ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.205 by root, Sun Jan 20 15:37:03 2008 UTC vs.
Revision 1.518 by root, Fri Dec 27 16:12:37 2019 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
41extern "C" {
42#endif
43
44#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 43# include EV_CONFIG_H
47# else 44# else
48# include "config.h" 45# include "config.h"
49# endif 46# endif
50 47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
51# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
52# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
53# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
54# endif 71# endif
55# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
57# endif 74# endif
58# else 75# else
59# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
61# endif 78# endif
62# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
63# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
64# endif 81# endif
65# endif 82# endif
66 83
84# if HAVE_NANOSLEEP
67# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
69# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
70# else 88# else
89# undef EV_USE_NANOSLEEP
71# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
72# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
73# endif 100# endif
74 101
102# if HAVE_POLL && HAVE_POLL_H
75# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
76# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
77# define EV_USE_SELECT 1
78# else
79# define EV_USE_SELECT 0
80# endif 105# endif
81# endif
82
83# ifndef EV_USE_POLL
84# if HAVE_POLL && HAVE_POLL_H
85# define EV_USE_POLL 1
86# else 106# else
107# undef EV_USE_POLL
87# define EV_USE_POLL 0 108# define EV_USE_POLL 0
88# endif
89# endif 109# endif
90 110
91# ifndef EV_USE_EPOLL
92# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
93# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
94# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
95# define EV_USE_EPOLL 0
96# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
97# endif 118# endif
98 119
99# ifndef EV_USE_KQUEUE 120# if HAVE_LINUX_AIO_ABI_H
100# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 121# ifndef EV_USE_LINUXAIO
101# define EV_USE_KQUEUE 1 122# define EV_USE_LINUXAIO 0 /* was: EV_FEATURE_BACKENDS, always off by default */
102# else
103# define EV_USE_KQUEUE 0
104# endif 123# endif
124# else
125# undef EV_USE_LINUXAIO
126# define EV_USE_LINUXAIO 0
105# endif 127# endif
106 128
129# if HAVE_LINUX_FS_H && HAVE_SYS_TIMERFD_H && HAVE_KERNEL_RWF_T
107# ifndef EV_USE_PORT 130# ifndef EV_USE_IOURING
108# if HAVE_PORT_H && HAVE_PORT_CREATE 131# define EV_USE_IOURING EV_FEATURE_BACKENDS
109# define EV_USE_PORT 1
110# else
111# define EV_USE_PORT 0
112# endif 132# endif
133# else
134# undef EV_USE_IOURING
135# define EV_USE_IOURING 0
113# endif 136# endif
114 137
115# ifndef EV_USE_INOTIFY 138# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
116# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 139# ifndef EV_USE_KQUEUE
117# define EV_USE_INOTIFY 1 140# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
118# else
119# define EV_USE_INOTIFY 0
120# endif 141# endif
142# else
143# undef EV_USE_KQUEUE
144# define EV_USE_KQUEUE 0
121# endif 145# endif
122 146
147# if HAVE_PORT_H && HAVE_PORT_CREATE
148# ifndef EV_USE_PORT
149# define EV_USE_PORT EV_FEATURE_BACKENDS
150# endif
151# else
152# undef EV_USE_PORT
153# define EV_USE_PORT 0
123#endif 154# endif
124 155
125#include <math.h> 156# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
157# ifndef EV_USE_INOTIFY
158# define EV_USE_INOTIFY EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_INOTIFY
162# define EV_USE_INOTIFY 0
163# endif
164
165# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
166# ifndef EV_USE_SIGNALFD
167# define EV_USE_SIGNALFD EV_FEATURE_OS
168# endif
169# else
170# undef EV_USE_SIGNALFD
171# define EV_USE_SIGNALFD 0
172# endif
173
174# if HAVE_EVENTFD
175# ifndef EV_USE_EVENTFD
176# define EV_USE_EVENTFD EV_FEATURE_OS
177# endif
178# else
179# undef EV_USE_EVENTFD
180# define EV_USE_EVENTFD 0
181# endif
182
183# if HAVE_SYS_TIMERFD_H
184# ifndef EV_USE_TIMERFD
185# define EV_USE_TIMERFD EV_FEATURE_OS
186# endif
187# else
188# undef EV_USE_TIMERFD
189# define EV_USE_TIMERFD 0
190# endif
191
192#endif
193
194/* OS X, in its infinite idiocy, actually HARDCODES
195 * a limit of 1024 into their select. Where people have brains,
196 * OS X engineers apparently have a vacuum. Or maybe they were
197 * ordered to have a vacuum, or they do anything for money.
198 * This might help. Or not.
199 * Note that this must be defined early, as other include files
200 * will rely on this define as well.
201 */
202#define _DARWIN_UNLIMITED_SELECT 1
203
126#include <stdlib.h> 204#include <stdlib.h>
205#include <string.h>
127#include <fcntl.h> 206#include <fcntl.h>
128#include <stddef.h> 207#include <stddef.h>
129 208
130#include <stdio.h> 209#include <stdio.h>
131 210
132#include <assert.h> 211#include <assert.h>
133#include <errno.h> 212#include <errno.h>
134#include <sys/types.h> 213#include <sys/types.h>
135#include <time.h> 214#include <time.h>
215#include <limits.h>
136 216
137#include <signal.h> 217#include <signal.h>
138 218
139#ifdef EV_H 219#ifdef EV_H
140# include EV_H 220# include EV_H
141#else 221#else
142# include "ev.h" 222# include "ev.h"
223#endif
224
225#if EV_NO_THREADS
226# undef EV_NO_SMP
227# define EV_NO_SMP 1
228# undef ECB_NO_THREADS
229# define ECB_NO_THREADS 1
230#endif
231#if EV_NO_SMP
232# undef EV_NO_SMP
233# define ECB_NO_SMP 1
143#endif 234#endif
144 235
145#ifndef _WIN32 236#ifndef _WIN32
146# include <sys/time.h> 237# include <sys/time.h>
147# include <sys/wait.h> 238# include <sys/wait.h>
148# include <unistd.h> 239# include <unistd.h>
149#else 240#else
241# include <io.h>
150# define WIN32_LEAN_AND_MEAN 242# define WIN32_LEAN_AND_MEAN
243# include <winsock2.h>
151# include <windows.h> 244# include <windows.h>
152# ifndef EV_SELECT_IS_WINSOCKET 245# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 246# define EV_SELECT_IS_WINSOCKET 1
154# endif 247# endif
248# undef EV_AVOID_STDIO
249#endif
250
251/* this block tries to deduce configuration from header-defined symbols and defaults */
252
253/* try to deduce the maximum number of signals on this platform */
254#if defined EV_NSIG
255/* use what's provided */
256#elif defined NSIG
257# define EV_NSIG (NSIG)
258#elif defined _NSIG
259# define EV_NSIG (_NSIG)
260#elif defined SIGMAX
261# define EV_NSIG (SIGMAX+1)
262#elif defined SIG_MAX
263# define EV_NSIG (SIG_MAX+1)
264#elif defined _SIG_MAX
265# define EV_NSIG (_SIG_MAX+1)
266#elif defined MAXSIG
267# define EV_NSIG (MAXSIG+1)
268#elif defined MAX_SIG
269# define EV_NSIG (MAX_SIG+1)
270#elif defined SIGARRAYSIZE
271# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
272#elif defined _sys_nsig
273# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
274#else
275# define EV_NSIG (8 * sizeof (sigset_t) + 1)
276#endif
277
278#ifndef EV_USE_FLOOR
279# define EV_USE_FLOOR 0
280#endif
281
282#ifndef EV_USE_CLOCK_SYSCALL
283# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
284# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
285# else
286# define EV_USE_CLOCK_SYSCALL 0
155#endif 287# endif
288#endif
156 289
157/**/ 290#if !(_POSIX_TIMERS > 0)
291# ifndef EV_USE_MONOTONIC
292# define EV_USE_MONOTONIC 0
293# endif
294# ifndef EV_USE_REALTIME
295# define EV_USE_REALTIME 0
296# endif
297#endif
158 298
159#ifndef EV_USE_MONOTONIC 299#ifndef EV_USE_MONOTONIC
300# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
301# define EV_USE_MONOTONIC EV_FEATURE_OS
302# else
160# define EV_USE_MONOTONIC 0 303# define EV_USE_MONOTONIC 0
304# endif
161#endif 305#endif
162 306
163#ifndef EV_USE_REALTIME 307#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0 308# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
165#endif 309#endif
166 310
167#ifndef EV_USE_NANOSLEEP 311#ifndef EV_USE_NANOSLEEP
312# if _POSIX_C_SOURCE >= 199309L
313# define EV_USE_NANOSLEEP EV_FEATURE_OS
314# else
168# define EV_USE_NANOSLEEP 0 315# define EV_USE_NANOSLEEP 0
316# endif
169#endif 317#endif
170 318
171#ifndef EV_USE_SELECT 319#ifndef EV_USE_SELECT
172# define EV_USE_SELECT 1 320# define EV_USE_SELECT EV_FEATURE_BACKENDS
173#endif 321#endif
174 322
175#ifndef EV_USE_POLL 323#ifndef EV_USE_POLL
176# ifdef _WIN32 324# ifdef _WIN32
177# define EV_USE_POLL 0 325# define EV_USE_POLL 0
178# else 326# else
179# define EV_USE_POLL 1 327# define EV_USE_POLL EV_FEATURE_BACKENDS
180# endif 328# endif
181#endif 329#endif
182 330
183#ifndef EV_USE_EPOLL 331#ifndef EV_USE_EPOLL
332# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
333# define EV_USE_EPOLL EV_FEATURE_BACKENDS
334# else
184# define EV_USE_EPOLL 0 335# define EV_USE_EPOLL 0
336# endif
185#endif 337#endif
186 338
187#ifndef EV_USE_KQUEUE 339#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 340# define EV_USE_KQUEUE 0
189#endif 341#endif
190 342
191#ifndef EV_USE_PORT 343#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 344# define EV_USE_PORT 0
193#endif 345#endif
194 346
347#ifndef EV_USE_LINUXAIO
348# if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
349# define EV_USE_LINUXAIO 0 /* was: 1, always off by default */
350# else
351# define EV_USE_LINUXAIO 0
352# endif
353#endif
354
355#ifndef EV_USE_IOURING
356# if __linux /* later checks might disable again */
357# define EV_USE_IOURING 1
358# else
359# define EV_USE_IOURING 0
360# endif
361#endif
362
195#ifndef EV_USE_INOTIFY 363#ifndef EV_USE_INOTIFY
364# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
365# define EV_USE_INOTIFY EV_FEATURE_OS
366# else
196# define EV_USE_INOTIFY 0 367# define EV_USE_INOTIFY 0
368# endif
197#endif 369#endif
198 370
199#ifndef EV_PID_HASHSIZE 371#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 372# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
201# define EV_PID_HASHSIZE 1 373#endif
374
375#ifndef EV_INOTIFY_HASHSIZE
376# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
377#endif
378
379#ifndef EV_USE_EVENTFD
380# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
381# define EV_USE_EVENTFD EV_FEATURE_OS
202# else 382# else
203# define EV_PID_HASHSIZE 16 383# define EV_USE_EVENTFD 0
204# endif 384# endif
205#endif 385#endif
206 386
207#ifndef EV_INOTIFY_HASHSIZE 387#ifndef EV_USE_SIGNALFD
208# if EV_MINIMAL 388# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
209# define EV_INOTIFY_HASHSIZE 1 389# define EV_USE_SIGNALFD EV_FEATURE_OS
210# else 390# else
211# define EV_INOTIFY_HASHSIZE 16 391# define EV_USE_SIGNALFD 0
212# endif 392# endif
213#endif 393#endif
214 394
215/**/ 395#ifndef EV_USE_TIMERFD
396# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 8))
397# define EV_USE_TIMERFD EV_FEATURE_OS
398# else
399# define EV_USE_TIMERFD 0
400# endif
401#endif
402
403#if 0 /* debugging */
404# define EV_VERIFY 3
405# define EV_USE_4HEAP 1
406# define EV_HEAP_CACHE_AT 1
407#endif
408
409#ifndef EV_VERIFY
410# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
411#endif
412
413#ifndef EV_USE_4HEAP
414# define EV_USE_4HEAP EV_FEATURE_DATA
415#endif
416
417#ifndef EV_HEAP_CACHE_AT
418# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
419#endif
420
421#ifdef __ANDROID__
422/* supposedly, android doesn't typedef fd_mask */
423# undef EV_USE_SELECT
424# define EV_USE_SELECT 0
425/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
426# undef EV_USE_CLOCK_SYSCALL
427# define EV_USE_CLOCK_SYSCALL 0
428#endif
429
430/* aix's poll.h seems to cause lots of trouble */
431#ifdef _AIX
432/* AIX has a completely broken poll.h header */
433# undef EV_USE_POLL
434# define EV_USE_POLL 0
435#endif
436
437/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
438/* which makes programs even slower. might work on other unices, too. */
439#if EV_USE_CLOCK_SYSCALL
440# include <sys/syscall.h>
441# ifdef SYS_clock_gettime
442# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
443# undef EV_USE_MONOTONIC
444# define EV_USE_MONOTONIC 1
445# define EV_NEED_SYSCALL 1
446# else
447# undef EV_USE_CLOCK_SYSCALL
448# define EV_USE_CLOCK_SYSCALL 0
449# endif
450#endif
451
452/* this block fixes any misconfiguration where we know we run into trouble otherwise */
216 453
217#ifndef CLOCK_MONOTONIC 454#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 455# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 456# define EV_USE_MONOTONIC 0
220#endif 457#endif
227#if !EV_STAT_ENABLE 464#if !EV_STAT_ENABLE
228# undef EV_USE_INOTIFY 465# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0 466# define EV_USE_INOTIFY 0
230#endif 467#endif
231 468
469#if __linux && EV_USE_IOURING
470# include <linux/version.h>
471# if LINUX_VERSION_CODE < KERNEL_VERSION(4,14,0)
472# undef EV_USE_IOURING
473# define EV_USE_IOURING 0
474# endif
475#endif
476
232#if !EV_USE_NANOSLEEP 477#if !EV_USE_NANOSLEEP
233# ifndef _WIN32 478/* hp-ux has it in sys/time.h, which we unconditionally include above */
479# if !defined _WIN32 && !defined __hpux
234# include <sys/select.h> 480# include <sys/select.h>
235# endif 481# endif
236#endif 482#endif
237 483
484#if EV_USE_LINUXAIO
485# include <sys/syscall.h>
486# if SYS_io_getevents && EV_USE_EPOLL /* linuxaio backend requires epoll backend */
487# define EV_NEED_SYSCALL 1
488# else
489# undef EV_USE_LINUXAIO
490# define EV_USE_LINUXAIO 0
491# endif
492#endif
493
494#if EV_USE_IOURING
495# include <sys/syscall.h>
496# if !SYS_io_uring_setup && __linux && !__alpha
497# define SYS_io_uring_setup 425
498# define SYS_io_uring_enter 426
499# define SYS_io_uring_wregister 427
500# endif
501# if SYS_io_uring_setup && EV_USE_EPOLL /* iouring backend requires epoll backend */
502# define EV_NEED_SYSCALL 1
503# else
504# undef EV_USE_IOURING
505# define EV_USE_IOURING 0
506# endif
507#endif
508
238#if EV_USE_INOTIFY 509#if EV_USE_INOTIFY
510# include <sys/statfs.h>
239# include <sys/inotify.h> 511# include <sys/inotify.h>
512/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
513# ifndef IN_DONT_FOLLOW
514# undef EV_USE_INOTIFY
515# define EV_USE_INOTIFY 0
240#endif 516# endif
517#endif
241 518
242#if EV_SELECT_IS_WINSOCKET 519#if EV_USE_EVENTFD
520/* our minimum requirement is glibc 2.7 which has the stub, but not the full header */
243# include <winsock.h> 521# include <stdint.h>
522# ifndef EFD_NONBLOCK
523# define EFD_NONBLOCK O_NONBLOCK
244#endif 524# endif
525# ifndef EFD_CLOEXEC
526# ifdef O_CLOEXEC
527# define EFD_CLOEXEC O_CLOEXEC
528# else
529# define EFD_CLOEXEC 02000000
530# endif
531# endif
532EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
533#endif
245 534
246/**/ 535#if EV_USE_SIGNALFD
536/* our minimum requirement is glibc 2.7 which has the stub, but not the full header */
537# include <stdint.h>
538# ifndef SFD_NONBLOCK
539# define SFD_NONBLOCK O_NONBLOCK
540# endif
541# ifndef SFD_CLOEXEC
542# ifdef O_CLOEXEC
543# define SFD_CLOEXEC O_CLOEXEC
544# else
545# define SFD_CLOEXEC 02000000
546# endif
547# endif
548EV_CPP (extern "C") int (signalfd) (int fd, const sigset_t *mask, int flags);
549
550struct signalfd_siginfo
551{
552 uint32_t ssi_signo;
553 char pad[128 - sizeof (uint32_t)];
554};
555#endif
556
557/* for timerfd, libev core requires TFD_TIMER_CANCEL_ON_SET &c */
558#if EV_USE_TIMERFD
559# include <sys/timerfd.h>
560/* timerfd is only used for periodics */
561# if !(defined (TFD_TIMER_CANCEL_ON_SET) && defined (TFD_CLOEXEC) && defined (TFD_NONBLOCK)) || !EV_PERIODIC_ENABLE
562# undef EV_USE_TIMERFD
563# define EV_USE_TIMERFD 0
564# endif
565#endif
566
567/*****************************************************************************/
568
569#if EV_VERIFY >= 3
570# define EV_FREQUENT_CHECK ev_verify (EV_A)
571#else
572# define EV_FREQUENT_CHECK do { } while (0)
573#endif
247 574
248/* 575/*
249 * This is used to avoid floating point rounding problems. 576 * This is used to work around floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding
252 * errors are against us.
253 * This value is good at least till the year 4000. 577 * This value is good at least till the year 4000.
254 * Better solutions welcome.
255 */ 578 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 579#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
580/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
257 581
258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 582#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 583#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
261 584
585/* find a portable timestamp that is "always" in the future but fits into time_t.
586 * this is quite hard, and we are mostly guessing - we handle 32 bit signed/unsigned time_t,
587 * and sizes larger than 32 bit, and maybe the unlikely floating point time_t */
588#define EV_TSTAMP_HUGE \
589 (sizeof (time_t) >= 8 ? 10000000000000. \
590 : 0 < (time_t)4294967295 ? 4294967295. \
591 : 2147483647.) \
592
593#ifndef EV_TS_CONST
594# define EV_TS_CONST(nv) nv
595# define EV_TS_TO_MSEC(a) a * 1e3 + 0.9999
596# define EV_TS_FROM_USEC(us) us * 1e-6
597# define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
598# define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
599# define EV_TV_GET(tv) ((tv).tv_sec + (tv).tv_usec * 1e-6)
600# define EV_TS_GET(ts) ((ts).tv_sec + (ts).tv_nsec * 1e-9)
601#endif
602
603/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
604/* ECB.H BEGIN */
605/*
606 * libecb - http://software.schmorp.de/pkg/libecb
607 *
608 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
609 * Copyright (©) 2011 Emanuele Giaquinta
610 * All rights reserved.
611 *
612 * Redistribution and use in source and binary forms, with or without modifica-
613 * tion, are permitted provided that the following conditions are met:
614 *
615 * 1. Redistributions of source code must retain the above copyright notice,
616 * this list of conditions and the following disclaimer.
617 *
618 * 2. Redistributions in binary form must reproduce the above copyright
619 * notice, this list of conditions and the following disclaimer in the
620 * documentation and/or other materials provided with the distribution.
621 *
622 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
623 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
624 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
625 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
626 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
627 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
628 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
629 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
630 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
631 * OF THE POSSIBILITY OF SUCH DAMAGE.
632 *
633 * Alternatively, the contents of this file may be used under the terms of
634 * the GNU General Public License ("GPL") version 2 or any later version,
635 * in which case the provisions of the GPL are applicable instead of
636 * the above. If you wish to allow the use of your version of this file
637 * only under the terms of the GPL and not to allow others to use your
638 * version of this file under the BSD license, indicate your decision
639 * by deleting the provisions above and replace them with the notice
640 * and other provisions required by the GPL. If you do not delete the
641 * provisions above, a recipient may use your version of this file under
642 * either the BSD or the GPL.
643 */
644
645#ifndef ECB_H
646#define ECB_H
647
648/* 16 bits major, 16 bits minor */
649#define ECB_VERSION 0x00010006
650
651#ifdef _WIN32
652 typedef signed char int8_t;
653 typedef unsigned char uint8_t;
654 typedef signed short int16_t;
655 typedef unsigned short uint16_t;
656 typedef signed int int32_t;
657 typedef unsigned int uint32_t;
262#if __GNUC__ >= 4 658 #if __GNUC__
263# define expect(expr,value) __builtin_expect ((expr),(value)) 659 typedef signed long long int64_t;
264# define noinline __attribute__ ((noinline)) 660 typedef unsigned long long uint64_t;
661 #else /* _MSC_VER || __BORLANDC__ */
662 typedef signed __int64 int64_t;
663 typedef unsigned __int64 uint64_t;
664 #endif
665 #ifdef _WIN64
666 #define ECB_PTRSIZE 8
667 typedef uint64_t uintptr_t;
668 typedef int64_t intptr_t;
669 #else
670 #define ECB_PTRSIZE 4
671 typedef uint32_t uintptr_t;
672 typedef int32_t intptr_t;
673 #endif
265#else 674#else
266# define expect(expr,value) (expr) 675 #include <inttypes.h>
267# define noinline 676 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
268# if __STDC_VERSION__ < 199901L 677 #define ECB_PTRSIZE 8
269# define inline 678 #else
679 #define ECB_PTRSIZE 4
680 #endif
270# endif 681#endif
682
683#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
684#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
685
686/* work around x32 idiocy by defining proper macros */
687#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
688 #if _ILP32
689 #define ECB_AMD64_X32 1
690 #else
691 #define ECB_AMD64 1
271#endif 692 #endif
693#endif
272 694
273#define expect_false(expr) expect ((expr) != 0, 0) 695/* many compilers define _GNUC_ to some versions but then only implement
274#define expect_true(expr) expect ((expr) != 0, 1) 696 * what their idiot authors think are the "more important" extensions,
275#define inline_size static inline 697 * causing enormous grief in return for some better fake benchmark numbers.
276 698 * or so.
277#if EV_MINIMAL 699 * we try to detect these and simply assume they are not gcc - if they have
278# define inline_speed static noinline 700 * an issue with that they should have done it right in the first place.
701 */
702#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
703 #define ECB_GCC_VERSION(major,minor) 0
279#else 704#else
705 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
706#endif
707
708#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
709
710#if __clang__ && defined __has_builtin
711 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
712#else
713 #define ECB_CLANG_BUILTIN(x) 0
714#endif
715
716#if __clang__ && defined __has_extension
717 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
718#else
719 #define ECB_CLANG_EXTENSION(x) 0
720#endif
721
722#define ECB_CPP (__cplusplus+0)
723#define ECB_CPP11 (__cplusplus >= 201103L)
724#define ECB_CPP14 (__cplusplus >= 201402L)
725#define ECB_CPP17 (__cplusplus >= 201703L)
726
727#if ECB_CPP
728 #define ECB_C 0
729 #define ECB_STDC_VERSION 0
730#else
731 #define ECB_C 1
732 #define ECB_STDC_VERSION __STDC_VERSION__
733#endif
734
735#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
736#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
737#define ECB_C17 (ECB_STDC_VERSION >= 201710L)
738
739#if ECB_CPP
740 #define ECB_EXTERN_C extern "C"
741 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
742 #define ECB_EXTERN_C_END }
743#else
744 #define ECB_EXTERN_C extern
745 #define ECB_EXTERN_C_BEG
746 #define ECB_EXTERN_C_END
747#endif
748
749/*****************************************************************************/
750
751/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
752/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
753
754#if ECB_NO_THREADS
755 #define ECB_NO_SMP 1
756#endif
757
758#if ECB_NO_SMP
759 #define ECB_MEMORY_FENCE do { } while (0)
760#endif
761
762/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
763#if __xlC__ && ECB_CPP
764 #include <builtins.h>
765#endif
766
767#if 1400 <= _MSC_VER
768 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
769#endif
770
771#ifndef ECB_MEMORY_FENCE
772 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
773 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
774 #if __i386 || __i386__
775 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
776 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
777 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
778 #elif ECB_GCC_AMD64
779 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
780 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
781 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
782 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
783 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
784 #elif defined __ARM_ARCH_2__ \
785 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
786 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
787 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
788 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
789 || defined __ARM_ARCH_5TEJ__
790 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
791 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
792 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
793 || defined __ARM_ARCH_6T2__
794 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
795 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
796 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
797 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
798 #elif __aarch64__
799 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
800 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
801 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
802 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
803 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
804 #elif defined __s390__ || defined __s390x__
805 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
806 #elif defined __mips__
807 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
808 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
809 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
810 #elif defined __alpha__
811 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
812 #elif defined __hppa__
813 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
814 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
815 #elif defined __ia64__
816 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
817 #elif defined __m68k__
818 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
819 #elif defined __m88k__
820 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
821 #elif defined __sh__
822 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
823 #endif
824 #endif
825#endif
826
827#ifndef ECB_MEMORY_FENCE
828 #if ECB_GCC_VERSION(4,7)
829 /* see comment below (stdatomic.h) about the C11 memory model. */
830 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
831 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
832 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
833 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
834
835 #elif ECB_CLANG_EXTENSION(c_atomic)
836 /* see comment below (stdatomic.h) about the C11 memory model. */
837 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
838 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
839 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
840 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
841
842 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
843 #define ECB_MEMORY_FENCE __sync_synchronize ()
844 #elif _MSC_VER >= 1500 /* VC++ 2008 */
845 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
846 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
847 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
848 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
849 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
850 #elif _MSC_VER >= 1400 /* VC++ 2005 */
851 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
852 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
853 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
854 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
855 #elif defined _WIN32
856 #include <WinNT.h>
857 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
858 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
859 #include <mbarrier.h>
860 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
861 #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
862 #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
863 #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
864 #elif __xlC__
865 #define ECB_MEMORY_FENCE __sync ()
866 #endif
867#endif
868
869#ifndef ECB_MEMORY_FENCE
870 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
871 /* we assume that these memory fences work on all variables/all memory accesses, */
872 /* not just C11 atomics and atomic accesses */
873 #include <stdatomic.h>
874 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
875 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
876 #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
877 #endif
878#endif
879
880#ifndef ECB_MEMORY_FENCE
881 #if !ECB_AVOID_PTHREADS
882 /*
883 * if you get undefined symbol references to pthread_mutex_lock,
884 * or failure to find pthread.h, then you should implement
885 * the ECB_MEMORY_FENCE operations for your cpu/compiler
886 * OR provide pthread.h and link against the posix thread library
887 * of your system.
888 */
889 #include <pthread.h>
890 #define ECB_NEEDS_PTHREADS 1
891 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
892
893 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
894 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
895 #endif
896#endif
897
898#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
899 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
900#endif
901
902#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
903 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
904#endif
905
906#if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
907 #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
908#endif
909
910/*****************************************************************************/
911
912#if ECB_CPP
913 #define ecb_inline static inline
914#elif ECB_GCC_VERSION(2,5)
915 #define ecb_inline static __inline__
916#elif ECB_C99
917 #define ecb_inline static inline
918#else
919 #define ecb_inline static
920#endif
921
922#if ECB_GCC_VERSION(3,3)
923 #define ecb_restrict __restrict__
924#elif ECB_C99
925 #define ecb_restrict restrict
926#else
927 #define ecb_restrict
928#endif
929
930typedef int ecb_bool;
931
932#define ECB_CONCAT_(a, b) a ## b
933#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
934#define ECB_STRINGIFY_(a) # a
935#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
936#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
937
938#define ecb_function_ ecb_inline
939
940#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
941 #define ecb_attribute(attrlist) __attribute__ (attrlist)
942#else
943 #define ecb_attribute(attrlist)
944#endif
945
946#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
947 #define ecb_is_constant(expr) __builtin_constant_p (expr)
948#else
949 /* possible C11 impl for integral types
950 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
951 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
952
953 #define ecb_is_constant(expr) 0
954#endif
955
956#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
957 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
958#else
959 #define ecb_expect(expr,value) (expr)
960#endif
961
962#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
963 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
964#else
965 #define ecb_prefetch(addr,rw,locality)
966#endif
967
968/* no emulation for ecb_decltype */
969#if ECB_CPP11
970 // older implementations might have problems with decltype(x)::type, work around it
971 template<class T> struct ecb_decltype_t { typedef T type; };
972 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
973#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
974 #define ecb_decltype(x) __typeof__ (x)
975#endif
976
977#if _MSC_VER >= 1300
978 #define ecb_deprecated __declspec (deprecated)
979#else
980 #define ecb_deprecated ecb_attribute ((__deprecated__))
981#endif
982
983#if _MSC_VER >= 1500
984 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
985#elif ECB_GCC_VERSION(4,5)
986 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
987#else
988 #define ecb_deprecated_message(msg) ecb_deprecated
989#endif
990
991#if _MSC_VER >= 1400
992 #define ecb_noinline __declspec (noinline)
993#else
994 #define ecb_noinline ecb_attribute ((__noinline__))
995#endif
996
997#define ecb_unused ecb_attribute ((__unused__))
998#define ecb_const ecb_attribute ((__const__))
999#define ecb_pure ecb_attribute ((__pure__))
1000
1001#if ECB_C11 || __IBMC_NORETURN
1002 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
1003 #define ecb_noreturn _Noreturn
1004#elif ECB_CPP11
1005 #define ecb_noreturn [[noreturn]]
1006#elif _MSC_VER >= 1200
1007 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
1008 #define ecb_noreturn __declspec (noreturn)
1009#else
1010 #define ecb_noreturn ecb_attribute ((__noreturn__))
1011#endif
1012
1013#if ECB_GCC_VERSION(4,3)
1014 #define ecb_artificial ecb_attribute ((__artificial__))
1015 #define ecb_hot ecb_attribute ((__hot__))
1016 #define ecb_cold ecb_attribute ((__cold__))
1017#else
1018 #define ecb_artificial
1019 #define ecb_hot
1020 #define ecb_cold
1021#endif
1022
1023/* put around conditional expressions if you are very sure that the */
1024/* expression is mostly true or mostly false. note that these return */
1025/* booleans, not the expression. */
1026#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
1027#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
1028/* for compatibility to the rest of the world */
1029#define ecb_likely(expr) ecb_expect_true (expr)
1030#define ecb_unlikely(expr) ecb_expect_false (expr)
1031
1032/* count trailing zero bits and count # of one bits */
1033#if ECB_GCC_VERSION(3,4) \
1034 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
1035 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
1036 && ECB_CLANG_BUILTIN(__builtin_popcount))
1037 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
1038 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
1039 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
1040 #define ecb_ctz32(x) __builtin_ctz (x)
1041 #define ecb_ctz64(x) __builtin_ctzll (x)
1042 #define ecb_popcount32(x) __builtin_popcount (x)
1043 /* no popcountll */
1044#else
1045 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
1046 ecb_function_ ecb_const int
1047 ecb_ctz32 (uint32_t x)
1048 {
1049#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1050 unsigned long r;
1051 _BitScanForward (&r, x);
1052 return (int)r;
1053#else
1054 int r = 0;
1055
1056 x &= ~x + 1; /* this isolates the lowest bit */
1057
1058#if ECB_branchless_on_i386
1059 r += !!(x & 0xaaaaaaaa) << 0;
1060 r += !!(x & 0xcccccccc) << 1;
1061 r += !!(x & 0xf0f0f0f0) << 2;
1062 r += !!(x & 0xff00ff00) << 3;
1063 r += !!(x & 0xffff0000) << 4;
1064#else
1065 if (x & 0xaaaaaaaa) r += 1;
1066 if (x & 0xcccccccc) r += 2;
1067 if (x & 0xf0f0f0f0) r += 4;
1068 if (x & 0xff00ff00) r += 8;
1069 if (x & 0xffff0000) r += 16;
1070#endif
1071
1072 return r;
1073#endif
1074 }
1075
1076 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
1077 ecb_function_ ecb_const int
1078 ecb_ctz64 (uint64_t x)
1079 {
1080#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1081 unsigned long r;
1082 _BitScanForward64 (&r, x);
1083 return (int)r;
1084#else
1085 int shift = x & 0xffffffff ? 0 : 32;
1086 return ecb_ctz32 (x >> shift) + shift;
1087#endif
1088 }
1089
1090 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1091 ecb_function_ ecb_const int
1092 ecb_popcount32 (uint32_t x)
1093 {
1094 x -= (x >> 1) & 0x55555555;
1095 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1096 x = ((x >> 4) + x) & 0x0f0f0f0f;
1097 x *= 0x01010101;
1098
1099 return x >> 24;
1100 }
1101
1102 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1103 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1104 {
1105#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1106 unsigned long r;
1107 _BitScanReverse (&r, x);
1108 return (int)r;
1109#else
1110 int r = 0;
1111
1112 if (x >> 16) { x >>= 16; r += 16; }
1113 if (x >> 8) { x >>= 8; r += 8; }
1114 if (x >> 4) { x >>= 4; r += 4; }
1115 if (x >> 2) { x >>= 2; r += 2; }
1116 if (x >> 1) { r += 1; }
1117
1118 return r;
1119#endif
1120 }
1121
1122 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1123 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1124 {
1125#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1126 unsigned long r;
1127 _BitScanReverse64 (&r, x);
1128 return (int)r;
1129#else
1130 int r = 0;
1131
1132 if (x >> 32) { x >>= 32; r += 32; }
1133
1134 return r + ecb_ld32 (x);
1135#endif
1136 }
1137#endif
1138
1139ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1140ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1141ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1142ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1143
1144ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1145ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1146{
1147 return ( (x * 0x0802U & 0x22110U)
1148 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1149}
1150
1151ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1152ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1153{
1154 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1155 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1156 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1157 x = ( x >> 8 ) | ( x << 8);
1158
1159 return x;
1160}
1161
1162ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1163ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1164{
1165 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1166 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1167 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1168 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1169 x = ( x >> 16 ) | ( x << 16);
1170
1171 return x;
1172}
1173
1174/* popcount64 is only available on 64 bit cpus as gcc builtin */
1175/* so for this version we are lazy */
1176ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1177ecb_function_ ecb_const int
1178ecb_popcount64 (uint64_t x)
1179{
1180 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1181}
1182
1183ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1184ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1185ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1186ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1187ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1188ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1189ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1190ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1191
1192ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1193ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1194ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1195ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1196ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1197ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1198ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1199ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1200
1201#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1202 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1203 #define ecb_bswap16(x) __builtin_bswap16 (x)
1204 #else
1205 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1206 #endif
1207 #define ecb_bswap32(x) __builtin_bswap32 (x)
1208 #define ecb_bswap64(x) __builtin_bswap64 (x)
1209#elif _MSC_VER
1210 #include <stdlib.h>
1211 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1212 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1213 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1214#else
1215 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1216 ecb_function_ ecb_const uint16_t
1217 ecb_bswap16 (uint16_t x)
1218 {
1219 return ecb_rotl16 (x, 8);
1220 }
1221
1222 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1223 ecb_function_ ecb_const uint32_t
1224 ecb_bswap32 (uint32_t x)
1225 {
1226 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1227 }
1228
1229 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1230 ecb_function_ ecb_const uint64_t
1231 ecb_bswap64 (uint64_t x)
1232 {
1233 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1234 }
1235#endif
1236
1237#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1238 #define ecb_unreachable() __builtin_unreachable ()
1239#else
1240 /* this seems to work fine, but gcc always emits a warning for it :/ */
1241 ecb_inline ecb_noreturn void ecb_unreachable (void);
1242 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1243#endif
1244
1245/* try to tell the compiler that some condition is definitely true */
1246#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1247
1248ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1249ecb_inline ecb_const uint32_t
1250ecb_byteorder_helper (void)
1251{
1252 /* the union code still generates code under pressure in gcc, */
1253 /* but less than using pointers, and always seems to */
1254 /* successfully return a constant. */
1255 /* the reason why we have this horrible preprocessor mess */
1256 /* is to avoid it in all cases, at least on common architectures */
1257 /* or when using a recent enough gcc version (>= 4.6) */
1258#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1259 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1260 #define ECB_LITTLE_ENDIAN 1
1261 return 0x44332211;
1262#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1263 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1264 #define ECB_BIG_ENDIAN 1
1265 return 0x11223344;
1266#else
1267 union
1268 {
1269 uint8_t c[4];
1270 uint32_t u;
1271 } u = { 0x11, 0x22, 0x33, 0x44 };
1272 return u.u;
1273#endif
1274}
1275
1276ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1277ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1278ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1279ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1280
1281#if ECB_GCC_VERSION(3,0) || ECB_C99
1282 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1283#else
1284 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1285#endif
1286
1287#if ECB_CPP
1288 template<typename T>
1289 static inline T ecb_div_rd (T val, T div)
1290 {
1291 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1292 }
1293 template<typename T>
1294 static inline T ecb_div_ru (T val, T div)
1295 {
1296 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1297 }
1298#else
1299 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1300 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1301#endif
1302
1303#if ecb_cplusplus_does_not_suck
1304 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1305 template<typename T, int N>
1306 static inline int ecb_array_length (const T (&arr)[N])
1307 {
1308 return N;
1309 }
1310#else
1311 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1312#endif
1313
1314ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1315ecb_function_ ecb_const uint32_t
1316ecb_binary16_to_binary32 (uint32_t x)
1317{
1318 unsigned int s = (x & 0x8000) << (31 - 15);
1319 int e = (x >> 10) & 0x001f;
1320 unsigned int m = x & 0x03ff;
1321
1322 if (ecb_expect_false (e == 31))
1323 /* infinity or NaN */
1324 e = 255 - (127 - 15);
1325 else if (ecb_expect_false (!e))
1326 {
1327 if (ecb_expect_true (!m))
1328 /* zero, handled by code below by forcing e to 0 */
1329 e = 0 - (127 - 15);
1330 else
1331 {
1332 /* subnormal, renormalise */
1333 unsigned int s = 10 - ecb_ld32 (m);
1334
1335 m = (m << s) & 0x3ff; /* mask implicit bit */
1336 e -= s - 1;
1337 }
1338 }
1339
1340 /* e and m now are normalised, or zero, (or inf or nan) */
1341 e += 127 - 15;
1342
1343 return s | (e << 23) | (m << (23 - 10));
1344}
1345
1346ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1347ecb_function_ ecb_const uint16_t
1348ecb_binary32_to_binary16 (uint32_t x)
1349{
1350 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1351 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1352 unsigned int m = x & 0x007fffff;
1353
1354 x &= 0x7fffffff;
1355
1356 /* if it's within range of binary16 normals, use fast path */
1357 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1358 {
1359 /* mantissa round-to-even */
1360 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1361
1362 /* handle overflow */
1363 if (ecb_expect_false (m >= 0x00800000))
1364 {
1365 m >>= 1;
1366 e += 1;
1367 }
1368
1369 return s | (e << 10) | (m >> (23 - 10));
1370 }
1371
1372 /* handle large numbers and infinity */
1373 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1374 return s | 0x7c00;
1375
1376 /* handle zero, subnormals and small numbers */
1377 if (ecb_expect_true (x < 0x38800000))
1378 {
1379 /* zero */
1380 if (ecb_expect_true (!x))
1381 return s;
1382
1383 /* handle subnormals */
1384
1385 /* too small, will be zero */
1386 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1387 return s;
1388
1389 m |= 0x00800000; /* make implicit bit explicit */
1390
1391 /* very tricky - we need to round to the nearest e (+10) bit value */
1392 {
1393 unsigned int bits = 14 - e;
1394 unsigned int half = (1 << (bits - 1)) - 1;
1395 unsigned int even = (m >> bits) & 1;
1396
1397 /* if this overflows, we will end up with a normalised number */
1398 m = (m + half + even) >> bits;
1399 }
1400
1401 return s | m;
1402 }
1403
1404 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1405 m >>= 13;
1406
1407 return s | 0x7c00 | m | !m;
1408}
1409
1410/*******************************************************************************/
1411/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1412
1413/* basically, everything uses "ieee pure-endian" floating point numbers */
1414/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1415#if 0 \
1416 || __i386 || __i386__ \
1417 || ECB_GCC_AMD64 \
1418 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1419 || defined __s390__ || defined __s390x__ \
1420 || defined __mips__ \
1421 || defined __alpha__ \
1422 || defined __hppa__ \
1423 || defined __ia64__ \
1424 || defined __m68k__ \
1425 || defined __m88k__ \
1426 || defined __sh__ \
1427 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1428 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1429 || defined __aarch64__
1430 #define ECB_STDFP 1
1431 #include <string.h> /* for memcpy */
1432#else
1433 #define ECB_STDFP 0
1434#endif
1435
1436#ifndef ECB_NO_LIBM
1437
1438 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1439
1440 /* only the oldest of old doesn't have this one. solaris. */
1441 #ifdef INFINITY
1442 #define ECB_INFINITY INFINITY
1443 #else
1444 #define ECB_INFINITY HUGE_VAL
1445 #endif
1446
1447 #ifdef NAN
1448 #define ECB_NAN NAN
1449 #else
1450 #define ECB_NAN ECB_INFINITY
1451 #endif
1452
1453 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1454 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1455 #define ecb_frexpf(x,e) frexpf ((x), (e))
1456 #else
1457 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1458 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1459 #endif
1460
1461 /* convert a float to ieee single/binary32 */
1462 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1463 ecb_function_ ecb_const uint32_t
1464 ecb_float_to_binary32 (float x)
1465 {
1466 uint32_t r;
1467
1468 #if ECB_STDFP
1469 memcpy (&r, &x, 4);
1470 #else
1471 /* slow emulation, works for anything but -0 */
1472 uint32_t m;
1473 int e;
1474
1475 if (x == 0e0f ) return 0x00000000U;
1476 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1477 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1478 if (x != x ) return 0x7fbfffffU;
1479
1480 m = ecb_frexpf (x, &e) * 0x1000000U;
1481
1482 r = m & 0x80000000U;
1483
1484 if (r)
1485 m = -m;
1486
1487 if (e <= -126)
1488 {
1489 m &= 0xffffffU;
1490 m >>= (-125 - e);
1491 e = -126;
1492 }
1493
1494 r |= (e + 126) << 23;
1495 r |= m & 0x7fffffU;
1496 #endif
1497
1498 return r;
1499 }
1500
1501 /* converts an ieee single/binary32 to a float */
1502 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1503 ecb_function_ ecb_const float
1504 ecb_binary32_to_float (uint32_t x)
1505 {
1506 float r;
1507
1508 #if ECB_STDFP
1509 memcpy (&r, &x, 4);
1510 #else
1511 /* emulation, only works for normals and subnormals and +0 */
1512 int neg = x >> 31;
1513 int e = (x >> 23) & 0xffU;
1514
1515 x &= 0x7fffffU;
1516
1517 if (e)
1518 x |= 0x800000U;
1519 else
1520 e = 1;
1521
1522 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1523 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1524
1525 r = neg ? -r : r;
1526 #endif
1527
1528 return r;
1529 }
1530
1531 /* convert a double to ieee double/binary64 */
1532 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1533 ecb_function_ ecb_const uint64_t
1534 ecb_double_to_binary64 (double x)
1535 {
1536 uint64_t r;
1537
1538 #if ECB_STDFP
1539 memcpy (&r, &x, 8);
1540 #else
1541 /* slow emulation, works for anything but -0 */
1542 uint64_t m;
1543 int e;
1544
1545 if (x == 0e0 ) return 0x0000000000000000U;
1546 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1547 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1548 if (x != x ) return 0X7ff7ffffffffffffU;
1549
1550 m = frexp (x, &e) * 0x20000000000000U;
1551
1552 r = m & 0x8000000000000000;;
1553
1554 if (r)
1555 m = -m;
1556
1557 if (e <= -1022)
1558 {
1559 m &= 0x1fffffffffffffU;
1560 m >>= (-1021 - e);
1561 e = -1022;
1562 }
1563
1564 r |= ((uint64_t)(e + 1022)) << 52;
1565 r |= m & 0xfffffffffffffU;
1566 #endif
1567
1568 return r;
1569 }
1570
1571 /* converts an ieee double/binary64 to a double */
1572 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1573 ecb_function_ ecb_const double
1574 ecb_binary64_to_double (uint64_t x)
1575 {
1576 double r;
1577
1578 #if ECB_STDFP
1579 memcpy (&r, &x, 8);
1580 #else
1581 /* emulation, only works for normals and subnormals and +0 */
1582 int neg = x >> 63;
1583 int e = (x >> 52) & 0x7ffU;
1584
1585 x &= 0xfffffffffffffU;
1586
1587 if (e)
1588 x |= 0x10000000000000U;
1589 else
1590 e = 1;
1591
1592 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1593 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1594
1595 r = neg ? -r : r;
1596 #endif
1597
1598 return r;
1599 }
1600
1601 /* convert a float to ieee half/binary16 */
1602 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1603 ecb_function_ ecb_const uint16_t
1604 ecb_float_to_binary16 (float x)
1605 {
1606 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1607 }
1608
1609 /* convert an ieee half/binary16 to float */
1610 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1611 ecb_function_ ecb_const float
1612 ecb_binary16_to_float (uint16_t x)
1613 {
1614 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1615 }
1616
1617#endif
1618
1619#endif
1620
1621/* ECB.H END */
1622
1623#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1624/* if your architecture doesn't need memory fences, e.g. because it is
1625 * single-cpu/core, or if you use libev in a project that doesn't use libev
1626 * from multiple threads, then you can define ECB_NO_THREADS when compiling
1627 * libev, in which cases the memory fences become nops.
1628 * alternatively, you can remove this #error and link against libpthread,
1629 * which will then provide the memory fences.
1630 */
1631# error "memory fences not defined for your architecture, please report"
1632#endif
1633
1634#ifndef ECB_MEMORY_FENCE
1635# define ECB_MEMORY_FENCE do { } while (0)
1636# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1637# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1638#endif
1639
1640#define inline_size ecb_inline
1641
1642#if EV_FEATURE_CODE
280# define inline_speed static inline 1643# define inline_speed ecb_inline
1644#else
1645# define inline_speed ecb_noinline static
281#endif 1646#endif
282 1647
1648/*****************************************************************************/
1649/* raw syscall wrappers */
1650
1651#if EV_NEED_SYSCALL
1652
1653#include <sys/syscall.h>
1654
1655/*
1656 * define some syscall wrappers for common architectures
1657 * this is mostly for nice looks during debugging, not performance.
1658 * our syscalls return < 0, not == -1, on error. which is good
1659 * enough for linux aio.
1660 * TODO: arm is also common nowadays, maybe even mips and x86
1661 * TODO: after implementing this, it suddenly looks like overkill, but its hard to remove...
1662 */
1663#if __GNUC__ && __linux && ECB_AMD64 && !defined __OPTIMIZE_SIZE__
1664 /* the costly errno access probably kills this for size optimisation */
1665
1666 #define ev_syscall(nr,narg,arg1,arg2,arg3,arg4,arg5,arg6) \
1667 ({ \
1668 long res; \
1669 register unsigned long r6 __asm__ ("r9" ); \
1670 register unsigned long r5 __asm__ ("r8" ); \
1671 register unsigned long r4 __asm__ ("r10"); \
1672 register unsigned long r3 __asm__ ("rdx"); \
1673 register unsigned long r2 __asm__ ("rsi"); \
1674 register unsigned long r1 __asm__ ("rdi"); \
1675 if (narg >= 6) r6 = (unsigned long)(arg6); \
1676 if (narg >= 5) r5 = (unsigned long)(arg5); \
1677 if (narg >= 4) r4 = (unsigned long)(arg4); \
1678 if (narg >= 3) r3 = (unsigned long)(arg3); \
1679 if (narg >= 2) r2 = (unsigned long)(arg2); \
1680 if (narg >= 1) r1 = (unsigned long)(arg1); \
1681 __asm__ __volatile__ ( \
1682 "syscall\n\t" \
1683 : "=a" (res) \
1684 : "0" (nr), "r" (r1), "r" (r2), "r" (r3), "r" (r4), "r" (r5) \
1685 : "cc", "r11", "cx", "memory"); \
1686 errno = -res; \
1687 res; \
1688 })
1689
1690#endif
1691
1692#ifdef ev_syscall
1693 #define ev_syscall0(nr) ev_syscall (nr, 0, 0, 0, 0, 0, 0, 0)
1694 #define ev_syscall1(nr,arg1) ev_syscall (nr, 1, arg1, 0, 0, 0, 0, 0)
1695 #define ev_syscall2(nr,arg1,arg2) ev_syscall (nr, 2, arg1, arg2, 0, 0, 0, 0)
1696 #define ev_syscall3(nr,arg1,arg2,arg3) ev_syscall (nr, 3, arg1, arg2, arg3, 0, 0, 0)
1697 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) ev_syscall (nr, 3, arg1, arg2, arg3, arg4, 0, 0)
1698 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) ev_syscall (nr, 5, arg1, arg2, arg3, arg4, arg5, 0)
1699 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) ev_syscall (nr, 6, arg1, arg2, arg3, arg4, arg5,arg6)
1700#else
1701 #define ev_syscall0(nr) syscall (nr)
1702 #define ev_syscall1(nr,arg1) syscall (nr, arg1)
1703 #define ev_syscall2(nr,arg1,arg2) syscall (nr, arg1, arg2)
1704 #define ev_syscall3(nr,arg1,arg2,arg3) syscall (nr, arg1, arg2, arg3)
1705 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) syscall (nr, arg1, arg2, arg3, arg4)
1706 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) syscall (nr, arg1, arg2, arg3, arg4, arg5)
1707 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) syscall (nr, arg1, arg2, arg3, arg4, arg5,arg6)
1708#endif
1709
1710#endif
1711
1712/*****************************************************************************/
1713
283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1714#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1715
1716#if EV_MINPRI == EV_MAXPRI
1717# define ABSPRI(w) (((W)w), 0)
1718#else
284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1719# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1720#endif
285 1721
286#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1722#define EMPTY /* required for microsofts broken pseudo-c compiler */
287#define EMPTY2(a,b) /* used to suppress some warnings */
288 1723
289typedef ev_watcher *W; 1724typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 1725typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 1726typedef ev_watcher_time *WT;
292 1727
1728#define ev_active(w) ((W)(w))->active
1729#define ev_at(w) ((WT)(w))->at
1730
1731#if EV_USE_REALTIME
1732/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1733/* giving it a reasonably high chance of working on typical architectures */
1734static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1735#endif
1736
293#if EV_USE_MONOTONIC 1737#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
296static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1738static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1739#endif
1740
1741#ifndef EV_FD_TO_WIN32_HANDLE
1742# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1743#endif
1744#ifndef EV_WIN32_HANDLE_TO_FD
1745# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1746#endif
1747#ifndef EV_WIN32_CLOSE_FD
1748# define EV_WIN32_CLOSE_FD(fd) close (fd)
297#endif 1749#endif
298 1750
299#ifdef _WIN32 1751#ifdef _WIN32
300# include "ev_win32.c" 1752# include "ev_win32.c"
301#endif 1753#endif
302 1754
303/*****************************************************************************/ 1755/*****************************************************************************/
304 1756
1757#if EV_USE_LINUXAIO
1758# include <linux/aio_abi.h> /* probably only needed for aio_context_t */
1759#endif
1760
1761/* define a suitable floor function (only used by periodics atm) */
1762
1763#if EV_USE_FLOOR
1764# include <math.h>
1765# define ev_floor(v) floor (v)
1766#else
1767
1768#include <float.h>
1769
1770/* a floor() replacement function, should be independent of ev_tstamp type */
1771ecb_noinline
1772static ev_tstamp
1773ev_floor (ev_tstamp v)
1774{
1775 /* the choice of shift factor is not terribly important */
1776#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1777 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1778#else
1779 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1780#endif
1781
1782 /* special treatment for negative arguments */
1783 if (ecb_expect_false (v < 0.))
1784 {
1785 ev_tstamp f = -ev_floor (-v);
1786
1787 return f - (f == v ? 0 : 1);
1788 }
1789
1790 /* argument too large for an unsigned long? then reduce it */
1791 if (ecb_expect_false (v >= shift))
1792 {
1793 ev_tstamp f;
1794
1795 if (v == v - 1.)
1796 return v; /* very large numbers are assumed to be integer */
1797
1798 f = shift * ev_floor (v * (1. / shift));
1799 return f + ev_floor (v - f);
1800 }
1801
1802 /* fits into an unsigned long */
1803 return (unsigned long)v;
1804}
1805
1806#endif
1807
1808/*****************************************************************************/
1809
1810#ifdef __linux
1811# include <sys/utsname.h>
1812#endif
1813
1814ecb_noinline ecb_cold
1815static unsigned int
1816ev_linux_version (void)
1817{
1818#ifdef __linux
1819 unsigned int v = 0;
1820 struct utsname buf;
1821 int i;
1822 char *p = buf.release;
1823
1824 if (uname (&buf))
1825 return 0;
1826
1827 for (i = 3+1; --i; )
1828 {
1829 unsigned int c = 0;
1830
1831 for (;;)
1832 {
1833 if (*p >= '0' && *p <= '9')
1834 c = c * 10 + *p++ - '0';
1835 else
1836 {
1837 p += *p == '.';
1838 break;
1839 }
1840 }
1841
1842 v = (v << 8) | c;
1843 }
1844
1845 return v;
1846#else
1847 return 0;
1848#endif
1849}
1850
1851/*****************************************************************************/
1852
1853#if EV_AVOID_STDIO
1854ecb_noinline ecb_cold
1855static void
1856ev_printerr (const char *msg)
1857{
1858 write (STDERR_FILENO, msg, strlen (msg));
1859}
1860#endif
1861
305static void (*syserr_cb)(const char *msg); 1862static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
306 1863
1864ecb_cold
307void 1865void
308ev_set_syserr_cb (void (*cb)(const char *msg)) 1866ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
309{ 1867{
310 syserr_cb = cb; 1868 syserr_cb = cb;
311} 1869}
312 1870
313static void noinline 1871ecb_noinline ecb_cold
1872static void
314syserr (const char *msg) 1873ev_syserr (const char *msg)
315{ 1874{
316 if (!msg) 1875 if (!msg)
317 msg = "(libev) system error"; 1876 msg = "(libev) system error";
318 1877
319 if (syserr_cb) 1878 if (syserr_cb)
320 syserr_cb (msg); 1879 syserr_cb (msg);
321 else 1880 else
322 { 1881 {
1882#if EV_AVOID_STDIO
1883 ev_printerr (msg);
1884 ev_printerr (": ");
1885 ev_printerr (strerror (errno));
1886 ev_printerr ("\n");
1887#else
323 perror (msg); 1888 perror (msg);
1889#endif
324 abort (); 1890 abort ();
325 } 1891 }
326} 1892}
327 1893
328static void *(*alloc)(void *ptr, long size); 1894static void *
1895ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
1896{
1897 /* some systems, notably openbsd and darwin, fail to properly
1898 * implement realloc (x, 0) (as required by both ansi c-89 and
1899 * the single unix specification, so work around them here.
1900 * recently, also (at least) fedora and debian started breaking it,
1901 * despite documenting it otherwise.
1902 */
329 1903
1904 if (size)
1905 return realloc (ptr, size);
1906
1907 free (ptr);
1908 return 0;
1909}
1910
1911static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
1912
1913ecb_cold
330void 1914void
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 1915ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
332{ 1916{
333 alloc = cb; 1917 alloc = cb;
334} 1918}
335 1919
336inline_speed void * 1920inline_speed void *
337ev_realloc (void *ptr, long size) 1921ev_realloc (void *ptr, long size)
338{ 1922{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1923 ptr = alloc (ptr, size);
340 1924
341 if (!ptr && size) 1925 if (!ptr && size)
342 { 1926 {
1927#if EV_AVOID_STDIO
1928 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1929#else
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1930 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1931#endif
344 abort (); 1932 abort ();
345 } 1933 }
346 1934
347 return ptr; 1935 return ptr;
348} 1936}
350#define ev_malloc(size) ev_realloc (0, (size)) 1938#define ev_malloc(size) ev_realloc (0, (size))
351#define ev_free(ptr) ev_realloc ((ptr), 0) 1939#define ev_free(ptr) ev_realloc ((ptr), 0)
352 1940
353/*****************************************************************************/ 1941/*****************************************************************************/
354 1942
1943/* set in reify when reification needed */
1944#define EV_ANFD_REIFY 1
1945
1946/* file descriptor info structure */
355typedef struct 1947typedef struct
356{ 1948{
357 WL head; 1949 WL head;
358 unsigned char events; 1950 unsigned char events; /* the events watched for */
359 unsigned char reify; 1951 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1952 unsigned char emask; /* some backends store the actual kernel mask in here */
1953 unsigned char eflags; /* flags field for use by backends */
1954#if EV_USE_EPOLL
1955 unsigned int egen; /* generation counter to counter epoll bugs */
1956#endif
360#if EV_SELECT_IS_WINSOCKET 1957#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
361 SOCKET handle; 1958 SOCKET handle;
362#endif 1959#endif
1960#if EV_USE_IOCP
1961 OVERLAPPED or, ow;
1962#endif
363} ANFD; 1963} ANFD;
364 1964
1965/* stores the pending event set for a given watcher */
365typedef struct 1966typedef struct
366{ 1967{
367 W w; 1968 W w;
368 int events; 1969 int events; /* the pending event set for the given watcher */
369} ANPENDING; 1970} ANPENDING;
370 1971
371#if EV_USE_INOTIFY 1972#if EV_USE_INOTIFY
1973/* hash table entry per inotify-id */
372typedef struct 1974typedef struct
373{ 1975{
374 WL head; 1976 WL head;
375} ANFS; 1977} ANFS;
1978#endif
1979
1980/* Heap Entry */
1981#if EV_HEAP_CACHE_AT
1982 /* a heap element */
1983 typedef struct {
1984 ev_tstamp at;
1985 WT w;
1986 } ANHE;
1987
1988 #define ANHE_w(he) (he).w /* access watcher, read-write */
1989 #define ANHE_at(he) (he).at /* access cached at, read-only */
1990 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1991#else
1992 /* a heap element */
1993 typedef WT ANHE;
1994
1995 #define ANHE_w(he) (he)
1996 #define ANHE_at(he) (he)->at
1997 #define ANHE_at_cache(he)
376#endif 1998#endif
377 1999
378#if EV_MULTIPLICITY 2000#if EV_MULTIPLICITY
379 2001
380 struct ev_loop 2002 struct ev_loop
386 #undef VAR 2008 #undef VAR
387 }; 2009 };
388 #include "ev_wrap.h" 2010 #include "ev_wrap.h"
389 2011
390 static struct ev_loop default_loop_struct; 2012 static struct ev_loop default_loop_struct;
391 struct ev_loop *ev_default_loop_ptr; 2013 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
392 2014
393#else 2015#else
394 2016
395 ev_tstamp ev_rt_now; 2017 EV_API_DECL ev_tstamp ev_rt_now = EV_TS_CONST (0.); /* needs to be initialised to make it a definition despite extern */
396 #define VAR(name,decl) static decl; 2018 #define VAR(name,decl) static decl;
397 #include "ev_vars.h" 2019 #include "ev_vars.h"
398 #undef VAR 2020 #undef VAR
399 2021
400 static int ev_default_loop_ptr; 2022 static int ev_default_loop_ptr;
401 2023
402#endif 2024#endif
403 2025
2026#if EV_FEATURE_API
2027# define EV_RELEASE_CB if (ecb_expect_false (release_cb)) release_cb (EV_A)
2028# define EV_ACQUIRE_CB if (ecb_expect_false (acquire_cb)) acquire_cb (EV_A)
2029# define EV_INVOKE_PENDING invoke_cb (EV_A)
2030#else
2031# define EV_RELEASE_CB (void)0
2032# define EV_ACQUIRE_CB (void)0
2033# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
2034#endif
2035
2036#define EVBREAK_RECURSE 0x80
2037
404/*****************************************************************************/ 2038/*****************************************************************************/
405 2039
2040#ifndef EV_HAVE_EV_TIME
406ev_tstamp 2041ev_tstamp
407ev_time (void) 2042ev_time (void) EV_NOEXCEPT
408{ 2043{
409#if EV_USE_REALTIME 2044#if EV_USE_REALTIME
2045 if (ecb_expect_true (have_realtime))
2046 {
410 struct timespec ts; 2047 struct timespec ts;
411 clock_gettime (CLOCK_REALTIME, &ts); 2048 clock_gettime (CLOCK_REALTIME, &ts);
412 return ts.tv_sec + ts.tv_nsec * 1e-9; 2049 return EV_TS_GET (ts);
413#else 2050 }
2051#endif
2052
2053 {
414 struct timeval tv; 2054 struct timeval tv;
415 gettimeofday (&tv, 0); 2055 gettimeofday (&tv, 0);
416 return tv.tv_sec + tv.tv_usec * 1e-6; 2056 return EV_TV_GET (tv);
417#endif 2057 }
418} 2058}
2059#endif
419 2060
420ev_tstamp inline_size 2061inline_size ev_tstamp
421get_clock (void) 2062get_clock (void)
422{ 2063{
423#if EV_USE_MONOTONIC 2064#if EV_USE_MONOTONIC
424 if (expect_true (have_monotonic)) 2065 if (ecb_expect_true (have_monotonic))
425 { 2066 {
426 struct timespec ts; 2067 struct timespec ts;
427 clock_gettime (CLOCK_MONOTONIC, &ts); 2068 clock_gettime (CLOCK_MONOTONIC, &ts);
428 return ts.tv_sec + ts.tv_nsec * 1e-9; 2069 return EV_TS_GET (ts);
429 } 2070 }
430#endif 2071#endif
431 2072
432 return ev_time (); 2073 return ev_time ();
433} 2074}
434 2075
435#if EV_MULTIPLICITY 2076#if EV_MULTIPLICITY
436ev_tstamp 2077ev_tstamp
437ev_now (EV_P) 2078ev_now (EV_P) EV_NOEXCEPT
438{ 2079{
439 return ev_rt_now; 2080 return ev_rt_now;
440} 2081}
441#endif 2082#endif
442 2083
443void 2084void
444ev_sleep (ev_tstamp delay) 2085ev_sleep (ev_tstamp delay) EV_NOEXCEPT
445{ 2086{
446 if (delay > 0.) 2087 if (delay > EV_TS_CONST (0.))
447 { 2088 {
448#if EV_USE_NANOSLEEP 2089#if EV_USE_NANOSLEEP
449 struct timespec ts; 2090 struct timespec ts;
450 2091
451 ts.tv_sec = (time_t)delay; 2092 EV_TS_SET (ts, delay);
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0); 2093 nanosleep (&ts, 0);
455#elif defined(_WIN32) 2094#elif defined _WIN32
456 Sleep (delay * 1e3); 2095 /* maybe this should round up, as ms is very low resolution */
2096 /* compared to select (µs) or nanosleep (ns) */
2097 Sleep ((unsigned long)(EV_TS_TO_MSEC (delay)));
457#else 2098#else
458 struct timeval tv; 2099 struct timeval tv;
459 2100
460 tv.tv_sec = (time_t)delay; 2101 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 2102 /* something not guaranteed by newer posix versions, but guaranteed */
462 2103 /* by older ones */
2104 EV_TV_SET (tv, delay);
463 select (0, 0, 0, 0, &tv); 2105 select (0, 0, 0, 0, &tv);
464#endif 2106#endif
465 } 2107 }
466} 2108}
467 2109
468/*****************************************************************************/ 2110/*****************************************************************************/
469 2111
470int inline_size 2112#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
2113
2114/* find a suitable new size for the given array, */
2115/* hopefully by rounding to a nice-to-malloc size */
2116inline_size int
471array_nextsize (int elem, int cur, int cnt) 2117array_nextsize (int elem, int cur, int cnt)
472{ 2118{
473 int ncur = cur + 1; 2119 int ncur = cur + 1;
474 2120
475 do 2121 do
476 ncur <<= 1; 2122 ncur <<= 1;
477 while (cnt > ncur); 2123 while (cnt > ncur);
478 2124
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 2125 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
480 if (elem * ncur > 4096) 2126 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 2127 {
482 ncur *= elem; 2128 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 2129 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 2130 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 2131 ncur /= elem;
486 } 2132 }
487 2133
488 return ncur; 2134 return ncur;
489} 2135}
490 2136
491static noinline void * 2137ecb_noinline ecb_cold
2138static void *
492array_realloc (int elem, void *base, int *cur, int cnt) 2139array_realloc (int elem, void *base, int *cur, int cnt)
493{ 2140{
494 *cur = array_nextsize (elem, *cur, cnt); 2141 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur); 2142 return ev_realloc (base, elem * *cur);
496} 2143}
497 2144
2145#define array_needsize_noinit(base,offset,count)
2146
2147#define array_needsize_zerofill(base,offset,count) \
2148 memset ((void *)(base + offset), 0, sizeof (*(base)) * (count))
2149
498#define array_needsize(type,base,cur,cnt,init) \ 2150#define array_needsize(type,base,cur,cnt,init) \
499 if (expect_false ((cnt) > (cur))) \ 2151 if (ecb_expect_false ((cnt) > (cur))) \
500 { \ 2152 { \
501 int ocur_ = (cur); \ 2153 ecb_unused int ocur_ = (cur); \
502 (base) = (type *)array_realloc \ 2154 (base) = (type *)array_realloc \
503 (sizeof (type), (base), &(cur), (cnt)); \ 2155 (sizeof (type), (base), &(cur), (cnt)); \
504 init ((base) + (ocur_), (cur) - ocur_); \ 2156 init ((base), ocur_, ((cur) - ocur_)); \
505 } 2157 }
506 2158
507#if 0 2159#if 0
508#define array_slim(type,stem) \ 2160#define array_slim(type,stem) \
509 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 2161 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 2165 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
514 } 2166 }
515#endif 2167#endif
516 2168
517#define array_free(stem, idx) \ 2169#define array_free(stem, idx) \
518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 2170 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
519 2171
520/*****************************************************************************/ 2172/*****************************************************************************/
521 2173
522void noinline 2174/* dummy callback for pending events */
2175ecb_noinline
2176static void
2177pendingcb (EV_P_ ev_prepare *w, int revents)
2178{
2179}
2180
2181ecb_noinline
2182void
523ev_feed_event (EV_P_ void *w, int revents) 2183ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
524{ 2184{
525 W w_ = (W)w; 2185 W w_ = (W)w;
526 int pri = ABSPRI (w_); 2186 int pri = ABSPRI (w_);
527 2187
528 if (expect_false (w_->pending)) 2188 if (ecb_expect_false (w_->pending))
529 pendings [pri][w_->pending - 1].events |= revents; 2189 pendings [pri][w_->pending - 1].events |= revents;
530 else 2190 else
531 { 2191 {
532 w_->pending = ++pendingcnt [pri]; 2192 w_->pending = ++pendingcnt [pri];
533 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 2193 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
534 pendings [pri][w_->pending - 1].w = w_; 2194 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents; 2195 pendings [pri][w_->pending - 1].events = revents;
536 } 2196 }
537}
538 2197
539void inline_speed 2198 pendingpri = NUMPRI - 1;
2199}
2200
2201inline_speed void
2202feed_reverse (EV_P_ W w)
2203{
2204 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2205 rfeeds [rfeedcnt++] = w;
2206}
2207
2208inline_size void
2209feed_reverse_done (EV_P_ int revents)
2210{
2211 do
2212 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2213 while (rfeedcnt);
2214}
2215
2216inline_speed void
540queue_events (EV_P_ W *events, int eventcnt, int type) 2217queue_events (EV_P_ W *events, int eventcnt, int type)
541{ 2218{
542 int i; 2219 int i;
543 2220
544 for (i = 0; i < eventcnt; ++i) 2221 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type); 2222 ev_feed_event (EV_A_ events [i], type);
546} 2223}
547 2224
548/*****************************************************************************/ 2225/*****************************************************************************/
549 2226
550void inline_size 2227inline_speed void
551anfds_init (ANFD *base, int count)
552{
553 while (count--)
554 {
555 base->head = 0;
556 base->events = EV_NONE;
557 base->reify = 0;
558
559 ++base;
560 }
561}
562
563void inline_speed
564fd_event (EV_P_ int fd, int revents) 2228fd_event_nocheck (EV_P_ int fd, int revents)
565{ 2229{
566 ANFD *anfd = anfds + fd; 2230 ANFD *anfd = anfds + fd;
567 ev_io *w; 2231 ev_io *w;
568 2232
569 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2233 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
573 if (ev) 2237 if (ev)
574 ev_feed_event (EV_A_ (W)w, ev); 2238 ev_feed_event (EV_A_ (W)w, ev);
575 } 2239 }
576} 2240}
577 2241
578void 2242/* do not submit kernel events for fds that have reify set */
2243/* because that means they changed while we were polling for new events */
2244inline_speed void
579ev_feed_fd_event (EV_P_ int fd, int revents) 2245fd_event (EV_P_ int fd, int revents)
2246{
2247 ANFD *anfd = anfds + fd;
2248
2249 if (ecb_expect_true (!anfd->reify))
2250 fd_event_nocheck (EV_A_ fd, revents);
2251}
2252
2253void
2254ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
580{ 2255{
581 if (fd >= 0 && fd < anfdmax) 2256 if (fd >= 0 && fd < anfdmax)
582 fd_event (EV_A_ fd, revents); 2257 fd_event_nocheck (EV_A_ fd, revents);
583} 2258}
584 2259
585void inline_size 2260/* make sure the external fd watch events are in-sync */
2261/* with the kernel/libev internal state */
2262inline_size void
586fd_reify (EV_P) 2263fd_reify (EV_P)
587{ 2264{
588 int i; 2265 int i;
2266
2267#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2268 for (i = 0; i < fdchangecnt; ++i)
2269 {
2270 int fd = fdchanges [i];
2271 ANFD *anfd = anfds + fd;
2272
2273 if (anfd->reify & EV__IOFDSET && anfd->head)
2274 {
2275 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2276
2277 if (handle != anfd->handle)
2278 {
2279 unsigned long arg;
2280
2281 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2282
2283 /* handle changed, but fd didn't - we need to do it in two steps */
2284 backend_modify (EV_A_ fd, anfd->events, 0);
2285 anfd->events = 0;
2286 anfd->handle = handle;
2287 }
2288 }
2289 }
2290#endif
589 2291
590 for (i = 0; i < fdchangecnt; ++i) 2292 for (i = 0; i < fdchangecnt; ++i)
591 { 2293 {
592 int fd = fdchanges [i]; 2294 int fd = fdchanges [i];
593 ANFD *anfd = anfds + fd; 2295 ANFD *anfd = anfds + fd;
594 ev_io *w; 2296 ev_io *w;
595 2297
596 unsigned char events = 0; 2298 unsigned char o_events = anfd->events;
2299 unsigned char o_reify = anfd->reify;
597 2300
598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2301 anfd->reify = 0;
599 events |= (unsigned char)w->events;
600 2302
601#if EV_SELECT_IS_WINSOCKET 2303 /*if (ecb_expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
602 if (events)
603 { 2304 {
604 unsigned long argp; 2305 anfd->events = 0;
605 #ifdef EV_FD_TO_WIN32_HANDLE 2306
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 2307 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
607 #else 2308 anfd->events |= (unsigned char)w->events;
608 anfd->handle = _get_osfhandle (fd); 2309
609 #endif 2310 if (o_events != anfd->events)
610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 2311 o_reify = EV__IOFDSET; /* actually |= */
611 } 2312 }
612#endif
613 2313
614 { 2314 if (o_reify & EV__IOFDSET)
615 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify;
617
618 anfd->reify = 0;
619 anfd->events = events;
620
621 if (o_events != events || o_reify & EV_IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events); 2315 backend_modify (EV_A_ fd, o_events, anfd->events);
623 }
624 } 2316 }
625 2317
626 fdchangecnt = 0; 2318 fdchangecnt = 0;
627} 2319}
628 2320
2321/* something about the given fd changed */
629void inline_size 2322inline_size
2323void
630fd_change (EV_P_ int fd, int flags) 2324fd_change (EV_P_ int fd, int flags)
631{ 2325{
632 unsigned char reify = anfds [fd].reify; 2326 unsigned char reify = anfds [fd].reify;
633 anfds [fd].reify |= flags; 2327 anfds [fd].reify |= flags;
634 2328
635 if (expect_true (!reify)) 2329 if (ecb_expect_true (!reify))
636 { 2330 {
637 ++fdchangecnt; 2331 ++fdchangecnt;
638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 2332 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
639 fdchanges [fdchangecnt - 1] = fd; 2333 fdchanges [fdchangecnt - 1] = fd;
640 } 2334 }
641} 2335}
642 2336
643void inline_speed 2337/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2338inline_speed ecb_cold void
644fd_kill (EV_P_ int fd) 2339fd_kill (EV_P_ int fd)
645{ 2340{
646 ev_io *w; 2341 ev_io *w;
647 2342
648 while ((w = (ev_io *)anfds [fd].head)) 2343 while ((w = (ev_io *)anfds [fd].head))
650 ev_io_stop (EV_A_ w); 2345 ev_io_stop (EV_A_ w);
651 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2346 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
652 } 2347 }
653} 2348}
654 2349
655int inline_size 2350/* check whether the given fd is actually valid, for error recovery */
2351inline_size ecb_cold int
656fd_valid (int fd) 2352fd_valid (int fd)
657{ 2353{
658#ifdef _WIN32 2354#ifdef _WIN32
659 return _get_osfhandle (fd) != -1; 2355 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
660#else 2356#else
661 return fcntl (fd, F_GETFD) != -1; 2357 return fcntl (fd, F_GETFD) != -1;
662#endif 2358#endif
663} 2359}
664 2360
665/* called on EBADF to verify fds */ 2361/* called on EBADF to verify fds */
666static void noinline 2362ecb_noinline ecb_cold
2363static void
667fd_ebadf (EV_P) 2364fd_ebadf (EV_P)
668{ 2365{
669 int fd; 2366 int fd;
670 2367
671 for (fd = 0; fd < anfdmax; ++fd) 2368 for (fd = 0; fd < anfdmax; ++fd)
672 if (anfds [fd].events) 2369 if (anfds [fd].events)
673 if (!fd_valid (fd) == -1 && errno == EBADF) 2370 if (!fd_valid (fd) && errno == EBADF)
674 fd_kill (EV_A_ fd); 2371 fd_kill (EV_A_ fd);
675} 2372}
676 2373
677/* called on ENOMEM in select/poll to kill some fds and retry */ 2374/* called on ENOMEM in select/poll to kill some fds and retry */
678static void noinline 2375ecb_noinline ecb_cold
2376static void
679fd_enomem (EV_P) 2377fd_enomem (EV_P)
680{ 2378{
681 int fd; 2379 int fd;
682 2380
683 for (fd = anfdmax; fd--; ) 2381 for (fd = anfdmax; fd--; )
684 if (anfds [fd].events) 2382 if (anfds [fd].events)
685 { 2383 {
686 fd_kill (EV_A_ fd); 2384 fd_kill (EV_A_ fd);
687 return; 2385 break;
688 } 2386 }
689} 2387}
690 2388
691/* usually called after fork if backend needs to re-arm all fds from scratch */ 2389/* usually called after fork if backend needs to re-arm all fds from scratch */
692static void noinline 2390ecb_noinline
2391static void
693fd_rearm_all (EV_P) 2392fd_rearm_all (EV_P)
694{ 2393{
695 int fd; 2394 int fd;
696 2395
697 for (fd = 0; fd < anfdmax; ++fd) 2396 for (fd = 0; fd < anfdmax; ++fd)
698 if (anfds [fd].events) 2397 if (anfds [fd].events)
699 { 2398 {
700 anfds [fd].events = 0; 2399 anfds [fd].events = 0;
2400 anfds [fd].emask = 0;
701 fd_change (EV_A_ fd, EV_IOFDSET | 1); 2401 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
702 } 2402 }
703} 2403}
704 2404
705/*****************************************************************************/ 2405/* used to prepare libev internal fd's */
706 2406/* this is not fork-safe */
707void inline_speed 2407inline_speed void
708upheap (WT *heap, int k)
709{
710 WT w = heap [k];
711
712 while (k)
713 {
714 int p = (k - 1) >> 1;
715
716 if (heap [p]->at <= w->at)
717 break;
718
719 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1;
721 k = p;
722 }
723
724 heap [k] = w;
725 ((W)heap [k])->active = k + 1;
726}
727
728void inline_speed
729downheap (WT *heap, int N, int k)
730{
731 WT w = heap [k];
732
733 for (;;)
734 {
735 int c = (k << 1) + 1;
736
737 if (c >= N)
738 break;
739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
746 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1;
748
749 k = c;
750 }
751
752 heap [k] = w;
753 ((W)heap [k])->active = k + 1;
754}
755
756void inline_size
757adjustheap (WT *heap, int N, int k)
758{
759 upheap (heap, k);
760 downheap (heap, N, k);
761}
762
763/*****************************************************************************/
764
765typedef struct
766{
767 WL head;
768 sig_atomic_t volatile gotsig;
769} ANSIG;
770
771static ANSIG *signals;
772static int signalmax;
773
774static int sigpipe [2];
775static sig_atomic_t volatile gotsig;
776static ev_io sigev;
777
778void inline_size
779signals_init (ANSIG *base, int count)
780{
781 while (count--)
782 {
783 base->head = 0;
784 base->gotsig = 0;
785
786 ++base;
787 }
788}
789
790static void
791sighandler (int signum)
792{
793#if _WIN32
794 signal (signum, sighandler);
795#endif
796
797 signals [signum - 1].gotsig = 1;
798
799 if (!gotsig)
800 {
801 int old_errno = errno;
802 gotsig = 1;
803 write (sigpipe [1], &signum, 1);
804 errno = old_errno;
805 }
806}
807
808void noinline
809ev_feed_signal_event (EV_P_ int signum)
810{
811 WL w;
812
813#if EV_MULTIPLICITY
814 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
815#endif
816
817 --signum;
818
819 if (signum < 0 || signum >= signalmax)
820 return;
821
822 signals [signum].gotsig = 0;
823
824 for (w = signals [signum].head; w; w = w->next)
825 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
826}
827
828static void
829sigcb (EV_P_ ev_io *iow, int revents)
830{
831 int signum;
832
833 read (sigpipe [0], &revents, 1);
834 gotsig = 0;
835
836 for (signum = signalmax; signum--; )
837 if (signals [signum].gotsig)
838 ev_feed_signal_event (EV_A_ signum + 1);
839}
840
841void inline_speed
842fd_intern (int fd) 2408fd_intern (int fd)
843{ 2409{
844#ifdef _WIN32 2410#ifdef _WIN32
845 int arg = 1; 2411 unsigned long arg = 1;
846 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 2412 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
847#else 2413#else
848 fcntl (fd, F_SETFD, FD_CLOEXEC); 2414 fcntl (fd, F_SETFD, FD_CLOEXEC);
849 fcntl (fd, F_SETFL, O_NONBLOCK); 2415 fcntl (fd, F_SETFL, O_NONBLOCK);
850#endif 2416#endif
851} 2417}
852 2418
853static void noinline
854siginit (EV_P)
855{
856 fd_intern (sigpipe [0]);
857 fd_intern (sigpipe [1]);
858
859 ev_io_set (&sigev, sigpipe [0], EV_READ);
860 ev_io_start (EV_A_ &sigev);
861 ev_unref (EV_A); /* child watcher should not keep loop alive */
862}
863
864/*****************************************************************************/ 2419/*****************************************************************************/
865 2420
2421/*
2422 * the heap functions want a real array index. array index 0 is guaranteed to not
2423 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2424 * the branching factor of the d-tree.
2425 */
2426
2427/*
2428 * at the moment we allow libev the luxury of two heaps,
2429 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2430 * which is more cache-efficient.
2431 * the difference is about 5% with 50000+ watchers.
2432 */
2433#if EV_USE_4HEAP
2434
2435#define DHEAP 4
2436#define HEAP0 (DHEAP - 1) /* index of first element in heap */
2437#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2438#define UPHEAP_DONE(p,k) ((p) == (k))
2439
2440/* away from the root */
2441inline_speed void
2442downheap (ANHE *heap, int N, int k)
2443{
2444 ANHE he = heap [k];
2445 ANHE *E = heap + N + HEAP0;
2446
2447 for (;;)
2448 {
2449 ev_tstamp minat;
2450 ANHE *minpos;
2451 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2452
2453 /* find minimum child */
2454 if (ecb_expect_true (pos + DHEAP - 1 < E))
2455 {
2456 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2457 if ( minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2458 if ( minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2459 if ( minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2460 }
2461 else if (pos < E)
2462 {
2463 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2464 if (pos + 1 < E && minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2465 if (pos + 2 < E && minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2466 if (pos + 3 < E && minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2467 }
2468 else
2469 break;
2470
2471 if (ANHE_at (he) <= minat)
2472 break;
2473
2474 heap [k] = *minpos;
2475 ev_active (ANHE_w (*minpos)) = k;
2476
2477 k = minpos - heap;
2478 }
2479
2480 heap [k] = he;
2481 ev_active (ANHE_w (he)) = k;
2482}
2483
2484#else /* not 4HEAP */
2485
2486#define HEAP0 1
2487#define HPARENT(k) ((k) >> 1)
2488#define UPHEAP_DONE(p,k) (!(p))
2489
2490/* away from the root */
2491inline_speed void
2492downheap (ANHE *heap, int N, int k)
2493{
2494 ANHE he = heap [k];
2495
2496 for (;;)
2497 {
2498 int c = k << 1;
2499
2500 if (c >= N + HEAP0)
2501 break;
2502
2503 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2504 ? 1 : 0;
2505
2506 if (ANHE_at (he) <= ANHE_at (heap [c]))
2507 break;
2508
2509 heap [k] = heap [c];
2510 ev_active (ANHE_w (heap [k])) = k;
2511
2512 k = c;
2513 }
2514
2515 heap [k] = he;
2516 ev_active (ANHE_w (he)) = k;
2517}
2518#endif
2519
2520/* towards the root */
2521inline_speed void
2522upheap (ANHE *heap, int k)
2523{
2524 ANHE he = heap [k];
2525
2526 for (;;)
2527 {
2528 int p = HPARENT (k);
2529
2530 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2531 break;
2532
2533 heap [k] = heap [p];
2534 ev_active (ANHE_w (heap [k])) = k;
2535 k = p;
2536 }
2537
2538 heap [k] = he;
2539 ev_active (ANHE_w (he)) = k;
2540}
2541
2542/* move an element suitably so it is in a correct place */
2543inline_size void
2544adjustheap (ANHE *heap, int N, int k)
2545{
2546 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2547 upheap (heap, k);
2548 else
2549 downheap (heap, N, k);
2550}
2551
2552/* rebuild the heap: this function is used only once and executed rarely */
2553inline_size void
2554reheap (ANHE *heap, int N)
2555{
2556 int i;
2557
2558 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2559 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2560 for (i = 0; i < N; ++i)
2561 upheap (heap, i + HEAP0);
2562}
2563
2564/*****************************************************************************/
2565
2566/* associate signal watchers to a signal signal */
2567typedef struct
2568{
2569 EV_ATOMIC_T pending;
2570#if EV_MULTIPLICITY
2571 EV_P;
2572#endif
2573 WL head;
2574} ANSIG;
2575
2576static ANSIG signals [EV_NSIG - 1];
2577
2578/*****************************************************************************/
2579
2580#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2581
2582ecb_noinline ecb_cold
2583static void
2584evpipe_init (EV_P)
2585{
2586 if (!ev_is_active (&pipe_w))
2587 {
2588 int fds [2];
2589
2590# if EV_USE_EVENTFD
2591 fds [0] = -1;
2592 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2593 if (fds [1] < 0 && errno == EINVAL)
2594 fds [1] = eventfd (0, 0);
2595
2596 if (fds [1] < 0)
2597# endif
2598 {
2599 while (pipe (fds))
2600 ev_syserr ("(libev) error creating signal/async pipe");
2601
2602 fd_intern (fds [0]);
2603 }
2604
2605 evpipe [0] = fds [0];
2606
2607 if (evpipe [1] < 0)
2608 evpipe [1] = fds [1]; /* first call, set write fd */
2609 else
2610 {
2611 /* on subsequent calls, do not change evpipe [1] */
2612 /* so that evpipe_write can always rely on its value. */
2613 /* this branch does not do anything sensible on windows, */
2614 /* so must not be executed on windows */
2615
2616 dup2 (fds [1], evpipe [1]);
2617 close (fds [1]);
2618 }
2619
2620 fd_intern (evpipe [1]);
2621
2622 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2623 ev_io_start (EV_A_ &pipe_w);
2624 ev_unref (EV_A); /* watcher should not keep loop alive */
2625 }
2626}
2627
2628inline_speed void
2629evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2630{
2631 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2632
2633 if (ecb_expect_true (*flag))
2634 return;
2635
2636 *flag = 1;
2637 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2638
2639 pipe_write_skipped = 1;
2640
2641 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2642
2643 if (pipe_write_wanted)
2644 {
2645 int old_errno;
2646
2647 pipe_write_skipped = 0;
2648 ECB_MEMORY_FENCE_RELEASE;
2649
2650 old_errno = errno; /* save errno because write will clobber it */
2651
2652#if EV_USE_EVENTFD
2653 if (evpipe [0] < 0)
2654 {
2655 uint64_t counter = 1;
2656 write (evpipe [1], &counter, sizeof (uint64_t));
2657 }
2658 else
2659#endif
2660 {
2661#ifdef _WIN32
2662 WSABUF buf;
2663 DWORD sent;
2664 buf.buf = (char *)&buf;
2665 buf.len = 1;
2666 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2667#else
2668 write (evpipe [1], &(evpipe [1]), 1);
2669#endif
2670 }
2671
2672 errno = old_errno;
2673 }
2674}
2675
2676/* called whenever the libev signal pipe */
2677/* got some events (signal, async) */
2678static void
2679pipecb (EV_P_ ev_io *iow, int revents)
2680{
2681 int i;
2682
2683 if (revents & EV_READ)
2684 {
2685#if EV_USE_EVENTFD
2686 if (evpipe [0] < 0)
2687 {
2688 uint64_t counter;
2689 read (evpipe [1], &counter, sizeof (uint64_t));
2690 }
2691 else
2692#endif
2693 {
2694 char dummy[4];
2695#ifdef _WIN32
2696 WSABUF buf;
2697 DWORD recvd;
2698 DWORD flags = 0;
2699 buf.buf = dummy;
2700 buf.len = sizeof (dummy);
2701 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2702#else
2703 read (evpipe [0], &dummy, sizeof (dummy));
2704#endif
2705 }
2706 }
2707
2708 pipe_write_skipped = 0;
2709
2710 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2711
2712#if EV_SIGNAL_ENABLE
2713 if (sig_pending)
2714 {
2715 sig_pending = 0;
2716
2717 ECB_MEMORY_FENCE;
2718
2719 for (i = EV_NSIG - 1; i--; )
2720 if (ecb_expect_false (signals [i].pending))
2721 ev_feed_signal_event (EV_A_ i + 1);
2722 }
2723#endif
2724
2725#if EV_ASYNC_ENABLE
2726 if (async_pending)
2727 {
2728 async_pending = 0;
2729
2730 ECB_MEMORY_FENCE;
2731
2732 for (i = asynccnt; i--; )
2733 if (asyncs [i]->sent)
2734 {
2735 asyncs [i]->sent = 0;
2736 ECB_MEMORY_FENCE_RELEASE;
2737 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2738 }
2739 }
2740#endif
2741}
2742
2743/*****************************************************************************/
2744
2745void
2746ev_feed_signal (int signum) EV_NOEXCEPT
2747{
2748#if EV_MULTIPLICITY
2749 EV_P;
2750 ECB_MEMORY_FENCE_ACQUIRE;
2751 EV_A = signals [signum - 1].loop;
2752
2753 if (!EV_A)
2754 return;
2755#endif
2756
2757 signals [signum - 1].pending = 1;
2758 evpipe_write (EV_A_ &sig_pending);
2759}
2760
2761static void
2762ev_sighandler (int signum)
2763{
2764#ifdef _WIN32
2765 signal (signum, ev_sighandler);
2766#endif
2767
2768 ev_feed_signal (signum);
2769}
2770
2771ecb_noinline
2772void
2773ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2774{
2775 WL w;
2776
2777 if (ecb_expect_false (signum <= 0 || signum >= EV_NSIG))
2778 return;
2779
2780 --signum;
2781
2782#if EV_MULTIPLICITY
2783 /* it is permissible to try to feed a signal to the wrong loop */
2784 /* or, likely more useful, feeding a signal nobody is waiting for */
2785
2786 if (ecb_expect_false (signals [signum].loop != EV_A))
2787 return;
2788#endif
2789
2790 signals [signum].pending = 0;
2791 ECB_MEMORY_FENCE_RELEASE;
2792
2793 for (w = signals [signum].head; w; w = w->next)
2794 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2795}
2796
2797#if EV_USE_SIGNALFD
2798static void
2799sigfdcb (EV_P_ ev_io *iow, int revents)
2800{
2801 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2802
2803 for (;;)
2804 {
2805 ssize_t res = read (sigfd, si, sizeof (si));
2806
2807 /* not ISO-C, as res might be -1, but works with SuS */
2808 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2809 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2810
2811 if (res < (ssize_t)sizeof (si))
2812 break;
2813 }
2814}
2815#endif
2816
2817#endif
2818
2819/*****************************************************************************/
2820
2821#if EV_CHILD_ENABLE
866static WL childs [EV_PID_HASHSIZE]; 2822static WL childs [EV_PID_HASHSIZE];
867 2823
868#ifndef _WIN32
869
870static ev_signal childev; 2824static ev_signal childev;
871 2825
872void inline_speed 2826#ifndef WIFCONTINUED
2827# define WIFCONTINUED(status) 0
2828#endif
2829
2830/* handle a single child status event */
2831inline_speed void
873child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 2832child_reap (EV_P_ int chain, int pid, int status)
874{ 2833{
875 ev_child *w; 2834 ev_child *w;
2835 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
876 2836
877 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2837 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2838 {
878 if (w->pid == pid || !w->pid) 2839 if ((w->pid == pid || !w->pid)
2840 && (!traced || (w->flags & 1)))
879 { 2841 {
880 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 2842 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
881 w->rpid = pid; 2843 w->rpid = pid;
882 w->rstatus = status; 2844 w->rstatus = status;
883 ev_feed_event (EV_A_ (W)w, EV_CHILD); 2845 ev_feed_event (EV_A_ (W)w, EV_CHILD);
884 } 2846 }
2847 }
885} 2848}
886 2849
887#ifndef WCONTINUED 2850#ifndef WCONTINUED
888# define WCONTINUED 0 2851# define WCONTINUED 0
889#endif 2852#endif
890 2853
2854/* called on sigchld etc., calls waitpid */
891static void 2855static void
892childcb (EV_P_ ev_signal *sw, int revents) 2856childcb (EV_P_ ev_signal *sw, int revents)
893{ 2857{
894 int pid, status; 2858 int pid, status;
895 2859
898 if (!WCONTINUED 2862 if (!WCONTINUED
899 || errno != EINVAL 2863 || errno != EINVAL
900 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 2864 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
901 return; 2865 return;
902 2866
903 /* make sure we are called again until all childs have been reaped */ 2867 /* make sure we are called again until all children have been reaped */
904 /* we need to do it this way so that the callback gets called before we continue */ 2868 /* we need to do it this way so that the callback gets called before we continue */
905 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2869 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
906 2870
907 child_reap (EV_A_ sw, pid, pid, status); 2871 child_reap (EV_A_ pid, pid, status);
908 if (EV_PID_HASHSIZE > 1) 2872 if ((EV_PID_HASHSIZE) > 1)
909 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2873 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
910} 2874}
911 2875
912#endif 2876#endif
913 2877
914/*****************************************************************************/ 2878/*****************************************************************************/
915 2879
2880#if EV_USE_TIMERFD
2881
2882static void periodics_reschedule (EV_P);
2883
2884static void
2885timerfdcb (EV_P_ ev_io *iow, int revents)
2886{
2887 struct itimerspec its = { 0 };
2888
2889 /* since we can't easily come zup with a (portable) maximum value of time_t,
2890 * we wake up once per month, which hopefully is rare enough to not
2891 * be a problem. */
2892 its.it_value.tv_sec = ev_rt_now + 86400 * 30;
2893 timerfd_settime (timerfd, TFD_TIMER_ABSTIME | TFD_TIMER_CANCEL_ON_SET, &its, 0);
2894
2895 ev_rt_now = ev_time ();
2896 /* periodics_reschedule only needs ev_rt_now */
2897 /* but maybe in the future we want the full treatment. */
2898 /*
2899 now_floor = EV_TS_CONST (0.);
2900 time_update (EV_A_ EV_TSTAMP_HUGE);
2901 */
2902 periodics_reschedule (EV_A);
2903}
2904
2905ecb_noinline ecb_cold
2906static void
2907evtimerfd_init (EV_P)
2908{
2909 if (!ev_is_active (&timerfd_w))
2910 {
2911 timerfd = timerfd_create (CLOCK_REALTIME, TFD_NONBLOCK | TFD_CLOEXEC);
2912
2913 if (timerfd >= 0)
2914 {
2915 fd_intern (timerfd); /* just to be sure */
2916
2917 ev_io_init (&timerfd_w, timerfdcb, timerfd, EV_READ);
2918 ev_set_priority (&timerfd_w, EV_MINPRI);
2919 ev_io_start (EV_A_ &timerfd_w);
2920 ev_unref (EV_A); /* watcher should not keep loop alive */
2921
2922 /* (re-) arm timer */
2923 timerfdcb (EV_A_ 0, 0);
2924 }
2925 }
2926}
2927
2928#endif
2929
2930/*****************************************************************************/
2931
2932#if EV_USE_IOCP
2933# include "ev_iocp.c"
2934#endif
916#if EV_USE_PORT 2935#if EV_USE_PORT
917# include "ev_port.c" 2936# include "ev_port.c"
918#endif 2937#endif
919#if EV_USE_KQUEUE 2938#if EV_USE_KQUEUE
920# include "ev_kqueue.c" 2939# include "ev_kqueue.c"
921#endif 2940#endif
922#if EV_USE_EPOLL 2941#if EV_USE_EPOLL
923# include "ev_epoll.c" 2942# include "ev_epoll.c"
924#endif 2943#endif
2944#if EV_USE_LINUXAIO
2945# include "ev_linuxaio.c"
2946#endif
2947#if EV_USE_IOURING
2948# include "ev_iouring.c"
2949#endif
925#if EV_USE_POLL 2950#if EV_USE_POLL
926# include "ev_poll.c" 2951# include "ev_poll.c"
927#endif 2952#endif
928#if EV_USE_SELECT 2953#if EV_USE_SELECT
929# include "ev_select.c" 2954# include "ev_select.c"
930#endif 2955#endif
931 2956
932int 2957ecb_cold int
933ev_version_major (void) 2958ev_version_major (void) EV_NOEXCEPT
934{ 2959{
935 return EV_VERSION_MAJOR; 2960 return EV_VERSION_MAJOR;
936} 2961}
937 2962
938int 2963ecb_cold int
939ev_version_minor (void) 2964ev_version_minor (void) EV_NOEXCEPT
940{ 2965{
941 return EV_VERSION_MINOR; 2966 return EV_VERSION_MINOR;
942} 2967}
943 2968
944/* return true if we are running with elevated privileges and should ignore env variables */ 2969/* return true if we are running with elevated privileges and should ignore env variables */
945int inline_size 2970inline_size ecb_cold int
946enable_secure (void) 2971enable_secure (void)
947{ 2972{
948#ifdef _WIN32 2973#ifdef _WIN32
949 return 0; 2974 return 0;
950#else 2975#else
951 return getuid () != geteuid () 2976 return getuid () != geteuid ()
952 || getgid () != getegid (); 2977 || getgid () != getegid ();
953#endif 2978#endif
954} 2979}
955 2980
2981ecb_cold
956unsigned int 2982unsigned int
957ev_supported_backends (void) 2983ev_supported_backends (void) EV_NOEXCEPT
958{ 2984{
959 unsigned int flags = 0; 2985 unsigned int flags = 0;
960 2986
961 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2987 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
962 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2988 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
963 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL; 2989 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2990 if (EV_USE_LINUXAIO) flags |= EVBACKEND_LINUXAIO;
2991 if (EV_USE_IOURING ) flags |= EVBACKEND_IOURING;
964 if (EV_USE_POLL ) flags |= EVBACKEND_POLL; 2992 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
965 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2993 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
966 2994
967 return flags; 2995 return flags;
968} 2996}
969 2997
2998ecb_cold
970unsigned int 2999unsigned int
971ev_recommended_backends (void) 3000ev_recommended_backends (void) EV_NOEXCEPT
972{ 3001{
973 unsigned int flags = ev_supported_backends (); 3002 unsigned int flags = ev_supported_backends ();
974 3003
975#ifndef __NetBSD__ 3004#ifndef __NetBSD__
976 /* kqueue is borked on everything but netbsd apparently */ 3005 /* kqueue is borked on everything but netbsd apparently */
977 /* it usually doesn't work correctly on anything but sockets and pipes */ 3006 /* it usually doesn't work correctly on anything but sockets and pipes */
978 flags &= ~EVBACKEND_KQUEUE; 3007 flags &= ~EVBACKEND_KQUEUE;
979#endif 3008#endif
980#ifdef __APPLE__ 3009#ifdef __APPLE__
981 // flags &= ~EVBACKEND_KQUEUE; for documentation 3010 /* only select works correctly on that "unix-certified" platform */
3011 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
3012 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
3013#endif
3014#ifdef __FreeBSD__
3015 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
3016#endif
3017
3018 /* TODO: linuxaio is very experimental */
3019#if !EV_RECOMMEND_LINUXAIO
3020 flags &= ~EVBACKEND_LINUXAIO;
3021#endif
3022 /* TODO: linuxaio is super experimental */
3023#if !EV_RECOMMEND_IOURING
982 flags &= ~EVBACKEND_POLL; 3024 flags &= ~EVBACKEND_IOURING;
983#endif 3025#endif
984 3026
985 return flags; 3027 return flags;
986} 3028}
987 3029
3030ecb_cold
988unsigned int 3031unsigned int
989ev_embeddable_backends (void) 3032ev_embeddable_backends (void) EV_NOEXCEPT
990{ 3033{
991 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 3034 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
992 3035
993 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 3036 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
994 /* please fix it and tell me how to detect the fix */ 3037 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
995 flags &= ~EVBACKEND_EPOLL; 3038 flags &= ~EVBACKEND_EPOLL;
3039
3040 /* EVBACKEND_LINUXAIO is theoretically embeddable, but suffers from a performance overhead */
3041
3042 /* EVBACKEND_IOURING is practically embeddable, but the current implementation is not
3043 * because our backend_fd is the epoll fd we need as fallback.
3044 * if the kernel ever is fixed, this might change...
3045 */
996 3046
997 return flags; 3047 return flags;
998} 3048}
999 3049
1000unsigned int 3050unsigned int
1001ev_backend (EV_P) 3051ev_backend (EV_P) EV_NOEXCEPT
1002{ 3052{
1003 return backend; 3053 return backend;
1004} 3054}
1005 3055
3056#if EV_FEATURE_API
1006unsigned int 3057unsigned int
1007ev_loop_count (EV_P) 3058ev_iteration (EV_P) EV_NOEXCEPT
1008{ 3059{
1009 return loop_count; 3060 return loop_count;
1010} 3061}
1011 3062
3063unsigned int
3064ev_depth (EV_P) EV_NOEXCEPT
3065{
3066 return loop_depth;
3067}
3068
1012void 3069void
1013ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 3070ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
1014{ 3071{
1015 io_blocktime = interval; 3072 io_blocktime = interval;
1016} 3073}
1017 3074
1018void 3075void
1019ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 3076ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
1020{ 3077{
1021 timeout_blocktime = interval; 3078 timeout_blocktime = interval;
1022} 3079}
1023 3080
1024static void noinline 3081void
3082ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
3083{
3084 userdata = data;
3085}
3086
3087void *
3088ev_userdata (EV_P) EV_NOEXCEPT
3089{
3090 return userdata;
3091}
3092
3093void
3094ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
3095{
3096 invoke_cb = invoke_pending_cb;
3097}
3098
3099void
3100ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
3101{
3102 release_cb = release;
3103 acquire_cb = acquire;
3104}
3105#endif
3106
3107/* initialise a loop structure, must be zero-initialised */
3108ecb_noinline ecb_cold
3109static void
1025loop_init (EV_P_ unsigned int flags) 3110loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
1026{ 3111{
1027 if (!backend) 3112 if (!backend)
1028 { 3113 {
3114 origflags = flags;
3115
3116#if EV_USE_REALTIME
3117 if (!have_realtime)
3118 {
3119 struct timespec ts;
3120
3121 if (!clock_gettime (CLOCK_REALTIME, &ts))
3122 have_realtime = 1;
3123 }
3124#endif
3125
1029#if EV_USE_MONOTONIC 3126#if EV_USE_MONOTONIC
3127 if (!have_monotonic)
1030 { 3128 {
1031 struct timespec ts; 3129 struct timespec ts;
3130
1032 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 3131 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1033 have_monotonic = 1; 3132 have_monotonic = 1;
1034 } 3133 }
1035#endif 3134#endif
1036
1037 ev_rt_now = ev_time ();
1038 mn_now = get_clock ();
1039 now_floor = mn_now;
1040 rtmn_diff = ev_rt_now - mn_now;
1041
1042 io_blocktime = 0.;
1043 timeout_blocktime = 0.;
1044 3135
1045 /* pid check not overridable via env */ 3136 /* pid check not overridable via env */
1046#ifndef _WIN32 3137#ifndef _WIN32
1047 if (flags & EVFLAG_FORKCHECK) 3138 if (flags & EVFLAG_FORKCHECK)
1048 curpid = getpid (); 3139 curpid = getpid ();
1051 if (!(flags & EVFLAG_NOENV) 3142 if (!(flags & EVFLAG_NOENV)
1052 && !enable_secure () 3143 && !enable_secure ()
1053 && getenv ("LIBEV_FLAGS")) 3144 && getenv ("LIBEV_FLAGS"))
1054 flags = atoi (getenv ("LIBEV_FLAGS")); 3145 flags = atoi (getenv ("LIBEV_FLAGS"));
1055 3146
1056 if (!(flags & 0x0000ffffUL)) 3147 ev_rt_now = ev_time ();
3148 mn_now = get_clock ();
3149 now_floor = mn_now;
3150 rtmn_diff = ev_rt_now - mn_now;
3151#if EV_FEATURE_API
3152 invoke_cb = ev_invoke_pending;
3153#endif
3154
3155 io_blocktime = 0.;
3156 timeout_blocktime = 0.;
3157 backend = 0;
3158 backend_fd = -1;
3159 sig_pending = 0;
3160#if EV_ASYNC_ENABLE
3161 async_pending = 0;
3162#endif
3163 pipe_write_skipped = 0;
3164 pipe_write_wanted = 0;
3165 evpipe [0] = -1;
3166 evpipe [1] = -1;
3167#if EV_USE_INOTIFY
3168 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
3169#endif
3170#if EV_USE_SIGNALFD
3171 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
3172#endif
3173#if EV_USE_TIMERFD
3174 timerfd = flags & EVFLAG_NOTIMERFD ? -1 : -2;
3175#endif
3176
3177 if (!(flags & EVBACKEND_MASK))
1057 flags |= ev_recommended_backends (); 3178 flags |= ev_recommended_backends ();
1058 3179
1059 backend = 0;
1060 backend_fd = -1;
1061#if EV_USE_INOTIFY 3180#if EV_USE_IOCP
1062 fs_fd = -2; 3181 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1063#endif 3182#endif
1064
1065#if EV_USE_PORT 3183#if EV_USE_PORT
1066 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 3184 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1067#endif 3185#endif
1068#if EV_USE_KQUEUE 3186#if EV_USE_KQUEUE
1069 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 3187 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
3188#endif
3189#if EV_USE_IOURING
3190 if (!backend && (flags & EVBACKEND_IOURING )) backend = iouring_init (EV_A_ flags);
3191#endif
3192#if EV_USE_LINUXAIO
3193 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
1070#endif 3194#endif
1071#if EV_USE_EPOLL 3195#if EV_USE_EPOLL
1072 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags); 3196 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1073#endif 3197#endif
1074#if EV_USE_POLL 3198#if EV_USE_POLL
1075 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags); 3199 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1076#endif 3200#endif
1077#if EV_USE_SELECT 3201#if EV_USE_SELECT
1078 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 3202 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
1079#endif 3203#endif
1080 3204
3205 ev_prepare_init (&pending_w, pendingcb);
3206
3207#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1081 ev_init (&sigev, sigcb); 3208 ev_init (&pipe_w, pipecb);
1082 ev_set_priority (&sigev, EV_MAXPRI); 3209 ev_set_priority (&pipe_w, EV_MAXPRI);
3210#endif
1083 } 3211 }
1084} 3212}
1085 3213
1086static void noinline 3214/* free up a loop structure */
3215ecb_cold
3216void
1087loop_destroy (EV_P) 3217ev_loop_destroy (EV_P)
1088{ 3218{
1089 int i; 3219 int i;
3220
3221#if EV_MULTIPLICITY
3222 /* mimic free (0) */
3223 if (!EV_A)
3224 return;
3225#endif
3226
3227#if EV_CLEANUP_ENABLE
3228 /* queue cleanup watchers (and execute them) */
3229 if (ecb_expect_false (cleanupcnt))
3230 {
3231 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3232 EV_INVOKE_PENDING;
3233 }
3234#endif
3235
3236#if EV_CHILD_ENABLE
3237 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3238 {
3239 ev_ref (EV_A); /* child watcher */
3240 ev_signal_stop (EV_A_ &childev);
3241 }
3242#endif
3243
3244 if (ev_is_active (&pipe_w))
3245 {
3246 /*ev_ref (EV_A);*/
3247 /*ev_io_stop (EV_A_ &pipe_w);*/
3248
3249 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3250 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3251 }
3252
3253#if EV_USE_SIGNALFD
3254 if (ev_is_active (&sigfd_w))
3255 close (sigfd);
3256#endif
3257
3258#if EV_USE_TIMERFD
3259 if (ev_is_active (&timerfd_w))
3260 close (timerfd);
3261#endif
1090 3262
1091#if EV_USE_INOTIFY 3263#if EV_USE_INOTIFY
1092 if (fs_fd >= 0) 3264 if (fs_fd >= 0)
1093 close (fs_fd); 3265 close (fs_fd);
1094#endif 3266#endif
1095 3267
1096 if (backend_fd >= 0) 3268 if (backend_fd >= 0)
1097 close (backend_fd); 3269 close (backend_fd);
1098 3270
3271#if EV_USE_IOCP
3272 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3273#endif
1099#if EV_USE_PORT 3274#if EV_USE_PORT
1100 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 3275 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1101#endif 3276#endif
1102#if EV_USE_KQUEUE 3277#if EV_USE_KQUEUE
1103 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 3278 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3279#endif
3280#if EV_USE_IOURING
3281 if (backend == EVBACKEND_IOURING ) iouring_destroy (EV_A);
3282#endif
3283#if EV_USE_LINUXAIO
3284 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
1104#endif 3285#endif
1105#if EV_USE_EPOLL 3286#if EV_USE_EPOLL
1106 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A); 3287 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1107#endif 3288#endif
1108#if EV_USE_POLL 3289#if EV_USE_POLL
1109 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A); 3290 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1110#endif 3291#endif
1111#if EV_USE_SELECT 3292#if EV_USE_SELECT
1112 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 3293 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
1113#endif 3294#endif
1114 3295
1115 for (i = NUMPRI; i--; ) 3296 for (i = NUMPRI; i--; )
1116 { 3297 {
1117 array_free (pending, [i]); 3298 array_free (pending, [i]);
1118#if EV_IDLE_ENABLE 3299#if EV_IDLE_ENABLE
1119 array_free (idle, [i]); 3300 array_free (idle, [i]);
1120#endif 3301#endif
1121 } 3302 }
1122 3303
1123 ev_free (anfds); anfdmax = 0; 3304 ev_free (anfds); anfds = 0; anfdmax = 0;
1124 3305
1125 /* have to use the microsoft-never-gets-it-right macro */ 3306 /* have to use the microsoft-never-gets-it-right macro */
3307 array_free (rfeed, EMPTY);
1126 array_free (fdchange, EMPTY); 3308 array_free (fdchange, EMPTY);
1127 array_free (timer, EMPTY); 3309 array_free (timer, EMPTY);
1128#if EV_PERIODIC_ENABLE 3310#if EV_PERIODIC_ENABLE
1129 array_free (periodic, EMPTY); 3311 array_free (periodic, EMPTY);
1130#endif 3312#endif
1131#if EV_FORK_ENABLE 3313#if EV_FORK_ENABLE
1132 array_free (fork, EMPTY); 3314 array_free (fork, EMPTY);
1133#endif 3315#endif
3316#if EV_CLEANUP_ENABLE
3317 array_free (cleanup, EMPTY);
3318#endif
1134 array_free (prepare, EMPTY); 3319 array_free (prepare, EMPTY);
1135 array_free (check, EMPTY); 3320 array_free (check, EMPTY);
3321#if EV_ASYNC_ENABLE
3322 array_free (async, EMPTY);
3323#endif
1136 3324
1137 backend = 0; 3325 backend = 0;
1138}
1139 3326
3327#if EV_MULTIPLICITY
3328 if (ev_is_default_loop (EV_A))
3329#endif
3330 ev_default_loop_ptr = 0;
3331#if EV_MULTIPLICITY
3332 else
3333 ev_free (EV_A);
3334#endif
3335}
3336
3337#if EV_USE_INOTIFY
1140void inline_size infy_fork (EV_P); 3338inline_size void infy_fork (EV_P);
3339#endif
1141 3340
1142void inline_size 3341inline_size void
1143loop_fork (EV_P) 3342loop_fork (EV_P)
1144{ 3343{
1145#if EV_USE_PORT 3344#if EV_USE_PORT
1146 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 3345 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1147#endif 3346#endif
1148#if EV_USE_KQUEUE 3347#if EV_USE_KQUEUE
1149 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 3348 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3349#endif
3350#if EV_USE_IOURING
3351 if (backend == EVBACKEND_IOURING ) iouring_fork (EV_A);
3352#endif
3353#if EV_USE_LINUXAIO
3354 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
1150#endif 3355#endif
1151#if EV_USE_EPOLL 3356#if EV_USE_EPOLL
1152 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 3357 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1153#endif 3358#endif
1154#if EV_USE_INOTIFY 3359#if EV_USE_INOTIFY
1155 infy_fork (EV_A); 3360 infy_fork (EV_A);
1156#endif 3361#endif
1157 3362
3363 if (postfork != 2)
3364 {
3365 #if EV_USE_SIGNALFD
3366 /* surprisingly, nothing needs to be done for signalfd, accoridng to docs, it does the right thing on fork */
3367 #endif
3368
3369 #if EV_USE_TIMERFD
1158 if (ev_is_active (&sigev)) 3370 if (ev_is_active (&timerfd_w))
1159 { 3371 {
1160 /* default loop */
1161
1162 ev_ref (EV_A); 3372 ev_ref (EV_A);
3373 ev_io_stop (EV_A_ &timerfd_w);
3374
3375 close (timerfd);
3376 timerfd = -2;
3377
3378 evtimerfd_init (EV_A);
3379 /* reschedule periodics, in case we missed something */
3380 ev_feed_event (EV_A_ &timerfd_w, EV_CUSTOM);
3381 }
3382 #endif
3383
3384 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3385 if (ev_is_active (&pipe_w))
3386 {
3387 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3388
3389 ev_ref (EV_A);
1163 ev_io_stop (EV_A_ &sigev); 3390 ev_io_stop (EV_A_ &pipe_w);
1164 close (sigpipe [0]); 3391
1165 close (sigpipe [1]); 3392 if (evpipe [0] >= 0)
1166 3393 EV_WIN32_CLOSE_FD (evpipe [0]);
1167 while (pipe (sigpipe)) 3394
1168 syserr ("(libev) error creating pipe"); 3395 evpipe_init (EV_A);
1169 3396 /* iterate over everything, in case we missed something before */
1170 siginit (EV_A); 3397 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1171 sigcb (EV_A_ &sigev, EV_READ); 3398 }
3399 #endif
1172 } 3400 }
1173 3401
1174 postfork = 0; 3402 postfork = 0;
1175} 3403}
1176 3404
1177#if EV_MULTIPLICITY 3405#if EV_MULTIPLICITY
3406
3407ecb_cold
1178struct ev_loop * 3408struct ev_loop *
1179ev_loop_new (unsigned int flags) 3409ev_loop_new (unsigned int flags) EV_NOEXCEPT
1180{ 3410{
1181 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 3411 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1182 3412
1183 memset (loop, 0, sizeof (struct ev_loop)); 3413 memset (EV_A, 0, sizeof (struct ev_loop));
1184
1185 loop_init (EV_A_ flags); 3414 loop_init (EV_A_ flags);
1186 3415
1187 if (ev_backend (EV_A)) 3416 if (ev_backend (EV_A))
1188 return loop; 3417 return EV_A;
1189 3418
3419 ev_free (EV_A);
1190 return 0; 3420 return 0;
1191} 3421}
1192 3422
1193void 3423#endif /* multiplicity */
1194ev_loop_destroy (EV_P)
1195{
1196 loop_destroy (EV_A);
1197 ev_free (loop);
1198}
1199 3424
1200void 3425#if EV_VERIFY
1201ev_loop_fork (EV_P) 3426ecb_noinline ecb_cold
3427static void
3428verify_watcher (EV_P_ W w)
1202{ 3429{
1203 postfork = 1; /* must be in line with ev_default_fork */ 3430 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1204}
1205 3431
3432 if (w->pending)
3433 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3434}
3435
3436ecb_noinline ecb_cold
3437static void
3438verify_heap (EV_P_ ANHE *heap, int N)
3439{
3440 int i;
3441
3442 for (i = HEAP0; i < N + HEAP0; ++i)
3443 {
3444 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3445 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3446 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3447
3448 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3449 }
3450}
3451
3452ecb_noinline ecb_cold
3453static void
3454array_verify (EV_P_ W *ws, int cnt)
3455{
3456 while (cnt--)
3457 {
3458 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3459 verify_watcher (EV_A_ ws [cnt]);
3460 }
3461}
3462#endif
3463
3464#if EV_FEATURE_API
3465void ecb_cold
3466ev_verify (EV_P) EV_NOEXCEPT
3467{
3468#if EV_VERIFY
3469 int i;
3470 WL w, w2;
3471
3472 assert (activecnt >= -1);
3473
3474 assert (fdchangemax >= fdchangecnt);
3475 for (i = 0; i < fdchangecnt; ++i)
3476 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3477
3478 assert (anfdmax >= 0);
3479 for (i = 0; i < anfdmax; ++i)
3480 {
3481 int j = 0;
3482
3483 for (w = w2 = anfds [i].head; w; w = w->next)
3484 {
3485 verify_watcher (EV_A_ (W)w);
3486
3487 if (j++ & 1)
3488 {
3489 assert (("libev: io watcher list contains a loop", w != w2));
3490 w2 = w2->next;
3491 }
3492
3493 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3494 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3495 }
3496 }
3497
3498 assert (timermax >= timercnt);
3499 verify_heap (EV_A_ timers, timercnt);
3500
3501#if EV_PERIODIC_ENABLE
3502 assert (periodicmax >= periodiccnt);
3503 verify_heap (EV_A_ periodics, periodiccnt);
3504#endif
3505
3506 for (i = NUMPRI; i--; )
3507 {
3508 assert (pendingmax [i] >= pendingcnt [i]);
3509#if EV_IDLE_ENABLE
3510 assert (idleall >= 0);
3511 assert (idlemax [i] >= idlecnt [i]);
3512 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3513#endif
3514 }
3515
3516#if EV_FORK_ENABLE
3517 assert (forkmax >= forkcnt);
3518 array_verify (EV_A_ (W *)forks, forkcnt);
3519#endif
3520
3521#if EV_CLEANUP_ENABLE
3522 assert (cleanupmax >= cleanupcnt);
3523 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3524#endif
3525
3526#if EV_ASYNC_ENABLE
3527 assert (asyncmax >= asynccnt);
3528 array_verify (EV_A_ (W *)asyncs, asynccnt);
3529#endif
3530
3531#if EV_PREPARE_ENABLE
3532 assert (preparemax >= preparecnt);
3533 array_verify (EV_A_ (W *)prepares, preparecnt);
3534#endif
3535
3536#if EV_CHECK_ENABLE
3537 assert (checkmax >= checkcnt);
3538 array_verify (EV_A_ (W *)checks, checkcnt);
3539#endif
3540
3541# if 0
3542#if EV_CHILD_ENABLE
3543 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3544 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3545#endif
3546# endif
3547#endif
3548}
1206#endif 3549#endif
1207 3550
1208#if EV_MULTIPLICITY 3551#if EV_MULTIPLICITY
3552ecb_cold
1209struct ev_loop * 3553struct ev_loop *
1210ev_default_loop_init (unsigned int flags)
1211#else 3554#else
1212int 3555int
3556#endif
1213ev_default_loop (unsigned int flags) 3557ev_default_loop (unsigned int flags) EV_NOEXCEPT
1214#endif
1215{ 3558{
1216 if (sigpipe [0] == sigpipe [1])
1217 if (pipe (sigpipe))
1218 return 0;
1219
1220 if (!ev_default_loop_ptr) 3559 if (!ev_default_loop_ptr)
1221 { 3560 {
1222#if EV_MULTIPLICITY 3561#if EV_MULTIPLICITY
1223 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3562 EV_P = ev_default_loop_ptr = &default_loop_struct;
1224#else 3563#else
1225 ev_default_loop_ptr = 1; 3564 ev_default_loop_ptr = 1;
1226#endif 3565#endif
1227 3566
1228 loop_init (EV_A_ flags); 3567 loop_init (EV_A_ flags);
1229 3568
1230 if (ev_backend (EV_A)) 3569 if (ev_backend (EV_A))
1231 { 3570 {
1232 siginit (EV_A); 3571#if EV_CHILD_ENABLE
1233
1234#ifndef _WIN32
1235 ev_signal_init (&childev, childcb, SIGCHLD); 3572 ev_signal_init (&childev, childcb, SIGCHLD);
1236 ev_set_priority (&childev, EV_MAXPRI); 3573 ev_set_priority (&childev, EV_MAXPRI);
1237 ev_signal_start (EV_A_ &childev); 3574 ev_signal_start (EV_A_ &childev);
1238 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3575 ev_unref (EV_A); /* child watcher should not keep loop alive */
1239#endif 3576#endif
1244 3581
1245 return ev_default_loop_ptr; 3582 return ev_default_loop_ptr;
1246} 3583}
1247 3584
1248void 3585void
1249ev_default_destroy (void) 3586ev_loop_fork (EV_P) EV_NOEXCEPT
1250{ 3587{
1251#if EV_MULTIPLICITY 3588 postfork = 1;
1252 struct ev_loop *loop = ev_default_loop_ptr;
1253#endif
1254
1255#ifndef _WIN32
1256 ev_ref (EV_A); /* child watcher */
1257 ev_signal_stop (EV_A_ &childev);
1258#endif
1259
1260 ev_ref (EV_A); /* signal watcher */
1261 ev_io_stop (EV_A_ &sigev);
1262
1263 close (sigpipe [0]); sigpipe [0] = 0;
1264 close (sigpipe [1]); sigpipe [1] = 0;
1265
1266 loop_destroy (EV_A);
1267}
1268
1269void
1270ev_default_fork (void)
1271{
1272#if EV_MULTIPLICITY
1273 struct ev_loop *loop = ev_default_loop_ptr;
1274#endif
1275
1276 if (backend)
1277 postfork = 1; /* must be in line with ev_loop_fork */
1278} 3589}
1279 3590
1280/*****************************************************************************/ 3591/*****************************************************************************/
1281 3592
1282void 3593void
1283ev_invoke (EV_P_ void *w, int revents) 3594ev_invoke (EV_P_ void *w, int revents)
1284{ 3595{
1285 EV_CB_INVOKE ((W)w, revents); 3596 EV_CB_INVOKE ((W)w, revents);
1286} 3597}
1287 3598
1288void inline_speed 3599unsigned int
1289call_pending (EV_P) 3600ev_pending_count (EV_P) EV_NOEXCEPT
1290{ 3601{
1291 int pri; 3602 int pri;
3603 unsigned int count = 0;
1292 3604
1293 for (pri = NUMPRI; pri--; ) 3605 for (pri = NUMPRI; pri--; )
3606 count += pendingcnt [pri];
3607
3608 return count;
3609}
3610
3611ecb_noinline
3612void
3613ev_invoke_pending (EV_P)
3614{
3615 pendingpri = NUMPRI;
3616
3617 do
3618 {
3619 --pendingpri;
3620
3621 /* pendingpri possibly gets modified in the inner loop */
1294 while (pendingcnt [pri]) 3622 while (pendingcnt [pendingpri])
1295 {
1296 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1297
1298 if (expect_true (p->w))
1299 {
1300 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1301
1302 p->w->pending = 0;
1303 EV_CB_INVOKE (p->w, p->events);
1304 }
1305 }
1306}
1307
1308void inline_size
1309timers_reify (EV_P)
1310{
1311 while (timercnt && ((WT)timers [0])->at <= mn_now)
1312 {
1313 ev_timer *w = (ev_timer *)timers [0];
1314
1315 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1316
1317 /* first reschedule or stop timer */
1318 if (w->repeat)
1319 { 3623 {
1320 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3624 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1321 3625
1322 ((WT)w)->at += w->repeat; 3626 p->w->pending = 0;
1323 if (((WT)w)->at < mn_now) 3627 EV_CB_INVOKE (p->w, p->events);
1324 ((WT)w)->at = mn_now; 3628 EV_FREQUENT_CHECK;
1325
1326 downheap (timers, timercnt, 0);
1327 } 3629 }
1328 else
1329 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1330
1331 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1332 }
1333}
1334
1335#if EV_PERIODIC_ENABLE
1336void inline_size
1337periodics_reify (EV_P)
1338{
1339 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1340 { 3630 }
1341 ev_periodic *w = (ev_periodic *)periodics [0]; 3631 while (pendingpri);
1342
1343 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1344
1345 /* first reschedule or stop timer */
1346 if (w->reschedule_cb)
1347 {
1348 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1349 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1350 downheap (periodics, periodiccnt, 0);
1351 }
1352 else if (w->interval)
1353 {
1354 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1355 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1356 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1357 downheap (periodics, periodiccnt, 0);
1358 }
1359 else
1360 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1361
1362 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1363 }
1364} 3632}
1365
1366static void noinline
1367periodics_reschedule (EV_P)
1368{
1369 int i;
1370
1371 /* adjust periodics after time jump */
1372 for (i = 0; i < periodiccnt; ++i)
1373 {
1374 ev_periodic *w = (ev_periodic *)periodics [i];
1375
1376 if (w->reschedule_cb)
1377 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1378 else if (w->interval)
1379 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1380 }
1381
1382 /* now rebuild the heap */
1383 for (i = periodiccnt >> 1; i--; )
1384 downheap (periodics, periodiccnt, i);
1385}
1386#endif
1387 3633
1388#if EV_IDLE_ENABLE 3634#if EV_IDLE_ENABLE
1389void inline_size 3635/* make idle watchers pending. this handles the "call-idle */
3636/* only when higher priorities are idle" logic */
3637inline_size void
1390idle_reify (EV_P) 3638idle_reify (EV_P)
1391{ 3639{
1392 if (expect_false (idleall)) 3640 if (ecb_expect_false (idleall))
1393 { 3641 {
1394 int pri; 3642 int pri;
1395 3643
1396 for (pri = NUMPRI; pri--; ) 3644 for (pri = NUMPRI; pri--; )
1397 { 3645 {
1406 } 3654 }
1407 } 3655 }
1408} 3656}
1409#endif 3657#endif
1410 3658
1411void inline_speed 3659/* make timers pending */
3660inline_size void
3661timers_reify (EV_P)
3662{
3663 EV_FREQUENT_CHECK;
3664
3665 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3666 {
3667 do
3668 {
3669 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3670
3671 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3672
3673 /* first reschedule or stop timer */
3674 if (w->repeat)
3675 {
3676 ev_at (w) += w->repeat;
3677 if (ev_at (w) < mn_now)
3678 ev_at (w) = mn_now;
3679
3680 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > EV_TS_CONST (0.)));
3681
3682 ANHE_at_cache (timers [HEAP0]);
3683 downheap (timers, timercnt, HEAP0);
3684 }
3685 else
3686 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3687
3688 EV_FREQUENT_CHECK;
3689 feed_reverse (EV_A_ (W)w);
3690 }
3691 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3692
3693 feed_reverse_done (EV_A_ EV_TIMER);
3694 }
3695}
3696
3697#if EV_PERIODIC_ENABLE
3698
3699ecb_noinline
3700static void
3701periodic_recalc (EV_P_ ev_periodic *w)
3702{
3703 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3704 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3705
3706 /* the above almost always errs on the low side */
3707 while (at <= ev_rt_now)
3708 {
3709 ev_tstamp nat = at + w->interval;
3710
3711 /* when resolution fails us, we use ev_rt_now */
3712 if (ecb_expect_false (nat == at))
3713 {
3714 at = ev_rt_now;
3715 break;
3716 }
3717
3718 at = nat;
3719 }
3720
3721 ev_at (w) = at;
3722}
3723
3724/* make periodics pending */
3725inline_size void
3726periodics_reify (EV_P)
3727{
3728 EV_FREQUENT_CHECK;
3729
3730 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3731 {
3732 do
3733 {
3734 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3735
3736 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3737
3738 /* first reschedule or stop timer */
3739 if (w->reschedule_cb)
3740 {
3741 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3742
3743 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3744
3745 ANHE_at_cache (periodics [HEAP0]);
3746 downheap (periodics, periodiccnt, HEAP0);
3747 }
3748 else if (w->interval)
3749 {
3750 periodic_recalc (EV_A_ w);
3751 ANHE_at_cache (periodics [HEAP0]);
3752 downheap (periodics, periodiccnt, HEAP0);
3753 }
3754 else
3755 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3756
3757 EV_FREQUENT_CHECK;
3758 feed_reverse (EV_A_ (W)w);
3759 }
3760 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3761
3762 feed_reverse_done (EV_A_ EV_PERIODIC);
3763 }
3764}
3765
3766/* simply recalculate all periodics */
3767/* TODO: maybe ensure that at least one event happens when jumping forward? */
3768ecb_noinline ecb_cold
3769static void
3770periodics_reschedule (EV_P)
3771{
3772 int i;
3773
3774 /* adjust periodics after time jump */
3775 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3776 {
3777 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3778
3779 if (w->reschedule_cb)
3780 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3781 else if (w->interval)
3782 periodic_recalc (EV_A_ w);
3783
3784 ANHE_at_cache (periodics [i]);
3785 }
3786
3787 reheap (periodics, periodiccnt);
3788}
3789#endif
3790
3791/* adjust all timers by a given offset */
3792ecb_noinline ecb_cold
3793static void
3794timers_reschedule (EV_P_ ev_tstamp adjust)
3795{
3796 int i;
3797
3798 for (i = 0; i < timercnt; ++i)
3799 {
3800 ANHE *he = timers + i + HEAP0;
3801 ANHE_w (*he)->at += adjust;
3802 ANHE_at_cache (*he);
3803 }
3804}
3805
3806/* fetch new monotonic and realtime times from the kernel */
3807/* also detect if there was a timejump, and act accordingly */
3808inline_speed void
1412time_update (EV_P_ ev_tstamp max_block) 3809time_update (EV_P_ ev_tstamp max_block)
1413{ 3810{
1414 int i;
1415
1416#if EV_USE_MONOTONIC 3811#if EV_USE_MONOTONIC
1417 if (expect_true (have_monotonic)) 3812 if (ecb_expect_true (have_monotonic))
1418 { 3813 {
3814 int i;
1419 ev_tstamp odiff = rtmn_diff; 3815 ev_tstamp odiff = rtmn_diff;
1420 3816
1421 mn_now = get_clock (); 3817 mn_now = get_clock ();
1422 3818
1423 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3819 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1424 /* interpolate in the meantime */ 3820 /* interpolate in the meantime */
1425 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 3821 if (ecb_expect_true (mn_now - now_floor < EV_TS_CONST (MIN_TIMEJUMP * .5)))
1426 { 3822 {
1427 ev_rt_now = rtmn_diff + mn_now; 3823 ev_rt_now = rtmn_diff + mn_now;
1428 return; 3824 return;
1429 } 3825 }
1430 3826
1439 * doesn't hurt either as we only do this on time-jumps or 3835 * doesn't hurt either as we only do this on time-jumps or
1440 * in the unlikely event of having been preempted here. 3836 * in the unlikely event of having been preempted here.
1441 */ 3837 */
1442 for (i = 4; --i; ) 3838 for (i = 4; --i; )
1443 { 3839 {
3840 ev_tstamp diff;
1444 rtmn_diff = ev_rt_now - mn_now; 3841 rtmn_diff = ev_rt_now - mn_now;
1445 3842
1446 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 3843 diff = odiff - rtmn_diff;
3844
3845 if (ecb_expect_true ((diff < EV_TS_CONST (0.) ? -diff : diff) < EV_TS_CONST (MIN_TIMEJUMP)))
1447 return; /* all is well */ 3846 return; /* all is well */
1448 3847
1449 ev_rt_now = ev_time (); 3848 ev_rt_now = ev_time ();
1450 mn_now = get_clock (); 3849 mn_now = get_clock ();
1451 now_floor = mn_now; 3850 now_floor = mn_now;
1452 } 3851 }
1453 3852
3853 /* no timer adjustment, as the monotonic clock doesn't jump */
3854 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1454# if EV_PERIODIC_ENABLE 3855# if EV_PERIODIC_ENABLE
1455 periodics_reschedule (EV_A); 3856 periodics_reschedule (EV_A);
1456# endif 3857# endif
1457 /* no timer adjustment, as the monotonic clock doesn't jump */
1458 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1459 } 3858 }
1460 else 3859 else
1461#endif 3860#endif
1462 { 3861 {
1463 ev_rt_now = ev_time (); 3862 ev_rt_now = ev_time ();
1464 3863
1465 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3864 if (ecb_expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + EV_TS_CONST (MIN_TIMEJUMP)))
1466 { 3865 {
3866 /* adjust timers. this is easy, as the offset is the same for all of them */
3867 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1467#if EV_PERIODIC_ENABLE 3868#if EV_PERIODIC_ENABLE
1468 periodics_reschedule (EV_A); 3869 periodics_reschedule (EV_A);
1469#endif 3870#endif
1470 /* adjust timers. this is easy, as the offset is the same for all of them */
1471 for (i = 0; i < timercnt; ++i)
1472 ((WT)timers [i])->at += ev_rt_now - mn_now;
1473 } 3871 }
1474 3872
1475 mn_now = ev_rt_now; 3873 mn_now = ev_rt_now;
1476 } 3874 }
1477} 3875}
1478 3876
1479void 3877int
1480ev_ref (EV_P)
1481{
1482 ++activecnt;
1483}
1484
1485void
1486ev_unref (EV_P)
1487{
1488 --activecnt;
1489}
1490
1491static int loop_done;
1492
1493void
1494ev_loop (EV_P_ int flags) 3878ev_run (EV_P_ int flags)
1495{ 3879{
1496 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 3880#if EV_FEATURE_API
1497 ? EVUNLOOP_ONE 3881 ++loop_depth;
1498 : EVUNLOOP_CANCEL; 3882#endif
1499 3883
3884 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3885
3886 loop_done = EVBREAK_CANCEL;
3887
1500 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3888 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1501 3889
1502 do 3890 do
1503 { 3891 {
3892#if EV_VERIFY >= 2
3893 ev_verify (EV_A);
3894#endif
3895
1504#ifndef _WIN32 3896#ifndef _WIN32
1505 if (expect_false (curpid)) /* penalise the forking check even more */ 3897 if (ecb_expect_false (curpid)) /* penalise the forking check even more */
1506 if (expect_false (getpid () != curpid)) 3898 if (ecb_expect_false (getpid () != curpid))
1507 { 3899 {
1508 curpid = getpid (); 3900 curpid = getpid ();
1509 postfork = 1; 3901 postfork = 1;
1510 } 3902 }
1511#endif 3903#endif
1512 3904
1513#if EV_FORK_ENABLE 3905#if EV_FORK_ENABLE
1514 /* we might have forked, so queue fork handlers */ 3906 /* we might have forked, so queue fork handlers */
1515 if (expect_false (postfork)) 3907 if (ecb_expect_false (postfork))
1516 if (forkcnt) 3908 if (forkcnt)
1517 { 3909 {
1518 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3910 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1519 call_pending (EV_A); 3911 EV_INVOKE_PENDING;
1520 } 3912 }
1521#endif 3913#endif
1522 3914
3915#if EV_PREPARE_ENABLE
1523 /* queue prepare watchers (and execute them) */ 3916 /* queue prepare watchers (and execute them) */
1524 if (expect_false (preparecnt)) 3917 if (ecb_expect_false (preparecnt))
1525 { 3918 {
1526 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3919 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1527 call_pending (EV_A); 3920 EV_INVOKE_PENDING;
1528 } 3921 }
3922#endif
1529 3923
1530 if (expect_false (!activecnt)) 3924 if (ecb_expect_false (loop_done))
1531 break; 3925 break;
1532 3926
1533 /* we might have forked, so reify kernel state if necessary */ 3927 /* we might have forked, so reify kernel state if necessary */
1534 if (expect_false (postfork)) 3928 if (ecb_expect_false (postfork))
1535 loop_fork (EV_A); 3929 loop_fork (EV_A);
1536 3930
1537 /* update fd-related kernel structures */ 3931 /* update fd-related kernel structures */
1538 fd_reify (EV_A); 3932 fd_reify (EV_A);
1539 3933
1540 /* calculate blocking time */ 3934 /* calculate blocking time */
1541 { 3935 {
1542 ev_tstamp waittime = 0.; 3936 ev_tstamp waittime = 0.;
1543 ev_tstamp sleeptime = 0.; 3937 ev_tstamp sleeptime = 0.;
1544 3938
3939 /* remember old timestamp for io_blocktime calculation */
3940 ev_tstamp prev_mn_now = mn_now;
3941
3942 /* update time to cancel out callback processing overhead */
3943 time_update (EV_A_ EV_TS_CONST (EV_TSTAMP_HUGE));
3944
3945 /* from now on, we want a pipe-wake-up */
3946 pipe_write_wanted = 1;
3947
3948 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3949
1545 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3950 if (ecb_expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1546 { 3951 {
1547 /* update time to cancel out callback processing overhead */
1548 time_update (EV_A_ 1e100);
1549
1550 waittime = MAX_BLOCKTIME; 3952 waittime = EV_TS_CONST (MAX_BLOCKTIME);
1551 3953
1552 if (timercnt) 3954 if (timercnt)
1553 { 3955 {
1554 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 3956 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1555 if (waittime > to) waittime = to; 3957 if (waittime > to) waittime = to;
1556 } 3958 }
1557 3959
1558#if EV_PERIODIC_ENABLE 3960#if EV_PERIODIC_ENABLE
1559 if (periodiccnt) 3961 if (periodiccnt)
1560 { 3962 {
1561 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 3963 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1562 if (waittime > to) waittime = to; 3964 if (waittime > to) waittime = to;
1563 } 3965 }
1564#endif 3966#endif
1565 3967
3968 /* don't let timeouts decrease the waittime below timeout_blocktime */
1566 if (expect_false (waittime < timeout_blocktime)) 3969 if (ecb_expect_false (waittime < timeout_blocktime))
1567 waittime = timeout_blocktime; 3970 waittime = timeout_blocktime;
1568 3971
1569 sleeptime = waittime - backend_fudge; 3972 /* now there are two more special cases left, either we have
3973 * already-expired timers, so we should not sleep, or we have timers
3974 * that expire very soon, in which case we need to wait for a minimum
3975 * amount of time for some event loop backends.
3976 */
3977 if (ecb_expect_false (waittime < backend_mintime))
3978 waittime = waittime <= EV_TS_CONST (0.)
3979 ? EV_TS_CONST (0.)
3980 : backend_mintime;
1570 3981
3982 /* extra check because io_blocktime is commonly 0 */
1571 if (expect_true (sleeptime > io_blocktime)) 3983 if (ecb_expect_false (io_blocktime))
1572 sleeptime = io_blocktime;
1573
1574 if (sleeptime)
1575 { 3984 {
3985 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3986
3987 if (sleeptime > waittime - backend_mintime)
3988 sleeptime = waittime - backend_mintime;
3989
3990 if (ecb_expect_true (sleeptime > EV_TS_CONST (0.)))
3991 {
1576 ev_sleep (sleeptime); 3992 ev_sleep (sleeptime);
1577 waittime -= sleeptime; 3993 waittime -= sleeptime;
3994 }
1578 } 3995 }
1579 } 3996 }
1580 3997
3998#if EV_FEATURE_API
1581 ++loop_count; 3999 ++loop_count;
4000#endif
4001 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1582 backend_poll (EV_A_ waittime); 4002 backend_poll (EV_A_ waittime);
4003 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
4004
4005 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
4006
4007 ECB_MEMORY_FENCE_ACQUIRE;
4008 if (pipe_write_skipped)
4009 {
4010 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
4011 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
4012 }
1583 4013
1584 /* update ev_rt_now, do magic */ 4014 /* update ev_rt_now, do magic */
1585 time_update (EV_A_ waittime + sleeptime); 4015 time_update (EV_A_ waittime + sleeptime);
1586 } 4016 }
1587 4017
1594#if EV_IDLE_ENABLE 4024#if EV_IDLE_ENABLE
1595 /* queue idle watchers unless other events are pending */ 4025 /* queue idle watchers unless other events are pending */
1596 idle_reify (EV_A); 4026 idle_reify (EV_A);
1597#endif 4027#endif
1598 4028
4029#if EV_CHECK_ENABLE
1599 /* queue check watchers, to be executed first */ 4030 /* queue check watchers, to be executed first */
1600 if (expect_false (checkcnt)) 4031 if (ecb_expect_false (checkcnt))
1601 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 4032 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
4033#endif
1602 4034
1603 call_pending (EV_A); 4035 EV_INVOKE_PENDING;
1604
1605 } 4036 }
1606 while (expect_true (activecnt && !loop_done)); 4037 while (ecb_expect_true (
4038 activecnt
4039 && !loop_done
4040 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
4041 ));
1607 4042
1608 if (loop_done == EVUNLOOP_ONE) 4043 if (loop_done == EVBREAK_ONE)
1609 loop_done = EVUNLOOP_CANCEL; 4044 loop_done = EVBREAK_CANCEL;
1610}
1611 4045
4046#if EV_FEATURE_API
4047 --loop_depth;
4048#endif
4049
4050 return activecnt;
4051}
4052
1612void 4053void
1613ev_unloop (EV_P_ int how) 4054ev_break (EV_P_ int how) EV_NOEXCEPT
1614{ 4055{
1615 loop_done = how; 4056 loop_done = how;
1616} 4057}
1617 4058
4059void
4060ev_ref (EV_P) EV_NOEXCEPT
4061{
4062 ++activecnt;
4063}
4064
4065void
4066ev_unref (EV_P) EV_NOEXCEPT
4067{
4068 --activecnt;
4069}
4070
4071void
4072ev_now_update (EV_P) EV_NOEXCEPT
4073{
4074 time_update (EV_A_ EV_TSTAMP_HUGE);
4075}
4076
4077void
4078ev_suspend (EV_P) EV_NOEXCEPT
4079{
4080 ev_now_update (EV_A);
4081}
4082
4083void
4084ev_resume (EV_P) EV_NOEXCEPT
4085{
4086 ev_tstamp mn_prev = mn_now;
4087
4088 ev_now_update (EV_A);
4089 timers_reschedule (EV_A_ mn_now - mn_prev);
4090#if EV_PERIODIC_ENABLE
4091 /* TODO: really do this? */
4092 periodics_reschedule (EV_A);
4093#endif
4094}
4095
1618/*****************************************************************************/ 4096/*****************************************************************************/
4097/* singly-linked list management, used when the expected list length is short */
1619 4098
1620void inline_size 4099inline_size void
1621wlist_add (WL *head, WL elem) 4100wlist_add (WL *head, WL elem)
1622{ 4101{
1623 elem->next = *head; 4102 elem->next = *head;
1624 *head = elem; 4103 *head = elem;
1625} 4104}
1626 4105
1627void inline_size 4106inline_size void
1628wlist_del (WL *head, WL elem) 4107wlist_del (WL *head, WL elem)
1629{ 4108{
1630 while (*head) 4109 while (*head)
1631 { 4110 {
1632 if (*head == elem) 4111 if (ecb_expect_true (*head == elem))
1633 { 4112 {
1634 *head = elem->next; 4113 *head = elem->next;
1635 return; 4114 break;
1636 } 4115 }
1637 4116
1638 head = &(*head)->next; 4117 head = &(*head)->next;
1639 } 4118 }
1640} 4119}
1641 4120
1642void inline_speed 4121/* internal, faster, version of ev_clear_pending */
4122inline_speed void
1643clear_pending (EV_P_ W w) 4123clear_pending (EV_P_ W w)
1644{ 4124{
1645 if (w->pending) 4125 if (w->pending)
1646 { 4126 {
1647 pendings [ABSPRI (w)][w->pending - 1].w = 0; 4127 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1648 w->pending = 0; 4128 w->pending = 0;
1649 } 4129 }
1650} 4130}
1651 4131
1652int 4132int
1653ev_clear_pending (EV_P_ void *w) 4133ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
1654{ 4134{
1655 W w_ = (W)w; 4135 W w_ = (W)w;
1656 int pending = w_->pending; 4136 int pending = w_->pending;
1657 4137
1658 if (expect_true (pending)) 4138 if (ecb_expect_true (pending))
1659 { 4139 {
1660 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 4140 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
4141 p->w = (W)&pending_w;
1661 w_->pending = 0; 4142 w_->pending = 0;
1662 p->w = 0;
1663 return p->events; 4143 return p->events;
1664 } 4144 }
1665 else 4145 else
1666 return 0; 4146 return 0;
1667} 4147}
1668 4148
1669void inline_size 4149inline_size void
1670pri_adjust (EV_P_ W w) 4150pri_adjust (EV_P_ W w)
1671{ 4151{
1672 int pri = w->priority; 4152 int pri = ev_priority (w);
1673 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 4153 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1674 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 4154 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1675 w->priority = pri; 4155 ev_set_priority (w, pri);
1676} 4156}
1677 4157
1678void inline_speed 4158inline_speed void
1679ev_start (EV_P_ W w, int active) 4159ev_start (EV_P_ W w, int active)
1680{ 4160{
1681 pri_adjust (EV_A_ w); 4161 pri_adjust (EV_A_ w);
1682 w->active = active; 4162 w->active = active;
1683 ev_ref (EV_A); 4163 ev_ref (EV_A);
1684} 4164}
1685 4165
1686void inline_size 4166inline_size void
1687ev_stop (EV_P_ W w) 4167ev_stop (EV_P_ W w)
1688{ 4168{
1689 ev_unref (EV_A); 4169 ev_unref (EV_A);
1690 w->active = 0; 4170 w->active = 0;
1691} 4171}
1692 4172
1693/*****************************************************************************/ 4173/*****************************************************************************/
1694 4174
1695void noinline 4175ecb_noinline
4176void
1696ev_io_start (EV_P_ ev_io *w) 4177ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
1697{ 4178{
1698 int fd = w->fd; 4179 int fd = w->fd;
1699 4180
1700 if (expect_false (ev_is_active (w))) 4181 if (ecb_expect_false (ev_is_active (w)))
1701 return; 4182 return;
1702 4183
1703 assert (("ev_io_start called with negative fd", fd >= 0)); 4184 assert (("libev: ev_io_start called with negative fd", fd >= 0));
4185 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
4186
4187#if EV_VERIFY >= 2
4188 assert (("libev: ev_io_start called on watcher with invalid fd", fd_valid (fd)));
4189#endif
4190 EV_FREQUENT_CHECK;
1704 4191
1705 ev_start (EV_A_ (W)w, 1); 4192 ev_start (EV_A_ (W)w, 1);
1706 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 4193 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
1707 wlist_add (&anfds[fd].head, (WL)w); 4194 wlist_add (&anfds[fd].head, (WL)w);
1708 4195
4196 /* common bug, apparently */
4197 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
4198
1709 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 4199 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1710 w->events &= ~EV_IOFDSET; 4200 w->events &= ~EV__IOFDSET;
1711}
1712 4201
1713void noinline 4202 EV_FREQUENT_CHECK;
4203}
4204
4205ecb_noinline
4206void
1714ev_io_stop (EV_P_ ev_io *w) 4207ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
1715{ 4208{
1716 clear_pending (EV_A_ (W)w); 4209 clear_pending (EV_A_ (W)w);
1717 if (expect_false (!ev_is_active (w))) 4210 if (ecb_expect_false (!ev_is_active (w)))
1718 return; 4211 return;
1719 4212
1720 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 4213 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
4214
4215#if EV_VERIFY >= 2
4216 assert (("libev: ev_io_stop called on watcher with invalid fd", fd_valid (w->fd)));
4217#endif
4218 EV_FREQUENT_CHECK;
1721 4219
1722 wlist_del (&anfds[w->fd].head, (WL)w); 4220 wlist_del (&anfds[w->fd].head, (WL)w);
1723 ev_stop (EV_A_ (W)w); 4221 ev_stop (EV_A_ (W)w);
1724 4222
1725 fd_change (EV_A_ w->fd, 1); 4223 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1726}
1727 4224
1728void noinline 4225 EV_FREQUENT_CHECK;
4226}
4227
4228ecb_noinline
4229void
1729ev_timer_start (EV_P_ ev_timer *w) 4230ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
1730{ 4231{
1731 if (expect_false (ev_is_active (w))) 4232 if (ecb_expect_false (ev_is_active (w)))
1732 return; 4233 return;
1733 4234
1734 ((WT)w)->at += mn_now; 4235 ev_at (w) += mn_now;
1735 4236
1736 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 4237 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1737 4238
4239 EV_FREQUENT_CHECK;
4240
4241 ++timercnt;
1738 ev_start (EV_A_ (W)w, ++timercnt); 4242 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1739 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 4243 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
1740 timers [timercnt - 1] = (WT)w; 4244 ANHE_w (timers [ev_active (w)]) = (WT)w;
1741 upheap (timers, timercnt - 1); 4245 ANHE_at_cache (timers [ev_active (w)]);
4246 upheap (timers, ev_active (w));
1742 4247
4248 EV_FREQUENT_CHECK;
4249
1743 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 4250 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1744} 4251}
1745 4252
1746void noinline 4253ecb_noinline
4254void
1747ev_timer_stop (EV_P_ ev_timer *w) 4255ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
1748{ 4256{
1749 clear_pending (EV_A_ (W)w); 4257 clear_pending (EV_A_ (W)w);
1750 if (expect_false (!ev_is_active (w))) 4258 if (ecb_expect_false (!ev_is_active (w)))
1751 return; 4259 return;
1752 4260
1753 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 4261 EV_FREQUENT_CHECK;
1754 4262
1755 { 4263 {
1756 int active = ((W)w)->active; 4264 int active = ev_active (w);
1757 4265
4266 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
4267
4268 --timercnt;
4269
1758 if (expect_true (--active < --timercnt)) 4270 if (ecb_expect_true (active < timercnt + HEAP0))
1759 { 4271 {
1760 timers [active] = timers [timercnt]; 4272 timers [active] = timers [timercnt + HEAP0];
1761 adjustheap (timers, timercnt, active); 4273 adjustheap (timers, timercnt, active);
1762 } 4274 }
1763 } 4275 }
1764 4276
1765 ((WT)w)->at -= mn_now; 4277 ev_at (w) -= mn_now;
1766 4278
1767 ev_stop (EV_A_ (W)w); 4279 ev_stop (EV_A_ (W)w);
1768}
1769 4280
1770void noinline 4281 EV_FREQUENT_CHECK;
4282}
4283
4284ecb_noinline
4285void
1771ev_timer_again (EV_P_ ev_timer *w) 4286ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
1772{ 4287{
4288 EV_FREQUENT_CHECK;
4289
4290 clear_pending (EV_A_ (W)w);
4291
1773 if (ev_is_active (w)) 4292 if (ev_is_active (w))
1774 { 4293 {
1775 if (w->repeat) 4294 if (w->repeat)
1776 { 4295 {
1777 ((WT)w)->at = mn_now + w->repeat; 4296 ev_at (w) = mn_now + w->repeat;
4297 ANHE_at_cache (timers [ev_active (w)]);
1778 adjustheap (timers, timercnt, ((W)w)->active - 1); 4298 adjustheap (timers, timercnt, ev_active (w));
1779 } 4299 }
1780 else 4300 else
1781 ev_timer_stop (EV_A_ w); 4301 ev_timer_stop (EV_A_ w);
1782 } 4302 }
1783 else if (w->repeat) 4303 else if (w->repeat)
1784 { 4304 {
1785 w->at = w->repeat; 4305 ev_at (w) = w->repeat;
1786 ev_timer_start (EV_A_ w); 4306 ev_timer_start (EV_A_ w);
1787 } 4307 }
4308
4309 EV_FREQUENT_CHECK;
4310}
4311
4312ev_tstamp
4313ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4314{
4315 return ev_at (w) - (ev_is_active (w) ? mn_now : EV_TS_CONST (0.));
1788} 4316}
1789 4317
1790#if EV_PERIODIC_ENABLE 4318#if EV_PERIODIC_ENABLE
1791void noinline 4319ecb_noinline
4320void
1792ev_periodic_start (EV_P_ ev_periodic *w) 4321ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
1793{ 4322{
1794 if (expect_false (ev_is_active (w))) 4323 if (ecb_expect_false (ev_is_active (w)))
1795 return; 4324 return;
1796 4325
4326#if EV_USE_TIMERFD
4327 if (timerfd == -2)
4328 evtimerfd_init (EV_A);
4329#endif
4330
1797 if (w->reschedule_cb) 4331 if (w->reschedule_cb)
1798 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 4332 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1799 else if (w->interval) 4333 else if (w->interval)
1800 { 4334 {
1801 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 4335 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1802 /* this formula differs from the one in periodic_reify because we do not always round up */ 4336 periodic_recalc (EV_A_ w);
1803 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1804 } 4337 }
1805 else 4338 else
1806 ((WT)w)->at = w->offset; 4339 ev_at (w) = w->offset;
1807 4340
4341 EV_FREQUENT_CHECK;
4342
4343 ++periodiccnt;
1808 ev_start (EV_A_ (W)w, ++periodiccnt); 4344 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1809 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 4345 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
1810 periodics [periodiccnt - 1] = (WT)w; 4346 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1811 upheap (periodics, periodiccnt - 1); 4347 ANHE_at_cache (periodics [ev_active (w)]);
4348 upheap (periodics, ev_active (w));
1812 4349
4350 EV_FREQUENT_CHECK;
4351
1813 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 4352 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1814} 4353}
1815 4354
1816void noinline 4355ecb_noinline
4356void
1817ev_periodic_stop (EV_P_ ev_periodic *w) 4357ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
1818{ 4358{
1819 clear_pending (EV_A_ (W)w); 4359 clear_pending (EV_A_ (W)w);
1820 if (expect_false (!ev_is_active (w))) 4360 if (ecb_expect_false (!ev_is_active (w)))
1821 return; 4361 return;
1822 4362
1823 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 4363 EV_FREQUENT_CHECK;
1824 4364
1825 { 4365 {
1826 int active = ((W)w)->active; 4366 int active = ev_active (w);
1827 4367
4368 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
4369
4370 --periodiccnt;
4371
1828 if (expect_true (--active < --periodiccnt)) 4372 if (ecb_expect_true (active < periodiccnt + HEAP0))
1829 { 4373 {
1830 periodics [active] = periodics [periodiccnt]; 4374 periodics [active] = periodics [periodiccnt + HEAP0];
1831 adjustheap (periodics, periodiccnt, active); 4375 adjustheap (periodics, periodiccnt, active);
1832 } 4376 }
1833 } 4377 }
1834 4378
1835 ev_stop (EV_A_ (W)w); 4379 ev_stop (EV_A_ (W)w);
1836}
1837 4380
1838void noinline 4381 EV_FREQUENT_CHECK;
4382}
4383
4384ecb_noinline
4385void
1839ev_periodic_again (EV_P_ ev_periodic *w) 4386ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
1840{ 4387{
1841 /* TODO: use adjustheap and recalculation */ 4388 /* TODO: use adjustheap and recalculation */
1842 ev_periodic_stop (EV_A_ w); 4389 ev_periodic_stop (EV_A_ w);
1843 ev_periodic_start (EV_A_ w); 4390 ev_periodic_start (EV_A_ w);
1844} 4391}
1846 4393
1847#ifndef SA_RESTART 4394#ifndef SA_RESTART
1848# define SA_RESTART 0 4395# define SA_RESTART 0
1849#endif 4396#endif
1850 4397
1851void noinline 4398#if EV_SIGNAL_ENABLE
4399
4400ecb_noinline
4401void
1852ev_signal_start (EV_P_ ev_signal *w) 4402ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
1853{ 4403{
4404 if (ecb_expect_false (ev_is_active (w)))
4405 return;
4406
4407 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4408
1854#if EV_MULTIPLICITY 4409#if EV_MULTIPLICITY
1855 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4410 assert (("libev: a signal must not be attached to two different loops",
1856#endif 4411 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
1857 if (expect_false (ev_is_active (w)))
1858 return;
1859 4412
1860 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 4413 signals [w->signum - 1].loop = EV_A;
4414 ECB_MEMORY_FENCE_RELEASE;
4415#endif
1861 4416
4417 EV_FREQUENT_CHECK;
4418
4419#if EV_USE_SIGNALFD
4420 if (sigfd == -2)
1862 { 4421 {
1863#ifndef _WIN32 4422 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1864 sigset_t full, prev; 4423 if (sigfd < 0 && errno == EINVAL)
1865 sigfillset (&full); 4424 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1866 sigprocmask (SIG_SETMASK, &full, &prev);
1867#endif
1868 4425
1869 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 4426 if (sigfd >= 0)
4427 {
4428 fd_intern (sigfd); /* doing it twice will not hurt */
1870 4429
1871#ifndef _WIN32 4430 sigemptyset (&sigfd_set);
1872 sigprocmask (SIG_SETMASK, &prev, 0); 4431
1873#endif 4432 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4433 ev_set_priority (&sigfd_w, EV_MAXPRI);
4434 ev_io_start (EV_A_ &sigfd_w);
4435 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4436 }
1874 } 4437 }
4438
4439 if (sigfd >= 0)
4440 {
4441 /* TODO: check .head */
4442 sigaddset (&sigfd_set, w->signum);
4443 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4444
4445 signalfd (sigfd, &sigfd_set, 0);
4446 }
4447#endif
1875 4448
1876 ev_start (EV_A_ (W)w, 1); 4449 ev_start (EV_A_ (W)w, 1);
1877 wlist_add (&signals [w->signum - 1].head, (WL)w); 4450 wlist_add (&signals [w->signum - 1].head, (WL)w);
1878 4451
1879 if (!((WL)w)->next) 4452 if (!((WL)w)->next)
4453# if EV_USE_SIGNALFD
4454 if (sigfd < 0) /*TODO*/
4455# endif
1880 { 4456 {
1881#if _WIN32 4457# ifdef _WIN32
4458 evpipe_init (EV_A);
4459
1882 signal (w->signum, sighandler); 4460 signal (w->signum, ev_sighandler);
1883#else 4461# else
1884 struct sigaction sa; 4462 struct sigaction sa;
4463
4464 evpipe_init (EV_A);
4465
1885 sa.sa_handler = sighandler; 4466 sa.sa_handler = ev_sighandler;
1886 sigfillset (&sa.sa_mask); 4467 sigfillset (&sa.sa_mask);
1887 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 4468 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1888 sigaction (w->signum, &sa, 0); 4469 sigaction (w->signum, &sa, 0);
4470
4471 if (origflags & EVFLAG_NOSIGMASK)
4472 {
4473 sigemptyset (&sa.sa_mask);
4474 sigaddset (&sa.sa_mask, w->signum);
4475 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4476 }
1889#endif 4477#endif
1890 } 4478 }
1891}
1892 4479
1893void noinline 4480 EV_FREQUENT_CHECK;
4481}
4482
4483ecb_noinline
4484void
1894ev_signal_stop (EV_P_ ev_signal *w) 4485ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
1895{ 4486{
1896 clear_pending (EV_A_ (W)w); 4487 clear_pending (EV_A_ (W)w);
1897 if (expect_false (!ev_is_active (w))) 4488 if (ecb_expect_false (!ev_is_active (w)))
1898 return; 4489 return;
4490
4491 EV_FREQUENT_CHECK;
1899 4492
1900 wlist_del (&signals [w->signum - 1].head, (WL)w); 4493 wlist_del (&signals [w->signum - 1].head, (WL)w);
1901 ev_stop (EV_A_ (W)w); 4494 ev_stop (EV_A_ (W)w);
1902 4495
1903 if (!signals [w->signum - 1].head) 4496 if (!signals [w->signum - 1].head)
1904 signal (w->signum, SIG_DFL); 4497 {
1905}
1906
1907void
1908ev_child_start (EV_P_ ev_child *w)
1909{
1910#if EV_MULTIPLICITY 4498#if EV_MULTIPLICITY
4499 signals [w->signum - 1].loop = 0; /* unattach from signal */
4500#endif
4501#if EV_USE_SIGNALFD
4502 if (sigfd >= 0)
4503 {
4504 sigset_t ss;
4505
4506 sigemptyset (&ss);
4507 sigaddset (&ss, w->signum);
4508 sigdelset (&sigfd_set, w->signum);
4509
4510 signalfd (sigfd, &sigfd_set, 0);
4511 sigprocmask (SIG_UNBLOCK, &ss, 0);
4512 }
4513 else
4514#endif
4515 signal (w->signum, SIG_DFL);
4516 }
4517
4518 EV_FREQUENT_CHECK;
4519}
4520
4521#endif
4522
4523#if EV_CHILD_ENABLE
4524
4525void
4526ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4527{
4528#if EV_MULTIPLICITY
1911 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4529 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1912#endif 4530#endif
1913 if (expect_false (ev_is_active (w))) 4531 if (ecb_expect_false (ev_is_active (w)))
1914 return; 4532 return;
1915 4533
4534 EV_FREQUENT_CHECK;
4535
1916 ev_start (EV_A_ (W)w, 1); 4536 ev_start (EV_A_ (W)w, 1);
1917 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4537 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1918}
1919 4538
4539 EV_FREQUENT_CHECK;
4540}
4541
1920void 4542void
1921ev_child_stop (EV_P_ ev_child *w) 4543ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
1922{ 4544{
1923 clear_pending (EV_A_ (W)w); 4545 clear_pending (EV_A_ (W)w);
1924 if (expect_false (!ev_is_active (w))) 4546 if (ecb_expect_false (!ev_is_active (w)))
1925 return; 4547 return;
1926 4548
4549 EV_FREQUENT_CHECK;
4550
1927 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4551 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1928 ev_stop (EV_A_ (W)w); 4552 ev_stop (EV_A_ (W)w);
4553
4554 EV_FREQUENT_CHECK;
1929} 4555}
4556
4557#endif
1930 4558
1931#if EV_STAT_ENABLE 4559#if EV_STAT_ENABLE
1932 4560
1933# ifdef _WIN32 4561# ifdef _WIN32
1934# undef lstat 4562# undef lstat
1935# define lstat(a,b) _stati64 (a,b) 4563# define lstat(a,b) _stati64 (a,b)
1936# endif 4564# endif
1937 4565
1938#define DEF_STAT_INTERVAL 5.0074891 4566#define DEF_STAT_INTERVAL 5.0074891
4567#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1939#define MIN_STAT_INTERVAL 0.1074891 4568#define MIN_STAT_INTERVAL 0.1074891
1940 4569
1941static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 4570ecb_noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1942 4571
1943#if EV_USE_INOTIFY 4572#if EV_USE_INOTIFY
1944# define EV_INOTIFY_BUFSIZE 8192
1945 4573
1946static void noinline 4574/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4575# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4576
4577ecb_noinline
4578static void
1947infy_add (EV_P_ ev_stat *w) 4579infy_add (EV_P_ ev_stat *w)
1948{ 4580{
1949 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 4581 w->wd = inotify_add_watch (fs_fd, w->path,
4582 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4583 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4584 | IN_DONT_FOLLOW | IN_MASK_ADD);
1950 4585
1951 if (w->wd < 0) 4586 if (w->wd >= 0)
4587 {
4588 struct statfs sfs;
4589
4590 /* now local changes will be tracked by inotify, but remote changes won't */
4591 /* unless the filesystem is known to be local, we therefore still poll */
4592 /* also do poll on <2.6.25, but with normal frequency */
4593
4594 if (!fs_2625)
4595 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4596 else if (!statfs (w->path, &sfs)
4597 && (sfs.f_type == 0x1373 /* devfs */
4598 || sfs.f_type == 0x4006 /* fat */
4599 || sfs.f_type == 0x4d44 /* msdos */
4600 || sfs.f_type == 0xEF53 /* ext2/3 */
4601 || sfs.f_type == 0x72b6 /* jffs2 */
4602 || sfs.f_type == 0x858458f6 /* ramfs */
4603 || sfs.f_type == 0x5346544e /* ntfs */
4604 || sfs.f_type == 0x3153464a /* jfs */
4605 || sfs.f_type == 0x9123683e /* btrfs */
4606 || sfs.f_type == 0x52654973 /* reiser3 */
4607 || sfs.f_type == 0x01021994 /* tmpfs */
4608 || sfs.f_type == 0x58465342 /* xfs */))
4609 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4610 else
4611 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1952 { 4612 }
1953 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 4613 else
4614 {
4615 /* can't use inotify, continue to stat */
4616 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1954 4617
1955 /* monitor some parent directory for speedup hints */ 4618 /* if path is not there, monitor some parent directory for speedup hints */
4619 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4620 /* but an efficiency issue only */
1956 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4621 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1957 { 4622 {
1958 char path [4096]; 4623 char path [4096];
1959 strcpy (path, w->path); 4624 strcpy (path, w->path);
1960 4625
1963 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 4628 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1964 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 4629 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1965 4630
1966 char *pend = strrchr (path, '/'); 4631 char *pend = strrchr (path, '/');
1967 4632
1968 if (!pend) 4633 if (!pend || pend == path)
1969 break; /* whoops, no '/', complain to your admin */ 4634 break;
1970 4635
1971 *pend = 0; 4636 *pend = 0;
1972 w->wd = inotify_add_watch (fs_fd, path, mask); 4637 w->wd = inotify_add_watch (fs_fd, path, mask);
1973 } 4638 }
1974 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4639 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1975 } 4640 }
1976 } 4641 }
1977 else
1978 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1979 4642
1980 if (w->wd >= 0) 4643 if (w->wd >= 0)
1981 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4644 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
1982}
1983 4645
1984static void noinline 4646 /* now re-arm timer, if required */
4647 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4648 ev_timer_again (EV_A_ &w->timer);
4649 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4650}
4651
4652ecb_noinline
4653static void
1985infy_del (EV_P_ ev_stat *w) 4654infy_del (EV_P_ ev_stat *w)
1986{ 4655{
1987 int slot; 4656 int slot;
1988 int wd = w->wd; 4657 int wd = w->wd;
1989 4658
1990 if (wd < 0) 4659 if (wd < 0)
1991 return; 4660 return;
1992 4661
1993 w->wd = -2; 4662 w->wd = -2;
1994 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4663 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1995 wlist_del (&fs_hash [slot].head, (WL)w); 4664 wlist_del (&fs_hash [slot].head, (WL)w);
1996 4665
1997 /* remove this watcher, if others are watching it, they will rearm */ 4666 /* remove this watcher, if others are watching it, they will rearm */
1998 inotify_rm_watch (fs_fd, wd); 4667 inotify_rm_watch (fs_fd, wd);
1999} 4668}
2000 4669
2001static void noinline 4670ecb_noinline
4671static void
2002infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4672infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2003{ 4673{
2004 if (slot < 0) 4674 if (slot < 0)
2005 /* overflow, need to check for all hahs slots */ 4675 /* overflow, need to check for all hash slots */
2006 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4676 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2007 infy_wd (EV_A_ slot, wd, ev); 4677 infy_wd (EV_A_ slot, wd, ev);
2008 else 4678 else
2009 { 4679 {
2010 WL w_; 4680 WL w_;
2011 4681
2012 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4682 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2013 { 4683 {
2014 ev_stat *w = (ev_stat *)w_; 4684 ev_stat *w = (ev_stat *)w_;
2015 w_ = w_->next; /* lets us remove this watcher and all before it */ 4685 w_ = w_->next; /* lets us remove this watcher and all before it */
2016 4686
2017 if (w->wd == wd || wd == -1) 4687 if (w->wd == wd || wd == -1)
2018 { 4688 {
2019 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4689 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2020 { 4690 {
4691 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2021 w->wd = -1; 4692 w->wd = -1;
2022 infy_add (EV_A_ w); /* re-add, no matter what */ 4693 infy_add (EV_A_ w); /* re-add, no matter what */
2023 } 4694 }
2024 4695
2025 stat_timer_cb (EV_A_ &w->timer, 0); 4696 stat_timer_cb (EV_A_ &w->timer, 0);
2030 4701
2031static void 4702static void
2032infy_cb (EV_P_ ev_io *w, int revents) 4703infy_cb (EV_P_ ev_io *w, int revents)
2033{ 4704{
2034 char buf [EV_INOTIFY_BUFSIZE]; 4705 char buf [EV_INOTIFY_BUFSIZE];
2035 struct inotify_event *ev = (struct inotify_event *)buf;
2036 int ofs; 4706 int ofs;
2037 int len = read (fs_fd, buf, sizeof (buf)); 4707 int len = read (fs_fd, buf, sizeof (buf));
2038 4708
2039 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4709 for (ofs = 0; ofs < len; )
4710 {
4711 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2040 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4712 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4713 ofs += sizeof (struct inotify_event) + ev->len;
4714 }
2041} 4715}
2042 4716
2043void inline_size 4717inline_size ecb_cold
4718void
4719ev_check_2625 (EV_P)
4720{
4721 /* kernels < 2.6.25 are borked
4722 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4723 */
4724 if (ev_linux_version () < 0x020619)
4725 return;
4726
4727 fs_2625 = 1;
4728}
4729
4730inline_size int
4731infy_newfd (void)
4732{
4733#if defined IN_CLOEXEC && defined IN_NONBLOCK
4734 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4735 if (fd >= 0)
4736 return fd;
4737#endif
4738 return inotify_init ();
4739}
4740
4741inline_size void
2044infy_init (EV_P) 4742infy_init (EV_P)
2045{ 4743{
2046 if (fs_fd != -2) 4744 if (fs_fd != -2)
2047 return; 4745 return;
2048 4746
4747 fs_fd = -1;
4748
4749 ev_check_2625 (EV_A);
4750
2049 fs_fd = inotify_init (); 4751 fs_fd = infy_newfd ();
2050 4752
2051 if (fs_fd >= 0) 4753 if (fs_fd >= 0)
2052 { 4754 {
4755 fd_intern (fs_fd);
2053 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4756 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2054 ev_set_priority (&fs_w, EV_MAXPRI); 4757 ev_set_priority (&fs_w, EV_MAXPRI);
2055 ev_io_start (EV_A_ &fs_w); 4758 ev_io_start (EV_A_ &fs_w);
4759 ev_unref (EV_A);
2056 } 4760 }
2057} 4761}
2058 4762
2059void inline_size 4763inline_size void
2060infy_fork (EV_P) 4764infy_fork (EV_P)
2061{ 4765{
2062 int slot; 4766 int slot;
2063 4767
2064 if (fs_fd < 0) 4768 if (fs_fd < 0)
2065 return; 4769 return;
2066 4770
4771 ev_ref (EV_A);
4772 ev_io_stop (EV_A_ &fs_w);
2067 close (fs_fd); 4773 close (fs_fd);
2068 fs_fd = inotify_init (); 4774 fs_fd = infy_newfd ();
2069 4775
4776 if (fs_fd >= 0)
4777 {
4778 fd_intern (fs_fd);
4779 ev_io_set (&fs_w, fs_fd, EV_READ);
4780 ev_io_start (EV_A_ &fs_w);
4781 ev_unref (EV_A);
4782 }
4783
2070 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4784 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2071 { 4785 {
2072 WL w_ = fs_hash [slot].head; 4786 WL w_ = fs_hash [slot].head;
2073 fs_hash [slot].head = 0; 4787 fs_hash [slot].head = 0;
2074 4788
2075 while (w_) 4789 while (w_)
2080 w->wd = -1; 4794 w->wd = -1;
2081 4795
2082 if (fs_fd >= 0) 4796 if (fs_fd >= 0)
2083 infy_add (EV_A_ w); /* re-add, no matter what */ 4797 infy_add (EV_A_ w); /* re-add, no matter what */
2084 else 4798 else
4799 {
4800 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4801 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2085 ev_timer_start (EV_A_ &w->timer); 4802 ev_timer_again (EV_A_ &w->timer);
4803 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4804 }
2086 } 4805 }
2087
2088 } 4806 }
2089} 4807}
2090 4808
2091#endif 4809#endif
2092 4810
4811#ifdef _WIN32
4812# define EV_LSTAT(p,b) _stati64 (p, b)
4813#else
4814# define EV_LSTAT(p,b) lstat (p, b)
4815#endif
4816
2093void 4817void
2094ev_stat_stat (EV_P_ ev_stat *w) 4818ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
2095{ 4819{
2096 if (lstat (w->path, &w->attr) < 0) 4820 if (lstat (w->path, &w->attr) < 0)
2097 w->attr.st_nlink = 0; 4821 w->attr.st_nlink = 0;
2098 else if (!w->attr.st_nlink) 4822 else if (!w->attr.st_nlink)
2099 w->attr.st_nlink = 1; 4823 w->attr.st_nlink = 1;
2100} 4824}
2101 4825
2102static void noinline 4826ecb_noinline
4827static void
2103stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4828stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2104{ 4829{
2105 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4830 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2106 4831
2107 /* we copy this here each the time so that */ 4832 ev_statdata prev = w->attr;
2108 /* prev has the old value when the callback gets invoked */
2109 w->prev = w->attr;
2110 ev_stat_stat (EV_A_ w); 4833 ev_stat_stat (EV_A_ w);
2111 4834
2112 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4835 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2113 if ( 4836 if (
2114 w->prev.st_dev != w->attr.st_dev 4837 prev.st_dev != w->attr.st_dev
2115 || w->prev.st_ino != w->attr.st_ino 4838 || prev.st_ino != w->attr.st_ino
2116 || w->prev.st_mode != w->attr.st_mode 4839 || prev.st_mode != w->attr.st_mode
2117 || w->prev.st_nlink != w->attr.st_nlink 4840 || prev.st_nlink != w->attr.st_nlink
2118 || w->prev.st_uid != w->attr.st_uid 4841 || prev.st_uid != w->attr.st_uid
2119 || w->prev.st_gid != w->attr.st_gid 4842 || prev.st_gid != w->attr.st_gid
2120 || w->prev.st_rdev != w->attr.st_rdev 4843 || prev.st_rdev != w->attr.st_rdev
2121 || w->prev.st_size != w->attr.st_size 4844 || prev.st_size != w->attr.st_size
2122 || w->prev.st_atime != w->attr.st_atime 4845 || prev.st_atime != w->attr.st_atime
2123 || w->prev.st_mtime != w->attr.st_mtime 4846 || prev.st_mtime != w->attr.st_mtime
2124 || w->prev.st_ctime != w->attr.st_ctime 4847 || prev.st_ctime != w->attr.st_ctime
2125 ) { 4848 ) {
4849 /* we only update w->prev on actual differences */
4850 /* in case we test more often than invoke the callback, */
4851 /* to ensure that prev is always different to attr */
4852 w->prev = prev;
4853
2126 #if EV_USE_INOTIFY 4854 #if EV_USE_INOTIFY
4855 if (fs_fd >= 0)
4856 {
2127 infy_del (EV_A_ w); 4857 infy_del (EV_A_ w);
2128 infy_add (EV_A_ w); 4858 infy_add (EV_A_ w);
2129 ev_stat_stat (EV_A_ w); /* avoid race... */ 4859 ev_stat_stat (EV_A_ w); /* avoid race... */
4860 }
2130 #endif 4861 #endif
2131 4862
2132 ev_feed_event (EV_A_ w, EV_STAT); 4863 ev_feed_event (EV_A_ w, EV_STAT);
2133 } 4864 }
2134} 4865}
2135 4866
2136void 4867void
2137ev_stat_start (EV_P_ ev_stat *w) 4868ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
2138{ 4869{
2139 if (expect_false (ev_is_active (w))) 4870 if (ecb_expect_false (ev_is_active (w)))
2140 return; 4871 return;
2141 4872
2142 /* since we use memcmp, we need to clear any padding data etc. */
2143 memset (&w->prev, 0, sizeof (ev_statdata));
2144 memset (&w->attr, 0, sizeof (ev_statdata));
2145
2146 ev_stat_stat (EV_A_ w); 4873 ev_stat_stat (EV_A_ w);
2147 4874
4875 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2148 if (w->interval < MIN_STAT_INTERVAL) 4876 w->interval = MIN_STAT_INTERVAL;
2149 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2150 4877
2151 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4878 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2152 ev_set_priority (&w->timer, ev_priority (w)); 4879 ev_set_priority (&w->timer, ev_priority (w));
2153 4880
2154#if EV_USE_INOTIFY 4881#if EV_USE_INOTIFY
2155 infy_init (EV_A); 4882 infy_init (EV_A);
2156 4883
2157 if (fs_fd >= 0) 4884 if (fs_fd >= 0)
2158 infy_add (EV_A_ w); 4885 infy_add (EV_A_ w);
2159 else 4886 else
2160#endif 4887#endif
4888 {
2161 ev_timer_start (EV_A_ &w->timer); 4889 ev_timer_again (EV_A_ &w->timer);
4890 ev_unref (EV_A);
4891 }
2162 4892
2163 ev_start (EV_A_ (W)w, 1); 4893 ev_start (EV_A_ (W)w, 1);
2164}
2165 4894
4895 EV_FREQUENT_CHECK;
4896}
4897
2166void 4898void
2167ev_stat_stop (EV_P_ ev_stat *w) 4899ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
2168{ 4900{
2169 clear_pending (EV_A_ (W)w); 4901 clear_pending (EV_A_ (W)w);
2170 if (expect_false (!ev_is_active (w))) 4902 if (ecb_expect_false (!ev_is_active (w)))
2171 return; 4903 return;
4904
4905 EV_FREQUENT_CHECK;
2172 4906
2173#if EV_USE_INOTIFY 4907#if EV_USE_INOTIFY
2174 infy_del (EV_A_ w); 4908 infy_del (EV_A_ w);
2175#endif 4909#endif
4910
4911 if (ev_is_active (&w->timer))
4912 {
4913 ev_ref (EV_A);
2176 ev_timer_stop (EV_A_ &w->timer); 4914 ev_timer_stop (EV_A_ &w->timer);
4915 }
2177 4916
2178 ev_stop (EV_A_ (W)w); 4917 ev_stop (EV_A_ (W)w);
4918
4919 EV_FREQUENT_CHECK;
2179} 4920}
2180#endif 4921#endif
2181 4922
2182#if EV_IDLE_ENABLE 4923#if EV_IDLE_ENABLE
2183void 4924void
2184ev_idle_start (EV_P_ ev_idle *w) 4925ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
2185{ 4926{
2186 if (expect_false (ev_is_active (w))) 4927 if (ecb_expect_false (ev_is_active (w)))
2187 return; 4928 return;
2188 4929
2189 pri_adjust (EV_A_ (W)w); 4930 pri_adjust (EV_A_ (W)w);
4931
4932 EV_FREQUENT_CHECK;
2190 4933
2191 { 4934 {
2192 int active = ++idlecnt [ABSPRI (w)]; 4935 int active = ++idlecnt [ABSPRI (w)];
2193 4936
2194 ++idleall; 4937 ++idleall;
2195 ev_start (EV_A_ (W)w, active); 4938 ev_start (EV_A_ (W)w, active);
2196 4939
2197 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 4940 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
2198 idles [ABSPRI (w)][active - 1] = w; 4941 idles [ABSPRI (w)][active - 1] = w;
2199 } 4942 }
2200}
2201 4943
4944 EV_FREQUENT_CHECK;
4945}
4946
2202void 4947void
2203ev_idle_stop (EV_P_ ev_idle *w) 4948ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
2204{ 4949{
2205 clear_pending (EV_A_ (W)w); 4950 clear_pending (EV_A_ (W)w);
2206 if (expect_false (!ev_is_active (w))) 4951 if (ecb_expect_false (!ev_is_active (w)))
2207 return; 4952 return;
2208 4953
4954 EV_FREQUENT_CHECK;
4955
2209 { 4956 {
2210 int active = ((W)w)->active; 4957 int active = ev_active (w);
2211 4958
2212 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 4959 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2213 ((W)idles [ABSPRI (w)][active - 1])->active = active; 4960 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2214 4961
2215 ev_stop (EV_A_ (W)w); 4962 ev_stop (EV_A_ (W)w);
2216 --idleall; 4963 --idleall;
2217 } 4964 }
2218}
2219#endif
2220 4965
4966 EV_FREQUENT_CHECK;
4967}
4968#endif
4969
4970#if EV_PREPARE_ENABLE
2221void 4971void
2222ev_prepare_start (EV_P_ ev_prepare *w) 4972ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
2223{ 4973{
2224 if (expect_false (ev_is_active (w))) 4974 if (ecb_expect_false (ev_is_active (w)))
2225 return; 4975 return;
2226 4976
4977 EV_FREQUENT_CHECK;
4978
2227 ev_start (EV_A_ (W)w, ++preparecnt); 4979 ev_start (EV_A_ (W)w, ++preparecnt);
2228 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4980 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
2229 prepares [preparecnt - 1] = w; 4981 prepares [preparecnt - 1] = w;
2230}
2231 4982
4983 EV_FREQUENT_CHECK;
4984}
4985
2232void 4986void
2233ev_prepare_stop (EV_P_ ev_prepare *w) 4987ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
2234{ 4988{
2235 clear_pending (EV_A_ (W)w); 4989 clear_pending (EV_A_ (W)w);
2236 if (expect_false (!ev_is_active (w))) 4990 if (ecb_expect_false (!ev_is_active (w)))
2237 return; 4991 return;
2238 4992
4993 EV_FREQUENT_CHECK;
4994
2239 { 4995 {
2240 int active = ((W)w)->active; 4996 int active = ev_active (w);
4997
2241 prepares [active - 1] = prepares [--preparecnt]; 4998 prepares [active - 1] = prepares [--preparecnt];
2242 ((W)prepares [active - 1])->active = active; 4999 ev_active (prepares [active - 1]) = active;
2243 } 5000 }
2244 5001
2245 ev_stop (EV_A_ (W)w); 5002 ev_stop (EV_A_ (W)w);
2246}
2247 5003
5004 EV_FREQUENT_CHECK;
5005}
5006#endif
5007
5008#if EV_CHECK_ENABLE
2248void 5009void
2249ev_check_start (EV_P_ ev_check *w) 5010ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
2250{ 5011{
2251 if (expect_false (ev_is_active (w))) 5012 if (ecb_expect_false (ev_is_active (w)))
2252 return; 5013 return;
2253 5014
5015 EV_FREQUENT_CHECK;
5016
2254 ev_start (EV_A_ (W)w, ++checkcnt); 5017 ev_start (EV_A_ (W)w, ++checkcnt);
2255 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 5018 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
2256 checks [checkcnt - 1] = w; 5019 checks [checkcnt - 1] = w;
2257}
2258 5020
5021 EV_FREQUENT_CHECK;
5022}
5023
2259void 5024void
2260ev_check_stop (EV_P_ ev_check *w) 5025ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
2261{ 5026{
2262 clear_pending (EV_A_ (W)w); 5027 clear_pending (EV_A_ (W)w);
2263 if (expect_false (!ev_is_active (w))) 5028 if (ecb_expect_false (!ev_is_active (w)))
2264 return; 5029 return;
2265 5030
5031 EV_FREQUENT_CHECK;
5032
2266 { 5033 {
2267 int active = ((W)w)->active; 5034 int active = ev_active (w);
5035
2268 checks [active - 1] = checks [--checkcnt]; 5036 checks [active - 1] = checks [--checkcnt];
2269 ((W)checks [active - 1])->active = active; 5037 ev_active (checks [active - 1]) = active;
2270 } 5038 }
2271 5039
2272 ev_stop (EV_A_ (W)w); 5040 ev_stop (EV_A_ (W)w);
5041
5042 EV_FREQUENT_CHECK;
2273} 5043}
5044#endif
2274 5045
2275#if EV_EMBED_ENABLE 5046#if EV_EMBED_ENABLE
2276void noinline 5047ecb_noinline
5048void
2277ev_embed_sweep (EV_P_ ev_embed *w) 5049ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
2278{ 5050{
2279 ev_loop (w->other, EVLOOP_NONBLOCK); 5051 ev_run (w->other, EVRUN_NOWAIT);
2280} 5052}
2281 5053
2282static void 5054static void
2283embed_io_cb (EV_P_ ev_io *io, int revents) 5055embed_io_cb (EV_P_ ev_io *io, int revents)
2284{ 5056{
2285 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 5057 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2286 5058
2287 if (ev_cb (w)) 5059 if (ev_cb (w))
2288 ev_feed_event (EV_A_ (W)w, EV_EMBED); 5060 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2289 else 5061 else
2290 ev_loop (w->other, EVLOOP_NONBLOCK); 5062 ev_run (w->other, EVRUN_NOWAIT);
2291} 5063}
2292 5064
2293static void 5065static void
2294embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 5066embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2295{ 5067{
2296 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 5068 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2297 5069
2298 { 5070 {
2299 struct ev_loop *loop = w->other; 5071 EV_P = w->other;
2300 5072
2301 while (fdchangecnt) 5073 while (fdchangecnt)
2302 { 5074 {
2303 fd_reify (EV_A); 5075 fd_reify (EV_A);
2304 ev_loop (EV_A_ EVLOOP_NONBLOCK); 5076 ev_run (EV_A_ EVRUN_NOWAIT);
2305 } 5077 }
2306 } 5078 }
2307} 5079}
5080
5081#if EV_FORK_ENABLE
5082static void
5083embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
5084{
5085 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
5086
5087 ev_embed_stop (EV_A_ w);
5088
5089 {
5090 EV_P = w->other;
5091
5092 ev_loop_fork (EV_A);
5093 ev_run (EV_A_ EVRUN_NOWAIT);
5094 }
5095
5096 ev_embed_start (EV_A_ w);
5097}
5098#endif
2308 5099
2309#if 0 5100#if 0
2310static void 5101static void
2311embed_idle_cb (EV_P_ ev_idle *idle, int revents) 5102embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2312{ 5103{
2313 ev_idle_stop (EV_A_ idle); 5104 ev_idle_stop (EV_A_ idle);
2314} 5105}
2315#endif 5106#endif
2316 5107
2317void 5108void
2318ev_embed_start (EV_P_ ev_embed *w) 5109ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
2319{ 5110{
2320 if (expect_false (ev_is_active (w))) 5111 if (ecb_expect_false (ev_is_active (w)))
2321 return; 5112 return;
2322 5113
2323 { 5114 {
2324 struct ev_loop *loop = w->other; 5115 EV_P = w->other;
2325 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 5116 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2326 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 5117 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2327 } 5118 }
5119
5120 EV_FREQUENT_CHECK;
2328 5121
2329 ev_set_priority (&w->io, ev_priority (w)); 5122 ev_set_priority (&w->io, ev_priority (w));
2330 ev_io_start (EV_A_ &w->io); 5123 ev_io_start (EV_A_ &w->io);
2331 5124
2332 ev_prepare_init (&w->prepare, embed_prepare_cb); 5125 ev_prepare_init (&w->prepare, embed_prepare_cb);
2333 ev_set_priority (&w->prepare, EV_MINPRI); 5126 ev_set_priority (&w->prepare, EV_MINPRI);
2334 ev_prepare_start (EV_A_ &w->prepare); 5127 ev_prepare_start (EV_A_ &w->prepare);
2335 5128
5129#if EV_FORK_ENABLE
5130 ev_fork_init (&w->fork, embed_fork_cb);
5131 ev_fork_start (EV_A_ &w->fork);
5132#endif
5133
2336 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 5134 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2337 5135
2338 ev_start (EV_A_ (W)w, 1); 5136 ev_start (EV_A_ (W)w, 1);
2339}
2340 5137
5138 EV_FREQUENT_CHECK;
5139}
5140
2341void 5141void
2342ev_embed_stop (EV_P_ ev_embed *w) 5142ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
2343{ 5143{
2344 clear_pending (EV_A_ (W)w); 5144 clear_pending (EV_A_ (W)w);
2345 if (expect_false (!ev_is_active (w))) 5145 if (ecb_expect_false (!ev_is_active (w)))
2346 return; 5146 return;
2347 5147
5148 EV_FREQUENT_CHECK;
5149
2348 ev_io_stop (EV_A_ &w->io); 5150 ev_io_stop (EV_A_ &w->io);
2349 ev_prepare_stop (EV_A_ &w->prepare); 5151 ev_prepare_stop (EV_A_ &w->prepare);
5152#if EV_FORK_ENABLE
5153 ev_fork_stop (EV_A_ &w->fork);
5154#endif
2350 5155
2351 ev_stop (EV_A_ (W)w); 5156 ev_stop (EV_A_ (W)w);
5157
5158 EV_FREQUENT_CHECK;
2352} 5159}
2353#endif 5160#endif
2354 5161
2355#if EV_FORK_ENABLE 5162#if EV_FORK_ENABLE
2356void 5163void
2357ev_fork_start (EV_P_ ev_fork *w) 5164ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
2358{ 5165{
2359 if (expect_false (ev_is_active (w))) 5166 if (ecb_expect_false (ev_is_active (w)))
2360 return; 5167 return;
2361 5168
5169 EV_FREQUENT_CHECK;
5170
2362 ev_start (EV_A_ (W)w, ++forkcnt); 5171 ev_start (EV_A_ (W)w, ++forkcnt);
2363 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 5172 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
2364 forks [forkcnt - 1] = w; 5173 forks [forkcnt - 1] = w;
2365}
2366 5174
5175 EV_FREQUENT_CHECK;
5176}
5177
2367void 5178void
2368ev_fork_stop (EV_P_ ev_fork *w) 5179ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
2369{ 5180{
2370 clear_pending (EV_A_ (W)w); 5181 clear_pending (EV_A_ (W)w);
2371 if (expect_false (!ev_is_active (w))) 5182 if (ecb_expect_false (!ev_is_active (w)))
2372 return; 5183 return;
2373 5184
5185 EV_FREQUENT_CHECK;
5186
2374 { 5187 {
2375 int active = ((W)w)->active; 5188 int active = ev_active (w);
5189
2376 forks [active - 1] = forks [--forkcnt]; 5190 forks [active - 1] = forks [--forkcnt];
2377 ((W)forks [active - 1])->active = active; 5191 ev_active (forks [active - 1]) = active;
2378 } 5192 }
2379 5193
2380 ev_stop (EV_A_ (W)w); 5194 ev_stop (EV_A_ (W)w);
5195
5196 EV_FREQUENT_CHECK;
5197}
5198#endif
5199
5200#if EV_CLEANUP_ENABLE
5201void
5202ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5203{
5204 if (ecb_expect_false (ev_is_active (w)))
5205 return;
5206
5207 EV_FREQUENT_CHECK;
5208
5209 ev_start (EV_A_ (W)w, ++cleanupcnt);
5210 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
5211 cleanups [cleanupcnt - 1] = w;
5212
5213 /* cleanup watchers should never keep a refcount on the loop */
5214 ev_unref (EV_A);
5215 EV_FREQUENT_CHECK;
5216}
5217
5218void
5219ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5220{
5221 clear_pending (EV_A_ (W)w);
5222 if (ecb_expect_false (!ev_is_active (w)))
5223 return;
5224
5225 EV_FREQUENT_CHECK;
5226 ev_ref (EV_A);
5227
5228 {
5229 int active = ev_active (w);
5230
5231 cleanups [active - 1] = cleanups [--cleanupcnt];
5232 ev_active (cleanups [active - 1]) = active;
5233 }
5234
5235 ev_stop (EV_A_ (W)w);
5236
5237 EV_FREQUENT_CHECK;
5238}
5239#endif
5240
5241#if EV_ASYNC_ENABLE
5242void
5243ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
5244{
5245 if (ecb_expect_false (ev_is_active (w)))
5246 return;
5247
5248 w->sent = 0;
5249
5250 evpipe_init (EV_A);
5251
5252 EV_FREQUENT_CHECK;
5253
5254 ev_start (EV_A_ (W)w, ++asynccnt);
5255 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
5256 asyncs [asynccnt - 1] = w;
5257
5258 EV_FREQUENT_CHECK;
5259}
5260
5261void
5262ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
5263{
5264 clear_pending (EV_A_ (W)w);
5265 if (ecb_expect_false (!ev_is_active (w)))
5266 return;
5267
5268 EV_FREQUENT_CHECK;
5269
5270 {
5271 int active = ev_active (w);
5272
5273 asyncs [active - 1] = asyncs [--asynccnt];
5274 ev_active (asyncs [active - 1]) = active;
5275 }
5276
5277 ev_stop (EV_A_ (W)w);
5278
5279 EV_FREQUENT_CHECK;
5280}
5281
5282void
5283ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
5284{
5285 w->sent = 1;
5286 evpipe_write (EV_A_ &async_pending);
2381} 5287}
2382#endif 5288#endif
2383 5289
2384/*****************************************************************************/ 5290/*****************************************************************************/
2385 5291
2395once_cb (EV_P_ struct ev_once *once, int revents) 5301once_cb (EV_P_ struct ev_once *once, int revents)
2396{ 5302{
2397 void (*cb)(int revents, void *arg) = once->cb; 5303 void (*cb)(int revents, void *arg) = once->cb;
2398 void *arg = once->arg; 5304 void *arg = once->arg;
2399 5305
2400 ev_io_stop (EV_A_ &once->io); 5306 ev_io_stop (EV_A_ &once->io);
2401 ev_timer_stop (EV_A_ &once->to); 5307 ev_timer_stop (EV_A_ &once->to);
2402 ev_free (once); 5308 ev_free (once);
2403 5309
2404 cb (revents, arg); 5310 cb (revents, arg);
2405} 5311}
2406 5312
2407static void 5313static void
2408once_cb_io (EV_P_ ev_io *w, int revents) 5314once_cb_io (EV_P_ ev_io *w, int revents)
2409{ 5315{
2410 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 5316 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
5317
5318 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2411} 5319}
2412 5320
2413static void 5321static void
2414once_cb_to (EV_P_ ev_timer *w, int revents) 5322once_cb_to (EV_P_ ev_timer *w, int revents)
2415{ 5323{
2416 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 5324 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
2417}
2418 5325
5326 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
5327}
5328
2419void 5329void
2420ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 5330ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
2421{ 5331{
2422 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 5332 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2423
2424 if (expect_false (!once))
2425 {
2426 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
2427 return;
2428 }
2429 5333
2430 once->cb = cb; 5334 once->cb = cb;
2431 once->arg = arg; 5335 once->arg = arg;
2432 5336
2433 ev_init (&once->io, once_cb_io); 5337 ev_init (&once->io, once_cb_io);
2443 ev_timer_set (&once->to, timeout, 0.); 5347 ev_timer_set (&once->to, timeout, 0.);
2444 ev_timer_start (EV_A_ &once->to); 5348 ev_timer_start (EV_A_ &once->to);
2445 } 5349 }
2446} 5350}
2447 5351
5352/*****************************************************************************/
5353
5354#if EV_WALK_ENABLE
5355ecb_cold
5356void
5357ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5358{
5359 int i, j;
5360 ev_watcher_list *wl, *wn;
5361
5362 if (types & (EV_IO | EV_EMBED))
5363 for (i = 0; i < anfdmax; ++i)
5364 for (wl = anfds [i].head; wl; )
5365 {
5366 wn = wl->next;
5367
5368#if EV_EMBED_ENABLE
5369 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5370 {
5371 if (types & EV_EMBED)
5372 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5373 }
5374 else
5375#endif
5376#if EV_USE_INOTIFY
5377 if (ev_cb ((ev_io *)wl) == infy_cb)
5378 ;
5379 else
5380#endif
5381 if ((ev_io *)wl != &pipe_w)
5382 if (types & EV_IO)
5383 cb (EV_A_ EV_IO, wl);
5384
5385 wl = wn;
5386 }
5387
5388 if (types & (EV_TIMER | EV_STAT))
5389 for (i = timercnt + HEAP0; i-- > HEAP0; )
5390#if EV_STAT_ENABLE
5391 /*TODO: timer is not always active*/
5392 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5393 {
5394 if (types & EV_STAT)
5395 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5396 }
5397 else
5398#endif
5399 if (types & EV_TIMER)
5400 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5401
5402#if EV_PERIODIC_ENABLE
5403 if (types & EV_PERIODIC)
5404 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5405 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5406#endif
5407
5408#if EV_IDLE_ENABLE
5409 if (types & EV_IDLE)
5410 for (j = NUMPRI; j--; )
5411 for (i = idlecnt [j]; i--; )
5412 cb (EV_A_ EV_IDLE, idles [j][i]);
5413#endif
5414
5415#if EV_FORK_ENABLE
5416 if (types & EV_FORK)
5417 for (i = forkcnt; i--; )
5418 if (ev_cb (forks [i]) != embed_fork_cb)
5419 cb (EV_A_ EV_FORK, forks [i]);
5420#endif
5421
5422#if EV_ASYNC_ENABLE
5423 if (types & EV_ASYNC)
5424 for (i = asynccnt; i--; )
5425 cb (EV_A_ EV_ASYNC, asyncs [i]);
5426#endif
5427
5428#if EV_PREPARE_ENABLE
5429 if (types & EV_PREPARE)
5430 for (i = preparecnt; i--; )
5431# if EV_EMBED_ENABLE
5432 if (ev_cb (prepares [i]) != embed_prepare_cb)
5433# endif
5434 cb (EV_A_ EV_PREPARE, prepares [i]);
5435#endif
5436
5437#if EV_CHECK_ENABLE
5438 if (types & EV_CHECK)
5439 for (i = checkcnt; i--; )
5440 cb (EV_A_ EV_CHECK, checks [i]);
5441#endif
5442
5443#if EV_SIGNAL_ENABLE
5444 if (types & EV_SIGNAL)
5445 for (i = 0; i < EV_NSIG - 1; ++i)
5446 for (wl = signals [i].head; wl; )
5447 {
5448 wn = wl->next;
5449 cb (EV_A_ EV_SIGNAL, wl);
5450 wl = wn;
5451 }
5452#endif
5453
5454#if EV_CHILD_ENABLE
5455 if (types & EV_CHILD)
5456 for (i = (EV_PID_HASHSIZE); i--; )
5457 for (wl = childs [i]; wl; )
5458 {
5459 wn = wl->next;
5460 cb (EV_A_ EV_CHILD, wl);
5461 wl = wn;
5462 }
5463#endif
5464/* EV_STAT 0x00001000 /* stat data changed */
5465/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5466}
5467#endif
5468
2448#if EV_MULTIPLICITY 5469#if EV_MULTIPLICITY
2449 #include "ev_wrap.h" 5470 #include "ev_wrap.h"
2450#endif 5471#endif
2451 5472
2452#ifdef __cplusplus
2453}
2454#endif
2455

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines