ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.12 by root, Wed Oct 31 09:23:17 2007 UTC vs.
Revision 1.52 by root, Sat Nov 3 22:10:39 2007 UTC

1/*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are
9 * met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * * Redistributions in binary form must reproduce the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer in the documentation and/or other materials provided
17 * with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31#ifndef EV_STANDALONE
32# include "config.h"
33#endif
34
1#include <math.h> 35#include <math.h>
2#include <stdlib.h> 36#include <stdlib.h>
3#include <unistd.h> 37#include <unistd.h>
4#include <fcntl.h> 38#include <fcntl.h>
5#include <signal.h> 39#include <signal.h>
40#include <stddef.h>
6 41
7#include <stdio.h> 42#include <stdio.h>
8 43
9#include <assert.h> 44#include <assert.h>
10#include <errno.h> 45#include <errno.h>
46#include <sys/types.h>
47#ifndef WIN32
48# include <sys/wait.h>
49#endif
11#include <sys/time.h> 50#include <sys/time.h>
12#include <time.h> 51#include <time.h>
13 52
14#define HAVE_EPOLL 1 53/**/
15 54
16#ifndef HAVE_MONOTONIC 55#ifndef EV_USE_MONOTONIC
56# define EV_USE_MONOTONIC 1
57#endif
58
59#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1
61#endif
62
63#ifndef EV_USEV_POLL
64# define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */
65#endif
66
67#ifndef EV_USE_EPOLL
68# define EV_USE_EPOLL 0
69#endif
70
71#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0
73#endif
74
75#ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 1
77#endif
78
79/**/
80
17# ifdef CLOCK_MONOTONIC 81#ifndef CLOCK_MONOTONIC
82# undef EV_USE_MONOTONIC
18# define HAVE_MONOTONIC 1 83# define EV_USE_MONOTONIC 0
19# endif 84#endif
20#endif
21 85
22#ifndef HAVE_SELECT
23# define HAVE_SELECT 1
24#endif
25
26#ifndef HAVE_EPOLL
27# define HAVE_EPOLL 0
28#endif
29
30#ifndef HAVE_REALTIME 86#ifndef CLOCK_REALTIME
31# define HAVE_REALTIME 1 /* posix requirement, but might be slower */ 87# undef EV_USE_REALTIME
88# define EV_USE_REALTIME 0
32#endif 89#endif
90
91/**/
33 92
34#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
35#define MAX_BLOCKTIME 60. 94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
36 97
37#include "ev.h" 98#include "ev.h"
38 99
39struct ev_watcher { 100#if __GNUC__ >= 3
40 EV_WATCHER (ev_watcher); 101# define expect(expr,value) __builtin_expect ((expr),(value))
41}; 102# define inline inline
103#else
104# define expect(expr,value) (expr)
105# define inline static
106#endif
42 107
43struct ev_watcher_list { 108#define expect_false(expr) expect ((expr) != 0, 0)
44 EV_WATCHER_LIST (ev_watcher_list); 109#define expect_true(expr) expect ((expr) != 0, 1)
45};
46 110
47struct ev_watcher_time { 111#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
48 EV_WATCHER_TIME (ev_watcher_time); 112#define ABSPRI(w) ((w)->priority - EV_MINPRI)
49};
50 113
51typedef struct ev_watcher *W; 114typedef struct ev_watcher *W;
52typedef struct ev_watcher_list *WL; 115typedef struct ev_watcher_list *WL;
53typedef struct ev_watcher_time *WT; 116typedef struct ev_watcher_time *WT;
54 117
55static ev_tstamp now, diff; /* monotonic clock */ 118static ev_tstamp now_floor, mn_now, diff; /* monotonic clock */
56ev_tstamp ev_now; 119static ev_tstamp rt_now;
57int ev_method; 120static int method;
58 121
59static int have_monotonic; /* runtime */ 122static int have_monotonic; /* runtime */
60 123
61static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 124static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
62static void (*method_modify)(int fd, int oev, int nev); 125static void (*method_modify)(EV_P_ int fd, int oev, int nev);
63static void (*method_poll)(ev_tstamp timeout); 126static void (*method_poll)(EV_P_ ev_tstamp timeout);
127
128static int activecnt; /* number of active events */
129
130#if EV_USE_SELECT
131static unsigned char *vec_ri, *vec_ro, *vec_wi, *vec_wo;
132static int vec_max;
133#endif
134
135#if EV_USEV_POLL
136static struct pollfd *polls;
137static int pollmax, pollcnt;
138static int *pollidxs; /* maps fds into structure indices */
139static int pollidxmax;
140#endif
141
142#if EV_USE_EPOLL
143static int epoll_fd = -1;
144
145static struct epoll_event *events;
146static int eventmax;
147#endif
148
149#if EV_USE_KQUEUE
150static int kqueue_fd;
151static struct kevent *kqueue_changes;
152static int kqueue_changemax, kqueue_changecnt;
153static struct kevent *kqueue_events;
154static int kqueue_eventmax;
155#endif
64 156
65/*****************************************************************************/ 157/*****************************************************************************/
66 158
67ev_tstamp 159inline ev_tstamp
68ev_time (void) 160ev_time (void)
69{ 161{
70#if HAVE_REALTIME 162#if EV_USE_REALTIME
71 struct timespec ts; 163 struct timespec ts;
72 clock_gettime (CLOCK_REALTIME, &ts); 164 clock_gettime (CLOCK_REALTIME, &ts);
73 return ts.tv_sec + ts.tv_nsec * 1e-9; 165 return ts.tv_sec + ts.tv_nsec * 1e-9;
74#else 166#else
75 struct timeval tv; 167 struct timeval tv;
76 gettimeofday (&tv, 0); 168 gettimeofday (&tv, 0);
77 return tv.tv_sec + tv.tv_usec * 1e-6; 169 return tv.tv_sec + tv.tv_usec * 1e-6;
78#endif 170#endif
79} 171}
80 172
81static ev_tstamp 173inline ev_tstamp
82get_clock (void) 174get_clock (void)
83{ 175{
84#if HAVE_MONOTONIC 176#if EV_USE_MONOTONIC
85 if (have_monotonic) 177 if (expect_true (have_monotonic))
86 { 178 {
87 struct timespec ts; 179 struct timespec ts;
88 clock_gettime (CLOCK_MONOTONIC, &ts); 180 clock_gettime (CLOCK_MONOTONIC, &ts);
89 return ts.tv_sec + ts.tv_nsec * 1e-9; 181 return ts.tv_sec + ts.tv_nsec * 1e-9;
90 } 182 }
91#endif 183#endif
92 184
93 return ev_time (); 185 return ev_time ();
94} 186}
95 187
188ev_tstamp
189ev_now (EV_P)
190{
191 return rt_now;
192}
193
194#define array_roundsize(base,n) ((n) | 4 & ~3)
195
96#define array_needsize(base,cur,cnt,init) \ 196#define array_needsize(base,cur,cnt,init) \
97 if ((cnt) > cur) \ 197 if (expect_false ((cnt) > cur)) \
98 { \ 198 { \
99 int newcnt = cur ? cur << 1 : 16; \ 199 int newcnt = cur; \
100 fprintf (stderr, "resize(" # base ") from %d to %d\n", cur, newcnt);\ 200 do \
201 { \
202 newcnt = array_roundsize (base, newcnt << 1); \
203 } \
204 while ((cnt) > newcnt); \
205 \
101 base = realloc (base, sizeof (*base) * (newcnt)); \ 206 base = realloc (base, sizeof (*base) * (newcnt)); \
102 init (base + cur, newcnt - cur); \ 207 init (base + cur, newcnt - cur); \
103 cur = newcnt; \ 208 cur = newcnt; \
104 } 209 }
105 210
106/*****************************************************************************/ 211/*****************************************************************************/
107 212
108typedef struct 213typedef struct
109{ 214{
110 struct ev_io *head; 215 struct ev_watcher_list *head;
111 unsigned char wev, rev; /* want, received event set */ 216 unsigned char events;
217 unsigned char reify;
112} ANFD; 218} ANFD;
113 219
114static ANFD *anfds; 220static ANFD *anfds;
115static int anfdmax; 221static int anfdmax;
116 222
117static int *fdchanges;
118static int fdchangemax, fdchangecnt;
119
120static void 223static void
121anfds_init (ANFD *base, int count) 224anfds_init (ANFD *base, int count)
122{ 225{
123 while (count--) 226 while (count--)
124 { 227 {
125 base->head = 0; 228 base->head = 0;
126 base->wev = base->rev = EV_NONE; 229 base->events = EV_NONE;
230 base->reify = 0;
231
127 ++base; 232 ++base;
128 } 233 }
129} 234}
130 235
131typedef struct 236typedef struct
132{ 237{
133 W w; 238 W w;
134 int events; 239 int events;
135} ANPENDING; 240} ANPENDING;
136 241
137static ANPENDING *pendings; 242static ANPENDING *pendings [NUMPRI];
138static int pendingmax, pendingcnt; 243static int pendingmax [NUMPRI], pendingcnt [NUMPRI];
139 244
140static void 245static void
141event (W w, int events) 246event (EV_P_ W w, int events)
142{ 247{
248 if (w->pending)
249 {
250 pendings [ABSPRI (w)][w->pending - 1].events |= events;
251 return;
252 }
253
143 w->pending = ++pendingcnt; 254 w->pending = ++pendingcnt [ABSPRI (w)];
144 array_needsize (pendings, pendingmax, pendingcnt, ); 255 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
145 pendings [pendingcnt - 1].w = w; 256 pendings [ABSPRI (w)][w->pending - 1].w = w;
146 pendings [pendingcnt - 1].events = events; 257 pendings [ABSPRI (w)][w->pending - 1].events = events;
147} 258}
148 259
149static void 260static void
261queue_events (EV_P_ W *events, int eventcnt, int type)
262{
263 int i;
264
265 for (i = 0; i < eventcnt; ++i)
266 event (EV_A_ events [i], type);
267}
268
269static void
150fd_event (int fd, int events) 270fd_event (EV_P_ int fd, int events)
151{ 271{
152 ANFD *anfd = anfds + fd; 272 ANFD *anfd = anfds + fd;
153 struct ev_io *w; 273 struct ev_io *w;
154 274
155 for (w = anfd->head; w; w = w->next) 275 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
156 { 276 {
157 int ev = w->events & events; 277 int ev = w->events & events;
158 278
159 if (ev) 279 if (ev)
160 event ((W)w, ev); 280 event (EV_A_ (W)w, ev);
161 } 281 }
162} 282}
163 283
284/*****************************************************************************/
285
286static int *fdchanges;
287static int fdchangemax, fdchangecnt;
288
164static void 289static void
165queue_events (W *events, int eventcnt, int type) 290fd_reify (EV_P)
166{ 291{
167 int i; 292 int i;
168 293
169 for (i = 0; i < eventcnt; ++i) 294 for (i = 0; i < fdchangecnt; ++i)
170 event (events [i], type); 295 {
296 int fd = fdchanges [i];
297 ANFD *anfd = anfds + fd;
298 struct ev_io *w;
299
300 int events = 0;
301
302 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
303 events |= w->events;
304
305 anfd->reify = 0;
306
307 if (anfd->events != events)
308 {
309 method_modify (EV_A_ fd, anfd->events, events);
310 anfd->events = events;
311 }
312 }
313
314 fdchangecnt = 0;
315}
316
317static void
318fd_change (EV_P_ int fd)
319{
320 if (anfds [fd].reify || fdchangecnt < 0)
321 return;
322
323 anfds [fd].reify = 1;
324
325 ++fdchangecnt;
326 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
327 fdchanges [fdchangecnt - 1] = fd;
328}
329
330static void
331fd_kill (EV_P_ int fd)
332{
333 struct ev_io *w;
334
335 while ((w = (struct ev_io *)anfds [fd].head))
336 {
337 ev_io_stop (EV_A_ w);
338 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
339 }
340}
341
342/* called on EBADF to verify fds */
343static void
344fd_ebadf (EV_P)
345{
346 int fd;
347
348 for (fd = 0; fd < anfdmax; ++fd)
349 if (anfds [fd].events)
350 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
351 fd_kill (EV_A_ fd);
352}
353
354/* called on ENOMEM in select/poll to kill some fds and retry */
355static void
356fd_enomem (EV_P)
357{
358 int fd = anfdmax;
359
360 while (fd--)
361 if (anfds [fd].events)
362 {
363 close (fd);
364 fd_kill (EV_A_ fd);
365 return;
366 }
171} 367}
172 368
173/*****************************************************************************/ 369/*****************************************************************************/
174 370
175static struct ev_timer **timers; 371static struct ev_timer **timers;
221 417
222/*****************************************************************************/ 418/*****************************************************************************/
223 419
224typedef struct 420typedef struct
225{ 421{
226 struct ev_signal *head; 422 struct ev_watcher_list *head;
227 sig_atomic_t gotsig; 423 sig_atomic_t volatile gotsig;
228} ANSIG; 424} ANSIG;
229 425
230static ANSIG *signals; 426static ANSIG *signals;
231static int signalmax; 427static int signalmax;
232 428
233static int sigpipe [2]; 429static int sigpipe [2];
234static sig_atomic_t gotsig; 430static sig_atomic_t volatile gotsig;
235static struct ev_io sigev; 431static struct ev_io sigev;
236 432
237static void 433static void
238signals_init (ANSIG *base, int count) 434signals_init (ANSIG *base, int count)
239{ 435{
240 while (count--) 436 while (count--)
241 { 437 {
242 base->head = 0; 438 base->head = 0;
243 base->gotsig = 0; 439 base->gotsig = 0;
440
244 ++base; 441 ++base;
245 } 442 }
246} 443}
247 444
248static void 445static void
250{ 447{
251 signals [signum - 1].gotsig = 1; 448 signals [signum - 1].gotsig = 1;
252 449
253 if (!gotsig) 450 if (!gotsig)
254 { 451 {
452 int old_errno = errno;
255 gotsig = 1; 453 gotsig = 1;
256 write (sigpipe [1], &gotsig, 1); 454 write (sigpipe [1], &signum, 1);
455 errno = old_errno;
257 } 456 }
258} 457}
259 458
260static void 459static void
261sigcb (struct ev_io *iow, int revents) 460sigcb (EV_P_ struct ev_io *iow, int revents)
262{ 461{
263 struct ev_signal *w; 462 struct ev_watcher_list *w;
264 int sig; 463 int signum;
265 464
465 read (sigpipe [0], &revents, 1);
266 gotsig = 0; 466 gotsig = 0;
267 read (sigpipe [0], &revents, 1);
268 467
269 for (sig = signalmax; sig--; ) 468 for (signum = signalmax; signum--; )
270 if (signals [sig].gotsig) 469 if (signals [signum].gotsig)
271 { 470 {
272 signals [sig].gotsig = 0; 471 signals [signum].gotsig = 0;
273 472
274 for (w = signals [sig].head; w; w = w->next) 473 for (w = signals [signum].head; w; w = w->next)
275 event ((W)w, EV_SIGNAL); 474 event (EV_A_ (W)w, EV_SIGNAL);
276 } 475 }
277} 476}
278 477
279static void 478static void
280siginit (void) 479siginit (EV_P)
281{ 480{
481#ifndef WIN32
282 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 482 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
283 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 483 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
284 484
285 /* rather than sort out wether we really need nb, set it */ 485 /* rather than sort out wether we really need nb, set it */
286 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 486 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
287 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 487 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
488#endif
288 489
289 evio_set (&sigev, sigpipe [0], EV_READ); 490 ev_io_set (&sigev, sigpipe [0], EV_READ);
290 evio_start (&sigev); 491 ev_io_start (&sigev);
492 ev_unref (EV_A); /* child watcher should not keep loop alive */
291} 493}
292 494
293/*****************************************************************************/ 495/*****************************************************************************/
294 496
295static struct ev_idle **idles; 497static struct ev_idle **idles;
296static int idlemax, idlecnt; 498static int idlemax, idlecnt;
297 499
500static struct ev_prepare **prepares;
501static int preparemax, preparecnt;
502
298static struct ev_check **checks; 503static struct ev_check **checks;
299static int checkmax, checkcnt; 504static int checkmax, checkcnt;
300 505
301/*****************************************************************************/ 506/*****************************************************************************/
302 507
508static struct ev_child *childs [PID_HASHSIZE];
509static struct ev_signal childev;
510
511#ifndef WIN32
512
513#ifndef WCONTINUED
514# define WCONTINUED 0
515#endif
516
517static void
518child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
519{
520 struct ev_child *w;
521
522 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
523 if (w->pid == pid || !w->pid)
524 {
525 w->priority = sw->priority; /* need to do it *now* */
526 w->rpid = pid;
527 w->rstatus = status;
528 event (EV_A_ (W)w, EV_CHILD);
529 }
530}
531
532static void
533childcb (EV_P_ struct ev_signal *sw, int revents)
534{
535 int pid, status;
536
537 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
538 {
539 /* make sure we are called again until all childs have been reaped */
540 event (EV_A_ (W)sw, EV_SIGNAL);
541
542 child_reap (EV_A_ sw, pid, pid, status);
543 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
544 }
545}
546
547#endif
548
549/*****************************************************************************/
550
551#if EV_USE_KQUEUE
552# include "ev_kqueue.c"
553#endif
303#if HAVE_EPOLL 554#if EV_USE_EPOLL
304# include "ev_epoll.c" 555# include "ev_epoll.c"
305#endif 556#endif
557#if EV_USEV_POLL
558# include "ev_poll.c"
559#endif
306#if HAVE_SELECT 560#if EV_USE_SELECT
307# include "ev_select.c" 561# include "ev_select.c"
308#endif 562#endif
309 563
310int ev_init (int flags) 564int
565ev_version_major (void)
311{ 566{
567 return EV_VERSION_MAJOR;
568}
569
570int
571ev_version_minor (void)
572{
573 return EV_VERSION_MINOR;
574}
575
576/* return true if we are running with elevated privileges and should ignore env variables */
577static int
578enable_secure (void)
579{
580#ifdef WIN32
581 return 0;
582#else
583 return getuid () != geteuid ()
584 || getgid () != getegid ();
585#endif
586}
587
588int
589ev_method (EV_P)
590{
591 return method;
592}
593
594int
595ev_init (EV_P_ int methods)
596{
597 if (!method)
598 {
312#if HAVE_MONOTONIC 599#if EV_USE_MONOTONIC
313 { 600 {
314 struct timespec ts; 601 struct timespec ts;
315 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 602 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
316 have_monotonic = 1; 603 have_monotonic = 1;
317 } 604 }
318#endif 605#endif
319 606
320 ev_now = ev_time (); 607 rt_now = ev_time ();
321 now = get_clock (); 608 mn_now = get_clock ();
609 now_floor = mn_now;
322 diff = ev_now - now; 610 diff = rt_now - mn_now;
323 611
324 if (pipe (sigpipe)) 612 if (pipe (sigpipe))
325 return 0; 613 return 0;
326 614
327 ev_method = EVMETHOD_NONE; 615 if (methods == EVMETHOD_AUTO)
616 if (!enable_secure () && getenv ("LIBmethodS"))
617 methods = atoi (getenv ("LIBmethodS"));
618 else
619 methods = EVMETHOD_ANY;
620
621 method = 0;
622#if EV_USE_KQUEUE
623 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
624#endif
328#if HAVE_EPOLL 625#if EV_USE_EPOLL
329 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 626 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
330#endif 627#endif
628#if EV_USEV_POLL
629 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
630#endif
331#if HAVE_SELECT 631#if EV_USE_SELECT
332 if (ev_method == EVMETHOD_NONE) select_init (flags); 632 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
333#endif 633#endif
334 634
335 if (ev_method) 635 if (method)
336 { 636 {
337 evw_init (&sigev, sigcb); 637 ev_watcher_init (&sigev, sigcb);
638 ev_set_priority (&sigev, EV_MAXPRI);
338 siginit (); 639 siginit (EV_A);
339 }
340 640
641#ifndef WIN32
642 ev_signal_init (&childev, childcb, SIGCHLD);
643 ev_set_priority (&childev, EV_MAXPRI);
644 ev_signal_start (EV_A_ &childev);
645 ev_unref (EV_A); /* child watcher should not keep loop alive */
646#endif
647 }
648 }
649
341 return ev_method; 650 return method;
342} 651}
343 652
344/*****************************************************************************/ 653/*****************************************************************************/
345 654
346void ev_prefork (void) 655void
656ev_fork_prepare (void)
347{ 657{
348 /* nop */ 658 /* nop */
349} 659}
350 660
661void
351void ev_postfork_parent (void) 662ev_fork_parent (void)
352{ 663{
353 /* nop */ 664 /* nop */
354} 665}
355 666
667void
356void ev_postfork_child (void) 668ev_fork_child (void)
357{ 669{
358#if HAVE_EPOLL 670#if EV_USE_EPOLL
359 if (ev_method == EVMETHOD_EPOLL) 671 if (method == EVMETHOD_EPOLL)
360 epoll_postfork_child (); 672 epoll_postfork_child ();
361#endif 673#endif
362 674
363 evio_stop (&sigev); 675 ev_io_stop (&sigev);
364 close (sigpipe [0]); 676 close (sigpipe [0]);
365 close (sigpipe [1]); 677 close (sigpipe [1]);
366 pipe (sigpipe); 678 pipe (sigpipe);
367 siginit (); 679 siginit ();
368} 680}
369 681
370/*****************************************************************************/ 682/*****************************************************************************/
371 683
372static void 684static void
373fd_reify (void) 685call_pending (EV_P)
374{ 686{
375 int i; 687 int pri;
376 688
377 for (i = 0; i < fdchangecnt; ++i) 689 for (pri = NUMPRI; pri--; )
378 { 690 while (pendingcnt [pri])
379 int fd = fdchanges [i];
380 ANFD *anfd = anfds + fd;
381 struct ev_io *w;
382
383 int wev = 0;
384
385 for (w = anfd->head; w; w = w->next)
386 wev |= w->events;
387
388 if (anfd->wev != wev)
389 { 691 {
390 method_modify (fd, anfd->wev, wev); 692 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
391 anfd->wev = wev;
392 }
393 }
394 693
395 fdchangecnt = 0;
396}
397
398static void
399call_pending ()
400{
401 int i;
402
403 for (i = 0; i < pendingcnt; ++i)
404 {
405 ANPENDING *p = pendings + i;
406
407 if (p->w) 694 if (p->w)
408 { 695 {
409 p->w->pending = 0; 696 p->w->pending = 0;
410 p->w->cb (p->w, p->events); 697 p->w->cb (EV_A_ p->w, p->events);
411 } 698 }
412 } 699 }
413
414 pendingcnt = 0;
415} 700}
416 701
417static void 702static void
418timers_reify () 703timers_reify (EV_P)
419{ 704{
420 while (timercnt && timers [0]->at <= now) 705 while (timercnt && timers [0]->at <= mn_now)
421 { 706 {
422 struct ev_timer *w = timers [0]; 707 struct ev_timer *w = timers [0];
423 708
424 /* first reschedule or stop timer */ 709 /* first reschedule or stop timer */
425 if (w->repeat) 710 if (w->repeat)
426 { 711 {
712 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
427 w->at = now + w->repeat; 713 w->at = mn_now + w->repeat;
428 assert (("timer timeout in the past, negative repeat?", w->at > now));
429 downheap ((WT *)timers, timercnt, 0); 714 downheap ((WT *)timers, timercnt, 0);
430 } 715 }
431 else 716 else
432 evtimer_stop (w); /* nonrepeating: stop timer */ 717 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
433 718
434 event ((W)w, EV_TIMEOUT); 719 event ((W)w, EV_TIMEOUT);
435 } 720 }
436} 721}
437 722
438static void 723static void
439periodics_reify () 724periodics_reify (EV_P)
440{ 725{
441 while (periodiccnt && periodics [0]->at <= ev_now) 726 while (periodiccnt && periodics [0]->at <= rt_now)
442 { 727 {
443 struct ev_periodic *w = periodics [0]; 728 struct ev_periodic *w = periodics [0];
444 729
445 /* first reschedule or stop timer */ 730 /* first reschedule or stop timer */
446 if (w->interval) 731 if (w->interval)
447 { 732 {
448 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 733 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
449 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 734 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
450 downheap ((WT *)periodics, periodiccnt, 0); 735 downheap ((WT *)periodics, periodiccnt, 0);
451 } 736 }
452 else 737 else
453 evperiodic_stop (w); /* nonrepeating: stop timer */ 738 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
454 739
455 event ((W)w, EV_TIMEOUT); 740 event (EV_A_ (W)w, EV_PERIODIC);
456 } 741 }
457} 742}
458 743
459static void 744static void
460time_jump (ev_tstamp diff) 745periodics_reschedule (EV_P_ ev_tstamp diff)
461{ 746{
462 int i; 747 int i;
463 748
464 /* adjust periodics */ 749 /* adjust periodics after time jump */
465 for (i = 0; i < periodiccnt; ++i) 750 for (i = 0; i < periodiccnt; ++i)
466 { 751 {
467 struct ev_periodic *w = periodics [i]; 752 struct ev_periodic *w = periodics [i];
468 753
469 if (w->interval) 754 if (w->interval)
470 { 755 {
471 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 756 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
472 757
473 if (fabs (diff) >= 1e-4) 758 if (fabs (diff) >= 1e-4)
474 { 759 {
475 evperiodic_stop (w); 760 ev_periodic_stop (EV_A_ w);
476 evperiodic_start (w); 761 ev_periodic_start (EV_A_ w);
477 762
478 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 763 i = 0; /* restart loop, inefficient, but time jumps should be rare */
479 } 764 }
480 } 765 }
481 } 766 }
482
483 /* adjust timers. this is easy, as the offset is the same for all */
484 for (i = 0; i < timercnt; ++i)
485 timers [i]->at += diff;
486} 767}
487 768
769inline int
770time_update_monotonic (EV_P)
771{
772 mn_now = get_clock ();
773
774 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
775 {
776 rt_now = mn_now + diff;
777 return 0;
778 }
779 else
780 {
781 now_floor = mn_now;
782 rt_now = ev_time ();
783 return 1;
784 }
785}
786
488static void 787static void
489time_update () 788time_update (EV_P)
490{ 789{
491 int i; 790 int i;
492 791
493 ev_now = ev_time (); 792#if EV_USE_MONOTONIC
494
495 if (have_monotonic) 793 if (expect_true (have_monotonic))
496 { 794 {
497 ev_tstamp odiff = diff; 795 if (time_update_monotonic (EV_A))
498
499 for (i = 4; --i; ) /* loop a few times, before making important decisions */
500 { 796 {
501 now = get_clock (); 797 ev_tstamp odiff = diff;
798
799 for (i = 4; --i; ) /* loop a few times, before making important decisions */
800 {
502 diff = ev_now - now; 801 diff = rt_now - mn_now;
503 802
504 if (fabs (odiff - diff) < MIN_TIMEJUMP) 803 if (fabs (odiff - diff) < MIN_TIMEJUMP)
505 return; /* all is well */ 804 return; /* all is well */
506 805
507 ev_now = ev_time (); 806 rt_now = ev_time ();
807 mn_now = get_clock ();
808 now_floor = mn_now;
809 }
810
811 periodics_reschedule (EV_A_ diff - odiff);
812 /* no timer adjustment, as the monotonic clock doesn't jump */
508 } 813 }
509
510 time_jump (diff - odiff);
511 } 814 }
512 else 815 else
816#endif
513 { 817 {
514 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 818 rt_now = ev_time ();
515 time_jump (ev_now - now);
516 819
820 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
821 {
822 periodics_reschedule (EV_A_ rt_now - mn_now);
823
824 /* adjust timers. this is easy, as the offset is the same for all */
825 for (i = 0; i < timercnt; ++i)
826 timers [i]->at += diff;
827 }
828
517 now = ev_now; 829 mn_now = rt_now;
518 } 830 }
519} 831}
520 832
521int ev_loop_done; 833void
834ev_ref (EV_P)
835{
836 ++activecnt;
837}
522 838
839void
840ev_unref (EV_P)
841{
842 --activecnt;
843}
844
845static int loop_done;
846
847void
523void ev_loop (int flags) 848ev_loop (EV_P_ int flags)
524{ 849{
525 double block; 850 double block;
526 ev_loop_done = flags & EVLOOP_ONESHOT; 851 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
527
528 if (checkcnt)
529 {
530 queue_events ((W *)checks, checkcnt, EV_CHECK);
531 call_pending ();
532 }
533 852
534 do 853 do
535 { 854 {
855 /* queue check watchers (and execute them) */
856 if (expect_false (preparecnt))
857 {
858 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
859 call_pending (EV_A);
860 }
861
536 /* update fd-related kernel structures */ 862 /* update fd-related kernel structures */
537 fd_reify (); 863 fd_reify (EV_A);
538 864
539 /* calculate blocking time */ 865 /* calculate blocking time */
540 866
541 /* we only need this for !monotonic clock, but as we always have timers, we just calculate it every time */ 867 /* we only need this for !monotonic clockor timers, but as we basically
868 always have timers, we just calculate it always */
869#if EV_USE_MONOTONIC
870 if (expect_true (have_monotonic))
871 time_update_monotonic (EV_A);
872 else
873#endif
874 {
542 ev_now = ev_time (); 875 rt_now = ev_time ();
876 mn_now = rt_now;
877 }
543 878
544 if (flags & EVLOOP_NONBLOCK || idlecnt) 879 if (flags & EVLOOP_NONBLOCK || idlecnt)
545 block = 0.; 880 block = 0.;
546 else 881 else
547 { 882 {
548 block = MAX_BLOCKTIME; 883 block = MAX_BLOCKTIME;
549 884
550 if (timercnt) 885 if (timercnt)
551 { 886 {
552 ev_tstamp to = timers [0]->at - get_clock () + method_fudge; 887 ev_tstamp to = timers [0]->at - mn_now + method_fudge;
553 if (block > to) block = to; 888 if (block > to) block = to;
554 } 889 }
555 890
556 if (periodiccnt) 891 if (periodiccnt)
557 { 892 {
558 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 893 ev_tstamp to = periodics [0]->at - rt_now + method_fudge;
559 if (block > to) block = to; 894 if (block > to) block = to;
560 } 895 }
561 896
562 if (block < 0.) block = 0.; 897 if (block < 0.) block = 0.;
563 } 898 }
564 899
565 method_poll (block); 900 method_poll (EV_A_ block);
566 901
567 /* update ev_now, do magic */ 902 /* update rt_now, do magic */
568 time_update (); 903 time_update (EV_A);
569 904
570 /* queue pending timers and reschedule them */ 905 /* queue pending timers and reschedule them */
906 timers_reify (EV_A); /* relative timers called last */
571 periodics_reify (); /* absolute timers first */ 907 periodics_reify (EV_A); /* absolute timers called first */
572 timers_reify (); /* relative timers second */
573 908
574 /* queue idle watchers unless io or timers are pending */ 909 /* queue idle watchers unless io or timers are pending */
575 if (!pendingcnt) 910 if (!pendingcnt)
576 queue_events ((W *)idles, idlecnt, EV_IDLE); 911 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
577 912
578 /* queue check and possibly idle watchers */ 913 /* queue check watchers, to be executed first */
914 if (checkcnt)
579 queue_events ((W *)checks, checkcnt, EV_CHECK); 915 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
580 916
581 call_pending (); 917 call_pending (EV_A);
582 } 918 }
583 while (!ev_loop_done); 919 while (activecnt && !loop_done);
920
921 if (loop_done != 2)
922 loop_done = 0;
923}
924
925void
926ev_unloop (EV_P_ int how)
927{
928 loop_done = how;
584} 929}
585 930
586/*****************************************************************************/ 931/*****************************************************************************/
587 932
588static void 933inline void
589wlist_add (WL *head, WL elem) 934wlist_add (WL *head, WL elem)
590{ 935{
591 elem->next = *head; 936 elem->next = *head;
592 *head = elem; 937 *head = elem;
593} 938}
594 939
595static void 940inline void
596wlist_del (WL *head, WL elem) 941wlist_del (WL *head, WL elem)
597{ 942{
598 while (*head) 943 while (*head)
599 { 944 {
600 if (*head == elem) 945 if (*head == elem)
605 950
606 head = &(*head)->next; 951 head = &(*head)->next;
607 } 952 }
608} 953}
609 954
610static void 955inline void
956ev_clear_pending (EV_P_ W w)
957{
958 if (w->pending)
959 {
960 pendings [ABSPRI (w)][w->pending - 1].w = 0;
961 w->pending = 0;
962 }
963}
964
965inline void
611ev_start (W w, int active) 966ev_start (EV_P_ W w, int active)
612{ 967{
613 w->pending = 0; 968 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
969 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
970
614 w->active = active; 971 w->active = active;
972 ev_ref (EV_A);
615} 973}
616 974
617static void 975inline void
618ev_stop (W w) 976ev_stop (EV_P_ W w)
619{ 977{
620 if (w->pending) 978 ev_unref (EV_A);
621 pendings [w->pending - 1].w = 0;
622
623 w->active = 0; 979 w->active = 0;
624} 980}
625 981
626/*****************************************************************************/ 982/*****************************************************************************/
627 983
628void 984void
629evio_start (struct ev_io *w) 985ev_io_start (EV_P_ struct ev_io *w)
630{ 986{
987 int fd = w->fd;
988
631 if (ev_is_active (w)) 989 if (ev_is_active (w))
632 return; 990 return;
633 991
634 int fd = w->fd; 992 assert (("ev_io_start called with negative fd", fd >= 0));
635 993
636 ev_start ((W)w, 1); 994 ev_start (EV_A_ (W)w, 1);
637 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 995 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
638 wlist_add ((WL *)&anfds[fd].head, (WL)w); 996 wlist_add ((WL *)&anfds[fd].head, (WL)w);
639 997
640 ++fdchangecnt; 998 fd_change (EV_A_ fd);
641 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
642 fdchanges [fdchangecnt - 1] = fd;
643} 999}
644 1000
645void 1001void
646evio_stop (struct ev_io *w) 1002ev_io_stop (EV_P_ struct ev_io *w)
647{ 1003{
1004 ev_clear_pending (EV_A_ (W)w);
648 if (!ev_is_active (w)) 1005 if (!ev_is_active (w))
649 return; 1006 return;
650 1007
651 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1008 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
652 ev_stop ((W)w); 1009 ev_stop (EV_A_ (W)w);
653 1010
654 ++fdchangecnt; 1011 fd_change (EV_A_ w->fd);
655 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
656 fdchanges [fdchangecnt - 1] = w->fd;
657} 1012}
658 1013
659
660void 1014void
661evtimer_start (struct ev_timer *w) 1015ev_timer_start (EV_P_ struct ev_timer *w)
662{ 1016{
663 if (ev_is_active (w)) 1017 if (ev_is_active (w))
664 return; 1018 return;
665 1019
666 w->at += now; 1020 w->at += mn_now;
667 1021
1022 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1023
668 ev_start ((W)w, ++timercnt); 1024 ev_start (EV_A_ (W)w, ++timercnt);
669 array_needsize (timers, timermax, timercnt, ); 1025 array_needsize (timers, timermax, timercnt, );
670 timers [timercnt - 1] = w; 1026 timers [timercnt - 1] = w;
671 upheap ((WT *)timers, timercnt - 1); 1027 upheap ((WT *)timers, timercnt - 1);
672} 1028}
673 1029
674void 1030void
675evtimer_stop (struct ev_timer *w) 1031ev_timer_stop (EV_P_ struct ev_timer *w)
676{ 1032{
1033 ev_clear_pending (EV_A_ (W)w);
677 if (!ev_is_active (w)) 1034 if (!ev_is_active (w))
678 return; 1035 return;
679 1036
680 if (w->active < timercnt--) 1037 if (w->active < timercnt--)
681 { 1038 {
682 timers [w->active - 1] = timers [timercnt]; 1039 timers [w->active - 1] = timers [timercnt];
683 downheap ((WT *)timers, timercnt, w->active - 1); 1040 downheap ((WT *)timers, timercnt, w->active - 1);
684 } 1041 }
685 1042
1043 w->at = w->repeat;
1044
686 ev_stop ((W)w); 1045 ev_stop (EV_A_ (W)w);
687} 1046}
688 1047
689void 1048void
690evperiodic_start (struct ev_periodic *w) 1049ev_timer_again (EV_P_ struct ev_timer *w)
691{ 1050{
692 if (ev_is_active (w)) 1051 if (ev_is_active (w))
1052 {
1053 if (w->repeat)
1054 {
1055 w->at = mn_now + w->repeat;
1056 downheap ((WT *)timers, timercnt, w->active - 1);
1057 }
1058 else
1059 ev_timer_stop (EV_A_ w);
1060 }
1061 else if (w->repeat)
1062 ev_timer_start (EV_A_ w);
1063}
1064
1065void
1066ev_periodic_start (EV_P_ struct ev_periodic *w)
1067{
1068 if (ev_is_active (w))
693 return; 1069 return;
1070
1071 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
694 1072
695 /* this formula differs from the one in periodic_reify because we do not always round up */ 1073 /* this formula differs from the one in periodic_reify because we do not always round up */
696 if (w->interval) 1074 if (w->interval)
697 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1075 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval;
698 1076
699 ev_start ((W)w, ++periodiccnt); 1077 ev_start (EV_A_ (W)w, ++periodiccnt);
700 array_needsize (periodics, periodicmax, periodiccnt, ); 1078 array_needsize (periodics, periodicmax, periodiccnt, );
701 periodics [periodiccnt - 1] = w; 1079 periodics [periodiccnt - 1] = w;
702 upheap ((WT *)periodics, periodiccnt - 1); 1080 upheap ((WT *)periodics, periodiccnt - 1);
703} 1081}
704 1082
705void 1083void
706evperiodic_stop (struct ev_periodic *w) 1084ev_periodic_stop (EV_P_ struct ev_periodic *w)
707{ 1085{
1086 ev_clear_pending (EV_A_ (W)w);
708 if (!ev_is_active (w)) 1087 if (!ev_is_active (w))
709 return; 1088 return;
710 1089
711 if (w->active < periodiccnt--) 1090 if (w->active < periodiccnt--)
712 { 1091 {
713 periodics [w->active - 1] = periodics [periodiccnt]; 1092 periodics [w->active - 1] = periodics [periodiccnt];
714 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1093 downheap ((WT *)periodics, periodiccnt, w->active - 1);
715 } 1094 }
716 1095
717 ev_stop ((W)w); 1096 ev_stop (EV_A_ (W)w);
718} 1097}
719 1098
1099#ifndef SA_RESTART
1100# define SA_RESTART 0
1101#endif
1102
720void 1103void
721evsignal_start (struct ev_signal *w) 1104ev_signal_start (EV_P_ struct ev_signal *w)
722{ 1105{
723 if (ev_is_active (w)) 1106 if (ev_is_active (w))
724 return; 1107 return;
725 1108
1109 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1110
726 ev_start ((W)w, 1); 1111 ev_start (EV_A_ (W)w, 1);
727 array_needsize (signals, signalmax, w->signum, signals_init); 1112 array_needsize (signals, signalmax, w->signum, signals_init);
728 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1113 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
729 1114
730 if (!w->next) 1115 if (!w->next)
731 { 1116 {
732 struct sigaction sa; 1117 struct sigaction sa;
733 sa.sa_handler = sighandler; 1118 sa.sa_handler = sighandler;
734 sigfillset (&sa.sa_mask); 1119 sigfillset (&sa.sa_mask);
735 sa.sa_flags = 0; 1120 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
736 sigaction (w->signum, &sa, 0); 1121 sigaction (w->signum, &sa, 0);
737 } 1122 }
738} 1123}
739 1124
740void 1125void
741evsignal_stop (struct ev_signal *w) 1126ev_signal_stop (EV_P_ struct ev_signal *w)
742{ 1127{
1128 ev_clear_pending (EV_A_ (W)w);
743 if (!ev_is_active (w)) 1129 if (!ev_is_active (w))
744 return; 1130 return;
745 1131
746 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1132 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
747 ev_stop ((W)w); 1133 ev_stop (EV_A_ (W)w);
748 1134
749 if (!signals [w->signum - 1].head) 1135 if (!signals [w->signum - 1].head)
750 signal (w->signum, SIG_DFL); 1136 signal (w->signum, SIG_DFL);
751} 1137}
752 1138
1139void
753void evidle_start (struct ev_idle *w) 1140ev_idle_start (EV_P_ struct ev_idle *w)
754{ 1141{
755 if (ev_is_active (w)) 1142 if (ev_is_active (w))
756 return; 1143 return;
757 1144
758 ev_start ((W)w, ++idlecnt); 1145 ev_start (EV_A_ (W)w, ++idlecnt);
759 array_needsize (idles, idlemax, idlecnt, ); 1146 array_needsize (idles, idlemax, idlecnt, );
760 idles [idlecnt - 1] = w; 1147 idles [idlecnt - 1] = w;
761} 1148}
762 1149
1150void
763void evidle_stop (struct ev_idle *w) 1151ev_idle_stop (EV_P_ struct ev_idle *w)
764{ 1152{
1153 ev_clear_pending (EV_A_ (W)w);
1154 if (ev_is_active (w))
1155 return;
1156
765 idles [w->active - 1] = idles [--idlecnt]; 1157 idles [w->active - 1] = idles [--idlecnt];
766 ev_stop ((W)w); 1158 ev_stop (EV_A_ (W)w);
767} 1159}
768 1160
769void evcheck_start (struct ev_check *w) 1161void
1162ev_prepare_start (EV_P_ struct ev_prepare *w)
770{ 1163{
771 if (ev_is_active (w)) 1164 if (ev_is_active (w))
772 return; 1165 return;
773 1166
1167 ev_start (EV_A_ (W)w, ++preparecnt);
1168 array_needsize (prepares, preparemax, preparecnt, );
1169 prepares [preparecnt - 1] = w;
1170}
1171
1172void
1173ev_prepare_stop (EV_P_ struct ev_prepare *w)
1174{
1175 ev_clear_pending (EV_A_ (W)w);
1176 if (ev_is_active (w))
1177 return;
1178
1179 prepares [w->active - 1] = prepares [--preparecnt];
1180 ev_stop (EV_A_ (W)w);
1181}
1182
1183void
1184ev_check_start (EV_P_ struct ev_check *w)
1185{
1186 if (ev_is_active (w))
1187 return;
1188
774 ev_start ((W)w, ++checkcnt); 1189 ev_start (EV_A_ (W)w, ++checkcnt);
775 array_needsize (checks, checkmax, checkcnt, ); 1190 array_needsize (checks, checkmax, checkcnt, );
776 checks [checkcnt - 1] = w; 1191 checks [checkcnt - 1] = w;
777} 1192}
778 1193
1194void
779void evcheck_stop (struct ev_check *w) 1195ev_check_stop (EV_P_ struct ev_check *w)
780{ 1196{
1197 ev_clear_pending (EV_A_ (W)w);
1198 if (ev_is_active (w))
1199 return;
1200
781 checks [w->active - 1] = checks [--checkcnt]; 1201 checks [w->active - 1] = checks [--checkcnt];
782 ev_stop ((W)w); 1202 ev_stop (EV_A_ (W)w);
1203}
1204
1205void
1206ev_child_start (EV_P_ struct ev_child *w)
1207{
1208 if (ev_is_active (w))
1209 return;
1210
1211 ev_start (EV_A_ (W)w, 1);
1212 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1213}
1214
1215void
1216ev_child_stop (EV_P_ struct ev_child *w)
1217{
1218 ev_clear_pending (EV_A_ (W)w);
1219 if (ev_is_active (w))
1220 return;
1221
1222 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1223 ev_stop (EV_A_ (W)w);
783} 1224}
784 1225
785/*****************************************************************************/ 1226/*****************************************************************************/
786 1227
1228struct ev_once
1229{
1230 struct ev_io io;
1231 struct ev_timer to;
1232 void (*cb)(int revents, void *arg);
1233 void *arg;
1234};
1235
1236static void
1237once_cb (EV_P_ struct ev_once *once, int revents)
1238{
1239 void (*cb)(int revents, void *arg) = once->cb;
1240 void *arg = once->arg;
1241
1242 ev_io_stop (EV_A_ &once->io);
1243 ev_timer_stop (EV_A_ &once->to);
1244 free (once);
1245
1246 cb (revents, arg);
1247}
1248
1249static void
1250once_cb_io (EV_P_ struct ev_io *w, int revents)
1251{
1252 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1253}
1254
1255static void
1256once_cb_to (EV_P_ struct ev_timer *w, int revents)
1257{
1258 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1259}
1260
1261void
1262ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1263{
1264 struct ev_once *once = malloc (sizeof (struct ev_once));
1265
1266 if (!once)
1267 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1268 else
1269 {
1270 once->cb = cb;
1271 once->arg = arg;
1272
1273 ev_watcher_init (&once->io, once_cb_io);
1274 if (fd >= 0)
1275 {
1276 ev_io_set (&once->io, fd, events);
1277 ev_io_start (EV_A_ &once->io);
1278 }
1279
1280 ev_watcher_init (&once->to, once_cb_to);
1281 if (timeout >= 0.)
1282 {
1283 ev_timer_set (&once->to, timeout, 0.);
1284 ev_timer_start (EV_A_ &once->to);
1285 }
1286 }
1287}
1288
1289/*****************************************************************************/
1290
787#if 1 1291#if 0
788 1292
789struct ev_io wio; 1293struct ev_io wio;
790 1294
791static void 1295static void
792sin_cb (struct ev_io *w, int revents) 1296sin_cb (struct ev_io *w, int revents)
796 1300
797static void 1301static void
798ocb (struct ev_timer *w, int revents) 1302ocb (struct ev_timer *w, int revents)
799{ 1303{
800 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data); 1304 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
801 evtimer_stop (w); 1305 ev_timer_stop (w);
802 evtimer_start (w); 1306 ev_timer_start (w);
803} 1307}
804 1308
805static void 1309static void
806scb (struct ev_signal *w, int revents) 1310scb (struct ev_signal *w, int revents)
807{ 1311{
808 fprintf (stderr, "signal %x,%d\n", revents, w->signum); 1312 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
809 evio_stop (&wio); 1313 ev_io_stop (&wio);
810 evio_start (&wio); 1314 ev_io_start (&wio);
811} 1315}
812 1316
813static void 1317static void
814gcb (struct ev_signal *w, int revents) 1318gcb (struct ev_signal *w, int revents)
815{ 1319{
819 1323
820int main (void) 1324int main (void)
821{ 1325{
822 ev_init (0); 1326 ev_init (0);
823 1327
824 evio_init (&wio, sin_cb, 0, EV_READ); 1328 ev_io_init (&wio, sin_cb, 0, EV_READ);
825 evio_start (&wio); 1329 ev_io_start (&wio);
826 1330
827 struct ev_timer t[10000]; 1331 struct ev_timer t[10000];
828 1332
829#if 0 1333#if 0
830 int i; 1334 int i;
831 for (i = 0; i < 10000; ++i) 1335 for (i = 0; i < 10000; ++i)
832 { 1336 {
833 struct ev_timer *w = t + i; 1337 struct ev_timer *w = t + i;
834 evw_init (w, ocb, i); 1338 ev_watcher_init (w, ocb, i);
835 evtimer_init_abs (w, ocb, drand48 (), 0.99775533); 1339 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
836 evtimer_start (w); 1340 ev_timer_start (w);
837 if (drand48 () < 0.5) 1341 if (drand48 () < 0.5)
838 evtimer_stop (w); 1342 ev_timer_stop (w);
839 } 1343 }
840#endif 1344#endif
841 1345
842 struct ev_timer t1; 1346 struct ev_timer t1;
843 evtimer_init (&t1, ocb, 5, 10); 1347 ev_timer_init (&t1, ocb, 5, 10);
844 evtimer_start (&t1); 1348 ev_timer_start (&t1);
845 1349
846 struct ev_signal sig; 1350 struct ev_signal sig;
847 evsignal_init (&sig, scb, SIGQUIT); 1351 ev_signal_init (&sig, scb, SIGQUIT);
848 evsignal_start (&sig); 1352 ev_signal_start (&sig);
849 1353
850 struct ev_check cw; 1354 struct ev_check cw;
851 evcheck_init (&cw, gcb); 1355 ev_check_init (&cw, gcb);
852 evcheck_start (&cw); 1356 ev_check_start (&cw);
853 1357
854 struct ev_idle iw; 1358 struct ev_idle iw;
855 evidle_init (&iw, gcb); 1359 ev_idle_init (&iw, gcb);
856 evidle_start (&iw); 1360 ev_idle_start (&iw);
857 1361
858 ev_loop (0); 1362 ev_loop (0);
859 1363
860 return 0; 1364 return 0;
861} 1365}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines