ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.52 by root, Sat Nov 3 22:10:39 2007 UTC vs.
Revision 1.83 by root, Fri Nov 9 21:48:23 2007 UTC

28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#ifndef EV_STANDALONE 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 59#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 60#include <stddef.h>
41 61
42#include <stdio.h> 62#include <stdio.h>
43 63
44#include <assert.h> 64#include <assert.h>
45#include <errno.h> 65#include <errno.h>
46#include <sys/types.h> 66#include <sys/types.h>
67#include <time.h>
68
69#include <signal.h>
70
47#ifndef WIN32 71#ifndef WIN32
72# include <unistd.h>
73# include <sys/time.h>
48# include <sys/wait.h> 74# include <sys/wait.h>
49#endif 75#endif
50#include <sys/time.h>
51#include <time.h>
52
53/**/ 76/**/
54 77
55#ifndef EV_USE_MONOTONIC 78#ifndef EV_USE_MONOTONIC
56# define EV_USE_MONOTONIC 1 79# define EV_USE_MONOTONIC 1
57#endif 80#endif
58 81
59#ifndef EV_USE_SELECT 82#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1 83# define EV_USE_SELECT 1
61#endif 84#endif
62 85
63#ifndef EV_USEV_POLL 86#ifndef EV_USE_POLL
64# define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */ 87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
65#endif 88#endif
66 89
67#ifndef EV_USE_EPOLL 90#ifndef EV_USE_EPOLL
68# define EV_USE_EPOLL 0 91# define EV_USE_EPOLL 0
69#endif 92#endif
70 93
71#ifndef EV_USE_KQUEUE 94#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 95# define EV_USE_KQUEUE 0
96#endif
97
98#ifndef EV_USE_WIN32
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else
104# define EV_USE_WIN32 0
105# endif
73#endif 106#endif
74 107
75#ifndef EV_USE_REALTIME 108#ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 1 109# define EV_USE_REALTIME 1
77#endif 110#endif
93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
97 130
131#ifdef EV_H
132# include EV_H
133#else
98#include "ev.h" 134# include "ev.h"
135#endif
99 136
100#if __GNUC__ >= 3 137#if __GNUC__ >= 3
101# define expect(expr,value) __builtin_expect ((expr),(value)) 138# define expect(expr,value) __builtin_expect ((expr),(value))
102# define inline inline 139# define inline inline
103#else 140#else
113 150
114typedef struct ev_watcher *W; 151typedef struct ev_watcher *W;
115typedef struct ev_watcher_list *WL; 152typedef struct ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT; 153typedef struct ev_watcher_time *WT;
117 154
118static ev_tstamp now_floor, mn_now, diff; /* monotonic clock */ 155static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
119static ev_tstamp rt_now;
120static int method;
121 156
122static int have_monotonic; /* runtime */ 157#include "ev_win32.c"
123 158
124static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 159/*****************************************************************************/
125static void (*method_modify)(EV_P_ int fd, int oev, int nev);
126static void (*method_poll)(EV_P_ ev_tstamp timeout);
127 160
128static int activecnt; /* number of active events */ 161static void (*syserr_cb)(const char *msg);
129 162
130#if EV_USE_SELECT 163void ev_set_syserr_cb (void (*cb)(const char *msg))
131static unsigned char *vec_ri, *vec_ro, *vec_wi, *vec_wo; 164{
132static int vec_max; 165 syserr_cb = cb;
133#endif 166}
134 167
135#if EV_USEV_POLL 168static void
136static struct pollfd *polls; 169syserr (const char *msg)
137static int pollmax, pollcnt; 170{
138static int *pollidxs; /* maps fds into structure indices */ 171 if (!msg)
139static int pollidxmax; 172 msg = "(libev) system error";
140#endif
141 173
142#if EV_USE_EPOLL 174 if (syserr_cb)
143static int epoll_fd = -1; 175 syserr_cb (msg);
176 else
177 {
178 perror (msg);
179 abort ();
180 }
181}
144 182
145static struct epoll_event *events; 183static void *(*alloc)(void *ptr, long size);
146static int eventmax;
147#endif
148 184
149#if EV_USE_KQUEUE 185void ev_set_allocator (void *(*cb)(void *ptr, long size))
150static int kqueue_fd; 186{
151static struct kevent *kqueue_changes; 187 alloc = cb;
152static int kqueue_changemax, kqueue_changecnt; 188}
153static struct kevent *kqueue_events; 189
154static int kqueue_eventmax; 190static void *
191ev_realloc (void *ptr, long size)
192{
193 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
194
195 if (!ptr && size)
196 {
197 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
198 abort ();
199 }
200
201 return ptr;
202}
203
204#define ev_malloc(size) ev_realloc (0, (size))
205#define ev_free(ptr) ev_realloc ((ptr), 0)
206
207/*****************************************************************************/
208
209typedef struct
210{
211 WL head;
212 unsigned char events;
213 unsigned char reify;
214} ANFD;
215
216typedef struct
217{
218 W w;
219 int events;
220} ANPENDING;
221
222#if EV_MULTIPLICITY
223
224 struct ev_loop
225 {
226 #define VAR(name,decl) decl;
227 #include "ev_vars.h"
228 #undef VAR
229 };
230 #include "ev_wrap.h"
231
232 struct ev_loop default_loop_struct;
233 static struct ev_loop *default_loop;
234
235#else
236
237 #define VAR(name,decl) static decl;
238 #include "ev_vars.h"
239 #undef VAR
240
241 static int default_loop;
242
155#endif 243#endif
156 244
157/*****************************************************************************/ 245/*****************************************************************************/
158 246
159inline ev_tstamp 247inline ev_tstamp
189ev_now (EV_P) 277ev_now (EV_P)
190{ 278{
191 return rt_now; 279 return rt_now;
192} 280}
193 281
194#define array_roundsize(base,n) ((n) | 4 & ~3) 282#define array_roundsize(type,n) ((n) | 4 & ~3)
195 283
196#define array_needsize(base,cur,cnt,init) \ 284#define array_needsize(type,base,cur,cnt,init) \
197 if (expect_false ((cnt) > cur)) \ 285 if (expect_false ((cnt) > cur)) \
198 { \ 286 { \
199 int newcnt = cur; \ 287 int newcnt = cur; \
200 do \ 288 do \
201 { \ 289 { \
202 newcnt = array_roundsize (base, newcnt << 1); \ 290 newcnt = array_roundsize (type, newcnt << 1); \
203 } \ 291 } \
204 while ((cnt) > newcnt); \ 292 while ((cnt) > newcnt); \
205 \ 293 \
206 base = realloc (base, sizeof (*base) * (newcnt)); \ 294 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
207 init (base + cur, newcnt - cur); \ 295 init (base + cur, newcnt - cur); \
208 cur = newcnt; \ 296 cur = newcnt; \
209 } 297 }
298
299#define array_slim(type,stem) \
300 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
301 { \
302 stem ## max = array_roundsize (stem ## cnt >> 1); \
303 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
304 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
305 }
306
307/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
308/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
309#define array_free_microshit(stem) \
310 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
311
312#define array_free(stem, idx) \
313 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
210 314
211/*****************************************************************************/ 315/*****************************************************************************/
212
213typedef struct
214{
215 struct ev_watcher_list *head;
216 unsigned char events;
217 unsigned char reify;
218} ANFD;
219
220static ANFD *anfds;
221static int anfdmax;
222 316
223static void 317static void
224anfds_init (ANFD *base, int count) 318anfds_init (ANFD *base, int count)
225{ 319{
226 while (count--) 320 while (count--)
231 325
232 ++base; 326 ++base;
233 } 327 }
234} 328}
235 329
236typedef struct 330void
237{
238 W w;
239 int events;
240} ANPENDING;
241
242static ANPENDING *pendings [NUMPRI];
243static int pendingmax [NUMPRI], pendingcnt [NUMPRI];
244
245static void
246event (EV_P_ W w, int events) 331ev_feed_event (EV_P_ void *w, int revents)
247{ 332{
333 W w_ = (W)w;
334
248 if (w->pending) 335 if (w_->pending)
249 { 336 {
250 pendings [ABSPRI (w)][w->pending - 1].events |= events; 337 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
251 return; 338 return;
252 } 339 }
253 340
254 w->pending = ++pendingcnt [ABSPRI (w)]; 341 w_->pending = ++pendingcnt [ABSPRI (w_)];
255 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 342 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
256 pendings [ABSPRI (w)][w->pending - 1].w = w; 343 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
257 pendings [ABSPRI (w)][w->pending - 1].events = events; 344 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
258} 345}
259 346
260static void 347static void
261queue_events (EV_P_ W *events, int eventcnt, int type) 348queue_events (EV_P_ W *events, int eventcnt, int type)
262{ 349{
263 int i; 350 int i;
264 351
265 for (i = 0; i < eventcnt; ++i) 352 for (i = 0; i < eventcnt; ++i)
266 event (EV_A_ events [i], type); 353 ev_feed_event (EV_A_ events [i], type);
267} 354}
268 355
269static void 356inline void
270fd_event (EV_P_ int fd, int events) 357fd_event (EV_P_ int fd, int revents)
271{ 358{
272 ANFD *anfd = anfds + fd; 359 ANFD *anfd = anfds + fd;
273 struct ev_io *w; 360 struct ev_io *w;
274 361
275 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 362 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
276 { 363 {
277 int ev = w->events & events; 364 int ev = w->events & revents;
278 365
279 if (ev) 366 if (ev)
280 event (EV_A_ (W)w, ev); 367 ev_feed_event (EV_A_ (W)w, ev);
281 } 368 }
369}
370
371void
372ev_feed_fd_event (EV_P_ int fd, int revents)
373{
374 fd_event (EV_A_ fd, revents);
282} 375}
283 376
284/*****************************************************************************/ 377/*****************************************************************************/
285
286static int *fdchanges;
287static int fdchangemax, fdchangecnt;
288 378
289static void 379static void
290fd_reify (EV_P) 380fd_reify (EV_P)
291{ 381{
292 int i; 382 int i;
302 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 392 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
303 events |= w->events; 393 events |= w->events;
304 394
305 anfd->reify = 0; 395 anfd->reify = 0;
306 396
307 if (anfd->events != events)
308 {
309 method_modify (EV_A_ fd, anfd->events, events); 397 method_modify (EV_A_ fd, anfd->events, events);
310 anfd->events = events; 398 anfd->events = events;
311 }
312 } 399 }
313 400
314 fdchangecnt = 0; 401 fdchangecnt = 0;
315} 402}
316 403
317static void 404static void
318fd_change (EV_P_ int fd) 405fd_change (EV_P_ int fd)
319{ 406{
320 if (anfds [fd].reify || fdchangecnt < 0) 407 if (anfds [fd].reify)
321 return; 408 return;
322 409
323 anfds [fd].reify = 1; 410 anfds [fd].reify = 1;
324 411
325 ++fdchangecnt; 412 ++fdchangecnt;
326 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 413 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
327 fdchanges [fdchangecnt - 1] = fd; 414 fdchanges [fdchangecnt - 1] = fd;
328} 415}
329 416
330static void 417static void
331fd_kill (EV_P_ int fd) 418fd_kill (EV_P_ int fd)
333 struct ev_io *w; 420 struct ev_io *w;
334 421
335 while ((w = (struct ev_io *)anfds [fd].head)) 422 while ((w = (struct ev_io *)anfds [fd].head))
336 { 423 {
337 ev_io_stop (EV_A_ w); 424 ev_io_stop (EV_A_ w);
338 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 425 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
339 } 426 }
427}
428
429static int
430fd_valid (int fd)
431{
432#ifdef WIN32
433 return !!win32_get_osfhandle (fd);
434#else
435 return fcntl (fd, F_GETFD) != -1;
436#endif
340} 437}
341 438
342/* called on EBADF to verify fds */ 439/* called on EBADF to verify fds */
343static void 440static void
344fd_ebadf (EV_P) 441fd_ebadf (EV_P)
345{ 442{
346 int fd; 443 int fd;
347 444
348 for (fd = 0; fd < anfdmax; ++fd) 445 for (fd = 0; fd < anfdmax; ++fd)
349 if (anfds [fd].events) 446 if (anfds [fd].events)
350 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 447 if (!fd_valid (fd) == -1 && errno == EBADF)
351 fd_kill (EV_A_ fd); 448 fd_kill (EV_A_ fd);
352} 449}
353 450
354/* called on ENOMEM in select/poll to kill some fds and retry */ 451/* called on ENOMEM in select/poll to kill some fds and retry */
355static void 452static void
356fd_enomem (EV_P) 453fd_enomem (EV_P)
357{ 454{
358 int fd = anfdmax; 455 int fd;
359 456
360 while (fd--) 457 for (fd = anfdmax; fd--; )
361 if (anfds [fd].events) 458 if (anfds [fd].events)
362 { 459 {
363 close (fd);
364 fd_kill (EV_A_ fd); 460 fd_kill (EV_A_ fd);
365 return; 461 return;
366 } 462 }
367} 463}
368 464
465/* usually called after fork if method needs to re-arm all fds from scratch */
466static void
467fd_rearm_all (EV_P)
468{
469 int fd;
470
471 /* this should be highly optimised to not do anything but set a flag */
472 for (fd = 0; fd < anfdmax; ++fd)
473 if (anfds [fd].events)
474 {
475 anfds [fd].events = 0;
476 fd_change (EV_A_ fd);
477 }
478}
479
369/*****************************************************************************/ 480/*****************************************************************************/
370 481
371static struct ev_timer **timers;
372static int timermax, timercnt;
373
374static struct ev_periodic **periodics;
375static int periodicmax, periodiccnt;
376
377static void 482static void
378upheap (WT *timers, int k) 483upheap (WT *heap, int k)
379{ 484{
380 WT w = timers [k]; 485 WT w = heap [k];
381 486
382 while (k && timers [k >> 1]->at > w->at) 487 while (k && heap [k >> 1]->at > w->at)
383 { 488 {
384 timers [k] = timers [k >> 1]; 489 heap [k] = heap [k >> 1];
385 timers [k]->active = k + 1; 490 ((W)heap [k])->active = k + 1;
386 k >>= 1; 491 k >>= 1;
387 } 492 }
388 493
389 timers [k] = w; 494 heap [k] = w;
390 timers [k]->active = k + 1; 495 ((W)heap [k])->active = k + 1;
391 496
392} 497}
393 498
394static void 499static void
395downheap (WT *timers, int N, int k) 500downheap (WT *heap, int N, int k)
396{ 501{
397 WT w = timers [k]; 502 WT w = heap [k];
398 503
399 while (k < (N >> 1)) 504 while (k < (N >> 1))
400 { 505 {
401 int j = k << 1; 506 int j = k << 1;
402 507
403 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 508 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
404 ++j; 509 ++j;
405 510
406 if (w->at <= timers [j]->at) 511 if (w->at <= heap [j]->at)
407 break; 512 break;
408 513
409 timers [k] = timers [j]; 514 heap [k] = heap [j];
410 timers [k]->active = k + 1; 515 ((W)heap [k])->active = k + 1;
411 k = j; 516 k = j;
412 } 517 }
413 518
414 timers [k] = w; 519 heap [k] = w;
415 timers [k]->active = k + 1; 520 ((W)heap [k])->active = k + 1;
416} 521}
417 522
418/*****************************************************************************/ 523/*****************************************************************************/
419 524
420typedef struct 525typedef struct
421{ 526{
422 struct ev_watcher_list *head; 527 WL head;
423 sig_atomic_t volatile gotsig; 528 sig_atomic_t volatile gotsig;
424} ANSIG; 529} ANSIG;
425 530
426static ANSIG *signals; 531static ANSIG *signals;
427static int signalmax; 532static int signalmax;
443} 548}
444 549
445static void 550static void
446sighandler (int signum) 551sighandler (int signum)
447{ 552{
553#if WIN32
554 signal (signum, sighandler);
555#endif
556
448 signals [signum - 1].gotsig = 1; 557 signals [signum - 1].gotsig = 1;
449 558
450 if (!gotsig) 559 if (!gotsig)
451 { 560 {
452 int old_errno = errno; 561 int old_errno = errno;
453 gotsig = 1; 562 gotsig = 1;
563#ifdef WIN32
564 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
565#else
454 write (sigpipe [1], &signum, 1); 566 write (sigpipe [1], &signum, 1);
567#endif
455 errno = old_errno; 568 errno = old_errno;
456 } 569 }
457} 570}
458 571
572void
573ev_feed_signal_event (EV_P_ int signum)
574{
575 WL w;
576
577#if EV_MULTIPLICITY
578 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
579#endif
580
581 --signum;
582
583 if (signum < 0 || signum >= signalmax)
584 return;
585
586 signals [signum].gotsig = 0;
587
588 for (w = signals [signum].head; w; w = w->next)
589 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
590}
591
459static void 592static void
460sigcb (EV_P_ struct ev_io *iow, int revents) 593sigcb (EV_P_ struct ev_io *iow, int revents)
461{ 594{
462 struct ev_watcher_list *w;
463 int signum; 595 int signum;
464 596
597#ifdef WIN32
598 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
599#else
465 read (sigpipe [0], &revents, 1); 600 read (sigpipe [0], &revents, 1);
601#endif
466 gotsig = 0; 602 gotsig = 0;
467 603
468 for (signum = signalmax; signum--; ) 604 for (signum = signalmax; signum--; )
469 if (signals [signum].gotsig) 605 if (signals [signum].gotsig)
470 { 606 ev_feed_signal_event (EV_A_ signum + 1);
471 signals [signum].gotsig = 0;
472
473 for (w = signals [signum].head; w; w = w->next)
474 event (EV_A_ (W)w, EV_SIGNAL);
475 }
476} 607}
477 608
478static void 609static void
479siginit (EV_P) 610siginit (EV_P)
480{ 611{
486 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 617 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
487 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 618 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
488#endif 619#endif
489 620
490 ev_io_set (&sigev, sigpipe [0], EV_READ); 621 ev_io_set (&sigev, sigpipe [0], EV_READ);
491 ev_io_start (&sigev); 622 ev_io_start (EV_A_ &sigev);
492 ev_unref (EV_A); /* child watcher should not keep loop alive */ 623 ev_unref (EV_A); /* child watcher should not keep loop alive */
493} 624}
494 625
495/*****************************************************************************/ 626/*****************************************************************************/
496 627
497static struct ev_idle **idles;
498static int idlemax, idlecnt;
499
500static struct ev_prepare **prepares;
501static int preparemax, preparecnt;
502
503static struct ev_check **checks;
504static int checkmax, checkcnt;
505
506/*****************************************************************************/
507
508static struct ev_child *childs [PID_HASHSIZE]; 628static struct ev_child *childs [PID_HASHSIZE];
629
630#ifndef WIN32
631
509static struct ev_signal childev; 632static struct ev_signal childev;
510
511#ifndef WIN32
512 633
513#ifndef WCONTINUED 634#ifndef WCONTINUED
514# define WCONTINUED 0 635# define WCONTINUED 0
515#endif 636#endif
516 637
520 struct ev_child *w; 641 struct ev_child *w;
521 642
522 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 643 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
523 if (w->pid == pid || !w->pid) 644 if (w->pid == pid || !w->pid)
524 { 645 {
525 w->priority = sw->priority; /* need to do it *now* */ 646 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
526 w->rpid = pid; 647 w->rpid = pid;
527 w->rstatus = status; 648 w->rstatus = status;
528 event (EV_A_ (W)w, EV_CHILD); 649 ev_feed_event (EV_A_ (W)w, EV_CHILD);
529 } 650 }
530} 651}
531 652
532static void 653static void
533childcb (EV_P_ struct ev_signal *sw, int revents) 654childcb (EV_P_ struct ev_signal *sw, int revents)
535 int pid, status; 656 int pid, status;
536 657
537 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 658 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
538 { 659 {
539 /* make sure we are called again until all childs have been reaped */ 660 /* make sure we are called again until all childs have been reaped */
540 event (EV_A_ (W)sw, EV_SIGNAL); 661 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
541 662
542 child_reap (EV_A_ sw, pid, pid, status); 663 child_reap (EV_A_ sw, pid, pid, status);
543 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 664 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
544 } 665 }
545} 666}
552# include "ev_kqueue.c" 673# include "ev_kqueue.c"
553#endif 674#endif
554#if EV_USE_EPOLL 675#if EV_USE_EPOLL
555# include "ev_epoll.c" 676# include "ev_epoll.c"
556#endif 677#endif
557#if EV_USEV_POLL 678#if EV_USE_POLL
558# include "ev_poll.c" 679# include "ev_poll.c"
559#endif 680#endif
560#if EV_USE_SELECT 681#if EV_USE_SELECT
561# include "ev_select.c" 682# include "ev_select.c"
562#endif 683#endif
589ev_method (EV_P) 710ev_method (EV_P)
590{ 711{
591 return method; 712 return method;
592} 713}
593 714
594int 715static void
595ev_init (EV_P_ int methods) 716loop_init (EV_P_ int methods)
596{ 717{
597 if (!method) 718 if (!method)
598 { 719 {
599#if EV_USE_MONOTONIC 720#if EV_USE_MONOTONIC
600 { 721 {
605#endif 726#endif
606 727
607 rt_now = ev_time (); 728 rt_now = ev_time ();
608 mn_now = get_clock (); 729 mn_now = get_clock ();
609 now_floor = mn_now; 730 now_floor = mn_now;
610 diff = rt_now - mn_now; 731 rtmn_diff = rt_now - mn_now;
611
612 if (pipe (sigpipe))
613 return 0;
614 732
615 if (methods == EVMETHOD_AUTO) 733 if (methods == EVMETHOD_AUTO)
616 if (!enable_secure () && getenv ("LIBmethodS")) 734 if (!enable_secure () && getenv ("LIBEV_METHODS"))
617 methods = atoi (getenv ("LIBmethodS")); 735 methods = atoi (getenv ("LIBEV_METHODS"));
618 else 736 else
619 methods = EVMETHOD_ANY; 737 methods = EVMETHOD_ANY;
620 738
621 method = 0; 739 method = 0;
740#if EV_USE_WIN32
741 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
742#endif
622#if EV_USE_KQUEUE 743#if EV_USE_KQUEUE
623 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 744 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
624#endif 745#endif
625#if EV_USE_EPOLL 746#if EV_USE_EPOLL
626 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 747 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
627#endif 748#endif
628#if EV_USEV_POLL 749#if EV_USE_POLL
629 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 750 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
630#endif 751#endif
631#if EV_USE_SELECT 752#if EV_USE_SELECT
632 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 753 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
633#endif 754#endif
634 755
756 ev_init (&sigev, sigcb);
757 ev_set_priority (&sigev, EV_MAXPRI);
758 }
759}
760
761void
762loop_destroy (EV_P)
763{
764 int i;
765
766#if EV_USE_WIN32
767 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
768#endif
769#if EV_USE_KQUEUE
770 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
771#endif
772#if EV_USE_EPOLL
773 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
774#endif
775#if EV_USE_POLL
776 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
777#endif
778#if EV_USE_SELECT
779 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
780#endif
781
782 for (i = NUMPRI; i--; )
783 array_free (pending, [i]);
784
785 /* have to use the microsoft-never-gets-it-right macro */
786 array_free_microshit (fdchange);
787 array_free_microshit (timer);
788 array_free_microshit (periodic);
789 array_free_microshit (idle);
790 array_free_microshit (prepare);
791 array_free_microshit (check);
792
793 method = 0;
794}
795
796static void
797loop_fork (EV_P)
798{
799#if EV_USE_EPOLL
800 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
801#endif
802#if EV_USE_KQUEUE
803 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
804#endif
805
806 if (ev_is_active (&sigev))
807 {
808 /* default loop */
809
810 ev_ref (EV_A);
811 ev_io_stop (EV_A_ &sigev);
812 close (sigpipe [0]);
813 close (sigpipe [1]);
814
815 while (pipe (sigpipe))
816 syserr ("(libev) error creating pipe");
817
818 siginit (EV_A);
819 }
820
821 postfork = 0;
822}
823
824#if EV_MULTIPLICITY
825struct ev_loop *
826ev_loop_new (int methods)
827{
828 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
829
830 memset (loop, 0, sizeof (struct ev_loop));
831
832 loop_init (EV_A_ methods);
833
834 if (ev_method (EV_A))
835 return loop;
836
837 return 0;
838}
839
840void
841ev_loop_destroy (EV_P)
842{
843 loop_destroy (EV_A);
844 ev_free (loop);
845}
846
847void
848ev_loop_fork (EV_P)
849{
850 postfork = 1;
851}
852
853#endif
854
855#if EV_MULTIPLICITY
856struct ev_loop *
857#else
858int
859#endif
860ev_default_loop (int methods)
861{
862 if (sigpipe [0] == sigpipe [1])
863 if (pipe (sigpipe))
864 return 0;
865
866 if (!default_loop)
867 {
868#if EV_MULTIPLICITY
869 struct ev_loop *loop = default_loop = &default_loop_struct;
870#else
871 default_loop = 1;
872#endif
873
874 loop_init (EV_A_ methods);
875
635 if (method) 876 if (ev_method (EV_A))
636 { 877 {
637 ev_watcher_init (&sigev, sigcb);
638 ev_set_priority (&sigev, EV_MAXPRI);
639 siginit (EV_A); 878 siginit (EV_A);
640 879
641#ifndef WIN32 880#ifndef WIN32
642 ev_signal_init (&childev, childcb, SIGCHLD); 881 ev_signal_init (&childev, childcb, SIGCHLD);
643 ev_set_priority (&childev, EV_MAXPRI); 882 ev_set_priority (&childev, EV_MAXPRI);
644 ev_signal_start (EV_A_ &childev); 883 ev_signal_start (EV_A_ &childev);
645 ev_unref (EV_A); /* child watcher should not keep loop alive */ 884 ev_unref (EV_A); /* child watcher should not keep loop alive */
646#endif 885#endif
647 } 886 }
887 else
888 default_loop = 0;
648 } 889 }
649 890
650 return method; 891 return default_loop;
892}
893
894void
895ev_default_destroy (void)
896{
897#if EV_MULTIPLICITY
898 struct ev_loop *loop = default_loop;
899#endif
900
901#ifndef WIN32
902 ev_ref (EV_A); /* child watcher */
903 ev_signal_stop (EV_A_ &childev);
904#endif
905
906 ev_ref (EV_A); /* signal watcher */
907 ev_io_stop (EV_A_ &sigev);
908
909 close (sigpipe [0]); sigpipe [0] = 0;
910 close (sigpipe [1]); sigpipe [1] = 0;
911
912 loop_destroy (EV_A);
913}
914
915void
916ev_default_fork (void)
917{
918#if EV_MULTIPLICITY
919 struct ev_loop *loop = default_loop;
920#endif
921
922 if (method)
923 postfork = 1;
651} 924}
652 925
653/*****************************************************************************/ 926/*****************************************************************************/
654 927
655void 928static int
656ev_fork_prepare (void) 929any_pending (EV_P)
657{ 930{
658 /* nop */ 931 int pri;
659}
660 932
661void 933 for (pri = NUMPRI; pri--; )
662ev_fork_parent (void) 934 if (pendingcnt [pri])
663{ 935 return 1;
664 /* nop */
665}
666 936
667void 937 return 0;
668ev_fork_child (void)
669{
670#if EV_USE_EPOLL
671 if (method == EVMETHOD_EPOLL)
672 epoll_postfork_child ();
673#endif
674
675 ev_io_stop (&sigev);
676 close (sigpipe [0]);
677 close (sigpipe [1]);
678 pipe (sigpipe);
679 siginit ();
680} 938}
681
682/*****************************************************************************/
683 939
684static void 940static void
685call_pending (EV_P) 941call_pending (EV_P)
686{ 942{
687 int pri; 943 int pri;
692 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 948 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
693 949
694 if (p->w) 950 if (p->w)
695 { 951 {
696 p->w->pending = 0; 952 p->w->pending = 0;
697 p->w->cb (EV_A_ p->w, p->events); 953 EV_CB_INVOKE (p->w, p->events);
698 } 954 }
699 } 955 }
700} 956}
701 957
702static void 958static void
703timers_reify (EV_P) 959timers_reify (EV_P)
704{ 960{
705 while (timercnt && timers [0]->at <= mn_now) 961 while (timercnt && ((WT)timers [0])->at <= mn_now)
706 { 962 {
707 struct ev_timer *w = timers [0]; 963 struct ev_timer *w = timers [0];
964
965 assert (("inactive timer on timer heap detected", ev_is_active (w)));
708 966
709 /* first reschedule or stop timer */ 967 /* first reschedule or stop timer */
710 if (w->repeat) 968 if (w->repeat)
711 { 969 {
712 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 970 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
713 w->at = mn_now + w->repeat; 971 ((WT)w)->at = mn_now + w->repeat;
714 downheap ((WT *)timers, timercnt, 0); 972 downheap ((WT *)timers, timercnt, 0);
715 } 973 }
716 else 974 else
717 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 975 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
718 976
719 event ((W)w, EV_TIMEOUT); 977 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
720 } 978 }
721} 979}
722 980
723static void 981static void
724periodics_reify (EV_P) 982periodics_reify (EV_P)
725{ 983{
726 while (periodiccnt && periodics [0]->at <= rt_now) 984 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
727 { 985 {
728 struct ev_periodic *w = periodics [0]; 986 struct ev_periodic *w = periodics [0];
729 987
988 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
989
730 /* first reschedule or stop timer */ 990 /* first reschedule or stop timer */
731 if (w->interval) 991 if (w->reschedule_cb)
732 { 992 {
993 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, rt_now + 0.0001);
994
995 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > rt_now));
996 downheap ((WT *)periodics, periodiccnt, 0);
997 }
998 else if (w->interval)
999 {
733 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 1000 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
734 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 1001 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
735 downheap ((WT *)periodics, periodiccnt, 0); 1002 downheap ((WT *)periodics, periodiccnt, 0);
736 } 1003 }
737 else 1004 else
738 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1005 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
739 1006
740 event (EV_A_ (W)w, EV_PERIODIC); 1007 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
741 } 1008 }
742} 1009}
743 1010
744static void 1011static void
745periodics_reschedule (EV_P_ ev_tstamp diff) 1012periodics_reschedule (EV_P)
746{ 1013{
747 int i; 1014 int i;
748 1015
749 /* adjust periodics after time jump */ 1016 /* adjust periodics after time jump */
750 for (i = 0; i < periodiccnt; ++i) 1017 for (i = 0; i < periodiccnt; ++i)
751 { 1018 {
752 struct ev_periodic *w = periodics [i]; 1019 struct ev_periodic *w = periodics [i];
753 1020
1021 if (w->reschedule_cb)
1022 ((WT)w)->at = w->reschedule_cb (w, rt_now);
754 if (w->interval) 1023 else if (w->interval)
755 {
756 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 1024 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
757
758 if (fabs (diff) >= 1e-4)
759 {
760 ev_periodic_stop (EV_A_ w);
761 ev_periodic_start (EV_A_ w);
762
763 i = 0; /* restart loop, inefficient, but time jumps should be rare */
764 }
765 }
766 } 1025 }
1026
1027 /* now rebuild the heap */
1028 for (i = periodiccnt >> 1; i--; )
1029 downheap ((WT *)periodics, periodiccnt, i);
767} 1030}
768 1031
769inline int 1032inline int
770time_update_monotonic (EV_P) 1033time_update_monotonic (EV_P)
771{ 1034{
772 mn_now = get_clock (); 1035 mn_now = get_clock ();
773 1036
774 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1037 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
775 { 1038 {
776 rt_now = mn_now + diff; 1039 rt_now = rtmn_diff + mn_now;
777 return 0; 1040 return 0;
778 } 1041 }
779 else 1042 else
780 { 1043 {
781 now_floor = mn_now; 1044 now_floor = mn_now;
792#if EV_USE_MONOTONIC 1055#if EV_USE_MONOTONIC
793 if (expect_true (have_monotonic)) 1056 if (expect_true (have_monotonic))
794 { 1057 {
795 if (time_update_monotonic (EV_A)) 1058 if (time_update_monotonic (EV_A))
796 { 1059 {
797 ev_tstamp odiff = diff; 1060 ev_tstamp odiff = rtmn_diff;
798 1061
799 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1062 for (i = 4; --i; ) /* loop a few times, before making important decisions */
800 { 1063 {
801 diff = rt_now - mn_now; 1064 rtmn_diff = rt_now - mn_now;
802 1065
803 if (fabs (odiff - diff) < MIN_TIMEJUMP) 1066 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
804 return; /* all is well */ 1067 return; /* all is well */
805 1068
806 rt_now = ev_time (); 1069 rt_now = ev_time ();
807 mn_now = get_clock (); 1070 mn_now = get_clock ();
808 now_floor = mn_now; 1071 now_floor = mn_now;
809 } 1072 }
810 1073
811 periodics_reschedule (EV_A_ diff - odiff); 1074 periodics_reschedule (EV_A);
812 /* no timer adjustment, as the monotonic clock doesn't jump */ 1075 /* no timer adjustment, as the monotonic clock doesn't jump */
1076 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
813 } 1077 }
814 } 1078 }
815 else 1079 else
816#endif 1080#endif
817 { 1081 {
818 rt_now = ev_time (); 1082 rt_now = ev_time ();
819 1083
820 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1084 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
821 { 1085 {
822 periodics_reschedule (EV_A_ rt_now - mn_now); 1086 periodics_reschedule (EV_A);
823 1087
824 /* adjust timers. this is easy, as the offset is the same for all */ 1088 /* adjust timers. this is easy, as the offset is the same for all */
825 for (i = 0; i < timercnt; ++i) 1089 for (i = 0; i < timercnt; ++i)
826 timers [i]->at += diff; 1090 ((WT)timers [i])->at += rt_now - mn_now;
827 } 1091 }
828 1092
829 mn_now = rt_now; 1093 mn_now = rt_now;
830 } 1094 }
831} 1095}
857 { 1121 {
858 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1122 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
859 call_pending (EV_A); 1123 call_pending (EV_A);
860 } 1124 }
861 1125
1126 /* we might have forked, so reify kernel state if necessary */
1127 if (expect_false (postfork))
1128 loop_fork (EV_A);
1129
862 /* update fd-related kernel structures */ 1130 /* update fd-related kernel structures */
863 fd_reify (EV_A); 1131 fd_reify (EV_A);
864 1132
865 /* calculate blocking time */ 1133 /* calculate blocking time */
866 1134
867 /* we only need this for !monotonic clockor timers, but as we basically 1135 /* we only need this for !monotonic clock or timers, but as we basically
868 always have timers, we just calculate it always */ 1136 always have timers, we just calculate it always */
869#if EV_USE_MONOTONIC 1137#if EV_USE_MONOTONIC
870 if (expect_true (have_monotonic)) 1138 if (expect_true (have_monotonic))
871 time_update_monotonic (EV_A); 1139 time_update_monotonic (EV_A);
872 else 1140 else
882 { 1150 {
883 block = MAX_BLOCKTIME; 1151 block = MAX_BLOCKTIME;
884 1152
885 if (timercnt) 1153 if (timercnt)
886 { 1154 {
887 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1155 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
888 if (block > to) block = to; 1156 if (block > to) block = to;
889 } 1157 }
890 1158
891 if (periodiccnt) 1159 if (periodiccnt)
892 { 1160 {
893 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1161 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
894 if (block > to) block = to; 1162 if (block > to) block = to;
895 } 1163 }
896 1164
897 if (block < 0.) block = 0.; 1165 if (block < 0.) block = 0.;
898 } 1166 }
905 /* queue pending timers and reschedule them */ 1173 /* queue pending timers and reschedule them */
906 timers_reify (EV_A); /* relative timers called last */ 1174 timers_reify (EV_A); /* relative timers called last */
907 periodics_reify (EV_A); /* absolute timers called first */ 1175 periodics_reify (EV_A); /* absolute timers called first */
908 1176
909 /* queue idle watchers unless io or timers are pending */ 1177 /* queue idle watchers unless io or timers are pending */
910 if (!pendingcnt) 1178 if (idlecnt && !any_pending (EV_A))
911 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1179 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
912 1180
913 /* queue check watchers, to be executed first */ 1181 /* queue check watchers, to be executed first */
914 if (checkcnt) 1182 if (checkcnt)
915 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1183 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
990 return; 1258 return;
991 1259
992 assert (("ev_io_start called with negative fd", fd >= 0)); 1260 assert (("ev_io_start called with negative fd", fd >= 0));
993 1261
994 ev_start (EV_A_ (W)w, 1); 1262 ev_start (EV_A_ (W)w, 1);
995 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1263 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
996 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1264 wlist_add ((WL *)&anfds[fd].head, (WL)w);
997 1265
998 fd_change (EV_A_ fd); 1266 fd_change (EV_A_ fd);
999} 1267}
1000 1268
1015ev_timer_start (EV_P_ struct ev_timer *w) 1283ev_timer_start (EV_P_ struct ev_timer *w)
1016{ 1284{
1017 if (ev_is_active (w)) 1285 if (ev_is_active (w))
1018 return; 1286 return;
1019 1287
1020 w->at += mn_now; 1288 ((WT)w)->at += mn_now;
1021 1289
1022 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1290 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1023 1291
1024 ev_start (EV_A_ (W)w, ++timercnt); 1292 ev_start (EV_A_ (W)w, ++timercnt);
1025 array_needsize (timers, timermax, timercnt, ); 1293 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1026 timers [timercnt - 1] = w; 1294 timers [timercnt - 1] = w;
1027 upheap ((WT *)timers, timercnt - 1); 1295 upheap ((WT *)timers, timercnt - 1);
1296
1297 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1028} 1298}
1029 1299
1030void 1300void
1031ev_timer_stop (EV_P_ struct ev_timer *w) 1301ev_timer_stop (EV_P_ struct ev_timer *w)
1032{ 1302{
1033 ev_clear_pending (EV_A_ (W)w); 1303 ev_clear_pending (EV_A_ (W)w);
1034 if (!ev_is_active (w)) 1304 if (!ev_is_active (w))
1035 return; 1305 return;
1036 1306
1307 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1308
1037 if (w->active < timercnt--) 1309 if (((W)w)->active < timercnt--)
1038 { 1310 {
1039 timers [w->active - 1] = timers [timercnt]; 1311 timers [((W)w)->active - 1] = timers [timercnt];
1040 downheap ((WT *)timers, timercnt, w->active - 1); 1312 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1041 } 1313 }
1042 1314
1043 w->at = w->repeat; 1315 ((WT)w)->at = w->repeat;
1044 1316
1045 ev_stop (EV_A_ (W)w); 1317 ev_stop (EV_A_ (W)w);
1046} 1318}
1047 1319
1048void 1320void
1050{ 1322{
1051 if (ev_is_active (w)) 1323 if (ev_is_active (w))
1052 { 1324 {
1053 if (w->repeat) 1325 if (w->repeat)
1054 { 1326 {
1055 w->at = mn_now + w->repeat; 1327 ((WT)w)->at = mn_now + w->repeat;
1056 downheap ((WT *)timers, timercnt, w->active - 1); 1328 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1057 } 1329 }
1058 else 1330 else
1059 ev_timer_stop (EV_A_ w); 1331 ev_timer_stop (EV_A_ w);
1060 } 1332 }
1061 else if (w->repeat) 1333 else if (w->repeat)
1066ev_periodic_start (EV_P_ struct ev_periodic *w) 1338ev_periodic_start (EV_P_ struct ev_periodic *w)
1067{ 1339{
1068 if (ev_is_active (w)) 1340 if (ev_is_active (w))
1069 return; 1341 return;
1070 1342
1343 if (w->reschedule_cb)
1344 ((WT)w)->at = w->reschedule_cb (w, rt_now);
1345 else if (w->interval)
1346 {
1071 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1347 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1072
1073 /* this formula differs from the one in periodic_reify because we do not always round up */ 1348 /* this formula differs from the one in periodic_reify because we do not always round up */
1074 if (w->interval)
1075 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 1349 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1350 }
1076 1351
1077 ev_start (EV_A_ (W)w, ++periodiccnt); 1352 ev_start (EV_A_ (W)w, ++periodiccnt);
1078 array_needsize (periodics, periodicmax, periodiccnt, ); 1353 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1079 periodics [periodiccnt - 1] = w; 1354 periodics [periodiccnt - 1] = w;
1080 upheap ((WT *)periodics, periodiccnt - 1); 1355 upheap ((WT *)periodics, periodiccnt - 1);
1356
1357 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1081} 1358}
1082 1359
1083void 1360void
1084ev_periodic_stop (EV_P_ struct ev_periodic *w) 1361ev_periodic_stop (EV_P_ struct ev_periodic *w)
1085{ 1362{
1086 ev_clear_pending (EV_A_ (W)w); 1363 ev_clear_pending (EV_A_ (W)w);
1087 if (!ev_is_active (w)) 1364 if (!ev_is_active (w))
1088 return; 1365 return;
1089 1366
1367 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1368
1090 if (w->active < periodiccnt--) 1369 if (((W)w)->active < periodiccnt--)
1091 { 1370 {
1092 periodics [w->active - 1] = periodics [periodiccnt]; 1371 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1093 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1372 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1094 } 1373 }
1095 1374
1375 ev_stop (EV_A_ (W)w);
1376}
1377
1378void
1379ev_periodic_again (EV_P_ struct ev_periodic *w)
1380{
1381 ev_periodic_stop (EV_A_ w);
1382 ev_periodic_start (EV_A_ w);
1383}
1384
1385void
1386ev_idle_start (EV_P_ struct ev_idle *w)
1387{
1388 if (ev_is_active (w))
1389 return;
1390
1391 ev_start (EV_A_ (W)w, ++idlecnt);
1392 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1393 idles [idlecnt - 1] = w;
1394}
1395
1396void
1397ev_idle_stop (EV_P_ struct ev_idle *w)
1398{
1399 ev_clear_pending (EV_A_ (W)w);
1400 if (ev_is_active (w))
1401 return;
1402
1403 idles [((W)w)->active - 1] = idles [--idlecnt];
1404 ev_stop (EV_A_ (W)w);
1405}
1406
1407void
1408ev_prepare_start (EV_P_ struct ev_prepare *w)
1409{
1410 if (ev_is_active (w))
1411 return;
1412
1413 ev_start (EV_A_ (W)w, ++preparecnt);
1414 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1415 prepares [preparecnt - 1] = w;
1416}
1417
1418void
1419ev_prepare_stop (EV_P_ struct ev_prepare *w)
1420{
1421 ev_clear_pending (EV_A_ (W)w);
1422 if (ev_is_active (w))
1423 return;
1424
1425 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1426 ev_stop (EV_A_ (W)w);
1427}
1428
1429void
1430ev_check_start (EV_P_ struct ev_check *w)
1431{
1432 if (ev_is_active (w))
1433 return;
1434
1435 ev_start (EV_A_ (W)w, ++checkcnt);
1436 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1437 checks [checkcnt - 1] = w;
1438}
1439
1440void
1441ev_check_stop (EV_P_ struct ev_check *w)
1442{
1443 ev_clear_pending (EV_A_ (W)w);
1444 if (ev_is_active (w))
1445 return;
1446
1447 checks [((W)w)->active - 1] = checks [--checkcnt];
1096 ev_stop (EV_A_ (W)w); 1448 ev_stop (EV_A_ (W)w);
1097} 1449}
1098 1450
1099#ifndef SA_RESTART 1451#ifndef SA_RESTART
1100# define SA_RESTART 0 1452# define SA_RESTART 0
1101#endif 1453#endif
1102 1454
1103void 1455void
1104ev_signal_start (EV_P_ struct ev_signal *w) 1456ev_signal_start (EV_P_ struct ev_signal *w)
1105{ 1457{
1458#if EV_MULTIPLICITY
1459 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1460#endif
1106 if (ev_is_active (w)) 1461 if (ev_is_active (w))
1107 return; 1462 return;
1108 1463
1109 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1464 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1110 1465
1111 ev_start (EV_A_ (W)w, 1); 1466 ev_start (EV_A_ (W)w, 1);
1112 array_needsize (signals, signalmax, w->signum, signals_init); 1467 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1113 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1468 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1114 1469
1115 if (!w->next) 1470 if (!((WL)w)->next)
1116 { 1471 {
1472#if WIN32
1473 signal (w->signum, sighandler);
1474#else
1117 struct sigaction sa; 1475 struct sigaction sa;
1118 sa.sa_handler = sighandler; 1476 sa.sa_handler = sighandler;
1119 sigfillset (&sa.sa_mask); 1477 sigfillset (&sa.sa_mask);
1120 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1478 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1121 sigaction (w->signum, &sa, 0); 1479 sigaction (w->signum, &sa, 0);
1480#endif
1122 } 1481 }
1123} 1482}
1124 1483
1125void 1484void
1126ev_signal_stop (EV_P_ struct ev_signal *w) 1485ev_signal_stop (EV_P_ struct ev_signal *w)
1135 if (!signals [w->signum - 1].head) 1494 if (!signals [w->signum - 1].head)
1136 signal (w->signum, SIG_DFL); 1495 signal (w->signum, SIG_DFL);
1137} 1496}
1138 1497
1139void 1498void
1140ev_idle_start (EV_P_ struct ev_idle *w)
1141{
1142 if (ev_is_active (w))
1143 return;
1144
1145 ev_start (EV_A_ (W)w, ++idlecnt);
1146 array_needsize (idles, idlemax, idlecnt, );
1147 idles [idlecnt - 1] = w;
1148}
1149
1150void
1151ev_idle_stop (EV_P_ struct ev_idle *w)
1152{
1153 ev_clear_pending (EV_A_ (W)w);
1154 if (ev_is_active (w))
1155 return;
1156
1157 idles [w->active - 1] = idles [--idlecnt];
1158 ev_stop (EV_A_ (W)w);
1159}
1160
1161void
1162ev_prepare_start (EV_P_ struct ev_prepare *w)
1163{
1164 if (ev_is_active (w))
1165 return;
1166
1167 ev_start (EV_A_ (W)w, ++preparecnt);
1168 array_needsize (prepares, preparemax, preparecnt, );
1169 prepares [preparecnt - 1] = w;
1170}
1171
1172void
1173ev_prepare_stop (EV_P_ struct ev_prepare *w)
1174{
1175 ev_clear_pending (EV_A_ (W)w);
1176 if (ev_is_active (w))
1177 return;
1178
1179 prepares [w->active - 1] = prepares [--preparecnt];
1180 ev_stop (EV_A_ (W)w);
1181}
1182
1183void
1184ev_check_start (EV_P_ struct ev_check *w)
1185{
1186 if (ev_is_active (w))
1187 return;
1188
1189 ev_start (EV_A_ (W)w, ++checkcnt);
1190 array_needsize (checks, checkmax, checkcnt, );
1191 checks [checkcnt - 1] = w;
1192}
1193
1194void
1195ev_check_stop (EV_P_ struct ev_check *w)
1196{
1197 ev_clear_pending (EV_A_ (W)w);
1198 if (ev_is_active (w))
1199 return;
1200
1201 checks [w->active - 1] = checks [--checkcnt];
1202 ev_stop (EV_A_ (W)w);
1203}
1204
1205void
1206ev_child_start (EV_P_ struct ev_child *w) 1499ev_child_start (EV_P_ struct ev_child *w)
1207{ 1500{
1501#if EV_MULTIPLICITY
1502 assert (("child watchers are only supported in the default loop", loop == default_loop));
1503#endif
1208 if (ev_is_active (w)) 1504 if (ev_is_active (w))
1209 return; 1505 return;
1210 1506
1211 ev_start (EV_A_ (W)w, 1); 1507 ev_start (EV_A_ (W)w, 1);
1212 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1508 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1239 void (*cb)(int revents, void *arg) = once->cb; 1535 void (*cb)(int revents, void *arg) = once->cb;
1240 void *arg = once->arg; 1536 void *arg = once->arg;
1241 1537
1242 ev_io_stop (EV_A_ &once->io); 1538 ev_io_stop (EV_A_ &once->io);
1243 ev_timer_stop (EV_A_ &once->to); 1539 ev_timer_stop (EV_A_ &once->to);
1244 free (once); 1540 ev_free (once);
1245 1541
1246 cb (revents, arg); 1542 cb (revents, arg);
1247} 1543}
1248 1544
1249static void 1545static void
1259} 1555}
1260 1556
1261void 1557void
1262ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1558ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1263{ 1559{
1264 struct ev_once *once = malloc (sizeof (struct ev_once)); 1560 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1265 1561
1266 if (!once) 1562 if (!once)
1267 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1563 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1268 else 1564 else
1269 { 1565 {
1270 once->cb = cb; 1566 once->cb = cb;
1271 once->arg = arg; 1567 once->arg = arg;
1272 1568
1273 ev_watcher_init (&once->io, once_cb_io); 1569 ev_init (&once->io, once_cb_io);
1274 if (fd >= 0) 1570 if (fd >= 0)
1275 { 1571 {
1276 ev_io_set (&once->io, fd, events); 1572 ev_io_set (&once->io, fd, events);
1277 ev_io_start (EV_A_ &once->io); 1573 ev_io_start (EV_A_ &once->io);
1278 } 1574 }
1279 1575
1280 ev_watcher_init (&once->to, once_cb_to); 1576 ev_init (&once->to, once_cb_to);
1281 if (timeout >= 0.) 1577 if (timeout >= 0.)
1282 { 1578 {
1283 ev_timer_set (&once->to, timeout, 0.); 1579 ev_timer_set (&once->to, timeout, 0.);
1284 ev_timer_start (EV_A_ &once->to); 1580 ev_timer_start (EV_A_ &once->to);
1285 } 1581 }
1286 } 1582 }
1287} 1583}
1288 1584
1289/*****************************************************************************/
1290
1291#if 0
1292
1293struct ev_io wio;
1294
1295static void
1296sin_cb (struct ev_io *w, int revents)
1297{
1298 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1299}
1300
1301static void
1302ocb (struct ev_timer *w, int revents)
1303{
1304 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1305 ev_timer_stop (w);
1306 ev_timer_start (w);
1307}
1308
1309static void
1310scb (struct ev_signal *w, int revents)
1311{
1312 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1313 ev_io_stop (&wio);
1314 ev_io_start (&wio);
1315}
1316
1317static void
1318gcb (struct ev_signal *w, int revents)
1319{
1320 fprintf (stderr, "generic %x\n", revents);
1321
1322}
1323
1324int main (void)
1325{
1326 ev_init (0);
1327
1328 ev_io_init (&wio, sin_cb, 0, EV_READ);
1329 ev_io_start (&wio);
1330
1331 struct ev_timer t[10000];
1332
1333#if 0
1334 int i;
1335 for (i = 0; i < 10000; ++i)
1336 {
1337 struct ev_timer *w = t + i;
1338 ev_watcher_init (w, ocb, i);
1339 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1340 ev_timer_start (w);
1341 if (drand48 () < 0.5)
1342 ev_timer_stop (w);
1343 }
1344#endif
1345
1346 struct ev_timer t1;
1347 ev_timer_init (&t1, ocb, 5, 10);
1348 ev_timer_start (&t1);
1349
1350 struct ev_signal sig;
1351 ev_signal_init (&sig, scb, SIGQUIT);
1352 ev_signal_start (&sig);
1353
1354 struct ev_check cw;
1355 ev_check_init (&cw, gcb);
1356 ev_check_start (&cw);
1357
1358 struct ev_idle iw;
1359 ev_idle_init (&iw, gcb);
1360 ev_idle_start (&iw);
1361
1362 ev_loop (0);
1363
1364 return 0;
1365}
1366
1367#endif
1368
1369
1370
1371

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines