ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.52 by root, Sat Nov 3 22:10:39 2007 UTC vs.
Revision 1.235 by root, Wed May 7 14:45:17 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
32# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1
55# endif
56# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1
58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
74# endif
75
76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
90# endif
91
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
98# endif
99
100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
33#endif 132#endif
34 133
35#include <math.h> 134#include <math.h>
36#include <stdlib.h> 135#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 136#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 137#include <stddef.h>
41 138
42#include <stdio.h> 139#include <stdio.h>
43 140
44#include <assert.h> 141#include <assert.h>
45#include <errno.h> 142#include <errno.h>
46#include <sys/types.h> 143#include <sys/types.h>
144#include <time.h>
145
146#include <signal.h>
147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
47#ifndef WIN32 154#ifndef _WIN32
155# include <sys/time.h>
48# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
158#else
159# define WIN32_LEAN_AND_MEAN
160# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1
49#endif 163# endif
50#include <sys/time.h> 164#endif
51#include <time.h>
52 165
53/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
54 167
55#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
56# define EV_USE_MONOTONIC 1 169# define EV_USE_MONOTONIC 0
170#endif
171
172#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
57#endif 178#endif
58 179
59#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
61#endif 182#endif
62 183
63#ifndef EV_USEV_POLL 184#ifndef EV_USE_POLL
64# define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */ 185# ifdef _WIN32
186# define EV_USE_POLL 0
187# else
188# define EV_USE_POLL 1
189# endif
65#endif 190#endif
66 191
67#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
68# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
69#endif 198#endif
70 199
71#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
73#endif 202#endif
74 203
75#ifndef EV_USE_REALTIME 204#ifndef EV_USE_PORT
205# define EV_USE_PORT 0
206#endif
207
208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
76# define EV_USE_REALTIME 1 210# define EV_USE_INOTIFY 1
211# else
212# define EV_USE_INOTIFY 0
77#endif 213# endif
214#endif
78 215
79/**/ 216#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif
223
224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
80 241
81#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
82# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
83# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
84#endif 245#endif
86#ifndef CLOCK_REALTIME 247#ifndef CLOCK_REALTIME
87# undef EV_USE_REALTIME 248# undef EV_USE_REALTIME
88# define EV_USE_REALTIME 0 249# define EV_USE_REALTIME 0
89#endif 250#endif
90 251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
267#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h>
269#endif
270
271#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
276# endif
277int eventfd (unsigned int initval, int flags);
278# ifdef __cplusplus
279}
280# endif
281#endif
282
91/**/ 283/**/
92 284
285/*
286 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
294
93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
97 298
98#include "ev.h"
99
100#if __GNUC__ >= 3 299#if __GNUC__ >= 4
101# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
102# define inline inline 301# define noinline __attribute__ ((noinline))
103#else 302#else
104# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
105# define inline static 304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif
106#endif 308#endif
107 309
108#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
109#define expect_true(expr) expect ((expr) != 0, 1) 311#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline
313
314#if EV_MINIMAL
315# define inline_speed static noinline
316#else
317# define inline_speed static inline
318#endif
110 319
111#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
112#define ABSPRI(w) ((w)->priority - EV_MINPRI) 321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
113 322
323#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */
325
114typedef struct ev_watcher *W; 326typedef ev_watcher *W;
115typedef struct ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
117 329
118static ev_tstamp now_floor, mn_now, diff; /* monotonic clock */ 330#define ev_active(w) ((W)(w))->active
119static ev_tstamp rt_now; 331#define ev_at(w) ((WT)(w))->at
120static int method;
121 332
122static int have_monotonic; /* runtime */ 333#if EV_USE_MONOTONIC
123 334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
124static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 335/* giving it a reasonably high chance of working on typical architetcures */
125static void (*method_modify)(EV_P_ int fd, int oev, int nev); 336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
126static void (*method_poll)(EV_P_ ev_tstamp timeout);
127
128static int activecnt; /* number of active events */
129
130#if EV_USE_SELECT
131static unsigned char *vec_ri, *vec_ro, *vec_wi, *vec_wo;
132static int vec_max;
133#endif 337#endif
134 338
135#if EV_USEV_POLL 339#ifdef _WIN32
136static struct pollfd *polls; 340# include "ev_win32.c"
137static int pollmax, pollcnt;
138static int *pollidxs; /* maps fds into structure indices */
139static int pollidxmax;
140#endif
141
142#if EV_USE_EPOLL
143static int epoll_fd = -1;
144
145static struct epoll_event *events;
146static int eventmax;
147#endif
148
149#if EV_USE_KQUEUE
150static int kqueue_fd;
151static struct kevent *kqueue_changes;
152static int kqueue_changemax, kqueue_changecnt;
153static struct kevent *kqueue_events;
154static int kqueue_eventmax;
155#endif 341#endif
156 342
157/*****************************************************************************/ 343/*****************************************************************************/
158 344
159inline ev_tstamp 345static void (*syserr_cb)(const char *msg);
346
347void
348ev_set_syserr_cb (void (*cb)(const char *msg))
349{
350 syserr_cb = cb;
351}
352
353static void noinline
354syserr (const char *msg)
355{
356 if (!msg)
357 msg = "(libev) system error";
358
359 if (syserr_cb)
360 syserr_cb (msg);
361 else
362 {
363 perror (msg);
364 abort ();
365 }
366}
367
368static void *
369ev_realloc_emul (void *ptr, long size)
370{
371 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and
373 * the single unix specification, so work around them here.
374 */
375
376 if (size)
377 return realloc (ptr, size);
378
379 free (ptr);
380 return 0;
381}
382
383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
384
385void
386ev_set_allocator (void *(*cb)(void *ptr, long size))
387{
388 alloc = cb;
389}
390
391inline_speed void *
392ev_realloc (void *ptr, long size)
393{
394 ptr = alloc (ptr, size);
395
396 if (!ptr && size)
397 {
398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
399 abort ();
400 }
401
402 return ptr;
403}
404
405#define ev_malloc(size) ev_realloc (0, (size))
406#define ev_free(ptr) ev_realloc ((ptr), 0)
407
408/*****************************************************************************/
409
410typedef struct
411{
412 WL head;
413 unsigned char events;
414 unsigned char reify;
415#if EV_SELECT_IS_WINSOCKET
416 SOCKET handle;
417#endif
418} ANFD;
419
420typedef struct
421{
422 W w;
423 int events;
424} ANPENDING;
425
426#if EV_USE_INOTIFY
427typedef struct
428{
429 WL head;
430} ANFS;
431#endif
432
433#if EV_MULTIPLICITY
434
435 struct ev_loop
436 {
437 ev_tstamp ev_rt_now;
438 #define ev_rt_now ((loop)->ev_rt_now)
439 #define VAR(name,decl) decl;
440 #include "ev_vars.h"
441 #undef VAR
442 };
443 #include "ev_wrap.h"
444
445 static struct ev_loop default_loop_struct;
446 struct ev_loop *ev_default_loop_ptr;
447
448#else
449
450 ev_tstamp ev_rt_now;
451 #define VAR(name,decl) static decl;
452 #include "ev_vars.h"
453 #undef VAR
454
455 static int ev_default_loop_ptr;
456
457#endif
458
459/*****************************************************************************/
460
461ev_tstamp
160ev_time (void) 462ev_time (void)
161{ 463{
162#if EV_USE_REALTIME 464#if EV_USE_REALTIME
163 struct timespec ts; 465 struct timespec ts;
164 clock_gettime (CLOCK_REALTIME, &ts); 466 clock_gettime (CLOCK_REALTIME, &ts);
168 gettimeofday (&tv, 0); 470 gettimeofday (&tv, 0);
169 return tv.tv_sec + tv.tv_usec * 1e-6; 471 return tv.tv_sec + tv.tv_usec * 1e-6;
170#endif 472#endif
171} 473}
172 474
173inline ev_tstamp 475ev_tstamp inline_size
174get_clock (void) 476get_clock (void)
175{ 477{
176#if EV_USE_MONOTONIC 478#if EV_USE_MONOTONIC
177 if (expect_true (have_monotonic)) 479 if (expect_true (have_monotonic))
178 { 480 {
183#endif 485#endif
184 486
185 return ev_time (); 487 return ev_time ();
186} 488}
187 489
490#if EV_MULTIPLICITY
188ev_tstamp 491ev_tstamp
189ev_now (EV_P) 492ev_now (EV_P)
190{ 493{
191 return rt_now; 494 return ev_rt_now;
192} 495}
496#endif
193 497
194#define array_roundsize(base,n) ((n) | 4 & ~3) 498void
195 499ev_sleep (ev_tstamp delay)
196#define array_needsize(base,cur,cnt,init) \ 500{
197 if (expect_false ((cnt) > cur)) \ 501 if (delay > 0.)
198 { \
199 int newcnt = cur; \
200 do \
201 { \
202 newcnt = array_roundsize (base, newcnt << 1); \
203 } \
204 while ((cnt) > newcnt); \
205 \
206 base = realloc (base, sizeof (*base) * (newcnt)); \
207 init (base + cur, newcnt - cur); \
208 cur = newcnt; \
209 } 502 {
503#if EV_USE_NANOSLEEP
504 struct timespec ts;
505
506 ts.tv_sec = (time_t)delay;
507 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
508
509 nanosleep (&ts, 0);
510#elif defined(_WIN32)
511 Sleep ((unsigned long)(delay * 1e3));
512#else
513 struct timeval tv;
514
515 tv.tv_sec = (time_t)delay;
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
517
518 select (0, 0, 0, 0, &tv);
519#endif
520 }
521}
210 522
211/*****************************************************************************/ 523/*****************************************************************************/
212 524
213typedef struct 525#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
214{
215 struct ev_watcher_list *head;
216 unsigned char events;
217 unsigned char reify;
218} ANFD;
219 526
220static ANFD *anfds; 527int inline_size
221static int anfdmax; 528array_nextsize (int elem, int cur, int cnt)
529{
530 int ncur = cur + 1;
222 531
223static void 532 do
533 ncur <<= 1;
534 while (cnt > ncur);
535
536 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
537 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
538 {
539 ncur *= elem;
540 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
541 ncur = ncur - sizeof (void *) * 4;
542 ncur /= elem;
543 }
544
545 return ncur;
546}
547
548static noinline void *
549array_realloc (int elem, void *base, int *cur, int cnt)
550{
551 *cur = array_nextsize (elem, *cur, cnt);
552 return ev_realloc (base, elem * *cur);
553}
554
555#define array_needsize(type,base,cur,cnt,init) \
556 if (expect_false ((cnt) > (cur))) \
557 { \
558 int ocur_ = (cur); \
559 (base) = (type *)array_realloc \
560 (sizeof (type), (base), &(cur), (cnt)); \
561 init ((base) + (ocur_), (cur) - ocur_); \
562 }
563
564#if 0
565#define array_slim(type,stem) \
566 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
567 { \
568 stem ## max = array_roundsize (stem ## cnt >> 1); \
569 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
570 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
571 }
572#endif
573
574#define array_free(stem, idx) \
575 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
576
577/*****************************************************************************/
578
579void noinline
580ev_feed_event (EV_P_ void *w, int revents)
581{
582 W w_ = (W)w;
583 int pri = ABSPRI (w_);
584
585 if (expect_false (w_->pending))
586 pendings [pri][w_->pending - 1].events |= revents;
587 else
588 {
589 w_->pending = ++pendingcnt [pri];
590 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
591 pendings [pri][w_->pending - 1].w = w_;
592 pendings [pri][w_->pending - 1].events = revents;
593 }
594}
595
596void inline_speed
597queue_events (EV_P_ W *events, int eventcnt, int type)
598{
599 int i;
600
601 for (i = 0; i < eventcnt; ++i)
602 ev_feed_event (EV_A_ events [i], type);
603}
604
605/*****************************************************************************/
606
607void inline_size
224anfds_init (ANFD *base, int count) 608anfds_init (ANFD *base, int count)
225{ 609{
226 while (count--) 610 while (count--)
227 { 611 {
228 base->head = 0; 612 base->head = 0;
231 615
232 ++base; 616 ++base;
233 } 617 }
234} 618}
235 619
236typedef struct 620void inline_speed
237{
238 W w;
239 int events;
240} ANPENDING;
241
242static ANPENDING *pendings [NUMPRI];
243static int pendingmax [NUMPRI], pendingcnt [NUMPRI];
244
245static void
246event (EV_P_ W w, int events)
247{
248 if (w->pending)
249 {
250 pendings [ABSPRI (w)][w->pending - 1].events |= events;
251 return;
252 }
253
254 w->pending = ++pendingcnt [ABSPRI (w)];
255 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
256 pendings [ABSPRI (w)][w->pending - 1].w = w;
257 pendings [ABSPRI (w)][w->pending - 1].events = events;
258}
259
260static void
261queue_events (EV_P_ W *events, int eventcnt, int type)
262{
263 int i;
264
265 for (i = 0; i < eventcnt; ++i)
266 event (EV_A_ events [i], type);
267}
268
269static void
270fd_event (EV_P_ int fd, int events) 621fd_event (EV_P_ int fd, int revents)
271{ 622{
272 ANFD *anfd = anfds + fd; 623 ANFD *anfd = anfds + fd;
273 struct ev_io *w; 624 ev_io *w;
274 625
275 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 626 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
276 { 627 {
277 int ev = w->events & events; 628 int ev = w->events & revents;
278 629
279 if (ev) 630 if (ev)
280 event (EV_A_ (W)w, ev); 631 ev_feed_event (EV_A_ (W)w, ev);
281 } 632 }
282} 633}
283 634
284/*****************************************************************************/ 635void
636ev_feed_fd_event (EV_P_ int fd, int revents)
637{
638 if (fd >= 0 && fd < anfdmax)
639 fd_event (EV_A_ fd, revents);
640}
285 641
286static int *fdchanges; 642void inline_size
287static int fdchangemax, fdchangecnt;
288
289static void
290fd_reify (EV_P) 643fd_reify (EV_P)
291{ 644{
292 int i; 645 int i;
293 646
294 for (i = 0; i < fdchangecnt; ++i) 647 for (i = 0; i < fdchangecnt; ++i)
295 { 648 {
296 int fd = fdchanges [i]; 649 int fd = fdchanges [i];
297 ANFD *anfd = anfds + fd; 650 ANFD *anfd = anfds + fd;
298 struct ev_io *w; 651 ev_io *w;
299 652
300 int events = 0; 653 unsigned char events = 0;
301 654
302 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 655 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
303 events |= w->events; 656 events |= (unsigned char)w->events;
304 657
305 anfd->reify = 0; 658#if EV_SELECT_IS_WINSOCKET
306 659 if (events)
307 if (anfd->events != events)
308 { 660 {
309 method_modify (EV_A_ fd, anfd->events, events); 661 unsigned long argp;
310 anfd->events = events; 662 #ifdef EV_FD_TO_WIN32_HANDLE
663 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
664 #else
665 anfd->handle = _get_osfhandle (fd);
666 #endif
667 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
311 } 668 }
669#endif
670
671 {
672 unsigned char o_events = anfd->events;
673 unsigned char o_reify = anfd->reify;
674
675 anfd->reify = 0;
676 anfd->events = events;
677
678 if (o_events != events || o_reify & EV_IOFDSET)
679 backend_modify (EV_A_ fd, o_events, events);
680 }
312 } 681 }
313 682
314 fdchangecnt = 0; 683 fdchangecnt = 0;
315} 684}
316 685
317static void 686void inline_size
318fd_change (EV_P_ int fd) 687fd_change (EV_P_ int fd, int flags)
319{ 688{
320 if (anfds [fd].reify || fdchangecnt < 0) 689 unsigned char reify = anfds [fd].reify;
321 return;
322
323 anfds [fd].reify = 1; 690 anfds [fd].reify |= flags;
324 691
692 if (expect_true (!reify))
693 {
325 ++fdchangecnt; 694 ++fdchangecnt;
326 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 695 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
327 fdchanges [fdchangecnt - 1] = fd; 696 fdchanges [fdchangecnt - 1] = fd;
697 }
328} 698}
329 699
330static void 700void inline_speed
331fd_kill (EV_P_ int fd) 701fd_kill (EV_P_ int fd)
332{ 702{
333 struct ev_io *w; 703 ev_io *w;
334 704
335 while ((w = (struct ev_io *)anfds [fd].head)) 705 while ((w = (ev_io *)anfds [fd].head))
336 { 706 {
337 ev_io_stop (EV_A_ w); 707 ev_io_stop (EV_A_ w);
338 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 708 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
339 } 709 }
710}
711
712int inline_size
713fd_valid (int fd)
714{
715#ifdef _WIN32
716 return _get_osfhandle (fd) != -1;
717#else
718 return fcntl (fd, F_GETFD) != -1;
719#endif
340} 720}
341 721
342/* called on EBADF to verify fds */ 722/* called on EBADF to verify fds */
343static void 723static void noinline
344fd_ebadf (EV_P) 724fd_ebadf (EV_P)
345{ 725{
346 int fd; 726 int fd;
347 727
348 for (fd = 0; fd < anfdmax; ++fd) 728 for (fd = 0; fd < anfdmax; ++fd)
349 if (anfds [fd].events) 729 if (anfds [fd].events)
350 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 730 if (!fd_valid (fd) == -1 && errno == EBADF)
351 fd_kill (EV_A_ fd); 731 fd_kill (EV_A_ fd);
352} 732}
353 733
354/* called on ENOMEM in select/poll to kill some fds and retry */ 734/* called on ENOMEM in select/poll to kill some fds and retry */
355static void 735static void noinline
356fd_enomem (EV_P) 736fd_enomem (EV_P)
357{ 737{
358 int fd = anfdmax; 738 int fd;
359 739
360 while (fd--) 740 for (fd = anfdmax; fd--; )
361 if (anfds [fd].events) 741 if (anfds [fd].events)
362 { 742 {
363 close (fd);
364 fd_kill (EV_A_ fd); 743 fd_kill (EV_A_ fd);
365 return; 744 return;
366 } 745 }
367} 746}
368 747
748/* usually called after fork if backend needs to re-arm all fds from scratch */
749static void noinline
750fd_rearm_all (EV_P)
751{
752 int fd;
753
754 for (fd = 0; fd < anfdmax; ++fd)
755 if (anfds [fd].events)
756 {
757 anfds [fd].events = 0;
758 fd_change (EV_A_ fd, EV_IOFDSET | 1);
759 }
760}
761
369/*****************************************************************************/ 762/*****************************************************************************/
370 763
371static struct ev_timer **timers; 764/*
372static int timermax, timercnt; 765 * at the moment we allow libev the luxury of two heaps,
766 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
767 * which is more cache-efficient.
768 * the difference is about 5% with 50000+ watchers.
769 */
770#define USE_4HEAP !EV_MINIMAL
771#if USE_4HEAP
373 772
374static struct ev_periodic **periodics; 773#define HEAP0 3 /* index of first element in heap */
375static int periodicmax, periodiccnt;
376 774
377static void 775/* towards the root */
776void inline_speed
378upheap (WT *timers, int k) 777upheap (WT *heap, int k)
379{ 778{
380 WT w = timers [k]; 779 WT w = heap [k];
381 780
382 while (k && timers [k >> 1]->at > w->at) 781 for (;;)
383 {
384 timers [k] = timers [k >> 1];
385 timers [k]->active = k + 1;
386 k >>= 1;
387 } 782 {
783 int p = ((k - HEAP0 - 1) / 4) + HEAP0;
388 784
389 timers [k] = w; 785 if (p >= HEAP0 || heap [p]->at <= w->at)
390 timers [k]->active = k + 1;
391
392}
393
394static void
395downheap (WT *timers, int N, int k)
396{
397 WT w = timers [k];
398
399 while (k < (N >> 1))
400 {
401 int j = k << 1;
402
403 if (j + 1 < N && timers [j]->at > timers [j + 1]->at)
404 ++j;
405
406 if (w->at <= timers [j]->at)
407 break; 786 break;
408 787
409 timers [k] = timers [j]; 788 heap [k] = heap [p];
410 timers [k]->active = k + 1; 789 ev_active (heap [k]) = k;
411 k = j; 790 k = p;
791 }
792
793 heap [k] = w;
794 ev_active (heap [k]) = k;
795}
796
797/* away from the root */
798void inline_speed
799downheap (WT *heap, int N, int k)
800{
801 WT w = heap [k];
802 WT *E = heap + N + HEAP0;
803
804 for (;;)
412 } 805 {
806 ev_tstamp minat;
807 WT *minpos;
808 WT *pos = heap + 4 * (k - HEAP0) + HEAP0;
413 809
810 // find minimum child
811 if (expect_true (pos +3 < E))
812 {
813 (minpos = pos + 0), (minat = (*minpos)->at);
814 if (pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
815 if (pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
816 if (pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
817 }
818 else
819 {
820 if (pos >= E)
821 break;
822
823 (minpos = pos + 0), (minat = (*minpos)->at);
824 if (pos + 1 < E && pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
825 if (pos + 2 < E && pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
826 if (pos + 3 < E && pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
827 }
828
829 if (w->at <= minat)
830 break;
831
832 ev_active (*minpos) = k;
833 heap [k] = *minpos;
834
835 k = minpos - heap;
836 }
837
414 timers [k] = w; 838 heap [k] = w;
415 timers [k]->active = k + 1; 839 ev_active (heap [k]) = k;
840}
841
842#else // 4HEAP
843
844#define HEAP0 1
845
846/* towards the root */
847void inline_speed
848upheap (WT *heap, int k)
849{
850 WT w = heap [k];
851
852 for (;;)
853 {
854 int p = k >> 1;
855
856 /* maybe we could use a dummy element at heap [0]? */
857 if (!p || heap [p]->at <= w->at)
858 break;
859
860 heap [k] = heap [p];
861 ev_active (heap [k]) = k;
862 k = p;
863 }
864
865 heap [k] = w;
866 ev_active (heap [k]) = k;
867}
868
869/* away from the root */
870void inline_speed
871downheap (WT *heap, int N, int k)
872{
873 WT w = heap [k];
874
875 for (;;)
876 {
877 int c = k << 1;
878
879 if (c > N)
880 break;
881
882 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
883 ? 1 : 0;
884
885 if (w->at <= heap [c]->at)
886 break;
887
888 heap [k] = heap [c];
889 ((W)heap [k])->active = k;
890
891 k = c;
892 }
893
894 heap [k] = w;
895 ev_active (heap [k]) = k;
896}
897#endif
898
899void inline_size
900adjustheap (WT *heap, int N, int k)
901{
902 upheap (heap, k);
903 downheap (heap, N, k);
416} 904}
417 905
418/*****************************************************************************/ 906/*****************************************************************************/
419 907
420typedef struct 908typedef struct
421{ 909{
422 struct ev_watcher_list *head; 910 WL head;
423 sig_atomic_t volatile gotsig; 911 EV_ATOMIC_T gotsig;
424} ANSIG; 912} ANSIG;
425 913
426static ANSIG *signals; 914static ANSIG *signals;
427static int signalmax; 915static int signalmax;
428 916
429static int sigpipe [2]; 917static EV_ATOMIC_T gotsig;
430static sig_atomic_t volatile gotsig;
431static struct ev_io sigev;
432 918
433static void 919void inline_size
434signals_init (ANSIG *base, int count) 920signals_init (ANSIG *base, int count)
435{ 921{
436 while (count--) 922 while (count--)
437 { 923 {
438 base->head = 0; 924 base->head = 0;
440 926
441 ++base; 927 ++base;
442 } 928 }
443} 929}
444 930
931/*****************************************************************************/
932
933void inline_speed
934fd_intern (int fd)
935{
936#ifdef _WIN32
937 int arg = 1;
938 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
939#else
940 fcntl (fd, F_SETFD, FD_CLOEXEC);
941 fcntl (fd, F_SETFL, O_NONBLOCK);
942#endif
943}
944
945static void noinline
946evpipe_init (EV_P)
947{
948 if (!ev_is_active (&pipeev))
949 {
950#if EV_USE_EVENTFD
951 if ((evfd = eventfd (0, 0)) >= 0)
952 {
953 evpipe [0] = -1;
954 fd_intern (evfd);
955 ev_io_set (&pipeev, evfd, EV_READ);
956 }
957 else
958#endif
959 {
960 while (pipe (evpipe))
961 syserr ("(libev) error creating signal/async pipe");
962
963 fd_intern (evpipe [0]);
964 fd_intern (evpipe [1]);
965 ev_io_set (&pipeev, evpipe [0], EV_READ);
966 }
967
968 ev_io_start (EV_A_ &pipeev);
969 ev_unref (EV_A); /* watcher should not keep loop alive */
970 }
971}
972
973void inline_size
974evpipe_write (EV_P_ EV_ATOMIC_T *flag)
975{
976 if (!*flag)
977 {
978 int old_errno = errno; /* save errno because write might clobber it */
979
980 *flag = 1;
981
982#if EV_USE_EVENTFD
983 if (evfd >= 0)
984 {
985 uint64_t counter = 1;
986 write (evfd, &counter, sizeof (uint64_t));
987 }
988 else
989#endif
990 write (evpipe [1], &old_errno, 1);
991
992 errno = old_errno;
993 }
994}
995
445static void 996static void
997pipecb (EV_P_ ev_io *iow, int revents)
998{
999#if EV_USE_EVENTFD
1000 if (evfd >= 0)
1001 {
1002 uint64_t counter;
1003 read (evfd, &counter, sizeof (uint64_t));
1004 }
1005 else
1006#endif
1007 {
1008 char dummy;
1009 read (evpipe [0], &dummy, 1);
1010 }
1011
1012 if (gotsig && ev_is_default_loop (EV_A))
1013 {
1014 int signum;
1015 gotsig = 0;
1016
1017 for (signum = signalmax; signum--; )
1018 if (signals [signum].gotsig)
1019 ev_feed_signal_event (EV_A_ signum + 1);
1020 }
1021
1022#if EV_ASYNC_ENABLE
1023 if (gotasync)
1024 {
1025 int i;
1026 gotasync = 0;
1027
1028 for (i = asynccnt; i--; )
1029 if (asyncs [i]->sent)
1030 {
1031 asyncs [i]->sent = 0;
1032 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1033 }
1034 }
1035#endif
1036}
1037
1038/*****************************************************************************/
1039
1040static void
446sighandler (int signum) 1041ev_sighandler (int signum)
447{ 1042{
1043#if EV_MULTIPLICITY
1044 struct ev_loop *loop = &default_loop_struct;
1045#endif
1046
1047#if _WIN32
1048 signal (signum, ev_sighandler);
1049#endif
1050
448 signals [signum - 1].gotsig = 1; 1051 signals [signum - 1].gotsig = 1;
449 1052 evpipe_write (EV_A_ &gotsig);
450 if (!gotsig)
451 {
452 int old_errno = errno;
453 gotsig = 1;
454 write (sigpipe [1], &signum, 1);
455 errno = old_errno;
456 }
457} 1053}
458 1054
459static void 1055void noinline
460sigcb (EV_P_ struct ev_io *iow, int revents) 1056ev_feed_signal_event (EV_P_ int signum)
461{ 1057{
462 struct ev_watcher_list *w; 1058 WL w;
1059
1060#if EV_MULTIPLICITY
1061 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1062#endif
1063
463 int signum; 1064 --signum;
464 1065
465 read (sigpipe [0], &revents, 1); 1066 if (signum < 0 || signum >= signalmax)
466 gotsig = 0; 1067 return;
467 1068
468 for (signum = signalmax; signum--; )
469 if (signals [signum].gotsig)
470 {
471 signals [signum].gotsig = 0; 1069 signals [signum].gotsig = 0;
472 1070
473 for (w = signals [signum].head; w; w = w->next) 1071 for (w = signals [signum].head; w; w = w->next)
474 event (EV_A_ (W)w, EV_SIGNAL); 1072 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
475 }
476}
477
478static void
479siginit (EV_P)
480{
481#ifndef WIN32
482 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
483 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
484
485 /* rather than sort out wether we really need nb, set it */
486 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
487 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
488#endif
489
490 ev_io_set (&sigev, sigpipe [0], EV_READ);
491 ev_io_start (&sigev);
492 ev_unref (EV_A); /* child watcher should not keep loop alive */
493} 1073}
494 1074
495/*****************************************************************************/ 1075/*****************************************************************************/
496 1076
497static struct ev_idle **idles; 1077static WL childs [EV_PID_HASHSIZE];
498static int idlemax, idlecnt;
499 1078
500static struct ev_prepare **prepares;
501static int preparemax, preparecnt;
502
503static struct ev_check **checks;
504static int checkmax, checkcnt;
505
506/*****************************************************************************/
507
508static struct ev_child *childs [PID_HASHSIZE];
509static struct ev_signal childev;
510
511#ifndef WIN32 1079#ifndef _WIN32
1080
1081static ev_signal childev;
1082
1083#ifndef WIFCONTINUED
1084# define WIFCONTINUED(status) 0
1085#endif
1086
1087void inline_speed
1088child_reap (EV_P_ int chain, int pid, int status)
1089{
1090 ev_child *w;
1091 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1092
1093 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1094 {
1095 if ((w->pid == pid || !w->pid)
1096 && (!traced || (w->flags & 1)))
1097 {
1098 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1099 w->rpid = pid;
1100 w->rstatus = status;
1101 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1102 }
1103 }
1104}
512 1105
513#ifndef WCONTINUED 1106#ifndef WCONTINUED
514# define WCONTINUED 0 1107# define WCONTINUED 0
515#endif 1108#endif
516 1109
517static void 1110static void
518child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
519{
520 struct ev_child *w;
521
522 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
523 if (w->pid == pid || !w->pid)
524 {
525 w->priority = sw->priority; /* need to do it *now* */
526 w->rpid = pid;
527 w->rstatus = status;
528 event (EV_A_ (W)w, EV_CHILD);
529 }
530}
531
532static void
533childcb (EV_P_ struct ev_signal *sw, int revents) 1111childcb (EV_P_ ev_signal *sw, int revents)
534{ 1112{
535 int pid, status; 1113 int pid, status;
536 1114
1115 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
537 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1116 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
538 { 1117 if (!WCONTINUED
1118 || errno != EINVAL
1119 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1120 return;
1121
539 /* make sure we are called again until all childs have been reaped */ 1122 /* make sure we are called again until all children have been reaped */
1123 /* we need to do it this way so that the callback gets called before we continue */
540 event (EV_A_ (W)sw, EV_SIGNAL); 1124 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
541 1125
542 child_reap (EV_A_ sw, pid, pid, status); 1126 child_reap (EV_A_ pid, pid, status);
1127 if (EV_PID_HASHSIZE > 1)
543 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1128 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
544 }
545} 1129}
546 1130
547#endif 1131#endif
548 1132
549/*****************************************************************************/ 1133/*****************************************************************************/
550 1134
1135#if EV_USE_PORT
1136# include "ev_port.c"
1137#endif
551#if EV_USE_KQUEUE 1138#if EV_USE_KQUEUE
552# include "ev_kqueue.c" 1139# include "ev_kqueue.c"
553#endif 1140#endif
554#if EV_USE_EPOLL 1141#if EV_USE_EPOLL
555# include "ev_epoll.c" 1142# include "ev_epoll.c"
556#endif 1143#endif
557#if EV_USEV_POLL 1144#if EV_USE_POLL
558# include "ev_poll.c" 1145# include "ev_poll.c"
559#endif 1146#endif
560#if EV_USE_SELECT 1147#if EV_USE_SELECT
561# include "ev_select.c" 1148# include "ev_select.c"
562#endif 1149#endif
572{ 1159{
573 return EV_VERSION_MINOR; 1160 return EV_VERSION_MINOR;
574} 1161}
575 1162
576/* return true if we are running with elevated privileges and should ignore env variables */ 1163/* return true if we are running with elevated privileges and should ignore env variables */
577static int 1164int inline_size
578enable_secure (void) 1165enable_secure (void)
579{ 1166{
580#ifdef WIN32 1167#ifdef _WIN32
581 return 0; 1168 return 0;
582#else 1169#else
583 return getuid () != geteuid () 1170 return getuid () != geteuid ()
584 || getgid () != getegid (); 1171 || getgid () != getegid ();
585#endif 1172#endif
586} 1173}
587 1174
588int 1175unsigned int
589ev_method (EV_P) 1176ev_supported_backends (void)
590{ 1177{
591 return method; 1178 unsigned int flags = 0;
592}
593 1179
594int 1180 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
595ev_init (EV_P_ int methods) 1181 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1182 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1183 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1184 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1185
1186 return flags;
1187}
1188
1189unsigned int
1190ev_recommended_backends (void)
596{ 1191{
597 if (!method) 1192 unsigned int flags = ev_supported_backends ();
1193
1194#ifndef __NetBSD__
1195 /* kqueue is borked on everything but netbsd apparently */
1196 /* it usually doesn't work correctly on anything but sockets and pipes */
1197 flags &= ~EVBACKEND_KQUEUE;
1198#endif
1199#ifdef __APPLE__
1200 // flags &= ~EVBACKEND_KQUEUE; for documentation
1201 flags &= ~EVBACKEND_POLL;
1202#endif
1203
1204 return flags;
1205}
1206
1207unsigned int
1208ev_embeddable_backends (void)
1209{
1210 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1211
1212 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1213 /* please fix it and tell me how to detect the fix */
1214 flags &= ~EVBACKEND_EPOLL;
1215
1216 return flags;
1217}
1218
1219unsigned int
1220ev_backend (EV_P)
1221{
1222 return backend;
1223}
1224
1225unsigned int
1226ev_loop_count (EV_P)
1227{
1228 return loop_count;
1229}
1230
1231void
1232ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1233{
1234 io_blocktime = interval;
1235}
1236
1237void
1238ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1239{
1240 timeout_blocktime = interval;
1241}
1242
1243static void noinline
1244loop_init (EV_P_ unsigned int flags)
1245{
1246 if (!backend)
598 { 1247 {
599#if EV_USE_MONOTONIC 1248#if EV_USE_MONOTONIC
600 { 1249 {
601 struct timespec ts; 1250 struct timespec ts;
602 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1251 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
603 have_monotonic = 1; 1252 have_monotonic = 1;
604 } 1253 }
605#endif 1254#endif
606 1255
607 rt_now = ev_time (); 1256 ev_rt_now = ev_time ();
608 mn_now = get_clock (); 1257 mn_now = get_clock ();
609 now_floor = mn_now; 1258 now_floor = mn_now;
610 diff = rt_now - mn_now; 1259 rtmn_diff = ev_rt_now - mn_now;
611 1260
612 if (pipe (sigpipe)) 1261 io_blocktime = 0.;
613 return 0; 1262 timeout_blocktime = 0.;
1263 backend = 0;
1264 backend_fd = -1;
1265 gotasync = 0;
1266#if EV_USE_INOTIFY
1267 fs_fd = -2;
1268#endif
614 1269
615 if (methods == EVMETHOD_AUTO) 1270 /* pid check not overridable via env */
616 if (!enable_secure () && getenv ("LIBmethodS")) 1271#ifndef _WIN32
617 methods = atoi (getenv ("LIBmethodS")); 1272 if (flags & EVFLAG_FORKCHECK)
618 else 1273 curpid = getpid ();
619 methods = EVMETHOD_ANY; 1274#endif
620 1275
621 method = 0; 1276 if (!(flags & EVFLAG_NOENV)
1277 && !enable_secure ()
1278 && getenv ("LIBEV_FLAGS"))
1279 flags = atoi (getenv ("LIBEV_FLAGS"));
1280
1281 if (!(flags & 0x0000ffffU))
1282 flags |= ev_recommended_backends ();
1283
1284#if EV_USE_PORT
1285 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1286#endif
622#if EV_USE_KQUEUE 1287#if EV_USE_KQUEUE
623 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 1288 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
624#endif 1289#endif
625#if EV_USE_EPOLL 1290#if EV_USE_EPOLL
626 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 1291 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
627#endif 1292#endif
628#if EV_USEV_POLL 1293#if EV_USE_POLL
629 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 1294 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
630#endif 1295#endif
631#if EV_USE_SELECT 1296#if EV_USE_SELECT
632 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 1297 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
633#endif 1298#endif
634 1299
635 if (method) 1300 ev_init (&pipeev, pipecb);
1301 ev_set_priority (&pipeev, EV_MAXPRI);
1302 }
1303}
1304
1305static void noinline
1306loop_destroy (EV_P)
1307{
1308 int i;
1309
1310 if (ev_is_active (&pipeev))
1311 {
1312 ev_ref (EV_A); /* signal watcher */
1313 ev_io_stop (EV_A_ &pipeev);
1314
1315#if EV_USE_EVENTFD
1316 if (evfd >= 0)
1317 close (evfd);
1318#endif
1319
1320 if (evpipe [0] >= 0)
636 { 1321 {
637 ev_watcher_init (&sigev, sigcb); 1322 close (evpipe [0]);
638 ev_set_priority (&sigev, EV_MAXPRI); 1323 close (evpipe [1]);
1324 }
1325 }
1326
1327#if EV_USE_INOTIFY
1328 if (fs_fd >= 0)
1329 close (fs_fd);
1330#endif
1331
1332 if (backend_fd >= 0)
1333 close (backend_fd);
1334
1335#if EV_USE_PORT
1336 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1337#endif
1338#if EV_USE_KQUEUE
1339 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1340#endif
1341#if EV_USE_EPOLL
1342 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1343#endif
1344#if EV_USE_POLL
1345 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1346#endif
1347#if EV_USE_SELECT
1348 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1349#endif
1350
1351 for (i = NUMPRI; i--; )
1352 {
1353 array_free (pending, [i]);
1354#if EV_IDLE_ENABLE
1355 array_free (idle, [i]);
1356#endif
1357 }
1358
1359 ev_free (anfds); anfdmax = 0;
1360
1361 /* have to use the microsoft-never-gets-it-right macro */
1362 array_free (fdchange, EMPTY);
1363 array_free (timer, EMPTY);
1364#if EV_PERIODIC_ENABLE
1365 array_free (periodic, EMPTY);
1366#endif
1367#if EV_FORK_ENABLE
1368 array_free (fork, EMPTY);
1369#endif
1370 array_free (prepare, EMPTY);
1371 array_free (check, EMPTY);
1372#if EV_ASYNC_ENABLE
1373 array_free (async, EMPTY);
1374#endif
1375
1376 backend = 0;
1377}
1378
1379#if EV_USE_INOTIFY
1380void inline_size infy_fork (EV_P);
1381#endif
1382
1383void inline_size
1384loop_fork (EV_P)
1385{
1386#if EV_USE_PORT
1387 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1388#endif
1389#if EV_USE_KQUEUE
1390 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1391#endif
1392#if EV_USE_EPOLL
1393 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1394#endif
1395#if EV_USE_INOTIFY
1396 infy_fork (EV_A);
1397#endif
1398
1399 if (ev_is_active (&pipeev))
1400 {
1401 /* this "locks" the handlers against writing to the pipe */
1402 /* while we modify the fd vars */
1403 gotsig = 1;
1404#if EV_ASYNC_ENABLE
1405 gotasync = 1;
1406#endif
1407
1408 ev_ref (EV_A);
1409 ev_io_stop (EV_A_ &pipeev);
1410
1411#if EV_USE_EVENTFD
1412 if (evfd >= 0)
1413 close (evfd);
1414#endif
1415
1416 if (evpipe [0] >= 0)
1417 {
1418 close (evpipe [0]);
1419 close (evpipe [1]);
1420 }
1421
639 siginit (EV_A); 1422 evpipe_init (EV_A);
1423 /* now iterate over everything, in case we missed something */
1424 pipecb (EV_A_ &pipeev, EV_READ);
1425 }
640 1426
1427 postfork = 0;
1428}
1429
1430#if EV_MULTIPLICITY
1431struct ev_loop *
1432ev_loop_new (unsigned int flags)
1433{
1434 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1435
1436 memset (loop, 0, sizeof (struct ev_loop));
1437
1438 loop_init (EV_A_ flags);
1439
1440 if (ev_backend (EV_A))
1441 return loop;
1442
1443 return 0;
1444}
1445
1446void
1447ev_loop_destroy (EV_P)
1448{
1449 loop_destroy (EV_A);
1450 ev_free (loop);
1451}
1452
1453void
1454ev_loop_fork (EV_P)
1455{
1456 postfork = 1; /* must be in line with ev_default_fork */
1457}
1458#endif
1459
1460#if EV_MULTIPLICITY
1461struct ev_loop *
1462ev_default_loop_init (unsigned int flags)
1463#else
1464int
1465ev_default_loop (unsigned int flags)
1466#endif
1467{
1468 if (!ev_default_loop_ptr)
1469 {
1470#if EV_MULTIPLICITY
1471 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1472#else
1473 ev_default_loop_ptr = 1;
1474#endif
1475
1476 loop_init (EV_A_ flags);
1477
1478 if (ev_backend (EV_A))
1479 {
641#ifndef WIN32 1480#ifndef _WIN32
642 ev_signal_init (&childev, childcb, SIGCHLD); 1481 ev_signal_init (&childev, childcb, SIGCHLD);
643 ev_set_priority (&childev, EV_MAXPRI); 1482 ev_set_priority (&childev, EV_MAXPRI);
644 ev_signal_start (EV_A_ &childev); 1483 ev_signal_start (EV_A_ &childev);
645 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1484 ev_unref (EV_A); /* child watcher should not keep loop alive */
646#endif 1485#endif
647 } 1486 }
1487 else
1488 ev_default_loop_ptr = 0;
648 } 1489 }
649 1490
650 return method; 1491 return ev_default_loop_ptr;
1492}
1493
1494void
1495ev_default_destroy (void)
1496{
1497#if EV_MULTIPLICITY
1498 struct ev_loop *loop = ev_default_loop_ptr;
1499#endif
1500
1501#ifndef _WIN32
1502 ev_ref (EV_A); /* child watcher */
1503 ev_signal_stop (EV_A_ &childev);
1504#endif
1505
1506 loop_destroy (EV_A);
1507}
1508
1509void
1510ev_default_fork (void)
1511{
1512#if EV_MULTIPLICITY
1513 struct ev_loop *loop = ev_default_loop_ptr;
1514#endif
1515
1516 if (backend)
1517 postfork = 1; /* must be in line with ev_loop_fork */
651} 1518}
652 1519
653/*****************************************************************************/ 1520/*****************************************************************************/
654 1521
655void 1522void
656ev_fork_prepare (void) 1523ev_invoke (EV_P_ void *w, int revents)
657{ 1524{
658 /* nop */ 1525 EV_CB_INVOKE ((W)w, revents);
659} 1526}
660 1527
661void 1528void inline_speed
662ev_fork_parent (void)
663{
664 /* nop */
665}
666
667void
668ev_fork_child (void)
669{
670#if EV_USE_EPOLL
671 if (method == EVMETHOD_EPOLL)
672 epoll_postfork_child ();
673#endif
674
675 ev_io_stop (&sigev);
676 close (sigpipe [0]);
677 close (sigpipe [1]);
678 pipe (sigpipe);
679 siginit ();
680}
681
682/*****************************************************************************/
683
684static void
685call_pending (EV_P) 1529call_pending (EV_P)
686{ 1530{
687 int pri; 1531 int pri;
688 1532
689 for (pri = NUMPRI; pri--; ) 1533 for (pri = NUMPRI; pri--; )
690 while (pendingcnt [pri]) 1534 while (pendingcnt [pri])
691 { 1535 {
692 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1536 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
693 1537
694 if (p->w) 1538 if (expect_true (p->w))
695 { 1539 {
1540 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1541
696 p->w->pending = 0; 1542 p->w->pending = 0;
697 p->w->cb (EV_A_ p->w, p->events); 1543 EV_CB_INVOKE (p->w, p->events);
698 } 1544 }
699 } 1545 }
700} 1546}
701 1547
702static void 1548#if EV_IDLE_ENABLE
1549void inline_size
1550idle_reify (EV_P)
1551{
1552 if (expect_false (idleall))
1553 {
1554 int pri;
1555
1556 for (pri = NUMPRI; pri--; )
1557 {
1558 if (pendingcnt [pri])
1559 break;
1560
1561 if (idlecnt [pri])
1562 {
1563 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1564 break;
1565 }
1566 }
1567 }
1568}
1569#endif
1570
1571void inline_size
703timers_reify (EV_P) 1572timers_reify (EV_P)
704{ 1573{
705 while (timercnt && timers [0]->at <= mn_now) 1574 while (timercnt && ev_at (timers [HEAP0]) <= mn_now)
706 { 1575 {
707 struct ev_timer *w = timers [0]; 1576 ev_timer *w = (ev_timer *)timers [HEAP0];
1577
1578 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
708 1579
709 /* first reschedule or stop timer */ 1580 /* first reschedule or stop timer */
710 if (w->repeat) 1581 if (w->repeat)
711 { 1582 {
712 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1583 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
713 w->at = mn_now + w->repeat; 1584
1585 ev_at (w) += w->repeat;
1586 if (ev_at (w) < mn_now)
1587 ev_at (w) = mn_now;
1588
714 downheap ((WT *)timers, timercnt, 0); 1589 downheap (timers, timercnt, HEAP0);
715 } 1590 }
716 else 1591 else
717 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1592 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
718 1593
719 event ((W)w, EV_TIMEOUT); 1594 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
720 } 1595 }
721} 1596}
722 1597
723static void 1598#if EV_PERIODIC_ENABLE
1599void inline_size
724periodics_reify (EV_P) 1600periodics_reify (EV_P)
725{ 1601{
726 while (periodiccnt && periodics [0]->at <= rt_now) 1602 while (periodiccnt && ev_at (periodics [HEAP0]) <= ev_rt_now)
727 { 1603 {
728 struct ev_periodic *w = periodics [0]; 1604 ev_periodic *w = (ev_periodic *)periodics [HEAP0];
1605
1606 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
729 1607
730 /* first reschedule or stop timer */ 1608 /* first reschedule or stop timer */
731 if (w->interval) 1609 if (w->reschedule_cb)
732 { 1610 {
1611 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1612 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1613 downheap (periodics, periodiccnt, 1);
1614 }
1615 else if (w->interval)
1616 {
733 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 1617 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1618 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
734 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 1619 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
735 downheap ((WT *)periodics, periodiccnt, 0); 1620 downheap (periodics, periodiccnt, HEAP0);
736 } 1621 }
737 else 1622 else
738 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1623 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
739 1624
740 event (EV_A_ (W)w, EV_PERIODIC); 1625 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
741 } 1626 }
742} 1627}
743 1628
744static void 1629static void noinline
745periodics_reschedule (EV_P_ ev_tstamp diff) 1630periodics_reschedule (EV_P)
746{ 1631{
747 int i; 1632 int i;
748 1633
749 /* adjust periodics after time jump */ 1634 /* adjust periodics after time jump */
750 for (i = 0; i < periodiccnt; ++i) 1635 for (i = 1; i <= periodiccnt; ++i)
751 { 1636 {
752 struct ev_periodic *w = periodics [i]; 1637 ev_periodic *w = (ev_periodic *)periodics [i];
753 1638
1639 if (w->reschedule_cb)
1640 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
754 if (w->interval) 1641 else if (w->interval)
755 {
756 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 1642 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
757
758 if (fabs (diff) >= 1e-4)
759 {
760 ev_periodic_stop (EV_A_ w);
761 ev_periodic_start (EV_A_ w);
762
763 i = 0; /* restart loop, inefficient, but time jumps should be rare */
764 }
765 }
766 }
767}
768
769inline int
770time_update_monotonic (EV_P)
771{
772 mn_now = get_clock ();
773
774 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
775 { 1643 }
776 rt_now = mn_now + diff;
777 return 0;
778 }
779 else
780 {
781 now_floor = mn_now;
782 rt_now = ev_time ();
783 return 1;
784 }
785}
786 1644
787static void 1645 /* now rebuild the heap */
788time_update (EV_P) 1646 for (i = periodiccnt >> 1; --i; )
1647 downheap (periodics, periodiccnt, i + HEAP0);
1648}
1649#endif
1650
1651void inline_speed
1652time_update (EV_P_ ev_tstamp max_block)
789{ 1653{
790 int i; 1654 int i;
791 1655
792#if EV_USE_MONOTONIC 1656#if EV_USE_MONOTONIC
793 if (expect_true (have_monotonic)) 1657 if (expect_true (have_monotonic))
794 { 1658 {
795 if (time_update_monotonic (EV_A)) 1659 ev_tstamp odiff = rtmn_diff;
1660
1661 mn_now = get_clock ();
1662
1663 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1664 /* interpolate in the meantime */
1665 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
796 { 1666 {
797 ev_tstamp odiff = diff; 1667 ev_rt_now = rtmn_diff + mn_now;
798 1668 return;
799 for (i = 4; --i; ) /* loop a few times, before making important decisions */
800 {
801 diff = rt_now - mn_now;
802
803 if (fabs (odiff - diff) < MIN_TIMEJUMP)
804 return; /* all is well */
805
806 rt_now = ev_time ();
807 mn_now = get_clock ();
808 now_floor = mn_now;
809 }
810
811 periodics_reschedule (EV_A_ diff - odiff);
812 /* no timer adjustment, as the monotonic clock doesn't jump */
813 } 1669 }
1670
1671 now_floor = mn_now;
1672 ev_rt_now = ev_time ();
1673
1674 /* loop a few times, before making important decisions.
1675 * on the choice of "4": one iteration isn't enough,
1676 * in case we get preempted during the calls to
1677 * ev_time and get_clock. a second call is almost guaranteed
1678 * to succeed in that case, though. and looping a few more times
1679 * doesn't hurt either as we only do this on time-jumps or
1680 * in the unlikely event of having been preempted here.
1681 */
1682 for (i = 4; --i; )
1683 {
1684 rtmn_diff = ev_rt_now - mn_now;
1685
1686 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1687 return; /* all is well */
1688
1689 ev_rt_now = ev_time ();
1690 mn_now = get_clock ();
1691 now_floor = mn_now;
1692 }
1693
1694# if EV_PERIODIC_ENABLE
1695 periodics_reschedule (EV_A);
1696# endif
1697 /* no timer adjustment, as the monotonic clock doesn't jump */
1698 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
814 } 1699 }
815 else 1700 else
816#endif 1701#endif
817 { 1702 {
818 rt_now = ev_time (); 1703 ev_rt_now = ev_time ();
819 1704
820 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1705 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
821 { 1706 {
1707#if EV_PERIODIC_ENABLE
822 periodics_reschedule (EV_A_ rt_now - mn_now); 1708 periodics_reschedule (EV_A);
823 1709#endif
824 /* adjust timers. this is easy, as the offset is the same for all */ 1710 /* adjust timers. this is easy, as the offset is the same for all of them */
825 for (i = 0; i < timercnt; ++i) 1711 for (i = 1; i <= timercnt; ++i)
826 timers [i]->at += diff; 1712 ev_at (timers [i]) += ev_rt_now - mn_now;
827 } 1713 }
828 1714
829 mn_now = rt_now; 1715 mn_now = ev_rt_now;
830 } 1716 }
831} 1717}
832 1718
833void 1719void
834ev_ref (EV_P) 1720ev_ref (EV_P)
845static int loop_done; 1731static int loop_done;
846 1732
847void 1733void
848ev_loop (EV_P_ int flags) 1734ev_loop (EV_P_ int flags)
849{ 1735{
850 double block; 1736 loop_done = EVUNLOOP_CANCEL;
851 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1737
1738 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
852 1739
853 do 1740 do
854 { 1741 {
1742#ifndef _WIN32
1743 if (expect_false (curpid)) /* penalise the forking check even more */
1744 if (expect_false (getpid () != curpid))
1745 {
1746 curpid = getpid ();
1747 postfork = 1;
1748 }
1749#endif
1750
1751#if EV_FORK_ENABLE
1752 /* we might have forked, so queue fork handlers */
1753 if (expect_false (postfork))
1754 if (forkcnt)
1755 {
1756 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1757 call_pending (EV_A);
1758 }
1759#endif
1760
855 /* queue check watchers (and execute them) */ 1761 /* queue prepare watchers (and execute them) */
856 if (expect_false (preparecnt)) 1762 if (expect_false (preparecnt))
857 { 1763 {
858 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1764 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
859 call_pending (EV_A); 1765 call_pending (EV_A);
860 } 1766 }
861 1767
1768 if (expect_false (!activecnt))
1769 break;
1770
1771 /* we might have forked, so reify kernel state if necessary */
1772 if (expect_false (postfork))
1773 loop_fork (EV_A);
1774
862 /* update fd-related kernel structures */ 1775 /* update fd-related kernel structures */
863 fd_reify (EV_A); 1776 fd_reify (EV_A);
864 1777
865 /* calculate blocking time */ 1778 /* calculate blocking time */
1779 {
1780 ev_tstamp waittime = 0.;
1781 ev_tstamp sleeptime = 0.;
866 1782
867 /* we only need this for !monotonic clockor timers, but as we basically 1783 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
868 always have timers, we just calculate it always */
869#if EV_USE_MONOTONIC
870 if (expect_true (have_monotonic))
871 time_update_monotonic (EV_A);
872 else
873#endif
874 { 1784 {
875 rt_now = ev_time (); 1785 /* update time to cancel out callback processing overhead */
876 mn_now = rt_now; 1786 time_update (EV_A_ 1e100);
877 }
878 1787
879 if (flags & EVLOOP_NONBLOCK || idlecnt)
880 block = 0.;
881 else
882 {
883 block = MAX_BLOCKTIME; 1788 waittime = MAX_BLOCKTIME;
884 1789
885 if (timercnt) 1790 if (timercnt)
886 { 1791 {
887 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1792 ev_tstamp to = ev_at (timers [HEAP0]) - mn_now + backend_fudge;
888 if (block > to) block = to; 1793 if (waittime > to) waittime = to;
889 } 1794 }
890 1795
1796#if EV_PERIODIC_ENABLE
891 if (periodiccnt) 1797 if (periodiccnt)
892 { 1798 {
893 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1799 ev_tstamp to = ev_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
894 if (block > to) block = to; 1800 if (waittime > to) waittime = to;
895 } 1801 }
1802#endif
896 1803
897 if (block < 0.) block = 0.; 1804 if (expect_false (waittime < timeout_blocktime))
1805 waittime = timeout_blocktime;
1806
1807 sleeptime = waittime - backend_fudge;
1808
1809 if (expect_true (sleeptime > io_blocktime))
1810 sleeptime = io_blocktime;
1811
1812 if (sleeptime)
1813 {
1814 ev_sleep (sleeptime);
1815 waittime -= sleeptime;
1816 }
898 } 1817 }
899 1818
900 method_poll (EV_A_ block); 1819 ++loop_count;
1820 backend_poll (EV_A_ waittime);
901 1821
902 /* update rt_now, do magic */ 1822 /* update ev_rt_now, do magic */
903 time_update (EV_A); 1823 time_update (EV_A_ waittime + sleeptime);
1824 }
904 1825
905 /* queue pending timers and reschedule them */ 1826 /* queue pending timers and reschedule them */
906 timers_reify (EV_A); /* relative timers called last */ 1827 timers_reify (EV_A); /* relative timers called last */
1828#if EV_PERIODIC_ENABLE
907 periodics_reify (EV_A); /* absolute timers called first */ 1829 periodics_reify (EV_A); /* absolute timers called first */
1830#endif
908 1831
1832#if EV_IDLE_ENABLE
909 /* queue idle watchers unless io or timers are pending */ 1833 /* queue idle watchers unless other events are pending */
910 if (!pendingcnt) 1834 idle_reify (EV_A);
911 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1835#endif
912 1836
913 /* queue check watchers, to be executed first */ 1837 /* queue check watchers, to be executed first */
914 if (checkcnt) 1838 if (expect_false (checkcnt))
915 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1839 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
916 1840
917 call_pending (EV_A); 1841 call_pending (EV_A);
918 } 1842 }
919 while (activecnt && !loop_done); 1843 while (expect_true (
1844 activecnt
1845 && !loop_done
1846 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1847 ));
920 1848
921 if (loop_done != 2) 1849 if (loop_done == EVUNLOOP_ONE)
922 loop_done = 0; 1850 loop_done = EVUNLOOP_CANCEL;
923} 1851}
924 1852
925void 1853void
926ev_unloop (EV_P_ int how) 1854ev_unloop (EV_P_ int how)
927{ 1855{
928 loop_done = how; 1856 loop_done = how;
929} 1857}
930 1858
931/*****************************************************************************/ 1859/*****************************************************************************/
932 1860
933inline void 1861void inline_size
934wlist_add (WL *head, WL elem) 1862wlist_add (WL *head, WL elem)
935{ 1863{
936 elem->next = *head; 1864 elem->next = *head;
937 *head = elem; 1865 *head = elem;
938} 1866}
939 1867
940inline void 1868void inline_size
941wlist_del (WL *head, WL elem) 1869wlist_del (WL *head, WL elem)
942{ 1870{
943 while (*head) 1871 while (*head)
944 { 1872 {
945 if (*head == elem) 1873 if (*head == elem)
950 1878
951 head = &(*head)->next; 1879 head = &(*head)->next;
952 } 1880 }
953} 1881}
954 1882
955inline void 1883void inline_speed
956ev_clear_pending (EV_P_ W w) 1884clear_pending (EV_P_ W w)
957{ 1885{
958 if (w->pending) 1886 if (w->pending)
959 { 1887 {
960 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1888 pendings [ABSPRI (w)][w->pending - 1].w = 0;
961 w->pending = 0; 1889 w->pending = 0;
962 } 1890 }
963} 1891}
964 1892
965inline void 1893int
1894ev_clear_pending (EV_P_ void *w)
1895{
1896 W w_ = (W)w;
1897 int pending = w_->pending;
1898
1899 if (expect_true (pending))
1900 {
1901 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1902 w_->pending = 0;
1903 p->w = 0;
1904 return p->events;
1905 }
1906 else
1907 return 0;
1908}
1909
1910void inline_size
1911pri_adjust (EV_P_ W w)
1912{
1913 int pri = w->priority;
1914 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1915 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1916 w->priority = pri;
1917}
1918
1919void inline_speed
966ev_start (EV_P_ W w, int active) 1920ev_start (EV_P_ W w, int active)
967{ 1921{
968 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1922 pri_adjust (EV_A_ w);
969 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
970
971 w->active = active; 1923 w->active = active;
972 ev_ref (EV_A); 1924 ev_ref (EV_A);
973} 1925}
974 1926
975inline void 1927void inline_size
976ev_stop (EV_P_ W w) 1928ev_stop (EV_P_ W w)
977{ 1929{
978 ev_unref (EV_A); 1930 ev_unref (EV_A);
979 w->active = 0; 1931 w->active = 0;
980} 1932}
981 1933
982/*****************************************************************************/ 1934/*****************************************************************************/
983 1935
984void 1936void noinline
985ev_io_start (EV_P_ struct ev_io *w) 1937ev_io_start (EV_P_ ev_io *w)
986{ 1938{
987 int fd = w->fd; 1939 int fd = w->fd;
988 1940
989 if (ev_is_active (w)) 1941 if (expect_false (ev_is_active (w)))
990 return; 1942 return;
991 1943
992 assert (("ev_io_start called with negative fd", fd >= 0)); 1944 assert (("ev_io_start called with negative fd", fd >= 0));
993 1945
994 ev_start (EV_A_ (W)w, 1); 1946 ev_start (EV_A_ (W)w, 1);
995 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1947 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
996 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1948 wlist_add (&anfds[fd].head, (WL)w);
997 1949
998 fd_change (EV_A_ fd); 1950 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1951 w->events &= ~EV_IOFDSET;
999} 1952}
1000 1953
1001void 1954void noinline
1002ev_io_stop (EV_P_ struct ev_io *w) 1955ev_io_stop (EV_P_ ev_io *w)
1003{ 1956{
1004 ev_clear_pending (EV_A_ (W)w); 1957 clear_pending (EV_A_ (W)w);
1005 if (!ev_is_active (w)) 1958 if (expect_false (!ev_is_active (w)))
1006 return; 1959 return;
1007 1960
1961 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1962
1008 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1963 wlist_del (&anfds[w->fd].head, (WL)w);
1009 ev_stop (EV_A_ (W)w); 1964 ev_stop (EV_A_ (W)w);
1010 1965
1011 fd_change (EV_A_ w->fd); 1966 fd_change (EV_A_ w->fd, 1);
1012} 1967}
1013 1968
1014void 1969void noinline
1015ev_timer_start (EV_P_ struct ev_timer *w) 1970ev_timer_start (EV_P_ ev_timer *w)
1016{ 1971{
1017 if (ev_is_active (w)) 1972 if (expect_false (ev_is_active (w)))
1018 return; 1973 return;
1019 1974
1020 w->at += mn_now; 1975 ev_at (w) += mn_now;
1021 1976
1022 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1977 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1023 1978
1024 ev_start (EV_A_ (W)w, ++timercnt); 1979 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1025 array_needsize (timers, timermax, timercnt, ); 1980 array_needsize (WT, timers, timermax, timercnt + HEAP0, EMPTY2);
1026 timers [timercnt - 1] = w; 1981 timers [ev_active (w)] = (WT)w;
1027 upheap ((WT *)timers, timercnt - 1); 1982 upheap (timers, ev_active (w));
1028}
1029 1983
1030void 1984 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/
1985}
1986
1987void noinline
1031ev_timer_stop (EV_P_ struct ev_timer *w) 1988ev_timer_stop (EV_P_ ev_timer *w)
1032{ 1989{
1033 ev_clear_pending (EV_A_ (W)w); 1990 clear_pending (EV_A_ (W)w);
1034 if (!ev_is_active (w)) 1991 if (expect_false (!ev_is_active (w)))
1035 return; 1992 return;
1036 1993
1037 if (w->active < timercnt--) 1994 {
1995 int active = ev_active (w);
1996
1997 assert (("internal timer heap corruption", timers [active] == (WT)w));
1998
1999 if (expect_true (active < timercnt + HEAP0 - 1))
1038 { 2000 {
1039 timers [w->active - 1] = timers [timercnt]; 2001 timers [active] = timers [timercnt + HEAP0 - 1];
1040 downheap ((WT *)timers, timercnt, w->active - 1); 2002 adjustheap (timers, timercnt, active);
1041 } 2003 }
1042 2004
1043 w->at = w->repeat; 2005 --timercnt;
2006 }
2007
2008 ev_at (w) -= mn_now;
1044 2009
1045 ev_stop (EV_A_ (W)w); 2010 ev_stop (EV_A_ (W)w);
1046} 2011}
1047 2012
1048void 2013void noinline
1049ev_timer_again (EV_P_ struct ev_timer *w) 2014ev_timer_again (EV_P_ ev_timer *w)
1050{ 2015{
1051 if (ev_is_active (w)) 2016 if (ev_is_active (w))
1052 { 2017 {
1053 if (w->repeat) 2018 if (w->repeat)
1054 { 2019 {
1055 w->at = mn_now + w->repeat; 2020 ev_at (w) = mn_now + w->repeat;
1056 downheap ((WT *)timers, timercnt, w->active - 1); 2021 adjustheap (timers, timercnt, ev_active (w));
1057 } 2022 }
1058 else 2023 else
1059 ev_timer_stop (EV_A_ w); 2024 ev_timer_stop (EV_A_ w);
1060 } 2025 }
1061 else if (w->repeat) 2026 else if (w->repeat)
2027 {
2028 ev_at (w) = w->repeat;
1062 ev_timer_start (EV_A_ w); 2029 ev_timer_start (EV_A_ w);
2030 }
1063} 2031}
1064 2032
1065void 2033#if EV_PERIODIC_ENABLE
2034void noinline
1066ev_periodic_start (EV_P_ struct ev_periodic *w) 2035ev_periodic_start (EV_P_ ev_periodic *w)
1067{ 2036{
1068 if (ev_is_active (w)) 2037 if (expect_false (ev_is_active (w)))
1069 return; 2038 return;
1070 2039
2040 if (w->reschedule_cb)
2041 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2042 else if (w->interval)
2043 {
1071 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2044 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1072
1073 /* this formula differs from the one in periodic_reify because we do not always round up */ 2045 /* this formula differs from the one in periodic_reify because we do not always round up */
1074 if (w->interval)
1075 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 2046 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2047 }
2048 else
2049 ev_at (w) = w->offset;
1076 2050
1077 ev_start (EV_A_ (W)w, ++periodiccnt); 2051 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
1078 array_needsize (periodics, periodicmax, periodiccnt, ); 2052 array_needsize (WT, periodics, periodicmax, periodiccnt + HEAP0, EMPTY2);
1079 periodics [periodiccnt - 1] = w; 2053 periodics [ev_active (w)] = (WT)w;
1080 upheap ((WT *)periodics, periodiccnt - 1); 2054 upheap (periodics, ev_active (w));
1081}
1082 2055
1083void 2056 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/
2057}
2058
2059void noinline
1084ev_periodic_stop (EV_P_ struct ev_periodic *w) 2060ev_periodic_stop (EV_P_ ev_periodic *w)
1085{ 2061{
1086 ev_clear_pending (EV_A_ (W)w); 2062 clear_pending (EV_A_ (W)w);
1087 if (!ev_is_active (w)) 2063 if (expect_false (!ev_is_active (w)))
1088 return; 2064 return;
1089 2065
1090 if (w->active < periodiccnt--) 2066 {
2067 int active = ev_active (w);
2068
2069 assert (("internal periodic heap corruption", periodics [active] == (WT)w));
2070
2071 if (expect_true (active < periodiccnt + HEAP0 - 1))
1091 { 2072 {
1092 periodics [w->active - 1] = periodics [periodiccnt]; 2073 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
1093 downheap ((WT *)periodics, periodiccnt, w->active - 1); 2074 adjustheap (periodics, periodiccnt, active);
1094 } 2075 }
2076
2077 --periodiccnt;
2078 }
1095 2079
1096 ev_stop (EV_A_ (W)w); 2080 ev_stop (EV_A_ (W)w);
1097} 2081}
2082
2083void noinline
2084ev_periodic_again (EV_P_ ev_periodic *w)
2085{
2086 /* TODO: use adjustheap and recalculation */
2087 ev_periodic_stop (EV_A_ w);
2088 ev_periodic_start (EV_A_ w);
2089}
2090#endif
1098 2091
1099#ifndef SA_RESTART 2092#ifndef SA_RESTART
1100# define SA_RESTART 0 2093# define SA_RESTART 0
1101#endif 2094#endif
1102 2095
1103void 2096void noinline
1104ev_signal_start (EV_P_ struct ev_signal *w) 2097ev_signal_start (EV_P_ ev_signal *w)
1105{ 2098{
2099#if EV_MULTIPLICITY
2100 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2101#endif
1106 if (ev_is_active (w)) 2102 if (expect_false (ev_is_active (w)))
1107 return; 2103 return;
1108 2104
1109 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2105 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1110 2106
2107 evpipe_init (EV_A);
2108
2109 {
2110#ifndef _WIN32
2111 sigset_t full, prev;
2112 sigfillset (&full);
2113 sigprocmask (SIG_SETMASK, &full, &prev);
2114#endif
2115
2116 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2117
2118#ifndef _WIN32
2119 sigprocmask (SIG_SETMASK, &prev, 0);
2120#endif
2121 }
2122
1111 ev_start (EV_A_ (W)w, 1); 2123 ev_start (EV_A_ (W)w, 1);
1112 array_needsize (signals, signalmax, w->signum, signals_init);
1113 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2124 wlist_add (&signals [w->signum - 1].head, (WL)w);
1114 2125
1115 if (!w->next) 2126 if (!((WL)w)->next)
1116 { 2127 {
2128#if _WIN32
2129 signal (w->signum, ev_sighandler);
2130#else
1117 struct sigaction sa; 2131 struct sigaction sa;
1118 sa.sa_handler = sighandler; 2132 sa.sa_handler = ev_sighandler;
1119 sigfillset (&sa.sa_mask); 2133 sigfillset (&sa.sa_mask);
1120 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2134 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1121 sigaction (w->signum, &sa, 0); 2135 sigaction (w->signum, &sa, 0);
2136#endif
1122 } 2137 }
1123} 2138}
1124 2139
1125void 2140void noinline
1126ev_signal_stop (EV_P_ struct ev_signal *w) 2141ev_signal_stop (EV_P_ ev_signal *w)
1127{ 2142{
1128 ev_clear_pending (EV_A_ (W)w); 2143 clear_pending (EV_A_ (W)w);
1129 if (!ev_is_active (w)) 2144 if (expect_false (!ev_is_active (w)))
1130 return; 2145 return;
1131 2146
1132 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2147 wlist_del (&signals [w->signum - 1].head, (WL)w);
1133 ev_stop (EV_A_ (W)w); 2148 ev_stop (EV_A_ (W)w);
1134 2149
1135 if (!signals [w->signum - 1].head) 2150 if (!signals [w->signum - 1].head)
1136 signal (w->signum, SIG_DFL); 2151 signal (w->signum, SIG_DFL);
1137} 2152}
1138 2153
1139void 2154void
1140ev_idle_start (EV_P_ struct ev_idle *w) 2155ev_child_start (EV_P_ ev_child *w)
1141{ 2156{
2157#if EV_MULTIPLICITY
2158 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2159#endif
1142 if (ev_is_active (w)) 2160 if (expect_false (ev_is_active (w)))
1143 return; 2161 return;
1144 2162
1145 ev_start (EV_A_ (W)w, ++idlecnt); 2163 ev_start (EV_A_ (W)w, 1);
1146 array_needsize (idles, idlemax, idlecnt, ); 2164 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1147 idles [idlecnt - 1] = w;
1148} 2165}
1149 2166
1150void 2167void
1151ev_idle_stop (EV_P_ struct ev_idle *w) 2168ev_child_stop (EV_P_ ev_child *w)
1152{ 2169{
1153 ev_clear_pending (EV_A_ (W)w); 2170 clear_pending (EV_A_ (W)w);
1154 if (ev_is_active (w)) 2171 if (expect_false (!ev_is_active (w)))
1155 return; 2172 return;
1156 2173
1157 idles [w->active - 1] = idles [--idlecnt]; 2174 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1158 ev_stop (EV_A_ (W)w); 2175 ev_stop (EV_A_ (W)w);
1159} 2176}
1160 2177
1161void 2178#if EV_STAT_ENABLE
1162ev_prepare_start (EV_P_ struct ev_prepare *w) 2179
2180# ifdef _WIN32
2181# undef lstat
2182# define lstat(a,b) _stati64 (a,b)
2183# endif
2184
2185#define DEF_STAT_INTERVAL 5.0074891
2186#define MIN_STAT_INTERVAL 0.1074891
2187
2188static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2189
2190#if EV_USE_INOTIFY
2191# define EV_INOTIFY_BUFSIZE 8192
2192
2193static void noinline
2194infy_add (EV_P_ ev_stat *w)
1163{ 2195{
1164 if (ev_is_active (w)) 2196 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2197
2198 if (w->wd < 0)
2199 {
2200 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2201
2202 /* monitor some parent directory for speedup hints */
2203 /* note that exceeding the hardcoded limit is not a correctness issue, */
2204 /* but an efficiency issue only */
2205 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2206 {
2207 char path [4096];
2208 strcpy (path, w->path);
2209
2210 do
2211 {
2212 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2213 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2214
2215 char *pend = strrchr (path, '/');
2216
2217 if (!pend)
2218 break; /* whoops, no '/', complain to your admin */
2219
2220 *pend = 0;
2221 w->wd = inotify_add_watch (fs_fd, path, mask);
2222 }
2223 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2224 }
2225 }
2226 else
2227 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2228
2229 if (w->wd >= 0)
2230 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2231}
2232
2233static void noinline
2234infy_del (EV_P_ ev_stat *w)
2235{
2236 int slot;
2237 int wd = w->wd;
2238
2239 if (wd < 0)
1165 return; 2240 return;
1166 2241
2242 w->wd = -2;
2243 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2244 wlist_del (&fs_hash [slot].head, (WL)w);
2245
2246 /* remove this watcher, if others are watching it, they will rearm */
2247 inotify_rm_watch (fs_fd, wd);
2248}
2249
2250static void noinline
2251infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2252{
2253 if (slot < 0)
2254 /* overflow, need to check for all hahs slots */
2255 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2256 infy_wd (EV_A_ slot, wd, ev);
2257 else
2258 {
2259 WL w_;
2260
2261 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2262 {
2263 ev_stat *w = (ev_stat *)w_;
2264 w_ = w_->next; /* lets us remove this watcher and all before it */
2265
2266 if (w->wd == wd || wd == -1)
2267 {
2268 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2269 {
2270 w->wd = -1;
2271 infy_add (EV_A_ w); /* re-add, no matter what */
2272 }
2273
2274 stat_timer_cb (EV_A_ &w->timer, 0);
2275 }
2276 }
2277 }
2278}
2279
2280static void
2281infy_cb (EV_P_ ev_io *w, int revents)
2282{
2283 char buf [EV_INOTIFY_BUFSIZE];
2284 struct inotify_event *ev = (struct inotify_event *)buf;
2285 int ofs;
2286 int len = read (fs_fd, buf, sizeof (buf));
2287
2288 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2289 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2290}
2291
2292void inline_size
2293infy_init (EV_P)
2294{
2295 if (fs_fd != -2)
2296 return;
2297
2298 fs_fd = inotify_init ();
2299
2300 if (fs_fd >= 0)
2301 {
2302 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2303 ev_set_priority (&fs_w, EV_MAXPRI);
2304 ev_io_start (EV_A_ &fs_w);
2305 }
2306}
2307
2308void inline_size
2309infy_fork (EV_P)
2310{
2311 int slot;
2312
2313 if (fs_fd < 0)
2314 return;
2315
2316 close (fs_fd);
2317 fs_fd = inotify_init ();
2318
2319 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2320 {
2321 WL w_ = fs_hash [slot].head;
2322 fs_hash [slot].head = 0;
2323
2324 while (w_)
2325 {
2326 ev_stat *w = (ev_stat *)w_;
2327 w_ = w_->next; /* lets us add this watcher */
2328
2329 w->wd = -1;
2330
2331 if (fs_fd >= 0)
2332 infy_add (EV_A_ w); /* re-add, no matter what */
2333 else
2334 ev_timer_start (EV_A_ &w->timer);
2335 }
2336
2337 }
2338}
2339
2340#endif
2341
2342void
2343ev_stat_stat (EV_P_ ev_stat *w)
2344{
2345 if (lstat (w->path, &w->attr) < 0)
2346 w->attr.st_nlink = 0;
2347 else if (!w->attr.st_nlink)
2348 w->attr.st_nlink = 1;
2349}
2350
2351static void noinline
2352stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2353{
2354 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2355
2356 /* we copy this here each the time so that */
2357 /* prev has the old value when the callback gets invoked */
2358 w->prev = w->attr;
2359 ev_stat_stat (EV_A_ w);
2360
2361 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2362 if (
2363 w->prev.st_dev != w->attr.st_dev
2364 || w->prev.st_ino != w->attr.st_ino
2365 || w->prev.st_mode != w->attr.st_mode
2366 || w->prev.st_nlink != w->attr.st_nlink
2367 || w->prev.st_uid != w->attr.st_uid
2368 || w->prev.st_gid != w->attr.st_gid
2369 || w->prev.st_rdev != w->attr.st_rdev
2370 || w->prev.st_size != w->attr.st_size
2371 || w->prev.st_atime != w->attr.st_atime
2372 || w->prev.st_mtime != w->attr.st_mtime
2373 || w->prev.st_ctime != w->attr.st_ctime
2374 ) {
2375 #if EV_USE_INOTIFY
2376 infy_del (EV_A_ w);
2377 infy_add (EV_A_ w);
2378 ev_stat_stat (EV_A_ w); /* avoid race... */
2379 #endif
2380
2381 ev_feed_event (EV_A_ w, EV_STAT);
2382 }
2383}
2384
2385void
2386ev_stat_start (EV_P_ ev_stat *w)
2387{
2388 if (expect_false (ev_is_active (w)))
2389 return;
2390
2391 /* since we use memcmp, we need to clear any padding data etc. */
2392 memset (&w->prev, 0, sizeof (ev_statdata));
2393 memset (&w->attr, 0, sizeof (ev_statdata));
2394
2395 ev_stat_stat (EV_A_ w);
2396
2397 if (w->interval < MIN_STAT_INTERVAL)
2398 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2399
2400 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2401 ev_set_priority (&w->timer, ev_priority (w));
2402
2403#if EV_USE_INOTIFY
2404 infy_init (EV_A);
2405
2406 if (fs_fd >= 0)
2407 infy_add (EV_A_ w);
2408 else
2409#endif
2410 ev_timer_start (EV_A_ &w->timer);
2411
2412 ev_start (EV_A_ (W)w, 1);
2413}
2414
2415void
2416ev_stat_stop (EV_P_ ev_stat *w)
2417{
2418 clear_pending (EV_A_ (W)w);
2419 if (expect_false (!ev_is_active (w)))
2420 return;
2421
2422#if EV_USE_INOTIFY
2423 infy_del (EV_A_ w);
2424#endif
2425 ev_timer_stop (EV_A_ &w->timer);
2426
2427 ev_stop (EV_A_ (W)w);
2428}
2429#endif
2430
2431#if EV_IDLE_ENABLE
2432void
2433ev_idle_start (EV_P_ ev_idle *w)
2434{
2435 if (expect_false (ev_is_active (w)))
2436 return;
2437
2438 pri_adjust (EV_A_ (W)w);
2439
2440 {
2441 int active = ++idlecnt [ABSPRI (w)];
2442
2443 ++idleall;
2444 ev_start (EV_A_ (W)w, active);
2445
2446 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2447 idles [ABSPRI (w)][active - 1] = w;
2448 }
2449}
2450
2451void
2452ev_idle_stop (EV_P_ ev_idle *w)
2453{
2454 clear_pending (EV_A_ (W)w);
2455 if (expect_false (!ev_is_active (w)))
2456 return;
2457
2458 {
2459 int active = ev_active (w);
2460
2461 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2462 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2463
2464 ev_stop (EV_A_ (W)w);
2465 --idleall;
2466 }
2467}
2468#endif
2469
2470void
2471ev_prepare_start (EV_P_ ev_prepare *w)
2472{
2473 if (expect_false (ev_is_active (w)))
2474 return;
2475
1167 ev_start (EV_A_ (W)w, ++preparecnt); 2476 ev_start (EV_A_ (W)w, ++preparecnt);
1168 array_needsize (prepares, preparemax, preparecnt, ); 2477 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1169 prepares [preparecnt - 1] = w; 2478 prepares [preparecnt - 1] = w;
1170} 2479}
1171 2480
1172void 2481void
1173ev_prepare_stop (EV_P_ struct ev_prepare *w) 2482ev_prepare_stop (EV_P_ ev_prepare *w)
1174{ 2483{
1175 ev_clear_pending (EV_A_ (W)w); 2484 clear_pending (EV_A_ (W)w);
1176 if (ev_is_active (w)) 2485 if (expect_false (!ev_is_active (w)))
1177 return; 2486 return;
1178 2487
2488 {
2489 int active = ev_active (w);
2490
1179 prepares [w->active - 1] = prepares [--preparecnt]; 2491 prepares [active - 1] = prepares [--preparecnt];
2492 ev_active (prepares [active - 1]) = active;
2493 }
2494
1180 ev_stop (EV_A_ (W)w); 2495 ev_stop (EV_A_ (W)w);
1181} 2496}
1182 2497
1183void 2498void
1184ev_check_start (EV_P_ struct ev_check *w) 2499ev_check_start (EV_P_ ev_check *w)
1185{ 2500{
1186 if (ev_is_active (w)) 2501 if (expect_false (ev_is_active (w)))
1187 return; 2502 return;
1188 2503
1189 ev_start (EV_A_ (W)w, ++checkcnt); 2504 ev_start (EV_A_ (W)w, ++checkcnt);
1190 array_needsize (checks, checkmax, checkcnt, ); 2505 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1191 checks [checkcnt - 1] = w; 2506 checks [checkcnt - 1] = w;
1192} 2507}
1193 2508
1194void 2509void
1195ev_check_stop (EV_P_ struct ev_check *w) 2510ev_check_stop (EV_P_ ev_check *w)
1196{ 2511{
1197 ev_clear_pending (EV_A_ (W)w); 2512 clear_pending (EV_A_ (W)w);
1198 if (ev_is_active (w)) 2513 if (expect_false (!ev_is_active (w)))
1199 return; 2514 return;
1200 2515
2516 {
2517 int active = ev_active (w);
2518
1201 checks [w->active - 1] = checks [--checkcnt]; 2519 checks [active - 1] = checks [--checkcnt];
2520 ev_active (checks [active - 1]) = active;
2521 }
2522
1202 ev_stop (EV_A_ (W)w); 2523 ev_stop (EV_A_ (W)w);
1203} 2524}
1204 2525
1205void 2526#if EV_EMBED_ENABLE
1206ev_child_start (EV_P_ struct ev_child *w) 2527void noinline
2528ev_embed_sweep (EV_P_ ev_embed *w)
1207{ 2529{
2530 ev_loop (w->other, EVLOOP_NONBLOCK);
2531}
2532
2533static void
2534embed_io_cb (EV_P_ ev_io *io, int revents)
2535{
2536 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2537
1208 if (ev_is_active (w)) 2538 if (ev_cb (w))
2539 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2540 else
2541 ev_loop (w->other, EVLOOP_NONBLOCK);
2542}
2543
2544static void
2545embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2546{
2547 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2548
2549 {
2550 struct ev_loop *loop = w->other;
2551
2552 while (fdchangecnt)
2553 {
2554 fd_reify (EV_A);
2555 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2556 }
2557 }
2558}
2559
2560#if 0
2561static void
2562embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2563{
2564 ev_idle_stop (EV_A_ idle);
2565}
2566#endif
2567
2568void
2569ev_embed_start (EV_P_ ev_embed *w)
2570{
2571 if (expect_false (ev_is_active (w)))
1209 return; 2572 return;
1210 2573
2574 {
2575 struct ev_loop *loop = w->other;
2576 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2577 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2578 }
2579
2580 ev_set_priority (&w->io, ev_priority (w));
2581 ev_io_start (EV_A_ &w->io);
2582
2583 ev_prepare_init (&w->prepare, embed_prepare_cb);
2584 ev_set_priority (&w->prepare, EV_MINPRI);
2585 ev_prepare_start (EV_A_ &w->prepare);
2586
2587 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2588
1211 ev_start (EV_A_ (W)w, 1); 2589 ev_start (EV_A_ (W)w, 1);
1212 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1213} 2590}
1214 2591
1215void 2592void
1216ev_child_stop (EV_P_ struct ev_child *w) 2593ev_embed_stop (EV_P_ ev_embed *w)
1217{ 2594{
1218 ev_clear_pending (EV_A_ (W)w); 2595 clear_pending (EV_A_ (W)w);
1219 if (ev_is_active (w)) 2596 if (expect_false (!ev_is_active (w)))
1220 return; 2597 return;
1221 2598
1222 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2599 ev_io_stop (EV_A_ &w->io);
2600 ev_prepare_stop (EV_A_ &w->prepare);
2601
1223 ev_stop (EV_A_ (W)w); 2602 ev_stop (EV_A_ (W)w);
1224} 2603}
2604#endif
2605
2606#if EV_FORK_ENABLE
2607void
2608ev_fork_start (EV_P_ ev_fork *w)
2609{
2610 if (expect_false (ev_is_active (w)))
2611 return;
2612
2613 ev_start (EV_A_ (W)w, ++forkcnt);
2614 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2615 forks [forkcnt - 1] = w;
2616}
2617
2618void
2619ev_fork_stop (EV_P_ ev_fork *w)
2620{
2621 clear_pending (EV_A_ (W)w);
2622 if (expect_false (!ev_is_active (w)))
2623 return;
2624
2625 {
2626 int active = ev_active (w);
2627
2628 forks [active - 1] = forks [--forkcnt];
2629 ev_active (forks [active - 1]) = active;
2630 }
2631
2632 ev_stop (EV_A_ (W)w);
2633}
2634#endif
2635
2636#if EV_ASYNC_ENABLE
2637void
2638ev_async_start (EV_P_ ev_async *w)
2639{
2640 if (expect_false (ev_is_active (w)))
2641 return;
2642
2643 evpipe_init (EV_A);
2644
2645 ev_start (EV_A_ (W)w, ++asynccnt);
2646 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2647 asyncs [asynccnt - 1] = w;
2648}
2649
2650void
2651ev_async_stop (EV_P_ ev_async *w)
2652{
2653 clear_pending (EV_A_ (W)w);
2654 if (expect_false (!ev_is_active (w)))
2655 return;
2656
2657 {
2658 int active = ev_active (w);
2659
2660 asyncs [active - 1] = asyncs [--asynccnt];
2661 ev_active (asyncs [active - 1]) = active;
2662 }
2663
2664 ev_stop (EV_A_ (W)w);
2665}
2666
2667void
2668ev_async_send (EV_P_ ev_async *w)
2669{
2670 w->sent = 1;
2671 evpipe_write (EV_A_ &gotasync);
2672}
2673#endif
1225 2674
1226/*****************************************************************************/ 2675/*****************************************************************************/
1227 2676
1228struct ev_once 2677struct ev_once
1229{ 2678{
1230 struct ev_io io; 2679 ev_io io;
1231 struct ev_timer to; 2680 ev_timer to;
1232 void (*cb)(int revents, void *arg); 2681 void (*cb)(int revents, void *arg);
1233 void *arg; 2682 void *arg;
1234}; 2683};
1235 2684
1236static void 2685static void
1239 void (*cb)(int revents, void *arg) = once->cb; 2688 void (*cb)(int revents, void *arg) = once->cb;
1240 void *arg = once->arg; 2689 void *arg = once->arg;
1241 2690
1242 ev_io_stop (EV_A_ &once->io); 2691 ev_io_stop (EV_A_ &once->io);
1243 ev_timer_stop (EV_A_ &once->to); 2692 ev_timer_stop (EV_A_ &once->to);
1244 free (once); 2693 ev_free (once);
1245 2694
1246 cb (revents, arg); 2695 cb (revents, arg);
1247} 2696}
1248 2697
1249static void 2698static void
1250once_cb_io (EV_P_ struct ev_io *w, int revents) 2699once_cb_io (EV_P_ ev_io *w, int revents)
1251{ 2700{
1252 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2701 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1253} 2702}
1254 2703
1255static void 2704static void
1256once_cb_to (EV_P_ struct ev_timer *w, int revents) 2705once_cb_to (EV_P_ ev_timer *w, int revents)
1257{ 2706{
1258 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2707 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1259} 2708}
1260 2709
1261void 2710void
1262ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2711ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1263{ 2712{
1264 struct ev_once *once = malloc (sizeof (struct ev_once)); 2713 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1265 2714
1266 if (!once) 2715 if (expect_false (!once))
2716 {
1267 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2717 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1268 else 2718 return;
1269 { 2719 }
2720
1270 once->cb = cb; 2721 once->cb = cb;
1271 once->arg = arg; 2722 once->arg = arg;
1272 2723
1273 ev_watcher_init (&once->io, once_cb_io); 2724 ev_init (&once->io, once_cb_io);
1274 if (fd >= 0) 2725 if (fd >= 0)
1275 { 2726 {
1276 ev_io_set (&once->io, fd, events); 2727 ev_io_set (&once->io, fd, events);
1277 ev_io_start (EV_A_ &once->io); 2728 ev_io_start (EV_A_ &once->io);
1278 } 2729 }
1279 2730
1280 ev_watcher_init (&once->to, once_cb_to); 2731 ev_init (&once->to, once_cb_to);
1281 if (timeout >= 0.) 2732 if (timeout >= 0.)
1282 { 2733 {
1283 ev_timer_set (&once->to, timeout, 0.); 2734 ev_timer_set (&once->to, timeout, 0.);
1284 ev_timer_start (EV_A_ &once->to); 2735 ev_timer_start (EV_A_ &once->to);
1285 }
1286 }
1287}
1288
1289/*****************************************************************************/
1290
1291#if 0
1292
1293struct ev_io wio;
1294
1295static void
1296sin_cb (struct ev_io *w, int revents)
1297{
1298 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1299}
1300
1301static void
1302ocb (struct ev_timer *w, int revents)
1303{
1304 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1305 ev_timer_stop (w);
1306 ev_timer_start (w);
1307}
1308
1309static void
1310scb (struct ev_signal *w, int revents)
1311{
1312 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1313 ev_io_stop (&wio);
1314 ev_io_start (&wio);
1315}
1316
1317static void
1318gcb (struct ev_signal *w, int revents)
1319{
1320 fprintf (stderr, "generic %x\n", revents);
1321
1322}
1323
1324int main (void)
1325{
1326 ev_init (0);
1327
1328 ev_io_init (&wio, sin_cb, 0, EV_READ);
1329 ev_io_start (&wio);
1330
1331 struct ev_timer t[10000];
1332
1333#if 0
1334 int i;
1335 for (i = 0; i < 10000; ++i)
1336 { 2736 }
1337 struct ev_timer *w = t + i;
1338 ev_watcher_init (w, ocb, i);
1339 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1340 ev_timer_start (w);
1341 if (drand48 () < 0.5)
1342 ev_timer_stop (w);
1343 }
1344#endif
1345
1346 struct ev_timer t1;
1347 ev_timer_init (&t1, ocb, 5, 10);
1348 ev_timer_start (&t1);
1349
1350 struct ev_signal sig;
1351 ev_signal_init (&sig, scb, SIGQUIT);
1352 ev_signal_start (&sig);
1353
1354 struct ev_check cw;
1355 ev_check_init (&cw, gcb);
1356 ev_check_start (&cw);
1357
1358 struct ev_idle iw;
1359 ev_idle_init (&iw, gcb);
1360 ev_idle_start (&iw);
1361
1362 ev_loop (0);
1363
1364 return 0;
1365} 2737}
1366 2738
2739#if EV_MULTIPLICITY
2740 #include "ev_wrap.h"
1367#endif 2741#endif
1368 2742
2743#ifdef __cplusplus
2744}
2745#endif
1369 2746
1370
1371

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines