. */
1441 #ifdef INFINITY
1442 #define ECB_INFINITY INFINITY
1443 #else
1444 #define ECB_INFINITY HUGE_VAL
1445 #endif
1446
1447 #ifdef NAN
1448 #define ECB_NAN NAN
1449 #else
1450 #define ECB_NAN ECB_INFINITY
1451 #endif
1452
1453 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1454 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1455 #define ecb_frexpf(x,e) frexpf ((x), (e))
1456 #else
1457 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1458 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1459 #endif
1460
1461 /* convert a float to ieee single/binary32 */
1462 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1463 ecb_function_ ecb_const uint32_t
1464 ecb_float_to_binary32 (float x)
1465 {
1466 uint32_t r;
1467
1468 #if ECB_STDFP
1469 memcpy (&r, &x, 4);
1470 #else
1471 /* slow emulation, works for anything but -0 */
1472 uint32_t m;
1473 int e;
1474
1475 if (x == 0e0f ) return 0x00000000U;
1476 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1477 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1478 if (x != x ) return 0x7fbfffffU;
1479
1480 m = ecb_frexpf (x, &e) * 0x1000000U;
1481
1482 r = m & 0x80000000U;
1483
1484 if (r)
1485 m = -m;
1486
1487 if (e <= -126)
1488 {
1489 m &= 0xffffffU;
1490 m >>= (-125 - e);
1491 e = -126;
1492 }
1493
1494 r |= (e + 126) << 23;
1495 r |= m & 0x7fffffU;
1496 #endif
1497
1498 return r;
1499 }
1500
1501 /* converts an ieee single/binary32 to a float */
1502 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1503 ecb_function_ ecb_const float
1504 ecb_binary32_to_float (uint32_t x)
1505 {
1506 float r;
1507
1508 #if ECB_STDFP
1509 memcpy (&r, &x, 4);
1510 #else
1511 /* emulation, only works for normals and subnormals and +0 */
1512 int neg = x >> 31;
1513 int e = (x >> 23) & 0xffU;
1514
1515 x &= 0x7fffffU;
1516
1517 if (e)
1518 x |= 0x800000U;
1519 else
1520 e = 1;
1521
1522 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1523 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1524
1525 r = neg ? -r : r;
1526 #endif
1527
1528 return r;
1529 }
1530
1531 /* convert a double to ieee double/binary64 */
1532 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1533 ecb_function_ ecb_const uint64_t
1534 ecb_double_to_binary64 (double x)
1535 {
1536 uint64_t r;
1537
1538 #if ECB_STDFP
1539 memcpy (&r, &x, 8);
1540 #else
1541 /* slow emulation, works for anything but -0 */
1542 uint64_t m;
1543 int e;
1544
1545 if (x == 0e0 ) return 0x0000000000000000U;
1546 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1547 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1548 if (x != x ) return 0X7ff7ffffffffffffU;
1549
1550 m = frexp (x, &e) * 0x20000000000000U;
1551
1552 r = m & 0x8000000000000000;;
1553
1554 if (r)
1555 m = -m;
1556
1557 if (e <= -1022)
1558 {
1559 m &= 0x1fffffffffffffU;
1560 m >>= (-1021 - e);
1561 e = -1022;
1562 }
1563
1564 r |= ((uint64_t)(e + 1022)) << 52;
1565 r |= m & 0xfffffffffffffU;
1566 #endif
1567
1568 return r;
1569 }
1570
1571 /* converts an ieee double/binary64 to a double */
1572 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1573 ecb_function_ ecb_const double
1574 ecb_binary64_to_double (uint64_t x)
1575 {
1576 double r;
1577
1578 #if ECB_STDFP
1579 memcpy (&r, &x, 8);
1580 #else
1581 /* emulation, only works for normals and subnormals and +0 */
1582 int neg = x >> 63;
1583 int e = (x >> 52) & 0x7ffU;
1584
1585 x &= 0xfffffffffffffU;
1586
1587 if (e)
1588 x |= 0x10000000000000U;
1589 else
1590 e = 1;
1591
1592 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1593 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1594
1595 r = neg ? -r : r;
1596 #endif
1597
1598 return r;
1599 }
1600
1601 /* convert a float to ieee half/binary16 */
1602 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1603 ecb_function_ ecb_const uint16_t
1604 ecb_float_to_binary16 (float x)
1605 {
1606 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1607 }
1608
1609 /* convert an ieee half/binary16 to float */
1610 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1611 ecb_function_ ecb_const float
1612 ecb_binary16_to_float (uint16_t x)
1613 {
1614 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1615 }
1616
1617#endif
1618
1619#endif
1620
1621/* ECB.H END */
1622
1623#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1624/* if your architecture doesn't need memory fences, e.g. because it is
1625 * single-cpu/core, or if you use libev in a project that doesn't use libev
1626 * from multiple threads, then you can define ECB_NO_THREADS when compiling
1627 * libev, in which cases the memory fences become nops.
1628 * alternatively, you can remove this #error and link against libpthread,
1629 * which will then provide the memory fences.
1630 */
1631# error "memory fences not defined for your architecture, please report"
1632#endif
1633
1634#ifndef ECB_MEMORY_FENCE
1635# define ECB_MEMORY_FENCE do { } while (0)
1636# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1637# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1638#endif
1639
1640#define inline_size ecb_inline
1641
1642#if EV_FEATURE_CODE
356# define inline_speed static inline 1643# define inline_speed ecb_inline
1644#else
1645# define inline_speed ecb_noinline static
357#endif 1646#endif
358 1647
1648/*****************************************************************************/
1649/* raw syscall wrappers */
1650
1651#if EV_NEED_SYSCALL
1652
1653#include <sys/syscall.h>
1654
1655/*
1656 * define some syscall wrappers for common architectures
1657 * this is mostly for nice looks during debugging, not performance.
1658 * our syscalls return < 0, not == -1, on error. which is good
1659 * enough for linux aio.
1660 * TODO: arm is also common nowadays, maybe even mips and x86
1661 * TODO: after implementing this, it suddenly looks like overkill, but its hard to remove...
1662 */
1663#if __GNUC__ && __linux && ECB_AMD64 && !defined __OPTIMIZE_SIZE__
1664 /* the costly errno access probably kills this for size optimisation */
1665
1666 #define ev_syscall(nr,narg,arg1,arg2,arg3,arg4,arg5,arg6) \
1667 ({ \
1668 long res; \
1669 register unsigned long r6 __asm__ ("r9" ); \
1670 register unsigned long r5 __asm__ ("r8" ); \
1671 register unsigned long r4 __asm__ ("r10"); \
1672 register unsigned long r3 __asm__ ("rdx"); \
1673 register unsigned long r2 __asm__ ("rsi"); \
1674 register unsigned long r1 __asm__ ("rdi"); \
1675 if (narg >= 6) r6 = (unsigned long)(arg6); \
1676 if (narg >= 5) r5 = (unsigned long)(arg5); \
1677 if (narg >= 4) r4 = (unsigned long)(arg4); \
1678 if (narg >= 3) r3 = (unsigned long)(arg3); \
1679 if (narg >= 2) r2 = (unsigned long)(arg2); \
1680 if (narg >= 1) r1 = (unsigned long)(arg1); \
1681 __asm__ __volatile__ ( \
1682 "syscall\n\t" \
1683 : "=a" (res) \
1684 : "0" (nr), "r" (r1), "r" (r2), "r" (r3), "r" (r4), "r" (r5) \
1685 : "cc", "r11", "cx", "memory"); \
1686 errno = -res; \
1687 res; \
1688 })
1689
1690#endif
1691
1692#ifdef ev_syscall
1693 #define ev_syscall0(nr) ev_syscall (nr, 0, 0, 0, 0, 0, 0, 0)
1694 #define ev_syscall1(nr,arg1) ev_syscall (nr, 1, arg1, 0, 0, 0, 0, 0)
1695 #define ev_syscall2(nr,arg1,arg2) ev_syscall (nr, 2, arg1, arg2, 0, 0, 0, 0)
1696 #define ev_syscall3(nr,arg1,arg2,arg3) ev_syscall (nr, 3, arg1, arg2, arg3, 0, 0, 0)
1697 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) ev_syscall (nr, 3, arg1, arg2, arg3, arg4, 0, 0)
1698 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) ev_syscall (nr, 5, arg1, arg2, arg3, arg4, arg5, 0)
1699 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) ev_syscall (nr, 6, arg1, arg2, arg3, arg4, arg5,arg6)
1700#else
1701 #define ev_syscall0(nr) syscall (nr)
1702 #define ev_syscall1(nr,arg1) syscall (nr, arg1)
1703 #define ev_syscall2(nr,arg1,arg2) syscall (nr, arg1, arg2)
1704 #define ev_syscall3(nr,arg1,arg2,arg3) syscall (nr, arg1, arg2, arg3)
1705 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) syscall (nr, arg1, arg2, arg3, arg4)
1706 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) syscall (nr, arg1, arg2, arg3, arg4, arg5)
1707 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) syscall (nr, arg1, arg2, arg3, arg4, arg5,arg6)
1708#endif
1709
1710#endif
1711
1712/*****************************************************************************/
1713
359#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1714#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1715
1716#if EV_MINPRI == EV_MAXPRI
1717# define ABSPRI(w) (((W)w), 0)
1718#else
360#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1719# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1720#endif
361 1721
362#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1722#define EMPTY /* required for microsofts broken pseudo-c compiler */
363#define EMPTY2(a,b) /* used to suppress some warnings */
364 1723
365typedef ev_watcher *W; 1724typedef ev_watcher *W;
366typedef ev_watcher_list *WL; 1725typedef ev_watcher_list *WL;
367typedef ev_watcher_time *WT; 1726typedef ev_watcher_time *WT;
368 1727
369#define ev_active(w) ((W)(w))->active 1728#define ev_active(w) ((W)(w))->active
370#define ev_at(w) ((WT)(w))->at 1729#define ev_at(w) ((WT)(w))->at
371 1730
1731#if EV_USE_REALTIME
1732/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1733/* giving it a reasonably high chance of working on typical architectures */
1734static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1735#endif
1736
372#if EV_USE_MONOTONIC 1737#if EV_USE_MONOTONIC
373/* sig_atomic_t is used to avoid per-thread variables or locking but still */
374/* giving it a reasonably high chance of working on typical architetcures */
375static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1738static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1739#endif
1740
1741#ifndef EV_FD_TO_WIN32_HANDLE
1742# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1743#endif
1744#ifndef EV_WIN32_HANDLE_TO_FD
1745# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1746#endif
1747#ifndef EV_WIN32_CLOSE_FD
1748# define EV_WIN32_CLOSE_FD(fd) close (fd)
376#endif 1749#endif
377 1750
378#ifdef _WIN32 1751#ifdef _WIN32
379# include "ev_win32.c" 1752# include "ev_win32.c"
380#endif 1753#endif
381 1754
382/*****************************************************************************/ 1755/*****************************************************************************/
383 1756
1757#if EV_USE_LINUXAIO
1758# include <linux/aio_abi.h> /* probably only needed for aio_context_t */
1759#endif
1760
1761/* define a suitable floor function (only used by periodics atm) */
1762
1763#if EV_USE_FLOOR
1764# include <math.h>
1765# define ev_floor(v) floor (v)
1766#else
1767
1768#include <float.h>
1769
1770/* a floor() replacement function, should be independent of ev_tstamp type */
1771ecb_noinline
1772static ev_tstamp
1773ev_floor (ev_tstamp v)
1774{
1775 /* the choice of shift factor is not terribly important */
1776#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1777 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1778#else
1779 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1780#endif
1781
1782 /* special treatment for negative arguments */
1783 if (ecb_expect_false (v < 0.))
1784 {
1785 ev_tstamp f = -ev_floor (-v);
1786
1787 return f - (f == v ? 0 : 1);
1788 }
1789
1790 /* argument too large for an unsigned long? then reduce it */
1791 if (ecb_expect_false (v >= shift))
1792 {
1793 ev_tstamp f;
1794
1795 if (v == v - 1.)
1796 return v; /* very large numbers are assumed to be integer */
1797
1798 f = shift * ev_floor (v * (1. / shift));
1799 return f + ev_floor (v - f);
1800 }
1801
1802 /* fits into an unsigned long */
1803 return (unsigned long)v;
1804}
1805
1806#endif
1807
1808/*****************************************************************************/
1809
1810#ifdef __linux
1811# include <sys/utsname.h>
1812#endif
1813
1814ecb_noinline ecb_cold
1815static unsigned int
1816ev_linux_version (void)
1817{
1818#ifdef __linux
1819 unsigned int v = 0;
1820 struct utsname buf;
1821 int i;
1822 char *p = buf.release;
1823
1824 if (uname (&buf))
1825 return 0;
1826
1827 for (i = 3+1; --i; )
1828 {
1829 unsigned int c = 0;
1830
1831 for (;;)
1832 {
1833 if (*p >= '0' && *p <= '9')
1834 c = c * 10 + *p++ - '0';
1835 else
1836 {
1837 p += *p == '.';
1838 break;
1839 }
1840 }
1841
1842 v = (v << 8) | c;
1843 }
1844
1845 return v;
1846#else
1847 return 0;
1848#endif
1849}
1850
1851/*****************************************************************************/
1852
1853#if EV_AVOID_STDIO
1854ecb_noinline ecb_cold
1855static void
1856ev_printerr (const char *msg)
1857{
1858 write (STDERR_FILENO, msg, strlen (msg));
1859}
1860#endif
1861
384static void (*syserr_cb)(const char *msg); 1862static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
385 1863
1864ecb_cold
386void 1865void
387ev_set_syserr_cb (void (*cb)(const char *msg)) 1866ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
388{ 1867{
389 syserr_cb = cb; 1868 syserr_cb = cb;
390} 1869}
391 1870
392static void noinline 1871ecb_noinline ecb_cold
1872static void
393syserr (const char *msg) 1873ev_syserr (const char *msg)
394{ 1874{
395 if (!msg) 1875 if (!msg)
396 msg = "(libev) system error"; 1876 msg = "(libev) system error";
397 1877
398 if (syserr_cb) 1878 if (syserr_cb)
399 syserr_cb (msg); 1879 syserr_cb (msg);
400 else 1880 else
401 { 1881 {
1882#if EV_AVOID_STDIO
1883 ev_printerr (msg);
1884 ev_printerr (": ");
1885 ev_printerr (strerror (errno));
1886 ev_printerr ("\n");
1887#else
402 perror (msg); 1888 perror (msg);
1889#endif
403 abort (); 1890 abort ();
404 } 1891 }
405} 1892}
406 1893
407static void * 1894static void *
408ev_realloc_emul (void *ptr, long size) 1895ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
409{ 1896{
410 /* some systems, notably openbsd and darwin, fail to properly 1897 /* some systems, notably openbsd and darwin, fail to properly
411 * implement realloc (x, 0) (as required by both ansi c-98 and 1898 * implement realloc (x, 0) (as required by both ansi c-89 and
412 * the single unix specification, so work around them here. 1899 * the single unix specification, so work around them here.
1900 * recently, also (at least) fedora and debian started breaking it,
1901 * despite documenting it otherwise.
413 */ 1902 */
414 1903
415 if (size) 1904 if (size)
416 return realloc (ptr, size); 1905 return realloc (ptr, size);
417 1906
418 free (ptr); 1907 free (ptr);
419 return 0; 1908 return 0;
420} 1909}
421 1910
422static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1911static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
423 1912
1913ecb_cold
424void 1914void
425ev_set_allocator (void *(*cb)(void *ptr, long size)) 1915ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
426{ 1916{
427 alloc = cb; 1917 alloc = cb;
428} 1918}
429 1919
430inline_speed void * 1920inline_speed void *
432{ 1922{
433 ptr = alloc (ptr, size); 1923 ptr = alloc (ptr, size);
434 1924
435 if (!ptr && size) 1925 if (!ptr && size)
436 { 1926 {
1927#if EV_AVOID_STDIO
1928 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1929#else
437 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1930 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1931#endif
438 abort (); 1932 abort ();
439 } 1933 }
440 1934
441 return ptr; 1935 return ptr;
442} 1936}
444#define ev_malloc(size) ev_realloc (0, (size)) 1938#define ev_malloc(size) ev_realloc (0, (size))
445#define ev_free(ptr) ev_realloc ((ptr), 0) 1939#define ev_free(ptr) ev_realloc ((ptr), 0)
446 1940
447/*****************************************************************************/ 1941/*****************************************************************************/
448 1942
1943/* set in reify when reification needed */
1944#define EV_ANFD_REIFY 1
1945
1946/* file descriptor info structure */
449typedef struct 1947typedef struct
450{ 1948{
451 WL head; 1949 WL head;
452 unsigned char events; 1950 unsigned char events; /* the events watched for */
453 unsigned char reify; 1951 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1952 unsigned char emask; /* some backends store the actual kernel mask in here */
1953 unsigned char eflags; /* flags field for use by backends */
1954#if EV_USE_EPOLL
1955 unsigned int egen; /* generation counter to counter epoll bugs */
1956#endif
454#if EV_SELECT_IS_WINSOCKET 1957#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
455 SOCKET handle; 1958 SOCKET handle;
456#endif 1959#endif
1960#if EV_USE_IOCP
1961 OVERLAPPED or, ow;
1962#endif
457} ANFD; 1963} ANFD;
458 1964
1965/* stores the pending event set for a given watcher */
459typedef struct 1966typedef struct
460{ 1967{
461 W w; 1968 W w;
462 int events; 1969 int events; /* the pending event set for the given watcher */
463} ANPENDING; 1970} ANPENDING;
464 1971
465#if EV_USE_INOTIFY 1972#if EV_USE_INOTIFY
466/* hash table entry per inotify-id */ 1973/* hash table entry per inotify-id */
467typedef struct 1974typedef struct
470} ANFS; 1977} ANFS;
471#endif 1978#endif
472 1979
473/* Heap Entry */ 1980/* Heap Entry */
474#if EV_HEAP_CACHE_AT 1981#if EV_HEAP_CACHE_AT
1982 /* a heap element */
475 typedef struct { 1983 typedef struct {
476 ev_tstamp at; 1984 ev_tstamp at;
477 WT w; 1985 WT w;
478 } ANHE; 1986 } ANHE;
479 1987
480 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1988 #define ANHE_w(he) (he).w /* access watcher, read-write */
481 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1989 #define ANHE_at(he) (he).at /* access cached at, read-only */
482 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 1990 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
483#else 1991#else
1992 /* a heap element */
484 typedef WT ANHE; 1993 typedef WT ANHE;
485 1994
486 #define ANHE_w(he) (he) 1995 #define ANHE_w(he) (he)
487 #define ANHE_at(he) (he)->at 1996 #define ANHE_at(he) (he)->at
488 #define ANHE_at_cache(he) 1997 #define ANHE_at_cache(he)
499 #undef VAR 2008 #undef VAR
500 }; 2009 };
501 #include "ev_wrap.h" 2010 #include "ev_wrap.h"
502 2011
503 static struct ev_loop default_loop_struct; 2012 static struct ev_loop default_loop_struct;
504 struct ev_loop *ev_default_loop_ptr; 2013 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
505 2014
506#else 2015#else
507 2016
508 ev_tstamp ev_rt_now; 2017 EV_API_DECL ev_tstamp ev_rt_now = EV_TS_CONST (0.); /* needs to be initialised to make it a definition despite extern */
509 #define VAR(name,decl) static decl; 2018 #define VAR(name,decl) static decl;
510 #include "ev_vars.h" 2019 #include "ev_vars.h"
511 #undef VAR 2020 #undef VAR
512 2021
513 static int ev_default_loop_ptr; 2022 static int ev_default_loop_ptr;
514 2023
515#endif 2024#endif
516 2025
2026#if EV_FEATURE_API
2027# define EV_RELEASE_CB if (ecb_expect_false (release_cb)) release_cb (EV_A)
2028# define EV_ACQUIRE_CB if (ecb_expect_false (acquire_cb)) acquire_cb (EV_A)
2029# define EV_INVOKE_PENDING invoke_cb (EV_A)
2030#else
2031# define EV_RELEASE_CB (void)0
2032# define EV_ACQUIRE_CB (void)0
2033# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
2034#endif
2035
2036#define EVBREAK_RECURSE 0x80
2037
517/*****************************************************************************/ 2038/*****************************************************************************/
518 2039
2040#ifndef EV_HAVE_EV_TIME
519ev_tstamp 2041ev_tstamp
520ev_time (void) 2042ev_time (void) EV_NOEXCEPT
521{ 2043{
522#if EV_USE_REALTIME 2044#if EV_USE_REALTIME
2045 if (ecb_expect_true (have_realtime))
2046 {
523 struct timespec ts; 2047 struct timespec ts;
524 clock_gettime (CLOCK_REALTIME, &ts); 2048 clock_gettime (CLOCK_REALTIME, &ts);
525 return ts.tv_sec + ts.tv_nsec * 1e-9; 2049 return EV_TS_GET (ts);
526#else 2050 }
2051#endif
2052
2053 {
527 struct timeval tv; 2054 struct timeval tv;
528 gettimeofday (&tv, 0); 2055 gettimeofday (&tv, 0);
529 return tv.tv_sec + tv.tv_usec * 1e-6; 2056 return EV_TV_GET (tv);
530#endif 2057 }
531} 2058}
2059#endif
532 2060
533ev_tstamp inline_size 2061inline_size ev_tstamp
534get_clock (void) 2062get_clock (void)
535{ 2063{
536#if EV_USE_MONOTONIC 2064#if EV_USE_MONOTONIC
537 if (expect_true (have_monotonic)) 2065 if (ecb_expect_true (have_monotonic))
538 { 2066 {
539 struct timespec ts; 2067 struct timespec ts;
540 clock_gettime (CLOCK_MONOTONIC, &ts); 2068 clock_gettime (CLOCK_MONOTONIC, &ts);
541 return ts.tv_sec + ts.tv_nsec * 1e-9; 2069 return EV_TS_GET (ts);
542 } 2070 }
543#endif 2071#endif
544 2072
545 return ev_time (); 2073 return ev_time ();
546} 2074}
547 2075
548#if EV_MULTIPLICITY 2076#if EV_MULTIPLICITY
549ev_tstamp 2077ev_tstamp
550ev_now (EV_P) 2078ev_now (EV_P) EV_NOEXCEPT
551{ 2079{
552 return ev_rt_now; 2080 return ev_rt_now;
553} 2081}
554#endif 2082#endif
555 2083
556void 2084void
557ev_sleep (ev_tstamp delay) 2085ev_sleep (ev_tstamp delay) EV_NOEXCEPT
558{ 2086{
559 if (delay > 0.) 2087 if (delay > EV_TS_CONST (0.))
560 { 2088 {
561#if EV_USE_NANOSLEEP 2089#if EV_USE_NANOSLEEP
562 struct timespec ts; 2090 struct timespec ts;
563 2091
564 ts.tv_sec = (time_t)delay; 2092 EV_TS_SET (ts, delay);
565 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
566
567 nanosleep (&ts, 0); 2093 nanosleep (&ts, 0);
568#elif defined(_WIN32) 2094#elif defined _WIN32
2095 /* maybe this should round up, as ms is very low resolution */
2096 /* compared to select (µs) or nanosleep (ns) */
569 Sleep ((unsigned long)(delay * 1e3)); 2097 Sleep ((unsigned long)(EV_TS_TO_MSEC (delay)));
570#else 2098#else
571 struct timeval tv; 2099 struct timeval tv;
572 2100
573 tv.tv_sec = (time_t)delay;
574 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
575
576 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 2101 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
577 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 2102 /* something not guaranteed by newer posix versions, but guaranteed */
578 /* by older ones */ 2103 /* by older ones */
2104 EV_TV_SET (tv, delay);
579 select (0, 0, 0, 0, &tv); 2105 select (0, 0, 0, 0, &tv);
580#endif 2106#endif
581 } 2107 }
582} 2108}
583 2109
584/*****************************************************************************/ 2110/*****************************************************************************/
585 2111
586#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 2112#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
587 2113
588int inline_size 2114/* find a suitable new size for the given array, */
2115/* hopefully by rounding to a nice-to-malloc size */
2116inline_size int
589array_nextsize (int elem, int cur, int cnt) 2117array_nextsize (int elem, int cur, int cnt)
590{ 2118{
591 int ncur = cur + 1; 2119 int ncur = cur + 1;
592 2120
593 do 2121 do
594 ncur <<= 1; 2122 ncur <<= 1;
595 while (cnt > ncur); 2123 while (cnt > ncur);
596 2124
597 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 2125 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
598 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 2126 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
599 { 2127 {
600 ncur *= elem; 2128 ncur *= elem;
601 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 2129 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
602 ncur = ncur - sizeof (void *) * 4; 2130 ncur = ncur - sizeof (void *) * 4;
604 } 2132 }
605 2133
606 return ncur; 2134 return ncur;
607} 2135}
608 2136
609static noinline void * 2137ecb_noinline ecb_cold
2138static void *
610array_realloc (int elem, void *base, int *cur, int cnt) 2139array_realloc (int elem, void *base, int *cur, int cnt)
611{ 2140{
612 *cur = array_nextsize (elem, *cur, cnt); 2141 *cur = array_nextsize (elem, *cur, cnt);
613 return ev_realloc (base, elem * *cur); 2142 return ev_realloc (base, elem * *cur);
614} 2143}
615 2144
2145#define array_needsize_noinit(base,offset,count)
2146
2147#define array_needsize_zerofill(base,offset,count) \
2148 memset ((void *)(base + offset), 0, sizeof (*(base)) * (count))
2149
616#define array_needsize(type,base,cur,cnt,init) \ 2150#define array_needsize(type,base,cur,cnt,init) \
617 if (expect_false ((cnt) > (cur))) \ 2151 if (ecb_expect_false ((cnt) > (cur))) \
618 { \ 2152 { \
619 int ocur_ = (cur); \ 2153 ecb_unused int ocur_ = (cur); \
620 (base) = (type *)array_realloc \ 2154 (base) = (type *)array_realloc \
621 (sizeof (type), (base), &(cur), (cnt)); \ 2155 (sizeof (type), (base), &(cur), (cnt)); \
622 init ((base) + (ocur_), (cur) - ocur_); \ 2156 init ((base), ocur_, ((cur) - ocur_)); \
623 } 2157 }
624 2158
625#if 0 2159#if 0
626#define array_slim(type,stem) \ 2160#define array_slim(type,stem) \
627 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 2161 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
631 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 2165 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
632 } 2166 }
633#endif 2167#endif
634 2168
635#define array_free(stem, idx) \ 2169#define array_free(stem, idx) \
636 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 2170 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
637 2171
638/*****************************************************************************/ 2172/*****************************************************************************/
639 2173
640void noinline 2174/* dummy callback for pending events */
2175ecb_noinline
2176static void
2177pendingcb (EV_P_ ev_prepare *w, int revents)
2178{
2179}
2180
2181ecb_noinline
2182void
641ev_feed_event (EV_P_ void *w, int revents) 2183ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
642{ 2184{
643 W w_ = (W)w; 2185 W w_ = (W)w;
644 int pri = ABSPRI (w_); 2186 int pri = ABSPRI (w_);
645 2187
646 if (expect_false (w_->pending)) 2188 if (ecb_expect_false (w_->pending))
647 pendings [pri][w_->pending - 1].events |= revents; 2189 pendings [pri][w_->pending - 1].events |= revents;
648 else 2190 else
649 { 2191 {
650 w_->pending = ++pendingcnt [pri]; 2192 w_->pending = ++pendingcnt [pri];
651 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 2193 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
652 pendings [pri][w_->pending - 1].w = w_; 2194 pendings [pri][w_->pending - 1].w = w_;
653 pendings [pri][w_->pending - 1].events = revents; 2195 pendings [pri][w_->pending - 1].events = revents;
654 } 2196 }
655}
656 2197
657void inline_speed 2198 pendingpri = NUMPRI - 1;
2199}
2200
2201inline_speed void
2202feed_reverse (EV_P_ W w)
2203{
2204 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2205 rfeeds [rfeedcnt++] = w;
2206}
2207
2208inline_size void
2209feed_reverse_done (EV_P_ int revents)
2210{
2211 do
2212 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2213 while (rfeedcnt);
2214}
2215
2216inline_speed void
658queue_events (EV_P_ W *events, int eventcnt, int type) 2217queue_events (EV_P_ W *events, int eventcnt, int type)
659{ 2218{
660 int i; 2219 int i;
661 2220
662 for (i = 0; i < eventcnt; ++i) 2221 for (i = 0; i < eventcnt; ++i)
663 ev_feed_event (EV_A_ events [i], type); 2222 ev_feed_event (EV_A_ events [i], type);
664} 2223}
665 2224
666/*****************************************************************************/ 2225/*****************************************************************************/
667 2226
668void inline_size 2227inline_speed void
669anfds_init (ANFD *base, int count)
670{
671 while (count--)
672 {
673 base->head = 0;
674 base->events = EV_NONE;
675 base->reify = 0;
676
677 ++base;
678 }
679}
680
681void inline_speed
682fd_event (EV_P_ int fd, int revents) 2228fd_event_nocheck (EV_P_ int fd, int revents)
683{ 2229{
684 ANFD *anfd = anfds + fd; 2230 ANFD *anfd = anfds + fd;
685 ev_io *w; 2231 ev_io *w;
686 2232
687 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2233 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
691 if (ev) 2237 if (ev)
692 ev_feed_event (EV_A_ (W)w, ev); 2238 ev_feed_event (EV_A_ (W)w, ev);
693 } 2239 }
694} 2240}
695 2241
696void 2242/* do not submit kernel events for fds that have reify set */
2243/* because that means they changed while we were polling for new events */
2244inline_speed void
697ev_feed_fd_event (EV_P_ int fd, int revents) 2245fd_event (EV_P_ int fd, int revents)
2246{
2247 ANFD *anfd = anfds + fd;
2248
2249 if (ecb_expect_true (!anfd->reify))
2250 fd_event_nocheck (EV_A_ fd, revents);
2251}
2252
2253void
2254ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
698{ 2255{
699 if (fd >= 0 && fd < anfdmax) 2256 if (fd >= 0 && fd < anfdmax)
700 fd_event (EV_A_ fd, revents); 2257 fd_event_nocheck (EV_A_ fd, revents);
701} 2258}
702 2259
703void inline_size 2260/* make sure the external fd watch events are in-sync */
2261/* with the kernel/libev internal state */
2262inline_size void
704fd_reify (EV_P) 2263fd_reify (EV_P)
705{ 2264{
706 int i; 2265 int i;
2266
2267#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2268 for (i = 0; i < fdchangecnt; ++i)
2269 {
2270 int fd = fdchanges [i];
2271 ANFD *anfd = anfds + fd;
2272
2273 if (anfd->reify & EV__IOFDSET && anfd->head)
2274 {
2275 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2276
2277 if (handle != anfd->handle)
2278 {
2279 unsigned long arg;
2280
2281 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2282
2283 /* handle changed, but fd didn't - we need to do it in two steps */
2284 backend_modify (EV_A_ fd, anfd->events, 0);
2285 anfd->events = 0;
2286 anfd->handle = handle;
2287 }
2288 }
2289 }
2290#endif
707 2291
708 for (i = 0; i < fdchangecnt; ++i) 2292 for (i = 0; i < fdchangecnt; ++i)
709 { 2293 {
710 int fd = fdchanges [i]; 2294 int fd = fdchanges [i];
711 ANFD *anfd = anfds + fd; 2295 ANFD *anfd = anfds + fd;
712 ev_io *w; 2296 ev_io *w;
713 2297
714 unsigned char events = 0; 2298 unsigned char o_events = anfd->events;
2299 unsigned char o_reify = anfd->reify;
715 2300
716 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2301 anfd->reify = 0;
717 events |= (unsigned char)w->events;
718 2302
719#if EV_SELECT_IS_WINSOCKET 2303 /*if (ecb_expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
720 if (events)
721 { 2304 {
722 unsigned long arg; 2305 anfd->events = 0;
723 #ifdef EV_FD_TO_WIN32_HANDLE 2306
724 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 2307 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
725 #else 2308 anfd->events |= (unsigned char)w->events;
726 anfd->handle = _get_osfhandle (fd); 2309
727 #endif 2310 if (o_events != anfd->events)
728 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 2311 o_reify = EV__IOFDSET; /* actually |= */
729 } 2312 }
730#endif
731 2313
732 { 2314 if (o_reify & EV__IOFDSET)
733 unsigned char o_events = anfd->events;
734 unsigned char o_reify = anfd->reify;
735
736 anfd->reify = 0;
737 anfd->events = events;
738
739 if (o_events != events || o_reify & EV_IOFDSET)
740 backend_modify (EV_A_ fd, o_events, events); 2315 backend_modify (EV_A_ fd, o_events, anfd->events);
741 }
742 } 2316 }
743 2317
744 fdchangecnt = 0; 2318 fdchangecnt = 0;
745} 2319}
746 2320
2321/* something about the given fd changed */
747void inline_size 2322inline_size
2323void
748fd_change (EV_P_ int fd, int flags) 2324fd_change (EV_P_ int fd, int flags)
749{ 2325{
750 unsigned char reify = anfds [fd].reify; 2326 unsigned char reify = anfds [fd].reify;
751 anfds [fd].reify |= flags; 2327 anfds [fd].reify |= flags;
752 2328
753 if (expect_true (!reify)) 2329 if (ecb_expect_true (!reify))
754 { 2330 {
755 ++fdchangecnt; 2331 ++fdchangecnt;
756 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 2332 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
757 fdchanges [fdchangecnt - 1] = fd; 2333 fdchanges [fdchangecnt - 1] = fd;
758 } 2334 }
759} 2335}
760 2336
761void inline_speed 2337/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2338inline_speed ecb_cold void
762fd_kill (EV_P_ int fd) 2339fd_kill (EV_P_ int fd)
763{ 2340{
764 ev_io *w; 2341 ev_io *w;
765 2342
766 while ((w = (ev_io *)anfds [fd].head)) 2343 while ((w = (ev_io *)anfds [fd].head))
768 ev_io_stop (EV_A_ w); 2345 ev_io_stop (EV_A_ w);
769 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2346 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
770 } 2347 }
771} 2348}
772 2349
773int inline_size 2350/* check whether the given fd is actually valid, for error recovery */
2351inline_size ecb_cold int
774fd_valid (int fd) 2352fd_valid (int fd)
775{ 2353{
776#ifdef _WIN32 2354#ifdef _WIN32
777 return _get_osfhandle (fd) != -1; 2355 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
778#else 2356#else
779 return fcntl (fd, F_GETFD) != -1; 2357 return fcntl (fd, F_GETFD) != -1;
780#endif 2358#endif
781} 2359}
782 2360
783/* called on EBADF to verify fds */ 2361/* called on EBADF to verify fds */
784static void noinline 2362ecb_noinline ecb_cold
2363static void
785fd_ebadf (EV_P) 2364fd_ebadf (EV_P)
786{ 2365{
787 int fd; 2366 int fd;
788 2367
789 for (fd = 0; fd < anfdmax; ++fd) 2368 for (fd = 0; fd < anfdmax; ++fd)
791 if (!fd_valid (fd) && errno == EBADF) 2370 if (!fd_valid (fd) && errno == EBADF)
792 fd_kill (EV_A_ fd); 2371 fd_kill (EV_A_ fd);
793} 2372}
794 2373
795/* called on ENOMEM in select/poll to kill some fds and retry */ 2374/* called on ENOMEM in select/poll to kill some fds and retry */
796static void noinline 2375ecb_noinline ecb_cold
2376static void
797fd_enomem (EV_P) 2377fd_enomem (EV_P)
798{ 2378{
799 int fd; 2379 int fd;
800 2380
801 for (fd = anfdmax; fd--; ) 2381 for (fd = anfdmax; fd--; )
802 if (anfds [fd].events) 2382 if (anfds [fd].events)
803 { 2383 {
804 fd_kill (EV_A_ fd); 2384 fd_kill (EV_A_ fd);
805 return; 2385 break;
806 } 2386 }
807} 2387}
808 2388
809/* usually called after fork if backend needs to re-arm all fds from scratch */ 2389/* usually called after fork if backend needs to re-arm all fds from scratch */
810static void noinline 2390ecb_noinline
2391static void
811fd_rearm_all (EV_P) 2392fd_rearm_all (EV_P)
812{ 2393{
813 int fd; 2394 int fd;
814 2395
815 for (fd = 0; fd < anfdmax; ++fd) 2396 for (fd = 0; fd < anfdmax; ++fd)
816 if (anfds [fd].events) 2397 if (anfds [fd].events)
817 { 2398 {
818 anfds [fd].events = 0; 2399 anfds [fd].events = 0;
2400 anfds [fd].emask = 0;
819 fd_change (EV_A_ fd, EV_IOFDSET | 1); 2401 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
820 } 2402 }
821} 2403}
822 2404
2405/* used to prepare libev internal fd's */
2406/* this is not fork-safe */
2407inline_speed void
2408fd_intern (int fd)
2409{
2410#ifdef _WIN32
2411 unsigned long arg = 1;
2412 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2413#else
2414 fcntl (fd, F_SETFD, FD_CLOEXEC);
2415 fcntl (fd, F_SETFL, O_NONBLOCK);
2416#endif
2417}
2418
823/*****************************************************************************/ 2419/*****************************************************************************/
824 2420
825/* 2421/*
826 * the heap functions want a real array index. array index 0 uis guaranteed to not 2422 * the heap functions want a real array index. array index 0 is guaranteed to not
827 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 2423 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
828 * the branching factor of the d-tree. 2424 * the branching factor of the d-tree.
829 */ 2425 */
830 2426
831/* 2427/*
840#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 2436#define HEAP0 (DHEAP - 1) /* index of first element in heap */
841#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 2437#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
842#define UPHEAP_DONE(p,k) ((p) == (k)) 2438#define UPHEAP_DONE(p,k) ((p) == (k))
843 2439
844/* away from the root */ 2440/* away from the root */
845void inline_speed 2441inline_speed void
846downheap (ANHE *heap, int N, int k) 2442downheap (ANHE *heap, int N, int k)
847{ 2443{
848 ANHE he = heap [k]; 2444 ANHE he = heap [k];
849 ANHE *E = heap + N + HEAP0; 2445 ANHE *E = heap + N + HEAP0;
850 2446
853 ev_tstamp minat; 2449 ev_tstamp minat;
854 ANHE *minpos; 2450 ANHE *minpos;
855 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1; 2451 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
856 2452
857 /* find minimum child */ 2453 /* find minimum child */
858 if (expect_true (pos + DHEAP - 1 < E)) 2454 if (ecb_expect_true (pos + DHEAP - 1 < E))
859 { 2455 {
860 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 2456 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
861 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 2457 if ( minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
862 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 2458 if ( minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
863 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); 2459 if ( minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
864 } 2460 }
865 else if (pos < E) 2461 else if (pos < E)
866 { 2462 {
867 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 2463 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
868 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 2464 if (pos + 1 < E && minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
869 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 2465 if (pos + 2 < E && minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
870 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); 2466 if (pos + 3 < E && minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
871 } 2467 }
872 else 2468 else
873 break; 2469 break;
874 2470
875 if (ANHE_at (he) <= minat) 2471 if (ANHE_at (he) <= minat)
883 2479
884 heap [k] = he; 2480 heap [k] = he;
885 ev_active (ANHE_w (he)) = k; 2481 ev_active (ANHE_w (he)) = k;
886} 2482}
887 2483
888#else /* 4HEAP */ 2484#else /* not 4HEAP */
889 2485
890#define HEAP0 1 2486#define HEAP0 1
891#define HPARENT(k) ((k) >> 1) 2487#define HPARENT(k) ((k) >> 1)
892#define UPHEAP_DONE(p,k) (!(p)) 2488#define UPHEAP_DONE(p,k) (!(p))
893 2489
894/* away from the root */ 2490/* away from the root */
895void inline_speed 2491inline_speed void
896downheap (ANHE *heap, int N, int k) 2492downheap (ANHE *heap, int N, int k)
897{ 2493{
898 ANHE he = heap [k]; 2494 ANHE he = heap [k];
899 2495
900 for (;;) 2496 for (;;)
901 { 2497 {
902 int c = k << 1; 2498 int c = k << 1;
903 2499
904 if (c > N + HEAP0 - 1) 2500 if (c >= N + HEAP0)
905 break; 2501 break;
906 2502
907 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 2503 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
908 ? 1 : 0; 2504 ? 1 : 0;
909 2505
920 ev_active (ANHE_w (he)) = k; 2516 ev_active (ANHE_w (he)) = k;
921} 2517}
922#endif 2518#endif
923 2519
924/* towards the root */ 2520/* towards the root */
925void inline_speed 2521inline_speed void
926upheap (ANHE *heap, int k) 2522upheap (ANHE *heap, int k)
927{ 2523{
928 ANHE he = heap [k]; 2524 ANHE he = heap [k];
929 2525
930 for (;;) 2526 for (;;)
941 2537
942 heap [k] = he; 2538 heap [k] = he;
943 ev_active (ANHE_w (he)) = k; 2539 ev_active (ANHE_w (he)) = k;
944} 2540}
945 2541
946void inline_size 2542/* move an element suitably so it is in a correct place */
2543inline_size void
947adjustheap (ANHE *heap, int N, int k) 2544adjustheap (ANHE *heap, int N, int k)
948{ 2545{
949 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 2546 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
950 upheap (heap, k); 2547 upheap (heap, k);
951 else 2548 else
952 downheap (heap, N, k); 2549 downheap (heap, N, k);
953} 2550}
954 2551
955/* rebuild the heap: this function is used only once and executed rarely */ 2552/* rebuild the heap: this function is used only once and executed rarely */
956void inline_size 2553inline_size void
957reheap (ANHE *heap, int N) 2554reheap (ANHE *heap, int N)
958{ 2555{
959 int i; 2556 int i;
960 2557
961 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 2558 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
964 upheap (heap, i + HEAP0); 2561 upheap (heap, i + HEAP0);
965} 2562}
966 2563
967/*****************************************************************************/ 2564/*****************************************************************************/
968 2565
2566/* associate signal watchers to a signal signal */
969typedef struct 2567typedef struct
970{ 2568{
2569 EV_ATOMIC_T pending;
2570#if EV_MULTIPLICITY
2571 EV_P;
2572#endif
971 WL head; 2573 WL head;
972 EV_ATOMIC_T gotsig;
973} ANSIG; 2574} ANSIG;
974 2575
975static ANSIG *signals; 2576static ANSIG signals [EV_NSIG - 1];
976static int signalmax;
977
978static EV_ATOMIC_T gotsig;
979
980void inline_size
981signals_init (ANSIG *base, int count)
982{
983 while (count--)
984 {
985 base->head = 0;
986 base->gotsig = 0;
987
988 ++base;
989 }
990}
991 2577
992/*****************************************************************************/ 2578/*****************************************************************************/
993 2579
994void inline_speed 2580#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
995fd_intern (int fd)
996{
997#ifdef _WIN32
998 unsigned long arg = 1;
999 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1000#else
1001 fcntl (fd, F_SETFD, FD_CLOEXEC);
1002 fcntl (fd, F_SETFL, O_NONBLOCK);
1003#endif
1004}
1005 2581
1006static void noinline 2582ecb_noinline ecb_cold
2583static void
1007evpipe_init (EV_P) 2584evpipe_init (EV_P)
1008{ 2585{
1009 if (!ev_is_active (&pipeev)) 2586 if (!ev_is_active (&pipe_w))
2587 {
2588 int fds [2];
2589
2590# if EV_USE_EVENTFD
2591 fds [0] = -1;
2592 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2593 if (fds [1] < 0 && errno == EINVAL)
2594 fds [1] = eventfd (0, 0);
2595
2596 if (fds [1] < 0)
2597# endif
2598 {
2599 while (pipe (fds))
2600 ev_syserr ("(libev) error creating signal/async pipe");
2601
2602 fd_intern (fds [0]);
2603 }
2604
2605 evpipe [0] = fds [0];
2606
2607 if (evpipe [1] < 0)
2608 evpipe [1] = fds [1]; /* first call, set write fd */
2609 else
2610 {
2611 /* on subsequent calls, do not change evpipe [1] */
2612 /* so that evpipe_write can always rely on its value. */
2613 /* this branch does not do anything sensible on windows, */
2614 /* so must not be executed on windows */
2615
2616 dup2 (fds [1], evpipe [1]);
2617 close (fds [1]);
2618 }
2619
2620 fd_intern (evpipe [1]);
2621
2622 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2623 ev_io_start (EV_A_ &pipe_w);
2624 ev_unref (EV_A); /* watcher should not keep loop alive */
1010 { 2625 }
2626}
2627
2628inline_speed void
2629evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2630{
2631 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2632
2633 if (ecb_expect_true (*flag))
2634 return;
2635
2636 *flag = 1;
2637 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2638
2639 pipe_write_skipped = 1;
2640
2641 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2642
2643 if (pipe_write_wanted)
2644 {
2645 int old_errno;
2646
2647 pipe_write_skipped = 0;
2648 ECB_MEMORY_FENCE_RELEASE;
2649
2650 old_errno = errno; /* save errno because write will clobber it */
2651
1011#if EV_USE_EVENTFD 2652#if EV_USE_EVENTFD
1012 if ((evfd = eventfd (0, 0)) >= 0) 2653 if (evpipe [0] < 0)
1013 { 2654 {
1014 evpipe [0] = -1; 2655 uint64_t counter = 1;
1015 fd_intern (evfd); 2656 write (evpipe [1], &counter, sizeof (uint64_t));
1016 ev_io_set (&pipeev, evfd, EV_READ);
1017 } 2657 }
1018 else 2658 else
1019#endif 2659#endif
1020 { 2660 {
1021 while (pipe (evpipe)) 2661#ifdef _WIN32
1022 syserr ("(libev) error creating signal/async pipe"); 2662 WSABUF buf;
1023 2663 DWORD sent;
1024 fd_intern (evpipe [0]); 2664 buf.buf = (char *)&buf;
1025 fd_intern (evpipe [1]); 2665 buf.len = 1;
1026 ev_io_set (&pipeev, evpipe [0], EV_READ); 2666 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2667#else
2668 write (evpipe [1], &(evpipe [1]), 1);
2669#endif
1027 } 2670 }
1028 2671
1029 ev_io_start (EV_A_ &pipeev); 2672 errno = old_errno;
1030 ev_unref (EV_A); /* watcher should not keep loop alive */
1031 }
1032}
1033
1034void inline_size
1035evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1036{
1037 if (!*flag)
1038 { 2673 }
1039 int old_errno = errno; /* save errno because write might clobber it */ 2674}
1040 2675
1041 *flag = 1; 2676/* called whenever the libev signal pipe */
2677/* got some events (signal, async) */
2678static void
2679pipecb (EV_P_ ev_io *iow, int revents)
2680{
2681 int i;
1042 2682
2683 if (revents & EV_READ)
2684 {
1043#if EV_USE_EVENTFD 2685#if EV_USE_EVENTFD
1044 if (evfd >= 0) 2686 if (evpipe [0] < 0)
1045 { 2687 {
1046 uint64_t counter = 1; 2688 uint64_t counter;
1047 write (evfd, &counter, sizeof (uint64_t)); 2689 read (evpipe [1], &counter, sizeof (uint64_t));
1048 } 2690 }
1049 else 2691 else
1050#endif 2692#endif
1051 write (evpipe [1], &old_errno, 1); 2693 {
1052
1053 errno = old_errno;
1054 }
1055}
1056
1057static void
1058pipecb (EV_P_ ev_io *iow, int revents)
1059{
1060#if EV_USE_EVENTFD
1061 if (evfd >= 0)
1062 {
1063 uint64_t counter;
1064 read (evfd, &counter, sizeof (uint64_t));
1065 }
1066 else
1067#endif
1068 {
1069 char dummy; 2694 char dummy[4];
2695#ifdef _WIN32
2696 WSABUF buf;
2697 DWORD recvd;
2698 DWORD flags = 0;
2699 buf.buf = dummy;
2700 buf.len = sizeof (dummy);
2701 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2702#else
1070 read (evpipe [0], &dummy, 1); 2703 read (evpipe [0], &dummy, sizeof (dummy));
2704#endif
2705 }
2706 }
2707
2708 pipe_write_skipped = 0;
2709
2710 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2711
2712#if EV_SIGNAL_ENABLE
2713 if (sig_pending)
1071 } 2714 {
2715 sig_pending = 0;
1072 2716
1073 if (gotsig && ev_is_default_loop (EV_A)) 2717 ECB_MEMORY_FENCE;
1074 {
1075 int signum;
1076 gotsig = 0;
1077 2718
1078 for (signum = signalmax; signum--; ) 2719 for (i = EV_NSIG - 1; i--; )
1079 if (signals [signum].gotsig) 2720 if (ecb_expect_false (signals [i].pending))
1080 ev_feed_signal_event (EV_A_ signum + 1); 2721 ev_feed_signal_event (EV_A_ i + 1);
1081 } 2722 }
2723#endif
1082 2724
1083#if EV_ASYNC_ENABLE 2725#if EV_ASYNC_ENABLE
1084 if (gotasync) 2726 if (async_pending)
1085 { 2727 {
1086 int i; 2728 async_pending = 0;
1087 gotasync = 0; 2729
2730 ECB_MEMORY_FENCE;
1088 2731
1089 for (i = asynccnt; i--; ) 2732 for (i = asynccnt; i--; )
1090 if (asyncs [i]->sent) 2733 if (asyncs [i]->sent)
1091 { 2734 {
1092 asyncs [i]->sent = 0; 2735 asyncs [i]->sent = 0;
2736 ECB_MEMORY_FENCE_RELEASE;
1093 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2737 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1094 } 2738 }
1095 } 2739 }
1096#endif 2740#endif
1097} 2741}
1098 2742
1099/*****************************************************************************/ 2743/*****************************************************************************/
1100 2744
2745void
2746ev_feed_signal (int signum) EV_NOEXCEPT
2747{
2748#if EV_MULTIPLICITY
2749 EV_P;
2750 ECB_MEMORY_FENCE_ACQUIRE;
2751 EV_A = signals [signum - 1].loop;
2752
2753 if (!EV_A)
2754 return;
2755#endif
2756
2757 signals [signum - 1].pending = 1;
2758 evpipe_write (EV_A_ &sig_pending);
2759}
2760
1101static void 2761static void
1102ev_sighandler (int signum) 2762ev_sighandler (int signum)
1103{ 2763{
2764#ifdef _WIN32
2765 signal (signum, ev_sighandler);
2766#endif
2767
2768 ev_feed_signal (signum);
2769}
2770
2771ecb_noinline
2772void
2773ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2774{
2775 WL w;
2776
2777 if (ecb_expect_false (signum <= 0 || signum >= EV_NSIG))
2778 return;
2779
2780 --signum;
2781
1104#if EV_MULTIPLICITY 2782#if EV_MULTIPLICITY
1105 struct ev_loop *loop = &default_loop_struct; 2783 /* it is permissible to try to feed a signal to the wrong loop */
1106#endif 2784 /* or, likely more useful, feeding a signal nobody is waiting for */
1107 2785
1108#if _WIN32 2786 if (ecb_expect_false (signals [signum].loop != EV_A))
1109 signal (signum, ev_sighandler);
1110#endif
1111
1112 signals [signum - 1].gotsig = 1;
1113 evpipe_write (EV_A_ &gotsig);
1114}
1115
1116void noinline
1117ev_feed_signal_event (EV_P_ int signum)
1118{
1119 WL w;
1120
1121#if EV_MULTIPLICITY
1122 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1123#endif
1124
1125 --signum;
1126
1127 if (signum < 0 || signum >= signalmax)
1128 return; 2787 return;
2788#endif
1129 2789
1130 signals [signum].gotsig = 0; 2790 signals [signum].pending = 0;
2791 ECB_MEMORY_FENCE_RELEASE;
1131 2792
1132 for (w = signals [signum].head; w; w = w->next) 2793 for (w = signals [signum].head; w; w = w->next)
1133 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2794 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1134} 2795}
1135 2796
2797#if EV_USE_SIGNALFD
2798static void
2799sigfdcb (EV_P_ ev_io *iow, int revents)
2800{
2801 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2802
2803 for (;;)
2804 {
2805 ssize_t res = read (sigfd, si, sizeof (si));
2806
2807 /* not ISO-C, as res might be -1, but works with SuS */
2808 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2809 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2810
2811 if (res < (ssize_t)sizeof (si))
2812 break;
2813 }
2814}
2815#endif
2816
2817#endif
2818
1136/*****************************************************************************/ 2819/*****************************************************************************/
1137 2820
2821#if EV_CHILD_ENABLE
1138static WL childs [EV_PID_HASHSIZE]; 2822static WL childs [EV_PID_HASHSIZE];
1139
1140#ifndef _WIN32
1141 2823
1142static ev_signal childev; 2824static ev_signal childev;
1143 2825
1144#ifndef WIFCONTINUED 2826#ifndef WIFCONTINUED
1145# define WIFCONTINUED(status) 0 2827# define WIFCONTINUED(status) 0
1146#endif 2828#endif
1147 2829
1148void inline_speed 2830/* handle a single child status event */
2831inline_speed void
1149child_reap (EV_P_ int chain, int pid, int status) 2832child_reap (EV_P_ int chain, int pid, int status)
1150{ 2833{
1151 ev_child *w; 2834 ev_child *w;
1152 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2835 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1153 2836
1154 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2837 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1155 { 2838 {
1156 if ((w->pid == pid || !w->pid) 2839 if ((w->pid == pid || !w->pid)
1157 && (!traced || (w->flags & 1))) 2840 && (!traced || (w->flags & 1)))
1158 { 2841 {
1159 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2842 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1166 2849
1167#ifndef WCONTINUED 2850#ifndef WCONTINUED
1168# define WCONTINUED 0 2851# define WCONTINUED 0
1169#endif 2852#endif
1170 2853
2854/* called on sigchld etc., calls waitpid */
1171static void 2855static void
1172childcb (EV_P_ ev_signal *sw, int revents) 2856childcb (EV_P_ ev_signal *sw, int revents)
1173{ 2857{
1174 int pid, status; 2858 int pid, status;
1175 2859
1183 /* make sure we are called again until all children have been reaped */ 2867 /* make sure we are called again until all children have been reaped */
1184 /* we need to do it this way so that the callback gets called before we continue */ 2868 /* we need to do it this way so that the callback gets called before we continue */
1185 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2869 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1186 2870
1187 child_reap (EV_A_ pid, pid, status); 2871 child_reap (EV_A_ pid, pid, status);
1188 if (EV_PID_HASHSIZE > 1) 2872 if ((EV_PID_HASHSIZE) > 1)
1189 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2873 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1190} 2874}
1191 2875
1192#endif 2876#endif
1193 2877
1194/*****************************************************************************/ 2878/*****************************************************************************/
1195 2879
2880#if EV_USE_TIMERFD
2881
2882static void periodics_reschedule (EV_P);
2883
2884static void
2885timerfdcb (EV_P_ ev_io *iow, int revents)
2886{
2887 struct itimerspec its = { 0 };
2888
2889 /* since we can't easily come zup with a (portable) maximum value of time_t,
2890 * we wake up once per month, which hopefully is rare enough to not
2891 * be a problem. */
2892 its.it_value.tv_sec = ev_rt_now + 86400 * 30;
2893 timerfd_settime (timerfd, TFD_TIMER_ABSTIME | TFD_TIMER_CANCEL_ON_SET, &its, 0);
2894
2895 ev_rt_now = ev_time ();
2896 /* periodics_reschedule only needs ev_rt_now */
2897 /* but maybe in the future we want the full treatment. */
2898 /*
2899 now_floor = EV_TS_CONST (0.);
2900 time_update (EV_A_ EV_TSTAMP_HUGE);
2901 */
2902 periodics_reschedule (EV_A);
2903}
2904
2905ecb_noinline ecb_cold
2906static void
2907evtimerfd_init (EV_P)
2908{
2909 if (!ev_is_active (&timerfd_w))
2910 {
2911 timerfd = timerfd_create (CLOCK_REALTIME, TFD_NONBLOCK | TFD_CLOEXEC);
2912
2913 if (timerfd >= 0)
2914 {
2915 fd_intern (timerfd); /* just to be sure */
2916
2917 ev_io_init (&timerfd_w, timerfdcb, timerfd, EV_READ);
2918 ev_set_priority (&sigfd_w, EV_MINPRI);
2919 ev_io_start (EV_A_ &timerfd_w);
2920 ev_unref (EV_A); /* watcher should not keep loop alive */
2921
2922 /* (re-) arm timer */
2923 timerfdcb (EV_A_ 0, 0);
2924 }
2925 }
2926}
2927
2928#endif
2929
2930/*****************************************************************************/
2931
2932#if EV_USE_IOCP
2933# include "ev_iocp.c"
2934#endif
1196#if EV_USE_PORT 2935#if EV_USE_PORT
1197# include "ev_port.c" 2936# include "ev_port.c"
1198#endif 2937#endif
1199#if EV_USE_KQUEUE 2938#if EV_USE_KQUEUE
1200# include "ev_kqueue.c" 2939# include "ev_kqueue.c"
1201#endif 2940#endif
1202#if EV_USE_EPOLL 2941#if EV_USE_EPOLL
1203# include "ev_epoll.c" 2942# include "ev_epoll.c"
1204#endif 2943#endif
2944#if EV_USE_LINUXAIO
2945# include "ev_linuxaio.c"
2946#endif
2947#if EV_USE_IOURING
2948# include "ev_iouring.c"
2949#endif
1205#if EV_USE_POLL 2950#if EV_USE_POLL
1206# include "ev_poll.c" 2951# include "ev_poll.c"
1207#endif 2952#endif
1208#if EV_USE_SELECT 2953#if EV_USE_SELECT
1209# include "ev_select.c" 2954# include "ev_select.c"
1210#endif 2955#endif
1211 2956
1212int 2957ecb_cold int
1213ev_version_major (void) 2958ev_version_major (void) EV_NOEXCEPT
1214{ 2959{
1215 return EV_VERSION_MAJOR; 2960 return EV_VERSION_MAJOR;
1216} 2961}
1217 2962
1218int 2963ecb_cold int
1219ev_version_minor (void) 2964ev_version_minor (void) EV_NOEXCEPT
1220{ 2965{
1221 return EV_VERSION_MINOR; 2966 return EV_VERSION_MINOR;
1222} 2967}
1223 2968
1224/* return true if we are running with elevated privileges and should ignore env variables */ 2969/* return true if we are running with elevated privileges and should ignore env variables */
1225int inline_size 2970inline_size ecb_cold int
1226enable_secure (void) 2971enable_secure (void)
1227{ 2972{
1228#ifdef _WIN32 2973#ifdef _WIN32
1229 return 0; 2974 return 0;
1230#else 2975#else
1231 return getuid () != geteuid () 2976 return getuid () != geteuid ()
1232 || getgid () != getegid (); 2977 || getgid () != getegid ();
1233#endif 2978#endif
1234} 2979}
1235 2980
2981ecb_cold
1236unsigned int 2982unsigned int
1237ev_supported_backends (void) 2983ev_supported_backends (void) EV_NOEXCEPT
1238{ 2984{
1239 unsigned int flags = 0; 2985 unsigned int flags = 0;
1240 2986
1241 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2987 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1242 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2988 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
1243 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL; 2989 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2990 if (EV_USE_LINUXAIO) flags |= EVBACKEND_LINUXAIO;
2991 if (EV_USE_IOURING ) flags |= EVBACKEND_IOURING;
1244 if (EV_USE_POLL ) flags |= EVBACKEND_POLL; 2992 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1245 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2993 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
1246 2994
1247 return flags; 2995 return flags;
1248} 2996}
1249 2997
2998ecb_cold
1250unsigned int 2999unsigned int
1251ev_recommended_backends (void) 3000ev_recommended_backends (void) EV_NOEXCEPT
1252{ 3001{
1253 unsigned int flags = ev_supported_backends (); 3002 unsigned int flags = ev_supported_backends ();
1254 3003
1255#ifndef __NetBSD__ 3004#ifndef __NetBSD__
1256 /* kqueue is borked on everything but netbsd apparently */ 3005 /* kqueue is borked on everything but netbsd apparently */
1257 /* it usually doesn't work correctly on anything but sockets and pipes */ 3006 /* it usually doesn't work correctly on anything but sockets and pipes */
1258 flags &= ~EVBACKEND_KQUEUE; 3007 flags &= ~EVBACKEND_KQUEUE;
1259#endif 3008#endif
1260#ifdef __APPLE__ 3009#ifdef __APPLE__
1261 // flags &= ~EVBACKEND_KQUEUE; for documentation 3010 /* only select works correctly on that "unix-certified" platform */
3011 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
3012 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
3013#endif
3014#ifdef __FreeBSD__
3015 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
3016#endif
3017
3018 /* TODO: linuxaio is very experimental */
3019#if !EV_RECOMMEND_LINUXAIO
3020 flags &= ~EVBACKEND_LINUXAIO;
3021#endif
3022 /* TODO: linuxaio is super experimental */
3023#if !EV_RECOMMEND_IOURING
1262 flags &= ~EVBACKEND_POLL; 3024 flags &= ~EVBACKEND_IOURING;
1263#endif 3025#endif
1264 3026
1265 return flags; 3027 return flags;
1266} 3028}
1267 3029
3030ecb_cold
1268unsigned int 3031unsigned int
1269ev_embeddable_backends (void) 3032ev_embeddable_backends (void) EV_NOEXCEPT
1270{ 3033{
1271 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 3034 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1272 3035
1273 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 3036 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1274 /* please fix it and tell me how to detect the fix */ 3037 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1275 flags &= ~EVBACKEND_EPOLL; 3038 flags &= ~EVBACKEND_EPOLL;
3039
3040 /* EVBACKEND_LINUXAIO is theoretically embeddable, but suffers from a performance overhead */
3041
3042 /* EVBACKEND_IOURING is practically embeddable, but the current implementation is not
3043 * because our backend_fd is the epoll fd we need as fallback.
3044 * if the kernel ever is fixed, this might change...
3045 */
1276 3046
1277 return flags; 3047 return flags;
1278} 3048}
1279 3049
1280unsigned int 3050unsigned int
1281ev_backend (EV_P) 3051ev_backend (EV_P) EV_NOEXCEPT
1282{ 3052{
1283 return backend; 3053 return backend;
1284} 3054}
1285 3055
3056#if EV_FEATURE_API
1286unsigned int 3057unsigned int
1287ev_loop_count (EV_P) 3058ev_iteration (EV_P) EV_NOEXCEPT
1288{ 3059{
1289 return loop_count; 3060 return loop_count;
1290} 3061}
1291 3062
3063unsigned int
3064ev_depth (EV_P) EV_NOEXCEPT
3065{
3066 return loop_depth;
3067}
3068
1292void 3069void
1293ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 3070ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
1294{ 3071{
1295 io_blocktime = interval; 3072 io_blocktime = interval;
1296} 3073}
1297 3074
1298void 3075void
1299ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 3076ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
1300{ 3077{
1301 timeout_blocktime = interval; 3078 timeout_blocktime = interval;
1302} 3079}
1303 3080
1304static void noinline 3081void
3082ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
3083{
3084 userdata = data;
3085}
3086
3087void *
3088ev_userdata (EV_P) EV_NOEXCEPT
3089{
3090 return userdata;
3091}
3092
3093void
3094ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
3095{
3096 invoke_cb = invoke_pending_cb;
3097}
3098
3099void
3100ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
3101{
3102 release_cb = release;
3103 acquire_cb = acquire;
3104}
3105#endif
3106
3107/* initialise a loop structure, must be zero-initialised */
3108ecb_noinline ecb_cold
3109static void
1305loop_init (EV_P_ unsigned int flags) 3110loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
1306{ 3111{
1307 if (!backend) 3112 if (!backend)
1308 { 3113 {
3114 origflags = flags;
3115
3116#if EV_USE_REALTIME
3117 if (!have_realtime)
3118 {
3119 struct timespec ts;
3120
3121 if (!clock_gettime (CLOCK_REALTIME, &ts))
3122 have_realtime = 1;
3123 }
3124#endif
3125
1309#if EV_USE_MONOTONIC 3126#if EV_USE_MONOTONIC
3127 if (!have_monotonic)
1310 { 3128 {
1311 struct timespec ts; 3129 struct timespec ts;
3130
1312 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 3131 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1313 have_monotonic = 1; 3132 have_monotonic = 1;
1314 } 3133 }
1315#endif
1316
1317 ev_rt_now = ev_time ();
1318 mn_now = get_clock ();
1319 now_floor = mn_now;
1320 rtmn_diff = ev_rt_now - mn_now;
1321
1322 io_blocktime = 0.;
1323 timeout_blocktime = 0.;
1324 backend = 0;
1325 backend_fd = -1;
1326 gotasync = 0;
1327#if EV_USE_INOTIFY
1328 fs_fd = -2;
1329#endif 3134#endif
1330 3135
1331 /* pid check not overridable via env */ 3136 /* pid check not overridable via env */
1332#ifndef _WIN32 3137#ifndef _WIN32
1333 if (flags & EVFLAG_FORKCHECK) 3138 if (flags & EVFLAG_FORKCHECK)
1337 if (!(flags & EVFLAG_NOENV) 3142 if (!(flags & EVFLAG_NOENV)
1338 && !enable_secure () 3143 && !enable_secure ()
1339 && getenv ("LIBEV_FLAGS")) 3144 && getenv ("LIBEV_FLAGS"))
1340 flags = atoi (getenv ("LIBEV_FLAGS")); 3145 flags = atoi (getenv ("LIBEV_FLAGS"));
1341 3146
1342 if (!(flags & 0x0000ffffU)) 3147 ev_rt_now = ev_time ();
3148 mn_now = get_clock ();
3149 now_floor = mn_now;
3150 rtmn_diff = ev_rt_now - mn_now;
3151#if EV_FEATURE_API
3152 invoke_cb = ev_invoke_pending;
3153#endif
3154
3155 io_blocktime = 0.;
3156 timeout_blocktime = 0.;
3157 backend = 0;
3158 backend_fd = -1;
3159 sig_pending = 0;
3160#if EV_ASYNC_ENABLE
3161 async_pending = 0;
3162#endif
3163 pipe_write_skipped = 0;
3164 pipe_write_wanted = 0;
3165 evpipe [0] = -1;
3166 evpipe [1] = -1;
3167#if EV_USE_INOTIFY
3168 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
3169#endif
3170#if EV_USE_SIGNALFD
3171 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
3172#endif
3173#if EV_USE_TIMERFD
3174 timerfd = flags & EVFLAG_NOTIMERFD ? -1 : -2;
3175#endif
3176
3177 if (!(flags & EVBACKEND_MASK))
1343 flags |= ev_recommended_backends (); 3178 flags |= ev_recommended_backends ();
1344 3179
3180#if EV_USE_IOCP
3181 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
3182#endif
1345#if EV_USE_PORT 3183#if EV_USE_PORT
1346 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 3184 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1347#endif 3185#endif
1348#if EV_USE_KQUEUE 3186#if EV_USE_KQUEUE
1349 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 3187 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
3188#endif
3189#if EV_USE_IOURING
3190 if (!backend && (flags & EVBACKEND_IOURING )) backend = iouring_init (EV_A_ flags);
3191#endif
3192#if EV_USE_LINUXAIO
3193 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
1350#endif 3194#endif
1351#if EV_USE_EPOLL 3195#if EV_USE_EPOLL
1352 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags); 3196 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1353#endif 3197#endif
1354#if EV_USE_POLL 3198#if EV_USE_POLL
1355 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags); 3199 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1356#endif 3200#endif
1357#if EV_USE_SELECT 3201#if EV_USE_SELECT
1358 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 3202 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
1359#endif 3203#endif
1360 3204
3205 ev_prepare_init (&pending_w, pendingcb);
3206
3207#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1361 ev_init (&pipeev, pipecb); 3208 ev_init (&pipe_w, pipecb);
1362 ev_set_priority (&pipeev, EV_MAXPRI); 3209 ev_set_priority (&pipe_w, EV_MAXPRI);
3210#endif
1363 } 3211 }
1364} 3212}
1365 3213
1366static void noinline 3214/* free up a loop structure */
3215ecb_cold
3216void
1367loop_destroy (EV_P) 3217ev_loop_destroy (EV_P)
1368{ 3218{
1369 int i; 3219 int i;
1370 3220
3221#if EV_MULTIPLICITY
3222 /* mimic free (0) */
3223 if (!EV_A)
3224 return;
3225#endif
3226
3227#if EV_CLEANUP_ENABLE
3228 /* queue cleanup watchers (and execute them) */
3229 if (ecb_expect_false (cleanupcnt))
3230 {
3231 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3232 EV_INVOKE_PENDING;
3233 }
3234#endif
3235
3236#if EV_CHILD_ENABLE
3237 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3238 {
3239 ev_ref (EV_A); /* child watcher */
3240 ev_signal_stop (EV_A_ &childev);
3241 }
3242#endif
3243
1371 if (ev_is_active (&pipeev)) 3244 if (ev_is_active (&pipe_w))
1372 { 3245 {
1373 ev_ref (EV_A); /* signal watcher */ 3246 /*ev_ref (EV_A);*/
1374 ev_io_stop (EV_A_ &pipeev); 3247 /*ev_io_stop (EV_A_ &pipe_w);*/
1375 3248
3249 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3250 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3251 }
3252
3253#if EV_USE_SIGNALFD
3254 if (ev_is_active (&sigfd_w))
3255 close (sigfd);
3256#endif
3257
1376#if EV_USE_EVENTFD 3258#if EV_USE_TIMERFD
1377 if (evfd >= 0) 3259 if (ev_is_active (&timerfd_w))
1378 close (evfd); 3260 close (timerfd);
1379#endif 3261#endif
1380
1381 if (evpipe [0] >= 0)
1382 {
1383 close (evpipe [0]);
1384 close (evpipe [1]);
1385 }
1386 }
1387 3262
1388#if EV_USE_INOTIFY 3263#if EV_USE_INOTIFY
1389 if (fs_fd >= 0) 3264 if (fs_fd >= 0)
1390 close (fs_fd); 3265 close (fs_fd);
1391#endif 3266#endif
1392 3267
1393 if (backend_fd >= 0) 3268 if (backend_fd >= 0)
1394 close (backend_fd); 3269 close (backend_fd);
1395 3270
3271#if EV_USE_IOCP
3272 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3273#endif
1396#if EV_USE_PORT 3274#if EV_USE_PORT
1397 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 3275 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1398#endif 3276#endif
1399#if EV_USE_KQUEUE 3277#if EV_USE_KQUEUE
1400 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 3278 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3279#endif
3280#if EV_USE_IOURING
3281 if (backend == EVBACKEND_IOURING ) iouring_destroy (EV_A);
3282#endif
3283#if EV_USE_LINUXAIO
3284 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
1401#endif 3285#endif
1402#if EV_USE_EPOLL 3286#if EV_USE_EPOLL
1403 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A); 3287 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1404#endif 3288#endif
1405#if EV_USE_POLL 3289#if EV_USE_POLL
1406 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A); 3290 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1407#endif 3291#endif
1408#if EV_USE_SELECT 3292#if EV_USE_SELECT
1409 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 3293 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
1410#endif 3294#endif
1411 3295
1412 for (i = NUMPRI; i--; ) 3296 for (i = NUMPRI; i--; )
1413 { 3297 {
1414 array_free (pending, [i]); 3298 array_free (pending, [i]);
1415#if EV_IDLE_ENABLE 3299#if EV_IDLE_ENABLE
1416 array_free (idle, [i]); 3300 array_free (idle, [i]);
1417#endif 3301#endif
1418 } 3302 }
1419 3303
1420 ev_free (anfds); anfdmax = 0; 3304 ev_free (anfds); anfds = 0; anfdmax = 0;
1421 3305
1422 /* have to use the microsoft-never-gets-it-right macro */ 3306 /* have to use the microsoft-never-gets-it-right macro */
3307 array_free (rfeed, EMPTY);
1423 array_free (fdchange, EMPTY); 3308 array_free (fdchange, EMPTY);
1424 array_free (timer, EMPTY); 3309 array_free (timer, EMPTY);
1425#if EV_PERIODIC_ENABLE 3310#if EV_PERIODIC_ENABLE
1426 array_free (periodic, EMPTY); 3311 array_free (periodic, EMPTY);
1427#endif 3312#endif
1428#if EV_FORK_ENABLE 3313#if EV_FORK_ENABLE
1429 array_free (fork, EMPTY); 3314 array_free (fork, EMPTY);
1430#endif 3315#endif
3316#if EV_CLEANUP_ENABLE
3317 array_free (cleanup, EMPTY);
3318#endif
1431 array_free (prepare, EMPTY); 3319 array_free (prepare, EMPTY);
1432 array_free (check, EMPTY); 3320 array_free (check, EMPTY);
1433#if EV_ASYNC_ENABLE 3321#if EV_ASYNC_ENABLE
1434 array_free (async, EMPTY); 3322 array_free (async, EMPTY);
1435#endif 3323#endif
1436 3324
1437 backend = 0; 3325 backend = 0;
3326
3327#if EV_MULTIPLICITY
3328 if (ev_is_default_loop (EV_A))
3329#endif
3330 ev_default_loop_ptr = 0;
3331#if EV_MULTIPLICITY
3332 else
3333 ev_free (EV_A);
3334#endif
1438} 3335}
1439 3336
1440#if EV_USE_INOTIFY 3337#if EV_USE_INOTIFY
1441void inline_size infy_fork (EV_P); 3338inline_size void infy_fork (EV_P);
1442#endif 3339#endif
1443 3340
1444void inline_size 3341inline_size void
1445loop_fork (EV_P) 3342loop_fork (EV_P)
1446{ 3343{
1447#if EV_USE_PORT 3344#if EV_USE_PORT
1448 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 3345 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1449#endif 3346#endif
1450#if EV_USE_KQUEUE 3347#if EV_USE_KQUEUE
1451 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 3348 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3349#endif
3350#if EV_USE_IOURING
3351 if (backend == EVBACKEND_IOURING ) iouring_fork (EV_A);
3352#endif
3353#if EV_USE_LINUXAIO
3354 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
1452#endif 3355#endif
1453#if EV_USE_EPOLL 3356#if EV_USE_EPOLL
1454 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 3357 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1455#endif 3358#endif
1456#if EV_USE_INOTIFY 3359#if EV_USE_INOTIFY
1457 infy_fork (EV_A); 3360 infy_fork (EV_A);
1458#endif 3361#endif
1459 3362
1460 if (ev_is_active (&pipeev)) 3363 if (postfork != 2)
1461 { 3364 {
1462 /* this "locks" the handlers against writing to the pipe */ 3365 #if EV_USE_SIGNALFD
1463 /* while we modify the fd vars */ 3366 /* surprisingly, nothing needs to be done for signalfd, accoridng to docs, it does the right thing on fork */
1464 gotsig = 1; 3367 #endif
1465#if EV_ASYNC_ENABLE 3368
1466 gotasync = 1; 3369 #if EV_USE_TIMERFD
1467#endif 3370 if (ev_is_active (&timerfd_w))
1468
1469 ev_ref (EV_A);
1470 ev_io_stop (EV_A_ &pipeev);
1471
1472#if EV_USE_EVENTFD
1473 if (evfd >= 0)
1474 close (evfd);
1475#endif
1476
1477 if (evpipe [0] >= 0)
1478 { 3371 {
1479 close (evpipe [0]); 3372 ev_ref (EV_A);
1480 close (evpipe [1]); 3373 ev_io_stop (EV_A_ &timerfd_w);
3374
3375 close (timerfd);
3376 timerfd = -2;
3377
3378 evtimerfd_init (EV_A);
3379 /* reschedule periodics, in case we missed something */
3380 ev_feed_event (EV_A_ &timerfd_w, EV_CUSTOM);
1481 } 3381 }
1482 3382 #endif
3383
3384 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3385 if (ev_is_active (&pipe_w))
3386 {
3387 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3388
3389 ev_ref (EV_A);
3390 ev_io_stop (EV_A_ &pipe_w);
3391
3392 if (evpipe [0] >= 0)
3393 EV_WIN32_CLOSE_FD (evpipe [0]);
3394
1483 evpipe_init (EV_A); 3395 evpipe_init (EV_A);
1484 /* now iterate over everything, in case we missed something */ 3396 /* iterate over everything, in case we missed something before */
1485 pipecb (EV_A_ &pipeev, EV_READ); 3397 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3398 }
3399 #endif
1486 } 3400 }
1487 3401
1488 postfork = 0; 3402 postfork = 0;
1489} 3403}
1490 3404
1491#if EV_MULTIPLICITY 3405#if EV_MULTIPLICITY
1492 3406
3407ecb_cold
1493struct ev_loop * 3408struct ev_loop *
1494ev_loop_new (unsigned int flags) 3409ev_loop_new (unsigned int flags) EV_NOEXCEPT
1495{ 3410{
1496 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 3411 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1497 3412
1498 memset (loop, 0, sizeof (struct ev_loop)); 3413 memset (EV_A, 0, sizeof (struct ev_loop));
1499
1500 loop_init (EV_A_ flags); 3414 loop_init (EV_A_ flags);
1501 3415
1502 if (ev_backend (EV_A)) 3416 if (ev_backend (EV_A))
1503 return loop; 3417 return EV_A;
1504 3418
3419 ev_free (EV_A);
1505 return 0; 3420 return 0;
1506} 3421}
1507 3422
1508void 3423#endif /* multiplicity */
1509ev_loop_destroy (EV_P)
1510{
1511 loop_destroy (EV_A);
1512 ev_free (loop);
1513}
1514
1515void
1516ev_loop_fork (EV_P)
1517{
1518 postfork = 1; /* must be in line with ev_default_fork */
1519}
1520 3424
1521#if EV_VERIFY 3425#if EV_VERIFY
1522static void noinline 3426ecb_noinline ecb_cold
3427static void
1523verify_watcher (EV_P_ W w) 3428verify_watcher (EV_P_ W w)
1524{ 3429{
1525 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 3430 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1526 3431
1527 if (w->pending) 3432 if (w->pending)
1528 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 3433 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1529} 3434}
1530 3435
1531static void noinline 3436ecb_noinline ecb_cold
3437static void
1532verify_heap (EV_P_ ANHE *heap, int N) 3438verify_heap (EV_P_ ANHE *heap, int N)
1533{ 3439{
1534 int i; 3440 int i;
1535 3441
1536 for (i = HEAP0; i < N + HEAP0; ++i) 3442 for (i = HEAP0; i < N + HEAP0; ++i)
1537 { 3443 {
1538 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 3444 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1539 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 3445 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1540 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 3446 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1541 3447
1542 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 3448 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1543 } 3449 }
1544} 3450}
1545 3451
1546static void noinline 3452ecb_noinline ecb_cold
3453static void
1547array_verify (EV_P_ W *ws, int cnt) 3454array_verify (EV_P_ W *ws, int cnt)
1548{ 3455{
1549 while (cnt--) 3456 while (cnt--)
1550 { 3457 {
1551 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 3458 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1552 verify_watcher (EV_A_ ws [cnt]); 3459 verify_watcher (EV_A_ ws [cnt]);
1553 } 3460 }
1554} 3461}
1555#endif 3462#endif
1556 3463
1557void 3464#if EV_FEATURE_API
1558ev_loop_verify (EV_P) 3465void ecb_cold
3466ev_verify (EV_P) EV_NOEXCEPT
1559{ 3467{
1560#if EV_VERIFY 3468#if EV_VERIFY
1561 int i; 3469 int i;
1562 WL w; 3470 WL w, w2;
1563 3471
1564 assert (activecnt >= -1); 3472 assert (activecnt >= -1);
1565 3473
1566 assert (fdchangemax >= fdchangecnt); 3474 assert (fdchangemax >= fdchangecnt);
1567 for (i = 0; i < fdchangecnt; ++i) 3475 for (i = 0; i < fdchangecnt; ++i)
1568 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 3476 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1569 3477
1570 assert (anfdmax >= 0); 3478 assert (anfdmax >= 0);
1571 for (i = 0; i < anfdmax; ++i) 3479 for (i = 0; i < anfdmax; ++i)
3480 {
3481 int j = 0;
3482
1572 for (w = anfds [i].head; w; w = w->next) 3483 for (w = w2 = anfds [i].head; w; w = w->next)
1573 { 3484 {
1574 verify_watcher (EV_A_ (W)w); 3485 verify_watcher (EV_A_ (W)w);
3486
3487 if (j++ & 1)
3488 {
3489 assert (("libev: io watcher list contains a loop", w != w2));
3490 w2 = w2->next;
3491 }
3492
1575 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 3493 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1576 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 3494 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1577 } 3495 }
3496 }
1578 3497
1579 assert (timermax >= timercnt); 3498 assert (timermax >= timercnt);
1580 verify_heap (EV_A_ timers, timercnt); 3499 verify_heap (EV_A_ timers, timercnt);
1581 3500
1582#if EV_PERIODIC_ENABLE 3501#if EV_PERIODIC_ENABLE
1597#if EV_FORK_ENABLE 3516#if EV_FORK_ENABLE
1598 assert (forkmax >= forkcnt); 3517 assert (forkmax >= forkcnt);
1599 array_verify (EV_A_ (W *)forks, forkcnt); 3518 array_verify (EV_A_ (W *)forks, forkcnt);
1600#endif 3519#endif
1601 3520
3521#if EV_CLEANUP_ENABLE
3522 assert (cleanupmax >= cleanupcnt);
3523 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3524#endif
3525
1602#if EV_ASYNC_ENABLE 3526#if EV_ASYNC_ENABLE
1603 assert (asyncmax >= asynccnt); 3527 assert (asyncmax >= asynccnt);
1604 array_verify (EV_A_ (W *)asyncs, asynccnt); 3528 array_verify (EV_A_ (W *)asyncs, asynccnt);
1605#endif 3529#endif
1606 3530
3531#if EV_PREPARE_ENABLE
1607 assert (preparemax >= preparecnt); 3532 assert (preparemax >= preparecnt);
1608 array_verify (EV_A_ (W *)prepares, preparecnt); 3533 array_verify (EV_A_ (W *)prepares, preparecnt);
3534#endif
1609 3535
3536#if EV_CHECK_ENABLE
1610 assert (checkmax >= checkcnt); 3537 assert (checkmax >= checkcnt);
1611 array_verify (EV_A_ (W *)checks, checkcnt); 3538 array_verify (EV_A_ (W *)checks, checkcnt);
3539#endif
1612 3540
1613# if 0 3541# if 0
3542#if EV_CHILD_ENABLE
1614 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 3543 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1615 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 3544 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3545#endif
1616# endif 3546# endif
1617#endif 3547#endif
1618} 3548}
1619 3549#endif
1620#endif /* multiplicity */
1621 3550
1622#if EV_MULTIPLICITY 3551#if EV_MULTIPLICITY
3552ecb_cold
1623struct ev_loop * 3553struct ev_loop *
1624ev_default_loop_init (unsigned int flags)
1625#else 3554#else
1626int 3555int
3556#endif
1627ev_default_loop (unsigned int flags) 3557ev_default_loop (unsigned int flags) EV_NOEXCEPT
1628#endif
1629{ 3558{
1630 if (!ev_default_loop_ptr) 3559 if (!ev_default_loop_ptr)
1631 { 3560 {
1632#if EV_MULTIPLICITY 3561#if EV_MULTIPLICITY
1633 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3562 EV_P = ev_default_loop_ptr = &default_loop_struct;
1634#else 3563#else
1635 ev_default_loop_ptr = 1; 3564 ev_default_loop_ptr = 1;
1636#endif 3565#endif
1637 3566
1638 loop_init (EV_A_ flags); 3567 loop_init (EV_A_ flags);
1639 3568
1640 if (ev_backend (EV_A)) 3569 if (ev_backend (EV_A))
1641 { 3570 {
1642#ifndef _WIN32 3571#if EV_CHILD_ENABLE
1643 ev_signal_init (&childev, childcb, SIGCHLD); 3572 ev_signal_init (&childev, childcb, SIGCHLD);
1644 ev_set_priority (&childev, EV_MAXPRI); 3573 ev_set_priority (&childev, EV_MAXPRI);
1645 ev_signal_start (EV_A_ &childev); 3574 ev_signal_start (EV_A_ &childev);
1646 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3575 ev_unref (EV_A); /* child watcher should not keep loop alive */
1647#endif 3576#endif
1652 3581
1653 return ev_default_loop_ptr; 3582 return ev_default_loop_ptr;
1654} 3583}
1655 3584
1656void 3585void
1657ev_default_destroy (void) 3586ev_loop_fork (EV_P) EV_NOEXCEPT
1658{ 3587{
1659#if EV_MULTIPLICITY 3588 postfork = 1;
1660 struct ev_loop *loop = ev_default_loop_ptr;
1661#endif
1662
1663#ifndef _WIN32
1664 ev_ref (EV_A); /* child watcher */
1665 ev_signal_stop (EV_A_ &childev);
1666#endif
1667
1668 loop_destroy (EV_A);
1669}
1670
1671void
1672ev_default_fork (void)
1673{
1674#if EV_MULTIPLICITY
1675 struct ev_loop *loop = ev_default_loop_ptr;
1676#endif
1677
1678 if (backend)
1679 postfork = 1; /* must be in line with ev_loop_fork */
1680} 3589}
1681 3590
1682/*****************************************************************************/ 3591/*****************************************************************************/
1683 3592
1684void 3593void
1685ev_invoke (EV_P_ void *w, int revents) 3594ev_invoke (EV_P_ void *w, int revents)
1686{ 3595{
1687 EV_CB_INVOKE ((W)w, revents); 3596 EV_CB_INVOKE ((W)w, revents);
1688} 3597}
1689 3598
1690void inline_speed 3599unsigned int
1691call_pending (EV_P) 3600ev_pending_count (EV_P) EV_NOEXCEPT
1692{ 3601{
1693 int pri; 3602 int pri;
3603 unsigned int count = 0;
1694 3604
1695 for (pri = NUMPRI; pri--; ) 3605 for (pri = NUMPRI; pri--; )
3606 count += pendingcnt [pri];
3607
3608 return count;
3609}
3610
3611ecb_noinline
3612void
3613ev_invoke_pending (EV_P)
3614{
3615 pendingpri = NUMPRI;
3616
3617 do
3618 {
3619 --pendingpri;
3620
3621 /* pendingpri possibly gets modified in the inner loop */
1696 while (pendingcnt [pri]) 3622 while (pendingcnt [pendingpri])
1697 {
1698 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1699
1700 if (expect_true (p->w))
1701 { 3623 {
1702 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 3624 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1703 3625
1704 p->w->pending = 0; 3626 p->w->pending = 0;
1705 EV_CB_INVOKE (p->w, p->events); 3627 EV_CB_INVOKE (p->w, p->events);
1706 EV_FREQUENT_CHECK; 3628 EV_FREQUENT_CHECK;
1707 } 3629 }
1708 } 3630 }
3631 while (pendingpri);
1709} 3632}
1710 3633
1711#if EV_IDLE_ENABLE 3634#if EV_IDLE_ENABLE
1712void inline_size 3635/* make idle watchers pending. this handles the "call-idle */
3636/* only when higher priorities are idle" logic */
3637inline_size void
1713idle_reify (EV_P) 3638idle_reify (EV_P)
1714{ 3639{
1715 if (expect_false (idleall)) 3640 if (ecb_expect_false (idleall))
1716 { 3641 {
1717 int pri; 3642 int pri;
1718 3643
1719 for (pri = NUMPRI; pri--; ) 3644 for (pri = NUMPRI; pri--; )
1720 { 3645 {
1729 } 3654 }
1730 } 3655 }
1731} 3656}
1732#endif 3657#endif
1733 3658
1734void inline_size 3659/* make timers pending */
3660inline_size void
1735timers_reify (EV_P) 3661timers_reify (EV_P)
1736{ 3662{
1737 EV_FREQUENT_CHECK; 3663 EV_FREQUENT_CHECK;
1738 3664
1739 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 3665 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1740 { 3666 {
1741 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 3667 do
1742
1743 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1744
1745 /* first reschedule or stop timer */
1746 if (w->repeat)
1747 { 3668 {
3669 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3670
3671 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3672
3673 /* first reschedule or stop timer */
3674 if (w->repeat)
3675 {
1748 ev_at (w) += w->repeat; 3676 ev_at (w) += w->repeat;
1749 if (ev_at (w) < mn_now) 3677 if (ev_at (w) < mn_now)
1750 ev_at (w) = mn_now; 3678 ev_at (w) = mn_now;
1751 3679
1752 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3680 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > EV_TS_CONST (0.)));
1753 3681
1754 ANHE_at_cache (timers [HEAP0]); 3682 ANHE_at_cache (timers [HEAP0]);
1755 downheap (timers, timercnt, HEAP0); 3683 downheap (timers, timercnt, HEAP0);
3684 }
3685 else
3686 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3687
3688 EV_FREQUENT_CHECK;
3689 feed_reverse (EV_A_ (W)w);
1756 } 3690 }
1757 else 3691 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1758 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1759 3692
1760 EV_FREQUENT_CHECK; 3693 feed_reverse_done (EV_A_ EV_TIMER);
1761 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1762 } 3694 }
1763} 3695}
1764 3696
1765#if EV_PERIODIC_ENABLE 3697#if EV_PERIODIC_ENABLE
1766void inline_size 3698
3699ecb_noinline
3700static void
3701periodic_recalc (EV_P_ ev_periodic *w)
3702{
3703 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3704 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3705
3706 /* the above almost always errs on the low side */
3707 while (at <= ev_rt_now)
3708 {
3709 ev_tstamp nat = at + w->interval;
3710
3711 /* when resolution fails us, we use ev_rt_now */
3712 if (ecb_expect_false (nat == at))
3713 {
3714 at = ev_rt_now;
3715 break;
3716 }
3717
3718 at = nat;
3719 }
3720
3721 ev_at (w) = at;
3722}
3723
3724/* make periodics pending */
3725inline_size void
1767periodics_reify (EV_P) 3726periodics_reify (EV_P)
1768{ 3727{
1769 EV_FREQUENT_CHECK; 3728 EV_FREQUENT_CHECK;
1770 3729
1771 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 3730 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1772 { 3731 {
1773 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 3732 do
1774
1775 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1776
1777 /* first reschedule or stop timer */
1778 if (w->reschedule_cb)
1779 { 3733 {
3734 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3735
3736 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3737
3738 /* first reschedule or stop timer */
3739 if (w->reschedule_cb)
3740 {
1780 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3741 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1781 3742
1782 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 3743 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1783 3744
1784 ANHE_at_cache (periodics [HEAP0]); 3745 ANHE_at_cache (periodics [HEAP0]);
1785 downheap (periodics, periodiccnt, HEAP0); 3746 downheap (periodics, periodiccnt, HEAP0);
3747 }
3748 else if (w->interval)
3749 {
3750 periodic_recalc (EV_A_ w);
3751 ANHE_at_cache (periodics [HEAP0]);
3752 downheap (periodics, periodiccnt, HEAP0);
3753 }
3754 else
3755 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3756
3757 EV_FREQUENT_CHECK;
3758 feed_reverse (EV_A_ (W)w);
1786 } 3759 }
1787 else if (w->interval) 3760 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1788 {
1789 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1790 /* if next trigger time is not sufficiently in the future, put it there */
1791 /* this might happen because of floating point inexactness */
1792 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1793 {
1794 ev_at (w) += w->interval;
1795 3761
1796 /* if interval is unreasonably low we might still have a time in the past */
1797 /* so correct this. this will make the periodic very inexact, but the user */
1798 /* has effectively asked to get triggered more often than possible */
1799 if (ev_at (w) < ev_rt_now)
1800 ev_at (w) = ev_rt_now;
1801 }
1802
1803 ANHE_at_cache (periodics [HEAP0]);
1804 downheap (periodics, periodiccnt, HEAP0);
1805 }
1806 else
1807 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1808
1809 EV_FREQUENT_CHECK;
1810 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 3762 feed_reverse_done (EV_A_ EV_PERIODIC);
1811 } 3763 }
1812} 3764}
1813 3765
1814static void noinline 3766/* simply recalculate all periodics */
3767/* TODO: maybe ensure that at least one event happens when jumping forward? */
3768ecb_noinline ecb_cold
3769static void
1815periodics_reschedule (EV_P) 3770periodics_reschedule (EV_P)
1816{ 3771{
1817 int i; 3772 int i;
1818 3773
1819 /* adjust periodics after time jump */ 3774 /* adjust periodics after time jump */
1822 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 3777 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1823 3778
1824 if (w->reschedule_cb) 3779 if (w->reschedule_cb)
1825 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3780 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1826 else if (w->interval) 3781 else if (w->interval)
1827 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 3782 periodic_recalc (EV_A_ w);
1828 3783
1829 ANHE_at_cache (periodics [i]); 3784 ANHE_at_cache (periodics [i]);
1830 } 3785 }
1831 3786
1832 reheap (periodics, periodiccnt); 3787 reheap (periodics, periodiccnt);
1833} 3788}
1834#endif 3789#endif
1835 3790
1836void inline_speed 3791/* adjust all timers by a given offset */
3792ecb_noinline ecb_cold
3793static void
3794timers_reschedule (EV_P_ ev_tstamp adjust)
3795{
3796 int i;
3797
3798 for (i = 0; i < timercnt; ++i)
3799 {
3800 ANHE *he = timers + i + HEAP0;
3801 ANHE_w (*he)->at += adjust;
3802 ANHE_at_cache (*he);
3803 }
3804}
3805
3806/* fetch new monotonic and realtime times from the kernel */
3807/* also detect if there was a timejump, and act accordingly */
3808inline_speed void
1837time_update (EV_P_ ev_tstamp max_block) 3809time_update (EV_P_ ev_tstamp max_block)
1838{ 3810{
1839 int i;
1840
1841#if EV_USE_MONOTONIC 3811#if EV_USE_MONOTONIC
1842 if (expect_true (have_monotonic)) 3812 if (ecb_expect_true (have_monotonic))
1843 { 3813 {
3814 int i;
1844 ev_tstamp odiff = rtmn_diff; 3815 ev_tstamp odiff = rtmn_diff;
1845 3816
1846 mn_now = get_clock (); 3817 mn_now = get_clock ();
1847 3818
1848 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3819 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1849 /* interpolate in the meantime */ 3820 /* interpolate in the meantime */
1850 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 3821 if (ecb_expect_true (mn_now - now_floor < EV_TS_CONST (MIN_TIMEJUMP * .5)))
1851 { 3822 {
1852 ev_rt_now = rtmn_diff + mn_now; 3823 ev_rt_now = rtmn_diff + mn_now;
1853 return; 3824 return;
1854 } 3825 }
1855 3826
1864 * doesn't hurt either as we only do this on time-jumps or 3835 * doesn't hurt either as we only do this on time-jumps or
1865 * in the unlikely event of having been preempted here. 3836 * in the unlikely event of having been preempted here.
1866 */ 3837 */
1867 for (i = 4; --i; ) 3838 for (i = 4; --i; )
1868 { 3839 {
3840 ev_tstamp diff;
1869 rtmn_diff = ev_rt_now - mn_now; 3841 rtmn_diff = ev_rt_now - mn_now;
1870 3842
1871 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 3843 diff = odiff - rtmn_diff;
3844
3845 if (ecb_expect_true ((diff < EV_TS_CONST (0.) ? -diff : diff) < EV_TS_CONST (MIN_TIMEJUMP)))
1872 return; /* all is well */ 3846 return; /* all is well */
1873 3847
1874 ev_rt_now = ev_time (); 3848 ev_rt_now = ev_time ();
1875 mn_now = get_clock (); 3849 mn_now = get_clock ();
1876 now_floor = mn_now; 3850 now_floor = mn_now;
1877 } 3851 }
1878 3852
3853 /* no timer adjustment, as the monotonic clock doesn't jump */
3854 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1879# if EV_PERIODIC_ENABLE 3855# if EV_PERIODIC_ENABLE
1880 periodics_reschedule (EV_A); 3856 periodics_reschedule (EV_A);
1881# endif 3857# endif
1882 /* no timer adjustment, as the monotonic clock doesn't jump */
1883 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1884 } 3858 }
1885 else 3859 else
1886#endif 3860#endif
1887 { 3861 {
1888 ev_rt_now = ev_time (); 3862 ev_rt_now = ev_time ();
1889 3863
1890 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3864 if (ecb_expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + EV_TS_CONST (MIN_TIMEJUMP)))
1891 { 3865 {
3866 /* adjust timers. this is easy, as the offset is the same for all of them */
3867 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1892#if EV_PERIODIC_ENABLE 3868#if EV_PERIODIC_ENABLE
1893 periodics_reschedule (EV_A); 3869 periodics_reschedule (EV_A);
1894#endif 3870#endif
1895 /* adjust timers. this is easy, as the offset is the same for all of them */
1896 for (i = 0; i < timercnt; ++i)
1897 {
1898 ANHE *he = timers + i + HEAP0;
1899 ANHE_w (*he)->at += ev_rt_now - mn_now;
1900 ANHE_at_cache (*he);
1901 }
1902 } 3871 }
1903 3872
1904 mn_now = ev_rt_now; 3873 mn_now = ev_rt_now;
1905 } 3874 }
1906} 3875}
1907 3876
1908void 3877int
1909ev_ref (EV_P)
1910{
1911 ++activecnt;
1912}
1913
1914void
1915ev_unref (EV_P)
1916{
1917 --activecnt;
1918}
1919
1920void
1921ev_now_update (EV_P)
1922{
1923 time_update (EV_A_ 1e100);
1924}
1925
1926static int loop_done;
1927
1928void
1929ev_loop (EV_P_ int flags) 3878ev_run (EV_P_ int flags)
1930{ 3879{
3880#if EV_FEATURE_API
3881 ++loop_depth;
3882#endif
3883
3884 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3885
1931 loop_done = EVUNLOOP_CANCEL; 3886 loop_done = EVBREAK_CANCEL;
1932 3887
1933 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3888 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1934 3889
1935 do 3890 do
1936 { 3891 {
1937#if EV_VERIFY >= 2 3892#if EV_VERIFY >= 2
1938 ev_loop_verify (EV_A); 3893 ev_verify (EV_A);
1939#endif 3894#endif
1940 3895
1941#ifndef _WIN32 3896#ifndef _WIN32
1942 if (expect_false (curpid)) /* penalise the forking check even more */ 3897 if (ecb_expect_false (curpid)) /* penalise the forking check even more */
1943 if (expect_false (getpid () != curpid)) 3898 if (ecb_expect_false (getpid () != curpid))
1944 { 3899 {
1945 curpid = getpid (); 3900 curpid = getpid ();
1946 postfork = 1; 3901 postfork = 1;
1947 } 3902 }
1948#endif 3903#endif
1949 3904
1950#if EV_FORK_ENABLE 3905#if EV_FORK_ENABLE
1951 /* we might have forked, so queue fork handlers */ 3906 /* we might have forked, so queue fork handlers */
1952 if (expect_false (postfork)) 3907 if (ecb_expect_false (postfork))
1953 if (forkcnt) 3908 if (forkcnt)
1954 { 3909 {
1955 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3910 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1956 call_pending (EV_A); 3911 EV_INVOKE_PENDING;
1957 } 3912 }
1958#endif 3913#endif
1959 3914
3915#if EV_PREPARE_ENABLE
1960 /* queue prepare watchers (and execute them) */ 3916 /* queue prepare watchers (and execute them) */
1961 if (expect_false (preparecnt)) 3917 if (ecb_expect_false (preparecnt))
1962 { 3918 {
1963 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3919 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1964 call_pending (EV_A); 3920 EV_INVOKE_PENDING;
1965 } 3921 }
3922#endif
1966 3923
1967 if (expect_false (!activecnt)) 3924 if (ecb_expect_false (loop_done))
1968 break; 3925 break;
1969 3926
1970 /* we might have forked, so reify kernel state if necessary */ 3927 /* we might have forked, so reify kernel state if necessary */
1971 if (expect_false (postfork)) 3928 if (ecb_expect_false (postfork))
1972 loop_fork (EV_A); 3929 loop_fork (EV_A);
1973 3930
1974 /* update fd-related kernel structures */ 3931 /* update fd-related kernel structures */
1975 fd_reify (EV_A); 3932 fd_reify (EV_A);
1976 3933
1977 /* calculate blocking time */ 3934 /* calculate blocking time */
1978 { 3935 {
1979 ev_tstamp waittime = 0.; 3936 ev_tstamp waittime = 0.;
1980 ev_tstamp sleeptime = 0.; 3937 ev_tstamp sleeptime = 0.;
1981 3938
3939 /* remember old timestamp for io_blocktime calculation */
3940 ev_tstamp prev_mn_now = mn_now;
3941
3942 /* update time to cancel out callback processing overhead */
3943 time_update (EV_A_ EV_TS_CONST (EV_TSTAMP_HUGE));
3944
3945 /* from now on, we want a pipe-wake-up */
3946 pipe_write_wanted = 1;
3947
3948 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3949
1982 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3950 if (ecb_expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1983 { 3951 {
1984 /* update time to cancel out callback processing overhead */
1985 time_update (EV_A_ 1e100);
1986
1987 waittime = MAX_BLOCKTIME; 3952 waittime = EV_TS_CONST (MAX_BLOCKTIME);
1988 3953
1989 if (timercnt) 3954 if (timercnt)
1990 { 3955 {
1991 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 3956 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1992 if (waittime > to) waittime = to; 3957 if (waittime > to) waittime = to;
1993 } 3958 }
1994 3959
1995#if EV_PERIODIC_ENABLE 3960#if EV_PERIODIC_ENABLE
1996 if (periodiccnt) 3961 if (periodiccnt)
1997 { 3962 {
1998 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3963 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1999 if (waittime > to) waittime = to; 3964 if (waittime > to) waittime = to;
2000 } 3965 }
2001#endif 3966#endif
2002 3967
3968 /* don't let timeouts decrease the waittime below timeout_blocktime */
2003 if (expect_false (waittime < timeout_blocktime)) 3969 if (ecb_expect_false (waittime < timeout_blocktime))
2004 waittime = timeout_blocktime; 3970 waittime = timeout_blocktime;
2005 3971
2006 sleeptime = waittime - backend_fudge; 3972 /* now there are two more special cases left, either we have
3973 * already-expired timers, so we should not sleep, or we have timers
3974 * that expire very soon, in which case we need to wait for a minimum
3975 * amount of time for some event loop backends.
3976 */
3977 if (ecb_expect_false (waittime < backend_mintime))
3978 waittime = waittime <= EV_TS_CONST (0.)
3979 ? EV_TS_CONST (0.)
3980 : backend_mintime;
2007 3981
3982 /* extra check because io_blocktime is commonly 0 */
2008 if (expect_true (sleeptime > io_blocktime)) 3983 if (ecb_expect_false (io_blocktime))
2009 sleeptime = io_blocktime;
2010
2011 if (sleeptime)
2012 { 3984 {
3985 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3986
3987 if (sleeptime > waittime - backend_mintime)
3988 sleeptime = waittime - backend_mintime;
3989
3990 if (ecb_expect_true (sleeptime > EV_TS_CONST (0.)))
3991 {
2013 ev_sleep (sleeptime); 3992 ev_sleep (sleeptime);
2014 waittime -= sleeptime; 3993 waittime -= sleeptime;
3994 }
2015 } 3995 }
2016 } 3996 }
2017 3997
3998#if EV_FEATURE_API
2018 ++loop_count; 3999 ++loop_count;
4000#endif
4001 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2019 backend_poll (EV_A_ waittime); 4002 backend_poll (EV_A_ waittime);
4003 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
4004
4005 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
4006
4007 ECB_MEMORY_FENCE_ACQUIRE;
4008 if (pipe_write_skipped)
4009 {
4010 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
4011 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
4012 }
2020 4013
2021 /* update ev_rt_now, do magic */ 4014 /* update ev_rt_now, do magic */
2022 time_update (EV_A_ waittime + sleeptime); 4015 time_update (EV_A_ waittime + sleeptime);
2023 } 4016 }
2024 4017
2031#if EV_IDLE_ENABLE 4024#if EV_IDLE_ENABLE
2032 /* queue idle watchers unless other events are pending */ 4025 /* queue idle watchers unless other events are pending */
2033 idle_reify (EV_A); 4026 idle_reify (EV_A);
2034#endif 4027#endif
2035 4028
4029#if EV_CHECK_ENABLE
2036 /* queue check watchers, to be executed first */ 4030 /* queue check watchers, to be executed first */
2037 if (expect_false (checkcnt)) 4031 if (ecb_expect_false (checkcnt))
2038 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 4032 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
4033#endif
2039 4034
2040 call_pending (EV_A); 4035 EV_INVOKE_PENDING;
2041 } 4036 }
2042 while (expect_true ( 4037 while (ecb_expect_true (
2043 activecnt 4038 activecnt
2044 && !loop_done 4039 && !loop_done
2045 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 4040 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2046 )); 4041 ));
2047 4042
2048 if (loop_done == EVUNLOOP_ONE) 4043 if (loop_done == EVBREAK_ONE)
2049 loop_done = EVUNLOOP_CANCEL; 4044 loop_done = EVBREAK_CANCEL;
2050}
2051 4045
4046#if EV_FEATURE_API
4047 --loop_depth;
4048#endif
4049
4050 return activecnt;
4051}
4052
2052void 4053void
2053ev_unloop (EV_P_ int how) 4054ev_break (EV_P_ int how) EV_NOEXCEPT
2054{ 4055{
2055 loop_done = how; 4056 loop_done = how;
2056} 4057}
2057 4058
4059void
4060ev_ref (EV_P) EV_NOEXCEPT
4061{
4062 ++activecnt;
4063}
4064
4065void
4066ev_unref (EV_P) EV_NOEXCEPT
4067{
4068 --activecnt;
4069}
4070
4071void
4072ev_now_update (EV_P) EV_NOEXCEPT
4073{
4074 time_update (EV_A_ EV_TSTAMP_HUGE);
4075}
4076
4077void
4078ev_suspend (EV_P) EV_NOEXCEPT
4079{
4080 ev_now_update (EV_A);
4081}
4082
4083void
4084ev_resume (EV_P) EV_NOEXCEPT
4085{
4086 ev_tstamp mn_prev = mn_now;
4087
4088 ev_now_update (EV_A);
4089 timers_reschedule (EV_A_ mn_now - mn_prev);
4090#if EV_PERIODIC_ENABLE
4091 /* TODO: really do this? */
4092 periodics_reschedule (EV_A);
4093#endif
4094}
4095
2058/*****************************************************************************/ 4096/*****************************************************************************/
4097/* singly-linked list management, used when the expected list length is short */
2059 4098
2060void inline_size 4099inline_size void
2061wlist_add (WL *head, WL elem) 4100wlist_add (WL *head, WL elem)
2062{ 4101{
2063 elem->next = *head; 4102 elem->next = *head;
2064 *head = elem; 4103 *head = elem;
2065} 4104}
2066 4105
2067void inline_size 4106inline_size void
2068wlist_del (WL *head, WL elem) 4107wlist_del (WL *head, WL elem)
2069{ 4108{
2070 while (*head) 4109 while (*head)
2071 { 4110 {
2072 if (*head == elem) 4111 if (ecb_expect_true (*head == elem))
2073 { 4112 {
2074 *head = elem->next; 4113 *head = elem->next;
2075 return; 4114 break;
2076 } 4115 }
2077 4116
2078 head = &(*head)->next; 4117 head = &(*head)->next;
2079 } 4118 }
2080} 4119}
2081 4120
2082void inline_speed 4121/* internal, faster, version of ev_clear_pending */
4122inline_speed void
2083clear_pending (EV_P_ W w) 4123clear_pending (EV_P_ W w)
2084{ 4124{
2085 if (w->pending) 4125 if (w->pending)
2086 { 4126 {
2087 pendings [ABSPRI (w)][w->pending - 1].w = 0; 4127 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2088 w->pending = 0; 4128 w->pending = 0;
2089 } 4129 }
2090} 4130}
2091 4131
2092int 4132int
2093ev_clear_pending (EV_P_ void *w) 4133ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
2094{ 4134{
2095 W w_ = (W)w; 4135 W w_ = (W)w;
2096 int pending = w_->pending; 4136 int pending = w_->pending;
2097 4137
2098 if (expect_true (pending)) 4138 if (ecb_expect_true (pending))
2099 { 4139 {
2100 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 4140 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
4141 p->w = (W)&pending_w;
2101 w_->pending = 0; 4142 w_->pending = 0;
2102 p->w = 0;
2103 return p->events; 4143 return p->events;
2104 } 4144 }
2105 else 4145 else
2106 return 0; 4146 return 0;
2107} 4147}
2108 4148
2109void inline_size 4149inline_size void
2110pri_adjust (EV_P_ W w) 4150pri_adjust (EV_P_ W w)
2111{ 4151{
2112 int pri = w->priority; 4152 int pri = ev_priority (w);
2113 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 4153 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2114 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 4154 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2115 w->priority = pri; 4155 ev_set_priority (w, pri);
2116} 4156}
2117 4157
2118void inline_speed 4158inline_speed void
2119ev_start (EV_P_ W w, int active) 4159ev_start (EV_P_ W w, int active)
2120{ 4160{
2121 pri_adjust (EV_A_ w); 4161 pri_adjust (EV_A_ w);
2122 w->active = active; 4162 w->active = active;
2123 ev_ref (EV_A); 4163 ev_ref (EV_A);
2124} 4164}
2125 4165
2126void inline_size 4166inline_size void
2127ev_stop (EV_P_ W w) 4167ev_stop (EV_P_ W w)
2128{ 4168{
2129 ev_unref (EV_A); 4169 ev_unref (EV_A);
2130 w->active = 0; 4170 w->active = 0;
2131} 4171}
2132 4172
2133/*****************************************************************************/ 4173/*****************************************************************************/
2134 4174
2135void noinline 4175ecb_noinline
4176void
2136ev_io_start (EV_P_ ev_io *w) 4177ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
2137{ 4178{
2138 int fd = w->fd; 4179 int fd = w->fd;
2139 4180
2140 if (expect_false (ev_is_active (w))) 4181 if (ecb_expect_false (ev_is_active (w)))
2141 return; 4182 return;
2142 4183
2143 assert (("ev_io_start called with negative fd", fd >= 0)); 4184 assert (("libev: ev_io_start called with negative fd", fd >= 0));
4185 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2144 4186
4187#if EV_VERIFY >= 2
4188 assert (("libev: ev_io_start called on watcher with invalid fd", fd_valid (fd)));
4189#endif
2145 EV_FREQUENT_CHECK; 4190 EV_FREQUENT_CHECK;
2146 4191
2147 ev_start (EV_A_ (W)w, 1); 4192 ev_start (EV_A_ (W)w, 1);
2148 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 4193 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
2149 wlist_add (&anfds[fd].head, (WL)w); 4194 wlist_add (&anfds[fd].head, (WL)w);
2150 4195
4196 /* common bug, apparently */
4197 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
4198
2151 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 4199 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2152 w->events &= ~EV_IOFDSET; 4200 w->events &= ~EV__IOFDSET;
2153 4201
2154 EV_FREQUENT_CHECK; 4202 EV_FREQUENT_CHECK;
2155} 4203}
2156 4204
2157void noinline 4205ecb_noinline
4206void
2158ev_io_stop (EV_P_ ev_io *w) 4207ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
2159{ 4208{
2160 clear_pending (EV_A_ (W)w); 4209 clear_pending (EV_A_ (W)w);
2161 if (expect_false (!ev_is_active (w))) 4210 if (ecb_expect_false (!ev_is_active (w)))
2162 return; 4211 return;
2163 4212
2164 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 4213 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2165 4214
4215#if EV_VERIFY >= 2
4216 assert (("libev: ev_io_stop called on watcher with invalid fd", fd_valid (w->fd)));
4217#endif
2166 EV_FREQUENT_CHECK; 4218 EV_FREQUENT_CHECK;
2167 4219
2168 wlist_del (&anfds[w->fd].head, (WL)w); 4220 wlist_del (&anfds[w->fd].head, (WL)w);
2169 ev_stop (EV_A_ (W)w); 4221 ev_stop (EV_A_ (W)w);
2170 4222
2171 fd_change (EV_A_ w->fd, 1); 4223 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2172 4224
2173 EV_FREQUENT_CHECK; 4225 EV_FREQUENT_CHECK;
2174} 4226}
2175 4227
2176void noinline 4228ecb_noinline
4229void
2177ev_timer_start (EV_P_ ev_timer *w) 4230ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
2178{ 4231{
2179 if (expect_false (ev_is_active (w))) 4232 if (ecb_expect_false (ev_is_active (w)))
2180 return; 4233 return;
2181 4234
2182 ev_at (w) += mn_now; 4235 ev_at (w) += mn_now;
2183 4236
2184 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 4237 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2185 4238
2186 EV_FREQUENT_CHECK; 4239 EV_FREQUENT_CHECK;
2187 4240
2188 ++timercnt; 4241 ++timercnt;
2189 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 4242 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2190 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 4243 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
2191 ANHE_w (timers [ev_active (w)]) = (WT)w; 4244 ANHE_w (timers [ev_active (w)]) = (WT)w;
2192 ANHE_at_cache (timers [ev_active (w)]); 4245 ANHE_at_cache (timers [ev_active (w)]);
2193 upheap (timers, ev_active (w)); 4246 upheap (timers, ev_active (w));
2194 4247
2195 EV_FREQUENT_CHECK; 4248 EV_FREQUENT_CHECK;
2196 4249
2197 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 4250 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2198} 4251}
2199 4252
2200void noinline 4253ecb_noinline
4254void
2201ev_timer_stop (EV_P_ ev_timer *w) 4255ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
2202{ 4256{
2203 clear_pending (EV_A_ (W)w); 4257 clear_pending (EV_A_ (W)w);
2204 if (expect_false (!ev_is_active (w))) 4258 if (ecb_expect_false (!ev_is_active (w)))
2205 return; 4259 return;
2206 4260
2207 EV_FREQUENT_CHECK; 4261 EV_FREQUENT_CHECK;
2208 4262
2209 { 4263 {
2210 int active = ev_active (w); 4264 int active = ev_active (w);
2211 4265
2212 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 4266 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2213 4267
2214 --timercnt; 4268 --timercnt;
2215 4269
2216 if (expect_true (active < timercnt + HEAP0)) 4270 if (ecb_expect_true (active < timercnt + HEAP0))
2217 { 4271 {
2218 timers [active] = timers [timercnt + HEAP0]; 4272 timers [active] = timers [timercnt + HEAP0];
2219 adjustheap (timers, timercnt, active); 4273 adjustheap (timers, timercnt, active);
2220 } 4274 }
2221 } 4275 }
2222 4276
4277 ev_at (w) -= mn_now;
4278
4279 ev_stop (EV_A_ (W)w);
4280
2223 EV_FREQUENT_CHECK; 4281 EV_FREQUENT_CHECK;
2224
2225 ev_at (w) -= mn_now;
2226
2227 ev_stop (EV_A_ (W)w);
2228} 4282}
2229 4283
2230void noinline 4284ecb_noinline
4285void
2231ev_timer_again (EV_P_ ev_timer *w) 4286ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
2232{ 4287{
2233 EV_FREQUENT_CHECK; 4288 EV_FREQUENT_CHECK;
4289
4290 clear_pending (EV_A_ (W)w);
2234 4291
2235 if (ev_is_active (w)) 4292 if (ev_is_active (w))
2236 { 4293 {
2237 if (w->repeat) 4294 if (w->repeat)
2238 { 4295 {
2250 } 4307 }
2251 4308
2252 EV_FREQUENT_CHECK; 4309 EV_FREQUENT_CHECK;
2253} 4310}
2254 4311
4312ev_tstamp
4313ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4314{
4315 return ev_at (w) - (ev_is_active (w) ? mn_now : EV_TS_CONST (0.));
4316}
4317
2255#if EV_PERIODIC_ENABLE 4318#if EV_PERIODIC_ENABLE
2256void noinline 4319ecb_noinline
4320void
2257ev_periodic_start (EV_P_ ev_periodic *w) 4321ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
2258{ 4322{
2259 if (expect_false (ev_is_active (w))) 4323 if (ecb_expect_false (ev_is_active (w)))
2260 return; 4324 return;
4325
4326#if EV_USE_TIMERFD
4327 if (timerfd == -2)
4328 evtimerfd_init (EV_A);
4329#endif
2261 4330
2262 if (w->reschedule_cb) 4331 if (w->reschedule_cb)
2263 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 4332 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2264 else if (w->interval) 4333 else if (w->interval)
2265 { 4334 {
2266 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 4335 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2267 /* this formula differs from the one in periodic_reify because we do not always round up */ 4336 periodic_recalc (EV_A_ w);
2268 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2269 } 4337 }
2270 else 4338 else
2271 ev_at (w) = w->offset; 4339 ev_at (w) = w->offset;
2272 4340
2273 EV_FREQUENT_CHECK; 4341 EV_FREQUENT_CHECK;
2274 4342
2275 ++periodiccnt; 4343 ++periodiccnt;
2276 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1); 4344 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2277 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 4345 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
2278 ANHE_w (periodics [ev_active (w)]) = (WT)w; 4346 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2279 ANHE_at_cache (periodics [ev_active (w)]); 4347 ANHE_at_cache (periodics [ev_active (w)]);
2280 upheap (periodics, ev_active (w)); 4348 upheap (periodics, ev_active (w));
2281 4349
2282 EV_FREQUENT_CHECK; 4350 EV_FREQUENT_CHECK;
2283 4351
2284 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 4352 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2285} 4353}
2286 4354
2287void noinline 4355ecb_noinline
4356void
2288ev_periodic_stop (EV_P_ ev_periodic *w) 4357ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
2289{ 4358{
2290 clear_pending (EV_A_ (W)w); 4359 clear_pending (EV_A_ (W)w);
2291 if (expect_false (!ev_is_active (w))) 4360 if (ecb_expect_false (!ev_is_active (w)))
2292 return; 4361 return;
2293 4362
2294 EV_FREQUENT_CHECK; 4363 EV_FREQUENT_CHECK;
2295 4364
2296 { 4365 {
2297 int active = ev_active (w); 4366 int active = ev_active (w);
2298 4367
2299 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 4368 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2300 4369
2301 --periodiccnt; 4370 --periodiccnt;
2302 4371
2303 if (expect_true (active < periodiccnt + HEAP0)) 4372 if (ecb_expect_true (active < periodiccnt + HEAP0))
2304 { 4373 {
2305 periodics [active] = periodics [periodiccnt + HEAP0]; 4374 periodics [active] = periodics [periodiccnt + HEAP0];
2306 adjustheap (periodics, periodiccnt, active); 4375 adjustheap (periodics, periodiccnt, active);
2307 } 4376 }
2308 } 4377 }
2309 4378
4379 ev_stop (EV_A_ (W)w);
4380
2310 EV_FREQUENT_CHECK; 4381 EV_FREQUENT_CHECK;
2311
2312 ev_stop (EV_A_ (W)w);
2313} 4382}
2314 4383
2315void noinline 4384ecb_noinline
4385void
2316ev_periodic_again (EV_P_ ev_periodic *w) 4386ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
2317{ 4387{
2318 /* TODO: use adjustheap and recalculation */ 4388 /* TODO: use adjustheap and recalculation */
2319 ev_periodic_stop (EV_A_ w); 4389 ev_periodic_stop (EV_A_ w);
2320 ev_periodic_start (EV_A_ w); 4390 ev_periodic_start (EV_A_ w);
2321} 4391}
2323 4393
2324#ifndef SA_RESTART 4394#ifndef SA_RESTART
2325# define SA_RESTART 0 4395# define SA_RESTART 0
2326#endif 4396#endif
2327 4397
2328void noinline 4398#if EV_SIGNAL_ENABLE
4399
4400ecb_noinline
4401void
2329ev_signal_start (EV_P_ ev_signal *w) 4402ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
2330{ 4403{
4404 if (ecb_expect_false (ev_is_active (w)))
4405 return;
4406
4407 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4408
2331#if EV_MULTIPLICITY 4409#if EV_MULTIPLICITY
2332 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4410 assert (("libev: a signal must not be attached to two different loops",
2333#endif 4411 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2334 if (expect_false (ev_is_active (w)))
2335 return;
2336 4412
2337 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 4413 signals [w->signum - 1].loop = EV_A;
2338 4414 ECB_MEMORY_FENCE_RELEASE;
2339 evpipe_init (EV_A); 4415#endif
2340 4416
2341 EV_FREQUENT_CHECK; 4417 EV_FREQUENT_CHECK;
2342 4418
4419#if EV_USE_SIGNALFD
4420 if (sigfd == -2)
2343 { 4421 {
2344#ifndef _WIN32 4422 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2345 sigset_t full, prev; 4423 if (sigfd < 0 && errno == EINVAL)
2346 sigfillset (&full); 4424 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2347 sigprocmask (SIG_SETMASK, &full, &prev);
2348#endif
2349 4425
2350 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 4426 if (sigfd >= 0)
4427 {
4428 fd_intern (sigfd); /* doing it twice will not hurt */
2351 4429
2352#ifndef _WIN32 4430 sigemptyset (&sigfd_set);
2353 sigprocmask (SIG_SETMASK, &prev, 0); 4431
2354#endif 4432 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4433 ev_set_priority (&sigfd_w, EV_MAXPRI);
4434 ev_io_start (EV_A_ &sigfd_w);
4435 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4436 }
2355 } 4437 }
4438
4439 if (sigfd >= 0)
4440 {
4441 /* TODO: check .head */
4442 sigaddset (&sigfd_set, w->signum);
4443 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4444
4445 signalfd (sigfd, &sigfd_set, 0);
4446 }
4447#endif
2356 4448
2357 ev_start (EV_A_ (W)w, 1); 4449 ev_start (EV_A_ (W)w, 1);
2358 wlist_add (&signals [w->signum - 1].head, (WL)w); 4450 wlist_add (&signals [w->signum - 1].head, (WL)w);
2359 4451
2360 if (!((WL)w)->next) 4452 if (!((WL)w)->next)
4453# if EV_USE_SIGNALFD
4454 if (sigfd < 0) /*TODO*/
4455# endif
2361 { 4456 {
2362#if _WIN32 4457# ifdef _WIN32
4458 evpipe_init (EV_A);
4459
2363 signal (w->signum, ev_sighandler); 4460 signal (w->signum, ev_sighandler);
2364#else 4461# else
2365 struct sigaction sa; 4462 struct sigaction sa;
4463
4464 evpipe_init (EV_A);
4465
2366 sa.sa_handler = ev_sighandler; 4466 sa.sa_handler = ev_sighandler;
2367 sigfillset (&sa.sa_mask); 4467 sigfillset (&sa.sa_mask);
2368 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 4468 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2369 sigaction (w->signum, &sa, 0); 4469 sigaction (w->signum, &sa, 0);
4470
4471 if (origflags & EVFLAG_NOSIGMASK)
4472 {
4473 sigemptyset (&sa.sa_mask);
4474 sigaddset (&sa.sa_mask, w->signum);
4475 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4476 }
2370#endif 4477#endif
2371 } 4478 }
2372 4479
2373 EV_FREQUENT_CHECK; 4480 EV_FREQUENT_CHECK;
2374} 4481}
2375 4482
2376void noinline 4483ecb_noinline
4484void
2377ev_signal_stop (EV_P_ ev_signal *w) 4485ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
2378{ 4486{
2379 clear_pending (EV_A_ (W)w); 4487 clear_pending (EV_A_ (W)w);
2380 if (expect_false (!ev_is_active (w))) 4488 if (ecb_expect_false (!ev_is_active (w)))
2381 return; 4489 return;
2382 4490
2383 EV_FREQUENT_CHECK; 4491 EV_FREQUENT_CHECK;
2384 4492
2385 wlist_del (&signals [w->signum - 1].head, (WL)w); 4493 wlist_del (&signals [w->signum - 1].head, (WL)w);
2386 ev_stop (EV_A_ (W)w); 4494 ev_stop (EV_A_ (W)w);
2387 4495
2388 if (!signals [w->signum - 1].head) 4496 if (!signals [w->signum - 1].head)
4497 {
4498#if EV_MULTIPLICITY
4499 signals [w->signum - 1].loop = 0; /* unattach from signal */
4500#endif
4501#if EV_USE_SIGNALFD
4502 if (sigfd >= 0)
4503 {
4504 sigset_t ss;
4505
4506 sigemptyset (&ss);
4507 sigaddset (&ss, w->signum);
4508 sigdelset (&sigfd_set, w->signum);
4509
4510 signalfd (sigfd, &sigfd_set, 0);
4511 sigprocmask (SIG_UNBLOCK, &ss, 0);
4512 }
4513 else
4514#endif
2389 signal (w->signum, SIG_DFL); 4515 signal (w->signum, SIG_DFL);
4516 }
2390 4517
2391 EV_FREQUENT_CHECK; 4518 EV_FREQUENT_CHECK;
2392} 4519}
2393 4520
4521#endif
4522
4523#if EV_CHILD_ENABLE
4524
2394void 4525void
2395ev_child_start (EV_P_ ev_child *w) 4526ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
2396{ 4527{
2397#if EV_MULTIPLICITY 4528#if EV_MULTIPLICITY
2398 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4529 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2399#endif 4530#endif
2400 if (expect_false (ev_is_active (w))) 4531 if (ecb_expect_false (ev_is_active (w)))
2401 return; 4532 return;
2402 4533
2403 EV_FREQUENT_CHECK; 4534 EV_FREQUENT_CHECK;
2404 4535
2405 ev_start (EV_A_ (W)w, 1); 4536 ev_start (EV_A_ (W)w, 1);
2406 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4537 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2407 4538
2408 EV_FREQUENT_CHECK; 4539 EV_FREQUENT_CHECK;
2409} 4540}
2410 4541
2411void 4542void
2412ev_child_stop (EV_P_ ev_child *w) 4543ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
2413{ 4544{
2414 clear_pending (EV_A_ (W)w); 4545 clear_pending (EV_A_ (W)w);
2415 if (expect_false (!ev_is_active (w))) 4546 if (ecb_expect_false (!ev_is_active (w)))
2416 return; 4547 return;
2417 4548
2418 EV_FREQUENT_CHECK; 4549 EV_FREQUENT_CHECK;
2419 4550
2420 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4551 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2421 ev_stop (EV_A_ (W)w); 4552 ev_stop (EV_A_ (W)w);
2422 4553
2423 EV_FREQUENT_CHECK; 4554 EV_FREQUENT_CHECK;
2424} 4555}
4556
4557#endif
2425 4558
2426#if EV_STAT_ENABLE 4559#if EV_STAT_ENABLE
2427 4560
2428# ifdef _WIN32 4561# ifdef _WIN32
2429# undef lstat 4562# undef lstat
2430# define lstat(a,b) _stati64 (a,b) 4563# define lstat(a,b) _stati64 (a,b)
2431# endif 4564# endif
2432 4565
2433#define DEF_STAT_INTERVAL 5.0074891 4566#define DEF_STAT_INTERVAL 5.0074891
4567#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2434#define MIN_STAT_INTERVAL 0.1074891 4568#define MIN_STAT_INTERVAL 0.1074891
2435 4569
2436static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 4570ecb_noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2437 4571
2438#if EV_USE_INOTIFY 4572#if EV_USE_INOTIFY
2439# define EV_INOTIFY_BUFSIZE 8192
2440 4573
2441static void noinline 4574/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4575# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4576
4577ecb_noinline
4578static void
2442infy_add (EV_P_ ev_stat *w) 4579infy_add (EV_P_ ev_stat *w)
2443{ 4580{
2444 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 4581 w->wd = inotify_add_watch (fs_fd, w->path,
4582 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4583 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4584 | IN_DONT_FOLLOW | IN_MASK_ADD);
2445 4585
2446 if (w->wd < 0) 4586 if (w->wd >= 0)
4587 {
4588 struct statfs sfs;
4589
4590 /* now local changes will be tracked by inotify, but remote changes won't */
4591 /* unless the filesystem is known to be local, we therefore still poll */
4592 /* also do poll on <2.6.25, but with normal frequency */
4593
4594 if (!fs_2625)
4595 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4596 else if (!statfs (w->path, &sfs)
4597 && (sfs.f_type == 0x1373 /* devfs */
4598 || sfs.f_type == 0x4006 /* fat */
4599 || sfs.f_type == 0x4d44 /* msdos */
4600 || sfs.f_type == 0xEF53 /* ext2/3 */
4601 || sfs.f_type == 0x72b6 /* jffs2 */
4602 || sfs.f_type == 0x858458f6 /* ramfs */
4603 || sfs.f_type == 0x5346544e /* ntfs */
4604 || sfs.f_type == 0x3153464a /* jfs */
4605 || sfs.f_type == 0x9123683e /* btrfs */
4606 || sfs.f_type == 0x52654973 /* reiser3 */
4607 || sfs.f_type == 0x01021994 /* tmpfs */
4608 || sfs.f_type == 0x58465342 /* xfs */))
4609 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4610 else
4611 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2447 { 4612 }
2448 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 4613 else
4614 {
4615 /* can't use inotify, continue to stat */
4616 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2449 4617
2450 /* monitor some parent directory for speedup hints */ 4618 /* if path is not there, monitor some parent directory for speedup hints */
2451 /* note that exceeding the hardcoded limit is not a correctness issue, */ 4619 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2452 /* but an efficiency issue only */ 4620 /* but an efficiency issue only */
2453 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4621 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2454 { 4622 {
2455 char path [4096]; 4623 char path [4096];
2456 strcpy (path, w->path); 4624 strcpy (path, w->path);
2460 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 4628 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2461 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 4629 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2462 4630
2463 char *pend = strrchr (path, '/'); 4631 char *pend = strrchr (path, '/');
2464 4632
2465 if (!pend) 4633 if (!pend || pend == path)
2466 break; /* whoops, no '/', complain to your admin */ 4634 break;
2467 4635
2468 *pend = 0; 4636 *pend = 0;
2469 w->wd = inotify_add_watch (fs_fd, path, mask); 4637 w->wd = inotify_add_watch (fs_fd, path, mask);
2470 } 4638 }
2471 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4639 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2472 } 4640 }
2473 } 4641 }
2474 else
2475 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2476 4642
2477 if (w->wd >= 0) 4643 if (w->wd >= 0)
2478 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4644 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2479}
2480 4645
2481static void noinline 4646 /* now re-arm timer, if required */
4647 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4648 ev_timer_again (EV_A_ &w->timer);
4649 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4650}
4651
4652ecb_noinline
4653static void
2482infy_del (EV_P_ ev_stat *w) 4654infy_del (EV_P_ ev_stat *w)
2483{ 4655{
2484 int slot; 4656 int slot;
2485 int wd = w->wd; 4657 int wd = w->wd;
2486 4658
2487 if (wd < 0) 4659 if (wd < 0)
2488 return; 4660 return;
2489 4661
2490 w->wd = -2; 4662 w->wd = -2;
2491 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4663 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2492 wlist_del (&fs_hash [slot].head, (WL)w); 4664 wlist_del (&fs_hash [slot].head, (WL)w);
2493 4665
2494 /* remove this watcher, if others are watching it, they will rearm */ 4666 /* remove this watcher, if others are watching it, they will rearm */
2495 inotify_rm_watch (fs_fd, wd); 4667 inotify_rm_watch (fs_fd, wd);
2496} 4668}
2497 4669
2498static void noinline 4670ecb_noinline
4671static void
2499infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4672infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2500{ 4673{
2501 if (slot < 0) 4674 if (slot < 0)
2502 /* overflow, need to check for all hash slots */ 4675 /* overflow, need to check for all hash slots */
2503 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4676 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2504 infy_wd (EV_A_ slot, wd, ev); 4677 infy_wd (EV_A_ slot, wd, ev);
2505 else 4678 else
2506 { 4679 {
2507 WL w_; 4680 WL w_;
2508 4681
2509 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4682 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2510 { 4683 {
2511 ev_stat *w = (ev_stat *)w_; 4684 ev_stat *w = (ev_stat *)w_;
2512 w_ = w_->next; /* lets us remove this watcher and all before it */ 4685 w_ = w_->next; /* lets us remove this watcher and all before it */
2513 4686
2514 if (w->wd == wd || wd == -1) 4687 if (w->wd == wd || wd == -1)
2515 { 4688 {
2516 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4689 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2517 { 4690 {
4691 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2518 w->wd = -1; 4692 w->wd = -1;
2519 infy_add (EV_A_ w); /* re-add, no matter what */ 4693 infy_add (EV_A_ w); /* re-add, no matter what */
2520 } 4694 }
2521 4695
2522 stat_timer_cb (EV_A_ &w->timer, 0); 4696 stat_timer_cb (EV_A_ &w->timer, 0);
2527 4701
2528static void 4702static void
2529infy_cb (EV_P_ ev_io *w, int revents) 4703infy_cb (EV_P_ ev_io *w, int revents)
2530{ 4704{
2531 char buf [EV_INOTIFY_BUFSIZE]; 4705 char buf [EV_INOTIFY_BUFSIZE];
2532 struct inotify_event *ev = (struct inotify_event *)buf;
2533 int ofs; 4706 int ofs;
2534 int len = read (fs_fd, buf, sizeof (buf)); 4707 int len = read (fs_fd, buf, sizeof (buf));
2535 4708
2536 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4709 for (ofs = 0; ofs < len; )
4710 {
4711 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2537 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4712 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4713 ofs += sizeof (struct inotify_event) + ev->len;
4714 }
2538} 4715}
2539 4716
2540void inline_size 4717inline_size ecb_cold
2541infy_init (EV_P) 4718void
4719ev_check_2625 (EV_P)
2542{ 4720{
2543 if (fs_fd != -2)
2544 return;
2545
2546 /* kernels < 2.6.25 are borked 4721 /* kernels < 2.6.25 are borked
2547 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 4722 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2548 */ 4723 */
2549 { 4724 if (ev_linux_version () < 0x020619)
2550 struct utsname buf; 4725 return;
2551 int major, minor, micro;
2552 4726
4727 fs_2625 = 1;
4728}
4729
4730inline_size int
4731infy_newfd (void)
4732{
4733#if defined IN_CLOEXEC && defined IN_NONBLOCK
4734 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4735 if (fd >= 0)
4736 return fd;
4737#endif
4738 return inotify_init ();
4739}
4740
4741inline_size void
4742infy_init (EV_P)
4743{
4744 if (fs_fd != -2)
4745 return;
4746
2553 fs_fd = -1; 4747 fs_fd = -1;
2554 4748
2555 if (uname (&buf)) 4749 ev_check_2625 (EV_A);
2556 return;
2557 4750
2558 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2559 return;
2560
2561 if (major < 2
2562 || (major == 2 && minor < 6)
2563 || (major == 2 && minor == 6 && micro < 25))
2564 return;
2565 }
2566
2567 fs_fd = inotify_init (); 4751 fs_fd = infy_newfd ();
2568 4752
2569 if (fs_fd >= 0) 4753 if (fs_fd >= 0)
2570 { 4754 {
4755 fd_intern (fs_fd);
2571 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4756 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2572 ev_set_priority (&fs_w, EV_MAXPRI); 4757 ev_set_priority (&fs_w, EV_MAXPRI);
2573 ev_io_start (EV_A_ &fs_w); 4758 ev_io_start (EV_A_ &fs_w);
4759 ev_unref (EV_A);
2574 } 4760 }
2575} 4761}
2576 4762
2577void inline_size 4763inline_size void
2578infy_fork (EV_P) 4764infy_fork (EV_P)
2579{ 4765{
2580 int slot; 4766 int slot;
2581 4767
2582 if (fs_fd < 0) 4768 if (fs_fd < 0)
2583 return; 4769 return;
2584 4770
4771 ev_ref (EV_A);
4772 ev_io_stop (EV_A_ &fs_w);
2585 close (fs_fd); 4773 close (fs_fd);
2586 fs_fd = inotify_init (); 4774 fs_fd = infy_newfd ();
2587 4775
4776 if (fs_fd >= 0)
4777 {
4778 fd_intern (fs_fd);
4779 ev_io_set (&fs_w, fs_fd, EV_READ);
4780 ev_io_start (EV_A_ &fs_w);
4781 ev_unref (EV_A);
4782 }
4783
2588 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4784 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2589 { 4785 {
2590 WL w_ = fs_hash [slot].head; 4786 WL w_ = fs_hash [slot].head;
2591 fs_hash [slot].head = 0; 4787 fs_hash [slot].head = 0;
2592 4788
2593 while (w_) 4789 while (w_)
2598 w->wd = -1; 4794 w->wd = -1;
2599 4795
2600 if (fs_fd >= 0) 4796 if (fs_fd >= 0)
2601 infy_add (EV_A_ w); /* re-add, no matter what */ 4797 infy_add (EV_A_ w); /* re-add, no matter what */
2602 else 4798 else
4799 {
4800 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4801 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2603 ev_timer_start (EV_A_ &w->timer); 4802 ev_timer_again (EV_A_ &w->timer);
4803 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4804 }
2604 } 4805 }
2605 } 4806 }
2606} 4807}
2607 4808
2608#endif 4809#endif
2612#else 4813#else
2613# define EV_LSTAT(p,b) lstat (p, b) 4814# define EV_LSTAT(p,b) lstat (p, b)
2614#endif 4815#endif
2615 4816
2616void 4817void
2617ev_stat_stat (EV_P_ ev_stat *w) 4818ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
2618{ 4819{
2619 if (lstat (w->path, &w->attr) < 0) 4820 if (lstat (w->path, &w->attr) < 0)
2620 w->attr.st_nlink = 0; 4821 w->attr.st_nlink = 0;
2621 else if (!w->attr.st_nlink) 4822 else if (!w->attr.st_nlink)
2622 w->attr.st_nlink = 1; 4823 w->attr.st_nlink = 1;
2623} 4824}
2624 4825
2625static void noinline 4826ecb_noinline
4827static void
2626stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4828stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2627{ 4829{
2628 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4830 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2629 4831
2630 /* we copy this here each the time so that */ 4832 ev_statdata prev = w->attr;
2631 /* prev has the old value when the callback gets invoked */
2632 w->prev = w->attr;
2633 ev_stat_stat (EV_A_ w); 4833 ev_stat_stat (EV_A_ w);
2634 4834
2635 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4835 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2636 if ( 4836 if (
2637 w->prev.st_dev != w->attr.st_dev 4837 prev.st_dev != w->attr.st_dev
2638 || w->prev.st_ino != w->attr.st_ino 4838 || prev.st_ino != w->attr.st_ino
2639 || w->prev.st_mode != w->attr.st_mode 4839 || prev.st_mode != w->attr.st_mode
2640 || w->prev.st_nlink != w->attr.st_nlink 4840 || prev.st_nlink != w->attr.st_nlink
2641 || w->prev.st_uid != w->attr.st_uid 4841 || prev.st_uid != w->attr.st_uid
2642 || w->prev.st_gid != w->attr.st_gid 4842 || prev.st_gid != w->attr.st_gid
2643 || w->prev.st_rdev != w->attr.st_rdev 4843 || prev.st_rdev != w->attr.st_rdev
2644 || w->prev.st_size != w->attr.st_size 4844 || prev.st_size != w->attr.st_size
2645 || w->prev.st_atime != w->attr.st_atime 4845 || prev.st_atime != w->attr.st_atime
2646 || w->prev.st_mtime != w->attr.st_mtime 4846 || prev.st_mtime != w->attr.st_mtime
2647 || w->prev.st_ctime != w->attr.st_ctime 4847 || prev.st_ctime != w->attr.st_ctime
2648 ) { 4848 ) {
4849 /* we only update w->prev on actual differences */
4850 /* in case we test more often than invoke the callback, */
4851 /* to ensure that prev is always different to attr */
4852 w->prev = prev;
4853
2649 #if EV_USE_INOTIFY 4854 #if EV_USE_INOTIFY
2650 if (fs_fd >= 0) 4855 if (fs_fd >= 0)
2651 { 4856 {
2652 infy_del (EV_A_ w); 4857 infy_del (EV_A_ w);
2653 infy_add (EV_A_ w); 4858 infy_add (EV_A_ w);
2658 ev_feed_event (EV_A_ w, EV_STAT); 4863 ev_feed_event (EV_A_ w, EV_STAT);
2659 } 4864 }
2660} 4865}
2661 4866
2662void 4867void
2663ev_stat_start (EV_P_ ev_stat *w) 4868ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
2664{ 4869{
2665 if (expect_false (ev_is_active (w))) 4870 if (ecb_expect_false (ev_is_active (w)))
2666 return; 4871 return;
2667 4872
2668 /* since we use memcmp, we need to clear any padding data etc. */
2669 memset (&w->prev, 0, sizeof (ev_statdata));
2670 memset (&w->attr, 0, sizeof (ev_statdata));
2671
2672 ev_stat_stat (EV_A_ w); 4873 ev_stat_stat (EV_A_ w);
2673 4874
4875 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2674 if (w->interval < MIN_STAT_INTERVAL) 4876 w->interval = MIN_STAT_INTERVAL;
2675 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2676 4877
2677 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4878 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2678 ev_set_priority (&w->timer, ev_priority (w)); 4879 ev_set_priority (&w->timer, ev_priority (w));
2679 4880
2680#if EV_USE_INOTIFY 4881#if EV_USE_INOTIFY
2681 infy_init (EV_A); 4882 infy_init (EV_A);
2682 4883
2683 if (fs_fd >= 0) 4884 if (fs_fd >= 0)
2684 infy_add (EV_A_ w); 4885 infy_add (EV_A_ w);
2685 else 4886 else
2686#endif 4887#endif
4888 {
2687 ev_timer_start (EV_A_ &w->timer); 4889 ev_timer_again (EV_A_ &w->timer);
4890 ev_unref (EV_A);
4891 }
2688 4892
2689 ev_start (EV_A_ (W)w, 1); 4893 ev_start (EV_A_ (W)w, 1);
2690 4894
2691 EV_FREQUENT_CHECK; 4895 EV_FREQUENT_CHECK;
2692} 4896}
2693 4897
2694void 4898void
2695ev_stat_stop (EV_P_ ev_stat *w) 4899ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
2696{ 4900{
2697 clear_pending (EV_A_ (W)w); 4901 clear_pending (EV_A_ (W)w);
2698 if (expect_false (!ev_is_active (w))) 4902 if (ecb_expect_false (!ev_is_active (w)))
2699 return; 4903 return;
2700 4904
2701 EV_FREQUENT_CHECK; 4905 EV_FREQUENT_CHECK;
2702 4906
2703#if EV_USE_INOTIFY 4907#if EV_USE_INOTIFY
2704 infy_del (EV_A_ w); 4908 infy_del (EV_A_ w);
2705#endif 4909#endif
4910
4911 if (ev_is_active (&w->timer))
4912 {
4913 ev_ref (EV_A);
2706 ev_timer_stop (EV_A_ &w->timer); 4914 ev_timer_stop (EV_A_ &w->timer);
4915 }
2707 4916
2708 ev_stop (EV_A_ (W)w); 4917 ev_stop (EV_A_ (W)w);
2709 4918
2710 EV_FREQUENT_CHECK; 4919 EV_FREQUENT_CHECK;
2711} 4920}
2712#endif 4921#endif
2713 4922
2714#if EV_IDLE_ENABLE 4923#if EV_IDLE_ENABLE
2715void 4924void
2716ev_idle_start (EV_P_ ev_idle *w) 4925ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
2717{ 4926{
2718 if (expect_false (ev_is_active (w))) 4927 if (ecb_expect_false (ev_is_active (w)))
2719 return; 4928 return;
2720 4929
2721 pri_adjust (EV_A_ (W)w); 4930 pri_adjust (EV_A_ (W)w);
2722 4931
2723 EV_FREQUENT_CHECK; 4932 EV_FREQUENT_CHECK;
2726 int active = ++idlecnt [ABSPRI (w)]; 4935 int active = ++idlecnt [ABSPRI (w)];
2727 4936
2728 ++idleall; 4937 ++idleall;
2729 ev_start (EV_A_ (W)w, active); 4938 ev_start (EV_A_ (W)w, active);
2730 4939
2731 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 4940 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
2732 idles [ABSPRI (w)][active - 1] = w; 4941 idles [ABSPRI (w)][active - 1] = w;
2733 } 4942 }
2734 4943
2735 EV_FREQUENT_CHECK; 4944 EV_FREQUENT_CHECK;
2736} 4945}
2737 4946
2738void 4947void
2739ev_idle_stop (EV_P_ ev_idle *w) 4948ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
2740{ 4949{
2741 clear_pending (EV_A_ (W)w); 4950 clear_pending (EV_A_ (W)w);
2742 if (expect_false (!ev_is_active (w))) 4951 if (ecb_expect_false (!ev_is_active (w)))
2743 return; 4952 return;
2744 4953
2745 EV_FREQUENT_CHECK; 4954 EV_FREQUENT_CHECK;
2746 4955
2747 { 4956 {
2756 4965
2757 EV_FREQUENT_CHECK; 4966 EV_FREQUENT_CHECK;
2758} 4967}
2759#endif 4968#endif
2760 4969
4970#if EV_PREPARE_ENABLE
2761void 4971void
2762ev_prepare_start (EV_P_ ev_prepare *w) 4972ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
2763{ 4973{
2764 if (expect_false (ev_is_active (w))) 4974 if (ecb_expect_false (ev_is_active (w)))
2765 return; 4975 return;
2766 4976
2767 EV_FREQUENT_CHECK; 4977 EV_FREQUENT_CHECK;
2768 4978
2769 ev_start (EV_A_ (W)w, ++preparecnt); 4979 ev_start (EV_A_ (W)w, ++preparecnt);
2770 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4980 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
2771 prepares [preparecnt - 1] = w; 4981 prepares [preparecnt - 1] = w;
2772 4982
2773 EV_FREQUENT_CHECK; 4983 EV_FREQUENT_CHECK;
2774} 4984}
2775 4985
2776void 4986void
2777ev_prepare_stop (EV_P_ ev_prepare *w) 4987ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
2778{ 4988{
2779 clear_pending (EV_A_ (W)w); 4989 clear_pending (EV_A_ (W)w);
2780 if (expect_false (!ev_is_active (w))) 4990 if (ecb_expect_false (!ev_is_active (w)))
2781 return; 4991 return;
2782 4992
2783 EV_FREQUENT_CHECK; 4993 EV_FREQUENT_CHECK;
2784 4994
2785 { 4995 {
2791 5001
2792 ev_stop (EV_A_ (W)w); 5002 ev_stop (EV_A_ (W)w);
2793 5003
2794 EV_FREQUENT_CHECK; 5004 EV_FREQUENT_CHECK;
2795} 5005}
5006#endif
2796 5007
5008#if EV_CHECK_ENABLE
2797void 5009void
2798ev_check_start (EV_P_ ev_check *w) 5010ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
2799{ 5011{
2800 if (expect_false (ev_is_active (w))) 5012 if (ecb_expect_false (ev_is_active (w)))
2801 return; 5013 return;
2802 5014
2803 EV_FREQUENT_CHECK; 5015 EV_FREQUENT_CHECK;
2804 5016
2805 ev_start (EV_A_ (W)w, ++checkcnt); 5017 ev_start (EV_A_ (W)w, ++checkcnt);
2806 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 5018 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
2807 checks [checkcnt - 1] = w; 5019 checks [checkcnt - 1] = w;
2808 5020
2809 EV_FREQUENT_CHECK; 5021 EV_FREQUENT_CHECK;
2810} 5022}
2811 5023
2812void 5024void
2813ev_check_stop (EV_P_ ev_check *w) 5025ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
2814{ 5026{
2815 clear_pending (EV_A_ (W)w); 5027 clear_pending (EV_A_ (W)w);
2816 if (expect_false (!ev_is_active (w))) 5028 if (ecb_expect_false (!ev_is_active (w)))
2817 return; 5029 return;
2818 5030
2819 EV_FREQUENT_CHECK; 5031 EV_FREQUENT_CHECK;
2820 5032
2821 { 5033 {
2827 5039
2828 ev_stop (EV_A_ (W)w); 5040 ev_stop (EV_A_ (W)w);
2829 5041
2830 EV_FREQUENT_CHECK; 5042 EV_FREQUENT_CHECK;
2831} 5043}
5044#endif
2832 5045
2833#if EV_EMBED_ENABLE 5046#if EV_EMBED_ENABLE
2834void noinline 5047ecb_noinline
5048void
2835ev_embed_sweep (EV_P_ ev_embed *w) 5049ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
2836{ 5050{
2837 ev_loop (w->other, EVLOOP_NONBLOCK); 5051 ev_run (w->other, EVRUN_NOWAIT);
2838} 5052}
2839 5053
2840static void 5054static void
2841embed_io_cb (EV_P_ ev_io *io, int revents) 5055embed_io_cb (EV_P_ ev_io *io, int revents)
2842{ 5056{
2843 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 5057 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2844 5058
2845 if (ev_cb (w)) 5059 if (ev_cb (w))
2846 ev_feed_event (EV_A_ (W)w, EV_EMBED); 5060 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2847 else 5061 else
2848 ev_loop (w->other, EVLOOP_NONBLOCK); 5062 ev_run (w->other, EVRUN_NOWAIT);
2849} 5063}
2850 5064
2851static void 5065static void
2852embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 5066embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2853{ 5067{
2854 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 5068 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2855 5069
2856 { 5070 {
2857 struct ev_loop *loop = w->other; 5071 EV_P = w->other;
2858 5072
2859 while (fdchangecnt) 5073 while (fdchangecnt)
2860 { 5074 {
2861 fd_reify (EV_A); 5075 fd_reify (EV_A);
2862 ev_loop (EV_A_ EVLOOP_NONBLOCK); 5076 ev_run (EV_A_ EVRUN_NOWAIT);
2863 } 5077 }
2864 } 5078 }
2865} 5079}
2866 5080
2867static void 5081static void
2868embed_fork_cb (EV_P_ ev_fork *fork_w, int revents) 5082embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2869{ 5083{
2870 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 5084 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2871 5085
5086 ev_embed_stop (EV_A_ w);
5087
2872 { 5088 {
2873 struct ev_loop *loop = w->other; 5089 EV_P = w->other;
2874 5090
2875 ev_loop_fork (EV_A); 5091 ev_loop_fork (EV_A);
5092 ev_run (EV_A_ EVRUN_NOWAIT);
2876 } 5093 }
5094
5095 ev_embed_start (EV_A_ w);
2877} 5096}
2878 5097
2879#if 0 5098#if 0
2880static void 5099static void
2881embed_idle_cb (EV_P_ ev_idle *idle, int revents) 5100embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2883 ev_idle_stop (EV_A_ idle); 5102 ev_idle_stop (EV_A_ idle);
2884} 5103}
2885#endif 5104#endif
2886 5105
2887void 5106void
2888ev_embed_start (EV_P_ ev_embed *w) 5107ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
2889{ 5108{
2890 if (expect_false (ev_is_active (w))) 5109 if (ecb_expect_false (ev_is_active (w)))
2891 return; 5110 return;
2892 5111
2893 { 5112 {
2894 struct ev_loop *loop = w->other; 5113 EV_P = w->other;
2895 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 5114 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2896 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 5115 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2897 } 5116 }
2898 5117
2899 EV_FREQUENT_CHECK; 5118 EV_FREQUENT_CHECK;
2900 5119
2914 5133
2915 EV_FREQUENT_CHECK; 5134 EV_FREQUENT_CHECK;
2916} 5135}
2917 5136
2918void 5137void
2919ev_embed_stop (EV_P_ ev_embed *w) 5138ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
2920{ 5139{
2921 clear_pending (EV_A_ (W)w); 5140 clear_pending (EV_A_ (W)w);
2922 if (expect_false (!ev_is_active (w))) 5141 if (ecb_expect_false (!ev_is_active (w)))
2923 return; 5142 return;
2924 5143
2925 EV_FREQUENT_CHECK; 5144 EV_FREQUENT_CHECK;
2926 5145
2927 ev_io_stop (EV_A_ &w->io); 5146 ev_io_stop (EV_A_ &w->io);
2928 ev_prepare_stop (EV_A_ &w->prepare); 5147 ev_prepare_stop (EV_A_ &w->prepare);
2929 ev_fork_stop (EV_A_ &w->fork); 5148 ev_fork_stop (EV_A_ &w->fork);
2930 5149
5150 ev_stop (EV_A_ (W)w);
5151
2931 EV_FREQUENT_CHECK; 5152 EV_FREQUENT_CHECK;
2932} 5153}
2933#endif 5154#endif
2934 5155
2935#if EV_FORK_ENABLE 5156#if EV_FORK_ENABLE
2936void 5157void
2937ev_fork_start (EV_P_ ev_fork *w) 5158ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
2938{ 5159{
2939 if (expect_false (ev_is_active (w))) 5160 if (ecb_expect_false (ev_is_active (w)))
2940 return; 5161 return;
2941 5162
2942 EV_FREQUENT_CHECK; 5163 EV_FREQUENT_CHECK;
2943 5164
2944 ev_start (EV_A_ (W)w, ++forkcnt); 5165 ev_start (EV_A_ (W)w, ++forkcnt);
2945 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 5166 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
2946 forks [forkcnt - 1] = w; 5167 forks [forkcnt - 1] = w;
2947 5168
2948 EV_FREQUENT_CHECK; 5169 EV_FREQUENT_CHECK;
2949} 5170}
2950 5171
2951void 5172void
2952ev_fork_stop (EV_P_ ev_fork *w) 5173ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
2953{ 5174{
2954 clear_pending (EV_A_ (W)w); 5175 clear_pending (EV_A_ (W)w);
2955 if (expect_false (!ev_is_active (w))) 5176 if (ecb_expect_false (!ev_is_active (w)))
2956 return; 5177 return;
2957 5178
2958 EV_FREQUENT_CHECK; 5179 EV_FREQUENT_CHECK;
2959 5180
2960 { 5181 {
2968 5189
2969 EV_FREQUENT_CHECK; 5190 EV_FREQUENT_CHECK;
2970} 5191}
2971#endif 5192#endif
2972 5193
5194#if EV_CLEANUP_ENABLE
5195void
5196ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5197{
5198 if (ecb_expect_false (ev_is_active (w)))
5199 return;
5200
5201 EV_FREQUENT_CHECK;
5202
5203 ev_start (EV_A_ (W)w, ++cleanupcnt);
5204 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
5205 cleanups [cleanupcnt - 1] = w;
5206
5207 /* cleanup watchers should never keep a refcount on the loop */
5208 ev_unref (EV_A);
5209 EV_FREQUENT_CHECK;
5210}
5211
5212void
5213ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5214{
5215 clear_pending (EV_A_ (W)w);
5216 if (ecb_expect_false (!ev_is_active (w)))
5217 return;
5218
5219 EV_FREQUENT_CHECK;
5220 ev_ref (EV_A);
5221
5222 {
5223 int active = ev_active (w);
5224
5225 cleanups [active - 1] = cleanups [--cleanupcnt];
5226 ev_active (cleanups [active - 1]) = active;
5227 }
5228
5229 ev_stop (EV_A_ (W)w);
5230
5231 EV_FREQUENT_CHECK;
5232}
5233#endif
5234
2973#if EV_ASYNC_ENABLE 5235#if EV_ASYNC_ENABLE
2974void 5236void
2975ev_async_start (EV_P_ ev_async *w) 5237ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
2976{ 5238{
2977 if (expect_false (ev_is_active (w))) 5239 if (ecb_expect_false (ev_is_active (w)))
2978 return; 5240 return;
2979 5241
5242 w->sent = 0;
5243
2980 evpipe_init (EV_A); 5244 evpipe_init (EV_A);
2981 5245
2982 EV_FREQUENT_CHECK; 5246 EV_FREQUENT_CHECK;
2983 5247
2984 ev_start (EV_A_ (W)w, ++asynccnt); 5248 ev_start (EV_A_ (W)w, ++asynccnt);
2985 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 5249 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
2986 asyncs [asynccnt - 1] = w; 5250 asyncs [asynccnt - 1] = w;
2987 5251
2988 EV_FREQUENT_CHECK; 5252 EV_FREQUENT_CHECK;
2989} 5253}
2990 5254
2991void 5255void
2992ev_async_stop (EV_P_ ev_async *w) 5256ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
2993{ 5257{
2994 clear_pending (EV_A_ (W)w); 5258 clear_pending (EV_A_ (W)w);
2995 if (expect_false (!ev_is_active (w))) 5259 if (ecb_expect_false (!ev_is_active (w)))
2996 return; 5260 return;
2997 5261
2998 EV_FREQUENT_CHECK; 5262 EV_FREQUENT_CHECK;
2999 5263
3000 { 5264 {
3008 5272
3009 EV_FREQUENT_CHECK; 5273 EV_FREQUENT_CHECK;
3010} 5274}
3011 5275
3012void 5276void
3013ev_async_send (EV_P_ ev_async *w) 5277ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
3014{ 5278{
3015 w->sent = 1; 5279 w->sent = 1;
3016 evpipe_write (EV_A_ &gotasync); 5280 evpipe_write (EV_A_ &async_pending);
3017} 5281}
3018#endif 5282#endif
3019 5283
3020/*****************************************************************************/ 5284/*****************************************************************************/
3021 5285
3055 5319
3056 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io)); 5320 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3057} 5321}
3058 5322
3059void 5323void
3060ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 5324ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
3061{ 5325{
3062 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 5326 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3063
3064 if (expect_false (!once))
3065 {
3066 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
3067 return;
3068 }
3069 5327
3070 once->cb = cb; 5328 once->cb = cb;
3071 once->arg = arg; 5329 once->arg = arg;
3072 5330
3073 ev_init (&once->io, once_cb_io); 5331 ev_init (&once->io, once_cb_io);
3083 ev_timer_set (&once->to, timeout, 0.); 5341 ev_timer_set (&once->to, timeout, 0.);
3084 ev_timer_start (EV_A_ &once->to); 5342 ev_timer_start (EV_A_ &once->to);
3085 } 5343 }
3086} 5344}
3087 5345
5346/*****************************************************************************/
5347
5348#if EV_WALK_ENABLE
5349ecb_cold
5350void
5351ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5352{
5353 int i, j;
5354 ev_watcher_list *wl, *wn;
5355
5356 if (types & (EV_IO | EV_EMBED))
5357 for (i = 0; i < anfdmax; ++i)
5358 for (wl = anfds [i].head; wl; )
5359 {
5360 wn = wl->next;
5361
5362#if EV_EMBED_ENABLE
5363 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5364 {
5365 if (types & EV_EMBED)
5366 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5367 }
5368 else
5369#endif
5370#if EV_USE_INOTIFY
5371 if (ev_cb ((ev_io *)wl) == infy_cb)
5372 ;
5373 else
5374#endif
5375 if ((ev_io *)wl != &pipe_w)
5376 if (types & EV_IO)
5377 cb (EV_A_ EV_IO, wl);
5378
5379 wl = wn;
5380 }
5381
5382 if (types & (EV_TIMER | EV_STAT))
5383 for (i = timercnt + HEAP0; i-- > HEAP0; )
5384#if EV_STAT_ENABLE
5385 /*TODO: timer is not always active*/
5386 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5387 {
5388 if (types & EV_STAT)
5389 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5390 }
5391 else
5392#endif
5393 if (types & EV_TIMER)
5394 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5395
5396#if EV_PERIODIC_ENABLE
5397 if (types & EV_PERIODIC)
5398 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5399 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5400#endif
5401
5402#if EV_IDLE_ENABLE
5403 if (types & EV_IDLE)
5404 for (j = NUMPRI; j--; )
5405 for (i = idlecnt [j]; i--; )
5406 cb (EV_A_ EV_IDLE, idles [j][i]);
5407#endif
5408
5409#if EV_FORK_ENABLE
5410 if (types & EV_FORK)
5411 for (i = forkcnt; i--; )
5412 if (ev_cb (forks [i]) != embed_fork_cb)
5413 cb (EV_A_ EV_FORK, forks [i]);
5414#endif
5415
5416#if EV_ASYNC_ENABLE
5417 if (types & EV_ASYNC)
5418 for (i = asynccnt; i--; )
5419 cb (EV_A_ EV_ASYNC, asyncs [i]);
5420#endif
5421
5422#if EV_PREPARE_ENABLE
5423 if (types & EV_PREPARE)
5424 for (i = preparecnt; i--; )
5425# if EV_EMBED_ENABLE
5426 if (ev_cb (prepares [i]) != embed_prepare_cb)
5427# endif
5428 cb (EV_A_ EV_PREPARE, prepares [i]);
5429#endif
5430
5431#if EV_CHECK_ENABLE
5432 if (types & EV_CHECK)
5433 for (i = checkcnt; i--; )
5434 cb (EV_A_ EV_CHECK, checks [i]);
5435#endif
5436
5437#if EV_SIGNAL_ENABLE
5438 if (types & EV_SIGNAL)
5439 for (i = 0; i < EV_NSIG - 1; ++i)
5440 for (wl = signals [i].head; wl; )
5441 {
5442 wn = wl->next;
5443 cb (EV_A_ EV_SIGNAL, wl);
5444 wl = wn;
5445 }
5446#endif
5447
5448#if EV_CHILD_ENABLE
5449 if (types & EV_CHILD)
5450 for (i = (EV_PID_HASHSIZE); i--; )
5451 for (wl = childs [i]; wl; )
5452 {
5453 wn = wl->next;
5454 cb (EV_A_ EV_CHILD, wl);
5455 wl = wn;
5456 }
5457#endif
5458/* EV_STAT 0x00001000 /* stat data changed */
5459/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5460}
5461#endif
5462
3088#if EV_MULTIPLICITY 5463#if EV_MULTIPLICITY
3089 #include "ev_wrap.h" 5464 #include "ev_wrap.h"
3090#endif 5465#endif
3091 5466
3092#ifdef __cplusplus
3093}
3094#endif
3095

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines