ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.52 by root, Sat Nov 3 22:10:39 2007 UTC vs.
Revision 1.291 by root, Mon Jun 29 04:44:18 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
32# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
66# if HAVE_CLOCK_GETTIME
67# ifndef EV_USE_MONOTONIC
68# define EV_USE_MONOTONIC 1
69# endif
70# ifndef EV_USE_REALTIME
71# define EV_USE_REALTIME 0
72# endif
73# else
74# ifndef EV_USE_MONOTONIC
75# define EV_USE_MONOTONIC 0
76# endif
77# ifndef EV_USE_REALTIME
78# define EV_USE_REALTIME 0
79# endif
80# endif
81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
88# endif
89
90# ifndef EV_USE_SELECT
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
92# define EV_USE_SELECT 1
93# else
94# define EV_USE_SELECT 0
95# endif
96# endif
97
98# ifndef EV_USE_POLL
99# if HAVE_POLL && HAVE_POLL_H
100# define EV_USE_POLL 1
101# else
102# define EV_USE_POLL 0
103# endif
104# endif
105
106# ifndef EV_USE_EPOLL
107# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
108# define EV_USE_EPOLL 1
109# else
110# define EV_USE_EPOLL 0
111# endif
112# endif
113
114# ifndef EV_USE_KQUEUE
115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
116# define EV_USE_KQUEUE 1
117# else
118# define EV_USE_KQUEUE 0
119# endif
120# endif
121
122# ifndef EV_USE_PORT
123# if HAVE_PORT_H && HAVE_PORT_CREATE
124# define EV_USE_PORT 1
125# else
126# define EV_USE_PORT 0
127# endif
128# endif
129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1
133# else
134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_EVENTFD
139# if HAVE_EVENTFD
140# define EV_USE_EVENTFD 1
141# else
142# define EV_USE_EVENTFD 0
143# endif
144# endif
145
33#endif 146#endif
34 147
35#include <math.h> 148#include <math.h>
36#include <stdlib.h> 149#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 150#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 151#include <stddef.h>
41 152
42#include <stdio.h> 153#include <stdio.h>
43 154
44#include <assert.h> 155#include <assert.h>
45#include <errno.h> 156#include <errno.h>
46#include <sys/types.h> 157#include <sys/types.h>
158#include <time.h>
159
160#include <signal.h>
161
162#ifdef EV_H
163# include EV_H
164#else
165# include "ev.h"
166#endif
167
47#ifndef WIN32 168#ifndef _WIN32
169# include <sys/time.h>
48# include <sys/wait.h> 170# include <sys/wait.h>
171# include <unistd.h>
172#else
173# include <io.h>
174# define WIN32_LEAN_AND_MEAN
175# include <windows.h>
176# ifndef EV_SELECT_IS_WINSOCKET
177# define EV_SELECT_IS_WINSOCKET 1
49#endif 178# endif
50#include <sys/time.h> 179#endif
51#include <time.h>
52 180
53/**/ 181/* this block tries to deduce configuration from header-defined symbols and defaults */
182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
54 190
55#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
56# define EV_USE_MONOTONIC 1 193# define EV_USE_MONOTONIC 1
194# else
195# define EV_USE_MONOTONIC 0
196# endif
197#endif
198
199#ifndef EV_USE_REALTIME
200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
201#endif
202
203#ifndef EV_USE_NANOSLEEP
204# if _POSIX_C_SOURCE >= 199309L
205# define EV_USE_NANOSLEEP 1
206# else
207# define EV_USE_NANOSLEEP 0
208# endif
57#endif 209#endif
58 210
59#ifndef EV_USE_SELECT 211#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1 212# define EV_USE_SELECT 1
61#endif 213#endif
62 214
63#ifndef EV_USEV_POLL 215#ifndef EV_USE_POLL
64# define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */ 216# ifdef _WIN32
217# define EV_USE_POLL 0
218# else
219# define EV_USE_POLL 1
220# endif
65#endif 221#endif
66 222
67#ifndef EV_USE_EPOLL 223#ifndef EV_USE_EPOLL
224# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
225# define EV_USE_EPOLL 1
226# else
68# define EV_USE_EPOLL 0 227# define EV_USE_EPOLL 0
228# endif
69#endif 229#endif
70 230
71#ifndef EV_USE_KQUEUE 231#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 232# define EV_USE_KQUEUE 0
73#endif 233#endif
74 234
75#ifndef EV_USE_REALTIME 235#ifndef EV_USE_PORT
236# define EV_USE_PORT 0
237#endif
238
239#ifndef EV_USE_INOTIFY
240# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
76# define EV_USE_REALTIME 1 241# define EV_USE_INOTIFY 1
242# else
243# define EV_USE_INOTIFY 0
77#endif 244# endif
245#endif
78 246
79/**/ 247#ifndef EV_PID_HASHSIZE
248# if EV_MINIMAL
249# define EV_PID_HASHSIZE 1
250# else
251# define EV_PID_HASHSIZE 16
252# endif
253#endif
254
255#ifndef EV_INOTIFY_HASHSIZE
256# if EV_MINIMAL
257# define EV_INOTIFY_HASHSIZE 1
258# else
259# define EV_INOTIFY_HASHSIZE 16
260# endif
261#endif
262
263#ifndef EV_USE_EVENTFD
264# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
265# define EV_USE_EVENTFD 1
266# else
267# define EV_USE_EVENTFD 0
268# endif
269#endif
270
271#if 0 /* debugging */
272# define EV_VERIFY 3
273# define EV_USE_4HEAP 1
274# define EV_HEAP_CACHE_AT 1
275#endif
276
277#ifndef EV_VERIFY
278# define EV_VERIFY !EV_MINIMAL
279#endif
280
281#ifndef EV_USE_4HEAP
282# define EV_USE_4HEAP !EV_MINIMAL
283#endif
284
285#ifndef EV_HEAP_CACHE_AT
286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
301#endif
302
303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
80 304
81#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
82# undef EV_USE_MONOTONIC 306# undef EV_USE_MONOTONIC
83# define EV_USE_MONOTONIC 0 307# define EV_USE_MONOTONIC 0
84#endif 308#endif
86#ifndef CLOCK_REALTIME 310#ifndef CLOCK_REALTIME
87# undef EV_USE_REALTIME 311# undef EV_USE_REALTIME
88# define EV_USE_REALTIME 0 312# define EV_USE_REALTIME 0
89#endif 313#endif
90 314
315#if !EV_STAT_ENABLE
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318#endif
319
320#if !EV_USE_NANOSLEEP
321# ifndef _WIN32
322# include <sys/select.h>
323# endif
324#endif
325
326#if EV_USE_INOTIFY
327# include <sys/utsname.h>
328# include <sys/statfs.h>
329# include <sys/inotify.h>
330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331# ifndef IN_DONT_FOLLOW
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334# endif
335#endif
336
337#if EV_SELECT_IS_WINSOCKET
338# include <winsock.h>
339#endif
340
341#if EV_USE_EVENTFD
342/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
343# include <stdint.h>
344# ifdef __cplusplus
345extern "C" {
346# endif
347int eventfd (unsigned int initval, int flags);
348# ifdef __cplusplus
349}
350# endif
351#endif
352
91/**/ 353/**/
92 354
355#if EV_VERIFY >= 3
356# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357#else
358# define EV_FREQUENT_CHECK do { } while (0)
359#endif
360
361/*
362 * This is used to avoid floating point rounding problems.
363 * It is added to ev_rt_now when scheduling periodics
364 * to ensure progress, time-wise, even when rounding
365 * errors are against us.
366 * This value is good at least till the year 4000.
367 * Better solutions welcome.
368 */
369#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
370
93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 371#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 372#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 373/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
97 374
98#include "ev.h"
99
100#if __GNUC__ >= 3 375#if __GNUC__ >= 4
101# define expect(expr,value) __builtin_expect ((expr),(value)) 376# define expect(expr,value) __builtin_expect ((expr),(value))
102# define inline inline 377# define noinline __attribute__ ((noinline))
103#else 378#else
104# define expect(expr,value) (expr) 379# define expect(expr,value) (expr)
105# define inline static 380# define noinline
381# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
382# define inline
383# endif
106#endif 384#endif
107 385
108#define expect_false(expr) expect ((expr) != 0, 0) 386#define expect_false(expr) expect ((expr) != 0, 0)
109#define expect_true(expr) expect ((expr) != 0, 1) 387#define expect_true(expr) expect ((expr) != 0, 1)
388#define inline_size static inline
389
390#if EV_MINIMAL
391# define inline_speed static noinline
392#else
393# define inline_speed static inline
394#endif
110 395
111#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 396#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
112#define ABSPRI(w) ((w)->priority - EV_MINPRI) 397#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
113 398
399#define EMPTY /* required for microsofts broken pseudo-c compiler */
400#define EMPTY2(a,b) /* used to suppress some warnings */
401
114typedef struct ev_watcher *W; 402typedef ev_watcher *W;
115typedef struct ev_watcher_list *WL; 403typedef ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT; 404typedef ev_watcher_time *WT;
117 405
118static ev_tstamp now_floor, mn_now, diff; /* monotonic clock */ 406#define ev_active(w) ((W)(w))->active
119static ev_tstamp rt_now; 407#define ev_at(w) ((WT)(w))->at
120static int method;
121 408
122static int have_monotonic; /* runtime */
123
124static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
125static void (*method_modify)(EV_P_ int fd, int oev, int nev);
126static void (*method_poll)(EV_P_ ev_tstamp timeout);
127
128static int activecnt; /* number of active events */
129
130#if EV_USE_SELECT 409#if EV_USE_REALTIME
131static unsigned char *vec_ri, *vec_ro, *vec_wi, *vec_wo; 410/* sig_atomic_t is used to avoid per-thread variables or locking but still */
132static int vec_max; 411/* giving it a reasonably high chance of working on typical architetcures */
412static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
133#endif 413#endif
134 414
135#if EV_USEV_POLL 415#if EV_USE_MONOTONIC
136static struct pollfd *polls; 416static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
137static int pollmax, pollcnt;
138static int *pollidxs; /* maps fds into structure indices */
139static int pollidxmax;
140#endif 417#endif
141 418
419#ifdef _WIN32
420# include "ev_win32.c"
421#endif
422
423/*****************************************************************************/
424
425static void (*syserr_cb)(const char *msg);
426
427void
428ev_set_syserr_cb (void (*cb)(const char *msg))
429{
430 syserr_cb = cb;
431}
432
433static void noinline
434ev_syserr (const char *msg)
435{
436 if (!msg)
437 msg = "(libev) system error";
438
439 if (syserr_cb)
440 syserr_cb (msg);
441 else
442 {
443 perror (msg);
444 abort ();
445 }
446}
447
448static void *
449ev_realloc_emul (void *ptr, long size)
450{
451 /* some systems, notably openbsd and darwin, fail to properly
452 * implement realloc (x, 0) (as required by both ansi c-98 and
453 * the single unix specification, so work around them here.
454 */
455
456 if (size)
457 return realloc (ptr, size);
458
459 free (ptr);
460 return 0;
461}
462
463static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
464
465void
466ev_set_allocator (void *(*cb)(void *ptr, long size))
467{
468 alloc = cb;
469}
470
471inline_speed void *
472ev_realloc (void *ptr, long size)
473{
474 ptr = alloc (ptr, size);
475
476 if (!ptr && size)
477 {
478 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
479 abort ();
480 }
481
482 return ptr;
483}
484
485#define ev_malloc(size) ev_realloc (0, (size))
486#define ev_free(ptr) ev_realloc ((ptr), 0)
487
488/*****************************************************************************/
489
490/* file descriptor info structure */
491typedef struct
492{
493 WL head;
494 unsigned char events; /* the events watched for */
495 unsigned char reify; /* flag set when this ANFD needs reification */
496 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
497 unsigned char unused;
142#if EV_USE_EPOLL 498#if EV_USE_EPOLL
143static int epoll_fd = -1; 499 unsigned int egen; /* generation counter to counter epoll bugs */
144
145static struct epoll_event *events;
146static int eventmax;
147#endif 500#endif
501#if EV_SELECT_IS_WINSOCKET
502 SOCKET handle;
503#endif
504} ANFD;
148 505
149#if EV_USE_KQUEUE 506/* stores the pending event set for a given watcher */
150static int kqueue_fd; 507typedef struct
151static struct kevent *kqueue_changes; 508{
152static int kqueue_changemax, kqueue_changecnt; 509 W w;
153static struct kevent *kqueue_events; 510 int events; /* the pending event set for the given watcher */
154static int kqueue_eventmax; 511} ANPENDING;
512
513#if EV_USE_INOTIFY
514/* hash table entry per inotify-id */
515typedef struct
516{
517 WL head;
518} ANFS;
519#endif
520
521/* Heap Entry */
522#if EV_HEAP_CACHE_AT
523 /* a heap element */
524 typedef struct {
525 ev_tstamp at;
526 WT w;
527 } ANHE;
528
529 #define ANHE_w(he) (he).w /* access watcher, read-write */
530 #define ANHE_at(he) (he).at /* access cached at, read-only */
531 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
532#else
533 /* a heap element */
534 typedef WT ANHE;
535
536 #define ANHE_w(he) (he)
537 #define ANHE_at(he) (he)->at
538 #define ANHE_at_cache(he)
539#endif
540
541#if EV_MULTIPLICITY
542
543 struct ev_loop
544 {
545 ev_tstamp ev_rt_now;
546 #define ev_rt_now ((loop)->ev_rt_now)
547 #define VAR(name,decl) decl;
548 #include "ev_vars.h"
549 #undef VAR
550 };
551 #include "ev_wrap.h"
552
553 static struct ev_loop default_loop_struct;
554 struct ev_loop *ev_default_loop_ptr;
555
556#else
557
558 ev_tstamp ev_rt_now;
559 #define VAR(name,decl) static decl;
560 #include "ev_vars.h"
561 #undef VAR
562
563 static int ev_default_loop_ptr;
564
155#endif 565#endif
156 566
157/*****************************************************************************/ 567/*****************************************************************************/
158 568
159inline ev_tstamp 569ev_tstamp
160ev_time (void) 570ev_time (void)
161{ 571{
162#if EV_USE_REALTIME 572#if EV_USE_REALTIME
573 if (expect_true (have_realtime))
574 {
163 struct timespec ts; 575 struct timespec ts;
164 clock_gettime (CLOCK_REALTIME, &ts); 576 clock_gettime (CLOCK_REALTIME, &ts);
165 return ts.tv_sec + ts.tv_nsec * 1e-9; 577 return ts.tv_sec + ts.tv_nsec * 1e-9;
166#else 578 }
579#endif
580
167 struct timeval tv; 581 struct timeval tv;
168 gettimeofday (&tv, 0); 582 gettimeofday (&tv, 0);
169 return tv.tv_sec + tv.tv_usec * 1e-6; 583 return tv.tv_sec + tv.tv_usec * 1e-6;
170#endif
171} 584}
172 585
173inline ev_tstamp 586inline_size ev_tstamp
174get_clock (void) 587get_clock (void)
175{ 588{
176#if EV_USE_MONOTONIC 589#if EV_USE_MONOTONIC
177 if (expect_true (have_monotonic)) 590 if (expect_true (have_monotonic))
178 { 591 {
183#endif 596#endif
184 597
185 return ev_time (); 598 return ev_time ();
186} 599}
187 600
601#if EV_MULTIPLICITY
188ev_tstamp 602ev_tstamp
189ev_now (EV_P) 603ev_now (EV_P)
190{ 604{
191 return rt_now; 605 return ev_rt_now;
192} 606}
607#endif
193 608
194#define array_roundsize(base,n) ((n) | 4 & ~3) 609void
195 610ev_sleep (ev_tstamp delay)
196#define array_needsize(base,cur,cnt,init) \ 611{
197 if (expect_false ((cnt) > cur)) \ 612 if (delay > 0.)
198 { \
199 int newcnt = cur; \
200 do \
201 { \
202 newcnt = array_roundsize (base, newcnt << 1); \
203 } \
204 while ((cnt) > newcnt); \
205 \
206 base = realloc (base, sizeof (*base) * (newcnt)); \
207 init (base + cur, newcnt - cur); \
208 cur = newcnt; \
209 } 613 {
614#if EV_USE_NANOSLEEP
615 struct timespec ts;
616
617 ts.tv_sec = (time_t)delay;
618 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
619
620 nanosleep (&ts, 0);
621#elif defined(_WIN32)
622 Sleep ((unsigned long)(delay * 1e3));
623#else
624 struct timeval tv;
625
626 tv.tv_sec = (time_t)delay;
627 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
628
629 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
630 /* somehting nto guaranteed by newer posix versions, but guaranteed */
631 /* by older ones */
632 select (0, 0, 0, 0, &tv);
633#endif
634 }
635}
210 636
211/*****************************************************************************/ 637/*****************************************************************************/
212 638
213typedef struct 639#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
214{
215 struct ev_watcher_list *head;
216 unsigned char events;
217 unsigned char reify;
218} ANFD;
219 640
220static ANFD *anfds; 641/* find a suitable new size for the given array, */
221static int anfdmax; 642/* hopefully by rounding to a ncie-to-malloc size */
222 643inline_size int
223static void 644array_nextsize (int elem, int cur, int cnt)
224anfds_init (ANFD *base, int count)
225{ 645{
226 while (count--) 646 int ncur = cur + 1;
227 {
228 base->head = 0;
229 base->events = EV_NONE;
230 base->reify = 0;
231 647
232 ++base; 648 do
649 ncur <<= 1;
650 while (cnt > ncur);
651
652 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
653 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
233 } 654 {
234} 655 ncur *= elem;
235 656 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
236typedef struct 657 ncur = ncur - sizeof (void *) * 4;
237{ 658 ncur /= elem;
238 W w;
239 int events;
240} ANPENDING;
241
242static ANPENDING *pendings [NUMPRI];
243static int pendingmax [NUMPRI], pendingcnt [NUMPRI];
244
245static void
246event (EV_P_ W w, int events)
247{
248 if (w->pending)
249 { 659 }
660
661 return ncur;
662}
663
664static noinline void *
665array_realloc (int elem, void *base, int *cur, int cnt)
666{
667 *cur = array_nextsize (elem, *cur, cnt);
668 return ev_realloc (base, elem * *cur);
669}
670
671#define array_init_zero(base,count) \
672 memset ((void *)(base), 0, sizeof (*(base)) * (count))
673
674#define array_needsize(type,base,cur,cnt,init) \
675 if (expect_false ((cnt) > (cur))) \
676 { \
677 int ocur_ = (cur); \
678 (base) = (type *)array_realloc \
679 (sizeof (type), (base), &(cur), (cnt)); \
680 init ((base) + (ocur_), (cur) - ocur_); \
681 }
682
683#if 0
684#define array_slim(type,stem) \
685 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
686 { \
687 stem ## max = array_roundsize (stem ## cnt >> 1); \
688 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
689 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
690 }
691#endif
692
693#define array_free(stem, idx) \
694 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
695
696/*****************************************************************************/
697
698/* dummy callback for pending events */
699static void noinline
700pendingcb (EV_P_ ev_prepare *w, int revents)
701{
702}
703
704void noinline
705ev_feed_event (EV_P_ void *w, int revents)
706{
707 W w_ = (W)w;
708 int pri = ABSPRI (w_);
709
710 if (expect_false (w_->pending))
711 pendings [pri][w_->pending - 1].events |= revents;
712 else
713 {
714 w_->pending = ++pendingcnt [pri];
715 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
716 pendings [pri][w_->pending - 1].w = w_;
250 pendings [ABSPRI (w)][w->pending - 1].events |= events; 717 pendings [pri][w_->pending - 1].events = revents;
251 return;
252 } 718 }
253
254 w->pending = ++pendingcnt [ABSPRI (w)];
255 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
256 pendings [ABSPRI (w)][w->pending - 1].w = w;
257 pendings [ABSPRI (w)][w->pending - 1].events = events;
258} 719}
259 720
260static void 721inline_speed void
722feed_reverse (EV_P_ W w)
723{
724 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
725 rfeeds [rfeedcnt++] = w;
726}
727
728inline_size void
729feed_reverse_done (EV_P_ int revents)
730{
731 do
732 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
733 while (rfeedcnt);
734}
735
736inline_speed void
261queue_events (EV_P_ W *events, int eventcnt, int type) 737queue_events (EV_P_ W *events, int eventcnt, int type)
262{ 738{
263 int i; 739 int i;
264 740
265 for (i = 0; i < eventcnt; ++i) 741 for (i = 0; i < eventcnt; ++i)
266 event (EV_A_ events [i], type); 742 ev_feed_event (EV_A_ events [i], type);
267} 743}
268 744
269static void 745/*****************************************************************************/
746
747inline_speed void
270fd_event (EV_P_ int fd, int events) 748fd_event (EV_P_ int fd, int revents)
271{ 749{
272 ANFD *anfd = anfds + fd; 750 ANFD *anfd = anfds + fd;
273 struct ev_io *w; 751 ev_io *w;
274 752
275 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 753 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
276 { 754 {
277 int ev = w->events & events; 755 int ev = w->events & revents;
278 756
279 if (ev) 757 if (ev)
280 event (EV_A_ (W)w, ev); 758 ev_feed_event (EV_A_ (W)w, ev);
281 } 759 }
282} 760}
283 761
284/*****************************************************************************/ 762void
763ev_feed_fd_event (EV_P_ int fd, int revents)
764{
765 if (fd >= 0 && fd < anfdmax)
766 fd_event (EV_A_ fd, revents);
767}
285 768
286static int *fdchanges; 769/* make sure the external fd watch events are in-sync */
287static int fdchangemax, fdchangecnt; 770/* with the kernel/libev internal state */
288 771inline_size void
289static void
290fd_reify (EV_P) 772fd_reify (EV_P)
291{ 773{
292 int i; 774 int i;
293 775
294 for (i = 0; i < fdchangecnt; ++i) 776 for (i = 0; i < fdchangecnt; ++i)
295 { 777 {
296 int fd = fdchanges [i]; 778 int fd = fdchanges [i];
297 ANFD *anfd = anfds + fd; 779 ANFD *anfd = anfds + fd;
298 struct ev_io *w; 780 ev_io *w;
299 781
300 int events = 0; 782 unsigned char events = 0;
301 783
302 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 784 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
303 events |= w->events; 785 events |= (unsigned char)w->events;
304 786
305 anfd->reify = 0; 787#if EV_SELECT_IS_WINSOCKET
306 788 if (events)
307 if (anfd->events != events)
308 { 789 {
309 method_modify (EV_A_ fd, anfd->events, events); 790 unsigned long arg;
310 anfd->events = events; 791 #ifdef EV_FD_TO_WIN32_HANDLE
792 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
793 #else
794 anfd->handle = _get_osfhandle (fd);
795 #endif
796 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
311 } 797 }
798#endif
799
800 {
801 unsigned char o_events = anfd->events;
802 unsigned char o_reify = anfd->reify;
803
804 anfd->reify = 0;
805 anfd->events = events;
806
807 if (o_events != events || o_reify & EV__IOFDSET)
808 backend_modify (EV_A_ fd, o_events, events);
809 }
312 } 810 }
313 811
314 fdchangecnt = 0; 812 fdchangecnt = 0;
315} 813}
316 814
317static void 815/* something about the given fd changed */
816inline_size void
318fd_change (EV_P_ int fd) 817fd_change (EV_P_ int fd, int flags)
319{ 818{
320 if (anfds [fd].reify || fdchangecnt < 0) 819 unsigned char reify = anfds [fd].reify;
321 return;
322
323 anfds [fd].reify = 1; 820 anfds [fd].reify |= flags;
324 821
822 if (expect_true (!reify))
823 {
325 ++fdchangecnt; 824 ++fdchangecnt;
326 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 825 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
327 fdchanges [fdchangecnt - 1] = fd; 826 fdchanges [fdchangecnt - 1] = fd;
827 }
328} 828}
329 829
330static void 830/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
831inline_speed void
331fd_kill (EV_P_ int fd) 832fd_kill (EV_P_ int fd)
332{ 833{
333 struct ev_io *w; 834 ev_io *w;
334 835
335 while ((w = (struct ev_io *)anfds [fd].head)) 836 while ((w = (ev_io *)anfds [fd].head))
336 { 837 {
337 ev_io_stop (EV_A_ w); 838 ev_io_stop (EV_A_ w);
338 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 839 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
339 } 840 }
841}
842
843/* check whether the given fd is atcually valid, for error recovery */
844inline_size int
845fd_valid (int fd)
846{
847#ifdef _WIN32
848 return _get_osfhandle (fd) != -1;
849#else
850 return fcntl (fd, F_GETFD) != -1;
851#endif
340} 852}
341 853
342/* called on EBADF to verify fds */ 854/* called on EBADF to verify fds */
343static void 855static void noinline
344fd_ebadf (EV_P) 856fd_ebadf (EV_P)
345{ 857{
346 int fd; 858 int fd;
347 859
348 for (fd = 0; fd < anfdmax; ++fd) 860 for (fd = 0; fd < anfdmax; ++fd)
349 if (anfds [fd].events) 861 if (anfds [fd].events)
350 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 862 if (!fd_valid (fd) && errno == EBADF)
351 fd_kill (EV_A_ fd); 863 fd_kill (EV_A_ fd);
352} 864}
353 865
354/* called on ENOMEM in select/poll to kill some fds and retry */ 866/* called on ENOMEM in select/poll to kill some fds and retry */
355static void 867static void noinline
356fd_enomem (EV_P) 868fd_enomem (EV_P)
357{ 869{
358 int fd = anfdmax; 870 int fd;
359 871
360 while (fd--) 872 for (fd = anfdmax; fd--; )
361 if (anfds [fd].events) 873 if (anfds [fd].events)
362 { 874 {
363 close (fd);
364 fd_kill (EV_A_ fd); 875 fd_kill (EV_A_ fd);
365 return; 876 return;
366 } 877 }
367} 878}
368 879
880/* usually called after fork if backend needs to re-arm all fds from scratch */
881static void noinline
882fd_rearm_all (EV_P)
883{
884 int fd;
885
886 for (fd = 0; fd < anfdmax; ++fd)
887 if (anfds [fd].events)
888 {
889 anfds [fd].events = 0;
890 anfds [fd].emask = 0;
891 fd_change (EV_A_ fd, EV__IOFDSET | 1);
892 }
893}
894
369/*****************************************************************************/ 895/*****************************************************************************/
370 896
371static struct ev_timer **timers; 897/*
372static int timermax, timercnt; 898 * the heap functions want a real array index. array index 0 uis guaranteed to not
899 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
900 * the branching factor of the d-tree.
901 */
373 902
374static struct ev_periodic **periodics; 903/*
375static int periodicmax, periodiccnt; 904 * at the moment we allow libev the luxury of two heaps,
905 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
906 * which is more cache-efficient.
907 * the difference is about 5% with 50000+ watchers.
908 */
909#if EV_USE_4HEAP
376 910
377static void 911#define DHEAP 4
378upheap (WT *timers, int k) 912#define HEAP0 (DHEAP - 1) /* index of first element in heap */
379{ 913#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
380 WT w = timers [k]; 914#define UPHEAP_DONE(p,k) ((p) == (k))
381 915
382 while (k && timers [k >> 1]->at > w->at) 916/* away from the root */
383 { 917inline_speed void
384 timers [k] = timers [k >> 1];
385 timers [k]->active = k + 1;
386 k >>= 1;
387 }
388
389 timers [k] = w;
390 timers [k]->active = k + 1;
391
392}
393
394static void
395downheap (WT *timers, int N, int k) 918downheap (ANHE *heap, int N, int k)
396{ 919{
397 WT w = timers [k]; 920 ANHE he = heap [k];
921 ANHE *E = heap + N + HEAP0;
398 922
399 while (k < (N >> 1)) 923 for (;;)
400 { 924 {
401 int j = k << 1; 925 ev_tstamp minat;
926 ANHE *minpos;
927 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
402 928
403 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 929 /* find minimum child */
930 if (expect_true (pos + DHEAP - 1 < E))
404 ++j; 931 {
405 932 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
406 if (w->at <= timers [j]->at) 933 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
934 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
935 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
936 }
937 else if (pos < E)
938 {
939 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
940 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
941 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
942 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
943 }
944 else
407 break; 945 break;
408 946
409 timers [k] = timers [j]; 947 if (ANHE_at (he) <= minat)
410 timers [k]->active = k + 1; 948 break;
949
950 heap [k] = *minpos;
951 ev_active (ANHE_w (*minpos)) = k;
952
953 k = minpos - heap;
954 }
955
956 heap [k] = he;
957 ev_active (ANHE_w (he)) = k;
958}
959
960#else /* 4HEAP */
961
962#define HEAP0 1
963#define HPARENT(k) ((k) >> 1)
964#define UPHEAP_DONE(p,k) (!(p))
965
966/* away from the root */
967inline_speed void
968downheap (ANHE *heap, int N, int k)
969{
970 ANHE he = heap [k];
971
972 for (;;)
973 {
974 int c = k << 1;
975
976 if (c > N + HEAP0 - 1)
977 break;
978
979 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
980 ? 1 : 0;
981
982 if (ANHE_at (he) <= ANHE_at (heap [c]))
983 break;
984
985 heap [k] = heap [c];
986 ev_active (ANHE_w (heap [k])) = k;
987
411 k = j; 988 k = c;
989 }
990
991 heap [k] = he;
992 ev_active (ANHE_w (he)) = k;
993}
994#endif
995
996/* towards the root */
997inline_speed void
998upheap (ANHE *heap, int k)
999{
1000 ANHE he = heap [k];
1001
1002 for (;;)
412 } 1003 {
1004 int p = HPARENT (k);
413 1005
414 timers [k] = w; 1006 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
415 timers [k]->active = k + 1; 1007 break;
1008
1009 heap [k] = heap [p];
1010 ev_active (ANHE_w (heap [k])) = k;
1011 k = p;
1012 }
1013
1014 heap [k] = he;
1015 ev_active (ANHE_w (he)) = k;
1016}
1017
1018/* move an element suitably so it is in a correct place */
1019inline_size void
1020adjustheap (ANHE *heap, int N, int k)
1021{
1022 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
1023 upheap (heap, k);
1024 else
1025 downheap (heap, N, k);
1026}
1027
1028/* rebuild the heap: this function is used only once and executed rarely */
1029inline_size void
1030reheap (ANHE *heap, int N)
1031{
1032 int i;
1033
1034 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1035 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1036 for (i = 0; i < N; ++i)
1037 upheap (heap, i + HEAP0);
416} 1038}
417 1039
418/*****************************************************************************/ 1040/*****************************************************************************/
419 1041
1042/* associate signal watchers to a signal signal */
420typedef struct 1043typedef struct
421{ 1044{
422 struct ev_watcher_list *head; 1045 WL head;
423 sig_atomic_t volatile gotsig; 1046 EV_ATOMIC_T gotsig;
424} ANSIG; 1047} ANSIG;
425 1048
426static ANSIG *signals; 1049static ANSIG *signals;
427static int signalmax; 1050static int signalmax;
428 1051
429static int sigpipe [2]; 1052static EV_ATOMIC_T gotsig;
430static sig_atomic_t volatile gotsig;
431static struct ev_io sigev;
432 1053
1054/*****************************************************************************/
1055
1056/* used to prepare libev internal fd's */
1057/* this is not fork-safe */
1058inline_speed void
1059fd_intern (int fd)
1060{
1061#ifdef _WIN32
1062 unsigned long arg = 1;
1063 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1064#else
1065 fcntl (fd, F_SETFD, FD_CLOEXEC);
1066 fcntl (fd, F_SETFL, O_NONBLOCK);
1067#endif
1068}
1069
1070static void noinline
1071evpipe_init (EV_P)
1072{
1073 if (!ev_is_active (&pipe_w))
1074 {
1075#if EV_USE_EVENTFD
1076 if ((evfd = eventfd (0, 0)) >= 0)
1077 {
1078 evpipe [0] = -1;
1079 fd_intern (evfd);
1080 ev_io_set (&pipe_w, evfd, EV_READ);
1081 }
1082 else
1083#endif
1084 {
1085 while (pipe (evpipe))
1086 ev_syserr ("(libev) error creating signal/async pipe");
1087
1088 fd_intern (evpipe [0]);
1089 fd_intern (evpipe [1]);
1090 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1091 }
1092
1093 ev_io_start (EV_A_ &pipe_w);
1094 ev_unref (EV_A); /* watcher should not keep loop alive */
1095 }
1096}
1097
1098inline_size void
1099evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1100{
1101 if (!*flag)
1102 {
1103 int old_errno = errno; /* save errno because write might clobber it */
1104
1105 *flag = 1;
1106
1107#if EV_USE_EVENTFD
1108 if (evfd >= 0)
1109 {
1110 uint64_t counter = 1;
1111 write (evfd, &counter, sizeof (uint64_t));
1112 }
1113 else
1114#endif
1115 write (evpipe [1], &old_errno, 1);
1116
1117 errno = old_errno;
1118 }
1119}
1120
1121/* called whenever the libev signal pipe */
1122/* got some events (signal, async) */
433static void 1123static void
434signals_init (ANSIG *base, int count) 1124pipecb (EV_P_ ev_io *iow, int revents)
435{ 1125{
436 while (count--) 1126#if EV_USE_EVENTFD
1127 if (evfd >= 0)
1128 {
1129 uint64_t counter;
1130 read (evfd, &counter, sizeof (uint64_t));
437 { 1131 }
438 base->head = 0; 1132 else
1133#endif
1134 {
1135 char dummy;
1136 read (evpipe [0], &dummy, 1);
1137 }
1138
1139 if (gotsig && ev_is_default_loop (EV_A))
1140 {
1141 int signum;
439 base->gotsig = 0; 1142 gotsig = 0;
440 1143
441 ++base; 1144 for (signum = signalmax; signum--; )
1145 if (signals [signum].gotsig)
1146 ev_feed_signal_event (EV_A_ signum + 1);
1147 }
1148
1149#if EV_ASYNC_ENABLE
1150 if (gotasync)
442 } 1151 {
1152 int i;
1153 gotasync = 0;
1154
1155 for (i = asynccnt; i--; )
1156 if (asyncs [i]->sent)
1157 {
1158 asyncs [i]->sent = 0;
1159 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1160 }
1161 }
1162#endif
443} 1163}
1164
1165/*****************************************************************************/
444 1166
445static void 1167static void
446sighandler (int signum) 1168ev_sighandler (int signum)
447{ 1169{
1170#if EV_MULTIPLICITY
1171 struct ev_loop *loop = &default_loop_struct;
1172#endif
1173
1174#if _WIN32
1175 signal (signum, ev_sighandler);
1176#endif
1177
448 signals [signum - 1].gotsig = 1; 1178 signals [signum - 1].gotsig = 1;
449 1179 evpipe_write (EV_A_ &gotsig);
450 if (!gotsig)
451 {
452 int old_errno = errno;
453 gotsig = 1;
454 write (sigpipe [1], &signum, 1);
455 errno = old_errno;
456 }
457} 1180}
458 1181
459static void 1182void noinline
460sigcb (EV_P_ struct ev_io *iow, int revents) 1183ev_feed_signal_event (EV_P_ int signum)
461{ 1184{
462 struct ev_watcher_list *w; 1185 WL w;
1186
1187#if EV_MULTIPLICITY
1188 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1189#endif
1190
463 int signum; 1191 --signum;
464 1192
465 read (sigpipe [0], &revents, 1); 1193 if (signum < 0 || signum >= signalmax)
466 gotsig = 0; 1194 return;
467 1195
468 for (signum = signalmax; signum--; )
469 if (signals [signum].gotsig)
470 {
471 signals [signum].gotsig = 0; 1196 signals [signum].gotsig = 0;
472 1197
473 for (w = signals [signum].head; w; w = w->next) 1198 for (w = signals [signum].head; w; w = w->next)
474 event (EV_A_ (W)w, EV_SIGNAL); 1199 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
475 }
476}
477
478static void
479siginit (EV_P)
480{
481#ifndef WIN32
482 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
483 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
484
485 /* rather than sort out wether we really need nb, set it */
486 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
487 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
488#endif
489
490 ev_io_set (&sigev, sigpipe [0], EV_READ);
491 ev_io_start (&sigev);
492 ev_unref (EV_A); /* child watcher should not keep loop alive */
493} 1200}
494 1201
495/*****************************************************************************/ 1202/*****************************************************************************/
496 1203
497static struct ev_idle **idles; 1204static WL childs [EV_PID_HASHSIZE];
498static int idlemax, idlecnt;
499 1205
500static struct ev_prepare **prepares;
501static int preparemax, preparecnt;
502
503static struct ev_check **checks;
504static int checkmax, checkcnt;
505
506/*****************************************************************************/
507
508static struct ev_child *childs [PID_HASHSIZE];
509static struct ev_signal childev;
510
511#ifndef WIN32 1206#ifndef _WIN32
1207
1208static ev_signal childev;
1209
1210#ifndef WIFCONTINUED
1211# define WIFCONTINUED(status) 0
1212#endif
1213
1214/* handle a single child status event */
1215inline_speed void
1216child_reap (EV_P_ int chain, int pid, int status)
1217{
1218 ev_child *w;
1219 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1220
1221 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1222 {
1223 if ((w->pid == pid || !w->pid)
1224 && (!traced || (w->flags & 1)))
1225 {
1226 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1227 w->rpid = pid;
1228 w->rstatus = status;
1229 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1230 }
1231 }
1232}
512 1233
513#ifndef WCONTINUED 1234#ifndef WCONTINUED
514# define WCONTINUED 0 1235# define WCONTINUED 0
515#endif 1236#endif
516 1237
1238/* called on sigchld etc., calls waitpid */
517static void 1239static void
518child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
519{
520 struct ev_child *w;
521
522 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
523 if (w->pid == pid || !w->pid)
524 {
525 w->priority = sw->priority; /* need to do it *now* */
526 w->rpid = pid;
527 w->rstatus = status;
528 event (EV_A_ (W)w, EV_CHILD);
529 }
530}
531
532static void
533childcb (EV_P_ struct ev_signal *sw, int revents) 1240childcb (EV_P_ ev_signal *sw, int revents)
534{ 1241{
535 int pid, status; 1242 int pid, status;
536 1243
1244 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
537 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1245 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
538 { 1246 if (!WCONTINUED
1247 || errno != EINVAL
1248 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1249 return;
1250
539 /* make sure we are called again until all childs have been reaped */ 1251 /* make sure we are called again until all children have been reaped */
1252 /* we need to do it this way so that the callback gets called before we continue */
540 event (EV_A_ (W)sw, EV_SIGNAL); 1253 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
541 1254
542 child_reap (EV_A_ sw, pid, pid, status); 1255 child_reap (EV_A_ pid, pid, status);
1256 if (EV_PID_HASHSIZE > 1)
543 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1257 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
544 }
545} 1258}
546 1259
547#endif 1260#endif
548 1261
549/*****************************************************************************/ 1262/*****************************************************************************/
550 1263
1264#if EV_USE_PORT
1265# include "ev_port.c"
1266#endif
551#if EV_USE_KQUEUE 1267#if EV_USE_KQUEUE
552# include "ev_kqueue.c" 1268# include "ev_kqueue.c"
553#endif 1269#endif
554#if EV_USE_EPOLL 1270#if EV_USE_EPOLL
555# include "ev_epoll.c" 1271# include "ev_epoll.c"
556#endif 1272#endif
557#if EV_USEV_POLL 1273#if EV_USE_POLL
558# include "ev_poll.c" 1274# include "ev_poll.c"
559#endif 1275#endif
560#if EV_USE_SELECT 1276#if EV_USE_SELECT
561# include "ev_select.c" 1277# include "ev_select.c"
562#endif 1278#endif
572{ 1288{
573 return EV_VERSION_MINOR; 1289 return EV_VERSION_MINOR;
574} 1290}
575 1291
576/* return true if we are running with elevated privileges and should ignore env variables */ 1292/* return true if we are running with elevated privileges and should ignore env variables */
577static int 1293int inline_size
578enable_secure (void) 1294enable_secure (void)
579{ 1295{
580#ifdef WIN32 1296#ifdef _WIN32
581 return 0; 1297 return 0;
582#else 1298#else
583 return getuid () != geteuid () 1299 return getuid () != geteuid ()
584 || getgid () != getegid (); 1300 || getgid () != getegid ();
585#endif 1301#endif
586} 1302}
587 1303
1304unsigned int
1305ev_supported_backends (void)
1306{
1307 unsigned int flags = 0;
1308
1309 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1310 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1311 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1312 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1313 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1314
1315 return flags;
1316}
1317
1318unsigned int
1319ev_recommended_backends (void)
1320{
1321 unsigned int flags = ev_supported_backends ();
1322
1323#ifndef __NetBSD__
1324 /* kqueue is borked on everything but netbsd apparently */
1325 /* it usually doesn't work correctly on anything but sockets and pipes */
1326 flags &= ~EVBACKEND_KQUEUE;
1327#endif
1328#ifdef __APPLE__
1329 /* only select works correctly on that "unix-certified" platform */
1330 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1331 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1332#endif
1333
1334 return flags;
1335}
1336
1337unsigned int
1338ev_embeddable_backends (void)
1339{
1340 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1341
1342 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1343 /* please fix it and tell me how to detect the fix */
1344 flags &= ~EVBACKEND_EPOLL;
1345
1346 return flags;
1347}
1348
1349unsigned int
1350ev_backend (EV_P)
1351{
1352 return backend;
1353}
1354
1355unsigned int
1356ev_loop_count (EV_P)
1357{
1358 return loop_count;
1359}
1360
1361void
1362ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1363{
1364 io_blocktime = interval;
1365}
1366
1367void
1368ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1369{
1370 timeout_blocktime = interval;
1371}
1372
1373/* initialise a loop structure, must be zero-initialised */
1374static void noinline
1375loop_init (EV_P_ unsigned int flags)
1376{
1377 if (!backend)
1378 {
1379#if EV_USE_REALTIME
1380 if (!have_realtime)
1381 {
1382 struct timespec ts;
1383
1384 if (!clock_gettime (CLOCK_REALTIME, &ts))
1385 have_realtime = 1;
1386 }
1387#endif
1388
1389#if EV_USE_MONOTONIC
1390 if (!have_monotonic)
1391 {
1392 struct timespec ts;
1393
1394 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1395 have_monotonic = 1;
1396 }
1397#endif
1398
1399 ev_rt_now = ev_time ();
1400 mn_now = get_clock ();
1401 now_floor = mn_now;
1402 rtmn_diff = ev_rt_now - mn_now;
1403
1404 io_blocktime = 0.;
1405 timeout_blocktime = 0.;
1406 backend = 0;
1407 backend_fd = -1;
1408 gotasync = 0;
1409#if EV_USE_INOTIFY
1410 fs_fd = -2;
1411#endif
1412
1413 /* pid check not overridable via env */
1414#ifndef _WIN32
1415 if (flags & EVFLAG_FORKCHECK)
1416 curpid = getpid ();
1417#endif
1418
1419 if (!(flags & EVFLAG_NOENV)
1420 && !enable_secure ()
1421 && getenv ("LIBEV_FLAGS"))
1422 flags = atoi (getenv ("LIBEV_FLAGS"));
1423
1424 if (!(flags & 0x0000ffffU))
1425 flags |= ev_recommended_backends ();
1426
1427#if EV_USE_PORT
1428 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1429#endif
1430#if EV_USE_KQUEUE
1431 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1432#endif
1433#if EV_USE_EPOLL
1434 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1435#endif
1436#if EV_USE_POLL
1437 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1438#endif
1439#if EV_USE_SELECT
1440 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1441#endif
1442
1443 ev_prepare_init (&pending_w, pendingcb);
1444
1445 ev_init (&pipe_w, pipecb);
1446 ev_set_priority (&pipe_w, EV_MAXPRI);
1447 }
1448}
1449
1450/* free up a loop structure */
1451static void noinline
1452loop_destroy (EV_P)
1453{
1454 int i;
1455
1456 if (ev_is_active (&pipe_w))
1457 {
1458 ev_ref (EV_A); /* signal watcher */
1459 ev_io_stop (EV_A_ &pipe_w);
1460
1461#if EV_USE_EVENTFD
1462 if (evfd >= 0)
1463 close (evfd);
1464#endif
1465
1466 if (evpipe [0] >= 0)
1467 {
1468 close (evpipe [0]);
1469 close (evpipe [1]);
1470 }
1471 }
1472
1473#if EV_USE_INOTIFY
1474 if (fs_fd >= 0)
1475 close (fs_fd);
1476#endif
1477
1478 if (backend_fd >= 0)
1479 close (backend_fd);
1480
1481#if EV_USE_PORT
1482 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1483#endif
1484#if EV_USE_KQUEUE
1485 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1486#endif
1487#if EV_USE_EPOLL
1488 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1489#endif
1490#if EV_USE_POLL
1491 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1492#endif
1493#if EV_USE_SELECT
1494 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1495#endif
1496
1497 for (i = NUMPRI; i--; )
1498 {
1499 array_free (pending, [i]);
1500#if EV_IDLE_ENABLE
1501 array_free (idle, [i]);
1502#endif
1503 }
1504
1505 ev_free (anfds); anfdmax = 0;
1506
1507 /* have to use the microsoft-never-gets-it-right macro */
1508 array_free (rfeed, EMPTY);
1509 array_free (fdchange, EMPTY);
1510 array_free (timer, EMPTY);
1511#if EV_PERIODIC_ENABLE
1512 array_free (periodic, EMPTY);
1513#endif
1514#if EV_FORK_ENABLE
1515 array_free (fork, EMPTY);
1516#endif
1517 array_free (prepare, EMPTY);
1518 array_free (check, EMPTY);
1519#if EV_ASYNC_ENABLE
1520 array_free (async, EMPTY);
1521#endif
1522
1523 backend = 0;
1524}
1525
1526#if EV_USE_INOTIFY
1527inline_size void infy_fork (EV_P);
1528#endif
1529
1530inline_size void
1531loop_fork (EV_P)
1532{
1533#if EV_USE_PORT
1534 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1535#endif
1536#if EV_USE_KQUEUE
1537 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1538#endif
1539#if EV_USE_EPOLL
1540 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1541#endif
1542#if EV_USE_INOTIFY
1543 infy_fork (EV_A);
1544#endif
1545
1546 if (ev_is_active (&pipe_w))
1547 {
1548 /* this "locks" the handlers against writing to the pipe */
1549 /* while we modify the fd vars */
1550 gotsig = 1;
1551#if EV_ASYNC_ENABLE
1552 gotasync = 1;
1553#endif
1554
1555 ev_ref (EV_A);
1556 ev_io_stop (EV_A_ &pipe_w);
1557
1558#if EV_USE_EVENTFD
1559 if (evfd >= 0)
1560 close (evfd);
1561#endif
1562
1563 if (evpipe [0] >= 0)
1564 {
1565 close (evpipe [0]);
1566 close (evpipe [1]);
1567 }
1568
1569 evpipe_init (EV_A);
1570 /* now iterate over everything, in case we missed something */
1571 pipecb (EV_A_ &pipe_w, EV_READ);
1572 }
1573
1574 postfork = 0;
1575}
1576
1577#if EV_MULTIPLICITY
1578
1579struct ev_loop *
1580ev_loop_new (unsigned int flags)
1581{
1582 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1583
1584 memset (loop, 0, sizeof (struct ev_loop));
1585
1586 loop_init (EV_A_ flags);
1587
1588 if (ev_backend (EV_A))
1589 return loop;
1590
1591 return 0;
1592}
1593
1594void
1595ev_loop_destroy (EV_P)
1596{
1597 loop_destroy (EV_A);
1598 ev_free (loop);
1599}
1600
1601void
1602ev_loop_fork (EV_P)
1603{
1604 postfork = 1; /* must be in line with ev_default_fork */
1605}
1606
1607#if EV_VERIFY
1608static void noinline
1609verify_watcher (EV_P_ W w)
1610{
1611 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1612
1613 if (w->pending)
1614 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1615}
1616
1617static void noinline
1618verify_heap (EV_P_ ANHE *heap, int N)
1619{
1620 int i;
1621
1622 for (i = HEAP0; i < N + HEAP0; ++i)
1623 {
1624 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1625 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1626 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1627
1628 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1629 }
1630}
1631
1632static void noinline
1633array_verify (EV_P_ W *ws, int cnt)
1634{
1635 while (cnt--)
1636 {
1637 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1638 verify_watcher (EV_A_ ws [cnt]);
1639 }
1640}
1641#endif
1642
1643void
1644ev_loop_verify (EV_P)
1645{
1646#if EV_VERIFY
1647 int i;
1648 WL w;
1649
1650 assert (activecnt >= -1);
1651
1652 assert (fdchangemax >= fdchangecnt);
1653 for (i = 0; i < fdchangecnt; ++i)
1654 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1655
1656 assert (anfdmax >= 0);
1657 for (i = 0; i < anfdmax; ++i)
1658 for (w = anfds [i].head; w; w = w->next)
1659 {
1660 verify_watcher (EV_A_ (W)w);
1661 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1662 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1663 }
1664
1665 assert (timermax >= timercnt);
1666 verify_heap (EV_A_ timers, timercnt);
1667
1668#if EV_PERIODIC_ENABLE
1669 assert (periodicmax >= periodiccnt);
1670 verify_heap (EV_A_ periodics, periodiccnt);
1671#endif
1672
1673 for (i = NUMPRI; i--; )
1674 {
1675 assert (pendingmax [i] >= pendingcnt [i]);
1676#if EV_IDLE_ENABLE
1677 assert (idleall >= 0);
1678 assert (idlemax [i] >= idlecnt [i]);
1679 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1680#endif
1681 }
1682
1683#if EV_FORK_ENABLE
1684 assert (forkmax >= forkcnt);
1685 array_verify (EV_A_ (W *)forks, forkcnt);
1686#endif
1687
1688#if EV_ASYNC_ENABLE
1689 assert (asyncmax >= asynccnt);
1690 array_verify (EV_A_ (W *)asyncs, asynccnt);
1691#endif
1692
1693 assert (preparemax >= preparecnt);
1694 array_verify (EV_A_ (W *)prepares, preparecnt);
1695
1696 assert (checkmax >= checkcnt);
1697 array_verify (EV_A_ (W *)checks, checkcnt);
1698
1699# if 0
1700 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1701 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1702# endif
1703#endif
1704}
1705
1706#endif /* multiplicity */
1707
1708#if EV_MULTIPLICITY
1709struct ev_loop *
1710ev_default_loop_init (unsigned int flags)
1711#else
588int 1712int
589ev_method (EV_P) 1713ev_default_loop (unsigned int flags)
1714#endif
590{ 1715{
591 return method; 1716 if (!ev_default_loop_ptr)
592}
593
594int
595ev_init (EV_P_ int methods)
596{
597 if (!method)
598 {
599#if EV_USE_MONOTONIC
600 { 1717 {
601 struct timespec ts; 1718#if EV_MULTIPLICITY
602 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1719 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
603 have_monotonic = 1; 1720#else
604 } 1721 ev_default_loop_ptr = 1;
605#endif 1722#endif
606 1723
607 rt_now = ev_time (); 1724 loop_init (EV_A_ flags);
608 mn_now = get_clock ();
609 now_floor = mn_now;
610 diff = rt_now - mn_now;
611 1725
612 if (pipe (sigpipe)) 1726 if (ev_backend (EV_A))
613 return 0;
614
615 if (methods == EVMETHOD_AUTO)
616 if (!enable_secure () && getenv ("LIBmethodS"))
617 methods = atoi (getenv ("LIBmethodS"));
618 else
619 methods = EVMETHOD_ANY;
620
621 method = 0;
622#if EV_USE_KQUEUE
623 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
624#endif
625#if EV_USE_EPOLL
626 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
627#endif
628#if EV_USEV_POLL
629 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
630#endif
631#if EV_USE_SELECT
632 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
633#endif
634
635 if (method)
636 { 1727 {
637 ev_watcher_init (&sigev, sigcb);
638 ev_set_priority (&sigev, EV_MAXPRI);
639 siginit (EV_A);
640
641#ifndef WIN32 1728#ifndef _WIN32
642 ev_signal_init (&childev, childcb, SIGCHLD); 1729 ev_signal_init (&childev, childcb, SIGCHLD);
643 ev_set_priority (&childev, EV_MAXPRI); 1730 ev_set_priority (&childev, EV_MAXPRI);
644 ev_signal_start (EV_A_ &childev); 1731 ev_signal_start (EV_A_ &childev);
645 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1732 ev_unref (EV_A); /* child watcher should not keep loop alive */
646#endif 1733#endif
647 } 1734 }
1735 else
1736 ev_default_loop_ptr = 0;
648 } 1737 }
649 1738
650 return method; 1739 return ev_default_loop_ptr;
1740}
1741
1742void
1743ev_default_destroy (void)
1744{
1745#if EV_MULTIPLICITY
1746 struct ev_loop *loop = ev_default_loop_ptr;
1747#endif
1748
1749 ev_default_loop_ptr = 0;
1750
1751#ifndef _WIN32
1752 ev_ref (EV_A); /* child watcher */
1753 ev_signal_stop (EV_A_ &childev);
1754#endif
1755
1756 loop_destroy (EV_A);
1757}
1758
1759void
1760ev_default_fork (void)
1761{
1762#if EV_MULTIPLICITY
1763 struct ev_loop *loop = ev_default_loop_ptr;
1764#endif
1765
1766 postfork = 1; /* must be in line with ev_loop_fork */
651} 1767}
652 1768
653/*****************************************************************************/ 1769/*****************************************************************************/
654 1770
655void 1771void
656ev_fork_prepare (void) 1772ev_invoke (EV_P_ void *w, int revents)
657{ 1773{
658 /* nop */ 1774 EV_CB_INVOKE ((W)w, revents);
659} 1775}
660 1776
661void 1777inline_speed void
662ev_fork_parent (void)
663{
664 /* nop */
665}
666
667void
668ev_fork_child (void)
669{
670#if EV_USE_EPOLL
671 if (method == EVMETHOD_EPOLL)
672 epoll_postfork_child ();
673#endif
674
675 ev_io_stop (&sigev);
676 close (sigpipe [0]);
677 close (sigpipe [1]);
678 pipe (sigpipe);
679 siginit ();
680}
681
682/*****************************************************************************/
683
684static void
685call_pending (EV_P) 1778call_pending (EV_P)
686{ 1779{
687 int pri; 1780 int pri;
688 1781
689 for (pri = NUMPRI; pri--; ) 1782 for (pri = NUMPRI; pri--; )
690 while (pendingcnt [pri]) 1783 while (pendingcnt [pri])
691 { 1784 {
692 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1785 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
693 1786
694 if (p->w) 1787 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
695 { 1788 /* ^ this is no longer true, as pending_w could be here */
1789
696 p->w->pending = 0; 1790 p->w->pending = 0;
697 p->w->cb (EV_A_ p->w, p->events); 1791 EV_CB_INVOKE (p->w, p->events);
698 } 1792 EV_FREQUENT_CHECK;
699 } 1793 }
700} 1794}
701 1795
702static void 1796#if EV_IDLE_ENABLE
1797/* make idle watchers pending. this handles the "call-idle */
1798/* only when higher priorities are idle" logic */
1799inline_size void
703timers_reify (EV_P) 1800idle_reify (EV_P)
704{ 1801{
705 while (timercnt && timers [0]->at <= mn_now) 1802 if (expect_false (idleall))
706 { 1803 {
707 struct ev_timer *w = timers [0]; 1804 int pri;
708 1805
709 /* first reschedule or stop timer */ 1806 for (pri = NUMPRI; pri--; )
710 if (w->repeat)
711 { 1807 {
712 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1808 if (pendingcnt [pri])
713 w->at = mn_now + w->repeat; 1809 break;
714 downheap ((WT *)timers, timercnt, 0);
715 }
716 else
717 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
718 1810
719 event ((W)w, EV_TIMEOUT); 1811 if (idlecnt [pri])
720 }
721}
722
723static void
724periodics_reify (EV_P)
725{
726 while (periodiccnt && periodics [0]->at <= rt_now)
727 {
728 struct ev_periodic *w = periodics [0];
729
730 /* first reschedule or stop timer */
731 if (w->interval)
732 {
733 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
734 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
735 downheap ((WT *)periodics, periodiccnt, 0);
736 }
737 else
738 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
739
740 event (EV_A_ (W)w, EV_PERIODIC);
741 }
742}
743
744static void
745periodics_reschedule (EV_P_ ev_tstamp diff)
746{
747 int i;
748
749 /* adjust periodics after time jump */
750 for (i = 0; i < periodiccnt; ++i)
751 {
752 struct ev_periodic *w = periodics [i];
753
754 if (w->interval)
755 {
756 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
757
758 if (fabs (diff) >= 1e-4)
759 { 1812 {
760 ev_periodic_stop (EV_A_ w); 1813 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
761 ev_periodic_start (EV_A_ w); 1814 break;
762
763 i = 0; /* restart loop, inefficient, but time jumps should be rare */
764 } 1815 }
765 } 1816 }
766 } 1817 }
767} 1818}
1819#endif
768 1820
769inline int 1821/* make timers pending */
770time_update_monotonic (EV_P) 1822inline_size void
1823timers_reify (EV_P)
771{ 1824{
772 mn_now = get_clock (); 1825 EV_FREQUENT_CHECK;
773 1826
774 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1827 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
775 {
776 rt_now = mn_now + diff;
777 return 0;
778 } 1828 {
779 else 1829 do
1830 {
1831 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1832
1833 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1834
1835 /* first reschedule or stop timer */
1836 if (w->repeat)
1837 {
1838 ev_at (w) += w->repeat;
1839 if (ev_at (w) < mn_now)
1840 ev_at (w) = mn_now;
1841
1842 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1843
1844 ANHE_at_cache (timers [HEAP0]);
1845 downheap (timers, timercnt, HEAP0);
1846 }
1847 else
1848 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1849
1850 EV_FREQUENT_CHECK;
1851 feed_reverse (EV_A_ (W)w);
1852 }
1853 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1854
1855 feed_reverse_done (EV_A_ EV_TIMEOUT);
780 { 1856 }
781 now_floor = mn_now; 1857}
782 rt_now = ev_time (); 1858
783 return 1; 1859#if EV_PERIODIC_ENABLE
1860/* make periodics pending */
1861inline_size void
1862periodics_reify (EV_P)
1863{
1864 EV_FREQUENT_CHECK;
1865
1866 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
784 } 1867 {
785} 1868 int feed_count = 0;
786 1869
787static void 1870 do
788time_update (EV_P) 1871 {
1872 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1873
1874 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1875
1876 /* first reschedule or stop timer */
1877 if (w->reschedule_cb)
1878 {
1879 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1880
1881 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1882
1883 ANHE_at_cache (periodics [HEAP0]);
1884 downheap (periodics, periodiccnt, HEAP0);
1885 }
1886 else if (w->interval)
1887 {
1888 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1889 /* if next trigger time is not sufficiently in the future, put it there */
1890 /* this might happen because of floating point inexactness */
1891 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1892 {
1893 ev_at (w) += w->interval;
1894
1895 /* if interval is unreasonably low we might still have a time in the past */
1896 /* so correct this. this will make the periodic very inexact, but the user */
1897 /* has effectively asked to get triggered more often than possible */
1898 if (ev_at (w) < ev_rt_now)
1899 ev_at (w) = ev_rt_now;
1900 }
1901
1902 ANHE_at_cache (periodics [HEAP0]);
1903 downheap (periodics, periodiccnt, HEAP0);
1904 }
1905 else
1906 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1907
1908 EV_FREQUENT_CHECK;
1909 feed_reverse (EV_A_ (W)w);
1910 }
1911 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1912
1913 feed_reverse_done (EV_A_ EV_PERIODIC);
1914 }
1915}
1916
1917/* simply recalculate all periodics */
1918/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1919static void noinline
1920periodics_reschedule (EV_P)
789{ 1921{
790 int i; 1922 int i;
791 1923
1924 /* adjust periodics after time jump */
1925 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1926 {
1927 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1928
1929 if (w->reschedule_cb)
1930 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1931 else if (w->interval)
1932 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1933
1934 ANHE_at_cache (periodics [i]);
1935 }
1936
1937 reheap (periodics, periodiccnt);
1938}
1939#endif
1940
1941/* adjust all timers by a given offset */
1942static void noinline
1943timers_reschedule (EV_P_ ev_tstamp adjust)
1944{
1945 int i;
1946
1947 for (i = 0; i < timercnt; ++i)
1948 {
1949 ANHE *he = timers + i + HEAP0;
1950 ANHE_w (*he)->at += adjust;
1951 ANHE_at_cache (*he);
1952 }
1953}
1954
1955/* fetch new monotonic and realtime times from the kernel */
1956/* also detetc if there was a timejump, and act accordingly */
1957inline_speed void
1958time_update (EV_P_ ev_tstamp max_block)
1959{
792#if EV_USE_MONOTONIC 1960#if EV_USE_MONOTONIC
793 if (expect_true (have_monotonic)) 1961 if (expect_true (have_monotonic))
794 { 1962 {
795 if (time_update_monotonic (EV_A)) 1963 int i;
1964 ev_tstamp odiff = rtmn_diff;
1965
1966 mn_now = get_clock ();
1967
1968 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1969 /* interpolate in the meantime */
1970 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
796 { 1971 {
797 ev_tstamp odiff = diff; 1972 ev_rt_now = rtmn_diff + mn_now;
798 1973 return;
799 for (i = 4; --i; ) /* loop a few times, before making important decisions */
800 {
801 diff = rt_now - mn_now;
802
803 if (fabs (odiff - diff) < MIN_TIMEJUMP)
804 return; /* all is well */
805
806 rt_now = ev_time ();
807 mn_now = get_clock ();
808 now_floor = mn_now;
809 }
810
811 periodics_reschedule (EV_A_ diff - odiff);
812 /* no timer adjustment, as the monotonic clock doesn't jump */
813 } 1974 }
1975
1976 now_floor = mn_now;
1977 ev_rt_now = ev_time ();
1978
1979 /* loop a few times, before making important decisions.
1980 * on the choice of "4": one iteration isn't enough,
1981 * in case we get preempted during the calls to
1982 * ev_time and get_clock. a second call is almost guaranteed
1983 * to succeed in that case, though. and looping a few more times
1984 * doesn't hurt either as we only do this on time-jumps or
1985 * in the unlikely event of having been preempted here.
1986 */
1987 for (i = 4; --i; )
1988 {
1989 rtmn_diff = ev_rt_now - mn_now;
1990
1991 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1992 return; /* all is well */
1993
1994 ev_rt_now = ev_time ();
1995 mn_now = get_clock ();
1996 now_floor = mn_now;
1997 }
1998
1999 /* no timer adjustment, as the monotonic clock doesn't jump */
2000 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2001# if EV_PERIODIC_ENABLE
2002 periodics_reschedule (EV_A);
2003# endif
814 } 2004 }
815 else 2005 else
816#endif 2006#endif
817 { 2007 {
818 rt_now = ev_time (); 2008 ev_rt_now = ev_time ();
819 2009
820 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2010 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
821 { 2011 {
822 periodics_reschedule (EV_A_ rt_now - mn_now);
823
824 /* adjust timers. this is easy, as the offset is the same for all */ 2012 /* adjust timers. this is easy, as the offset is the same for all of them */
825 for (i = 0; i < timercnt; ++i) 2013 timers_reschedule (EV_A_ ev_rt_now - mn_now);
826 timers [i]->at += diff; 2014#if EV_PERIODIC_ENABLE
2015 periodics_reschedule (EV_A);
2016#endif
827 } 2017 }
828 2018
829 mn_now = rt_now; 2019 mn_now = ev_rt_now;
830 } 2020 }
831}
832
833void
834ev_ref (EV_P)
835{
836 ++activecnt;
837}
838
839void
840ev_unref (EV_P)
841{
842 --activecnt;
843} 2021}
844 2022
845static int loop_done; 2023static int loop_done;
846 2024
847void 2025void
848ev_loop (EV_P_ int flags) 2026ev_loop (EV_P_ int flags)
849{ 2027{
850 double block; 2028 loop_done = EVUNLOOP_CANCEL;
851 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2029
2030 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
852 2031
853 do 2032 do
854 { 2033 {
2034#if EV_VERIFY >= 2
2035 ev_loop_verify (EV_A);
2036#endif
2037
2038#ifndef _WIN32
2039 if (expect_false (curpid)) /* penalise the forking check even more */
2040 if (expect_false (getpid () != curpid))
2041 {
2042 curpid = getpid ();
2043 postfork = 1;
2044 }
2045#endif
2046
2047#if EV_FORK_ENABLE
2048 /* we might have forked, so queue fork handlers */
2049 if (expect_false (postfork))
2050 if (forkcnt)
2051 {
2052 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2053 call_pending (EV_A);
2054 }
2055#endif
2056
855 /* queue check watchers (and execute them) */ 2057 /* queue prepare watchers (and execute them) */
856 if (expect_false (preparecnt)) 2058 if (expect_false (preparecnt))
857 { 2059 {
858 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2060 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
859 call_pending (EV_A); 2061 call_pending (EV_A);
860 } 2062 }
861 2063
2064 /* we might have forked, so reify kernel state if necessary */
2065 if (expect_false (postfork))
2066 loop_fork (EV_A);
2067
862 /* update fd-related kernel structures */ 2068 /* update fd-related kernel structures */
863 fd_reify (EV_A); 2069 fd_reify (EV_A);
864 2070
865 /* calculate blocking time */ 2071 /* calculate blocking time */
2072 {
2073 ev_tstamp waittime = 0.;
2074 ev_tstamp sleeptime = 0.;
866 2075
867 /* we only need this for !monotonic clockor timers, but as we basically 2076 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
868 always have timers, we just calculate it always */
869#if EV_USE_MONOTONIC
870 if (expect_true (have_monotonic))
871 time_update_monotonic (EV_A);
872 else
873#endif
874 { 2077 {
875 rt_now = ev_time (); 2078 /* update time to cancel out callback processing overhead */
876 mn_now = rt_now; 2079 time_update (EV_A_ 1e100);
877 }
878 2080
879 if (flags & EVLOOP_NONBLOCK || idlecnt)
880 block = 0.;
881 else
882 {
883 block = MAX_BLOCKTIME; 2081 waittime = MAX_BLOCKTIME;
884 2082
885 if (timercnt) 2083 if (timercnt)
886 { 2084 {
887 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 2085 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
888 if (block > to) block = to; 2086 if (waittime > to) waittime = to;
889 } 2087 }
890 2088
2089#if EV_PERIODIC_ENABLE
891 if (periodiccnt) 2090 if (periodiccnt)
892 { 2091 {
893 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 2092 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
894 if (block > to) block = to; 2093 if (waittime > to) waittime = to;
895 } 2094 }
2095#endif
896 2096
897 if (block < 0.) block = 0.; 2097 if (expect_false (waittime < timeout_blocktime))
2098 waittime = timeout_blocktime;
2099
2100 sleeptime = waittime - backend_fudge;
2101
2102 if (expect_true (sleeptime > io_blocktime))
2103 sleeptime = io_blocktime;
2104
2105 if (sleeptime)
2106 {
2107 ev_sleep (sleeptime);
2108 waittime -= sleeptime;
2109 }
898 } 2110 }
899 2111
900 method_poll (EV_A_ block); 2112 ++loop_count;
2113 backend_poll (EV_A_ waittime);
901 2114
902 /* update rt_now, do magic */ 2115 /* update ev_rt_now, do magic */
903 time_update (EV_A); 2116 time_update (EV_A_ waittime + sleeptime);
2117 }
904 2118
905 /* queue pending timers and reschedule them */ 2119 /* queue pending timers and reschedule them */
906 timers_reify (EV_A); /* relative timers called last */ 2120 timers_reify (EV_A); /* relative timers called last */
2121#if EV_PERIODIC_ENABLE
907 periodics_reify (EV_A); /* absolute timers called first */ 2122 periodics_reify (EV_A); /* absolute timers called first */
2123#endif
908 2124
2125#if EV_IDLE_ENABLE
909 /* queue idle watchers unless io or timers are pending */ 2126 /* queue idle watchers unless other events are pending */
910 if (!pendingcnt) 2127 idle_reify (EV_A);
911 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2128#endif
912 2129
913 /* queue check watchers, to be executed first */ 2130 /* queue check watchers, to be executed first */
914 if (checkcnt) 2131 if (expect_false (checkcnt))
915 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2132 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
916 2133
917 call_pending (EV_A); 2134 call_pending (EV_A);
918 } 2135 }
919 while (activecnt && !loop_done); 2136 while (expect_true (
2137 activecnt
2138 && !loop_done
2139 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2140 ));
920 2141
921 if (loop_done != 2) 2142 if (loop_done == EVUNLOOP_ONE)
922 loop_done = 0; 2143 loop_done = EVUNLOOP_CANCEL;
923} 2144}
924 2145
925void 2146void
926ev_unloop (EV_P_ int how) 2147ev_unloop (EV_P_ int how)
927{ 2148{
928 loop_done = how; 2149 loop_done = how;
929} 2150}
930 2151
2152void
2153ev_ref (EV_P)
2154{
2155 ++activecnt;
2156}
2157
2158void
2159ev_unref (EV_P)
2160{
2161 --activecnt;
2162}
2163
2164void
2165ev_now_update (EV_P)
2166{
2167 time_update (EV_A_ 1e100);
2168}
2169
2170void
2171ev_suspend (EV_P)
2172{
2173 ev_now_update (EV_A);
2174}
2175
2176void
2177ev_resume (EV_P)
2178{
2179 ev_tstamp mn_prev = mn_now;
2180
2181 ev_now_update (EV_A);
2182 timers_reschedule (EV_A_ mn_now - mn_prev);
2183#if EV_PERIODIC_ENABLE
2184 /* TODO: really do this? */
2185 periodics_reschedule (EV_A);
2186#endif
2187}
2188
931/*****************************************************************************/ 2189/*****************************************************************************/
2190/* singly-linked list management, used when the expected list length is short */
932 2191
933inline void 2192inline_size void
934wlist_add (WL *head, WL elem) 2193wlist_add (WL *head, WL elem)
935{ 2194{
936 elem->next = *head; 2195 elem->next = *head;
937 *head = elem; 2196 *head = elem;
938} 2197}
939 2198
940inline void 2199inline_size void
941wlist_del (WL *head, WL elem) 2200wlist_del (WL *head, WL elem)
942{ 2201{
943 while (*head) 2202 while (*head)
944 { 2203 {
945 if (*head == elem) 2204 if (*head == elem)
950 2209
951 head = &(*head)->next; 2210 head = &(*head)->next;
952 } 2211 }
953} 2212}
954 2213
2214/* internal, faster, version of ev_clear_pending */
955inline void 2215inline_speed void
956ev_clear_pending (EV_P_ W w) 2216clear_pending (EV_P_ W w)
957{ 2217{
958 if (w->pending) 2218 if (w->pending)
959 { 2219 {
960 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2220 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
961 w->pending = 0; 2221 w->pending = 0;
962 } 2222 }
963} 2223}
964 2224
2225int
2226ev_clear_pending (EV_P_ void *w)
2227{
2228 W w_ = (W)w;
2229 int pending = w_->pending;
2230
2231 if (expect_true (pending))
2232 {
2233 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2234 p->w = (W)&pending_w;
2235 w_->pending = 0;
2236 return p->events;
2237 }
2238 else
2239 return 0;
2240}
2241
965inline void 2242inline_size void
2243pri_adjust (EV_P_ W w)
2244{
2245 int pri = w->priority;
2246 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2247 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2248 w->priority = pri;
2249}
2250
2251inline_speed void
966ev_start (EV_P_ W w, int active) 2252ev_start (EV_P_ W w, int active)
967{ 2253{
968 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2254 pri_adjust (EV_A_ w);
969 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
970
971 w->active = active; 2255 w->active = active;
972 ev_ref (EV_A); 2256 ev_ref (EV_A);
973} 2257}
974 2258
975inline void 2259inline_size void
976ev_stop (EV_P_ W w) 2260ev_stop (EV_P_ W w)
977{ 2261{
978 ev_unref (EV_A); 2262 ev_unref (EV_A);
979 w->active = 0; 2263 w->active = 0;
980} 2264}
981 2265
982/*****************************************************************************/ 2266/*****************************************************************************/
983 2267
984void 2268void noinline
985ev_io_start (EV_P_ struct ev_io *w) 2269ev_io_start (EV_P_ ev_io *w)
986{ 2270{
987 int fd = w->fd; 2271 int fd = w->fd;
988 2272
989 if (ev_is_active (w)) 2273 if (expect_false (ev_is_active (w)))
990 return; 2274 return;
991 2275
992 assert (("ev_io_start called with negative fd", fd >= 0)); 2276 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2277 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2278
2279 EV_FREQUENT_CHECK;
993 2280
994 ev_start (EV_A_ (W)w, 1); 2281 ev_start (EV_A_ (W)w, 1);
995 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 2282 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
996 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2283 wlist_add (&anfds[fd].head, (WL)w);
997 2284
998 fd_change (EV_A_ fd); 2285 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
999} 2286 w->events &= ~EV__IOFDSET;
1000 2287
1001void 2288 EV_FREQUENT_CHECK;
2289}
2290
2291void noinline
1002ev_io_stop (EV_P_ struct ev_io *w) 2292ev_io_stop (EV_P_ ev_io *w)
1003{ 2293{
1004 ev_clear_pending (EV_A_ (W)w); 2294 clear_pending (EV_A_ (W)w);
1005 if (!ev_is_active (w)) 2295 if (expect_false (!ev_is_active (w)))
1006 return; 2296 return;
1007 2297
2298 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2299
2300 EV_FREQUENT_CHECK;
2301
1008 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2302 wlist_del (&anfds[w->fd].head, (WL)w);
1009 ev_stop (EV_A_ (W)w); 2303 ev_stop (EV_A_ (W)w);
1010 2304
1011 fd_change (EV_A_ w->fd); 2305 fd_change (EV_A_ w->fd, 1);
1012}
1013 2306
1014void 2307 EV_FREQUENT_CHECK;
2308}
2309
2310void noinline
1015ev_timer_start (EV_P_ struct ev_timer *w) 2311ev_timer_start (EV_P_ ev_timer *w)
1016{ 2312{
1017 if (ev_is_active (w)) 2313 if (expect_false (ev_is_active (w)))
1018 return; 2314 return;
1019 2315
1020 w->at += mn_now; 2316 ev_at (w) += mn_now;
1021 2317
1022 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2318 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1023 2319
2320 EV_FREQUENT_CHECK;
2321
2322 ++timercnt;
1024 ev_start (EV_A_ (W)w, ++timercnt); 2323 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1025 array_needsize (timers, timermax, timercnt, ); 2324 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1026 timers [timercnt - 1] = w; 2325 ANHE_w (timers [ev_active (w)]) = (WT)w;
1027 upheap ((WT *)timers, timercnt - 1); 2326 ANHE_at_cache (timers [ev_active (w)]);
1028} 2327 upheap (timers, ev_active (w));
1029 2328
1030void 2329 EV_FREQUENT_CHECK;
2330
2331 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2332}
2333
2334void noinline
1031ev_timer_stop (EV_P_ struct ev_timer *w) 2335ev_timer_stop (EV_P_ ev_timer *w)
1032{ 2336{
1033 ev_clear_pending (EV_A_ (W)w); 2337 clear_pending (EV_A_ (W)w);
1034 if (!ev_is_active (w)) 2338 if (expect_false (!ev_is_active (w)))
1035 return; 2339 return;
1036 2340
1037 if (w->active < timercnt--) 2341 EV_FREQUENT_CHECK;
2342
2343 {
2344 int active = ev_active (w);
2345
2346 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2347
2348 --timercnt;
2349
2350 if (expect_true (active < timercnt + HEAP0))
1038 { 2351 {
1039 timers [w->active - 1] = timers [timercnt]; 2352 timers [active] = timers [timercnt + HEAP0];
1040 downheap ((WT *)timers, timercnt, w->active - 1); 2353 adjustheap (timers, timercnt, active);
1041 } 2354 }
2355 }
1042 2356
1043 w->at = w->repeat; 2357 EV_FREQUENT_CHECK;
2358
2359 ev_at (w) -= mn_now;
1044 2360
1045 ev_stop (EV_A_ (W)w); 2361 ev_stop (EV_A_ (W)w);
1046} 2362}
1047 2363
1048void 2364void noinline
1049ev_timer_again (EV_P_ struct ev_timer *w) 2365ev_timer_again (EV_P_ ev_timer *w)
1050{ 2366{
2367 EV_FREQUENT_CHECK;
2368
1051 if (ev_is_active (w)) 2369 if (ev_is_active (w))
1052 { 2370 {
1053 if (w->repeat) 2371 if (w->repeat)
1054 { 2372 {
1055 w->at = mn_now + w->repeat; 2373 ev_at (w) = mn_now + w->repeat;
2374 ANHE_at_cache (timers [ev_active (w)]);
1056 downheap ((WT *)timers, timercnt, w->active - 1); 2375 adjustheap (timers, timercnt, ev_active (w));
1057 } 2376 }
1058 else 2377 else
1059 ev_timer_stop (EV_A_ w); 2378 ev_timer_stop (EV_A_ w);
1060 } 2379 }
1061 else if (w->repeat) 2380 else if (w->repeat)
2381 {
2382 ev_at (w) = w->repeat;
1062 ev_timer_start (EV_A_ w); 2383 ev_timer_start (EV_A_ w);
1063} 2384 }
1064 2385
1065void 2386 EV_FREQUENT_CHECK;
2387}
2388
2389#if EV_PERIODIC_ENABLE
2390void noinline
1066ev_periodic_start (EV_P_ struct ev_periodic *w) 2391ev_periodic_start (EV_P_ ev_periodic *w)
1067{ 2392{
1068 if (ev_is_active (w)) 2393 if (expect_false (ev_is_active (w)))
1069 return; 2394 return;
1070 2395
2396 if (w->reschedule_cb)
2397 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2398 else if (w->interval)
2399 {
1071 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2400 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1072
1073 /* this formula differs from the one in periodic_reify because we do not always round up */ 2401 /* this formula differs from the one in periodic_reify because we do not always round up */
1074 if (w->interval)
1075 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 2402 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2403 }
2404 else
2405 ev_at (w) = w->offset;
1076 2406
2407 EV_FREQUENT_CHECK;
2408
2409 ++periodiccnt;
1077 ev_start (EV_A_ (W)w, ++periodiccnt); 2410 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1078 array_needsize (periodics, periodicmax, periodiccnt, ); 2411 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1079 periodics [periodiccnt - 1] = w; 2412 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1080 upheap ((WT *)periodics, periodiccnt - 1); 2413 ANHE_at_cache (periodics [ev_active (w)]);
1081} 2414 upheap (periodics, ev_active (w));
1082 2415
1083void 2416 EV_FREQUENT_CHECK;
2417
2418 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2419}
2420
2421void noinline
1084ev_periodic_stop (EV_P_ struct ev_periodic *w) 2422ev_periodic_stop (EV_P_ ev_periodic *w)
1085{ 2423{
1086 ev_clear_pending (EV_A_ (W)w); 2424 clear_pending (EV_A_ (W)w);
1087 if (!ev_is_active (w)) 2425 if (expect_false (!ev_is_active (w)))
1088 return; 2426 return;
1089 2427
1090 if (w->active < periodiccnt--) 2428 EV_FREQUENT_CHECK;
2429
2430 {
2431 int active = ev_active (w);
2432
2433 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2434
2435 --periodiccnt;
2436
2437 if (expect_true (active < periodiccnt + HEAP0))
1091 { 2438 {
1092 periodics [w->active - 1] = periodics [periodiccnt]; 2439 periodics [active] = periodics [periodiccnt + HEAP0];
1093 downheap ((WT *)periodics, periodiccnt, w->active - 1); 2440 adjustheap (periodics, periodiccnt, active);
1094 } 2441 }
2442 }
2443
2444 EV_FREQUENT_CHECK;
1095 2445
1096 ev_stop (EV_A_ (W)w); 2446 ev_stop (EV_A_ (W)w);
1097} 2447}
2448
2449void noinline
2450ev_periodic_again (EV_P_ ev_periodic *w)
2451{
2452 /* TODO: use adjustheap and recalculation */
2453 ev_periodic_stop (EV_A_ w);
2454 ev_periodic_start (EV_A_ w);
2455}
2456#endif
1098 2457
1099#ifndef SA_RESTART 2458#ifndef SA_RESTART
1100# define SA_RESTART 0 2459# define SA_RESTART 0
1101#endif 2460#endif
1102 2461
1103void 2462void noinline
1104ev_signal_start (EV_P_ struct ev_signal *w) 2463ev_signal_start (EV_P_ ev_signal *w)
1105{ 2464{
2465#if EV_MULTIPLICITY
2466 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2467#endif
1106 if (ev_is_active (w)) 2468 if (expect_false (ev_is_active (w)))
1107 return; 2469 return;
1108 2470
1109 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2471 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2472
2473 evpipe_init (EV_A);
2474
2475 EV_FREQUENT_CHECK;
2476
2477 {
2478#ifndef _WIN32
2479 sigset_t full, prev;
2480 sigfillset (&full);
2481 sigprocmask (SIG_SETMASK, &full, &prev);
2482#endif
2483
2484 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2485
2486#ifndef _WIN32
2487 sigprocmask (SIG_SETMASK, &prev, 0);
2488#endif
2489 }
1110 2490
1111 ev_start (EV_A_ (W)w, 1); 2491 ev_start (EV_A_ (W)w, 1);
1112 array_needsize (signals, signalmax, w->signum, signals_init);
1113 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2492 wlist_add (&signals [w->signum - 1].head, (WL)w);
1114 2493
1115 if (!w->next) 2494 if (!((WL)w)->next)
1116 { 2495 {
2496#if _WIN32
2497 signal (w->signum, ev_sighandler);
2498#else
1117 struct sigaction sa; 2499 struct sigaction sa;
1118 sa.sa_handler = sighandler; 2500 sa.sa_handler = ev_sighandler;
1119 sigfillset (&sa.sa_mask); 2501 sigfillset (&sa.sa_mask);
1120 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2502 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1121 sigaction (w->signum, &sa, 0); 2503 sigaction (w->signum, &sa, 0);
2504#endif
1122 } 2505 }
1123}
1124 2506
1125void 2507 EV_FREQUENT_CHECK;
2508}
2509
2510void noinline
1126ev_signal_stop (EV_P_ struct ev_signal *w) 2511ev_signal_stop (EV_P_ ev_signal *w)
1127{ 2512{
1128 ev_clear_pending (EV_A_ (W)w); 2513 clear_pending (EV_A_ (W)w);
1129 if (!ev_is_active (w)) 2514 if (expect_false (!ev_is_active (w)))
1130 return; 2515 return;
1131 2516
2517 EV_FREQUENT_CHECK;
2518
1132 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2519 wlist_del (&signals [w->signum - 1].head, (WL)w);
1133 ev_stop (EV_A_ (W)w); 2520 ev_stop (EV_A_ (W)w);
1134 2521
1135 if (!signals [w->signum - 1].head) 2522 if (!signals [w->signum - 1].head)
1136 signal (w->signum, SIG_DFL); 2523 signal (w->signum, SIG_DFL);
1137}
1138 2524
2525 EV_FREQUENT_CHECK;
2526}
2527
1139void 2528void
1140ev_idle_start (EV_P_ struct ev_idle *w) 2529ev_child_start (EV_P_ ev_child *w)
1141{ 2530{
2531#if EV_MULTIPLICITY
2532 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2533#endif
1142 if (ev_is_active (w)) 2534 if (expect_false (ev_is_active (w)))
1143 return; 2535 return;
1144 2536
2537 EV_FREQUENT_CHECK;
2538
1145 ev_start (EV_A_ (W)w, ++idlecnt); 2539 ev_start (EV_A_ (W)w, 1);
1146 array_needsize (idles, idlemax, idlecnt, ); 2540 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1147 idles [idlecnt - 1] = w;
1148}
1149 2541
2542 EV_FREQUENT_CHECK;
2543}
2544
1150void 2545void
1151ev_idle_stop (EV_P_ struct ev_idle *w) 2546ev_child_stop (EV_P_ ev_child *w)
1152{ 2547{
1153 ev_clear_pending (EV_A_ (W)w); 2548 clear_pending (EV_A_ (W)w);
1154 if (ev_is_active (w)) 2549 if (expect_false (!ev_is_active (w)))
1155 return; 2550 return;
1156 2551
1157 idles [w->active - 1] = idles [--idlecnt]; 2552 EV_FREQUENT_CHECK;
2553
2554 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1158 ev_stop (EV_A_ (W)w); 2555 ev_stop (EV_A_ (W)w);
1159}
1160 2556
1161void 2557 EV_FREQUENT_CHECK;
1162ev_prepare_start (EV_P_ struct ev_prepare *w) 2558}
2559
2560#if EV_STAT_ENABLE
2561
2562# ifdef _WIN32
2563# undef lstat
2564# define lstat(a,b) _stati64 (a,b)
2565# endif
2566
2567#define DEF_STAT_INTERVAL 5.0074891
2568#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2569#define MIN_STAT_INTERVAL 0.1074891
2570
2571static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2572
2573#if EV_USE_INOTIFY
2574# define EV_INOTIFY_BUFSIZE 8192
2575
2576static void noinline
2577infy_add (EV_P_ ev_stat *w)
1163{ 2578{
1164 if (ev_is_active (w)) 2579 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2580
2581 if (w->wd < 0)
2582 {
2583 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2584 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2585
2586 /* monitor some parent directory for speedup hints */
2587 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2588 /* but an efficiency issue only */
2589 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2590 {
2591 char path [4096];
2592 strcpy (path, w->path);
2593
2594 do
2595 {
2596 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2597 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2598
2599 char *pend = strrchr (path, '/');
2600
2601 if (!pend || pend == path)
2602 break;
2603
2604 *pend = 0;
2605 w->wd = inotify_add_watch (fs_fd, path, mask);
2606 }
2607 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2608 }
2609 }
2610
2611 if (w->wd >= 0)
2612 {
2613 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2614
2615 /* now local changes will be tracked by inotify, but remote changes won't */
2616 /* unless the filesystem it known to be local, we therefore still poll */
2617 /* also do poll on <2.6.25, but with normal frequency */
2618 struct statfs sfs;
2619
2620 if (fs_2625 && !statfs (w->path, &sfs))
2621 if (sfs.f_type == 0x1373 /* devfs */
2622 || sfs.f_type == 0xEF53 /* ext2/3 */
2623 || sfs.f_type == 0x3153464a /* jfs */
2624 || sfs.f_type == 0x52654973 /* reiser3 */
2625 || sfs.f_type == 0x01021994 /* tempfs */
2626 || sfs.f_type == 0x58465342 /* xfs */)
2627 return;
2628
2629 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2630 ev_timer_again (EV_A_ &w->timer);
2631 }
2632}
2633
2634static void noinline
2635infy_del (EV_P_ ev_stat *w)
2636{
2637 int slot;
2638 int wd = w->wd;
2639
2640 if (wd < 0)
1165 return; 2641 return;
1166 2642
2643 w->wd = -2;
2644 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2645 wlist_del (&fs_hash [slot].head, (WL)w);
2646
2647 /* remove this watcher, if others are watching it, they will rearm */
2648 inotify_rm_watch (fs_fd, wd);
2649}
2650
2651static void noinline
2652infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2653{
2654 if (slot < 0)
2655 /* overflow, need to check for all hash slots */
2656 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2657 infy_wd (EV_A_ slot, wd, ev);
2658 else
2659 {
2660 WL w_;
2661
2662 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2663 {
2664 ev_stat *w = (ev_stat *)w_;
2665 w_ = w_->next; /* lets us remove this watcher and all before it */
2666
2667 if (w->wd == wd || wd == -1)
2668 {
2669 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2670 {
2671 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2672 w->wd = -1;
2673 infy_add (EV_A_ w); /* re-add, no matter what */
2674 }
2675
2676 stat_timer_cb (EV_A_ &w->timer, 0);
2677 }
2678 }
2679 }
2680}
2681
2682static void
2683infy_cb (EV_P_ ev_io *w, int revents)
2684{
2685 char buf [EV_INOTIFY_BUFSIZE];
2686 struct inotify_event *ev = (struct inotify_event *)buf;
2687 int ofs;
2688 int len = read (fs_fd, buf, sizeof (buf));
2689
2690 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2691 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2692}
2693
2694inline_size void
2695check_2625 (EV_P)
2696{
2697 /* kernels < 2.6.25 are borked
2698 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2699 */
2700 struct utsname buf;
2701 int major, minor, micro;
2702
2703 if (uname (&buf))
2704 return;
2705
2706 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2707 return;
2708
2709 if (major < 2
2710 || (major == 2 && minor < 6)
2711 || (major == 2 && minor == 6 && micro < 25))
2712 return;
2713
2714 fs_2625 = 1;
2715}
2716
2717inline_size void
2718infy_init (EV_P)
2719{
2720 if (fs_fd != -2)
2721 return;
2722
2723 fs_fd = -1;
2724
2725 check_2625 (EV_A);
2726
2727 fs_fd = inotify_init ();
2728
2729 if (fs_fd >= 0)
2730 {
2731 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2732 ev_set_priority (&fs_w, EV_MAXPRI);
2733 ev_io_start (EV_A_ &fs_w);
2734 }
2735}
2736
2737inline_size void
2738infy_fork (EV_P)
2739{
2740 int slot;
2741
2742 if (fs_fd < 0)
2743 return;
2744
2745 close (fs_fd);
2746 fs_fd = inotify_init ();
2747
2748 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2749 {
2750 WL w_ = fs_hash [slot].head;
2751 fs_hash [slot].head = 0;
2752
2753 while (w_)
2754 {
2755 ev_stat *w = (ev_stat *)w_;
2756 w_ = w_->next; /* lets us add this watcher */
2757
2758 w->wd = -1;
2759
2760 if (fs_fd >= 0)
2761 infy_add (EV_A_ w); /* re-add, no matter what */
2762 else
2763 ev_timer_again (EV_A_ &w->timer);
2764 }
2765 }
2766}
2767
2768#endif
2769
2770#ifdef _WIN32
2771# define EV_LSTAT(p,b) _stati64 (p, b)
2772#else
2773# define EV_LSTAT(p,b) lstat (p, b)
2774#endif
2775
2776void
2777ev_stat_stat (EV_P_ ev_stat *w)
2778{
2779 if (lstat (w->path, &w->attr) < 0)
2780 w->attr.st_nlink = 0;
2781 else if (!w->attr.st_nlink)
2782 w->attr.st_nlink = 1;
2783}
2784
2785static void noinline
2786stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2787{
2788 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2789
2790 /* we copy this here each the time so that */
2791 /* prev has the old value when the callback gets invoked */
2792 w->prev = w->attr;
2793 ev_stat_stat (EV_A_ w);
2794
2795 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2796 if (
2797 w->prev.st_dev != w->attr.st_dev
2798 || w->prev.st_ino != w->attr.st_ino
2799 || w->prev.st_mode != w->attr.st_mode
2800 || w->prev.st_nlink != w->attr.st_nlink
2801 || w->prev.st_uid != w->attr.st_uid
2802 || w->prev.st_gid != w->attr.st_gid
2803 || w->prev.st_rdev != w->attr.st_rdev
2804 || w->prev.st_size != w->attr.st_size
2805 || w->prev.st_atime != w->attr.st_atime
2806 || w->prev.st_mtime != w->attr.st_mtime
2807 || w->prev.st_ctime != w->attr.st_ctime
2808 ) {
2809 #if EV_USE_INOTIFY
2810 if (fs_fd >= 0)
2811 {
2812 infy_del (EV_A_ w);
2813 infy_add (EV_A_ w);
2814 ev_stat_stat (EV_A_ w); /* avoid race... */
2815 }
2816 #endif
2817
2818 ev_feed_event (EV_A_ w, EV_STAT);
2819 }
2820}
2821
2822void
2823ev_stat_start (EV_P_ ev_stat *w)
2824{
2825 if (expect_false (ev_is_active (w)))
2826 return;
2827
2828 ev_stat_stat (EV_A_ w);
2829
2830 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2831 w->interval = MIN_STAT_INTERVAL;
2832
2833 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2834 ev_set_priority (&w->timer, ev_priority (w));
2835
2836#if EV_USE_INOTIFY
2837 infy_init (EV_A);
2838
2839 if (fs_fd >= 0)
2840 infy_add (EV_A_ w);
2841 else
2842#endif
2843 ev_timer_again (EV_A_ &w->timer);
2844
2845 ev_start (EV_A_ (W)w, 1);
2846
2847 EV_FREQUENT_CHECK;
2848}
2849
2850void
2851ev_stat_stop (EV_P_ ev_stat *w)
2852{
2853 clear_pending (EV_A_ (W)w);
2854 if (expect_false (!ev_is_active (w)))
2855 return;
2856
2857 EV_FREQUENT_CHECK;
2858
2859#if EV_USE_INOTIFY
2860 infy_del (EV_A_ w);
2861#endif
2862 ev_timer_stop (EV_A_ &w->timer);
2863
2864 ev_stop (EV_A_ (W)w);
2865
2866 EV_FREQUENT_CHECK;
2867}
2868#endif
2869
2870#if EV_IDLE_ENABLE
2871void
2872ev_idle_start (EV_P_ ev_idle *w)
2873{
2874 if (expect_false (ev_is_active (w)))
2875 return;
2876
2877 pri_adjust (EV_A_ (W)w);
2878
2879 EV_FREQUENT_CHECK;
2880
2881 {
2882 int active = ++idlecnt [ABSPRI (w)];
2883
2884 ++idleall;
2885 ev_start (EV_A_ (W)w, active);
2886
2887 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2888 idles [ABSPRI (w)][active - 1] = w;
2889 }
2890
2891 EV_FREQUENT_CHECK;
2892}
2893
2894void
2895ev_idle_stop (EV_P_ ev_idle *w)
2896{
2897 clear_pending (EV_A_ (W)w);
2898 if (expect_false (!ev_is_active (w)))
2899 return;
2900
2901 EV_FREQUENT_CHECK;
2902
2903 {
2904 int active = ev_active (w);
2905
2906 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2907 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2908
2909 ev_stop (EV_A_ (W)w);
2910 --idleall;
2911 }
2912
2913 EV_FREQUENT_CHECK;
2914}
2915#endif
2916
2917void
2918ev_prepare_start (EV_P_ ev_prepare *w)
2919{
2920 if (expect_false (ev_is_active (w)))
2921 return;
2922
2923 EV_FREQUENT_CHECK;
2924
1167 ev_start (EV_A_ (W)w, ++preparecnt); 2925 ev_start (EV_A_ (W)w, ++preparecnt);
1168 array_needsize (prepares, preparemax, preparecnt, ); 2926 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1169 prepares [preparecnt - 1] = w; 2927 prepares [preparecnt - 1] = w;
1170}
1171 2928
2929 EV_FREQUENT_CHECK;
2930}
2931
1172void 2932void
1173ev_prepare_stop (EV_P_ struct ev_prepare *w) 2933ev_prepare_stop (EV_P_ ev_prepare *w)
1174{ 2934{
1175 ev_clear_pending (EV_A_ (W)w); 2935 clear_pending (EV_A_ (W)w);
1176 if (ev_is_active (w)) 2936 if (expect_false (!ev_is_active (w)))
1177 return; 2937 return;
1178 2938
2939 EV_FREQUENT_CHECK;
2940
2941 {
2942 int active = ev_active (w);
2943
1179 prepares [w->active - 1] = prepares [--preparecnt]; 2944 prepares [active - 1] = prepares [--preparecnt];
2945 ev_active (prepares [active - 1]) = active;
2946 }
2947
1180 ev_stop (EV_A_ (W)w); 2948 ev_stop (EV_A_ (W)w);
1181}
1182 2949
2950 EV_FREQUENT_CHECK;
2951}
2952
1183void 2953void
1184ev_check_start (EV_P_ struct ev_check *w) 2954ev_check_start (EV_P_ ev_check *w)
1185{ 2955{
1186 if (ev_is_active (w)) 2956 if (expect_false (ev_is_active (w)))
1187 return; 2957 return;
1188 2958
2959 EV_FREQUENT_CHECK;
2960
1189 ev_start (EV_A_ (W)w, ++checkcnt); 2961 ev_start (EV_A_ (W)w, ++checkcnt);
1190 array_needsize (checks, checkmax, checkcnt, ); 2962 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1191 checks [checkcnt - 1] = w; 2963 checks [checkcnt - 1] = w;
1192}
1193 2964
2965 EV_FREQUENT_CHECK;
2966}
2967
1194void 2968void
1195ev_check_stop (EV_P_ struct ev_check *w) 2969ev_check_stop (EV_P_ ev_check *w)
1196{ 2970{
1197 ev_clear_pending (EV_A_ (W)w); 2971 clear_pending (EV_A_ (W)w);
1198 if (ev_is_active (w)) 2972 if (expect_false (!ev_is_active (w)))
1199 return; 2973 return;
1200 2974
2975 EV_FREQUENT_CHECK;
2976
2977 {
2978 int active = ev_active (w);
2979
1201 checks [w->active - 1] = checks [--checkcnt]; 2980 checks [active - 1] = checks [--checkcnt];
2981 ev_active (checks [active - 1]) = active;
2982 }
2983
1202 ev_stop (EV_A_ (W)w); 2984 ev_stop (EV_A_ (W)w);
1203}
1204 2985
1205void 2986 EV_FREQUENT_CHECK;
1206ev_child_start (EV_P_ struct ev_child *w) 2987}
2988
2989#if EV_EMBED_ENABLE
2990void noinline
2991ev_embed_sweep (EV_P_ ev_embed *w)
1207{ 2992{
2993 ev_loop (w->other, EVLOOP_NONBLOCK);
2994}
2995
2996static void
2997embed_io_cb (EV_P_ ev_io *io, int revents)
2998{
2999 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3000
1208 if (ev_is_active (w)) 3001 if (ev_cb (w))
3002 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3003 else
3004 ev_loop (w->other, EVLOOP_NONBLOCK);
3005}
3006
3007static void
3008embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3009{
3010 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3011
3012 {
3013 struct ev_loop *loop = w->other;
3014
3015 while (fdchangecnt)
3016 {
3017 fd_reify (EV_A);
3018 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3019 }
3020 }
3021}
3022
3023static void
3024embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3025{
3026 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3027
3028 ev_embed_stop (EV_A_ w);
3029
3030 {
3031 struct ev_loop *loop = w->other;
3032
3033 ev_loop_fork (EV_A);
3034 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3035 }
3036
3037 ev_embed_start (EV_A_ w);
3038}
3039
3040#if 0
3041static void
3042embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3043{
3044 ev_idle_stop (EV_A_ idle);
3045}
3046#endif
3047
3048void
3049ev_embed_start (EV_P_ ev_embed *w)
3050{
3051 if (expect_false (ev_is_active (w)))
1209 return; 3052 return;
1210 3053
3054 {
3055 struct ev_loop *loop = w->other;
3056 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3057 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3058 }
3059
3060 EV_FREQUENT_CHECK;
3061
3062 ev_set_priority (&w->io, ev_priority (w));
3063 ev_io_start (EV_A_ &w->io);
3064
3065 ev_prepare_init (&w->prepare, embed_prepare_cb);
3066 ev_set_priority (&w->prepare, EV_MINPRI);
3067 ev_prepare_start (EV_A_ &w->prepare);
3068
3069 ev_fork_init (&w->fork, embed_fork_cb);
3070 ev_fork_start (EV_A_ &w->fork);
3071
3072 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3073
1211 ev_start (EV_A_ (W)w, 1); 3074 ev_start (EV_A_ (W)w, 1);
1212 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1213}
1214 3075
3076 EV_FREQUENT_CHECK;
3077}
3078
1215void 3079void
1216ev_child_stop (EV_P_ struct ev_child *w) 3080ev_embed_stop (EV_P_ ev_embed *w)
1217{ 3081{
1218 ev_clear_pending (EV_A_ (W)w); 3082 clear_pending (EV_A_ (W)w);
1219 if (ev_is_active (w)) 3083 if (expect_false (!ev_is_active (w)))
1220 return; 3084 return;
1221 3085
1222 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3086 EV_FREQUENT_CHECK;
3087
3088 ev_io_stop (EV_A_ &w->io);
3089 ev_prepare_stop (EV_A_ &w->prepare);
3090 ev_fork_stop (EV_A_ &w->fork);
3091
3092 EV_FREQUENT_CHECK;
3093}
3094#endif
3095
3096#if EV_FORK_ENABLE
3097void
3098ev_fork_start (EV_P_ ev_fork *w)
3099{
3100 if (expect_false (ev_is_active (w)))
3101 return;
3102
3103 EV_FREQUENT_CHECK;
3104
3105 ev_start (EV_A_ (W)w, ++forkcnt);
3106 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3107 forks [forkcnt - 1] = w;
3108
3109 EV_FREQUENT_CHECK;
3110}
3111
3112void
3113ev_fork_stop (EV_P_ ev_fork *w)
3114{
3115 clear_pending (EV_A_ (W)w);
3116 if (expect_false (!ev_is_active (w)))
3117 return;
3118
3119 EV_FREQUENT_CHECK;
3120
3121 {
3122 int active = ev_active (w);
3123
3124 forks [active - 1] = forks [--forkcnt];
3125 ev_active (forks [active - 1]) = active;
3126 }
3127
1223 ev_stop (EV_A_ (W)w); 3128 ev_stop (EV_A_ (W)w);
3129
3130 EV_FREQUENT_CHECK;
1224} 3131}
3132#endif
3133
3134#if EV_ASYNC_ENABLE
3135void
3136ev_async_start (EV_P_ ev_async *w)
3137{
3138 if (expect_false (ev_is_active (w)))
3139 return;
3140
3141 evpipe_init (EV_A);
3142
3143 EV_FREQUENT_CHECK;
3144
3145 ev_start (EV_A_ (W)w, ++asynccnt);
3146 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3147 asyncs [asynccnt - 1] = w;
3148
3149 EV_FREQUENT_CHECK;
3150}
3151
3152void
3153ev_async_stop (EV_P_ ev_async *w)
3154{
3155 clear_pending (EV_A_ (W)w);
3156 if (expect_false (!ev_is_active (w)))
3157 return;
3158
3159 EV_FREQUENT_CHECK;
3160
3161 {
3162 int active = ev_active (w);
3163
3164 asyncs [active - 1] = asyncs [--asynccnt];
3165 ev_active (asyncs [active - 1]) = active;
3166 }
3167
3168 ev_stop (EV_A_ (W)w);
3169
3170 EV_FREQUENT_CHECK;
3171}
3172
3173void
3174ev_async_send (EV_P_ ev_async *w)
3175{
3176 w->sent = 1;
3177 evpipe_write (EV_A_ &gotasync);
3178}
3179#endif
1225 3180
1226/*****************************************************************************/ 3181/*****************************************************************************/
1227 3182
1228struct ev_once 3183struct ev_once
1229{ 3184{
1230 struct ev_io io; 3185 ev_io io;
1231 struct ev_timer to; 3186 ev_timer to;
1232 void (*cb)(int revents, void *arg); 3187 void (*cb)(int revents, void *arg);
1233 void *arg; 3188 void *arg;
1234}; 3189};
1235 3190
1236static void 3191static void
1237once_cb (EV_P_ struct ev_once *once, int revents) 3192once_cb (EV_P_ struct ev_once *once, int revents)
1238{ 3193{
1239 void (*cb)(int revents, void *arg) = once->cb; 3194 void (*cb)(int revents, void *arg) = once->cb;
1240 void *arg = once->arg; 3195 void *arg = once->arg;
1241 3196
1242 ev_io_stop (EV_A_ &once->io); 3197 ev_io_stop (EV_A_ &once->io);
1243 ev_timer_stop (EV_A_ &once->to); 3198 ev_timer_stop (EV_A_ &once->to);
1244 free (once); 3199 ev_free (once);
1245 3200
1246 cb (revents, arg); 3201 cb (revents, arg);
1247} 3202}
1248 3203
1249static void 3204static void
1250once_cb_io (EV_P_ struct ev_io *w, int revents) 3205once_cb_io (EV_P_ ev_io *w, int revents)
1251{ 3206{
1252 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3207 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3208
3209 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1253} 3210}
1254 3211
1255static void 3212static void
1256once_cb_to (EV_P_ struct ev_timer *w, int revents) 3213once_cb_to (EV_P_ ev_timer *w, int revents)
1257{ 3214{
1258 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3215 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3216
3217 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1259} 3218}
1260 3219
1261void 3220void
1262ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3221ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1263{ 3222{
1264 struct ev_once *once = malloc (sizeof (struct ev_once)); 3223 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1265 3224
1266 if (!once) 3225 if (expect_false (!once))
3226 {
1267 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3227 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1268 else 3228 return;
1269 { 3229 }
3230
1270 once->cb = cb; 3231 once->cb = cb;
1271 once->arg = arg; 3232 once->arg = arg;
1272 3233
1273 ev_watcher_init (&once->io, once_cb_io); 3234 ev_init (&once->io, once_cb_io);
1274 if (fd >= 0) 3235 if (fd >= 0)
3236 {
3237 ev_io_set (&once->io, fd, events);
3238 ev_io_start (EV_A_ &once->io);
3239 }
3240
3241 ev_init (&once->to, once_cb_to);
3242 if (timeout >= 0.)
3243 {
3244 ev_timer_set (&once->to, timeout, 0.);
3245 ev_timer_start (EV_A_ &once->to);
3246 }
3247}
3248
3249/*****************************************************************************/
3250
3251#if EV_WALK_ENABLE
3252void
3253ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3254{
3255 int i, j;
3256 ev_watcher_list *wl, *wn;
3257
3258 if (types & (EV_IO | EV_EMBED))
3259 for (i = 0; i < anfdmax; ++i)
3260 for (wl = anfds [i].head; wl; )
1275 { 3261 {
1276 ev_io_set (&once->io, fd, events); 3262 wn = wl->next;
1277 ev_io_start (EV_A_ &once->io); 3263
3264#if EV_EMBED_ENABLE
3265 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3266 {
3267 if (types & EV_EMBED)
3268 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3269 }
3270 else
3271#endif
3272#if EV_USE_INOTIFY
3273 if (ev_cb ((ev_io *)wl) == infy_cb)
3274 ;
3275 else
3276#endif
3277 if ((ev_io *)wl != &pipe_w)
3278 if (types & EV_IO)
3279 cb (EV_A_ EV_IO, wl);
3280
3281 wl = wn;
1278 } 3282 }
1279 3283
1280 ev_watcher_init (&once->to, once_cb_to); 3284 if (types & (EV_TIMER | EV_STAT))
1281 if (timeout >= 0.) 3285 for (i = timercnt + HEAP0; i-- > HEAP0; )
3286#if EV_STAT_ENABLE
3287 /*TODO: timer is not always active*/
3288 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1282 { 3289 {
1283 ev_timer_set (&once->to, timeout, 0.); 3290 if (types & EV_STAT)
1284 ev_timer_start (EV_A_ &once->to); 3291 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1285 } 3292 }
1286 } 3293 else
1287} 3294#endif
3295 if (types & EV_TIMER)
3296 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1288 3297
1289/*****************************************************************************/ 3298#if EV_PERIODIC_ENABLE
3299 if (types & EV_PERIODIC)
3300 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3301 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3302#endif
1290 3303
1291#if 0 3304#if EV_IDLE_ENABLE
3305 if (types & EV_IDLE)
3306 for (j = NUMPRI; i--; )
3307 for (i = idlecnt [j]; i--; )
3308 cb (EV_A_ EV_IDLE, idles [j][i]);
3309#endif
1292 3310
1293struct ev_io wio; 3311#if EV_FORK_ENABLE
3312 if (types & EV_FORK)
3313 for (i = forkcnt; i--; )
3314 if (ev_cb (forks [i]) != embed_fork_cb)
3315 cb (EV_A_ EV_FORK, forks [i]);
3316#endif
1294 3317
1295static void 3318#if EV_ASYNC_ENABLE
1296sin_cb (struct ev_io *w, int revents) 3319 if (types & EV_ASYNC)
1297{ 3320 for (i = asynccnt; i--; )
1298 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents); 3321 cb (EV_A_ EV_ASYNC, asyncs [i]);
1299} 3322#endif
1300 3323
1301static void 3324 if (types & EV_PREPARE)
1302ocb (struct ev_timer *w, int revents) 3325 for (i = preparecnt; i--; )
1303{ 3326#if EV_EMBED_ENABLE
1304 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data); 3327 if (ev_cb (prepares [i]) != embed_prepare_cb)
1305 ev_timer_stop (w); 3328#endif
1306 ev_timer_start (w); 3329 cb (EV_A_ EV_PREPARE, prepares [i]);
1307}
1308 3330
1309static void 3331 if (types & EV_CHECK)
1310scb (struct ev_signal *w, int revents) 3332 for (i = checkcnt; i--; )
1311{ 3333 cb (EV_A_ EV_CHECK, checks [i]);
1312 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1313 ev_io_stop (&wio);
1314 ev_io_start (&wio);
1315}
1316 3334
1317static void 3335 if (types & EV_SIGNAL)
1318gcb (struct ev_signal *w, int revents)
1319{
1320 fprintf (stderr, "generic %x\n", revents);
1321
1322}
1323
1324int main (void)
1325{
1326 ev_init (0);
1327
1328 ev_io_init (&wio, sin_cb, 0, EV_READ);
1329 ev_io_start (&wio);
1330
1331 struct ev_timer t[10000];
1332
1333#if 0
1334 int i;
1335 for (i = 0; i < 10000; ++i) 3336 for (i = 0; i < signalmax; ++i)
1336 { 3337 for (wl = signals [i].head; wl; )
1337 struct ev_timer *w = t + i; 3338 {
1338 ev_watcher_init (w, ocb, i); 3339 wn = wl->next;
1339 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533); 3340 cb (EV_A_ EV_SIGNAL, wl);
1340 ev_timer_start (w); 3341 wl = wn;
1341 if (drand48 () < 0.5) 3342 }
1342 ev_timer_stop (w);
1343 }
1344#endif
1345 3343
1346 struct ev_timer t1; 3344 if (types & EV_CHILD)
1347 ev_timer_init (&t1, ocb, 5, 10); 3345 for (i = EV_PID_HASHSIZE; i--; )
1348 ev_timer_start (&t1); 3346 for (wl = childs [i]; wl; )
1349 3347 {
1350 struct ev_signal sig; 3348 wn = wl->next;
1351 ev_signal_init (&sig, scb, SIGQUIT); 3349 cb (EV_A_ EV_CHILD, wl);
1352 ev_signal_start (&sig); 3350 wl = wn;
1353 3351 }
1354 struct ev_check cw; 3352/* EV_STAT 0x00001000 /* stat data changed */
1355 ev_check_init (&cw, gcb); 3353/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
1356 ev_check_start (&cw);
1357
1358 struct ev_idle iw;
1359 ev_idle_init (&iw, gcb);
1360 ev_idle_start (&iw);
1361
1362 ev_loop (0);
1363
1364 return 0;
1365} 3354}
1366
1367#endif 3355#endif
1368 3356
3357#if EV_MULTIPLICITY
3358 #include "ev_wrap.h"
3359#endif
1369 3360
3361#ifdef __cplusplus
3362}
3363#endif
1370 3364
1371

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines