ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.47 by root, Sat Nov 3 11:44:44 2007 UTC vs.
Revision 1.518 by root, Fri Dec 27 16:12:37 2019 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
39
40/* this big block deduces configuration from config.h */
41#ifndef EV_STANDALONE
31#if EV_USE_CONFIG_H 42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
32# include "config.h" 45# include "config.h"
33#endif 46# endif
34 47
35#include <math.h> 48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
68# if HAVE_CLOCK_GETTIME
69# ifndef EV_USE_MONOTONIC
70# define EV_USE_MONOTONIC 1
71# endif
72# ifndef EV_USE_REALTIME
73# define EV_USE_REALTIME 0
74# endif
75# else
76# ifndef EV_USE_MONOTONIC
77# define EV_USE_MONOTONIC 0
78# endif
79# ifndef EV_USE_REALTIME
80# define EV_USE_REALTIME 0
81# endif
82# endif
83
84# if HAVE_NANOSLEEP
85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
109# endif
110
111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
118# endif
119
120# if HAVE_LINUX_AIO_ABI_H
121# ifndef EV_USE_LINUXAIO
122# define EV_USE_LINUXAIO 0 /* was: EV_FEATURE_BACKENDS, always off by default */
123# endif
124# else
125# undef EV_USE_LINUXAIO
126# define EV_USE_LINUXAIO 0
127# endif
128
129# if HAVE_LINUX_FS_H && HAVE_SYS_TIMERFD_H && HAVE_KERNEL_RWF_T
130# ifndef EV_USE_IOURING
131# define EV_USE_IOURING EV_FEATURE_BACKENDS
132# endif
133# else
134# undef EV_USE_IOURING
135# define EV_USE_IOURING 0
136# endif
137
138# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
139# ifndef EV_USE_KQUEUE
140# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
141# endif
142# else
143# undef EV_USE_KQUEUE
144# define EV_USE_KQUEUE 0
145# endif
146
147# if HAVE_PORT_H && HAVE_PORT_CREATE
148# ifndef EV_USE_PORT
149# define EV_USE_PORT EV_FEATURE_BACKENDS
150# endif
151# else
152# undef EV_USE_PORT
153# define EV_USE_PORT 0
154# endif
155
156# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
157# ifndef EV_USE_INOTIFY
158# define EV_USE_INOTIFY EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_INOTIFY
162# define EV_USE_INOTIFY 0
163# endif
164
165# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
166# ifndef EV_USE_SIGNALFD
167# define EV_USE_SIGNALFD EV_FEATURE_OS
168# endif
169# else
170# undef EV_USE_SIGNALFD
171# define EV_USE_SIGNALFD 0
172# endif
173
174# if HAVE_EVENTFD
175# ifndef EV_USE_EVENTFD
176# define EV_USE_EVENTFD EV_FEATURE_OS
177# endif
178# else
179# undef EV_USE_EVENTFD
180# define EV_USE_EVENTFD 0
181# endif
182
183# if HAVE_SYS_TIMERFD_H
184# ifndef EV_USE_TIMERFD
185# define EV_USE_TIMERFD EV_FEATURE_OS
186# endif
187# else
188# undef EV_USE_TIMERFD
189# define EV_USE_TIMERFD 0
190# endif
191
192#endif
193
194/* OS X, in its infinite idiocy, actually HARDCODES
195 * a limit of 1024 into their select. Where people have brains,
196 * OS X engineers apparently have a vacuum. Or maybe they were
197 * ordered to have a vacuum, or they do anything for money.
198 * This might help. Or not.
199 * Note that this must be defined early, as other include files
200 * will rely on this define as well.
201 */
202#define _DARWIN_UNLIMITED_SELECT 1
203
36#include <stdlib.h> 204#include <stdlib.h>
37#include <unistd.h> 205#include <string.h>
38#include <fcntl.h> 206#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 207#include <stddef.h>
41 208
42#include <stdio.h> 209#include <stdio.h>
43 210
44#include <assert.h> 211#include <assert.h>
45#include <errno.h> 212#include <errno.h>
46#include <sys/types.h> 213#include <sys/types.h>
214#include <time.h>
215#include <limits.h>
216
217#include <signal.h>
218
219#ifdef EV_H
220# include EV_H
221#else
222# include "ev.h"
223#endif
224
225#if EV_NO_THREADS
226# undef EV_NO_SMP
227# define EV_NO_SMP 1
228# undef ECB_NO_THREADS
229# define ECB_NO_THREADS 1
230#endif
231#if EV_NO_SMP
232# undef EV_NO_SMP
233# define ECB_NO_SMP 1
234#endif
235
47#ifndef WIN32 236#ifndef _WIN32
237# include <sys/time.h>
48# include <sys/wait.h> 238# include <sys/wait.h>
239# include <unistd.h>
240#else
241# include <io.h>
242# define WIN32_LEAN_AND_MEAN
243# include <winsock2.h>
244# include <windows.h>
245# ifndef EV_SELECT_IS_WINSOCKET
246# define EV_SELECT_IS_WINSOCKET 1
49#endif 247# endif
50#include <sys/time.h> 248# undef EV_AVOID_STDIO
51#include <time.h> 249#endif
52 250
53/**/ 251/* this block tries to deduce configuration from header-defined symbols and defaults */
252
253/* try to deduce the maximum number of signals on this platform */
254#if defined EV_NSIG
255/* use what's provided */
256#elif defined NSIG
257# define EV_NSIG (NSIG)
258#elif defined _NSIG
259# define EV_NSIG (_NSIG)
260#elif defined SIGMAX
261# define EV_NSIG (SIGMAX+1)
262#elif defined SIG_MAX
263# define EV_NSIG (SIG_MAX+1)
264#elif defined _SIG_MAX
265# define EV_NSIG (_SIG_MAX+1)
266#elif defined MAXSIG
267# define EV_NSIG (MAXSIG+1)
268#elif defined MAX_SIG
269# define EV_NSIG (MAX_SIG+1)
270#elif defined SIGARRAYSIZE
271# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
272#elif defined _sys_nsig
273# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
274#else
275# define EV_NSIG (8 * sizeof (sigset_t) + 1)
276#endif
277
278#ifndef EV_USE_FLOOR
279# define EV_USE_FLOOR 0
280#endif
281
282#ifndef EV_USE_CLOCK_SYSCALL
283# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
284# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
285# else
286# define EV_USE_CLOCK_SYSCALL 0
287# endif
288#endif
289
290#if !(_POSIX_TIMERS > 0)
291# ifndef EV_USE_MONOTONIC
292# define EV_USE_MONOTONIC 0
293# endif
294# ifndef EV_USE_REALTIME
295# define EV_USE_REALTIME 0
296# endif
297#endif
54 298
55#ifndef EV_USE_MONOTONIC 299#ifndef EV_USE_MONOTONIC
300# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
301# define EV_USE_MONOTONIC EV_FEATURE_OS
302# else
56# define EV_USE_MONOTONIC 1 303# define EV_USE_MONOTONIC 0
304# endif
305#endif
306
307#ifndef EV_USE_REALTIME
308# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
309#endif
310
311#ifndef EV_USE_NANOSLEEP
312# if _POSIX_C_SOURCE >= 199309L
313# define EV_USE_NANOSLEEP EV_FEATURE_OS
314# else
315# define EV_USE_NANOSLEEP 0
316# endif
57#endif 317#endif
58 318
59#ifndef EV_USE_SELECT 319#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1 320# define EV_USE_SELECT EV_FEATURE_BACKENDS
61#endif 321#endif
62 322
63#ifndef EV_USE_POLL 323#ifndef EV_USE_POLL
64# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 324# ifdef _WIN32
325# define EV_USE_POLL 0
326# else
327# define EV_USE_POLL EV_FEATURE_BACKENDS
328# endif
65#endif 329#endif
66 330
67#ifndef EV_USE_EPOLL 331#ifndef EV_USE_EPOLL
332# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
333# define EV_USE_EPOLL EV_FEATURE_BACKENDS
334# else
68# define EV_USE_EPOLL 0 335# define EV_USE_EPOLL 0
336# endif
69#endif 337#endif
70 338
71#ifndef EV_USE_KQUEUE 339#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 340# define EV_USE_KQUEUE 0
73#endif 341#endif
74 342
75#ifndef EV_USE_REALTIME 343#ifndef EV_USE_PORT
76# define EV_USE_REALTIME 1 344# define EV_USE_PORT 0
345#endif
346
347#ifndef EV_USE_LINUXAIO
348# if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
349# define EV_USE_LINUXAIO 0 /* was: 1, always off by default */
350# else
351# define EV_USE_LINUXAIO 0
77#endif 352# endif
353#endif
78 354
79/**/ 355#ifndef EV_USE_IOURING
356# if __linux /* later checks might disable again */
357# define EV_USE_IOURING 1
358# else
359# define EV_USE_IOURING 0
360# endif
361#endif
362
363#ifndef EV_USE_INOTIFY
364# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
365# define EV_USE_INOTIFY EV_FEATURE_OS
366# else
367# define EV_USE_INOTIFY 0
368# endif
369#endif
370
371#ifndef EV_PID_HASHSIZE
372# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
373#endif
374
375#ifndef EV_INOTIFY_HASHSIZE
376# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
377#endif
378
379#ifndef EV_USE_EVENTFD
380# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
381# define EV_USE_EVENTFD EV_FEATURE_OS
382# else
383# define EV_USE_EVENTFD 0
384# endif
385#endif
386
387#ifndef EV_USE_SIGNALFD
388# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
389# define EV_USE_SIGNALFD EV_FEATURE_OS
390# else
391# define EV_USE_SIGNALFD 0
392# endif
393#endif
394
395#ifndef EV_USE_TIMERFD
396# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 8))
397# define EV_USE_TIMERFD EV_FEATURE_OS
398# else
399# define EV_USE_TIMERFD 0
400# endif
401#endif
402
403#if 0 /* debugging */
404# define EV_VERIFY 3
405# define EV_USE_4HEAP 1
406# define EV_HEAP_CACHE_AT 1
407#endif
408
409#ifndef EV_VERIFY
410# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
411#endif
412
413#ifndef EV_USE_4HEAP
414# define EV_USE_4HEAP EV_FEATURE_DATA
415#endif
416
417#ifndef EV_HEAP_CACHE_AT
418# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
419#endif
420
421#ifdef __ANDROID__
422/* supposedly, android doesn't typedef fd_mask */
423# undef EV_USE_SELECT
424# define EV_USE_SELECT 0
425/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
426# undef EV_USE_CLOCK_SYSCALL
427# define EV_USE_CLOCK_SYSCALL 0
428#endif
429
430/* aix's poll.h seems to cause lots of trouble */
431#ifdef _AIX
432/* AIX has a completely broken poll.h header */
433# undef EV_USE_POLL
434# define EV_USE_POLL 0
435#endif
436
437/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
438/* which makes programs even slower. might work on other unices, too. */
439#if EV_USE_CLOCK_SYSCALL
440# include <sys/syscall.h>
441# ifdef SYS_clock_gettime
442# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
443# undef EV_USE_MONOTONIC
444# define EV_USE_MONOTONIC 1
445# define EV_NEED_SYSCALL 1
446# else
447# undef EV_USE_CLOCK_SYSCALL
448# define EV_USE_CLOCK_SYSCALL 0
449# endif
450#endif
451
452/* this block fixes any misconfiguration where we know we run into trouble otherwise */
80 453
81#ifndef CLOCK_MONOTONIC 454#ifndef CLOCK_MONOTONIC
82# undef EV_USE_MONOTONIC 455# undef EV_USE_MONOTONIC
83# define EV_USE_MONOTONIC 0 456# define EV_USE_MONOTONIC 0
84#endif 457#endif
86#ifndef CLOCK_REALTIME 459#ifndef CLOCK_REALTIME
87# undef EV_USE_REALTIME 460# undef EV_USE_REALTIME
88# define EV_USE_REALTIME 0 461# define EV_USE_REALTIME 0
89#endif 462#endif
90 463
91/**/ 464#if !EV_STAT_ENABLE
465# undef EV_USE_INOTIFY
466# define EV_USE_INOTIFY 0
467#endif
92 468
93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 469#if __linux && EV_USE_IOURING
94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 470# include <linux/version.h>
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 471# if LINUX_VERSION_CODE < KERNEL_VERSION(4,14,0)
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 472# undef EV_USE_IOURING
473# define EV_USE_IOURING 0
474# endif
475#endif
97 476
98#include "ev.h" 477#if !EV_USE_NANOSLEEP
478/* hp-ux has it in sys/time.h, which we unconditionally include above */
479# if !defined _WIN32 && !defined __hpux
480# include <sys/select.h>
481# endif
482#endif
99 483
100#if __GNUC__ >= 3 484#if EV_USE_LINUXAIO
101# define expect(expr,value) __builtin_expect ((expr),(value)) 485# include <sys/syscall.h>
102# define inline inline 486# if SYS_io_getevents && EV_USE_EPOLL /* linuxaio backend requires epoll backend */
487# define EV_NEED_SYSCALL 1
488# else
489# undef EV_USE_LINUXAIO
490# define EV_USE_LINUXAIO 0
491# endif
492#endif
493
494#if EV_USE_IOURING
495# include <sys/syscall.h>
496# if !SYS_io_uring_setup && __linux && !__alpha
497# define SYS_io_uring_setup 425
498# define SYS_io_uring_enter 426
499# define SYS_io_uring_wregister 427
500# endif
501# if SYS_io_uring_setup && EV_USE_EPOLL /* iouring backend requires epoll backend */
502# define EV_NEED_SYSCALL 1
503# else
504# undef EV_USE_IOURING
505# define EV_USE_IOURING 0
506# endif
507#endif
508
509#if EV_USE_INOTIFY
510# include <sys/statfs.h>
511# include <sys/inotify.h>
512/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
513# ifndef IN_DONT_FOLLOW
514# undef EV_USE_INOTIFY
515# define EV_USE_INOTIFY 0
516# endif
517#endif
518
519#if EV_USE_EVENTFD
520/* our minimum requirement is glibc 2.7 which has the stub, but not the full header */
521# include <stdint.h>
522# ifndef EFD_NONBLOCK
523# define EFD_NONBLOCK O_NONBLOCK
524# endif
525# ifndef EFD_CLOEXEC
526# ifdef O_CLOEXEC
527# define EFD_CLOEXEC O_CLOEXEC
528# else
529# define EFD_CLOEXEC 02000000
530# endif
531# endif
532EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
533#endif
534
535#if EV_USE_SIGNALFD
536/* our minimum requirement is glibc 2.7 which has the stub, but not the full header */
537# include <stdint.h>
538# ifndef SFD_NONBLOCK
539# define SFD_NONBLOCK O_NONBLOCK
540# endif
541# ifndef SFD_CLOEXEC
542# ifdef O_CLOEXEC
543# define SFD_CLOEXEC O_CLOEXEC
544# else
545# define SFD_CLOEXEC 02000000
546# endif
547# endif
548EV_CPP (extern "C") int (signalfd) (int fd, const sigset_t *mask, int flags);
549
550struct signalfd_siginfo
551{
552 uint32_t ssi_signo;
553 char pad[128 - sizeof (uint32_t)];
554};
555#endif
556
557/* for timerfd, libev core requires TFD_TIMER_CANCEL_ON_SET &c */
558#if EV_USE_TIMERFD
559# include <sys/timerfd.h>
560/* timerfd is only used for periodics */
561# if !(defined (TFD_TIMER_CANCEL_ON_SET) && defined (TFD_CLOEXEC) && defined (TFD_NONBLOCK)) || !EV_PERIODIC_ENABLE
562# undef EV_USE_TIMERFD
563# define EV_USE_TIMERFD 0
564# endif
565#endif
566
567/*****************************************************************************/
568
569#if EV_VERIFY >= 3
570# define EV_FREQUENT_CHECK ev_verify (EV_A)
103#else 571#else
104# define expect(expr,value) (expr) 572# define EV_FREQUENT_CHECK do { } while (0)
105# define inline static 573#endif
574
575/*
576 * This is used to work around floating point rounding problems.
577 * This value is good at least till the year 4000.
578 */
579#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
580/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
581
582#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
583#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
584
585/* find a portable timestamp that is "always" in the future but fits into time_t.
586 * this is quite hard, and we are mostly guessing - we handle 32 bit signed/unsigned time_t,
587 * and sizes larger than 32 bit, and maybe the unlikely floating point time_t */
588#define EV_TSTAMP_HUGE \
589 (sizeof (time_t) >= 8 ? 10000000000000. \
590 : 0 < (time_t)4294967295 ? 4294967295. \
591 : 2147483647.) \
592
593#ifndef EV_TS_CONST
594# define EV_TS_CONST(nv) nv
595# define EV_TS_TO_MSEC(a) a * 1e3 + 0.9999
596# define EV_TS_FROM_USEC(us) us * 1e-6
597# define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
598# define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
599# define EV_TV_GET(tv) ((tv).tv_sec + (tv).tv_usec * 1e-6)
600# define EV_TS_GET(ts) ((ts).tv_sec + (ts).tv_nsec * 1e-9)
601#endif
602
603/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
604/* ECB.H BEGIN */
605/*
606 * libecb - http://software.schmorp.de/pkg/libecb
607 *
608 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
609 * Copyright (©) 2011 Emanuele Giaquinta
610 * All rights reserved.
611 *
612 * Redistribution and use in source and binary forms, with or without modifica-
613 * tion, are permitted provided that the following conditions are met:
614 *
615 * 1. Redistributions of source code must retain the above copyright notice,
616 * this list of conditions and the following disclaimer.
617 *
618 * 2. Redistributions in binary form must reproduce the above copyright
619 * notice, this list of conditions and the following disclaimer in the
620 * documentation and/or other materials provided with the distribution.
621 *
622 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
623 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
624 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
625 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
626 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
627 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
628 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
629 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
630 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
631 * OF THE POSSIBILITY OF SUCH DAMAGE.
632 *
633 * Alternatively, the contents of this file may be used under the terms of
634 * the GNU General Public License ("GPL") version 2 or any later version,
635 * in which case the provisions of the GPL are applicable instead of
636 * the above. If you wish to allow the use of your version of this file
637 * only under the terms of the GPL and not to allow others to use your
638 * version of this file under the BSD license, indicate your decision
639 * by deleting the provisions above and replace them with the notice
640 * and other provisions required by the GPL. If you do not delete the
641 * provisions above, a recipient may use your version of this file under
642 * either the BSD or the GPL.
643 */
644
645#ifndef ECB_H
646#define ECB_H
647
648/* 16 bits major, 16 bits minor */
649#define ECB_VERSION 0x00010006
650
651#ifdef _WIN32
652 typedef signed char int8_t;
653 typedef unsigned char uint8_t;
654 typedef signed short int16_t;
655 typedef unsigned short uint16_t;
656 typedef signed int int32_t;
657 typedef unsigned int uint32_t;
658 #if __GNUC__
659 typedef signed long long int64_t;
660 typedef unsigned long long uint64_t;
661 #else /* _MSC_VER || __BORLANDC__ */
662 typedef signed __int64 int64_t;
663 typedef unsigned __int64 uint64_t;
106#endif 664 #endif
665 #ifdef _WIN64
666 #define ECB_PTRSIZE 8
667 typedef uint64_t uintptr_t;
668 typedef int64_t intptr_t;
669 #else
670 #define ECB_PTRSIZE 4
671 typedef uint32_t uintptr_t;
672 typedef int32_t intptr_t;
673 #endif
674#else
675 #include <inttypes.h>
676 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
677 #define ECB_PTRSIZE 8
678 #else
679 #define ECB_PTRSIZE 4
680 #endif
681#endif
107 682
108#define expect_false(expr) expect ((expr) != 0, 0) 683#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
109#define expect_true(expr) expect ((expr) != 0, 1) 684#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
110 685
111#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 686/* work around x32 idiocy by defining proper macros */
112#define ABSPRI(w) ((w)->priority - EV_MINPRI) 687#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
688 #if _ILP32
689 #define ECB_AMD64_X32 1
690 #else
691 #define ECB_AMD64 1
692 #endif
693#endif
113 694
114typedef struct ev_watcher *W; 695/* many compilers define _GNUC_ to some versions but then only implement
115typedef struct ev_watcher_list *WL; 696 * what their idiot authors think are the "more important" extensions,
116typedef struct ev_watcher_time *WT; 697 * causing enormous grief in return for some better fake benchmark numbers.
698 * or so.
699 * we try to detect these and simply assume they are not gcc - if they have
700 * an issue with that they should have done it right in the first place.
701 */
702#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
703 #define ECB_GCC_VERSION(major,minor) 0
704#else
705 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
706#endif
117 707
118static ev_tstamp now_floor, now, diff; /* monotonic clock */ 708#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
119ev_tstamp ev_now;
120int ev_method;
121 709
122static int have_monotonic; /* runtime */ 710#if __clang__ && defined __has_builtin
711 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
712#else
713 #define ECB_CLANG_BUILTIN(x) 0
714#endif
123 715
124static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 716#if __clang__ && defined __has_extension
125static void (*method_modify)(int fd, int oev, int nev); 717 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
126static void (*method_poll)(ev_tstamp timeout); 718#else
719 #define ECB_CLANG_EXTENSION(x) 0
720#endif
721
722#define ECB_CPP (__cplusplus+0)
723#define ECB_CPP11 (__cplusplus >= 201103L)
724#define ECB_CPP14 (__cplusplus >= 201402L)
725#define ECB_CPP17 (__cplusplus >= 201703L)
726
727#if ECB_CPP
728 #define ECB_C 0
729 #define ECB_STDC_VERSION 0
730#else
731 #define ECB_C 1
732 #define ECB_STDC_VERSION __STDC_VERSION__
733#endif
734
735#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
736#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
737#define ECB_C17 (ECB_STDC_VERSION >= 201710L)
738
739#if ECB_CPP
740 #define ECB_EXTERN_C extern "C"
741 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
742 #define ECB_EXTERN_C_END }
743#else
744 #define ECB_EXTERN_C extern
745 #define ECB_EXTERN_C_BEG
746 #define ECB_EXTERN_C_END
747#endif
127 748
128/*****************************************************************************/ 749/*****************************************************************************/
129 750
751/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
752/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
753
754#if ECB_NO_THREADS
755 #define ECB_NO_SMP 1
756#endif
757
758#if ECB_NO_SMP
759 #define ECB_MEMORY_FENCE do { } while (0)
760#endif
761
762/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
763#if __xlC__ && ECB_CPP
764 #include <builtins.h>
765#endif
766
767#if 1400 <= _MSC_VER
768 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
769#endif
770
771#ifndef ECB_MEMORY_FENCE
772 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
773 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
774 #if __i386 || __i386__
775 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
776 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
777 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
778 #elif ECB_GCC_AMD64
779 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
780 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
781 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
782 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
783 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
784 #elif defined __ARM_ARCH_2__ \
785 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
786 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
787 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
788 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
789 || defined __ARM_ARCH_5TEJ__
790 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
791 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
792 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
793 || defined __ARM_ARCH_6T2__
794 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
795 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
796 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
797 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
798 #elif __aarch64__
799 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
800 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
801 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
802 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
803 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
804 #elif defined __s390__ || defined __s390x__
805 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
806 #elif defined __mips__
807 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
808 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
809 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
810 #elif defined __alpha__
811 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
812 #elif defined __hppa__
813 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
814 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
815 #elif defined __ia64__
816 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
817 #elif defined __m68k__
818 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
819 #elif defined __m88k__
820 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
821 #elif defined __sh__
822 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
823 #endif
824 #endif
825#endif
826
827#ifndef ECB_MEMORY_FENCE
828 #if ECB_GCC_VERSION(4,7)
829 /* see comment below (stdatomic.h) about the C11 memory model. */
830 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
831 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
832 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
833 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
834
835 #elif ECB_CLANG_EXTENSION(c_atomic)
836 /* see comment below (stdatomic.h) about the C11 memory model. */
837 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
838 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
839 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
840 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
841
842 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
843 #define ECB_MEMORY_FENCE __sync_synchronize ()
844 #elif _MSC_VER >= 1500 /* VC++ 2008 */
845 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
846 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
847 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
848 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
849 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
850 #elif _MSC_VER >= 1400 /* VC++ 2005 */
851 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
852 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
853 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
854 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
855 #elif defined _WIN32
856 #include <WinNT.h>
857 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
858 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
859 #include <mbarrier.h>
860 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
861 #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
862 #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
863 #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
864 #elif __xlC__
865 #define ECB_MEMORY_FENCE __sync ()
866 #endif
867#endif
868
869#ifndef ECB_MEMORY_FENCE
870 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
871 /* we assume that these memory fences work on all variables/all memory accesses, */
872 /* not just C11 atomics and atomic accesses */
873 #include <stdatomic.h>
874 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
875 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
876 #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
877 #endif
878#endif
879
880#ifndef ECB_MEMORY_FENCE
881 #if !ECB_AVOID_PTHREADS
882 /*
883 * if you get undefined symbol references to pthread_mutex_lock,
884 * or failure to find pthread.h, then you should implement
885 * the ECB_MEMORY_FENCE operations for your cpu/compiler
886 * OR provide pthread.h and link against the posix thread library
887 * of your system.
888 */
889 #include <pthread.h>
890 #define ECB_NEEDS_PTHREADS 1
891 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
892
893 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
894 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
895 #endif
896#endif
897
898#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
899 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
900#endif
901
902#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
903 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
904#endif
905
906#if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
907 #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
908#endif
909
910/*****************************************************************************/
911
912#if ECB_CPP
913 #define ecb_inline static inline
914#elif ECB_GCC_VERSION(2,5)
915 #define ecb_inline static __inline__
916#elif ECB_C99
917 #define ecb_inline static inline
918#else
919 #define ecb_inline static
920#endif
921
922#if ECB_GCC_VERSION(3,3)
923 #define ecb_restrict __restrict__
924#elif ECB_C99
925 #define ecb_restrict restrict
926#else
927 #define ecb_restrict
928#endif
929
930typedef int ecb_bool;
931
932#define ECB_CONCAT_(a, b) a ## b
933#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
934#define ECB_STRINGIFY_(a) # a
935#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
936#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
937
938#define ecb_function_ ecb_inline
939
940#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
941 #define ecb_attribute(attrlist) __attribute__ (attrlist)
942#else
943 #define ecb_attribute(attrlist)
944#endif
945
946#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
947 #define ecb_is_constant(expr) __builtin_constant_p (expr)
948#else
949 /* possible C11 impl for integral types
950 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
951 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
952
953 #define ecb_is_constant(expr) 0
954#endif
955
956#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
957 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
958#else
959 #define ecb_expect(expr,value) (expr)
960#endif
961
962#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
963 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
964#else
965 #define ecb_prefetch(addr,rw,locality)
966#endif
967
968/* no emulation for ecb_decltype */
969#if ECB_CPP11
970 // older implementations might have problems with decltype(x)::type, work around it
971 template<class T> struct ecb_decltype_t { typedef T type; };
972 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
973#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
974 #define ecb_decltype(x) __typeof__ (x)
975#endif
976
977#if _MSC_VER >= 1300
978 #define ecb_deprecated __declspec (deprecated)
979#else
980 #define ecb_deprecated ecb_attribute ((__deprecated__))
981#endif
982
983#if _MSC_VER >= 1500
984 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
985#elif ECB_GCC_VERSION(4,5)
986 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
987#else
988 #define ecb_deprecated_message(msg) ecb_deprecated
989#endif
990
991#if _MSC_VER >= 1400
992 #define ecb_noinline __declspec (noinline)
993#else
994 #define ecb_noinline ecb_attribute ((__noinline__))
995#endif
996
997#define ecb_unused ecb_attribute ((__unused__))
998#define ecb_const ecb_attribute ((__const__))
999#define ecb_pure ecb_attribute ((__pure__))
1000
1001#if ECB_C11 || __IBMC_NORETURN
1002 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
1003 #define ecb_noreturn _Noreturn
1004#elif ECB_CPP11
1005 #define ecb_noreturn [[noreturn]]
1006#elif _MSC_VER >= 1200
1007 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
1008 #define ecb_noreturn __declspec (noreturn)
1009#else
1010 #define ecb_noreturn ecb_attribute ((__noreturn__))
1011#endif
1012
1013#if ECB_GCC_VERSION(4,3)
1014 #define ecb_artificial ecb_attribute ((__artificial__))
1015 #define ecb_hot ecb_attribute ((__hot__))
1016 #define ecb_cold ecb_attribute ((__cold__))
1017#else
1018 #define ecb_artificial
1019 #define ecb_hot
1020 #define ecb_cold
1021#endif
1022
1023/* put around conditional expressions if you are very sure that the */
1024/* expression is mostly true or mostly false. note that these return */
1025/* booleans, not the expression. */
1026#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
1027#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
1028/* for compatibility to the rest of the world */
1029#define ecb_likely(expr) ecb_expect_true (expr)
1030#define ecb_unlikely(expr) ecb_expect_false (expr)
1031
1032/* count trailing zero bits and count # of one bits */
1033#if ECB_GCC_VERSION(3,4) \
1034 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
1035 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
1036 && ECB_CLANG_BUILTIN(__builtin_popcount))
1037 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
1038 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
1039 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
1040 #define ecb_ctz32(x) __builtin_ctz (x)
1041 #define ecb_ctz64(x) __builtin_ctzll (x)
1042 #define ecb_popcount32(x) __builtin_popcount (x)
1043 /* no popcountll */
1044#else
1045 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
1046 ecb_function_ ecb_const int
1047 ecb_ctz32 (uint32_t x)
1048 {
1049#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1050 unsigned long r;
1051 _BitScanForward (&r, x);
1052 return (int)r;
1053#else
1054 int r = 0;
1055
1056 x &= ~x + 1; /* this isolates the lowest bit */
1057
1058#if ECB_branchless_on_i386
1059 r += !!(x & 0xaaaaaaaa) << 0;
1060 r += !!(x & 0xcccccccc) << 1;
1061 r += !!(x & 0xf0f0f0f0) << 2;
1062 r += !!(x & 0xff00ff00) << 3;
1063 r += !!(x & 0xffff0000) << 4;
1064#else
1065 if (x & 0xaaaaaaaa) r += 1;
1066 if (x & 0xcccccccc) r += 2;
1067 if (x & 0xf0f0f0f0) r += 4;
1068 if (x & 0xff00ff00) r += 8;
1069 if (x & 0xffff0000) r += 16;
1070#endif
1071
1072 return r;
1073#endif
1074 }
1075
1076 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
1077 ecb_function_ ecb_const int
1078 ecb_ctz64 (uint64_t x)
1079 {
1080#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1081 unsigned long r;
1082 _BitScanForward64 (&r, x);
1083 return (int)r;
1084#else
1085 int shift = x & 0xffffffff ? 0 : 32;
1086 return ecb_ctz32 (x >> shift) + shift;
1087#endif
1088 }
1089
1090 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1091 ecb_function_ ecb_const int
1092 ecb_popcount32 (uint32_t x)
1093 {
1094 x -= (x >> 1) & 0x55555555;
1095 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1096 x = ((x >> 4) + x) & 0x0f0f0f0f;
1097 x *= 0x01010101;
1098
1099 return x >> 24;
1100 }
1101
1102 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1103 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1104 {
1105#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1106 unsigned long r;
1107 _BitScanReverse (&r, x);
1108 return (int)r;
1109#else
1110 int r = 0;
1111
1112 if (x >> 16) { x >>= 16; r += 16; }
1113 if (x >> 8) { x >>= 8; r += 8; }
1114 if (x >> 4) { x >>= 4; r += 4; }
1115 if (x >> 2) { x >>= 2; r += 2; }
1116 if (x >> 1) { r += 1; }
1117
1118 return r;
1119#endif
1120 }
1121
1122 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1123 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1124 {
1125#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1126 unsigned long r;
1127 _BitScanReverse64 (&r, x);
1128 return (int)r;
1129#else
1130 int r = 0;
1131
1132 if (x >> 32) { x >>= 32; r += 32; }
1133
1134 return r + ecb_ld32 (x);
1135#endif
1136 }
1137#endif
1138
1139ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1140ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1141ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1142ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1143
1144ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1145ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1146{
1147 return ( (x * 0x0802U & 0x22110U)
1148 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1149}
1150
1151ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1152ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1153{
1154 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1155 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1156 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1157 x = ( x >> 8 ) | ( x << 8);
1158
1159 return x;
1160}
1161
1162ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1163ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1164{
1165 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1166 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1167 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1168 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1169 x = ( x >> 16 ) | ( x << 16);
1170
1171 return x;
1172}
1173
1174/* popcount64 is only available on 64 bit cpus as gcc builtin */
1175/* so for this version we are lazy */
1176ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1177ecb_function_ ecb_const int
1178ecb_popcount64 (uint64_t x)
1179{
1180 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1181}
1182
1183ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1184ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1185ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1186ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1187ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1188ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1189ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1190ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1191
1192ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1193ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1194ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1195ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1196ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1197ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1198ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1199ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1200
1201#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1202 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1203 #define ecb_bswap16(x) __builtin_bswap16 (x)
1204 #else
1205 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1206 #endif
1207 #define ecb_bswap32(x) __builtin_bswap32 (x)
1208 #define ecb_bswap64(x) __builtin_bswap64 (x)
1209#elif _MSC_VER
1210 #include <stdlib.h>
1211 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1212 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1213 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1214#else
1215 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1216 ecb_function_ ecb_const uint16_t
1217 ecb_bswap16 (uint16_t x)
1218 {
1219 return ecb_rotl16 (x, 8);
1220 }
1221
1222 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1223 ecb_function_ ecb_const uint32_t
1224 ecb_bswap32 (uint32_t x)
1225 {
1226 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1227 }
1228
1229 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1230 ecb_function_ ecb_const uint64_t
1231 ecb_bswap64 (uint64_t x)
1232 {
1233 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1234 }
1235#endif
1236
1237#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1238 #define ecb_unreachable() __builtin_unreachable ()
1239#else
1240 /* this seems to work fine, but gcc always emits a warning for it :/ */
1241 ecb_inline ecb_noreturn void ecb_unreachable (void);
1242 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1243#endif
1244
1245/* try to tell the compiler that some condition is definitely true */
1246#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1247
1248ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1249ecb_inline ecb_const uint32_t
1250ecb_byteorder_helper (void)
1251{
1252 /* the union code still generates code under pressure in gcc, */
1253 /* but less than using pointers, and always seems to */
1254 /* successfully return a constant. */
1255 /* the reason why we have this horrible preprocessor mess */
1256 /* is to avoid it in all cases, at least on common architectures */
1257 /* or when using a recent enough gcc version (>= 4.6) */
1258#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1259 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1260 #define ECB_LITTLE_ENDIAN 1
1261 return 0x44332211;
1262#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1263 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1264 #define ECB_BIG_ENDIAN 1
1265 return 0x11223344;
1266#else
1267 union
1268 {
1269 uint8_t c[4];
1270 uint32_t u;
1271 } u = { 0x11, 0x22, 0x33, 0x44 };
1272 return u.u;
1273#endif
1274}
1275
1276ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1277ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1278ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1279ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1280
1281#if ECB_GCC_VERSION(3,0) || ECB_C99
1282 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1283#else
1284 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1285#endif
1286
1287#if ECB_CPP
1288 template<typename T>
1289 static inline T ecb_div_rd (T val, T div)
1290 {
1291 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1292 }
1293 template<typename T>
1294 static inline T ecb_div_ru (T val, T div)
1295 {
1296 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1297 }
1298#else
1299 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1300 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1301#endif
1302
1303#if ecb_cplusplus_does_not_suck
1304 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1305 template<typename T, int N>
1306 static inline int ecb_array_length (const T (&arr)[N])
1307 {
1308 return N;
1309 }
1310#else
1311 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1312#endif
1313
1314ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1315ecb_function_ ecb_const uint32_t
1316ecb_binary16_to_binary32 (uint32_t x)
1317{
1318 unsigned int s = (x & 0x8000) << (31 - 15);
1319 int e = (x >> 10) & 0x001f;
1320 unsigned int m = x & 0x03ff;
1321
1322 if (ecb_expect_false (e == 31))
1323 /* infinity or NaN */
1324 e = 255 - (127 - 15);
1325 else if (ecb_expect_false (!e))
1326 {
1327 if (ecb_expect_true (!m))
1328 /* zero, handled by code below by forcing e to 0 */
1329 e = 0 - (127 - 15);
1330 else
1331 {
1332 /* subnormal, renormalise */
1333 unsigned int s = 10 - ecb_ld32 (m);
1334
1335 m = (m << s) & 0x3ff; /* mask implicit bit */
1336 e -= s - 1;
1337 }
1338 }
1339
1340 /* e and m now are normalised, or zero, (or inf or nan) */
1341 e += 127 - 15;
1342
1343 return s | (e << 23) | (m << (23 - 10));
1344}
1345
1346ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1347ecb_function_ ecb_const uint16_t
1348ecb_binary32_to_binary16 (uint32_t x)
1349{
1350 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1351 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1352 unsigned int m = x & 0x007fffff;
1353
1354 x &= 0x7fffffff;
1355
1356 /* if it's within range of binary16 normals, use fast path */
1357 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1358 {
1359 /* mantissa round-to-even */
1360 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1361
1362 /* handle overflow */
1363 if (ecb_expect_false (m >= 0x00800000))
1364 {
1365 m >>= 1;
1366 e += 1;
1367 }
1368
1369 return s | (e << 10) | (m >> (23 - 10));
1370 }
1371
1372 /* handle large numbers and infinity */
1373 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1374 return s | 0x7c00;
1375
1376 /* handle zero, subnormals and small numbers */
1377 if (ecb_expect_true (x < 0x38800000))
1378 {
1379 /* zero */
1380 if (ecb_expect_true (!x))
1381 return s;
1382
1383 /* handle subnormals */
1384
1385 /* too small, will be zero */
1386 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1387 return s;
1388
1389 m |= 0x00800000; /* make implicit bit explicit */
1390
1391 /* very tricky - we need to round to the nearest e (+10) bit value */
1392 {
1393 unsigned int bits = 14 - e;
1394 unsigned int half = (1 << (bits - 1)) - 1;
1395 unsigned int even = (m >> bits) & 1;
1396
1397 /* if this overflows, we will end up with a normalised number */
1398 m = (m + half + even) >> bits;
1399 }
1400
1401 return s | m;
1402 }
1403
1404 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1405 m >>= 13;
1406
1407 return s | 0x7c00 | m | !m;
1408}
1409
1410/*******************************************************************************/
1411/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1412
1413/* basically, everything uses "ieee pure-endian" floating point numbers */
1414/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1415#if 0 \
1416 || __i386 || __i386__ \
1417 || ECB_GCC_AMD64 \
1418 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1419 || defined __s390__ || defined __s390x__ \
1420 || defined __mips__ \
1421 || defined __alpha__ \
1422 || defined __hppa__ \
1423 || defined __ia64__ \
1424 || defined __m68k__ \
1425 || defined __m88k__ \
1426 || defined __sh__ \
1427 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1428 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1429 || defined __aarch64__
1430 #define ECB_STDFP 1
1431 #include <string.h> /* for memcpy */
1432#else
1433 #define ECB_STDFP 0
1434#endif
1435
1436#ifndef ECB_NO_LIBM
1437
1438 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1439
1440 /* only the oldest of old doesn't have this one. solaris. */
1441 #ifdef INFINITY
1442 #define ECB_INFINITY INFINITY
1443 #else
1444 #define ECB_INFINITY HUGE_VAL
1445 #endif
1446
1447 #ifdef NAN
1448 #define ECB_NAN NAN
1449 #else
1450 #define ECB_NAN ECB_INFINITY
1451 #endif
1452
1453 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1454 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1455 #define ecb_frexpf(x,e) frexpf ((x), (e))
1456 #else
1457 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1458 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1459 #endif
1460
1461 /* convert a float to ieee single/binary32 */
1462 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1463 ecb_function_ ecb_const uint32_t
1464 ecb_float_to_binary32 (float x)
1465 {
1466 uint32_t r;
1467
1468 #if ECB_STDFP
1469 memcpy (&r, &x, 4);
1470 #else
1471 /* slow emulation, works for anything but -0 */
1472 uint32_t m;
1473 int e;
1474
1475 if (x == 0e0f ) return 0x00000000U;
1476 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1477 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1478 if (x != x ) return 0x7fbfffffU;
1479
1480 m = ecb_frexpf (x, &e) * 0x1000000U;
1481
1482 r = m & 0x80000000U;
1483
1484 if (r)
1485 m = -m;
1486
1487 if (e <= -126)
1488 {
1489 m &= 0xffffffU;
1490 m >>= (-125 - e);
1491 e = -126;
1492 }
1493
1494 r |= (e + 126) << 23;
1495 r |= m & 0x7fffffU;
1496 #endif
1497
1498 return r;
1499 }
1500
1501 /* converts an ieee single/binary32 to a float */
1502 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1503 ecb_function_ ecb_const float
1504 ecb_binary32_to_float (uint32_t x)
1505 {
1506 float r;
1507
1508 #if ECB_STDFP
1509 memcpy (&r, &x, 4);
1510 #else
1511 /* emulation, only works for normals and subnormals and +0 */
1512 int neg = x >> 31;
1513 int e = (x >> 23) & 0xffU;
1514
1515 x &= 0x7fffffU;
1516
1517 if (e)
1518 x |= 0x800000U;
1519 else
1520 e = 1;
1521
1522 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1523 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1524
1525 r = neg ? -r : r;
1526 #endif
1527
1528 return r;
1529 }
1530
1531 /* convert a double to ieee double/binary64 */
1532 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1533 ecb_function_ ecb_const uint64_t
1534 ecb_double_to_binary64 (double x)
1535 {
1536 uint64_t r;
1537
1538 #if ECB_STDFP
1539 memcpy (&r, &x, 8);
1540 #else
1541 /* slow emulation, works for anything but -0 */
1542 uint64_t m;
1543 int e;
1544
1545 if (x == 0e0 ) return 0x0000000000000000U;
1546 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1547 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1548 if (x != x ) return 0X7ff7ffffffffffffU;
1549
1550 m = frexp (x, &e) * 0x20000000000000U;
1551
1552 r = m & 0x8000000000000000;;
1553
1554 if (r)
1555 m = -m;
1556
1557 if (e <= -1022)
1558 {
1559 m &= 0x1fffffffffffffU;
1560 m >>= (-1021 - e);
1561 e = -1022;
1562 }
1563
1564 r |= ((uint64_t)(e + 1022)) << 52;
1565 r |= m & 0xfffffffffffffU;
1566 #endif
1567
1568 return r;
1569 }
1570
1571 /* converts an ieee double/binary64 to a double */
1572 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1573 ecb_function_ ecb_const double
1574 ecb_binary64_to_double (uint64_t x)
1575 {
1576 double r;
1577
1578 #if ECB_STDFP
1579 memcpy (&r, &x, 8);
1580 #else
1581 /* emulation, only works for normals and subnormals and +0 */
1582 int neg = x >> 63;
1583 int e = (x >> 52) & 0x7ffU;
1584
1585 x &= 0xfffffffffffffU;
1586
1587 if (e)
1588 x |= 0x10000000000000U;
1589 else
1590 e = 1;
1591
1592 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1593 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1594
1595 r = neg ? -r : r;
1596 #endif
1597
1598 return r;
1599 }
1600
1601 /* convert a float to ieee half/binary16 */
1602 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1603 ecb_function_ ecb_const uint16_t
1604 ecb_float_to_binary16 (float x)
1605 {
1606 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1607 }
1608
1609 /* convert an ieee half/binary16 to float */
1610 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1611 ecb_function_ ecb_const float
1612 ecb_binary16_to_float (uint16_t x)
1613 {
1614 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1615 }
1616
1617#endif
1618
1619#endif
1620
1621/* ECB.H END */
1622
1623#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1624/* if your architecture doesn't need memory fences, e.g. because it is
1625 * single-cpu/core, or if you use libev in a project that doesn't use libev
1626 * from multiple threads, then you can define ECB_NO_THREADS when compiling
1627 * libev, in which cases the memory fences become nops.
1628 * alternatively, you can remove this #error and link against libpthread,
1629 * which will then provide the memory fences.
1630 */
1631# error "memory fences not defined for your architecture, please report"
1632#endif
1633
1634#ifndef ECB_MEMORY_FENCE
1635# define ECB_MEMORY_FENCE do { } while (0)
1636# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1637# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1638#endif
1639
1640#define inline_size ecb_inline
1641
1642#if EV_FEATURE_CODE
1643# define inline_speed ecb_inline
1644#else
1645# define inline_speed ecb_noinline static
1646#endif
1647
1648/*****************************************************************************/
1649/* raw syscall wrappers */
1650
1651#if EV_NEED_SYSCALL
1652
1653#include <sys/syscall.h>
1654
1655/*
1656 * define some syscall wrappers for common architectures
1657 * this is mostly for nice looks during debugging, not performance.
1658 * our syscalls return < 0, not == -1, on error. which is good
1659 * enough for linux aio.
1660 * TODO: arm is also common nowadays, maybe even mips and x86
1661 * TODO: after implementing this, it suddenly looks like overkill, but its hard to remove...
1662 */
1663#if __GNUC__ && __linux && ECB_AMD64 && !defined __OPTIMIZE_SIZE__
1664 /* the costly errno access probably kills this for size optimisation */
1665
1666 #define ev_syscall(nr,narg,arg1,arg2,arg3,arg4,arg5,arg6) \
1667 ({ \
1668 long res; \
1669 register unsigned long r6 __asm__ ("r9" ); \
1670 register unsigned long r5 __asm__ ("r8" ); \
1671 register unsigned long r4 __asm__ ("r10"); \
1672 register unsigned long r3 __asm__ ("rdx"); \
1673 register unsigned long r2 __asm__ ("rsi"); \
1674 register unsigned long r1 __asm__ ("rdi"); \
1675 if (narg >= 6) r6 = (unsigned long)(arg6); \
1676 if (narg >= 5) r5 = (unsigned long)(arg5); \
1677 if (narg >= 4) r4 = (unsigned long)(arg4); \
1678 if (narg >= 3) r3 = (unsigned long)(arg3); \
1679 if (narg >= 2) r2 = (unsigned long)(arg2); \
1680 if (narg >= 1) r1 = (unsigned long)(arg1); \
1681 __asm__ __volatile__ ( \
1682 "syscall\n\t" \
1683 : "=a" (res) \
1684 : "0" (nr), "r" (r1), "r" (r2), "r" (r3), "r" (r4), "r" (r5) \
1685 : "cc", "r11", "cx", "memory"); \
1686 errno = -res; \
1687 res; \
1688 })
1689
1690#endif
1691
1692#ifdef ev_syscall
1693 #define ev_syscall0(nr) ev_syscall (nr, 0, 0, 0, 0, 0, 0, 0)
1694 #define ev_syscall1(nr,arg1) ev_syscall (nr, 1, arg1, 0, 0, 0, 0, 0)
1695 #define ev_syscall2(nr,arg1,arg2) ev_syscall (nr, 2, arg1, arg2, 0, 0, 0, 0)
1696 #define ev_syscall3(nr,arg1,arg2,arg3) ev_syscall (nr, 3, arg1, arg2, arg3, 0, 0, 0)
1697 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) ev_syscall (nr, 3, arg1, arg2, arg3, arg4, 0, 0)
1698 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) ev_syscall (nr, 5, arg1, arg2, arg3, arg4, arg5, 0)
1699 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) ev_syscall (nr, 6, arg1, arg2, arg3, arg4, arg5,arg6)
1700#else
1701 #define ev_syscall0(nr) syscall (nr)
1702 #define ev_syscall1(nr,arg1) syscall (nr, arg1)
1703 #define ev_syscall2(nr,arg1,arg2) syscall (nr, arg1, arg2)
1704 #define ev_syscall3(nr,arg1,arg2,arg3) syscall (nr, arg1, arg2, arg3)
1705 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) syscall (nr, arg1, arg2, arg3, arg4)
1706 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) syscall (nr, arg1, arg2, arg3, arg4, arg5)
1707 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) syscall (nr, arg1, arg2, arg3, arg4, arg5,arg6)
1708#endif
1709
1710#endif
1711
1712/*****************************************************************************/
1713
1714#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1715
1716#if EV_MINPRI == EV_MAXPRI
1717# define ABSPRI(w) (((W)w), 0)
1718#else
1719# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1720#endif
1721
1722#define EMPTY /* required for microsofts broken pseudo-c compiler */
1723
1724typedef ev_watcher *W;
1725typedef ev_watcher_list *WL;
1726typedef ev_watcher_time *WT;
1727
1728#define ev_active(w) ((W)(w))->active
1729#define ev_at(w) ((WT)(w))->at
1730
1731#if EV_USE_REALTIME
1732/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1733/* giving it a reasonably high chance of working on typical architectures */
1734static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1735#endif
1736
1737#if EV_USE_MONOTONIC
1738static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1739#endif
1740
1741#ifndef EV_FD_TO_WIN32_HANDLE
1742# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1743#endif
1744#ifndef EV_WIN32_HANDLE_TO_FD
1745# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1746#endif
1747#ifndef EV_WIN32_CLOSE_FD
1748# define EV_WIN32_CLOSE_FD(fd) close (fd)
1749#endif
1750
1751#ifdef _WIN32
1752# include "ev_win32.c"
1753#endif
1754
1755/*****************************************************************************/
1756
1757#if EV_USE_LINUXAIO
1758# include <linux/aio_abi.h> /* probably only needed for aio_context_t */
1759#endif
1760
1761/* define a suitable floor function (only used by periodics atm) */
1762
1763#if EV_USE_FLOOR
1764# include <math.h>
1765# define ev_floor(v) floor (v)
1766#else
1767
1768#include <float.h>
1769
1770/* a floor() replacement function, should be independent of ev_tstamp type */
1771ecb_noinline
1772static ev_tstamp
1773ev_floor (ev_tstamp v)
1774{
1775 /* the choice of shift factor is not terribly important */
1776#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1777 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1778#else
1779 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1780#endif
1781
1782 /* special treatment for negative arguments */
1783 if (ecb_expect_false (v < 0.))
1784 {
1785 ev_tstamp f = -ev_floor (-v);
1786
1787 return f - (f == v ? 0 : 1);
1788 }
1789
1790 /* argument too large for an unsigned long? then reduce it */
1791 if (ecb_expect_false (v >= shift))
1792 {
1793 ev_tstamp f;
1794
1795 if (v == v - 1.)
1796 return v; /* very large numbers are assumed to be integer */
1797
1798 f = shift * ev_floor (v * (1. / shift));
1799 return f + ev_floor (v - f);
1800 }
1801
1802 /* fits into an unsigned long */
1803 return (unsigned long)v;
1804}
1805
1806#endif
1807
1808/*****************************************************************************/
1809
1810#ifdef __linux
1811# include <sys/utsname.h>
1812#endif
1813
1814ecb_noinline ecb_cold
1815static unsigned int
1816ev_linux_version (void)
1817{
1818#ifdef __linux
1819 unsigned int v = 0;
1820 struct utsname buf;
1821 int i;
1822 char *p = buf.release;
1823
1824 if (uname (&buf))
1825 return 0;
1826
1827 for (i = 3+1; --i; )
1828 {
1829 unsigned int c = 0;
1830
1831 for (;;)
1832 {
1833 if (*p >= '0' && *p <= '9')
1834 c = c * 10 + *p++ - '0';
1835 else
1836 {
1837 p += *p == '.';
1838 break;
1839 }
1840 }
1841
1842 v = (v << 8) | c;
1843 }
1844
1845 return v;
1846#else
1847 return 0;
1848#endif
1849}
1850
1851/*****************************************************************************/
1852
1853#if EV_AVOID_STDIO
1854ecb_noinline ecb_cold
1855static void
1856ev_printerr (const char *msg)
1857{
1858 write (STDERR_FILENO, msg, strlen (msg));
1859}
1860#endif
1861
1862static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
1863
1864ecb_cold
1865void
1866ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
1867{
1868 syserr_cb = cb;
1869}
1870
1871ecb_noinline ecb_cold
1872static void
1873ev_syserr (const char *msg)
1874{
1875 if (!msg)
1876 msg = "(libev) system error";
1877
1878 if (syserr_cb)
1879 syserr_cb (msg);
1880 else
1881 {
1882#if EV_AVOID_STDIO
1883 ev_printerr (msg);
1884 ev_printerr (": ");
1885 ev_printerr (strerror (errno));
1886 ev_printerr ("\n");
1887#else
1888 perror (msg);
1889#endif
1890 abort ();
1891 }
1892}
1893
1894static void *
1895ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
1896{
1897 /* some systems, notably openbsd and darwin, fail to properly
1898 * implement realloc (x, 0) (as required by both ansi c-89 and
1899 * the single unix specification, so work around them here.
1900 * recently, also (at least) fedora and debian started breaking it,
1901 * despite documenting it otherwise.
1902 */
1903
1904 if (size)
1905 return realloc (ptr, size);
1906
1907 free (ptr);
1908 return 0;
1909}
1910
1911static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
1912
1913ecb_cold
1914void
1915ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
1916{
1917 alloc = cb;
1918}
1919
1920inline_speed void *
1921ev_realloc (void *ptr, long size)
1922{
1923 ptr = alloc (ptr, size);
1924
1925 if (!ptr && size)
1926 {
1927#if EV_AVOID_STDIO
1928 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1929#else
1930 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1931#endif
1932 abort ();
1933 }
1934
1935 return ptr;
1936}
1937
1938#define ev_malloc(size) ev_realloc (0, (size))
1939#define ev_free(ptr) ev_realloc ((ptr), 0)
1940
1941/*****************************************************************************/
1942
1943/* set in reify when reification needed */
1944#define EV_ANFD_REIFY 1
1945
1946/* file descriptor info structure */
1947typedef struct
1948{
1949 WL head;
1950 unsigned char events; /* the events watched for */
1951 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1952 unsigned char emask; /* some backends store the actual kernel mask in here */
1953 unsigned char eflags; /* flags field for use by backends */
1954#if EV_USE_EPOLL
1955 unsigned int egen; /* generation counter to counter epoll bugs */
1956#endif
1957#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1958 SOCKET handle;
1959#endif
1960#if EV_USE_IOCP
1961 OVERLAPPED or, ow;
1962#endif
1963} ANFD;
1964
1965/* stores the pending event set for a given watcher */
1966typedef struct
1967{
1968 W w;
1969 int events; /* the pending event set for the given watcher */
1970} ANPENDING;
1971
1972#if EV_USE_INOTIFY
1973/* hash table entry per inotify-id */
1974typedef struct
1975{
1976 WL head;
1977} ANFS;
1978#endif
1979
1980/* Heap Entry */
1981#if EV_HEAP_CACHE_AT
1982 /* a heap element */
1983 typedef struct {
1984 ev_tstamp at;
1985 WT w;
1986 } ANHE;
1987
1988 #define ANHE_w(he) (he).w /* access watcher, read-write */
1989 #define ANHE_at(he) (he).at /* access cached at, read-only */
1990 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1991#else
1992 /* a heap element */
1993 typedef WT ANHE;
1994
1995 #define ANHE_w(he) (he)
1996 #define ANHE_at(he) (he)->at
1997 #define ANHE_at_cache(he)
1998#endif
1999
2000#if EV_MULTIPLICITY
2001
2002 struct ev_loop
2003 {
2004 ev_tstamp ev_rt_now;
2005 #define ev_rt_now ((loop)->ev_rt_now)
2006 #define VAR(name,decl) decl;
2007 #include "ev_vars.h"
2008 #undef VAR
2009 };
2010 #include "ev_wrap.h"
2011
2012 static struct ev_loop default_loop_struct;
2013 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
2014
2015#else
2016
2017 EV_API_DECL ev_tstamp ev_rt_now = EV_TS_CONST (0.); /* needs to be initialised to make it a definition despite extern */
2018 #define VAR(name,decl) static decl;
2019 #include "ev_vars.h"
2020 #undef VAR
2021
2022 static int ev_default_loop_ptr;
2023
2024#endif
2025
2026#if EV_FEATURE_API
2027# define EV_RELEASE_CB if (ecb_expect_false (release_cb)) release_cb (EV_A)
2028# define EV_ACQUIRE_CB if (ecb_expect_false (acquire_cb)) acquire_cb (EV_A)
2029# define EV_INVOKE_PENDING invoke_cb (EV_A)
2030#else
2031# define EV_RELEASE_CB (void)0
2032# define EV_ACQUIRE_CB (void)0
2033# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
2034#endif
2035
2036#define EVBREAK_RECURSE 0x80
2037
2038/*****************************************************************************/
2039
2040#ifndef EV_HAVE_EV_TIME
130ev_tstamp 2041ev_tstamp
131ev_time (void) 2042ev_time (void) EV_NOEXCEPT
132{ 2043{
133#if EV_USE_REALTIME 2044#if EV_USE_REALTIME
2045 if (ecb_expect_true (have_realtime))
2046 {
134 struct timespec ts; 2047 struct timespec ts;
135 clock_gettime (CLOCK_REALTIME, &ts); 2048 clock_gettime (CLOCK_REALTIME, &ts);
136 return ts.tv_sec + ts.tv_nsec * 1e-9; 2049 return EV_TS_GET (ts);
137#else 2050 }
2051#endif
2052
2053 {
138 struct timeval tv; 2054 struct timeval tv;
139 gettimeofday (&tv, 0); 2055 gettimeofday (&tv, 0);
140 return tv.tv_sec + tv.tv_usec * 1e-6; 2056 return EV_TV_GET (tv);
141#endif 2057 }
142} 2058}
2059#endif
143 2060
144static ev_tstamp 2061inline_size ev_tstamp
145get_clock (void) 2062get_clock (void)
146{ 2063{
147#if EV_USE_MONOTONIC 2064#if EV_USE_MONOTONIC
148 if (expect_true (have_monotonic)) 2065 if (ecb_expect_true (have_monotonic))
149 { 2066 {
150 struct timespec ts; 2067 struct timespec ts;
151 clock_gettime (CLOCK_MONOTONIC, &ts); 2068 clock_gettime (CLOCK_MONOTONIC, &ts);
152 return ts.tv_sec + ts.tv_nsec * 1e-9; 2069 return EV_TS_GET (ts);
153 } 2070 }
154#endif 2071#endif
155 2072
156 return ev_time (); 2073 return ev_time ();
157} 2074}
158 2075
159#define array_roundsize(base,n) ((n) | 4 & ~3) 2076#if EV_MULTIPLICITY
2077ev_tstamp
2078ev_now (EV_P) EV_NOEXCEPT
2079{
2080 return ev_rt_now;
2081}
2082#endif
160 2083
161#define array_needsize(base,cur,cnt,init) \ 2084void
162 if (expect_false ((cnt) > cur)) \ 2085ev_sleep (ev_tstamp delay) EV_NOEXCEPT
163 { \ 2086{
164 int newcnt = cur; \ 2087 if (delay > EV_TS_CONST (0.))
165 do \
166 { \
167 newcnt = array_roundsize (base, newcnt << 1); \
168 } \
169 while ((cnt) > newcnt); \
170 \
171 base = realloc (base, sizeof (*base) * (newcnt)); \
172 init (base + cur, newcnt - cur); \
173 cur = newcnt; \
174 } 2088 {
2089#if EV_USE_NANOSLEEP
2090 struct timespec ts;
2091
2092 EV_TS_SET (ts, delay);
2093 nanosleep (&ts, 0);
2094#elif defined _WIN32
2095 /* maybe this should round up, as ms is very low resolution */
2096 /* compared to select (µs) or nanosleep (ns) */
2097 Sleep ((unsigned long)(EV_TS_TO_MSEC (delay)));
2098#else
2099 struct timeval tv;
2100
2101 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
2102 /* something not guaranteed by newer posix versions, but guaranteed */
2103 /* by older ones */
2104 EV_TV_SET (tv, delay);
2105 select (0, 0, 0, 0, &tv);
2106#endif
2107 }
2108}
175 2109
176/*****************************************************************************/ 2110/*****************************************************************************/
177 2111
178typedef struct 2112#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
179{
180 struct ev_io *head;
181 unsigned char events;
182 unsigned char reify;
183} ANFD;
184 2113
185static ANFD *anfds; 2114/* find a suitable new size for the given array, */
186static int anfdmax; 2115/* hopefully by rounding to a nice-to-malloc size */
2116inline_size int
2117array_nextsize (int elem, int cur, int cnt)
2118{
2119 int ncur = cur + 1;
187 2120
2121 do
2122 ncur <<= 1;
2123 while (cnt > ncur);
2124
2125 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
2126 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
2127 {
2128 ncur *= elem;
2129 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
2130 ncur = ncur - sizeof (void *) * 4;
2131 ncur /= elem;
2132 }
2133
2134 return ncur;
2135}
2136
2137ecb_noinline ecb_cold
2138static void *
2139array_realloc (int elem, void *base, int *cur, int cnt)
2140{
2141 *cur = array_nextsize (elem, *cur, cnt);
2142 return ev_realloc (base, elem * *cur);
2143}
2144
2145#define array_needsize_noinit(base,offset,count)
2146
2147#define array_needsize_zerofill(base,offset,count) \
2148 memset ((void *)(base + offset), 0, sizeof (*(base)) * (count))
2149
2150#define array_needsize(type,base,cur,cnt,init) \
2151 if (ecb_expect_false ((cnt) > (cur))) \
2152 { \
2153 ecb_unused int ocur_ = (cur); \
2154 (base) = (type *)array_realloc \
2155 (sizeof (type), (base), &(cur), (cnt)); \
2156 init ((base), ocur_, ((cur) - ocur_)); \
2157 }
2158
2159#if 0
2160#define array_slim(type,stem) \
2161 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
2162 { \
2163 stem ## max = array_roundsize (stem ## cnt >> 1); \
2164 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
2165 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
2166 }
2167#endif
2168
2169#define array_free(stem, idx) \
2170 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
2171
2172/*****************************************************************************/
2173
2174/* dummy callback for pending events */
2175ecb_noinline
188static void 2176static void
189anfds_init (ANFD *base, int count) 2177pendingcb (EV_P_ ev_prepare *w, int revents)
190{ 2178{
191 while (count--) 2179}
192 {
193 base->head = 0;
194 base->events = EV_NONE;
195 base->reify = 0;
196 2180
197 ++base; 2181ecb_noinline
2182void
2183ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
2184{
2185 W w_ = (W)w;
2186 int pri = ABSPRI (w_);
2187
2188 if (ecb_expect_false (w_->pending))
2189 pendings [pri][w_->pending - 1].events |= revents;
2190 else
198 } 2191 {
199} 2192 w_->pending = ++pendingcnt [pri];
200 2193 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
201typedef struct 2194 pendings [pri][w_->pending - 1].w = w_;
202{
203 W w;
204 int events;
205} ANPENDING;
206
207static ANPENDING *pendings [NUMPRI];
208static int pendingmax [NUMPRI], pendingcnt [NUMPRI];
209
210static void
211event (W w, int events)
212{
213 if (w->pending)
214 {
215 pendings [ABSPRI (w)][w->pending - 1].events |= events; 2195 pendings [pri][w_->pending - 1].events = revents;
216 return;
217 } 2196 }
218 2197
219 w->pending = ++pendingcnt [ABSPRI (w)]; 2198 pendingpri = NUMPRI - 1;
220 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
221 pendings [ABSPRI (w)][w->pending - 1].w = w;
222 pendings [ABSPRI (w)][w->pending - 1].events = events;
223} 2199}
224 2200
225static void 2201inline_speed void
2202feed_reverse (EV_P_ W w)
2203{
2204 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2205 rfeeds [rfeedcnt++] = w;
2206}
2207
2208inline_size void
2209feed_reverse_done (EV_P_ int revents)
2210{
2211 do
2212 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2213 while (rfeedcnt);
2214}
2215
2216inline_speed void
226queue_events (W *events, int eventcnt, int type) 2217queue_events (EV_P_ W *events, int eventcnt, int type)
227{ 2218{
228 int i; 2219 int i;
229 2220
230 for (i = 0; i < eventcnt; ++i) 2221 for (i = 0; i < eventcnt; ++i)
231 event (events [i], type); 2222 ev_feed_event (EV_A_ events [i], type);
232} 2223}
233 2224
234static void 2225/*****************************************************************************/
2226
2227inline_speed void
235fd_event (int fd, int events) 2228fd_event_nocheck (EV_P_ int fd, int revents)
236{ 2229{
237 ANFD *anfd = anfds + fd; 2230 ANFD *anfd = anfds + fd;
238 struct ev_io *w; 2231 ev_io *w;
239 2232
240 for (w = anfd->head; w; w = w->next) 2233 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
241 { 2234 {
242 int ev = w->events & events; 2235 int ev = w->events & revents;
243 2236
244 if (ev) 2237 if (ev)
245 event ((W)w, ev); 2238 ev_feed_event (EV_A_ (W)w, ev);
246 } 2239 }
247} 2240}
248 2241
249/*****************************************************************************/ 2242/* do not submit kernel events for fds that have reify set */
2243/* because that means they changed while we were polling for new events */
2244inline_speed void
2245fd_event (EV_P_ int fd, int revents)
2246{
2247 ANFD *anfd = anfds + fd;
250 2248
251static int *fdchanges; 2249 if (ecb_expect_true (!anfd->reify))
252static int fdchangemax, fdchangecnt; 2250 fd_event_nocheck (EV_A_ fd, revents);
2251}
253 2252
254static void 2253void
255fd_reify (void) 2254ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
2255{
2256 if (fd >= 0 && fd < anfdmax)
2257 fd_event_nocheck (EV_A_ fd, revents);
2258}
2259
2260/* make sure the external fd watch events are in-sync */
2261/* with the kernel/libev internal state */
2262inline_size void
2263fd_reify (EV_P)
256{ 2264{
257 int i; 2265 int i;
258 2266
2267#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
259 for (i = 0; i < fdchangecnt; ++i) 2268 for (i = 0; i < fdchangecnt; ++i)
260 { 2269 {
261 int fd = fdchanges [i]; 2270 int fd = fdchanges [i];
262 ANFD *anfd = anfds + fd; 2271 ANFD *anfd = anfds + fd;
2272
2273 if (anfd->reify & EV__IOFDSET && anfd->head)
2274 {
2275 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2276
2277 if (handle != anfd->handle)
2278 {
2279 unsigned long arg;
2280
2281 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2282
2283 /* handle changed, but fd didn't - we need to do it in two steps */
2284 backend_modify (EV_A_ fd, anfd->events, 0);
2285 anfd->events = 0;
2286 anfd->handle = handle;
2287 }
2288 }
2289 }
2290#endif
2291
2292 for (i = 0; i < fdchangecnt; ++i)
2293 {
2294 int fd = fdchanges [i];
2295 ANFD *anfd = anfds + fd;
263 struct ev_io *w; 2296 ev_io *w;
264 2297
265 int events = 0; 2298 unsigned char o_events = anfd->events;
266 2299 unsigned char o_reify = anfd->reify;
267 for (w = anfd->head; w; w = w->next)
268 events |= w->events;
269 2300
270 anfd->reify = 0; 2301 anfd->reify = 0;
271 2302
272 if (anfd->events != events) 2303 /*if (ecb_expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
273 { 2304 {
274 method_modify (fd, anfd->events, events);
275 anfd->events = events; 2305 anfd->events = 0;
2306
2307 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2308 anfd->events |= (unsigned char)w->events;
2309
2310 if (o_events != anfd->events)
2311 o_reify = EV__IOFDSET; /* actually |= */
276 } 2312 }
2313
2314 if (o_reify & EV__IOFDSET)
2315 backend_modify (EV_A_ fd, o_events, anfd->events);
277 } 2316 }
278 2317
279 fdchangecnt = 0; 2318 fdchangecnt = 0;
280} 2319}
281 2320
2321/* something about the given fd changed */
2322inline_size
2323void
2324fd_change (EV_P_ int fd, int flags)
2325{
2326 unsigned char reify = anfds [fd].reify;
2327 anfds [fd].reify |= flags;
2328
2329 if (ecb_expect_true (!reify))
2330 {
2331 ++fdchangecnt;
2332 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
2333 fdchanges [fdchangecnt - 1] = fd;
2334 }
2335}
2336
2337/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2338inline_speed ecb_cold void
2339fd_kill (EV_P_ int fd)
2340{
2341 ev_io *w;
2342
2343 while ((w = (ev_io *)anfds [fd].head))
2344 {
2345 ev_io_stop (EV_A_ w);
2346 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
2347 }
2348}
2349
2350/* check whether the given fd is actually valid, for error recovery */
2351inline_size ecb_cold int
2352fd_valid (int fd)
2353{
2354#ifdef _WIN32
2355 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
2356#else
2357 return fcntl (fd, F_GETFD) != -1;
2358#endif
2359}
2360
2361/* called on EBADF to verify fds */
2362ecb_noinline ecb_cold
282static void 2363static void
283fd_change (int fd) 2364fd_ebadf (EV_P)
284{
285 if (anfds [fd].reify || fdchangecnt < 0)
286 return;
287
288 anfds [fd].reify = 1;
289
290 ++fdchangecnt;
291 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
292 fdchanges [fdchangecnt - 1] = fd;
293}
294
295static void
296fd_kill (int fd)
297{
298 struct ev_io *w;
299
300 printf ("killing fd %d\n", fd);//D
301 while ((w = anfds [fd].head))
302 {
303 ev_io_stop (w);
304 event ((W)w, EV_ERROR | EV_READ | EV_WRITE);
305 }
306}
307
308/* called on EBADF to verify fds */
309static void
310fd_ebadf (void)
311{ 2365{
312 int fd; 2366 int fd;
313 2367
314 for (fd = 0; fd < anfdmax; ++fd) 2368 for (fd = 0; fd < anfdmax; ++fd)
315 if (anfds [fd].events) 2369 if (anfds [fd].events)
316 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 2370 if (!fd_valid (fd) && errno == EBADF)
317 fd_kill (fd); 2371 fd_kill (EV_A_ fd);
318} 2372}
319 2373
320/* called on ENOMEM in select/poll to kill some fds and retry */ 2374/* called on ENOMEM in select/poll to kill some fds and retry */
2375ecb_noinline ecb_cold
321static void 2376static void
322fd_enomem (void) 2377fd_enomem (EV_P)
323{ 2378{
324 int fd = anfdmax; 2379 int fd;
325 2380
326 while (fd--) 2381 for (fd = anfdmax; fd--; )
327 if (anfds [fd].events) 2382 if (anfds [fd].events)
328 { 2383 {
329 close (fd);
330 fd_kill (fd); 2384 fd_kill (EV_A_ fd);
331 return; 2385 break;
332 } 2386 }
333} 2387}
334 2388
2389/* usually called after fork if backend needs to re-arm all fds from scratch */
2390ecb_noinline
2391static void
2392fd_rearm_all (EV_P)
2393{
2394 int fd;
2395
2396 for (fd = 0; fd < anfdmax; ++fd)
2397 if (anfds [fd].events)
2398 {
2399 anfds [fd].events = 0;
2400 anfds [fd].emask = 0;
2401 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
2402 }
2403}
2404
2405/* used to prepare libev internal fd's */
2406/* this is not fork-safe */
2407inline_speed void
2408fd_intern (int fd)
2409{
2410#ifdef _WIN32
2411 unsigned long arg = 1;
2412 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2413#else
2414 fcntl (fd, F_SETFD, FD_CLOEXEC);
2415 fcntl (fd, F_SETFL, O_NONBLOCK);
2416#endif
2417}
2418
335/*****************************************************************************/ 2419/*****************************************************************************/
336 2420
337static struct ev_timer **timers; 2421/*
338static int timermax, timercnt; 2422 * the heap functions want a real array index. array index 0 is guaranteed to not
2423 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2424 * the branching factor of the d-tree.
2425 */
339 2426
340static struct ev_periodic **periodics; 2427/*
341static int periodicmax, periodiccnt; 2428 * at the moment we allow libev the luxury of two heaps,
2429 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2430 * which is more cache-efficient.
2431 * the difference is about 5% with 50000+ watchers.
2432 */
2433#if EV_USE_4HEAP
342 2434
2435#define DHEAP 4
2436#define HEAP0 (DHEAP - 1) /* index of first element in heap */
2437#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2438#define UPHEAP_DONE(p,k) ((p) == (k))
2439
2440/* away from the root */
2441inline_speed void
2442downheap (ANHE *heap, int N, int k)
2443{
2444 ANHE he = heap [k];
2445 ANHE *E = heap + N + HEAP0;
2446
2447 for (;;)
2448 {
2449 ev_tstamp minat;
2450 ANHE *minpos;
2451 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2452
2453 /* find minimum child */
2454 if (ecb_expect_true (pos + DHEAP - 1 < E))
2455 {
2456 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2457 if ( minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2458 if ( minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2459 if ( minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2460 }
2461 else if (pos < E)
2462 {
2463 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2464 if (pos + 1 < E && minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2465 if (pos + 2 < E && minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2466 if (pos + 3 < E && minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2467 }
2468 else
2469 break;
2470
2471 if (ANHE_at (he) <= minat)
2472 break;
2473
2474 heap [k] = *minpos;
2475 ev_active (ANHE_w (*minpos)) = k;
2476
2477 k = minpos - heap;
2478 }
2479
2480 heap [k] = he;
2481 ev_active (ANHE_w (he)) = k;
2482}
2483
2484#else /* not 4HEAP */
2485
2486#define HEAP0 1
2487#define HPARENT(k) ((k) >> 1)
2488#define UPHEAP_DONE(p,k) (!(p))
2489
2490/* away from the root */
2491inline_speed void
2492downheap (ANHE *heap, int N, int k)
2493{
2494 ANHE he = heap [k];
2495
2496 for (;;)
2497 {
2498 int c = k << 1;
2499
2500 if (c >= N + HEAP0)
2501 break;
2502
2503 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2504 ? 1 : 0;
2505
2506 if (ANHE_at (he) <= ANHE_at (heap [c]))
2507 break;
2508
2509 heap [k] = heap [c];
2510 ev_active (ANHE_w (heap [k])) = k;
2511
2512 k = c;
2513 }
2514
2515 heap [k] = he;
2516 ev_active (ANHE_w (he)) = k;
2517}
2518#endif
2519
2520/* towards the root */
2521inline_speed void
2522upheap (ANHE *heap, int k)
2523{
2524 ANHE he = heap [k];
2525
2526 for (;;)
2527 {
2528 int p = HPARENT (k);
2529
2530 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2531 break;
2532
2533 heap [k] = heap [p];
2534 ev_active (ANHE_w (heap [k])) = k;
2535 k = p;
2536 }
2537
2538 heap [k] = he;
2539 ev_active (ANHE_w (he)) = k;
2540}
2541
2542/* move an element suitably so it is in a correct place */
2543inline_size void
2544adjustheap (ANHE *heap, int N, int k)
2545{
2546 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2547 upheap (heap, k);
2548 else
2549 downheap (heap, N, k);
2550}
2551
2552/* rebuild the heap: this function is used only once and executed rarely */
2553inline_size void
2554reheap (ANHE *heap, int N)
2555{
2556 int i;
2557
2558 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2559 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2560 for (i = 0; i < N; ++i)
2561 upheap (heap, i + HEAP0);
2562}
2563
2564/*****************************************************************************/
2565
2566/* associate signal watchers to a signal signal */
2567typedef struct
2568{
2569 EV_ATOMIC_T pending;
2570#if EV_MULTIPLICITY
2571 EV_P;
2572#endif
2573 WL head;
2574} ANSIG;
2575
2576static ANSIG signals [EV_NSIG - 1];
2577
2578/*****************************************************************************/
2579
2580#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2581
2582ecb_noinline ecb_cold
343static void 2583static void
344upheap (WT *timers, int k) 2584evpipe_init (EV_P)
345{ 2585{
346 WT w = timers [k]; 2586 if (!ev_is_active (&pipe_w))
347
348 while (k && timers [k >> 1]->at > w->at)
349 {
350 timers [k] = timers [k >> 1];
351 timers [k]->active = k + 1;
352 k >>= 1;
353 } 2587 {
2588 int fds [2];
354 2589
355 timers [k] = w; 2590# if EV_USE_EVENTFD
356 timers [k]->active = k + 1; 2591 fds [0] = -1;
2592 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2593 if (fds [1] < 0 && errno == EINVAL)
2594 fds [1] = eventfd (0, 0);
357 2595
358} 2596 if (fds [1] < 0)
2597# endif
2598 {
2599 while (pipe (fds))
2600 ev_syserr ("(libev) error creating signal/async pipe");
359 2601
2602 fd_intern (fds [0]);
2603 }
2604
2605 evpipe [0] = fds [0];
2606
2607 if (evpipe [1] < 0)
2608 evpipe [1] = fds [1]; /* first call, set write fd */
2609 else
2610 {
2611 /* on subsequent calls, do not change evpipe [1] */
2612 /* so that evpipe_write can always rely on its value. */
2613 /* this branch does not do anything sensible on windows, */
2614 /* so must not be executed on windows */
2615
2616 dup2 (fds [1], evpipe [1]);
2617 close (fds [1]);
2618 }
2619
2620 fd_intern (evpipe [1]);
2621
2622 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2623 ev_io_start (EV_A_ &pipe_w);
2624 ev_unref (EV_A); /* watcher should not keep loop alive */
2625 }
2626}
2627
2628inline_speed void
2629evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2630{
2631 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2632
2633 if (ecb_expect_true (*flag))
2634 return;
2635
2636 *flag = 1;
2637 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2638
2639 pipe_write_skipped = 1;
2640
2641 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2642
2643 if (pipe_write_wanted)
2644 {
2645 int old_errno;
2646
2647 pipe_write_skipped = 0;
2648 ECB_MEMORY_FENCE_RELEASE;
2649
2650 old_errno = errno; /* save errno because write will clobber it */
2651
2652#if EV_USE_EVENTFD
2653 if (evpipe [0] < 0)
2654 {
2655 uint64_t counter = 1;
2656 write (evpipe [1], &counter, sizeof (uint64_t));
2657 }
2658 else
2659#endif
2660 {
2661#ifdef _WIN32
2662 WSABUF buf;
2663 DWORD sent;
2664 buf.buf = (char *)&buf;
2665 buf.len = 1;
2666 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2667#else
2668 write (evpipe [1], &(evpipe [1]), 1);
2669#endif
2670 }
2671
2672 errno = old_errno;
2673 }
2674}
2675
2676/* called whenever the libev signal pipe */
2677/* got some events (signal, async) */
360static void 2678static void
361downheap (WT *timers, int N, int k) 2679pipecb (EV_P_ ev_io *iow, int revents)
362{ 2680{
363 WT w = timers [k]; 2681 int i;
364 2682
365 while (k < (N >> 1)) 2683 if (revents & EV_READ)
2684 {
2685#if EV_USE_EVENTFD
2686 if (evpipe [0] < 0)
2687 {
2688 uint64_t counter;
2689 read (evpipe [1], &counter, sizeof (uint64_t));
2690 }
2691 else
2692#endif
2693 {
2694 char dummy[4];
2695#ifdef _WIN32
2696 WSABUF buf;
2697 DWORD recvd;
2698 DWORD flags = 0;
2699 buf.buf = dummy;
2700 buf.len = sizeof (dummy);
2701 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2702#else
2703 read (evpipe [0], &dummy, sizeof (dummy));
2704#endif
2705 }
366 { 2706 }
367 int j = k << 1;
368 2707
369 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 2708 pipe_write_skipped = 0;
370 ++j;
371 2709
372 if (w->at <= timers [j]->at) 2710 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2711
2712#if EV_SIGNAL_ENABLE
2713 if (sig_pending)
2714 {
2715 sig_pending = 0;
2716
2717 ECB_MEMORY_FENCE;
2718
2719 for (i = EV_NSIG - 1; i--; )
2720 if (ecb_expect_false (signals [i].pending))
2721 ev_feed_signal_event (EV_A_ i + 1);
2722 }
2723#endif
2724
2725#if EV_ASYNC_ENABLE
2726 if (async_pending)
2727 {
2728 async_pending = 0;
2729
2730 ECB_MEMORY_FENCE;
2731
2732 for (i = asynccnt; i--; )
2733 if (asyncs [i]->sent)
2734 {
2735 asyncs [i]->sent = 0;
2736 ECB_MEMORY_FENCE_RELEASE;
2737 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2738 }
2739 }
2740#endif
2741}
2742
2743/*****************************************************************************/
2744
2745void
2746ev_feed_signal (int signum) EV_NOEXCEPT
2747{
2748#if EV_MULTIPLICITY
2749 EV_P;
2750 ECB_MEMORY_FENCE_ACQUIRE;
2751 EV_A = signals [signum - 1].loop;
2752
2753 if (!EV_A)
2754 return;
2755#endif
2756
2757 signals [signum - 1].pending = 1;
2758 evpipe_write (EV_A_ &sig_pending);
2759}
2760
2761static void
2762ev_sighandler (int signum)
2763{
2764#ifdef _WIN32
2765 signal (signum, ev_sighandler);
2766#endif
2767
2768 ev_feed_signal (signum);
2769}
2770
2771ecb_noinline
2772void
2773ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2774{
2775 WL w;
2776
2777 if (ecb_expect_false (signum <= 0 || signum >= EV_NSIG))
2778 return;
2779
2780 --signum;
2781
2782#if EV_MULTIPLICITY
2783 /* it is permissible to try to feed a signal to the wrong loop */
2784 /* or, likely more useful, feeding a signal nobody is waiting for */
2785
2786 if (ecb_expect_false (signals [signum].loop != EV_A))
2787 return;
2788#endif
2789
2790 signals [signum].pending = 0;
2791 ECB_MEMORY_FENCE_RELEASE;
2792
2793 for (w = signals [signum].head; w; w = w->next)
2794 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2795}
2796
2797#if EV_USE_SIGNALFD
2798static void
2799sigfdcb (EV_P_ ev_io *iow, int revents)
2800{
2801 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2802
2803 for (;;)
2804 {
2805 ssize_t res = read (sigfd, si, sizeof (si));
2806
2807 /* not ISO-C, as res might be -1, but works with SuS */
2808 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2809 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2810
2811 if (res < (ssize_t)sizeof (si))
373 break; 2812 break;
374
375 timers [k] = timers [j];
376 timers [k]->active = k + 1;
377 k = j;
378 } 2813 }
379
380 timers [k] = w;
381 timers [k]->active = k + 1;
382} 2814}
2815#endif
2816
2817#endif
383 2818
384/*****************************************************************************/ 2819/*****************************************************************************/
385 2820
386typedef struct 2821#if EV_CHILD_ENABLE
387{ 2822static WL childs [EV_PID_HASHSIZE];
388 struct ev_signal *head;
389 sig_atomic_t volatile gotsig;
390} ANSIG;
391 2823
392static ANSIG *signals;
393static int signalmax;
394
395static int sigpipe [2];
396static sig_atomic_t volatile gotsig;
397static struct ev_io sigev;
398
399static void
400signals_init (ANSIG *base, int count)
401{
402 while (count--)
403 {
404 base->head = 0;
405 base->gotsig = 0;
406
407 ++base;
408 }
409}
410
411static void
412sighandler (int signum)
413{
414 signals [signum - 1].gotsig = 1;
415
416 if (!gotsig)
417 {
418 gotsig = 1;
419 write (sigpipe [1], &signum, 1);
420 }
421}
422
423static void
424sigcb (struct ev_io *iow, int revents)
425{
426 struct ev_signal *w;
427 int signum;
428
429 read (sigpipe [0], &revents, 1);
430 gotsig = 0;
431
432 for (signum = signalmax; signum--; )
433 if (signals [signum].gotsig)
434 {
435 signals [signum].gotsig = 0;
436
437 for (w = signals [signum].head; w; w = w->next)
438 event ((W)w, EV_SIGNAL);
439 }
440}
441
442static void
443siginit (void)
444{
445#ifndef WIN32
446 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
447 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
448
449 /* rather than sort out wether we really need nb, set it */
450 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
451 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
452#endif
453
454 ev_io_set (&sigev, sigpipe [0], EV_READ);
455 ev_io_start (&sigev);
456}
457
458/*****************************************************************************/
459
460static struct ev_idle **idles;
461static int idlemax, idlecnt;
462
463static struct ev_prepare **prepares;
464static int preparemax, preparecnt;
465
466static struct ev_check **checks;
467static int checkmax, checkcnt;
468
469/*****************************************************************************/
470
471static struct ev_child *childs [PID_HASHSIZE];
472static struct ev_signal childev; 2824static ev_signal childev;
473 2825
474#ifndef WIN32 2826#ifndef WIFCONTINUED
2827# define WIFCONTINUED(status) 0
2828#endif
2829
2830/* handle a single child status event */
2831inline_speed void
2832child_reap (EV_P_ int chain, int pid, int status)
2833{
2834 ev_child *w;
2835 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2836
2837 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2838 {
2839 if ((w->pid == pid || !w->pid)
2840 && (!traced || (w->flags & 1)))
2841 {
2842 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2843 w->rpid = pid;
2844 w->rstatus = status;
2845 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2846 }
2847 }
2848}
475 2849
476#ifndef WCONTINUED 2850#ifndef WCONTINUED
477# define WCONTINUED 0 2851# define WCONTINUED 0
478#endif 2852#endif
479 2853
2854/* called on sigchld etc., calls waitpid */
480static void 2855static void
481child_reap (struct ev_signal *sw, int chain, int pid, int status) 2856childcb (EV_P_ ev_signal *sw, int revents)
482{ 2857{
483 struct ev_child *w; 2858 int pid, status;
484 2859
485 for (w = childs [chain & (PID_HASHSIZE - 1)]; w; w = w->next) 2860 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
486 if (w->pid == pid || !w->pid) 2861 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
487 { 2862 if (!WCONTINUED
488 w->priority = sw->priority; /* need to do it *now* */ 2863 || errno != EINVAL
489 w->rpid = pid; 2864 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
490 w->rstatus = status; 2865 return;
491 printf ("rpid %p %d %d\n", w, pid, w->pid);//D 2866
492 event ((W)w, EV_CHILD); 2867 /* make sure we are called again until all children have been reaped */
493 } 2868 /* we need to do it this way so that the callback gets called before we continue */
2869 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2870
2871 child_reap (EV_A_ pid, pid, status);
2872 if ((EV_PID_HASHSIZE) > 1)
2873 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
494} 2874}
2875
2876#endif
2877
2878/*****************************************************************************/
2879
2880#if EV_USE_TIMERFD
2881
2882static void periodics_reschedule (EV_P);
495 2883
496static void 2884static void
497childcb (struct ev_signal *sw, int revents) 2885timerfdcb (EV_P_ ev_io *iow, int revents)
498{ 2886{
499 int pid, status; 2887 struct itimerspec its = { 0 };
500 2888
501 printf ("chld %x\n", revents);//D 2889 /* since we can't easily come zup with a (portable) maximum value of time_t,
502 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 2890 * we wake up once per month, which hopefully is rare enough to not
503 { 2891 * be a problem. */
504 /* make sure we are called again until all childs have been reaped */ 2892 its.it_value.tv_sec = ev_rt_now + 86400 * 30;
505 event ((W)sw, EV_SIGNAL); 2893 timerfd_settime (timerfd, TFD_TIMER_ABSTIME | TFD_TIMER_CANCEL_ON_SET, &its, 0);
506 2894
507 child_reap (sw, pid, pid, status); 2895 ev_rt_now = ev_time ();
508 child_reap (sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 2896 /* periodics_reschedule only needs ev_rt_now */
2897 /* but maybe in the future we want the full treatment. */
2898 /*
2899 now_floor = EV_TS_CONST (0.);
2900 time_update (EV_A_ EV_TSTAMP_HUGE);
2901 */
2902 periodics_reschedule (EV_A);
2903}
2904
2905ecb_noinline ecb_cold
2906static void
2907evtimerfd_init (EV_P)
2908{
2909 if (!ev_is_active (&timerfd_w))
2910 {
2911 timerfd = timerfd_create (CLOCK_REALTIME, TFD_NONBLOCK | TFD_CLOEXEC);
2912
2913 if (timerfd >= 0)
2914 {
2915 fd_intern (timerfd); /* just to be sure */
2916
2917 ev_io_init (&timerfd_w, timerfdcb, timerfd, EV_READ);
2918 ev_set_priority (&timerfd_w, EV_MINPRI);
2919 ev_io_start (EV_A_ &timerfd_w);
2920 ev_unref (EV_A); /* watcher should not keep loop alive */
2921
2922 /* (re-) arm timer */
2923 timerfdcb (EV_A_ 0, 0);
2924 }
509 } 2925 }
510} 2926}
511 2927
512#endif 2928#endif
513 2929
514/*****************************************************************************/ 2930/*****************************************************************************/
515 2931
2932#if EV_USE_IOCP
2933# include "ev_iocp.c"
2934#endif
2935#if EV_USE_PORT
2936# include "ev_port.c"
2937#endif
516#if EV_USE_KQUEUE 2938#if EV_USE_KQUEUE
517# include "ev_kqueue.c" 2939# include "ev_kqueue.c"
518#endif 2940#endif
519#if EV_USE_EPOLL 2941#if EV_USE_EPOLL
520# include "ev_epoll.c" 2942# include "ev_epoll.c"
521#endif 2943#endif
2944#if EV_USE_LINUXAIO
2945# include "ev_linuxaio.c"
2946#endif
2947#if EV_USE_IOURING
2948# include "ev_iouring.c"
2949#endif
522#if EV_USE_POLL 2950#if EV_USE_POLL
523# include "ev_poll.c" 2951# include "ev_poll.c"
524#endif 2952#endif
525#if EV_USE_SELECT 2953#if EV_USE_SELECT
526# include "ev_select.c" 2954# include "ev_select.c"
527#endif 2955#endif
528 2956
529int 2957ecb_cold int
530ev_version_major (void) 2958ev_version_major (void) EV_NOEXCEPT
531{ 2959{
532 return EV_VERSION_MAJOR; 2960 return EV_VERSION_MAJOR;
533} 2961}
534 2962
535int 2963ecb_cold int
536ev_version_minor (void) 2964ev_version_minor (void) EV_NOEXCEPT
537{ 2965{
538 return EV_VERSION_MINOR; 2966 return EV_VERSION_MINOR;
539} 2967}
540 2968
541/* return true if we are running with elevated privileges and ignore env variables */ 2969/* return true if we are running with elevated privileges and should ignore env variables */
542static int 2970inline_size ecb_cold int
543enable_secure () 2971enable_secure (void)
544{ 2972{
2973#ifdef _WIN32
2974 return 0;
2975#else
545 return getuid () != geteuid () 2976 return getuid () != geteuid ()
546 || getgid () != getegid (); 2977 || getgid () != getegid ();
2978#endif
547} 2979}
548 2980
549int ev_init (int methods) 2981ecb_cold
2982unsigned int
2983ev_supported_backends (void) EV_NOEXCEPT
550{ 2984{
551 if (!ev_method) 2985 unsigned int flags = 0;
2986
2987 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2988 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
2989 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2990 if (EV_USE_LINUXAIO) flags |= EVBACKEND_LINUXAIO;
2991 if (EV_USE_IOURING ) flags |= EVBACKEND_IOURING;
2992 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2993 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
2994
2995 return flags;
2996}
2997
2998ecb_cold
2999unsigned int
3000ev_recommended_backends (void) EV_NOEXCEPT
3001{
3002 unsigned int flags = ev_supported_backends ();
3003
3004#ifndef __NetBSD__
3005 /* kqueue is borked on everything but netbsd apparently */
3006 /* it usually doesn't work correctly on anything but sockets and pipes */
3007 flags &= ~EVBACKEND_KQUEUE;
3008#endif
3009#ifdef __APPLE__
3010 /* only select works correctly on that "unix-certified" platform */
3011 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
3012 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
3013#endif
3014#ifdef __FreeBSD__
3015 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
3016#endif
3017
3018 /* TODO: linuxaio is very experimental */
3019#if !EV_RECOMMEND_LINUXAIO
3020 flags &= ~EVBACKEND_LINUXAIO;
3021#endif
3022 /* TODO: linuxaio is super experimental */
3023#if !EV_RECOMMEND_IOURING
3024 flags &= ~EVBACKEND_IOURING;
3025#endif
3026
3027 return flags;
3028}
3029
3030ecb_cold
3031unsigned int
3032ev_embeddable_backends (void) EV_NOEXCEPT
3033{
3034 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
3035
3036 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
3037 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
3038 flags &= ~EVBACKEND_EPOLL;
3039
3040 /* EVBACKEND_LINUXAIO is theoretically embeddable, but suffers from a performance overhead */
3041
3042 /* EVBACKEND_IOURING is practically embeddable, but the current implementation is not
3043 * because our backend_fd is the epoll fd we need as fallback.
3044 * if the kernel ever is fixed, this might change...
3045 */
3046
3047 return flags;
3048}
3049
3050unsigned int
3051ev_backend (EV_P) EV_NOEXCEPT
3052{
3053 return backend;
3054}
3055
3056#if EV_FEATURE_API
3057unsigned int
3058ev_iteration (EV_P) EV_NOEXCEPT
3059{
3060 return loop_count;
3061}
3062
3063unsigned int
3064ev_depth (EV_P) EV_NOEXCEPT
3065{
3066 return loop_depth;
3067}
3068
3069void
3070ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
3071{
3072 io_blocktime = interval;
3073}
3074
3075void
3076ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
3077{
3078 timeout_blocktime = interval;
3079}
3080
3081void
3082ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
3083{
3084 userdata = data;
3085}
3086
3087void *
3088ev_userdata (EV_P) EV_NOEXCEPT
3089{
3090 return userdata;
3091}
3092
3093void
3094ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
3095{
3096 invoke_cb = invoke_pending_cb;
3097}
3098
3099void
3100ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
3101{
3102 release_cb = release;
3103 acquire_cb = acquire;
3104}
3105#endif
3106
3107/* initialise a loop structure, must be zero-initialised */
3108ecb_noinline ecb_cold
3109static void
3110loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
3111{
3112 if (!backend)
552 { 3113 {
3114 origflags = flags;
3115
3116#if EV_USE_REALTIME
3117 if (!have_realtime)
3118 {
3119 struct timespec ts;
3120
3121 if (!clock_gettime (CLOCK_REALTIME, &ts))
3122 have_realtime = 1;
3123 }
3124#endif
3125
553#if EV_USE_MONOTONIC 3126#if EV_USE_MONOTONIC
3127 if (!have_monotonic)
554 { 3128 {
555 struct timespec ts; 3129 struct timespec ts;
3130
556 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 3131 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
557 have_monotonic = 1; 3132 have_monotonic = 1;
558 } 3133 }
559#endif 3134#endif
560 3135
3136 /* pid check not overridable via env */
3137#ifndef _WIN32
3138 if (flags & EVFLAG_FORKCHECK)
3139 curpid = getpid ();
3140#endif
3141
3142 if (!(flags & EVFLAG_NOENV)
3143 && !enable_secure ()
3144 && getenv ("LIBEV_FLAGS"))
3145 flags = atoi (getenv ("LIBEV_FLAGS"));
3146
561 ev_now = ev_time (); 3147 ev_rt_now = ev_time ();
562 now = get_clock (); 3148 mn_now = get_clock ();
563 now_floor = now; 3149 now_floor = mn_now;
564 diff = ev_now - now; 3150 rtmn_diff = ev_rt_now - mn_now;
3151#if EV_FEATURE_API
3152 invoke_cb = ev_invoke_pending;
3153#endif
565 3154
566 if (pipe (sigpipe)) 3155 io_blocktime = 0.;
567 return 0; 3156 timeout_blocktime = 0.;
3157 backend = 0;
3158 backend_fd = -1;
3159 sig_pending = 0;
3160#if EV_ASYNC_ENABLE
3161 async_pending = 0;
3162#endif
3163 pipe_write_skipped = 0;
3164 pipe_write_wanted = 0;
3165 evpipe [0] = -1;
3166 evpipe [1] = -1;
3167#if EV_USE_INOTIFY
3168 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
3169#endif
3170#if EV_USE_SIGNALFD
3171 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
3172#endif
3173#if EV_USE_TIMERFD
3174 timerfd = flags & EVFLAG_NOTIMERFD ? -1 : -2;
3175#endif
568 3176
569 if (methods == EVMETHOD_AUTO) 3177 if (!(flags & EVBACKEND_MASK))
570 if (!enable_secure () && getenv ("LIBEV_METHODS")) 3178 flags |= ev_recommended_backends ();
571 methods = atoi (getenv ("LIBEV_METHODS"));
572 else
573 methods = EVMETHOD_ANY;
574 3179
575 ev_method = 0; 3180#if EV_USE_IOCP
3181 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
3182#endif
3183#if EV_USE_PORT
3184 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
3185#endif
576#if EV_USE_KQUEUE 3186#if EV_USE_KQUEUE
577 if (!ev_method && (methods & EVMETHOD_KQUEUE)) kqueue_init (methods); 3187 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
3188#endif
3189#if EV_USE_IOURING
3190 if (!backend && (flags & EVBACKEND_IOURING )) backend = iouring_init (EV_A_ flags);
3191#endif
3192#if EV_USE_LINUXAIO
3193 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
578#endif 3194#endif
579#if EV_USE_EPOLL 3195#if EV_USE_EPOLL
580 if (!ev_method && (methods & EVMETHOD_EPOLL )) epoll_init (methods); 3196 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
581#endif 3197#endif
582#if EV_USE_POLL 3198#if EV_USE_POLL
583 if (!ev_method && (methods & EVMETHOD_POLL )) poll_init (methods); 3199 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
584#endif 3200#endif
585#if EV_USE_SELECT 3201#if EV_USE_SELECT
586 if (!ev_method && (methods & EVMETHOD_SELECT)) select_init (methods); 3202 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
587#endif 3203#endif
588 3204
589 if (ev_method) 3205 ev_prepare_init (&pending_w, pendingcb);
3206
3207#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3208 ev_init (&pipe_w, pipecb);
3209 ev_set_priority (&pipe_w, EV_MAXPRI);
3210#endif
3211 }
3212}
3213
3214/* free up a loop structure */
3215ecb_cold
3216void
3217ev_loop_destroy (EV_P)
3218{
3219 int i;
3220
3221#if EV_MULTIPLICITY
3222 /* mimic free (0) */
3223 if (!EV_A)
3224 return;
3225#endif
3226
3227#if EV_CLEANUP_ENABLE
3228 /* queue cleanup watchers (and execute them) */
3229 if (ecb_expect_false (cleanupcnt))
3230 {
3231 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3232 EV_INVOKE_PENDING;
3233 }
3234#endif
3235
3236#if EV_CHILD_ENABLE
3237 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3238 {
3239 ev_ref (EV_A); /* child watcher */
3240 ev_signal_stop (EV_A_ &childev);
3241 }
3242#endif
3243
3244 if (ev_is_active (&pipe_w))
3245 {
3246 /*ev_ref (EV_A);*/
3247 /*ev_io_stop (EV_A_ &pipe_w);*/
3248
3249 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3250 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3251 }
3252
3253#if EV_USE_SIGNALFD
3254 if (ev_is_active (&sigfd_w))
3255 close (sigfd);
3256#endif
3257
3258#if EV_USE_TIMERFD
3259 if (ev_is_active (&timerfd_w))
3260 close (timerfd);
3261#endif
3262
3263#if EV_USE_INOTIFY
3264 if (fs_fd >= 0)
3265 close (fs_fd);
3266#endif
3267
3268 if (backend_fd >= 0)
3269 close (backend_fd);
3270
3271#if EV_USE_IOCP
3272 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3273#endif
3274#if EV_USE_PORT
3275 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
3276#endif
3277#if EV_USE_KQUEUE
3278 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3279#endif
3280#if EV_USE_IOURING
3281 if (backend == EVBACKEND_IOURING ) iouring_destroy (EV_A);
3282#endif
3283#if EV_USE_LINUXAIO
3284 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
3285#endif
3286#if EV_USE_EPOLL
3287 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
3288#endif
3289#if EV_USE_POLL
3290 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
3291#endif
3292#if EV_USE_SELECT
3293 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
3294#endif
3295
3296 for (i = NUMPRI; i--; )
3297 {
3298 array_free (pending, [i]);
3299#if EV_IDLE_ENABLE
3300 array_free (idle, [i]);
3301#endif
3302 }
3303
3304 ev_free (anfds); anfds = 0; anfdmax = 0;
3305
3306 /* have to use the microsoft-never-gets-it-right macro */
3307 array_free (rfeed, EMPTY);
3308 array_free (fdchange, EMPTY);
3309 array_free (timer, EMPTY);
3310#if EV_PERIODIC_ENABLE
3311 array_free (periodic, EMPTY);
3312#endif
3313#if EV_FORK_ENABLE
3314 array_free (fork, EMPTY);
3315#endif
3316#if EV_CLEANUP_ENABLE
3317 array_free (cleanup, EMPTY);
3318#endif
3319 array_free (prepare, EMPTY);
3320 array_free (check, EMPTY);
3321#if EV_ASYNC_ENABLE
3322 array_free (async, EMPTY);
3323#endif
3324
3325 backend = 0;
3326
3327#if EV_MULTIPLICITY
3328 if (ev_is_default_loop (EV_A))
3329#endif
3330 ev_default_loop_ptr = 0;
3331#if EV_MULTIPLICITY
3332 else
3333 ev_free (EV_A);
3334#endif
3335}
3336
3337#if EV_USE_INOTIFY
3338inline_size void infy_fork (EV_P);
3339#endif
3340
3341inline_size void
3342loop_fork (EV_P)
3343{
3344#if EV_USE_PORT
3345 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
3346#endif
3347#if EV_USE_KQUEUE
3348 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3349#endif
3350#if EV_USE_IOURING
3351 if (backend == EVBACKEND_IOURING ) iouring_fork (EV_A);
3352#endif
3353#if EV_USE_LINUXAIO
3354 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
3355#endif
3356#if EV_USE_EPOLL
3357 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
3358#endif
3359#if EV_USE_INOTIFY
3360 infy_fork (EV_A);
3361#endif
3362
3363 if (postfork != 2)
3364 {
3365 #if EV_USE_SIGNALFD
3366 /* surprisingly, nothing needs to be done for signalfd, accoridng to docs, it does the right thing on fork */
3367 #endif
3368
3369 #if EV_USE_TIMERFD
3370 if (ev_is_active (&timerfd_w))
3371 {
3372 ev_ref (EV_A);
3373 ev_io_stop (EV_A_ &timerfd_w);
3374
3375 close (timerfd);
3376 timerfd = -2;
3377
3378 evtimerfd_init (EV_A);
3379 /* reschedule periodics, in case we missed something */
3380 ev_feed_event (EV_A_ &timerfd_w, EV_CUSTOM);
3381 }
3382 #endif
3383
3384 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3385 if (ev_is_active (&pipe_w))
3386 {
3387 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3388
3389 ev_ref (EV_A);
3390 ev_io_stop (EV_A_ &pipe_w);
3391
3392 if (evpipe [0] >= 0)
3393 EV_WIN32_CLOSE_FD (evpipe [0]);
3394
3395 evpipe_init (EV_A);
3396 /* iterate over everything, in case we missed something before */
3397 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3398 }
3399 #endif
3400 }
3401
3402 postfork = 0;
3403}
3404
3405#if EV_MULTIPLICITY
3406
3407ecb_cold
3408struct ev_loop *
3409ev_loop_new (unsigned int flags) EV_NOEXCEPT
3410{
3411 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3412
3413 memset (EV_A, 0, sizeof (struct ev_loop));
3414 loop_init (EV_A_ flags);
3415
3416 if (ev_backend (EV_A))
3417 return EV_A;
3418
3419 ev_free (EV_A);
3420 return 0;
3421}
3422
3423#endif /* multiplicity */
3424
3425#if EV_VERIFY
3426ecb_noinline ecb_cold
3427static void
3428verify_watcher (EV_P_ W w)
3429{
3430 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
3431
3432 if (w->pending)
3433 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3434}
3435
3436ecb_noinline ecb_cold
3437static void
3438verify_heap (EV_P_ ANHE *heap, int N)
3439{
3440 int i;
3441
3442 for (i = HEAP0; i < N + HEAP0; ++i)
3443 {
3444 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3445 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3446 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3447
3448 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3449 }
3450}
3451
3452ecb_noinline ecb_cold
3453static void
3454array_verify (EV_P_ W *ws, int cnt)
3455{
3456 while (cnt--)
3457 {
3458 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3459 verify_watcher (EV_A_ ws [cnt]);
3460 }
3461}
3462#endif
3463
3464#if EV_FEATURE_API
3465void ecb_cold
3466ev_verify (EV_P) EV_NOEXCEPT
3467{
3468#if EV_VERIFY
3469 int i;
3470 WL w, w2;
3471
3472 assert (activecnt >= -1);
3473
3474 assert (fdchangemax >= fdchangecnt);
3475 for (i = 0; i < fdchangecnt; ++i)
3476 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3477
3478 assert (anfdmax >= 0);
3479 for (i = 0; i < anfdmax; ++i)
3480 {
3481 int j = 0;
3482
3483 for (w = w2 = anfds [i].head; w; w = w->next)
590 { 3484 {
591 ev_watcher_init (&sigev, sigcb); 3485 verify_watcher (EV_A_ (W)w);
592 ev_set_priority (&sigev, EV_MAXPRI);
593 siginit ();
594 3486
595#ifndef WIN32 3487 if (j++ & 1)
3488 {
3489 assert (("libev: io watcher list contains a loop", w != w2));
3490 w2 = w2->next;
3491 }
3492
3493 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3494 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3495 }
3496 }
3497
3498 assert (timermax >= timercnt);
3499 verify_heap (EV_A_ timers, timercnt);
3500
3501#if EV_PERIODIC_ENABLE
3502 assert (periodicmax >= periodiccnt);
3503 verify_heap (EV_A_ periodics, periodiccnt);
3504#endif
3505
3506 for (i = NUMPRI; i--; )
3507 {
3508 assert (pendingmax [i] >= pendingcnt [i]);
3509#if EV_IDLE_ENABLE
3510 assert (idleall >= 0);
3511 assert (idlemax [i] >= idlecnt [i]);
3512 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3513#endif
3514 }
3515
3516#if EV_FORK_ENABLE
3517 assert (forkmax >= forkcnt);
3518 array_verify (EV_A_ (W *)forks, forkcnt);
3519#endif
3520
3521#if EV_CLEANUP_ENABLE
3522 assert (cleanupmax >= cleanupcnt);
3523 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3524#endif
3525
3526#if EV_ASYNC_ENABLE
3527 assert (asyncmax >= asynccnt);
3528 array_verify (EV_A_ (W *)asyncs, asynccnt);
3529#endif
3530
3531#if EV_PREPARE_ENABLE
3532 assert (preparemax >= preparecnt);
3533 array_verify (EV_A_ (W *)prepares, preparecnt);
3534#endif
3535
3536#if EV_CHECK_ENABLE
3537 assert (checkmax >= checkcnt);
3538 array_verify (EV_A_ (W *)checks, checkcnt);
3539#endif
3540
3541# if 0
3542#if EV_CHILD_ENABLE
3543 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3544 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3545#endif
3546# endif
3547#endif
3548}
3549#endif
3550
3551#if EV_MULTIPLICITY
3552ecb_cold
3553struct ev_loop *
3554#else
3555int
3556#endif
3557ev_default_loop (unsigned int flags) EV_NOEXCEPT
3558{
3559 if (!ev_default_loop_ptr)
3560 {
3561#if EV_MULTIPLICITY
3562 EV_P = ev_default_loop_ptr = &default_loop_struct;
3563#else
3564 ev_default_loop_ptr = 1;
3565#endif
3566
3567 loop_init (EV_A_ flags);
3568
3569 if (ev_backend (EV_A))
3570 {
3571#if EV_CHILD_ENABLE
596 ev_signal_init (&childev, childcb, SIGCHLD); 3572 ev_signal_init (&childev, childcb, SIGCHLD);
597 ev_set_priority (&childev, EV_MAXPRI); 3573 ev_set_priority (&childev, EV_MAXPRI);
598 ev_signal_start (&childev); 3574 ev_signal_start (EV_A_ &childev);
3575 ev_unref (EV_A); /* child watcher should not keep loop alive */
599#endif 3576#endif
600 } 3577 }
3578 else
3579 ev_default_loop_ptr = 0;
601 } 3580 }
602 3581
603 return ev_method; 3582 return ev_default_loop_ptr;
3583}
3584
3585void
3586ev_loop_fork (EV_P) EV_NOEXCEPT
3587{
3588 postfork = 1;
604} 3589}
605 3590
606/*****************************************************************************/ 3591/*****************************************************************************/
607 3592
608void 3593void
609ev_fork_prepare (void) 3594ev_invoke (EV_P_ void *w, int revents)
610{ 3595{
611 /* nop */ 3596 EV_CB_INVOKE ((W)w, revents);
612} 3597}
613 3598
614void 3599unsigned int
615ev_fork_parent (void) 3600ev_pending_count (EV_P) EV_NOEXCEPT
616{ 3601{
617 /* nop */ 3602 int pri;
618} 3603 unsigned int count = 0;
619 3604
3605 for (pri = NUMPRI; pri--; )
3606 count += pendingcnt [pri];
3607
3608 return count;
3609}
3610
3611ecb_noinline
620void 3612void
621ev_fork_child (void) 3613ev_invoke_pending (EV_P)
622{ 3614{
623#if EV_USE_EPOLL 3615 pendingpri = NUMPRI;
624 if (ev_method == EVMETHOD_EPOLL) 3616
625 epoll_postfork_child (); 3617 do
3618 {
3619 --pendingpri;
3620
3621 /* pendingpri possibly gets modified in the inner loop */
3622 while (pendingcnt [pendingpri])
3623 {
3624 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3625
3626 p->w->pending = 0;
3627 EV_CB_INVOKE (p->w, p->events);
3628 EV_FREQUENT_CHECK;
3629 }
3630 }
3631 while (pendingpri);
3632}
3633
3634#if EV_IDLE_ENABLE
3635/* make idle watchers pending. this handles the "call-idle */
3636/* only when higher priorities are idle" logic */
3637inline_size void
3638idle_reify (EV_P)
3639{
3640 if (ecb_expect_false (idleall))
3641 {
3642 int pri;
3643
3644 for (pri = NUMPRI; pri--; )
3645 {
3646 if (pendingcnt [pri])
3647 break;
3648
3649 if (idlecnt [pri])
3650 {
3651 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3652 break;
3653 }
3654 }
3655 }
3656}
3657#endif
3658
3659/* make timers pending */
3660inline_size void
3661timers_reify (EV_P)
3662{
3663 EV_FREQUENT_CHECK;
3664
3665 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3666 {
3667 do
3668 {
3669 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3670
3671 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3672
3673 /* first reschedule or stop timer */
3674 if (w->repeat)
3675 {
3676 ev_at (w) += w->repeat;
3677 if (ev_at (w) < mn_now)
3678 ev_at (w) = mn_now;
3679
3680 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > EV_TS_CONST (0.)));
3681
3682 ANHE_at_cache (timers [HEAP0]);
3683 downheap (timers, timercnt, HEAP0);
3684 }
3685 else
3686 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3687
3688 EV_FREQUENT_CHECK;
3689 feed_reverse (EV_A_ (W)w);
3690 }
3691 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3692
3693 feed_reverse_done (EV_A_ EV_TIMER);
3694 }
3695}
3696
3697#if EV_PERIODIC_ENABLE
3698
3699ecb_noinline
3700static void
3701periodic_recalc (EV_P_ ev_periodic *w)
3702{
3703 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3704 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3705
3706 /* the above almost always errs on the low side */
3707 while (at <= ev_rt_now)
3708 {
3709 ev_tstamp nat = at + w->interval;
3710
3711 /* when resolution fails us, we use ev_rt_now */
3712 if (ecb_expect_false (nat == at))
3713 {
3714 at = ev_rt_now;
3715 break;
3716 }
3717
3718 at = nat;
3719 }
3720
3721 ev_at (w) = at;
3722}
3723
3724/* make periodics pending */
3725inline_size void
3726periodics_reify (EV_P)
3727{
3728 EV_FREQUENT_CHECK;
3729
3730 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3731 {
3732 do
3733 {
3734 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3735
3736 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3737
3738 /* first reschedule or stop timer */
3739 if (w->reschedule_cb)
3740 {
3741 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3742
3743 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3744
3745 ANHE_at_cache (periodics [HEAP0]);
3746 downheap (periodics, periodiccnt, HEAP0);
3747 }
3748 else if (w->interval)
3749 {
3750 periodic_recalc (EV_A_ w);
3751 ANHE_at_cache (periodics [HEAP0]);
3752 downheap (periodics, periodiccnt, HEAP0);
3753 }
3754 else
3755 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3756
3757 EV_FREQUENT_CHECK;
3758 feed_reverse (EV_A_ (W)w);
3759 }
3760 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3761
3762 feed_reverse_done (EV_A_ EV_PERIODIC);
3763 }
3764}
3765
3766/* simply recalculate all periodics */
3767/* TODO: maybe ensure that at least one event happens when jumping forward? */
3768ecb_noinline ecb_cold
3769static void
3770periodics_reschedule (EV_P)
3771{
3772 int i;
3773
3774 /* adjust periodics after time jump */
3775 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3776 {
3777 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3778
3779 if (w->reschedule_cb)
3780 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3781 else if (w->interval)
3782 periodic_recalc (EV_A_ w);
3783
3784 ANHE_at_cache (periodics [i]);
3785 }
3786
3787 reheap (periodics, periodiccnt);
3788}
3789#endif
3790
3791/* adjust all timers by a given offset */
3792ecb_noinline ecb_cold
3793static void
3794timers_reschedule (EV_P_ ev_tstamp adjust)
3795{
3796 int i;
3797
3798 for (i = 0; i < timercnt; ++i)
3799 {
3800 ANHE *he = timers + i + HEAP0;
3801 ANHE_w (*he)->at += adjust;
3802 ANHE_at_cache (*he);
3803 }
3804}
3805
3806/* fetch new monotonic and realtime times from the kernel */
3807/* also detect if there was a timejump, and act accordingly */
3808inline_speed void
3809time_update (EV_P_ ev_tstamp max_block)
3810{
3811#if EV_USE_MONOTONIC
3812 if (ecb_expect_true (have_monotonic))
3813 {
3814 int i;
3815 ev_tstamp odiff = rtmn_diff;
3816
3817 mn_now = get_clock ();
3818
3819 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3820 /* interpolate in the meantime */
3821 if (ecb_expect_true (mn_now - now_floor < EV_TS_CONST (MIN_TIMEJUMP * .5)))
3822 {
3823 ev_rt_now = rtmn_diff + mn_now;
3824 return;
3825 }
3826
3827 now_floor = mn_now;
3828 ev_rt_now = ev_time ();
3829
3830 /* loop a few times, before making important decisions.
3831 * on the choice of "4": one iteration isn't enough,
3832 * in case we get preempted during the calls to
3833 * ev_time and get_clock. a second call is almost guaranteed
3834 * to succeed in that case, though. and looping a few more times
3835 * doesn't hurt either as we only do this on time-jumps or
3836 * in the unlikely event of having been preempted here.
3837 */
3838 for (i = 4; --i; )
3839 {
3840 ev_tstamp diff;
3841 rtmn_diff = ev_rt_now - mn_now;
3842
3843 diff = odiff - rtmn_diff;
3844
3845 if (ecb_expect_true ((diff < EV_TS_CONST (0.) ? -diff : diff) < EV_TS_CONST (MIN_TIMEJUMP)))
3846 return; /* all is well */
3847
3848 ev_rt_now = ev_time ();
3849 mn_now = get_clock ();
3850 now_floor = mn_now;
3851 }
3852
3853 /* no timer adjustment, as the monotonic clock doesn't jump */
3854 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3855# if EV_PERIODIC_ENABLE
3856 periodics_reschedule (EV_A);
626#endif 3857# endif
3858 }
3859 else
3860#endif
3861 {
3862 ev_rt_now = ev_time ();
627 3863
628 ev_io_stop (&sigev); 3864 if (ecb_expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + EV_TS_CONST (MIN_TIMEJUMP)))
629 close (sigpipe [0]); 3865 {
630 close (sigpipe [1]); 3866 /* adjust timers. this is easy, as the offset is the same for all of them */
631 pipe (sigpipe); 3867 timers_reschedule (EV_A_ ev_rt_now - mn_now);
632 siginit (); 3868#if EV_PERIODIC_ENABLE
3869 periodics_reschedule (EV_A);
3870#endif
3871 }
3872
3873 mn_now = ev_rt_now;
3874 }
3875}
3876
3877int
3878ev_run (EV_P_ int flags)
3879{
3880#if EV_FEATURE_API
3881 ++loop_depth;
3882#endif
3883
3884 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3885
3886 loop_done = EVBREAK_CANCEL;
3887
3888 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3889
3890 do
3891 {
3892#if EV_VERIFY >= 2
3893 ev_verify (EV_A);
3894#endif
3895
3896#ifndef _WIN32
3897 if (ecb_expect_false (curpid)) /* penalise the forking check even more */
3898 if (ecb_expect_false (getpid () != curpid))
3899 {
3900 curpid = getpid ();
3901 postfork = 1;
3902 }
3903#endif
3904
3905#if EV_FORK_ENABLE
3906 /* we might have forked, so queue fork handlers */
3907 if (ecb_expect_false (postfork))
3908 if (forkcnt)
3909 {
3910 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3911 EV_INVOKE_PENDING;
3912 }
3913#endif
3914
3915#if EV_PREPARE_ENABLE
3916 /* queue prepare watchers (and execute them) */
3917 if (ecb_expect_false (preparecnt))
3918 {
3919 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3920 EV_INVOKE_PENDING;
3921 }
3922#endif
3923
3924 if (ecb_expect_false (loop_done))
3925 break;
3926
3927 /* we might have forked, so reify kernel state if necessary */
3928 if (ecb_expect_false (postfork))
3929 loop_fork (EV_A);
3930
3931 /* update fd-related kernel structures */
3932 fd_reify (EV_A);
3933
3934 /* calculate blocking time */
3935 {
3936 ev_tstamp waittime = 0.;
3937 ev_tstamp sleeptime = 0.;
3938
3939 /* remember old timestamp for io_blocktime calculation */
3940 ev_tstamp prev_mn_now = mn_now;
3941
3942 /* update time to cancel out callback processing overhead */
3943 time_update (EV_A_ EV_TS_CONST (EV_TSTAMP_HUGE));
3944
3945 /* from now on, we want a pipe-wake-up */
3946 pipe_write_wanted = 1;
3947
3948 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3949
3950 if (ecb_expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3951 {
3952 waittime = EV_TS_CONST (MAX_BLOCKTIME);
3953
3954 if (timercnt)
3955 {
3956 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3957 if (waittime > to) waittime = to;
3958 }
3959
3960#if EV_PERIODIC_ENABLE
3961 if (periodiccnt)
3962 {
3963 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3964 if (waittime > to) waittime = to;
3965 }
3966#endif
3967
3968 /* don't let timeouts decrease the waittime below timeout_blocktime */
3969 if (ecb_expect_false (waittime < timeout_blocktime))
3970 waittime = timeout_blocktime;
3971
3972 /* now there are two more special cases left, either we have
3973 * already-expired timers, so we should not sleep, or we have timers
3974 * that expire very soon, in which case we need to wait for a minimum
3975 * amount of time for some event loop backends.
3976 */
3977 if (ecb_expect_false (waittime < backend_mintime))
3978 waittime = waittime <= EV_TS_CONST (0.)
3979 ? EV_TS_CONST (0.)
3980 : backend_mintime;
3981
3982 /* extra check because io_blocktime is commonly 0 */
3983 if (ecb_expect_false (io_blocktime))
3984 {
3985 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3986
3987 if (sleeptime > waittime - backend_mintime)
3988 sleeptime = waittime - backend_mintime;
3989
3990 if (ecb_expect_true (sleeptime > EV_TS_CONST (0.)))
3991 {
3992 ev_sleep (sleeptime);
3993 waittime -= sleeptime;
3994 }
3995 }
3996 }
3997
3998#if EV_FEATURE_API
3999 ++loop_count;
4000#endif
4001 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
4002 backend_poll (EV_A_ waittime);
4003 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
4004
4005 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
4006
4007 ECB_MEMORY_FENCE_ACQUIRE;
4008 if (pipe_write_skipped)
4009 {
4010 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
4011 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
4012 }
4013
4014 /* update ev_rt_now, do magic */
4015 time_update (EV_A_ waittime + sleeptime);
4016 }
4017
4018 /* queue pending timers and reschedule them */
4019 timers_reify (EV_A); /* relative timers called last */
4020#if EV_PERIODIC_ENABLE
4021 periodics_reify (EV_A); /* absolute timers called first */
4022#endif
4023
4024#if EV_IDLE_ENABLE
4025 /* queue idle watchers unless other events are pending */
4026 idle_reify (EV_A);
4027#endif
4028
4029#if EV_CHECK_ENABLE
4030 /* queue check watchers, to be executed first */
4031 if (ecb_expect_false (checkcnt))
4032 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
4033#endif
4034
4035 EV_INVOKE_PENDING;
4036 }
4037 while (ecb_expect_true (
4038 activecnt
4039 && !loop_done
4040 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
4041 ));
4042
4043 if (loop_done == EVBREAK_ONE)
4044 loop_done = EVBREAK_CANCEL;
4045
4046#if EV_FEATURE_API
4047 --loop_depth;
4048#endif
4049
4050 return activecnt;
4051}
4052
4053void
4054ev_break (EV_P_ int how) EV_NOEXCEPT
4055{
4056 loop_done = how;
4057}
4058
4059void
4060ev_ref (EV_P) EV_NOEXCEPT
4061{
4062 ++activecnt;
4063}
4064
4065void
4066ev_unref (EV_P) EV_NOEXCEPT
4067{
4068 --activecnt;
4069}
4070
4071void
4072ev_now_update (EV_P) EV_NOEXCEPT
4073{
4074 time_update (EV_A_ EV_TSTAMP_HUGE);
4075}
4076
4077void
4078ev_suspend (EV_P) EV_NOEXCEPT
4079{
4080 ev_now_update (EV_A);
4081}
4082
4083void
4084ev_resume (EV_P) EV_NOEXCEPT
4085{
4086 ev_tstamp mn_prev = mn_now;
4087
4088 ev_now_update (EV_A);
4089 timers_reschedule (EV_A_ mn_now - mn_prev);
4090#if EV_PERIODIC_ENABLE
4091 /* TODO: really do this? */
4092 periodics_reschedule (EV_A);
4093#endif
633} 4094}
634 4095
635/*****************************************************************************/ 4096/*****************************************************************************/
4097/* singly-linked list management, used when the expected list length is short */
636 4098
637static void 4099inline_size void
638call_pending (void) 4100wlist_add (WL *head, WL elem)
639{ 4101{
640 int pri; 4102 elem->next = *head;
4103 *head = elem;
4104}
641 4105
642 for (pri = NUMPRI; pri--; ) 4106inline_size void
643 while (pendingcnt [pri]) 4107wlist_del (WL *head, WL elem)
4108{
4109 while (*head)
4110 {
4111 if (ecb_expect_true (*head == elem))
4112 {
4113 *head = elem->next;
4114 break;
4115 }
4116
4117 head = &(*head)->next;
4118 }
4119}
4120
4121/* internal, faster, version of ev_clear_pending */
4122inline_speed void
4123clear_pending (EV_P_ W w)
4124{
4125 if (w->pending)
4126 {
4127 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
4128 w->pending = 0;
4129 }
4130}
4131
4132int
4133ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
4134{
4135 W w_ = (W)w;
4136 int pending = w_->pending;
4137
4138 if (ecb_expect_true (pending))
4139 {
4140 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
4141 p->w = (W)&pending_w;
4142 w_->pending = 0;
4143 return p->events;
4144 }
4145 else
4146 return 0;
4147}
4148
4149inline_size void
4150pri_adjust (EV_P_ W w)
4151{
4152 int pri = ev_priority (w);
4153 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
4154 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
4155 ev_set_priority (w, pri);
4156}
4157
4158inline_speed void
4159ev_start (EV_P_ W w, int active)
4160{
4161 pri_adjust (EV_A_ w);
4162 w->active = active;
4163 ev_ref (EV_A);
4164}
4165
4166inline_size void
4167ev_stop (EV_P_ W w)
4168{
4169 ev_unref (EV_A);
4170 w->active = 0;
4171}
4172
4173/*****************************************************************************/
4174
4175ecb_noinline
4176void
4177ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
4178{
4179 int fd = w->fd;
4180
4181 if (ecb_expect_false (ev_is_active (w)))
4182 return;
4183
4184 assert (("libev: ev_io_start called with negative fd", fd >= 0));
4185 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
4186
4187#if EV_VERIFY >= 2
4188 assert (("libev: ev_io_start called on watcher with invalid fd", fd_valid (fd)));
4189#endif
4190 EV_FREQUENT_CHECK;
4191
4192 ev_start (EV_A_ (W)w, 1);
4193 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
4194 wlist_add (&anfds[fd].head, (WL)w);
4195
4196 /* common bug, apparently */
4197 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
4198
4199 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
4200 w->events &= ~EV__IOFDSET;
4201
4202 EV_FREQUENT_CHECK;
4203}
4204
4205ecb_noinline
4206void
4207ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
4208{
4209 clear_pending (EV_A_ (W)w);
4210 if (ecb_expect_false (!ev_is_active (w)))
4211 return;
4212
4213 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
4214
4215#if EV_VERIFY >= 2
4216 assert (("libev: ev_io_stop called on watcher with invalid fd", fd_valid (w->fd)));
4217#endif
4218 EV_FREQUENT_CHECK;
4219
4220 wlist_del (&anfds[w->fd].head, (WL)w);
4221 ev_stop (EV_A_ (W)w);
4222
4223 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
4224
4225 EV_FREQUENT_CHECK;
4226}
4227
4228ecb_noinline
4229void
4230ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
4231{
4232 if (ecb_expect_false (ev_is_active (w)))
4233 return;
4234
4235 ev_at (w) += mn_now;
4236
4237 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
4238
4239 EV_FREQUENT_CHECK;
4240
4241 ++timercnt;
4242 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
4243 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
4244 ANHE_w (timers [ev_active (w)]) = (WT)w;
4245 ANHE_at_cache (timers [ev_active (w)]);
4246 upheap (timers, ev_active (w));
4247
4248 EV_FREQUENT_CHECK;
4249
4250 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
4251}
4252
4253ecb_noinline
4254void
4255ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
4256{
4257 clear_pending (EV_A_ (W)w);
4258 if (ecb_expect_false (!ev_is_active (w)))
4259 return;
4260
4261 EV_FREQUENT_CHECK;
4262
4263 {
4264 int active = ev_active (w);
4265
4266 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
4267
4268 --timercnt;
4269
4270 if (ecb_expect_true (active < timercnt + HEAP0))
644 { 4271 {
645 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 4272 timers [active] = timers [timercnt + HEAP0];
646 4273 adjustheap (timers, timercnt, active);
647 if (p->w)
648 {
649 p->w->pending = 0;
650 p->w->cb (p->w, p->events);
651 }
652 } 4274 }
653} 4275 }
654 4276
655static void 4277 ev_at (w) -= mn_now;
656timers_reify (void)
657{
658 while (timercnt && timers [0]->at <= now)
659 {
660 struct ev_timer *w = timers [0];
661 4278
662 /* first reschedule or stop timer */ 4279 ev_stop (EV_A_ (W)w);
4280
4281 EV_FREQUENT_CHECK;
4282}
4283
4284ecb_noinline
4285void
4286ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
4287{
4288 EV_FREQUENT_CHECK;
4289
4290 clear_pending (EV_A_ (W)w);
4291
4292 if (ev_is_active (w))
4293 {
663 if (w->repeat) 4294 if (w->repeat)
664 { 4295 {
665 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
666 w->at = now + w->repeat; 4296 ev_at (w) = mn_now + w->repeat;
667 downheap ((WT *)timers, timercnt, 0); 4297 ANHE_at_cache (timers [ev_active (w)]);
4298 adjustheap (timers, timercnt, ev_active (w));
668 } 4299 }
669 else 4300 else
670 ev_timer_stop (w); /* nonrepeating: stop timer */ 4301 ev_timer_stop (EV_A_ w);
671
672 event ((W)w, EV_TIMEOUT);
673 }
674}
675
676static void
677periodics_reify (void)
678{
679 while (periodiccnt && periodics [0]->at <= ev_now)
680 { 4302 }
681 struct ev_periodic *w = periodics [0]; 4303 else if (w->repeat)
4304 {
4305 ev_at (w) = w->repeat;
4306 ev_timer_start (EV_A_ w);
4307 }
682 4308
683 /* first reschedule or stop timer */ 4309 EV_FREQUENT_CHECK;
4310}
4311
4312ev_tstamp
4313ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4314{
4315 return ev_at (w) - (ev_is_active (w) ? mn_now : EV_TS_CONST (0.));
4316}
4317
4318#if EV_PERIODIC_ENABLE
4319ecb_noinline
4320void
4321ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
4322{
4323 if (ecb_expect_false (ev_is_active (w)))
4324 return;
4325
4326#if EV_USE_TIMERFD
4327 if (timerfd == -2)
4328 evtimerfd_init (EV_A);
4329#endif
4330
4331 if (w->reschedule_cb)
4332 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
684 if (w->interval) 4333 else if (w->interval)
4334 {
4335 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
4336 periodic_recalc (EV_A_ w);
4337 }
4338 else
4339 ev_at (w) = w->offset;
4340
4341 EV_FREQUENT_CHECK;
4342
4343 ++periodiccnt;
4344 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
4345 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
4346 ANHE_w (periodics [ev_active (w)]) = (WT)w;
4347 ANHE_at_cache (periodics [ev_active (w)]);
4348 upheap (periodics, ev_active (w));
4349
4350 EV_FREQUENT_CHECK;
4351
4352 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
4353}
4354
4355ecb_noinline
4356void
4357ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
4358{
4359 clear_pending (EV_A_ (W)w);
4360 if (ecb_expect_false (!ev_is_active (w)))
4361 return;
4362
4363 EV_FREQUENT_CHECK;
4364
4365 {
4366 int active = ev_active (w);
4367
4368 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
4369
4370 --periodiccnt;
4371
4372 if (ecb_expect_true (active < periodiccnt + HEAP0))
4373 {
4374 periodics [active] = periodics [periodiccnt + HEAP0];
4375 adjustheap (periodics, periodiccnt, active);
4376 }
4377 }
4378
4379 ev_stop (EV_A_ (W)w);
4380
4381 EV_FREQUENT_CHECK;
4382}
4383
4384ecb_noinline
4385void
4386ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
4387{
4388 /* TODO: use adjustheap and recalculation */
4389 ev_periodic_stop (EV_A_ w);
4390 ev_periodic_start (EV_A_ w);
4391}
4392#endif
4393
4394#ifndef SA_RESTART
4395# define SA_RESTART 0
4396#endif
4397
4398#if EV_SIGNAL_ENABLE
4399
4400ecb_noinline
4401void
4402ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
4403{
4404 if (ecb_expect_false (ev_is_active (w)))
4405 return;
4406
4407 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4408
4409#if EV_MULTIPLICITY
4410 assert (("libev: a signal must not be attached to two different loops",
4411 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4412
4413 signals [w->signum - 1].loop = EV_A;
4414 ECB_MEMORY_FENCE_RELEASE;
4415#endif
4416
4417 EV_FREQUENT_CHECK;
4418
4419#if EV_USE_SIGNALFD
4420 if (sigfd == -2)
4421 {
4422 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
4423 if (sigfd < 0 && errno == EINVAL)
4424 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
4425
4426 if (sigfd >= 0)
685 { 4427 {
686 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 4428 fd_intern (sigfd); /* doing it twice will not hurt */
687 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 4429
688 downheap ((WT *)periodics, periodiccnt, 0); 4430 sigemptyset (&sigfd_set);
4431
4432 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4433 ev_set_priority (&sigfd_w, EV_MAXPRI);
4434 ev_io_start (EV_A_ &sigfd_w);
4435 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4436 }
4437 }
4438
4439 if (sigfd >= 0)
4440 {
4441 /* TODO: check .head */
4442 sigaddset (&sigfd_set, w->signum);
4443 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4444
4445 signalfd (sigfd, &sigfd_set, 0);
4446 }
4447#endif
4448
4449 ev_start (EV_A_ (W)w, 1);
4450 wlist_add (&signals [w->signum - 1].head, (WL)w);
4451
4452 if (!((WL)w)->next)
4453# if EV_USE_SIGNALFD
4454 if (sigfd < 0) /*TODO*/
4455# endif
4456 {
4457# ifdef _WIN32
4458 evpipe_init (EV_A);
4459
4460 signal (w->signum, ev_sighandler);
4461# else
4462 struct sigaction sa;
4463
4464 evpipe_init (EV_A);
4465
4466 sa.sa_handler = ev_sighandler;
4467 sigfillset (&sa.sa_mask);
4468 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
4469 sigaction (w->signum, &sa, 0);
4470
4471 if (origflags & EVFLAG_NOSIGMASK)
4472 {
4473 sigemptyset (&sa.sa_mask);
4474 sigaddset (&sa.sa_mask, w->signum);
4475 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4476 }
4477#endif
4478 }
4479
4480 EV_FREQUENT_CHECK;
4481}
4482
4483ecb_noinline
4484void
4485ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
4486{
4487 clear_pending (EV_A_ (W)w);
4488 if (ecb_expect_false (!ev_is_active (w)))
4489 return;
4490
4491 EV_FREQUENT_CHECK;
4492
4493 wlist_del (&signals [w->signum - 1].head, (WL)w);
4494 ev_stop (EV_A_ (W)w);
4495
4496 if (!signals [w->signum - 1].head)
4497 {
4498#if EV_MULTIPLICITY
4499 signals [w->signum - 1].loop = 0; /* unattach from signal */
4500#endif
4501#if EV_USE_SIGNALFD
4502 if (sigfd >= 0)
4503 {
4504 sigset_t ss;
4505
4506 sigemptyset (&ss);
4507 sigaddset (&ss, w->signum);
4508 sigdelset (&sigfd_set, w->signum);
4509
4510 signalfd (sigfd, &sigfd_set, 0);
4511 sigprocmask (SIG_UNBLOCK, &ss, 0);
689 } 4512 }
690 else 4513 else
691 ev_periodic_stop (w); /* nonrepeating: stop timer */ 4514#endif
692 4515 signal (w->signum, SIG_DFL);
693 event ((W)w, EV_PERIODIC);
694 } 4516 }
695}
696 4517
4518 EV_FREQUENT_CHECK;
4519}
4520
4521#endif
4522
4523#if EV_CHILD_ENABLE
4524
4525void
4526ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4527{
4528#if EV_MULTIPLICITY
4529 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
4530#endif
4531 if (ecb_expect_false (ev_is_active (w)))
4532 return;
4533
4534 EV_FREQUENT_CHECK;
4535
4536 ev_start (EV_A_ (W)w, 1);
4537 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4538
4539 EV_FREQUENT_CHECK;
4540}
4541
4542void
4543ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
4544{
4545 clear_pending (EV_A_ (W)w);
4546 if (ecb_expect_false (!ev_is_active (w)))
4547 return;
4548
4549 EV_FREQUENT_CHECK;
4550
4551 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4552 ev_stop (EV_A_ (W)w);
4553
4554 EV_FREQUENT_CHECK;
4555}
4556
4557#endif
4558
4559#if EV_STAT_ENABLE
4560
4561# ifdef _WIN32
4562# undef lstat
4563# define lstat(a,b) _stati64 (a,b)
4564# endif
4565
4566#define DEF_STAT_INTERVAL 5.0074891
4567#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4568#define MIN_STAT_INTERVAL 0.1074891
4569
4570ecb_noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4571
4572#if EV_USE_INOTIFY
4573
4574/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4575# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4576
4577ecb_noinline
697static void 4578static void
698periodics_reschedule (ev_tstamp diff) 4579infy_add (EV_P_ ev_stat *w)
699{ 4580{
700 int i; 4581 w->wd = inotify_add_watch (fs_fd, w->path,
4582 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4583 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4584 | IN_DONT_FOLLOW | IN_MASK_ADD);
701 4585
702 /* adjust periodics after time jump */ 4586 if (w->wd >= 0)
703 for (i = 0; i < periodiccnt; ++i) 4587 {
4588 struct statfs sfs;
4589
4590 /* now local changes will be tracked by inotify, but remote changes won't */
4591 /* unless the filesystem is known to be local, we therefore still poll */
4592 /* also do poll on <2.6.25, but with normal frequency */
4593
4594 if (!fs_2625)
4595 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4596 else if (!statfs (w->path, &sfs)
4597 && (sfs.f_type == 0x1373 /* devfs */
4598 || sfs.f_type == 0x4006 /* fat */
4599 || sfs.f_type == 0x4d44 /* msdos */
4600 || sfs.f_type == 0xEF53 /* ext2/3 */
4601 || sfs.f_type == 0x72b6 /* jffs2 */
4602 || sfs.f_type == 0x858458f6 /* ramfs */
4603 || sfs.f_type == 0x5346544e /* ntfs */
4604 || sfs.f_type == 0x3153464a /* jfs */
4605 || sfs.f_type == 0x9123683e /* btrfs */
4606 || sfs.f_type == 0x52654973 /* reiser3 */
4607 || sfs.f_type == 0x01021994 /* tmpfs */
4608 || sfs.f_type == 0x58465342 /* xfs */))
4609 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4610 else
4611 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
704 { 4612 }
705 struct ev_periodic *w = periodics [i]; 4613 else
4614 {
4615 /* can't use inotify, continue to stat */
4616 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
706 4617
707 if (w->interval) 4618 /* if path is not there, monitor some parent directory for speedup hints */
4619 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4620 /* but an efficiency issue only */
4621 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
708 { 4622 {
709 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 4623 char path [4096];
4624 strcpy (path, w->path);
710 4625
711 if (fabs (diff) >= 1e-4) 4626 do
712 { 4627 {
713 ev_periodic_stop (w); 4628 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
714 ev_periodic_start (w); 4629 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
715 4630
716 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 4631 char *pend = strrchr (path, '/');
4632
4633 if (!pend || pend == path)
4634 break;
4635
4636 *pend = 0;
4637 w->wd = inotify_add_watch (fs_fd, path, mask);
4638 }
4639 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4640 }
4641 }
4642
4643 if (w->wd >= 0)
4644 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4645
4646 /* now re-arm timer, if required */
4647 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4648 ev_timer_again (EV_A_ &w->timer);
4649 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4650}
4651
4652ecb_noinline
4653static void
4654infy_del (EV_P_ ev_stat *w)
4655{
4656 int slot;
4657 int wd = w->wd;
4658
4659 if (wd < 0)
4660 return;
4661
4662 w->wd = -2;
4663 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4664 wlist_del (&fs_hash [slot].head, (WL)w);
4665
4666 /* remove this watcher, if others are watching it, they will rearm */
4667 inotify_rm_watch (fs_fd, wd);
4668}
4669
4670ecb_noinline
4671static void
4672infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4673{
4674 if (slot < 0)
4675 /* overflow, need to check for all hash slots */
4676 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4677 infy_wd (EV_A_ slot, wd, ev);
4678 else
4679 {
4680 WL w_;
4681
4682 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4683 {
4684 ev_stat *w = (ev_stat *)w_;
4685 w_ = w_->next; /* lets us remove this watcher and all before it */
4686
4687 if (w->wd == wd || wd == -1)
4688 {
4689 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4690 {
4691 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4692 w->wd = -1;
4693 infy_add (EV_A_ w); /* re-add, no matter what */
4694 }
4695
4696 stat_timer_cb (EV_A_ &w->timer, 0);
717 } 4697 }
718 } 4698 }
719 } 4699 }
720} 4700}
721 4701
722static int 4702static void
723time_update_monotonic (void) 4703infy_cb (EV_P_ ev_io *w, int revents)
724{ 4704{
725 now = get_clock (); 4705 char buf [EV_INOTIFY_BUFSIZE];
4706 int ofs;
4707 int len = read (fs_fd, buf, sizeof (buf));
726 4708
727 if (expect_true (now - now_floor < MIN_TIMEJUMP * .5)) 4709 for (ofs = 0; ofs < len; )
4710 {
4711 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4712 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4713 ofs += sizeof (struct inotify_event) + ev->len;
728 { 4714 }
729 ev_now = now + diff; 4715}
4716
4717inline_size ecb_cold
4718void
4719ev_check_2625 (EV_P)
4720{
4721 /* kernels < 2.6.25 are borked
4722 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4723 */
4724 if (ev_linux_version () < 0x020619)
730 return 0; 4725 return;
4726
4727 fs_2625 = 1;
4728}
4729
4730inline_size int
4731infy_newfd (void)
4732{
4733#if defined IN_CLOEXEC && defined IN_NONBLOCK
4734 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4735 if (fd >= 0)
4736 return fd;
4737#endif
4738 return inotify_init ();
4739}
4740
4741inline_size void
4742infy_init (EV_P)
4743{
4744 if (fs_fd != -2)
4745 return;
4746
4747 fs_fd = -1;
4748
4749 ev_check_2625 (EV_A);
4750
4751 fs_fd = infy_newfd ();
4752
4753 if (fs_fd >= 0)
731 } 4754 {
4755 fd_intern (fs_fd);
4756 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4757 ev_set_priority (&fs_w, EV_MAXPRI);
4758 ev_io_start (EV_A_ &fs_w);
4759 ev_unref (EV_A);
4760 }
4761}
4762
4763inline_size void
4764infy_fork (EV_P)
4765{
4766 int slot;
4767
4768 if (fs_fd < 0)
4769 return;
4770
4771 ev_ref (EV_A);
4772 ev_io_stop (EV_A_ &fs_w);
4773 close (fs_fd);
4774 fs_fd = infy_newfd ();
4775
4776 if (fs_fd >= 0)
4777 {
4778 fd_intern (fs_fd);
4779 ev_io_set (&fs_w, fs_fd, EV_READ);
4780 ev_io_start (EV_A_ &fs_w);
4781 ev_unref (EV_A);
4782 }
4783
4784 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4785 {
4786 WL w_ = fs_hash [slot].head;
4787 fs_hash [slot].head = 0;
4788
4789 while (w_)
4790 {
4791 ev_stat *w = (ev_stat *)w_;
4792 w_ = w_->next; /* lets us add this watcher */
4793
4794 w->wd = -1;
4795
4796 if (fs_fd >= 0)
4797 infy_add (EV_A_ w); /* re-add, no matter what */
4798 else
4799 {
4800 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4801 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4802 ev_timer_again (EV_A_ &w->timer);
4803 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4804 }
4805 }
4806 }
4807}
4808
4809#endif
4810
4811#ifdef _WIN32
4812# define EV_LSTAT(p,b) _stati64 (p, b)
4813#else
4814# define EV_LSTAT(p,b) lstat (p, b)
4815#endif
4816
4817void
4818ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
4819{
4820 if (lstat (w->path, &w->attr) < 0)
4821 w->attr.st_nlink = 0;
4822 else if (!w->attr.st_nlink)
4823 w->attr.st_nlink = 1;
4824}
4825
4826ecb_noinline
4827static void
4828stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4829{
4830 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4831
4832 ev_statdata prev = w->attr;
4833 ev_stat_stat (EV_A_ w);
4834
4835 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4836 if (
4837 prev.st_dev != w->attr.st_dev
4838 || prev.st_ino != w->attr.st_ino
4839 || prev.st_mode != w->attr.st_mode
4840 || prev.st_nlink != w->attr.st_nlink
4841 || prev.st_uid != w->attr.st_uid
4842 || prev.st_gid != w->attr.st_gid
4843 || prev.st_rdev != w->attr.st_rdev
4844 || prev.st_size != w->attr.st_size
4845 || prev.st_atime != w->attr.st_atime
4846 || prev.st_mtime != w->attr.st_mtime
4847 || prev.st_ctime != w->attr.st_ctime
4848 ) {
4849 /* we only update w->prev on actual differences */
4850 /* in case we test more often than invoke the callback, */
4851 /* to ensure that prev is always different to attr */
4852 w->prev = prev;
4853
4854 #if EV_USE_INOTIFY
4855 if (fs_fd >= 0)
4856 {
4857 infy_del (EV_A_ w);
4858 infy_add (EV_A_ w);
4859 ev_stat_stat (EV_A_ w); /* avoid race... */
4860 }
4861 #endif
4862
4863 ev_feed_event (EV_A_ w, EV_STAT);
4864 }
4865}
4866
4867void
4868ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
4869{
4870 if (ecb_expect_false (ev_is_active (w)))
4871 return;
4872
4873 ev_stat_stat (EV_A_ w);
4874
4875 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4876 w->interval = MIN_STAT_INTERVAL;
4877
4878 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4879 ev_set_priority (&w->timer, ev_priority (w));
4880
4881#if EV_USE_INOTIFY
4882 infy_init (EV_A);
4883
4884 if (fs_fd >= 0)
4885 infy_add (EV_A_ w);
732 else 4886 else
4887#endif
4888 {
4889 ev_timer_again (EV_A_ &w->timer);
4890 ev_unref (EV_A);
733 { 4891 }
734 now_floor = now; 4892
735 ev_now = ev_time (); 4893 ev_start (EV_A_ (W)w, 1);
4894
4895 EV_FREQUENT_CHECK;
4896}
4897
4898void
4899ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
4900{
4901 clear_pending (EV_A_ (W)w);
4902 if (ecb_expect_false (!ev_is_active (w)))
736 return 1; 4903 return;
4904
4905 EV_FREQUENT_CHECK;
4906
4907#if EV_USE_INOTIFY
4908 infy_del (EV_A_ w);
4909#endif
4910
4911 if (ev_is_active (&w->timer))
737 } 4912 {
4913 ev_ref (EV_A);
4914 ev_timer_stop (EV_A_ &w->timer);
4915 }
4916
4917 ev_stop (EV_A_ (W)w);
4918
4919 EV_FREQUENT_CHECK;
4920}
4921#endif
4922
4923#if EV_IDLE_ENABLE
4924void
4925ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
4926{
4927 if (ecb_expect_false (ev_is_active (w)))
4928 return;
4929
4930 pri_adjust (EV_A_ (W)w);
4931
4932 EV_FREQUENT_CHECK;
4933
4934 {
4935 int active = ++idlecnt [ABSPRI (w)];
4936
4937 ++idleall;
4938 ev_start (EV_A_ (W)w, active);
4939
4940 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
4941 idles [ABSPRI (w)][active - 1] = w;
4942 }
4943
4944 EV_FREQUENT_CHECK;
4945}
4946
4947void
4948ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
4949{
4950 clear_pending (EV_A_ (W)w);
4951 if (ecb_expect_false (!ev_is_active (w)))
4952 return;
4953
4954 EV_FREQUENT_CHECK;
4955
4956 {
4957 int active = ev_active (w);
4958
4959 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4960 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4961
4962 ev_stop (EV_A_ (W)w);
4963 --idleall;
4964 }
4965
4966 EV_FREQUENT_CHECK;
4967}
4968#endif
4969
4970#if EV_PREPARE_ENABLE
4971void
4972ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
4973{
4974 if (ecb_expect_false (ev_is_active (w)))
4975 return;
4976
4977 EV_FREQUENT_CHECK;
4978
4979 ev_start (EV_A_ (W)w, ++preparecnt);
4980 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
4981 prepares [preparecnt - 1] = w;
4982
4983 EV_FREQUENT_CHECK;
4984}
4985
4986void
4987ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
4988{
4989 clear_pending (EV_A_ (W)w);
4990 if (ecb_expect_false (!ev_is_active (w)))
4991 return;
4992
4993 EV_FREQUENT_CHECK;
4994
4995 {
4996 int active = ev_active (w);
4997
4998 prepares [active - 1] = prepares [--preparecnt];
4999 ev_active (prepares [active - 1]) = active;
5000 }
5001
5002 ev_stop (EV_A_ (W)w);
5003
5004 EV_FREQUENT_CHECK;
5005}
5006#endif
5007
5008#if EV_CHECK_ENABLE
5009void
5010ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
5011{
5012 if (ecb_expect_false (ev_is_active (w)))
5013 return;
5014
5015 EV_FREQUENT_CHECK;
5016
5017 ev_start (EV_A_ (W)w, ++checkcnt);
5018 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
5019 checks [checkcnt - 1] = w;
5020
5021 EV_FREQUENT_CHECK;
5022}
5023
5024void
5025ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
5026{
5027 clear_pending (EV_A_ (W)w);
5028 if (ecb_expect_false (!ev_is_active (w)))
5029 return;
5030
5031 EV_FREQUENT_CHECK;
5032
5033 {
5034 int active = ev_active (w);
5035
5036 checks [active - 1] = checks [--checkcnt];
5037 ev_active (checks [active - 1]) = active;
5038 }
5039
5040 ev_stop (EV_A_ (W)w);
5041
5042 EV_FREQUENT_CHECK;
5043}
5044#endif
5045
5046#if EV_EMBED_ENABLE
5047ecb_noinline
5048void
5049ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
5050{
5051 ev_run (w->other, EVRUN_NOWAIT);
738} 5052}
739 5053
740static void 5054static void
741time_update (void) 5055embed_io_cb (EV_P_ ev_io *io, int revents)
742{ 5056{
743 int i; 5057 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
744 5058
745#if EV_USE_MONOTONIC 5059 if (ev_cb (w))
746 if (expect_true (have_monotonic)) 5060 ev_feed_event (EV_A_ (W)w, EV_EMBED);
747 {
748 if (time_update_monotonic ())
749 {
750 ev_tstamp odiff = diff;
751
752 for (i = 4; --i; ) /* loop a few times, before making important decisions */
753 {
754 diff = ev_now - now;
755
756 if (fabs (odiff - diff) < MIN_TIMEJUMP)
757 return; /* all is well */
758
759 ev_now = ev_time ();
760 now = get_clock ();
761 now_floor = now;
762 }
763
764 periodics_reschedule (diff - odiff);
765 /* no timer adjustment, as the monotonic clock doesn't jump */
766 }
767 }
768 else 5061 else
769#endif 5062 ev_run (w->other, EVRUN_NOWAIT);
5063}
5064
5065static void
5066embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
5067{
5068 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
5069
770 { 5070 {
771 ev_now = ev_time (); 5071 EV_P = w->other;
772 5072
773 if (expect_false (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 5073 while (fdchangecnt)
774 { 5074 {
775 periodics_reschedule (ev_now - now); 5075 fd_reify (EV_A);
776 5076 ev_run (EV_A_ EVRUN_NOWAIT);
777 /* adjust timers. this is easy, as the offset is the same for all */
778 for (i = 0; i < timercnt; ++i)
779 timers [i]->at += diff;
780 } 5077 }
781
782 now = ev_now;
783 } 5078 }
784} 5079}
785 5080
786int ev_loop_done; 5081#if EV_FORK_ENABLE
787 5082static void
788void ev_loop (int flags) 5083embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
789{ 5084{
790 double block; 5085 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
791 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
792 5086
793 do 5087 ev_embed_stop (EV_A_ w);
5088
794 { 5089 {
795 /* queue check watchers (and execute them) */ 5090 EV_P = w->other;
796 if (expect_false (preparecnt))
797 {
798 queue_events ((W *)prepares, preparecnt, EV_PREPARE);
799 call_pending ();
800 }
801 5091
802 /* update fd-related kernel structures */ 5092 ev_loop_fork (EV_A);
803 fd_reify (); 5093 ev_run (EV_A_ EVRUN_NOWAIT);
804
805 /* calculate blocking time */
806
807 /* we only need this for !monotonic clockor timers, but as we basically
808 always have timers, we just calculate it always */
809#if EV_USE_MONOTONIC
810 if (expect_true (have_monotonic))
811 time_update_monotonic ();
812 else
813#endif
814 {
815 ev_now = ev_time ();
816 now = ev_now;
817 }
818
819 if (flags & EVLOOP_NONBLOCK || idlecnt)
820 block = 0.;
821 else
822 {
823 block = MAX_BLOCKTIME;
824
825 if (timercnt)
826 {
827 ev_tstamp to = timers [0]->at - now + method_fudge;
828 if (block > to) block = to;
829 }
830
831 if (periodiccnt)
832 {
833 ev_tstamp to = periodics [0]->at - ev_now + method_fudge;
834 if (block > to) block = to;
835 }
836
837 if (block < 0.) block = 0.;
838 }
839
840 method_poll (block);
841
842 /* update ev_now, do magic */
843 time_update ();
844
845 /* queue pending timers and reschedule them */
846 timers_reify (); /* relative timers called last */
847 periodics_reify (); /* absolute timers called first */
848
849 /* queue idle watchers unless io or timers are pending */
850 if (!pendingcnt)
851 queue_events ((W *)idles, idlecnt, EV_IDLE);
852
853 /* queue check watchers, to be executed first */
854 if (checkcnt)
855 queue_events ((W *)checks, checkcnt, EV_CHECK);
856
857 call_pending ();
858 } 5094 }
859 while (!ev_loop_done);
860 5095
861 if (ev_loop_done != 2) 5096 ev_embed_start (EV_A_ w);
862 ev_loop_done = 0;
863} 5097}
5098#endif
5099
5100#if 0
5101static void
5102embed_idle_cb (EV_P_ ev_idle *idle, int revents)
5103{
5104 ev_idle_stop (EV_A_ idle);
5105}
5106#endif
5107
5108void
5109ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
5110{
5111 if (ecb_expect_false (ev_is_active (w)))
5112 return;
5113
5114 {
5115 EV_P = w->other;
5116 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
5117 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
5118 }
5119
5120 EV_FREQUENT_CHECK;
5121
5122 ev_set_priority (&w->io, ev_priority (w));
5123 ev_io_start (EV_A_ &w->io);
5124
5125 ev_prepare_init (&w->prepare, embed_prepare_cb);
5126 ev_set_priority (&w->prepare, EV_MINPRI);
5127 ev_prepare_start (EV_A_ &w->prepare);
5128
5129#if EV_FORK_ENABLE
5130 ev_fork_init (&w->fork, embed_fork_cb);
5131 ev_fork_start (EV_A_ &w->fork);
5132#endif
5133
5134 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
5135
5136 ev_start (EV_A_ (W)w, 1);
5137
5138 EV_FREQUENT_CHECK;
5139}
5140
5141void
5142ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
5143{
5144 clear_pending (EV_A_ (W)w);
5145 if (ecb_expect_false (!ev_is_active (w)))
5146 return;
5147
5148 EV_FREQUENT_CHECK;
5149
5150 ev_io_stop (EV_A_ &w->io);
5151 ev_prepare_stop (EV_A_ &w->prepare);
5152#if EV_FORK_ENABLE
5153 ev_fork_stop (EV_A_ &w->fork);
5154#endif
5155
5156 ev_stop (EV_A_ (W)w);
5157
5158 EV_FREQUENT_CHECK;
5159}
5160#endif
5161
5162#if EV_FORK_ENABLE
5163void
5164ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
5165{
5166 if (ecb_expect_false (ev_is_active (w)))
5167 return;
5168
5169 EV_FREQUENT_CHECK;
5170
5171 ev_start (EV_A_ (W)w, ++forkcnt);
5172 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
5173 forks [forkcnt - 1] = w;
5174
5175 EV_FREQUENT_CHECK;
5176}
5177
5178void
5179ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
5180{
5181 clear_pending (EV_A_ (W)w);
5182 if (ecb_expect_false (!ev_is_active (w)))
5183 return;
5184
5185 EV_FREQUENT_CHECK;
5186
5187 {
5188 int active = ev_active (w);
5189
5190 forks [active - 1] = forks [--forkcnt];
5191 ev_active (forks [active - 1]) = active;
5192 }
5193
5194 ev_stop (EV_A_ (W)w);
5195
5196 EV_FREQUENT_CHECK;
5197}
5198#endif
5199
5200#if EV_CLEANUP_ENABLE
5201void
5202ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5203{
5204 if (ecb_expect_false (ev_is_active (w)))
5205 return;
5206
5207 EV_FREQUENT_CHECK;
5208
5209 ev_start (EV_A_ (W)w, ++cleanupcnt);
5210 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
5211 cleanups [cleanupcnt - 1] = w;
5212
5213 /* cleanup watchers should never keep a refcount on the loop */
5214 ev_unref (EV_A);
5215 EV_FREQUENT_CHECK;
5216}
5217
5218void
5219ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5220{
5221 clear_pending (EV_A_ (W)w);
5222 if (ecb_expect_false (!ev_is_active (w)))
5223 return;
5224
5225 EV_FREQUENT_CHECK;
5226 ev_ref (EV_A);
5227
5228 {
5229 int active = ev_active (w);
5230
5231 cleanups [active - 1] = cleanups [--cleanupcnt];
5232 ev_active (cleanups [active - 1]) = active;
5233 }
5234
5235 ev_stop (EV_A_ (W)w);
5236
5237 EV_FREQUENT_CHECK;
5238}
5239#endif
5240
5241#if EV_ASYNC_ENABLE
5242void
5243ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
5244{
5245 if (ecb_expect_false (ev_is_active (w)))
5246 return;
5247
5248 w->sent = 0;
5249
5250 evpipe_init (EV_A);
5251
5252 EV_FREQUENT_CHECK;
5253
5254 ev_start (EV_A_ (W)w, ++asynccnt);
5255 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
5256 asyncs [asynccnt - 1] = w;
5257
5258 EV_FREQUENT_CHECK;
5259}
5260
5261void
5262ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
5263{
5264 clear_pending (EV_A_ (W)w);
5265 if (ecb_expect_false (!ev_is_active (w)))
5266 return;
5267
5268 EV_FREQUENT_CHECK;
5269
5270 {
5271 int active = ev_active (w);
5272
5273 asyncs [active - 1] = asyncs [--asynccnt];
5274 ev_active (asyncs [active - 1]) = active;
5275 }
5276
5277 ev_stop (EV_A_ (W)w);
5278
5279 EV_FREQUENT_CHECK;
5280}
5281
5282void
5283ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
5284{
5285 w->sent = 1;
5286 evpipe_write (EV_A_ &async_pending);
5287}
5288#endif
864 5289
865/*****************************************************************************/ 5290/*****************************************************************************/
866 5291
867static void
868wlist_add (WL *head, WL elem)
869{
870 elem->next = *head;
871 *head = elem;
872}
873
874static void
875wlist_del (WL *head, WL elem)
876{
877 while (*head)
878 {
879 if (*head == elem)
880 {
881 *head = elem->next;
882 return;
883 }
884
885 head = &(*head)->next;
886 }
887}
888
889static void
890ev_clear_pending (W w)
891{
892 if (w->pending)
893 {
894 pendings [ABSPRI (w)][w->pending - 1].w = 0;
895 w->pending = 0;
896 }
897}
898
899static void
900ev_start (W w, int active)
901{
902 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
903 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
904
905 w->active = active;
906}
907
908static void
909ev_stop (W w)
910{
911 w->active = 0;
912}
913
914/*****************************************************************************/
915
916void
917ev_io_start (struct ev_io *w)
918{
919 int fd = w->fd;
920
921 if (ev_is_active (w))
922 return;
923
924 assert (("ev_io_start called with negative fd", fd >= 0));
925
926 ev_start ((W)w, 1);
927 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
928 wlist_add ((WL *)&anfds[fd].head, (WL)w);
929
930 fd_change (fd);
931}
932
933void
934ev_io_stop (struct ev_io *w)
935{
936 ev_clear_pending ((W)w);
937 if (!ev_is_active (w))
938 return;
939
940 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
941 ev_stop ((W)w);
942
943 fd_change (w->fd);
944}
945
946void
947ev_timer_start (struct ev_timer *w)
948{
949 if (ev_is_active (w))
950 return;
951
952 w->at += now;
953
954 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
955
956 ev_start ((W)w, ++timercnt);
957 array_needsize (timers, timermax, timercnt, );
958 timers [timercnt - 1] = w;
959 upheap ((WT *)timers, timercnt - 1);
960}
961
962void
963ev_timer_stop (struct ev_timer *w)
964{
965 ev_clear_pending ((W)w);
966 if (!ev_is_active (w))
967 return;
968
969 if (w->active < timercnt--)
970 {
971 timers [w->active - 1] = timers [timercnt];
972 downheap ((WT *)timers, timercnt, w->active - 1);
973 }
974
975 w->at = w->repeat;
976
977 ev_stop ((W)w);
978}
979
980void
981ev_timer_again (struct ev_timer *w)
982{
983 if (ev_is_active (w))
984 {
985 if (w->repeat)
986 {
987 w->at = now + w->repeat;
988 downheap ((WT *)timers, timercnt, w->active - 1);
989 }
990 else
991 ev_timer_stop (w);
992 }
993 else if (w->repeat)
994 ev_timer_start (w);
995}
996
997void
998ev_periodic_start (struct ev_periodic *w)
999{
1000 if (ev_is_active (w))
1001 return;
1002
1003 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1004
1005 /* this formula differs from the one in periodic_reify because we do not always round up */
1006 if (w->interval)
1007 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval;
1008
1009 ev_start ((W)w, ++periodiccnt);
1010 array_needsize (periodics, periodicmax, periodiccnt, );
1011 periodics [periodiccnt - 1] = w;
1012 upheap ((WT *)periodics, periodiccnt - 1);
1013}
1014
1015void
1016ev_periodic_stop (struct ev_periodic *w)
1017{
1018 ev_clear_pending ((W)w);
1019 if (!ev_is_active (w))
1020 return;
1021
1022 if (w->active < periodiccnt--)
1023 {
1024 periodics [w->active - 1] = periodics [periodiccnt];
1025 downheap ((WT *)periodics, periodiccnt, w->active - 1);
1026 }
1027
1028 ev_stop ((W)w);
1029}
1030
1031#ifndef SA_RESTART
1032# define SA_RESTART 0
1033#endif
1034
1035void
1036ev_signal_start (struct ev_signal *w)
1037{
1038 if (ev_is_active (w))
1039 return;
1040
1041 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1042
1043 ev_start ((W)w, 1);
1044 array_needsize (signals, signalmax, w->signum, signals_init);
1045 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1046
1047 if (!w->next)
1048 {
1049 struct sigaction sa;
1050 sa.sa_handler = sighandler;
1051 sigfillset (&sa.sa_mask);
1052 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1053 sigaction (w->signum, &sa, 0);
1054 }
1055}
1056
1057void
1058ev_signal_stop (struct ev_signal *w)
1059{
1060 ev_clear_pending ((W)w);
1061 if (!ev_is_active (w))
1062 return;
1063
1064 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1065 ev_stop ((W)w);
1066
1067 if (!signals [w->signum - 1].head)
1068 signal (w->signum, SIG_DFL);
1069}
1070
1071void
1072ev_idle_start (struct ev_idle *w)
1073{
1074 if (ev_is_active (w))
1075 return;
1076
1077 ev_start ((W)w, ++idlecnt);
1078 array_needsize (idles, idlemax, idlecnt, );
1079 idles [idlecnt - 1] = w;
1080}
1081
1082void
1083ev_idle_stop (struct ev_idle *w)
1084{
1085 ev_clear_pending ((W)w);
1086 if (ev_is_active (w))
1087 return;
1088
1089 idles [w->active - 1] = idles [--idlecnt];
1090 ev_stop ((W)w);
1091}
1092
1093void
1094ev_prepare_start (struct ev_prepare *w)
1095{
1096 if (ev_is_active (w))
1097 return;
1098
1099 ev_start ((W)w, ++preparecnt);
1100 array_needsize (prepares, preparemax, preparecnt, );
1101 prepares [preparecnt - 1] = w;
1102}
1103
1104void
1105ev_prepare_stop (struct ev_prepare *w)
1106{
1107 ev_clear_pending ((W)w);
1108 if (ev_is_active (w))
1109 return;
1110
1111 prepares [w->active - 1] = prepares [--preparecnt];
1112 ev_stop ((W)w);
1113}
1114
1115void
1116ev_check_start (struct ev_check *w)
1117{
1118 if (ev_is_active (w))
1119 return;
1120
1121 ev_start ((W)w, ++checkcnt);
1122 array_needsize (checks, checkmax, checkcnt, );
1123 checks [checkcnt - 1] = w;
1124}
1125
1126void
1127ev_check_stop (struct ev_check *w)
1128{
1129 ev_clear_pending ((W)w);
1130 if (ev_is_active (w))
1131 return;
1132
1133 checks [w->active - 1] = checks [--checkcnt];
1134 ev_stop ((W)w);
1135}
1136
1137void
1138ev_child_start (struct ev_child *w)
1139{
1140 if (ev_is_active (w))
1141 return;
1142
1143 ev_start ((W)w, 1);
1144 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1145}
1146
1147void
1148ev_child_stop (struct ev_child *w)
1149{
1150 ev_clear_pending ((W)w);
1151 if (ev_is_active (w))
1152 return;
1153
1154 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1155 ev_stop ((W)w);
1156}
1157
1158/*****************************************************************************/
1159
1160struct ev_once 5292struct ev_once
1161{ 5293{
1162 struct ev_io io; 5294 ev_io io;
1163 struct ev_timer to; 5295 ev_timer to;
1164 void (*cb)(int revents, void *arg); 5296 void (*cb)(int revents, void *arg);
1165 void *arg; 5297 void *arg;
1166}; 5298};
1167 5299
1168static void 5300static void
1169once_cb (struct ev_once *once, int revents) 5301once_cb (EV_P_ struct ev_once *once, int revents)
1170{ 5302{
1171 void (*cb)(int revents, void *arg) = once->cb; 5303 void (*cb)(int revents, void *arg) = once->cb;
1172 void *arg = once->arg; 5304 void *arg = once->arg;
1173 5305
1174 ev_io_stop (&once->io); 5306 ev_io_stop (EV_A_ &once->io);
1175 ev_timer_stop (&once->to); 5307 ev_timer_stop (EV_A_ &once->to);
1176 free (once); 5308 ev_free (once);
1177 5309
1178 cb (revents, arg); 5310 cb (revents, arg);
1179} 5311}
1180 5312
1181static void 5313static void
1182once_cb_io (struct ev_io *w, int revents) 5314once_cb_io (EV_P_ ev_io *w, int revents)
1183{ 5315{
1184 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 5316 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
5317
5318 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1185} 5319}
1186 5320
1187static void 5321static void
1188once_cb_to (struct ev_timer *w, int revents) 5322once_cb_to (EV_P_ ev_timer *w, int revents)
1189{ 5323{
1190 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 5324 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
1191}
1192 5325
5326 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
5327}
5328
1193void 5329void
1194ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 5330ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
1195{ 5331{
1196 struct ev_once *once = malloc (sizeof (struct ev_once)); 5332 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1197 5333
1198 if (!once)
1199 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1200 else
1201 {
1202 once->cb = cb; 5334 once->cb = cb;
1203 once->arg = arg; 5335 once->arg = arg;
1204 5336
1205 ev_watcher_init (&once->io, once_cb_io); 5337 ev_init (&once->io, once_cb_io);
1206 if (fd >= 0) 5338 if (fd >= 0)
5339 {
5340 ev_io_set (&once->io, fd, events);
5341 ev_io_start (EV_A_ &once->io);
5342 }
5343
5344 ev_init (&once->to, once_cb_to);
5345 if (timeout >= 0.)
5346 {
5347 ev_timer_set (&once->to, timeout, 0.);
5348 ev_timer_start (EV_A_ &once->to);
5349 }
5350}
5351
5352/*****************************************************************************/
5353
5354#if EV_WALK_ENABLE
5355ecb_cold
5356void
5357ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5358{
5359 int i, j;
5360 ev_watcher_list *wl, *wn;
5361
5362 if (types & (EV_IO | EV_EMBED))
5363 for (i = 0; i < anfdmax; ++i)
5364 for (wl = anfds [i].head; wl; )
1207 { 5365 {
1208 ev_io_set (&once->io, fd, events); 5366 wn = wl->next;
1209 ev_io_start (&once->io); 5367
5368#if EV_EMBED_ENABLE
5369 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5370 {
5371 if (types & EV_EMBED)
5372 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5373 }
5374 else
5375#endif
5376#if EV_USE_INOTIFY
5377 if (ev_cb ((ev_io *)wl) == infy_cb)
5378 ;
5379 else
5380#endif
5381 if ((ev_io *)wl != &pipe_w)
5382 if (types & EV_IO)
5383 cb (EV_A_ EV_IO, wl);
5384
5385 wl = wn;
1210 } 5386 }
1211 5387
1212 ev_watcher_init (&once->to, once_cb_to); 5388 if (types & (EV_TIMER | EV_STAT))
1213 if (timeout >= 0.) 5389 for (i = timercnt + HEAP0; i-- > HEAP0; )
5390#if EV_STAT_ENABLE
5391 /*TODO: timer is not always active*/
5392 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1214 { 5393 {
1215 ev_timer_set (&once->to, timeout, 0.); 5394 if (types & EV_STAT)
1216 ev_timer_start (&once->to); 5395 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1217 } 5396 }
1218 } 5397 else
1219} 5398#endif
5399 if (types & EV_TIMER)
5400 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1220 5401
1221/*****************************************************************************/ 5402#if EV_PERIODIC_ENABLE
5403 if (types & EV_PERIODIC)
5404 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5405 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5406#endif
1222 5407
1223#if 0 5408#if EV_IDLE_ENABLE
5409 if (types & EV_IDLE)
5410 for (j = NUMPRI; j--; )
5411 for (i = idlecnt [j]; i--; )
5412 cb (EV_A_ EV_IDLE, idles [j][i]);
5413#endif
1224 5414
1225struct ev_io wio; 5415#if EV_FORK_ENABLE
5416 if (types & EV_FORK)
5417 for (i = forkcnt; i--; )
5418 if (ev_cb (forks [i]) != embed_fork_cb)
5419 cb (EV_A_ EV_FORK, forks [i]);
5420#endif
1226 5421
1227static void 5422#if EV_ASYNC_ENABLE
1228sin_cb (struct ev_io *w, int revents) 5423 if (types & EV_ASYNC)
1229{ 5424 for (i = asynccnt; i--; )
1230 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents); 5425 cb (EV_A_ EV_ASYNC, asyncs [i]);
1231} 5426#endif
1232 5427
1233static void 5428#if EV_PREPARE_ENABLE
1234ocb (struct ev_timer *w, int revents) 5429 if (types & EV_PREPARE)
1235{ 5430 for (i = preparecnt; i--; )
1236 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data); 5431# if EV_EMBED_ENABLE
1237 ev_timer_stop (w); 5432 if (ev_cb (prepares [i]) != embed_prepare_cb)
1238 ev_timer_start (w);
1239}
1240
1241static void
1242scb (struct ev_signal *w, int revents)
1243{
1244 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1245 ev_io_stop (&wio);
1246 ev_io_start (&wio);
1247}
1248
1249static void
1250gcb (struct ev_signal *w, int revents)
1251{
1252 fprintf (stderr, "generic %x\n", revents);
1253
1254}
1255
1256int main (void)
1257{
1258 ev_init (0);
1259
1260 ev_io_init (&wio, sin_cb, 0, EV_READ);
1261 ev_io_start (&wio);
1262
1263 struct ev_timer t[10000];
1264
1265#if 0
1266 int i;
1267 for (i = 0; i < 10000; ++i)
1268 {
1269 struct ev_timer *w = t + i;
1270 ev_watcher_init (w, ocb, i);
1271 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1272 ev_timer_start (w);
1273 if (drand48 () < 0.5)
1274 ev_timer_stop (w);
1275 }
1276#endif 5433# endif
1277 5434 cb (EV_A_ EV_PREPARE, prepares [i]);
1278 struct ev_timer t1;
1279 ev_timer_init (&t1, ocb, 5, 10);
1280 ev_timer_start (&t1);
1281
1282 struct ev_signal sig;
1283 ev_signal_init (&sig, scb, SIGQUIT);
1284 ev_signal_start (&sig);
1285
1286 struct ev_check cw;
1287 ev_check_init (&cw, gcb);
1288 ev_check_start (&cw);
1289
1290 struct ev_idle iw;
1291 ev_idle_init (&iw, gcb);
1292 ev_idle_start (&iw);
1293
1294 ev_loop (0);
1295
1296 return 0;
1297}
1298
1299#endif 5435#endif
1300 5436
5437#if EV_CHECK_ENABLE
5438 if (types & EV_CHECK)
5439 for (i = checkcnt; i--; )
5440 cb (EV_A_ EV_CHECK, checks [i]);
5441#endif
1301 5442
5443#if EV_SIGNAL_ENABLE
5444 if (types & EV_SIGNAL)
5445 for (i = 0; i < EV_NSIG - 1; ++i)
5446 for (wl = signals [i].head; wl; )
5447 {
5448 wn = wl->next;
5449 cb (EV_A_ EV_SIGNAL, wl);
5450 wl = wn;
5451 }
5452#endif
1302 5453
5454#if EV_CHILD_ENABLE
5455 if (types & EV_CHILD)
5456 for (i = (EV_PID_HASHSIZE); i--; )
5457 for (wl = childs [i]; wl; )
5458 {
5459 wn = wl->next;
5460 cb (EV_A_ EV_CHILD, wl);
5461 wl = wn;
5462 }
5463#endif
5464/* EV_STAT 0x00001000 /* stat data changed */
5465/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5466}
5467#endif
1303 5468
5469#if EV_MULTIPLICITY
5470 #include "ev_wrap.h"
5471#endif
5472

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines