ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.304 by root, Sun Jul 19 03:12:28 2009 UTC vs.
Revision 1.520 by root, Sat Dec 28 07:44:15 2019 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
46# endif
47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
50# endif 52# endif
51 53
52# if HAVE_CLOCK_SYSCALL 54# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL 55# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1 56# define EV_USE_CLOCK_SYSCALL 1
57# endif 59# endif
58# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1 61# define EV_USE_MONOTONIC 1
60# endif 62# endif
61# endif 63# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL) 64# elif !defined EV_USE_CLOCK_SYSCALL
63# define EV_USE_CLOCK_SYSCALL 0 65# define EV_USE_CLOCK_SYSCALL 0
64# endif 66# endif
65 67
66# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
67# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
77# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
78# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
79# endif 81# endif
80# endif 82# endif
81 83
84# if HAVE_NANOSLEEP
82# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
85# else 88# else
89# undef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
87# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
88# endif 100# endif
89 101
102# if HAVE_POLL && HAVE_POLL_H
90# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
91# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
92# define EV_USE_SELECT 1
93# else
94# define EV_USE_SELECT 0
95# endif 105# endif
96# endif
97
98# ifndef EV_USE_POLL
99# if HAVE_POLL && HAVE_POLL_H
100# define EV_USE_POLL 1
101# else 106# else
107# undef EV_USE_POLL
102# define EV_USE_POLL 0 108# define EV_USE_POLL 0
103# endif
104# endif 109# endif
105 110
106# ifndef EV_USE_EPOLL
107# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
108# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
109# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
110# define EV_USE_EPOLL 0
111# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
112# endif 118# endif
113 119
114# ifndef EV_USE_KQUEUE 120# if HAVE_LINUX_AIO_ABI_H
115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 121# ifndef EV_USE_LINUXAIO
116# define EV_USE_KQUEUE 1 122# define EV_USE_LINUXAIO 0 /* was: EV_FEATURE_BACKENDS, always off by default */
117# else
118# define EV_USE_KQUEUE 0
119# endif 123# endif
124# else
125# undef EV_USE_LINUXAIO
126# define EV_USE_LINUXAIO 0
120# endif 127# endif
121 128
129# if HAVE_LINUX_FS_H && HAVE_SYS_TIMERFD_H && HAVE_KERNEL_RWF_T
122# ifndef EV_USE_PORT 130# ifndef EV_USE_IOURING
123# if HAVE_PORT_H && HAVE_PORT_CREATE 131# define EV_USE_IOURING EV_FEATURE_BACKENDS
124# define EV_USE_PORT 1
125# else
126# define EV_USE_PORT 0
127# endif 132# endif
128# endif
129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1
133# else 133# else
134# undef EV_USE_IOURING
134# define EV_USE_INOTIFY 0 135# define EV_USE_IOURING 0
135# endif
136# endif
137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif 136# endif
153 137
138# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
139# ifndef EV_USE_KQUEUE
140# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
141# endif
142# else
143# undef EV_USE_KQUEUE
144# define EV_USE_KQUEUE 0
154#endif 145# endif
146
147# if HAVE_PORT_H && HAVE_PORT_CREATE
148# ifndef EV_USE_PORT
149# define EV_USE_PORT EV_FEATURE_BACKENDS
150# endif
151# else
152# undef EV_USE_PORT
153# define EV_USE_PORT 0
154# endif
155 155
156#include <math.h> 156# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
157# ifndef EV_USE_INOTIFY
158# define EV_USE_INOTIFY EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_INOTIFY
162# define EV_USE_INOTIFY 0
163# endif
164
165# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
166# ifndef EV_USE_SIGNALFD
167# define EV_USE_SIGNALFD EV_FEATURE_OS
168# endif
169# else
170# undef EV_USE_SIGNALFD
171# define EV_USE_SIGNALFD 0
172# endif
173
174# if HAVE_EVENTFD
175# ifndef EV_USE_EVENTFD
176# define EV_USE_EVENTFD EV_FEATURE_OS
177# endif
178# else
179# undef EV_USE_EVENTFD
180# define EV_USE_EVENTFD 0
181# endif
182
183# if HAVE_SYS_TIMERFD_H
184# ifndef EV_USE_TIMERFD
185# define EV_USE_TIMERFD EV_FEATURE_OS
186# endif
187# else
188# undef EV_USE_TIMERFD
189# define EV_USE_TIMERFD 0
190# endif
191
192#endif
193
194/* OS X, in its infinite idiocy, actually HARDCODES
195 * a limit of 1024 into their select. Where people have brains,
196 * OS X engineers apparently have a vacuum. Or maybe they were
197 * ordered to have a vacuum, or they do anything for money.
198 * This might help. Or not.
199 * Note that this must be defined early, as other include files
200 * will rely on this define as well.
201 */
202#define _DARWIN_UNLIMITED_SELECT 1
203
157#include <stdlib.h> 204#include <stdlib.h>
205#include <string.h>
158#include <fcntl.h> 206#include <fcntl.h>
159#include <stddef.h> 207#include <stddef.h>
160 208
161#include <stdio.h> 209#include <stdio.h>
162 210
163#include <assert.h> 211#include <assert.h>
164#include <errno.h> 212#include <errno.h>
165#include <sys/types.h> 213#include <sys/types.h>
166#include <time.h> 214#include <time.h>
215#include <limits.h>
167 216
168#include <signal.h> 217#include <signal.h>
169 218
170#ifdef EV_H 219#ifdef EV_H
171# include EV_H 220# include EV_H
172#else 221#else
173# include "ev.h" 222# include "ev.h"
223#endif
224
225#if EV_NO_THREADS
226# undef EV_NO_SMP
227# define EV_NO_SMP 1
228# undef ECB_NO_THREADS
229# define ECB_NO_THREADS 1
230#endif
231#if EV_NO_SMP
232# undef EV_NO_SMP
233# define ECB_NO_SMP 1
174#endif 234#endif
175 235
176#ifndef _WIN32 236#ifndef _WIN32
177# include <sys/time.h> 237# include <sys/time.h>
178# include <sys/wait.h> 238# include <sys/wait.h>
179# include <unistd.h> 239# include <unistd.h>
180#else 240#else
181# include <io.h> 241# include <io.h>
182# define WIN32_LEAN_AND_MEAN 242# define WIN32_LEAN_AND_MEAN
243# include <winsock2.h>
183# include <windows.h> 244# include <windows.h>
184# ifndef EV_SELECT_IS_WINSOCKET 245# ifndef EV_SELECT_IS_WINSOCKET
185# define EV_SELECT_IS_WINSOCKET 1 246# define EV_SELECT_IS_WINSOCKET 1
186# endif 247# endif
248# undef EV_AVOID_STDIO
187#endif 249#endif
188 250
189/* this block tries to deduce configuration from header-defined symbols and defaults */ 251/* this block tries to deduce configuration from header-defined symbols and defaults */
190 252
253/* try to deduce the maximum number of signals on this platform */
254#if defined EV_NSIG
255/* use what's provided */
256#elif defined NSIG
257# define EV_NSIG (NSIG)
258#elif defined _NSIG
259# define EV_NSIG (_NSIG)
260#elif defined SIGMAX
261# define EV_NSIG (SIGMAX+1)
262#elif defined SIG_MAX
263# define EV_NSIG (SIG_MAX+1)
264#elif defined _SIG_MAX
265# define EV_NSIG (_SIG_MAX+1)
266#elif defined MAXSIG
267# define EV_NSIG (MAXSIG+1)
268#elif defined MAX_SIG
269# define EV_NSIG (MAX_SIG+1)
270#elif defined SIGARRAYSIZE
271# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
272#elif defined _sys_nsig
273# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
274#else
275# define EV_NSIG (8 * sizeof (sigset_t) + 1)
276#endif
277
278#ifndef EV_USE_FLOOR
279# define EV_USE_FLOOR 0
280#endif
281
191#ifndef EV_USE_CLOCK_SYSCALL 282#ifndef EV_USE_CLOCK_SYSCALL
192# if __linux && __GLIBC__ >= 2 283# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
193# define EV_USE_CLOCK_SYSCALL 1 284# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
194# else 285# else
195# define EV_USE_CLOCK_SYSCALL 0 286# define EV_USE_CLOCK_SYSCALL 0
196# endif 287# endif
197#endif 288#endif
198 289
290#if !(_POSIX_TIMERS > 0)
291# ifndef EV_USE_MONOTONIC
292# define EV_USE_MONOTONIC 0
293# endif
294# ifndef EV_USE_REALTIME
295# define EV_USE_REALTIME 0
296# endif
297#endif
298
199#ifndef EV_USE_MONOTONIC 299#ifndef EV_USE_MONOTONIC
200# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 300# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
201# define EV_USE_MONOTONIC 1 301# define EV_USE_MONOTONIC EV_FEATURE_OS
202# else 302# else
203# define EV_USE_MONOTONIC 0 303# define EV_USE_MONOTONIC 0
204# endif 304# endif
205#endif 305#endif
206 306
208# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL 308# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
209#endif 309#endif
210 310
211#ifndef EV_USE_NANOSLEEP 311#ifndef EV_USE_NANOSLEEP
212# if _POSIX_C_SOURCE >= 199309L 312# if _POSIX_C_SOURCE >= 199309L
213# define EV_USE_NANOSLEEP 1 313# define EV_USE_NANOSLEEP EV_FEATURE_OS
214# else 314# else
215# define EV_USE_NANOSLEEP 0 315# define EV_USE_NANOSLEEP 0
216# endif 316# endif
217#endif 317#endif
218 318
219#ifndef EV_USE_SELECT 319#ifndef EV_USE_SELECT
220# define EV_USE_SELECT 1 320# define EV_USE_SELECT EV_FEATURE_BACKENDS
221#endif 321#endif
222 322
223#ifndef EV_USE_POLL 323#ifndef EV_USE_POLL
224# ifdef _WIN32 324# ifdef _WIN32
225# define EV_USE_POLL 0 325# define EV_USE_POLL 0
226# else 326# else
227# define EV_USE_POLL 1 327# define EV_USE_POLL EV_FEATURE_BACKENDS
228# endif 328# endif
229#endif 329#endif
230 330
231#ifndef EV_USE_EPOLL 331#ifndef EV_USE_EPOLL
232# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 332# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
233# define EV_USE_EPOLL 1 333# define EV_USE_EPOLL EV_FEATURE_BACKENDS
234# else 334# else
235# define EV_USE_EPOLL 0 335# define EV_USE_EPOLL 0
236# endif 336# endif
237#endif 337#endif
238 338
242 342
243#ifndef EV_USE_PORT 343#ifndef EV_USE_PORT
244# define EV_USE_PORT 0 344# define EV_USE_PORT 0
245#endif 345#endif
246 346
347#ifndef EV_USE_LINUXAIO
348# if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
349# define EV_USE_LINUXAIO 0 /* was: 1, always off by default */
350# else
351# define EV_USE_LINUXAIO 0
352# endif
353#endif
354
355#ifndef EV_USE_IOURING
356# if __linux /* later checks might disable again */
357# define EV_USE_IOURING 1
358# else
359# define EV_USE_IOURING 0
360# endif
361#endif
362
247#ifndef EV_USE_INOTIFY 363#ifndef EV_USE_INOTIFY
248# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 364# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
249# define EV_USE_INOTIFY 1 365# define EV_USE_INOTIFY EV_FEATURE_OS
250# else 366# else
251# define EV_USE_INOTIFY 0 367# define EV_USE_INOTIFY 0
252# endif 368# endif
253#endif 369#endif
254 370
255#ifndef EV_PID_HASHSIZE 371#ifndef EV_PID_HASHSIZE
256# if EV_MINIMAL 372# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
257# define EV_PID_HASHSIZE 1
258# else
259# define EV_PID_HASHSIZE 16
260# endif
261#endif 373#endif
262 374
263#ifndef EV_INOTIFY_HASHSIZE 375#ifndef EV_INOTIFY_HASHSIZE
264# if EV_MINIMAL 376# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
265# define EV_INOTIFY_HASHSIZE 1
266# else
267# define EV_INOTIFY_HASHSIZE 16
268# endif
269#endif 377#endif
270 378
271#ifndef EV_USE_EVENTFD 379#ifndef EV_USE_EVENTFD
272# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 380# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
273# define EV_USE_EVENTFD 1 381# define EV_USE_EVENTFD EV_FEATURE_OS
274# else 382# else
275# define EV_USE_EVENTFD 0 383# define EV_USE_EVENTFD 0
276# endif 384# endif
277#endif 385#endif
278 386
279#ifndef EV_USE_SIGNALFD 387#ifndef EV_USE_SIGNALFD
280# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 9)) 388# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
281# define EV_USE_SIGNALFD 1 389# define EV_USE_SIGNALFD EV_FEATURE_OS
282# else 390# else
283# define EV_USE_SIGNALFD 0 391# define EV_USE_SIGNALFD 0
392# endif
393#endif
394
395#ifndef EV_USE_TIMERFD
396# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 8))
397# define EV_USE_TIMERFD EV_FEATURE_OS
398# else
399# define EV_USE_TIMERFD 0
284# endif 400# endif
285#endif 401#endif
286 402
287#if 0 /* debugging */ 403#if 0 /* debugging */
288# define EV_VERIFY 3 404# define EV_VERIFY 3
289# define EV_USE_4HEAP 1 405# define EV_USE_4HEAP 1
290# define EV_HEAP_CACHE_AT 1 406# define EV_HEAP_CACHE_AT 1
291#endif 407#endif
292 408
293#ifndef EV_VERIFY 409#ifndef EV_VERIFY
294# define EV_VERIFY !EV_MINIMAL 410# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
295#endif 411#endif
296 412
297#ifndef EV_USE_4HEAP 413#ifndef EV_USE_4HEAP
298# define EV_USE_4HEAP !EV_MINIMAL 414# define EV_USE_4HEAP EV_FEATURE_DATA
299#endif 415#endif
300 416
301#ifndef EV_HEAP_CACHE_AT 417#ifndef EV_HEAP_CACHE_AT
302# define EV_HEAP_CACHE_AT !EV_MINIMAL 418# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
419#endif
420
421#ifdef __ANDROID__
422/* supposedly, android doesn't typedef fd_mask */
423# undef EV_USE_SELECT
424# define EV_USE_SELECT 0
425/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
426# undef EV_USE_CLOCK_SYSCALL
427# define EV_USE_CLOCK_SYSCALL 0
428#endif
429
430/* aix's poll.h seems to cause lots of trouble */
431#ifdef _AIX
432/* AIX has a completely broken poll.h header */
433# undef EV_USE_POLL
434# define EV_USE_POLL 0
303#endif 435#endif
304 436
305/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */ 437/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
306/* which makes programs even slower. might work on other unices, too. */ 438/* which makes programs even slower. might work on other unices, too. */
307#if EV_USE_CLOCK_SYSCALL 439#if EV_USE_CLOCK_SYSCALL
308# include <syscall.h> 440# include <sys/syscall.h>
309# ifdef SYS_clock_gettime 441# ifdef SYS_clock_gettime
310# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts)) 442# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
311# undef EV_USE_MONOTONIC 443# undef EV_USE_MONOTONIC
312# define EV_USE_MONOTONIC 1 444# define EV_USE_MONOTONIC 1
445# define EV_NEED_SYSCALL 1
313# else 446# else
314# undef EV_USE_CLOCK_SYSCALL 447# undef EV_USE_CLOCK_SYSCALL
315# define EV_USE_CLOCK_SYSCALL 0 448# define EV_USE_CLOCK_SYSCALL 0
316# endif 449# endif
317#endif 450#endif
331#if !EV_STAT_ENABLE 464#if !EV_STAT_ENABLE
332# undef EV_USE_INOTIFY 465# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0 466# define EV_USE_INOTIFY 0
334#endif 467#endif
335 468
469#if __linux && EV_USE_IOURING
470# include <linux/version.h>
471# if LINUX_VERSION_CODE < KERNEL_VERSION(4,14,0)
472# undef EV_USE_IOURING
473# define EV_USE_IOURING 0
474# endif
475#endif
476
336#if !EV_USE_NANOSLEEP 477#if !EV_USE_NANOSLEEP
337# ifndef _WIN32 478/* hp-ux has it in sys/time.h, which we unconditionally include above */
479# if !defined _WIN32 && !defined __hpux
338# include <sys/select.h> 480# include <sys/select.h>
339# endif 481# endif
340#endif 482#endif
341 483
484#if EV_USE_LINUXAIO
485# include <sys/syscall.h>
486# if SYS_io_getevents && EV_USE_EPOLL /* linuxaio backend requires epoll backend */
487# define EV_NEED_SYSCALL 1
488# else
489# undef EV_USE_LINUXAIO
490# define EV_USE_LINUXAIO 0
491# endif
492#endif
493
494#if EV_USE_IOURING
495# include <sys/syscall.h>
496# if !SYS_io_uring_setup && __linux && !__alpha
497# define SYS_io_uring_setup 425
498# define SYS_io_uring_enter 426
499# define SYS_io_uring_wregister 427
500# endif
501# if SYS_io_uring_setup && EV_USE_EPOLL /* iouring backend requires epoll backend */
502# define EV_NEED_SYSCALL 1
503# else
504# undef EV_USE_IOURING
505# define EV_USE_IOURING 0
506# endif
507#endif
508
342#if EV_USE_INOTIFY 509#if EV_USE_INOTIFY
343# include <sys/utsname.h>
344# include <sys/statfs.h> 510# include <sys/statfs.h>
345# include <sys/inotify.h> 511# include <sys/inotify.h>
346/* some very old inotify.h headers don't have IN_DONT_FOLLOW */ 512/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
347# ifndef IN_DONT_FOLLOW 513# ifndef IN_DONT_FOLLOW
348# undef EV_USE_INOTIFY 514# undef EV_USE_INOTIFY
349# define EV_USE_INOTIFY 0 515# define EV_USE_INOTIFY 0
350# endif 516# endif
351#endif 517#endif
352 518
353#if EV_SELECT_IS_WINSOCKET
354# include <winsock.h>
355#endif
356
357#if EV_USE_EVENTFD 519#if EV_USE_EVENTFD
358/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 520/* our minimum requirement is glibc 2.7 which has the stub, but not the full header */
359# include <stdint.h> 521# include <stdint.h>
360# ifndef EFD_NONBLOCK 522# ifndef EFD_NONBLOCK
361# define EFD_NONBLOCK O_NONBLOCK 523# define EFD_NONBLOCK O_NONBLOCK
362# endif 524# endif
363# ifndef EFD_CLOEXEC 525# ifndef EFD_CLOEXEC
526# ifdef O_CLOEXEC
364# define EFD_CLOEXEC O_CLOEXEC 527# define EFD_CLOEXEC O_CLOEXEC
528# else
529# define EFD_CLOEXEC 02000000
530# endif
365# endif 531# endif
366# ifdef __cplusplus 532EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
367extern "C" { 533#endif
534
535#if EV_USE_SIGNALFD
536/* our minimum requirement is glibc 2.7 which has the stub, but not the full header */
537# include <stdint.h>
538# ifndef SFD_NONBLOCK
539# define SFD_NONBLOCK O_NONBLOCK
368# endif 540# endif
369int eventfd (unsigned int initval, int flags); 541# ifndef SFD_CLOEXEC
370# ifdef __cplusplus 542# ifdef O_CLOEXEC
371} 543# define SFD_CLOEXEC O_CLOEXEC
544# else
545# define SFD_CLOEXEC 02000000
546# endif
372# endif 547# endif
548EV_CPP (extern "C") int (signalfd) (int fd, const sigset_t *mask, int flags);
549
550struct signalfd_siginfo
551{
552 uint32_t ssi_signo;
553 char pad[128 - sizeof (uint32_t)];
554};
555#endif
556
557/* for timerfd, libev core requires TFD_TIMER_CANCEL_ON_SET &c */
558#if EV_USE_TIMERFD
559# include <sys/timerfd.h>
560/* timerfd is only used for periodics */
561# if !(defined (TFD_TIMER_CANCEL_ON_SET) && defined (TFD_CLOEXEC) && defined (TFD_NONBLOCK)) || !EV_PERIODIC_ENABLE
562# undef EV_USE_TIMERFD
563# define EV_USE_TIMERFD 0
373#endif 564# endif
374
375#if EV_USE_SIGNALFD
376# include <sys/signalfd.h>
377#endif 565#endif
378 566
379/**/ 567/*****************************************************************************/
380 568
381#if EV_VERIFY >= 3 569#if EV_VERIFY >= 3
382# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 570# define EV_FREQUENT_CHECK ev_verify (EV_A)
383#else 571#else
384# define EV_FREQUENT_CHECK do { } while (0) 572# define EV_FREQUENT_CHECK do { } while (0)
385#endif 573#endif
386 574
387/* 575/*
388 * This is used to avoid floating point rounding problems. 576 * This is used to work around floating point rounding problems.
389 * It is added to ev_rt_now when scheduling periodics
390 * to ensure progress, time-wise, even when rounding
391 * errors are against us.
392 * This value is good at least till the year 4000. 577 * This value is good at least till the year 4000.
393 * Better solutions welcome.
394 */ 578 */
395#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 579#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
580/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
396 581
397#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 582#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
398#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 583#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
399/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
400 584
585/* find a portable timestamp that is "always" in the future but fits into time_t.
586 * this is quite hard, and we are mostly guessing - we handle 32 bit signed/unsigned time_t,
587 * and sizes larger than 32 bit, and maybe the unlikely floating point time_t */
588#define EV_TSTAMP_HUGE \
589 (sizeof (time_t) >= 8 ? 10000000000000. \
590 : 0 < (time_t)4294967295 ? 4294967295. \
591 : 2147483647.) \
592
593#ifndef EV_TS_CONST
594# define EV_TS_CONST(nv) nv
595# define EV_TS_TO_MSEC(a) a * 1e3 + 0.9999
596# define EV_TS_FROM_USEC(us) us * 1e-6
597# define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
598# define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
599# define EV_TV_GET(tv) ((tv).tv_sec + (tv).tv_usec * 1e-6)
600# define EV_TS_GET(ts) ((ts).tv_sec + (ts).tv_nsec * 1e-9)
601#endif
602
603/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
604/* ECB.H BEGIN */
605/*
606 * libecb - http://software.schmorp.de/pkg/libecb
607 *
608 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
609 * Copyright (©) 2011 Emanuele Giaquinta
610 * All rights reserved.
611 *
612 * Redistribution and use in source and binary forms, with or without modifica-
613 * tion, are permitted provided that the following conditions are met:
614 *
615 * 1. Redistributions of source code must retain the above copyright notice,
616 * this list of conditions and the following disclaimer.
617 *
618 * 2. Redistributions in binary form must reproduce the above copyright
619 * notice, this list of conditions and the following disclaimer in the
620 * documentation and/or other materials provided with the distribution.
621 *
622 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
623 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
624 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
625 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
626 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
627 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
628 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
629 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
630 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
631 * OF THE POSSIBILITY OF SUCH DAMAGE.
632 *
633 * Alternatively, the contents of this file may be used under the terms of
634 * the GNU General Public License ("GPL") version 2 or any later version,
635 * in which case the provisions of the GPL are applicable instead of
636 * the above. If you wish to allow the use of your version of this file
637 * only under the terms of the GPL and not to allow others to use your
638 * version of this file under the BSD license, indicate your decision
639 * by deleting the provisions above and replace them with the notice
640 * and other provisions required by the GPL. If you do not delete the
641 * provisions above, a recipient may use your version of this file under
642 * either the BSD or the GPL.
643 */
644
645#ifndef ECB_H
646#define ECB_H
647
648/* 16 bits major, 16 bits minor */
649#define ECB_VERSION 0x00010006
650
651#ifdef _WIN32
652 typedef signed char int8_t;
653 typedef unsigned char uint8_t;
654 typedef signed short int16_t;
655 typedef unsigned short uint16_t;
656 typedef signed int int32_t;
657 typedef unsigned int uint32_t;
401#if __GNUC__ >= 4 658 #if __GNUC__
402# define expect(expr,value) __builtin_expect ((expr),(value)) 659 typedef signed long long int64_t;
403# define noinline __attribute__ ((noinline)) 660 typedef unsigned long long uint64_t;
661 #else /* _MSC_VER || __BORLANDC__ */
662 typedef signed __int64 int64_t;
663 typedef unsigned __int64 uint64_t;
664 #endif
665 #ifdef _WIN64
666 #define ECB_PTRSIZE 8
667 typedef uint64_t uintptr_t;
668 typedef int64_t intptr_t;
669 #else
670 #define ECB_PTRSIZE 4
671 typedef uint32_t uintptr_t;
672 typedef int32_t intptr_t;
673 #endif
404#else 674#else
405# define expect(expr,value) (expr) 675 #include <inttypes.h>
406# define noinline 676 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
407# if __STDC_VERSION__ < 199901L && __GNUC__ < 2 677 #define ECB_PTRSIZE 8
408# define inline 678 #else
679 #define ECB_PTRSIZE 4
680 #endif
409# endif 681#endif
682
683#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
684#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
685
686/* work around x32 idiocy by defining proper macros */
687#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
688 #if _ILP32
689 #define ECB_AMD64_X32 1
690 #else
691 #define ECB_AMD64 1
410#endif 692 #endif
693#endif
411 694
412#define expect_false(expr) expect ((expr) != 0, 0) 695/* many compilers define _GNUC_ to some versions but then only implement
413#define expect_true(expr) expect ((expr) != 0, 1) 696 * what their idiot authors think are the "more important" extensions,
414#define inline_size static inline 697 * causing enormous grief in return for some better fake benchmark numbers.
415 698 * or so.
416#if EV_MINIMAL 699 * we try to detect these and simply assume they are not gcc - if they have
417# define inline_speed static noinline 700 * an issue with that they should have done it right in the first place.
701 */
702#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
703 #define ECB_GCC_VERSION(major,minor) 0
418#else 704#else
705 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
706#endif
707
708#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
709
710#if __clang__ && defined __has_builtin
711 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
712#else
713 #define ECB_CLANG_BUILTIN(x) 0
714#endif
715
716#if __clang__ && defined __has_extension
717 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
718#else
719 #define ECB_CLANG_EXTENSION(x) 0
720#endif
721
722#define ECB_CPP (__cplusplus+0)
723#define ECB_CPP11 (__cplusplus >= 201103L)
724#define ECB_CPP14 (__cplusplus >= 201402L)
725#define ECB_CPP17 (__cplusplus >= 201703L)
726
727#if ECB_CPP
728 #define ECB_C 0
729 #define ECB_STDC_VERSION 0
730#else
731 #define ECB_C 1
732 #define ECB_STDC_VERSION __STDC_VERSION__
733#endif
734
735#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
736#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
737#define ECB_C17 (ECB_STDC_VERSION >= 201710L)
738
739#if ECB_CPP
740 #define ECB_EXTERN_C extern "C"
741 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
742 #define ECB_EXTERN_C_END }
743#else
744 #define ECB_EXTERN_C extern
745 #define ECB_EXTERN_C_BEG
746 #define ECB_EXTERN_C_END
747#endif
748
749/*****************************************************************************/
750
751/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
752/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
753
754#if ECB_NO_THREADS
755 #define ECB_NO_SMP 1
756#endif
757
758#if ECB_NO_SMP
759 #define ECB_MEMORY_FENCE do { } while (0)
760#endif
761
762/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
763#if __xlC__ && ECB_CPP
764 #include <builtins.h>
765#endif
766
767#if 1400 <= _MSC_VER
768 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
769#endif
770
771#ifndef ECB_MEMORY_FENCE
772 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
773 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
774 #if __i386 || __i386__
775 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
776 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
777 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
778 #elif ECB_GCC_AMD64
779 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
780 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
781 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
782 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
783 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
784 #elif defined __ARM_ARCH_2__ \
785 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
786 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
787 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
788 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
789 || defined __ARM_ARCH_5TEJ__
790 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
791 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
792 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
793 || defined __ARM_ARCH_6T2__
794 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
795 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
796 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
797 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
798 #elif __aarch64__
799 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
800 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
801 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
802 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
803 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
804 #elif defined __s390__ || defined __s390x__
805 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
806 #elif defined __mips__
807 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
808 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
809 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
810 #elif defined __alpha__
811 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
812 #elif defined __hppa__
813 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
814 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
815 #elif defined __ia64__
816 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
817 #elif defined __m68k__
818 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
819 #elif defined __m88k__
820 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
821 #elif defined __sh__
822 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
823 #endif
824 #endif
825#endif
826
827#ifndef ECB_MEMORY_FENCE
828 #if ECB_GCC_VERSION(4,7)
829 /* see comment below (stdatomic.h) about the C11 memory model. */
830 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
831 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
832 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
833 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
834
835 #elif ECB_CLANG_EXTENSION(c_atomic)
836 /* see comment below (stdatomic.h) about the C11 memory model. */
837 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
838 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
839 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
840 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
841
842 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
843 #define ECB_MEMORY_FENCE __sync_synchronize ()
844 #elif _MSC_VER >= 1500 /* VC++ 2008 */
845 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
846 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
847 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
848 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
849 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
850 #elif _MSC_VER >= 1400 /* VC++ 2005 */
851 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
852 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
853 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
854 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
855 #elif defined _WIN32
856 #include <WinNT.h>
857 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
858 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
859 #include <mbarrier.h>
860 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
861 #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
862 #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
863 #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
864 #elif __xlC__
865 #define ECB_MEMORY_FENCE __sync ()
866 #endif
867#endif
868
869#ifndef ECB_MEMORY_FENCE
870 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
871 /* we assume that these memory fences work on all variables/all memory accesses, */
872 /* not just C11 atomics and atomic accesses */
873 #include <stdatomic.h>
874 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
875 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
876 #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
877 #endif
878#endif
879
880#ifndef ECB_MEMORY_FENCE
881 #if !ECB_AVOID_PTHREADS
882 /*
883 * if you get undefined symbol references to pthread_mutex_lock,
884 * or failure to find pthread.h, then you should implement
885 * the ECB_MEMORY_FENCE operations for your cpu/compiler
886 * OR provide pthread.h and link against the posix thread library
887 * of your system.
888 */
889 #include <pthread.h>
890 #define ECB_NEEDS_PTHREADS 1
891 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
892
893 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
894 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
895 #endif
896#endif
897
898#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
899 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
900#endif
901
902#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
903 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
904#endif
905
906#if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
907 #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
908#endif
909
910/*****************************************************************************/
911
912#if ECB_CPP
913 #define ecb_inline static inline
914#elif ECB_GCC_VERSION(2,5)
915 #define ecb_inline static __inline__
916#elif ECB_C99
917 #define ecb_inline static inline
918#else
919 #define ecb_inline static
920#endif
921
922#if ECB_GCC_VERSION(3,3)
923 #define ecb_restrict __restrict__
924#elif ECB_C99
925 #define ecb_restrict restrict
926#else
927 #define ecb_restrict
928#endif
929
930typedef int ecb_bool;
931
932#define ECB_CONCAT_(a, b) a ## b
933#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
934#define ECB_STRINGIFY_(a) # a
935#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
936#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
937
938#define ecb_function_ ecb_inline
939
940#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
941 #define ecb_attribute(attrlist) __attribute__ (attrlist)
942#else
943 #define ecb_attribute(attrlist)
944#endif
945
946#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
947 #define ecb_is_constant(expr) __builtin_constant_p (expr)
948#else
949 /* possible C11 impl for integral types
950 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
951 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
952
953 #define ecb_is_constant(expr) 0
954#endif
955
956#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
957 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
958#else
959 #define ecb_expect(expr,value) (expr)
960#endif
961
962#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
963 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
964#else
965 #define ecb_prefetch(addr,rw,locality)
966#endif
967
968/* no emulation for ecb_decltype */
969#if ECB_CPP11
970 // older implementations might have problems with decltype(x)::type, work around it
971 template<class T> struct ecb_decltype_t { typedef T type; };
972 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
973#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
974 #define ecb_decltype(x) __typeof__ (x)
975#endif
976
977#if _MSC_VER >= 1300
978 #define ecb_deprecated __declspec (deprecated)
979#else
980 #define ecb_deprecated ecb_attribute ((__deprecated__))
981#endif
982
983#if _MSC_VER >= 1500
984 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
985#elif ECB_GCC_VERSION(4,5)
986 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
987#else
988 #define ecb_deprecated_message(msg) ecb_deprecated
989#endif
990
991#if _MSC_VER >= 1400
992 #define ecb_noinline __declspec (noinline)
993#else
994 #define ecb_noinline ecb_attribute ((__noinline__))
995#endif
996
997#define ecb_unused ecb_attribute ((__unused__))
998#define ecb_const ecb_attribute ((__const__))
999#define ecb_pure ecb_attribute ((__pure__))
1000
1001#if ECB_C11 || __IBMC_NORETURN
1002 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
1003 #define ecb_noreturn _Noreturn
1004#elif ECB_CPP11
1005 #define ecb_noreturn [[noreturn]]
1006#elif _MSC_VER >= 1200
1007 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
1008 #define ecb_noreturn __declspec (noreturn)
1009#else
1010 #define ecb_noreturn ecb_attribute ((__noreturn__))
1011#endif
1012
1013#if ECB_GCC_VERSION(4,3)
1014 #define ecb_artificial ecb_attribute ((__artificial__))
1015 #define ecb_hot ecb_attribute ((__hot__))
1016 #define ecb_cold ecb_attribute ((__cold__))
1017#else
1018 #define ecb_artificial
1019 #define ecb_hot
1020 #define ecb_cold
1021#endif
1022
1023/* put around conditional expressions if you are very sure that the */
1024/* expression is mostly true or mostly false. note that these return */
1025/* booleans, not the expression. */
1026#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
1027#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
1028/* for compatibility to the rest of the world */
1029#define ecb_likely(expr) ecb_expect_true (expr)
1030#define ecb_unlikely(expr) ecb_expect_false (expr)
1031
1032/* count trailing zero bits and count # of one bits */
1033#if ECB_GCC_VERSION(3,4) \
1034 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
1035 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
1036 && ECB_CLANG_BUILTIN(__builtin_popcount))
1037 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
1038 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
1039 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
1040 #define ecb_ctz32(x) __builtin_ctz (x)
1041 #define ecb_ctz64(x) __builtin_ctzll (x)
1042 #define ecb_popcount32(x) __builtin_popcount (x)
1043 /* no popcountll */
1044#else
1045 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
1046 ecb_function_ ecb_const int
1047 ecb_ctz32 (uint32_t x)
1048 {
1049#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1050 unsigned long r;
1051 _BitScanForward (&r, x);
1052 return (int)r;
1053#else
1054 int r = 0;
1055
1056 x &= ~x + 1; /* this isolates the lowest bit */
1057
1058#if ECB_branchless_on_i386
1059 r += !!(x & 0xaaaaaaaa) << 0;
1060 r += !!(x & 0xcccccccc) << 1;
1061 r += !!(x & 0xf0f0f0f0) << 2;
1062 r += !!(x & 0xff00ff00) << 3;
1063 r += !!(x & 0xffff0000) << 4;
1064#else
1065 if (x & 0xaaaaaaaa) r += 1;
1066 if (x & 0xcccccccc) r += 2;
1067 if (x & 0xf0f0f0f0) r += 4;
1068 if (x & 0xff00ff00) r += 8;
1069 if (x & 0xffff0000) r += 16;
1070#endif
1071
1072 return r;
1073#endif
1074 }
1075
1076 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
1077 ecb_function_ ecb_const int
1078 ecb_ctz64 (uint64_t x)
1079 {
1080#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1081 unsigned long r;
1082 _BitScanForward64 (&r, x);
1083 return (int)r;
1084#else
1085 int shift = x & 0xffffffff ? 0 : 32;
1086 return ecb_ctz32 (x >> shift) + shift;
1087#endif
1088 }
1089
1090 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1091 ecb_function_ ecb_const int
1092 ecb_popcount32 (uint32_t x)
1093 {
1094 x -= (x >> 1) & 0x55555555;
1095 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1096 x = ((x >> 4) + x) & 0x0f0f0f0f;
1097 x *= 0x01010101;
1098
1099 return x >> 24;
1100 }
1101
1102 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1103 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1104 {
1105#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1106 unsigned long r;
1107 _BitScanReverse (&r, x);
1108 return (int)r;
1109#else
1110 int r = 0;
1111
1112 if (x >> 16) { x >>= 16; r += 16; }
1113 if (x >> 8) { x >>= 8; r += 8; }
1114 if (x >> 4) { x >>= 4; r += 4; }
1115 if (x >> 2) { x >>= 2; r += 2; }
1116 if (x >> 1) { r += 1; }
1117
1118 return r;
1119#endif
1120 }
1121
1122 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1123 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1124 {
1125#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1126 unsigned long r;
1127 _BitScanReverse64 (&r, x);
1128 return (int)r;
1129#else
1130 int r = 0;
1131
1132 if (x >> 32) { x >>= 32; r += 32; }
1133
1134 return r + ecb_ld32 (x);
1135#endif
1136 }
1137#endif
1138
1139ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1140ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1141ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1142ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1143
1144ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1145ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1146{
1147 return ( (x * 0x0802U & 0x22110U)
1148 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1149}
1150
1151ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1152ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1153{
1154 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1155 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1156 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1157 x = ( x >> 8 ) | ( x << 8);
1158
1159 return x;
1160}
1161
1162ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1163ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1164{
1165 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1166 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1167 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1168 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1169 x = ( x >> 16 ) | ( x << 16);
1170
1171 return x;
1172}
1173
1174/* popcount64 is only available on 64 bit cpus as gcc builtin */
1175/* so for this version we are lazy */
1176ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1177ecb_function_ ecb_const int
1178ecb_popcount64 (uint64_t x)
1179{
1180 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1181}
1182
1183ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1184ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1185ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1186ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1187ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1188ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1189ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1190ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1191
1192ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1193ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1194ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1195ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1196ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1197ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1198ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1199ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1200
1201#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1202 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1203 #define ecb_bswap16(x) __builtin_bswap16 (x)
1204 #else
1205 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1206 #endif
1207 #define ecb_bswap32(x) __builtin_bswap32 (x)
1208 #define ecb_bswap64(x) __builtin_bswap64 (x)
1209#elif _MSC_VER
1210 #include <stdlib.h>
1211 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1212 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1213 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1214#else
1215 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1216 ecb_function_ ecb_const uint16_t
1217 ecb_bswap16 (uint16_t x)
1218 {
1219 return ecb_rotl16 (x, 8);
1220 }
1221
1222 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1223 ecb_function_ ecb_const uint32_t
1224 ecb_bswap32 (uint32_t x)
1225 {
1226 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1227 }
1228
1229 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1230 ecb_function_ ecb_const uint64_t
1231 ecb_bswap64 (uint64_t x)
1232 {
1233 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1234 }
1235#endif
1236
1237#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1238 #define ecb_unreachable() __builtin_unreachable ()
1239#else
1240 /* this seems to work fine, but gcc always emits a warning for it :/ */
1241 ecb_inline ecb_noreturn void ecb_unreachable (void);
1242 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1243#endif
1244
1245/* try to tell the compiler that some condition is definitely true */
1246#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1247
1248ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1249ecb_inline ecb_const uint32_t
1250ecb_byteorder_helper (void)
1251{
1252 /* the union code still generates code under pressure in gcc, */
1253 /* but less than using pointers, and always seems to */
1254 /* successfully return a constant. */
1255 /* the reason why we have this horrible preprocessor mess */
1256 /* is to avoid it in all cases, at least on common architectures */
1257 /* or when using a recent enough gcc version (>= 4.6) */
1258#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1259 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1260 #define ECB_LITTLE_ENDIAN 1
1261 return 0x44332211;
1262#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1263 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1264 #define ECB_BIG_ENDIAN 1
1265 return 0x11223344;
1266#else
1267 union
1268 {
1269 uint8_t c[4];
1270 uint32_t u;
1271 } u = { 0x11, 0x22, 0x33, 0x44 };
1272 return u.u;
1273#endif
1274}
1275
1276ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1277ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1278ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1279ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1280
1281#if ECB_GCC_VERSION(3,0) || ECB_C99
1282 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1283#else
1284 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1285#endif
1286
1287#if ECB_CPP
1288 template<typename T>
1289 static inline T ecb_div_rd (T val, T div)
1290 {
1291 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1292 }
1293 template<typename T>
1294 static inline T ecb_div_ru (T val, T div)
1295 {
1296 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1297 }
1298#else
1299 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1300 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1301#endif
1302
1303#if ecb_cplusplus_does_not_suck
1304 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1305 template<typename T, int N>
1306 static inline int ecb_array_length (const T (&arr)[N])
1307 {
1308 return N;
1309 }
1310#else
1311 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1312#endif
1313
1314ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1315ecb_function_ ecb_const uint32_t
1316ecb_binary16_to_binary32 (uint32_t x)
1317{
1318 unsigned int s = (x & 0x8000) << (31 - 15);
1319 int e = (x >> 10) & 0x001f;
1320 unsigned int m = x & 0x03ff;
1321
1322 if (ecb_expect_false (e == 31))
1323 /* infinity or NaN */
1324 e = 255 - (127 - 15);
1325 else if (ecb_expect_false (!e))
1326 {
1327 if (ecb_expect_true (!m))
1328 /* zero, handled by code below by forcing e to 0 */
1329 e = 0 - (127 - 15);
1330 else
1331 {
1332 /* subnormal, renormalise */
1333 unsigned int s = 10 - ecb_ld32 (m);
1334
1335 m = (m << s) & 0x3ff; /* mask implicit bit */
1336 e -= s - 1;
1337 }
1338 }
1339
1340 /* e and m now are normalised, or zero, (or inf or nan) */
1341 e += 127 - 15;
1342
1343 return s | (e << 23) | (m << (23 - 10));
1344}
1345
1346ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1347ecb_function_ ecb_const uint16_t
1348ecb_binary32_to_binary16 (uint32_t x)
1349{
1350 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1351 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1352 unsigned int m = x & 0x007fffff;
1353
1354 x &= 0x7fffffff;
1355
1356 /* if it's within range of binary16 normals, use fast path */
1357 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1358 {
1359 /* mantissa round-to-even */
1360 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1361
1362 /* handle overflow */
1363 if (ecb_expect_false (m >= 0x00800000))
1364 {
1365 m >>= 1;
1366 e += 1;
1367 }
1368
1369 return s | (e << 10) | (m >> (23 - 10));
1370 }
1371
1372 /* handle large numbers and infinity */
1373 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1374 return s | 0x7c00;
1375
1376 /* handle zero, subnormals and small numbers */
1377 if (ecb_expect_true (x < 0x38800000))
1378 {
1379 /* zero */
1380 if (ecb_expect_true (!x))
1381 return s;
1382
1383 /* handle subnormals */
1384
1385 /* too small, will be zero */
1386 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1387 return s;
1388
1389 m |= 0x00800000; /* make implicit bit explicit */
1390
1391 /* very tricky - we need to round to the nearest e (+10) bit value */
1392 {
1393 unsigned int bits = 14 - e;
1394 unsigned int half = (1 << (bits - 1)) - 1;
1395 unsigned int even = (m >> bits) & 1;
1396
1397 /* if this overflows, we will end up with a normalised number */
1398 m = (m + half + even) >> bits;
1399 }
1400
1401 return s | m;
1402 }
1403
1404 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1405 m >>= 13;
1406
1407 return s | 0x7c00 | m | !m;
1408}
1409
1410/*******************************************************************************/
1411/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1412
1413/* basically, everything uses "ieee pure-endian" floating point numbers */
1414/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1415#if 0 \
1416 || __i386 || __i386__ \
1417 || ECB_GCC_AMD64 \
1418 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1419 || defined __s390__ || defined __s390x__ \
1420 || defined __mips__ \
1421 || defined __alpha__ \
1422 || defined __hppa__ \
1423 || defined __ia64__ \
1424 || defined __m68k__ \
1425 || defined __m88k__ \
1426 || defined __sh__ \
1427 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1428 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1429 || defined __aarch64__
1430 #define ECB_STDFP 1
1431 #include <string.h> /* for memcpy */
1432#else
1433 #define ECB_STDFP 0
1434#endif
1435
1436#ifndef ECB_NO_LIBM
1437
1438 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1439
1440 /* only the oldest of old doesn't have this one. solaris. */
1441 #ifdef INFINITY
1442 #define ECB_INFINITY INFINITY
1443 #else
1444 #define ECB_INFINITY HUGE_VAL
1445 #endif
1446
1447 #ifdef NAN
1448 #define ECB_NAN NAN
1449 #else
1450 #define ECB_NAN ECB_INFINITY
1451 #endif
1452
1453 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1454 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1455 #define ecb_frexpf(x,e) frexpf ((x), (e))
1456 #else
1457 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1458 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1459 #endif
1460
1461 /* convert a float to ieee single/binary32 */
1462 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1463 ecb_function_ ecb_const uint32_t
1464 ecb_float_to_binary32 (float x)
1465 {
1466 uint32_t r;
1467
1468 #if ECB_STDFP
1469 memcpy (&r, &x, 4);
1470 #else
1471 /* slow emulation, works for anything but -0 */
1472 uint32_t m;
1473 int e;
1474
1475 if (x == 0e0f ) return 0x00000000U;
1476 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1477 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1478 if (x != x ) return 0x7fbfffffU;
1479
1480 m = ecb_frexpf (x, &e) * 0x1000000U;
1481
1482 r = m & 0x80000000U;
1483
1484 if (r)
1485 m = -m;
1486
1487 if (e <= -126)
1488 {
1489 m &= 0xffffffU;
1490 m >>= (-125 - e);
1491 e = -126;
1492 }
1493
1494 r |= (e + 126) << 23;
1495 r |= m & 0x7fffffU;
1496 #endif
1497
1498 return r;
1499 }
1500
1501 /* converts an ieee single/binary32 to a float */
1502 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1503 ecb_function_ ecb_const float
1504 ecb_binary32_to_float (uint32_t x)
1505 {
1506 float r;
1507
1508 #if ECB_STDFP
1509 memcpy (&r, &x, 4);
1510 #else
1511 /* emulation, only works for normals and subnormals and +0 */
1512 int neg = x >> 31;
1513 int e = (x >> 23) & 0xffU;
1514
1515 x &= 0x7fffffU;
1516
1517 if (e)
1518 x |= 0x800000U;
1519 else
1520 e = 1;
1521
1522 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1523 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1524
1525 r = neg ? -r : r;
1526 #endif
1527
1528 return r;
1529 }
1530
1531 /* convert a double to ieee double/binary64 */
1532 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1533 ecb_function_ ecb_const uint64_t
1534 ecb_double_to_binary64 (double x)
1535 {
1536 uint64_t r;
1537
1538 #if ECB_STDFP
1539 memcpy (&r, &x, 8);
1540 #else
1541 /* slow emulation, works for anything but -0 */
1542 uint64_t m;
1543 int e;
1544
1545 if (x == 0e0 ) return 0x0000000000000000U;
1546 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1547 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1548 if (x != x ) return 0X7ff7ffffffffffffU;
1549
1550 m = frexp (x, &e) * 0x20000000000000U;
1551
1552 r = m & 0x8000000000000000;;
1553
1554 if (r)
1555 m = -m;
1556
1557 if (e <= -1022)
1558 {
1559 m &= 0x1fffffffffffffU;
1560 m >>= (-1021 - e);
1561 e = -1022;
1562 }
1563
1564 r |= ((uint64_t)(e + 1022)) << 52;
1565 r |= m & 0xfffffffffffffU;
1566 #endif
1567
1568 return r;
1569 }
1570
1571 /* converts an ieee double/binary64 to a double */
1572 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1573 ecb_function_ ecb_const double
1574 ecb_binary64_to_double (uint64_t x)
1575 {
1576 double r;
1577
1578 #if ECB_STDFP
1579 memcpy (&r, &x, 8);
1580 #else
1581 /* emulation, only works for normals and subnormals and +0 */
1582 int neg = x >> 63;
1583 int e = (x >> 52) & 0x7ffU;
1584
1585 x &= 0xfffffffffffffU;
1586
1587 if (e)
1588 x |= 0x10000000000000U;
1589 else
1590 e = 1;
1591
1592 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1593 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1594
1595 r = neg ? -r : r;
1596 #endif
1597
1598 return r;
1599 }
1600
1601 /* convert a float to ieee half/binary16 */
1602 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1603 ecb_function_ ecb_const uint16_t
1604 ecb_float_to_binary16 (float x)
1605 {
1606 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1607 }
1608
1609 /* convert an ieee half/binary16 to float */
1610 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1611 ecb_function_ ecb_const float
1612 ecb_binary16_to_float (uint16_t x)
1613 {
1614 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1615 }
1616
1617#endif
1618
1619#endif
1620
1621/* ECB.H END */
1622
1623#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1624/* if your architecture doesn't need memory fences, e.g. because it is
1625 * single-cpu/core, or if you use libev in a project that doesn't use libev
1626 * from multiple threads, then you can define ECB_NO_THREADS when compiling
1627 * libev, in which cases the memory fences become nops.
1628 * alternatively, you can remove this #error and link against libpthread,
1629 * which will then provide the memory fences.
1630 */
1631# error "memory fences not defined for your architecture, please report"
1632#endif
1633
1634#ifndef ECB_MEMORY_FENCE
1635# define ECB_MEMORY_FENCE do { } while (0)
1636# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1637# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1638#endif
1639
1640#define inline_size ecb_inline
1641
1642#if EV_FEATURE_CODE
419# define inline_speed static inline 1643# define inline_speed ecb_inline
1644#else
1645# define inline_speed ecb_noinline static
420#endif 1646#endif
1647
1648/*****************************************************************************/
1649/* raw syscall wrappers */
1650
1651#if EV_NEED_SYSCALL
1652
1653#include <sys/syscall.h>
1654
1655/*
1656 * define some syscall wrappers for common architectures
1657 * this is mostly for nice looks during debugging, not performance.
1658 * our syscalls return < 0, not == -1, on error. which is good
1659 * enough for linux aio.
1660 * TODO: arm is also common nowadays, maybe even mips and x86
1661 * TODO: after implementing this, it suddenly looks like overkill, but its hard to remove...
1662 */
1663#if __GNUC__ && __linux && ECB_AMD64 && !EV_FEATURE_CODE
1664 /* the costly errno access probably kills this for size optimisation */
1665
1666 #define ev_syscall(nr,narg,arg1,arg2,arg3,arg4,arg5,arg6) \
1667 ({ \
1668 long res; \
1669 register unsigned long r6 __asm__ ("r9" ); \
1670 register unsigned long r5 __asm__ ("r8" ); \
1671 register unsigned long r4 __asm__ ("r10"); \
1672 register unsigned long r3 __asm__ ("rdx"); \
1673 register unsigned long r2 __asm__ ("rsi"); \
1674 register unsigned long r1 __asm__ ("rdi"); \
1675 if (narg >= 6) r6 = (unsigned long)(arg6); \
1676 if (narg >= 5) r5 = (unsigned long)(arg5); \
1677 if (narg >= 4) r4 = (unsigned long)(arg4); \
1678 if (narg >= 3) r3 = (unsigned long)(arg3); \
1679 if (narg >= 2) r2 = (unsigned long)(arg2); \
1680 if (narg >= 1) r1 = (unsigned long)(arg1); \
1681 __asm__ __volatile__ ( \
1682 "syscall\n\t" \
1683 : "=a" (res) \
1684 : "0" (nr), "r" (r1), "r" (r2), "r" (r3), "r" (r4), "r" (r5) \
1685 : "cc", "r11", "cx", "memory"); \
1686 errno = -res; \
1687 res; \
1688 })
1689
1690#endif
1691
1692#ifdef ev_syscall
1693 #define ev_syscall0(nr) ev_syscall (nr, 0, 0, 0, 0, 0, 0, 0)
1694 #define ev_syscall1(nr,arg1) ev_syscall (nr, 1, arg1, 0, 0, 0, 0, 0)
1695 #define ev_syscall2(nr,arg1,arg2) ev_syscall (nr, 2, arg1, arg2, 0, 0, 0, 0)
1696 #define ev_syscall3(nr,arg1,arg2,arg3) ev_syscall (nr, 3, arg1, arg2, arg3, 0, 0, 0)
1697 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) ev_syscall (nr, 3, arg1, arg2, arg3, arg4, 0, 0)
1698 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) ev_syscall (nr, 5, arg1, arg2, arg3, arg4, arg5, 0)
1699 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) ev_syscall (nr, 6, arg1, arg2, arg3, arg4, arg5,arg6)
1700#else
1701 #define ev_syscall0(nr) syscall (nr)
1702 #define ev_syscall1(nr,arg1) syscall (nr, arg1)
1703 #define ev_syscall2(nr,arg1,arg2) syscall (nr, arg1, arg2)
1704 #define ev_syscall3(nr,arg1,arg2,arg3) syscall (nr, arg1, arg2, arg3)
1705 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) syscall (nr, arg1, arg2, arg3, arg4)
1706 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) syscall (nr, arg1, arg2, arg3, arg4, arg5)
1707 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) syscall (nr, arg1, arg2, arg3, arg4, arg5,arg6)
1708#endif
1709
1710#endif
1711
1712/*****************************************************************************/
421 1713
422#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1714#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
423 1715
424#if EV_MINPRI == EV_MAXPRI 1716#if EV_MINPRI == EV_MAXPRI
425# define ABSPRI(w) (((W)w), 0) 1717# define ABSPRI(w) (((W)w), 0)
426#else 1718#else
427# define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1719# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
428#endif 1720#endif
429 1721
430#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1722#define EMPTY /* required for microsofts broken pseudo-c compiler */
431#define EMPTY2(a,b) /* used to suppress some warnings */
432 1723
433typedef ev_watcher *W; 1724typedef ev_watcher *W;
434typedef ev_watcher_list *WL; 1725typedef ev_watcher_list *WL;
435typedef ev_watcher_time *WT; 1726typedef ev_watcher_time *WT;
436 1727
437#define ev_active(w) ((W)(w))->active 1728#define ev_active(w) ((W)(w))->active
438#define ev_at(w) ((WT)(w))->at 1729#define ev_at(w) ((WT)(w))->at
439 1730
440#if EV_USE_REALTIME 1731#if EV_USE_REALTIME
441/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 1732/* sig_atomic_t is used to avoid per-thread variables or locking but still */
442/* giving it a reasonably high chance of working on typical architetcures */ 1733/* giving it a reasonably high chance of working on typical architectures */
443static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */ 1734static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
444#endif 1735#endif
445 1736
446#if EV_USE_MONOTONIC 1737#if EV_USE_MONOTONIC
447static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1738static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
448#endif 1739#endif
449 1740
1741#ifndef EV_FD_TO_WIN32_HANDLE
1742# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1743#endif
1744#ifndef EV_WIN32_HANDLE_TO_FD
1745# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1746#endif
1747#ifndef EV_WIN32_CLOSE_FD
1748# define EV_WIN32_CLOSE_FD(fd) close (fd)
1749#endif
1750
450#ifdef _WIN32 1751#ifdef _WIN32
451# include "ev_win32.c" 1752# include "ev_win32.c"
452#endif 1753#endif
453 1754
454/*****************************************************************************/ 1755/*****************************************************************************/
455 1756
1757#if EV_USE_LINUXAIO
1758# include <linux/aio_abi.h> /* probably only needed for aio_context_t */
1759#endif
1760
1761/* define a suitable floor function (only used by periodics atm) */
1762
1763#if EV_USE_FLOOR
1764# include <math.h>
1765# define ev_floor(v) floor (v)
1766#else
1767
1768#include <float.h>
1769
1770/* a floor() replacement function, should be independent of ev_tstamp type */
1771ecb_noinline
1772static ev_tstamp
1773ev_floor (ev_tstamp v)
1774{
1775 /* the choice of shift factor is not terribly important */
1776#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1777 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1778#else
1779 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1780#endif
1781
1782 /* special treatment for negative arguments */
1783 if (ecb_expect_false (v < 0.))
1784 {
1785 ev_tstamp f = -ev_floor (-v);
1786
1787 return f - (f == v ? 0 : 1);
1788 }
1789
1790 /* argument too large for an unsigned long? then reduce it */
1791 if (ecb_expect_false (v >= shift))
1792 {
1793 ev_tstamp f;
1794
1795 if (v == v - 1.)
1796 return v; /* very large numbers are assumed to be integer */
1797
1798 f = shift * ev_floor (v * (1. / shift));
1799 return f + ev_floor (v - f);
1800 }
1801
1802 /* fits into an unsigned long */
1803 return (unsigned long)v;
1804}
1805
1806#endif
1807
1808/*****************************************************************************/
1809
1810#ifdef __linux
1811# include <sys/utsname.h>
1812#endif
1813
1814ecb_noinline ecb_cold
1815static unsigned int
1816ev_linux_version (void)
1817{
1818#ifdef __linux
1819 unsigned int v = 0;
1820 struct utsname buf;
1821 int i;
1822 char *p = buf.release;
1823
1824 if (uname (&buf))
1825 return 0;
1826
1827 for (i = 3+1; --i; )
1828 {
1829 unsigned int c = 0;
1830
1831 for (;;)
1832 {
1833 if (*p >= '0' && *p <= '9')
1834 c = c * 10 + *p++ - '0';
1835 else
1836 {
1837 p += *p == '.';
1838 break;
1839 }
1840 }
1841
1842 v = (v << 8) | c;
1843 }
1844
1845 return v;
1846#else
1847 return 0;
1848#endif
1849}
1850
1851/*****************************************************************************/
1852
1853#if EV_AVOID_STDIO
1854ecb_noinline ecb_cold
1855static void
1856ev_printerr (const char *msg)
1857{
1858 write (STDERR_FILENO, msg, strlen (msg));
1859}
1860#endif
1861
456static void (*syserr_cb)(const char *msg); 1862static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
457 1863
1864ecb_cold
458void 1865void
459ev_set_syserr_cb (void (*cb)(const char *msg)) 1866ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
460{ 1867{
461 syserr_cb = cb; 1868 syserr_cb = cb;
462} 1869}
463 1870
464static void noinline 1871ecb_noinline ecb_cold
1872static void
465ev_syserr (const char *msg) 1873ev_syserr (const char *msg)
466{ 1874{
467 if (!msg) 1875 if (!msg)
468 msg = "(libev) system error"; 1876 msg = "(libev) system error";
469 1877
470 if (syserr_cb) 1878 if (syserr_cb)
471 syserr_cb (msg); 1879 syserr_cb (msg);
472 else 1880 else
473 { 1881 {
1882#if EV_AVOID_STDIO
1883 ev_printerr (msg);
1884 ev_printerr (": ");
1885 ev_printerr (strerror (errno));
1886 ev_printerr ("\n");
1887#else
474 perror (msg); 1888 perror (msg);
1889#endif
475 abort (); 1890 abort ();
476 } 1891 }
477} 1892}
478 1893
479static void * 1894static void *
480ev_realloc_emul (void *ptr, long size) 1895ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
481{ 1896{
482 /* some systems, notably openbsd and darwin, fail to properly 1897 /* some systems, notably openbsd and darwin, fail to properly
483 * implement realloc (x, 0) (as required by both ansi c-98 and 1898 * implement realloc (x, 0) (as required by both ansi c-89 and
484 * the single unix specification, so work around them here. 1899 * the single unix specification, so work around them here.
1900 * recently, also (at least) fedora and debian started breaking it,
1901 * despite documenting it otherwise.
485 */ 1902 */
486 1903
487 if (size) 1904 if (size)
488 return realloc (ptr, size); 1905 return realloc (ptr, size);
489 1906
490 free (ptr); 1907 free (ptr);
491 return 0; 1908 return 0;
492} 1909}
493 1910
494static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1911static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
495 1912
1913ecb_cold
496void 1914void
497ev_set_allocator (void *(*cb)(void *ptr, long size)) 1915ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
498{ 1916{
499 alloc = cb; 1917 alloc = cb;
500} 1918}
501 1919
502inline_speed void * 1920inline_speed void *
504{ 1922{
505 ptr = alloc (ptr, size); 1923 ptr = alloc (ptr, size);
506 1924
507 if (!ptr && size) 1925 if (!ptr && size)
508 { 1926 {
1927#if EV_AVOID_STDIO
1928 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1929#else
509 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1930 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1931#endif
510 abort (); 1932 abort ();
511 } 1933 }
512 1934
513 return ptr; 1935 return ptr;
514} 1936}
525typedef struct 1947typedef struct
526{ 1948{
527 WL head; 1949 WL head;
528 unsigned char events; /* the events watched for */ 1950 unsigned char events; /* the events watched for */
529 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */ 1951 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
530 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ 1952 unsigned char emask; /* some backends store the actual kernel mask in here */
531 unsigned char unused; 1953 unsigned char eflags; /* flags field for use by backends */
532#if EV_USE_EPOLL 1954#if EV_USE_EPOLL
533 unsigned int egen; /* generation counter to counter epoll bugs */ 1955 unsigned int egen; /* generation counter to counter epoll bugs */
534#endif 1956#endif
535#if EV_SELECT_IS_WINSOCKET 1957#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
536 SOCKET handle; 1958 SOCKET handle;
1959#endif
1960#if EV_USE_IOCP
1961 OVERLAPPED or, ow;
537#endif 1962#endif
538} ANFD; 1963} ANFD;
539 1964
540/* stores the pending event set for a given watcher */ 1965/* stores the pending event set for a given watcher */
541typedef struct 1966typedef struct
583 #undef VAR 2008 #undef VAR
584 }; 2009 };
585 #include "ev_wrap.h" 2010 #include "ev_wrap.h"
586 2011
587 static struct ev_loop default_loop_struct; 2012 static struct ev_loop default_loop_struct;
588 struct ev_loop *ev_default_loop_ptr; 2013 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
589 2014
590#else 2015#else
591 2016
592 ev_tstamp ev_rt_now; 2017 EV_API_DECL ev_tstamp ev_rt_now = EV_TS_CONST (0.); /* needs to be initialised to make it a definition despite extern */
593 #define VAR(name,decl) static decl; 2018 #define VAR(name,decl) static decl;
594 #include "ev_vars.h" 2019 #include "ev_vars.h"
595 #undef VAR 2020 #undef VAR
596 2021
597 static int ev_default_loop_ptr; 2022 static int ev_default_loop_ptr;
598 2023
599#endif 2024#endif
600 2025
601#if EV_MINIMAL < 2 2026#if EV_FEATURE_API
602# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A) 2027# define EV_RELEASE_CB if (ecb_expect_false (release_cb)) release_cb (EV_A)
603# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A) 2028# define EV_ACQUIRE_CB if (ecb_expect_false (acquire_cb)) acquire_cb (EV_A)
604# define EV_INVOKE_PENDING invoke_cb (EV_A) 2029# define EV_INVOKE_PENDING invoke_cb (EV_A)
605#else 2030#else
606# define EV_RELEASE_CB (void)0 2031# define EV_RELEASE_CB (void)0
607# define EV_ACQUIRE_CB (void)0 2032# define EV_ACQUIRE_CB (void)0
608# define EV_INVOKE_PENDING ev_invoke_pending (EV_A) 2033# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
609#endif 2034#endif
610 2035
611#define EVUNLOOP_RECURSE 0x80 2036#define EVBREAK_RECURSE 0x80
612 2037
613/*****************************************************************************/ 2038/*****************************************************************************/
614 2039
615#ifndef EV_HAVE_EV_TIME 2040#ifndef EV_HAVE_EV_TIME
616ev_tstamp 2041ev_tstamp
617ev_time (void) 2042ev_time (void) EV_NOEXCEPT
618{ 2043{
619#if EV_USE_REALTIME 2044#if EV_USE_REALTIME
620 if (expect_true (have_realtime)) 2045 if (ecb_expect_true (have_realtime))
621 { 2046 {
622 struct timespec ts; 2047 struct timespec ts;
623 clock_gettime (CLOCK_REALTIME, &ts); 2048 clock_gettime (CLOCK_REALTIME, &ts);
624 return ts.tv_sec + ts.tv_nsec * 1e-9; 2049 return EV_TS_GET (ts);
625 } 2050 }
626#endif 2051#endif
627 2052
2053 {
628 struct timeval tv; 2054 struct timeval tv;
629 gettimeofday (&tv, 0); 2055 gettimeofday (&tv, 0);
630 return tv.tv_sec + tv.tv_usec * 1e-6; 2056 return EV_TV_GET (tv);
2057 }
631} 2058}
632#endif 2059#endif
633 2060
634inline_size ev_tstamp 2061inline_size ev_tstamp
635get_clock (void) 2062get_clock (void)
636{ 2063{
637#if EV_USE_MONOTONIC 2064#if EV_USE_MONOTONIC
638 if (expect_true (have_monotonic)) 2065 if (ecb_expect_true (have_monotonic))
639 { 2066 {
640 struct timespec ts; 2067 struct timespec ts;
641 clock_gettime (CLOCK_MONOTONIC, &ts); 2068 clock_gettime (CLOCK_MONOTONIC, &ts);
642 return ts.tv_sec + ts.tv_nsec * 1e-9; 2069 return EV_TS_GET (ts);
643 } 2070 }
644#endif 2071#endif
645 2072
646 return ev_time (); 2073 return ev_time ();
647} 2074}
648 2075
649#if EV_MULTIPLICITY 2076#if EV_MULTIPLICITY
650ev_tstamp 2077ev_tstamp
651ev_now (EV_P) 2078ev_now (EV_P) EV_NOEXCEPT
652{ 2079{
653 return ev_rt_now; 2080 return ev_rt_now;
654} 2081}
655#endif 2082#endif
656 2083
657void 2084void
658ev_sleep (ev_tstamp delay) 2085ev_sleep (ev_tstamp delay) EV_NOEXCEPT
659{ 2086{
660 if (delay > 0.) 2087 if (delay > EV_TS_CONST (0.))
661 { 2088 {
662#if EV_USE_NANOSLEEP 2089#if EV_USE_NANOSLEEP
663 struct timespec ts; 2090 struct timespec ts;
664 2091
665 ts.tv_sec = (time_t)delay; 2092 EV_TS_SET (ts, delay);
666 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
667
668 nanosleep (&ts, 0); 2093 nanosleep (&ts, 0);
669#elif defined(_WIN32) 2094#elif defined _WIN32
2095 /* maybe this should round up, as ms is very low resolution */
2096 /* compared to select (µs) or nanosleep (ns) */
670 Sleep ((unsigned long)(delay * 1e3)); 2097 Sleep ((unsigned long)(EV_TS_TO_MSEC (delay)));
671#else 2098#else
672 struct timeval tv; 2099 struct timeval tv;
673
674 tv.tv_sec = (time_t)delay;
675 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
676 2100
677 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 2101 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
678 /* something not guaranteed by newer posix versions, but guaranteed */ 2102 /* something not guaranteed by newer posix versions, but guaranteed */
679 /* by older ones */ 2103 /* by older ones */
2104 EV_TV_SET (tv, delay);
680 select (0, 0, 0, 0, &tv); 2105 select (0, 0, 0, 0, &tv);
681#endif 2106#endif
682 } 2107 }
683} 2108}
684 2109
685/*****************************************************************************/ 2110/*****************************************************************************/
686 2111
687#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 2112#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
688 2113
689/* find a suitable new size for the given array, */ 2114/* find a suitable new size for the given array, */
690/* hopefully by rounding to a ncie-to-malloc size */ 2115/* hopefully by rounding to a nice-to-malloc size */
691inline_size int 2116inline_size int
692array_nextsize (int elem, int cur, int cnt) 2117array_nextsize (int elem, int cur, int cnt)
693{ 2118{
694 int ncur = cur + 1; 2119 int ncur = cur + 1;
695 2120
696 do 2121 do
697 ncur <<= 1; 2122 ncur <<= 1;
698 while (cnt > ncur); 2123 while (cnt > ncur);
699 2124
700 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 2125 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
701 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 2126 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
702 { 2127 {
703 ncur *= elem; 2128 ncur *= elem;
704 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 2129 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
705 ncur = ncur - sizeof (void *) * 4; 2130 ncur = ncur - sizeof (void *) * 4;
707 } 2132 }
708 2133
709 return ncur; 2134 return ncur;
710} 2135}
711 2136
712static noinline void * 2137ecb_noinline ecb_cold
2138static void *
713array_realloc (int elem, void *base, int *cur, int cnt) 2139array_realloc (int elem, void *base, int *cur, int cnt)
714{ 2140{
715 *cur = array_nextsize (elem, *cur, cnt); 2141 *cur = array_nextsize (elem, *cur, cnt);
716 return ev_realloc (base, elem * *cur); 2142 return ev_realloc (base, elem * *cur);
717} 2143}
718 2144
2145#define array_needsize_noinit(base,offset,count)
2146
719#define array_init_zero(base,count) \ 2147#define array_needsize_zerofill(base,offset,count) \
720 memset ((void *)(base), 0, sizeof (*(base)) * (count)) 2148 memset ((void *)(base + offset), 0, sizeof (*(base)) * (count))
721 2149
722#define array_needsize(type,base,cur,cnt,init) \ 2150#define array_needsize(type,base,cur,cnt,init) \
723 if (expect_false ((cnt) > (cur))) \ 2151 if (ecb_expect_false ((cnt) > (cur))) \
724 { \ 2152 { \
725 int ocur_ = (cur); \ 2153 ecb_unused int ocur_ = (cur); \
726 (base) = (type *)array_realloc \ 2154 (base) = (type *)array_realloc \
727 (sizeof (type), (base), &(cur), (cnt)); \ 2155 (sizeof (type), (base), &(cur), (cnt)); \
728 init ((base) + (ocur_), (cur) - ocur_); \ 2156 init ((base), ocur_, ((cur) - ocur_)); \
729 } 2157 }
730 2158
731#if 0 2159#if 0
732#define array_slim(type,stem) \ 2160#define array_slim(type,stem) \
733 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 2161 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
742 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0 2170 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
743 2171
744/*****************************************************************************/ 2172/*****************************************************************************/
745 2173
746/* dummy callback for pending events */ 2174/* dummy callback for pending events */
747static void noinline 2175ecb_noinline
2176static void
748pendingcb (EV_P_ ev_prepare *w, int revents) 2177pendingcb (EV_P_ ev_prepare *w, int revents)
749{ 2178{
750} 2179}
751 2180
752void noinline 2181ecb_noinline
2182void
753ev_feed_event (EV_P_ void *w, int revents) 2183ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
754{ 2184{
755 W w_ = (W)w; 2185 W w_ = (W)w;
756 int pri = ABSPRI (w_); 2186 int pri = ABSPRI (w_);
757 2187
758 if (expect_false (w_->pending)) 2188 if (ecb_expect_false (w_->pending))
759 pendings [pri][w_->pending - 1].events |= revents; 2189 pendings [pri][w_->pending - 1].events |= revents;
760 else 2190 else
761 { 2191 {
762 w_->pending = ++pendingcnt [pri]; 2192 w_->pending = ++pendingcnt [pri];
763 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 2193 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
764 pendings [pri][w_->pending - 1].w = w_; 2194 pendings [pri][w_->pending - 1].w = w_;
765 pendings [pri][w_->pending - 1].events = revents; 2195 pendings [pri][w_->pending - 1].events = revents;
766 } 2196 }
2197
2198 pendingpri = NUMPRI - 1;
767} 2199}
768 2200
769inline_speed void 2201inline_speed void
770feed_reverse (EV_P_ W w) 2202feed_reverse (EV_P_ W w)
771{ 2203{
772 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2); 2204 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
773 rfeeds [rfeedcnt++] = w; 2205 rfeeds [rfeedcnt++] = w;
774} 2206}
775 2207
776inline_size void 2208inline_size void
777feed_reverse_done (EV_P_ int revents) 2209feed_reverse_done (EV_P_ int revents)
791} 2223}
792 2224
793/*****************************************************************************/ 2225/*****************************************************************************/
794 2226
795inline_speed void 2227inline_speed void
796fd_event_nc (EV_P_ int fd, int revents) 2228fd_event_nocheck (EV_P_ int fd, int revents)
797{ 2229{
798 ANFD *anfd = anfds + fd; 2230 ANFD *anfd = anfds + fd;
799 ev_io *w; 2231 ev_io *w;
800 2232
801 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2233 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
812inline_speed void 2244inline_speed void
813fd_event (EV_P_ int fd, int revents) 2245fd_event (EV_P_ int fd, int revents)
814{ 2246{
815 ANFD *anfd = anfds + fd; 2247 ANFD *anfd = anfds + fd;
816 2248
817 if (expect_true (!anfd->reify)) 2249 if (ecb_expect_true (!anfd->reify))
818 fd_event_nc (EV_A_ fd, revents); 2250 fd_event_nocheck (EV_A_ fd, revents);
819} 2251}
820 2252
821void 2253void
822ev_feed_fd_event (EV_P_ int fd, int revents) 2254ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
823{ 2255{
824 if (fd >= 0 && fd < anfdmax) 2256 if (fd >= 0 && fd < anfdmax)
825 fd_event_nc (EV_A_ fd, revents); 2257 fd_event_nocheck (EV_A_ fd, revents);
826} 2258}
827 2259
828/* make sure the external fd watch events are in-sync */ 2260/* make sure the external fd watch events are in-sync */
829/* with the kernel/libev internal state */ 2261/* with the kernel/libev internal state */
830inline_size void 2262inline_size void
831fd_reify (EV_P) 2263fd_reify (EV_P)
832{ 2264{
833 int i; 2265 int i;
834 2266
2267 /* most backends do not modify the fdchanges list in backend_modfiy.
2268 * except io_uring, which has fixed-size buffers which might force us
2269 * to handle events in backend_modify, causing fdchangesd to be amended,
2270 * which could result in an endless loop.
2271 * to avoid this, we do not dynamically handle fds that were added
2272 * during fd_reify. that menas thast for those backends, fdchangecnt
2273 * might be non-zero during poll, which must cause them to not block.
2274 * to not put too much of a burden on other backends, this detail
2275 * needs to be handled in the backend.
2276 */
2277 int changecnt = fdchangecnt;
2278
2279#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
835 for (i = 0; i < fdchangecnt; ++i) 2280 for (i = 0; i < changecnt; ++i)
2281 {
2282 int fd = fdchanges [i];
2283 ANFD *anfd = anfds + fd;
2284
2285 if (anfd->reify & EV__IOFDSET && anfd->head)
2286 {
2287 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2288
2289 if (handle != anfd->handle)
2290 {
2291 unsigned long arg;
2292
2293 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2294
2295 /* handle changed, but fd didn't - we need to do it in two steps */
2296 backend_modify (EV_A_ fd, anfd->events, 0);
2297 anfd->events = 0;
2298 anfd->handle = handle;
2299 }
2300 }
2301 }
2302#endif
2303
2304 for (i = 0; i < changecnt; ++i)
836 { 2305 {
837 int fd = fdchanges [i]; 2306 int fd = fdchanges [i];
838 ANFD *anfd = anfds + fd; 2307 ANFD *anfd = anfds + fd;
839 ev_io *w; 2308 ev_io *w;
840 2309
841 unsigned char events = 0; 2310 unsigned char o_events = anfd->events;
2311 unsigned char o_reify = anfd->reify;
842 2312
843 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2313 anfd->reify = 0;
844 events |= (unsigned char)w->events;
845 2314
846#if EV_SELECT_IS_WINSOCKET 2315 /*if (ecb_expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
847 if (events)
848 { 2316 {
849 unsigned long arg; 2317 anfd->events = 0;
850 #ifdef EV_FD_TO_WIN32_HANDLE 2318
851 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 2319 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
852 #else 2320 anfd->events |= (unsigned char)w->events;
853 anfd->handle = _get_osfhandle (fd); 2321
854 #endif 2322 if (o_events != anfd->events)
855 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 2323 o_reify = EV__IOFDSET; /* actually |= */
856 } 2324 }
857#endif
858 2325
859 { 2326 if (o_reify & EV__IOFDSET)
860 unsigned char o_events = anfd->events;
861 unsigned char o_reify = anfd->reify;
862
863 anfd->reify = 0;
864 anfd->events = events;
865
866 if (o_events != events || o_reify & EV__IOFDSET)
867 backend_modify (EV_A_ fd, o_events, events); 2327 backend_modify (EV_A_ fd, o_events, anfd->events);
868 } 2328 }
869 }
870 2329
2330 /* normally, fdchangecnt hasn't changed. if it has, then new fds have been added.
2331 * this is a rare case (see beginning comment in this function), so we copy them to the
2332 * front and hope the backend handles this case.
2333 */
2334 if (ecb_expect_false (fdchangecnt != changecnt))
2335 memmove (fdchanges, fdchanges + changecnt, (fdchangecnt - changecnt) * sizeof (*fdchanges));
2336
871 fdchangecnt = 0; 2337 fdchangecnt -= changecnt;
872} 2338}
873 2339
874/* something about the given fd changed */ 2340/* something about the given fd changed */
875inline_size void 2341inline_size
2342void
876fd_change (EV_P_ int fd, int flags) 2343fd_change (EV_P_ int fd, int flags)
877{ 2344{
878 unsigned char reify = anfds [fd].reify; 2345 unsigned char reify = anfds [fd].reify;
879 anfds [fd].reify |= flags; 2346 anfds [fd].reify |= flags;
880 2347
881 if (expect_true (!reify)) 2348 if (ecb_expect_true (!reify))
882 { 2349 {
883 ++fdchangecnt; 2350 ++fdchangecnt;
884 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 2351 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
885 fdchanges [fdchangecnt - 1] = fd; 2352 fdchanges [fdchangecnt - 1] = fd;
886 } 2353 }
887} 2354}
888 2355
889/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */ 2356/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
890inline_speed void 2357inline_speed ecb_cold void
891fd_kill (EV_P_ int fd) 2358fd_kill (EV_P_ int fd)
892{ 2359{
893 ev_io *w; 2360 ev_io *w;
894 2361
895 while ((w = (ev_io *)anfds [fd].head)) 2362 while ((w = (ev_io *)anfds [fd].head))
897 ev_io_stop (EV_A_ w); 2364 ev_io_stop (EV_A_ w);
898 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2365 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
899 } 2366 }
900} 2367}
901 2368
902/* check whether the given fd is atcually valid, for error recovery */ 2369/* check whether the given fd is actually valid, for error recovery */
903inline_size int 2370inline_size ecb_cold int
904fd_valid (int fd) 2371fd_valid (int fd)
905{ 2372{
906#ifdef _WIN32 2373#ifdef _WIN32
907 return _get_osfhandle (fd) != -1; 2374 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
908#else 2375#else
909 return fcntl (fd, F_GETFD) != -1; 2376 return fcntl (fd, F_GETFD) != -1;
910#endif 2377#endif
911} 2378}
912 2379
913/* called on EBADF to verify fds */ 2380/* called on EBADF to verify fds */
914static void noinline 2381ecb_noinline ecb_cold
2382static void
915fd_ebadf (EV_P) 2383fd_ebadf (EV_P)
916{ 2384{
917 int fd; 2385 int fd;
918 2386
919 for (fd = 0; fd < anfdmax; ++fd) 2387 for (fd = 0; fd < anfdmax; ++fd)
921 if (!fd_valid (fd) && errno == EBADF) 2389 if (!fd_valid (fd) && errno == EBADF)
922 fd_kill (EV_A_ fd); 2390 fd_kill (EV_A_ fd);
923} 2391}
924 2392
925/* called on ENOMEM in select/poll to kill some fds and retry */ 2393/* called on ENOMEM in select/poll to kill some fds and retry */
926static void noinline 2394ecb_noinline ecb_cold
2395static void
927fd_enomem (EV_P) 2396fd_enomem (EV_P)
928{ 2397{
929 int fd; 2398 int fd;
930 2399
931 for (fd = anfdmax; fd--; ) 2400 for (fd = anfdmax; fd--; )
932 if (anfds [fd].events) 2401 if (anfds [fd].events)
933 { 2402 {
934 fd_kill (EV_A_ fd); 2403 fd_kill (EV_A_ fd);
935 return; 2404 break;
936 } 2405 }
937} 2406}
938 2407
939/* usually called after fork if backend needs to re-arm all fds from scratch */ 2408/* usually called after fork if backend needs to re-arm all fds from scratch */
940static void noinline 2409ecb_noinline
2410static void
941fd_rearm_all (EV_P) 2411fd_rearm_all (EV_P)
942{ 2412{
943 int fd; 2413 int fd;
944 2414
945 for (fd = 0; fd < anfdmax; ++fd) 2415 for (fd = 0; fd < anfdmax; ++fd)
949 anfds [fd].emask = 0; 2419 anfds [fd].emask = 0;
950 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY); 2420 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
951 } 2421 }
952} 2422}
953 2423
2424/* used to prepare libev internal fd's */
2425/* this is not fork-safe */
2426inline_speed void
2427fd_intern (int fd)
2428{
2429#ifdef _WIN32
2430 unsigned long arg = 1;
2431 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2432#else
2433 fcntl (fd, F_SETFD, FD_CLOEXEC);
2434 fcntl (fd, F_SETFL, O_NONBLOCK);
2435#endif
2436}
2437
954/*****************************************************************************/ 2438/*****************************************************************************/
955 2439
956/* 2440/*
957 * the heap functions want a real array index. array index 0 uis guaranteed to not 2441 * the heap functions want a real array index. array index 0 is guaranteed to not
958 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 2442 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
959 * the branching factor of the d-tree. 2443 * the branching factor of the d-tree.
960 */ 2444 */
961 2445
962/* 2446/*
984 ev_tstamp minat; 2468 ev_tstamp minat;
985 ANHE *minpos; 2469 ANHE *minpos;
986 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1; 2470 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
987 2471
988 /* find minimum child */ 2472 /* find minimum child */
989 if (expect_true (pos + DHEAP - 1 < E)) 2473 if (ecb_expect_true (pos + DHEAP - 1 < E))
990 { 2474 {
991 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 2475 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
992 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 2476 if ( minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
993 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 2477 if ( minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
994 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); 2478 if ( minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
995 } 2479 }
996 else if (pos < E) 2480 else if (pos < E)
997 { 2481 {
998 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 2482 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
999 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 2483 if (pos + 1 < E && minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1000 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 2484 if (pos + 2 < E && minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1001 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); 2485 if (pos + 3 < E && minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1002 } 2486 }
1003 else 2487 else
1004 break; 2488 break;
1005 2489
1006 if (ANHE_at (he) <= minat) 2490 if (ANHE_at (he) <= minat)
1014 2498
1015 heap [k] = he; 2499 heap [k] = he;
1016 ev_active (ANHE_w (he)) = k; 2500 ev_active (ANHE_w (he)) = k;
1017} 2501}
1018 2502
1019#else /* 4HEAP */ 2503#else /* not 4HEAP */
1020 2504
1021#define HEAP0 1 2505#define HEAP0 1
1022#define HPARENT(k) ((k) >> 1) 2506#define HPARENT(k) ((k) >> 1)
1023#define UPHEAP_DONE(p,k) (!(p)) 2507#define UPHEAP_DONE(p,k) (!(p))
1024 2508
1030 2514
1031 for (;;) 2515 for (;;)
1032 { 2516 {
1033 int c = k << 1; 2517 int c = k << 1;
1034 2518
1035 if (c > N + HEAP0 - 1) 2519 if (c >= N + HEAP0)
1036 break; 2520 break;
1037 2521
1038 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 2522 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1039 ? 1 : 0; 2523 ? 1 : 0;
1040 2524
1076 2560
1077/* move an element suitably so it is in a correct place */ 2561/* move an element suitably so it is in a correct place */
1078inline_size void 2562inline_size void
1079adjustheap (ANHE *heap, int N, int k) 2563adjustheap (ANHE *heap, int N, int k)
1080{ 2564{
1081 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 2565 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1082 upheap (heap, k); 2566 upheap (heap, k);
1083 else 2567 else
1084 downheap (heap, N, k); 2568 downheap (heap, N, k);
1085} 2569}
1086 2570
1099/*****************************************************************************/ 2583/*****************************************************************************/
1100 2584
1101/* associate signal watchers to a signal signal */ 2585/* associate signal watchers to a signal signal */
1102typedef struct 2586typedef struct
1103{ 2587{
2588 EV_ATOMIC_T pending;
2589#if EV_MULTIPLICITY
2590 EV_P;
2591#endif
1104 WL head; 2592 WL head;
1105 EV_ATOMIC_T gotsig;
1106} ANSIG; 2593} ANSIG;
1107 2594
1108static ANSIG *signals; 2595static ANSIG signals [EV_NSIG - 1];
1109static int signalmax;
1110
1111static EV_ATOMIC_T gotsig;
1112 2596
1113/*****************************************************************************/ 2597/*****************************************************************************/
1114 2598
1115/* used to prepare libev internal fd's */ 2599#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1116/* this is not fork-safe */ 2600
2601ecb_noinline ecb_cold
2602static void
2603evpipe_init (EV_P)
2604{
2605 if (!ev_is_active (&pipe_w))
2606 {
2607 int fds [2];
2608
2609# if EV_USE_EVENTFD
2610 fds [0] = -1;
2611 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2612 if (fds [1] < 0 && errno == EINVAL)
2613 fds [1] = eventfd (0, 0);
2614
2615 if (fds [1] < 0)
2616# endif
2617 {
2618 while (pipe (fds))
2619 ev_syserr ("(libev) error creating signal/async pipe");
2620
2621 fd_intern (fds [0]);
2622 }
2623
2624 evpipe [0] = fds [0];
2625
2626 if (evpipe [1] < 0)
2627 evpipe [1] = fds [1]; /* first call, set write fd */
2628 else
2629 {
2630 /* on subsequent calls, do not change evpipe [1] */
2631 /* so that evpipe_write can always rely on its value. */
2632 /* this branch does not do anything sensible on windows, */
2633 /* so must not be executed on windows */
2634
2635 dup2 (fds [1], evpipe [1]);
2636 close (fds [1]);
2637 }
2638
2639 fd_intern (evpipe [1]);
2640
2641 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2642 ev_io_start (EV_A_ &pipe_w);
2643 ev_unref (EV_A); /* watcher should not keep loop alive */
2644 }
2645}
2646
1117inline_speed void 2647inline_speed void
1118fd_intern (int fd) 2648evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1119{ 2649{
1120#ifdef _WIN32 2650 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
1121 unsigned long arg = 1;
1122 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1123#else
1124 fcntl (fd, F_SETFD, FD_CLOEXEC);
1125 fcntl (fd, F_SETFL, O_NONBLOCK);
1126#endif
1127}
1128 2651
1129static void noinline 2652 if (ecb_expect_true (*flag))
1130evpipe_init (EV_P) 2653 return;
1131{ 2654
1132 if (!ev_is_active (&pipe_w)) 2655 *flag = 1;
2656 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2657
2658 pipe_write_skipped = 1;
2659
2660 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2661
2662 if (pipe_write_wanted)
1133 { 2663 {
2664 int old_errno;
2665
2666 pipe_write_skipped = 0;
2667 ECB_MEMORY_FENCE_RELEASE;
2668
2669 old_errno = errno; /* save errno because write will clobber it */
2670
1134#if EV_USE_EVENTFD 2671#if EV_USE_EVENTFD
1135 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC); 2672 if (evpipe [0] < 0)
1136 if (evfd < 0 && errno == EINVAL)
1137 evfd = eventfd (0, 0);
1138
1139 if (evfd >= 0)
1140 { 2673 {
1141 evpipe [0] = -1; 2674 uint64_t counter = 1;
1142 fd_intern (evfd); /* doing it twice doesn't hurt */ 2675 write (evpipe [1], &counter, sizeof (uint64_t));
1143 ev_io_set (&pipe_w, evfd, EV_READ);
1144 } 2676 }
1145 else 2677 else
1146#endif 2678#endif
1147 { 2679 {
1148 while (pipe (evpipe)) 2680#ifdef _WIN32
1149 ev_syserr ("(libev) error creating signal/async pipe"); 2681 WSABUF buf;
1150 2682 DWORD sent;
1151 fd_intern (evpipe [0]); 2683 buf.buf = (char *)&buf;
1152 fd_intern (evpipe [1]); 2684 buf.len = 1;
1153 ev_io_set (&pipe_w, evpipe [0], EV_READ); 2685 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2686#else
2687 write (evpipe [1], &(evpipe [1]), 1);
2688#endif
1154 } 2689 }
1155
1156 ev_io_start (EV_A_ &pipe_w);
1157 ev_unref (EV_A); /* watcher should not keep loop alive */
1158 }
1159}
1160
1161inline_size void
1162evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1163{
1164 if (!*flag)
1165 {
1166 int old_errno = errno; /* save errno because write might clobber it */
1167
1168 *flag = 1;
1169
1170#if EV_USE_EVENTFD
1171 if (evfd >= 0)
1172 {
1173 uint64_t counter = 1;
1174 write (evfd, &counter, sizeof (uint64_t));
1175 }
1176 else
1177#endif
1178 write (evpipe [1], &old_errno, 1);
1179 2690
1180 errno = old_errno; 2691 errno = old_errno;
1181 } 2692 }
1182} 2693}
1183 2694
1184/* called whenever the libev signal pipe */ 2695/* called whenever the libev signal pipe */
1185/* got some events (signal, async) */ 2696/* got some events (signal, async) */
1186static void 2697static void
1187pipecb (EV_P_ ev_io *iow, int revents) 2698pipecb (EV_P_ ev_io *iow, int revents)
1188{ 2699{
2700 int i;
2701
2702 if (revents & EV_READ)
2703 {
1189#if EV_USE_EVENTFD 2704#if EV_USE_EVENTFD
1190 if (evfd >= 0) 2705 if (evpipe [0] < 0)
1191 { 2706 {
1192 uint64_t counter; 2707 uint64_t counter;
1193 read (evfd, &counter, sizeof (uint64_t)); 2708 read (evpipe [1], &counter, sizeof (uint64_t));
1194 } 2709 }
1195 else 2710 else
1196#endif 2711#endif
1197 { 2712 {
1198 char dummy; 2713 char dummy[4];
2714#ifdef _WIN32
2715 WSABUF buf;
2716 DWORD recvd;
2717 DWORD flags = 0;
2718 buf.buf = dummy;
2719 buf.len = sizeof (dummy);
2720 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2721#else
1199 read (evpipe [0], &dummy, 1); 2722 read (evpipe [0], &dummy, sizeof (dummy));
2723#endif
2724 }
2725 }
2726
2727 pipe_write_skipped = 0;
2728
2729 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2730
2731#if EV_SIGNAL_ENABLE
2732 if (sig_pending)
1200 } 2733 {
2734 sig_pending = 0;
1201 2735
1202 if (gotsig && ev_is_default_loop (EV_A)) 2736 ECB_MEMORY_FENCE;
1203 {
1204 int signum;
1205 gotsig = 0;
1206 2737
1207 for (signum = signalmax; signum--; ) 2738 for (i = EV_NSIG - 1; i--; )
1208 if (signals [signum].gotsig) 2739 if (ecb_expect_false (signals [i].pending))
1209 ev_feed_signal_event (EV_A_ signum + 1); 2740 ev_feed_signal_event (EV_A_ i + 1);
1210 } 2741 }
2742#endif
1211 2743
1212#if EV_ASYNC_ENABLE 2744#if EV_ASYNC_ENABLE
1213 if (gotasync) 2745 if (async_pending)
1214 { 2746 {
1215 int i; 2747 async_pending = 0;
1216 gotasync = 0; 2748
2749 ECB_MEMORY_FENCE;
1217 2750
1218 for (i = asynccnt; i--; ) 2751 for (i = asynccnt; i--; )
1219 if (asyncs [i]->sent) 2752 if (asyncs [i]->sent)
1220 { 2753 {
1221 asyncs [i]->sent = 0; 2754 asyncs [i]->sent = 0;
2755 ECB_MEMORY_FENCE_RELEASE;
1222 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2756 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1223 } 2757 }
1224 } 2758 }
1225#endif 2759#endif
1226} 2760}
1227 2761
1228/*****************************************************************************/ 2762/*****************************************************************************/
1229 2763
2764void
2765ev_feed_signal (int signum) EV_NOEXCEPT
2766{
2767#if EV_MULTIPLICITY
2768 EV_P;
2769 ECB_MEMORY_FENCE_ACQUIRE;
2770 EV_A = signals [signum - 1].loop;
2771
2772 if (!EV_A)
2773 return;
2774#endif
2775
2776 signals [signum - 1].pending = 1;
2777 evpipe_write (EV_A_ &sig_pending);
2778}
2779
1230static void 2780static void
1231ev_sighandler (int signum) 2781ev_sighandler (int signum)
1232{ 2782{
2783#ifdef _WIN32
2784 signal (signum, ev_sighandler);
2785#endif
2786
2787 ev_feed_signal (signum);
2788}
2789
2790ecb_noinline
2791void
2792ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2793{
2794 WL w;
2795
2796 if (ecb_expect_false (signum <= 0 || signum >= EV_NSIG))
2797 return;
2798
2799 --signum;
2800
1233#if EV_MULTIPLICITY 2801#if EV_MULTIPLICITY
1234 struct ev_loop *loop = &default_loop_struct; 2802 /* it is permissible to try to feed a signal to the wrong loop */
1235#endif 2803 /* or, likely more useful, feeding a signal nobody is waiting for */
1236 2804
1237#if _WIN32 2805 if (ecb_expect_false (signals [signum].loop != EV_A))
1238 signal (signum, ev_sighandler);
1239#endif
1240
1241 signals [signum - 1].gotsig = 1;
1242 evpipe_write (EV_A_ &gotsig);
1243}
1244
1245void noinline
1246ev_feed_signal_event (EV_P_ int signum)
1247{
1248 WL w;
1249
1250#if EV_MULTIPLICITY
1251 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1252#endif
1253
1254 --signum;
1255
1256 if (signum < 0 || signum >= signalmax)
1257 return; 2806 return;
2807#endif
1258 2808
1259 signals [signum].gotsig = 0; 2809 signals [signum].pending = 0;
2810 ECB_MEMORY_FENCE_RELEASE;
1260 2811
1261 for (w = signals [signum].head; w; w = w->next) 2812 for (w = signals [signum].head; w; w = w->next)
1262 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2813 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1263} 2814}
1264 2815
1265#if EV_USE_SIGNALFD 2816#if EV_USE_SIGNALFD
1266static void 2817static void
1267sigfdcb (EV_P_ ev_io *iow, int revents) 2818sigfdcb (EV_P_ ev_io *iow, int revents)
1268{ 2819{
1269 struct signalfd_siginfo si[4], *sip; 2820 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1270 2821
1271 for (;;) 2822 for (;;)
1272 { 2823 {
1273 ssize_t res = read (sigfd, si, sizeof (si)); 2824 ssize_t res = read (sigfd, si, sizeof (si));
1274 2825
1280 break; 2831 break;
1281 } 2832 }
1282} 2833}
1283#endif 2834#endif
1284 2835
2836#endif
2837
1285/*****************************************************************************/ 2838/*****************************************************************************/
1286 2839
2840#if EV_CHILD_ENABLE
1287static WL childs [EV_PID_HASHSIZE]; 2841static WL childs [EV_PID_HASHSIZE];
1288
1289#ifndef _WIN32
1290 2842
1291static ev_signal childev; 2843static ev_signal childev;
1292 2844
1293#ifndef WIFCONTINUED 2845#ifndef WIFCONTINUED
1294# define WIFCONTINUED(status) 0 2846# define WIFCONTINUED(status) 0
1299child_reap (EV_P_ int chain, int pid, int status) 2851child_reap (EV_P_ int chain, int pid, int status)
1300{ 2852{
1301 ev_child *w; 2853 ev_child *w;
1302 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2854 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1303 2855
1304 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2856 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1305 { 2857 {
1306 if ((w->pid == pid || !w->pid) 2858 if ((w->pid == pid || !w->pid)
1307 && (!traced || (w->flags & 1))) 2859 && (!traced || (w->flags & 1)))
1308 { 2860 {
1309 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2861 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1334 /* make sure we are called again until all children have been reaped */ 2886 /* make sure we are called again until all children have been reaped */
1335 /* we need to do it this way so that the callback gets called before we continue */ 2887 /* we need to do it this way so that the callback gets called before we continue */
1336 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2888 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1337 2889
1338 child_reap (EV_A_ pid, pid, status); 2890 child_reap (EV_A_ pid, pid, status);
1339 if (EV_PID_HASHSIZE > 1) 2891 if ((EV_PID_HASHSIZE) > 1)
1340 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2892 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1341} 2893}
1342 2894
1343#endif 2895#endif
1344 2896
1345/*****************************************************************************/ 2897/*****************************************************************************/
1346 2898
2899#if EV_USE_TIMERFD
2900
2901static void periodics_reschedule (EV_P);
2902
2903static void
2904timerfdcb (EV_P_ ev_io *iow, int revents)
2905{
2906 struct itimerspec its = { 0 };
2907
2908 /* since we can't easily come zup with a (portable) maximum value of time_t,
2909 * we wake up once per month, which hopefully is rare enough to not
2910 * be a problem. */
2911 its.it_value.tv_sec = ev_rt_now + 86400 * 30;
2912 timerfd_settime (timerfd, TFD_TIMER_ABSTIME | TFD_TIMER_CANCEL_ON_SET, &its, 0);
2913
2914 ev_rt_now = ev_time ();
2915 /* periodics_reschedule only needs ev_rt_now */
2916 /* but maybe in the future we want the full treatment. */
2917 /*
2918 now_floor = EV_TS_CONST (0.);
2919 time_update (EV_A_ EV_TSTAMP_HUGE);
2920 */
2921 periodics_reschedule (EV_A);
2922}
2923
2924ecb_noinline ecb_cold
2925static void
2926evtimerfd_init (EV_P)
2927{
2928 if (!ev_is_active (&timerfd_w))
2929 {
2930 timerfd = timerfd_create (CLOCK_REALTIME, TFD_NONBLOCK | TFD_CLOEXEC);
2931
2932 if (timerfd >= 0)
2933 {
2934 fd_intern (timerfd); /* just to be sure */
2935
2936 ev_io_init (&timerfd_w, timerfdcb, timerfd, EV_READ);
2937 ev_set_priority (&timerfd_w, EV_MINPRI);
2938 ev_io_start (EV_A_ &timerfd_w);
2939 ev_unref (EV_A); /* watcher should not keep loop alive */
2940
2941 /* (re-) arm timer */
2942 timerfdcb (EV_A_ 0, 0);
2943 }
2944 }
2945}
2946
2947#endif
2948
2949/*****************************************************************************/
2950
2951#if EV_USE_IOCP
2952# include "ev_iocp.c"
2953#endif
1347#if EV_USE_PORT 2954#if EV_USE_PORT
1348# include "ev_port.c" 2955# include "ev_port.c"
1349#endif 2956#endif
1350#if EV_USE_KQUEUE 2957#if EV_USE_KQUEUE
1351# include "ev_kqueue.c" 2958# include "ev_kqueue.c"
1352#endif 2959#endif
1353#if EV_USE_EPOLL 2960#if EV_USE_EPOLL
1354# include "ev_epoll.c" 2961# include "ev_epoll.c"
1355#endif 2962#endif
2963#if EV_USE_LINUXAIO
2964# include "ev_linuxaio.c"
2965#endif
2966#if EV_USE_IOURING
2967# include "ev_iouring.c"
2968#endif
1356#if EV_USE_POLL 2969#if EV_USE_POLL
1357# include "ev_poll.c" 2970# include "ev_poll.c"
1358#endif 2971#endif
1359#if EV_USE_SELECT 2972#if EV_USE_SELECT
1360# include "ev_select.c" 2973# include "ev_select.c"
1361#endif 2974#endif
1362 2975
1363int 2976ecb_cold int
1364ev_version_major (void) 2977ev_version_major (void) EV_NOEXCEPT
1365{ 2978{
1366 return EV_VERSION_MAJOR; 2979 return EV_VERSION_MAJOR;
1367} 2980}
1368 2981
1369int 2982ecb_cold int
1370ev_version_minor (void) 2983ev_version_minor (void) EV_NOEXCEPT
1371{ 2984{
1372 return EV_VERSION_MINOR; 2985 return EV_VERSION_MINOR;
1373} 2986}
1374 2987
1375/* return true if we are running with elevated privileges and should ignore env variables */ 2988/* return true if we are running with elevated privileges and should ignore env variables */
1376int inline_size 2989inline_size ecb_cold int
1377enable_secure (void) 2990enable_secure (void)
1378{ 2991{
1379#ifdef _WIN32 2992#ifdef _WIN32
1380 return 0; 2993 return 0;
1381#else 2994#else
1382 return getuid () != geteuid () 2995 return getuid () != geteuid ()
1383 || getgid () != getegid (); 2996 || getgid () != getegid ();
1384#endif 2997#endif
1385} 2998}
1386 2999
3000ecb_cold
1387unsigned int 3001unsigned int
1388ev_supported_backends (void) 3002ev_supported_backends (void) EV_NOEXCEPT
1389{ 3003{
1390 unsigned int flags = 0; 3004 unsigned int flags = 0;
1391 3005
1392 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 3006 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1393 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 3007 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
1394 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL; 3008 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1395 if (EV_USE_POLL ) flags |= EVBACKEND_POLL; 3009 if (EV_USE_LINUXAIO ) flags |= EVBACKEND_LINUXAIO;
1396 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 3010 if (EV_USE_IOURING && ev_linux_version () >= 0x050601) flags |= EVBACKEND_IOURING; /* 5.6.1+ */
1397 3011 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
3012 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
3013
1398 return flags; 3014 return flags;
1399} 3015}
1400 3016
3017ecb_cold
1401unsigned int 3018unsigned int
1402ev_recommended_backends (void) 3019ev_recommended_backends (void) EV_NOEXCEPT
1403{ 3020{
1404 unsigned int flags = ev_supported_backends (); 3021 unsigned int flags = ev_supported_backends ();
1405 3022
1406#ifndef __NetBSD__ 3023#ifndef __NetBSD__
1407 /* kqueue is borked on everything but netbsd apparently */ 3024 /* kqueue is borked on everything but netbsd apparently */
1411#ifdef __APPLE__ 3028#ifdef __APPLE__
1412 /* only select works correctly on that "unix-certified" platform */ 3029 /* only select works correctly on that "unix-certified" platform */
1413 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */ 3030 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1414 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */ 3031 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1415#endif 3032#endif
3033#ifdef __FreeBSD__
3034 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
3035#endif
3036
3037 /* TODO: linuxaio is very experimental */
3038#if !EV_RECOMMEND_LINUXAIO
3039 flags &= ~EVBACKEND_LINUXAIO;
3040#endif
3041 /* TODO: linuxaio is super experimental */
3042#if !EV_RECOMMEND_IOURING
3043 flags &= ~EVBACKEND_IOURING;
3044#endif
1416 3045
1417 return flags; 3046 return flags;
1418} 3047}
1419 3048
3049ecb_cold
1420unsigned int 3050unsigned int
1421ev_embeddable_backends (void) 3051ev_embeddable_backends (void) EV_NOEXCEPT
1422{ 3052{
1423 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 3053 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1424 3054
1425 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 3055 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1426 /* please fix it and tell me how to detect the fix */ 3056 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1427 flags &= ~EVBACKEND_EPOLL; 3057 flags &= ~EVBACKEND_EPOLL;
3058
3059 /* EVBACKEND_LINUXAIO is theoretically embeddable, but suffers from a performance overhead */
3060
3061 /* EVBACKEND_IOURING is practically embeddable, but the current implementation is not
3062 * because our backend_fd is the epoll fd we need as fallback.
3063 * if the kernel ever is fixed, this might change...
3064 */
1428 3065
1429 return flags; 3066 return flags;
1430} 3067}
1431 3068
1432unsigned int 3069unsigned int
1433ev_backend (EV_P) 3070ev_backend (EV_P) EV_NOEXCEPT
1434{ 3071{
1435 return backend; 3072 return backend;
1436} 3073}
1437 3074
1438#if EV_MINIMAL < 2 3075#if EV_FEATURE_API
1439unsigned int 3076unsigned int
1440ev_loop_count (EV_P) 3077ev_iteration (EV_P) EV_NOEXCEPT
1441{ 3078{
1442 return loop_count; 3079 return loop_count;
1443} 3080}
1444 3081
1445unsigned int 3082unsigned int
1446ev_loop_depth (EV_P) 3083ev_depth (EV_P) EV_NOEXCEPT
1447{ 3084{
1448 return loop_depth; 3085 return loop_depth;
1449} 3086}
1450 3087
1451void 3088void
1452ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 3089ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
1453{ 3090{
1454 io_blocktime = interval; 3091 io_blocktime = interval;
1455} 3092}
1456 3093
1457void 3094void
1458ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 3095ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
1459{ 3096{
1460 timeout_blocktime = interval; 3097 timeout_blocktime = interval;
1461} 3098}
1462 3099
1463void 3100void
1464ev_set_userdata (EV_P_ void *data) 3101ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
1465{ 3102{
1466 userdata = data; 3103 userdata = data;
1467} 3104}
1468 3105
1469void * 3106void *
1470ev_userdata (EV_P) 3107ev_userdata (EV_P) EV_NOEXCEPT
1471{ 3108{
1472 return userdata; 3109 return userdata;
1473} 3110}
1474 3111
3112void
1475void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) 3113ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
1476{ 3114{
1477 invoke_cb = invoke_pending_cb; 3115 invoke_cb = invoke_pending_cb;
1478} 3116}
1479 3117
3118void
1480void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P)) 3119ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
1481{ 3120{
1482 release_cb = release; 3121 release_cb = release;
1483 acquire_cb = acquire; 3122 acquire_cb = acquire;
1484} 3123}
1485#endif 3124#endif
1486 3125
1487/* initialise a loop structure, must be zero-initialised */ 3126/* initialise a loop structure, must be zero-initialised */
1488static void noinline 3127ecb_noinline ecb_cold
3128static void
1489loop_init (EV_P_ unsigned int flags) 3129loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
1490{ 3130{
1491 if (!backend) 3131 if (!backend)
1492 { 3132 {
3133 origflags = flags;
3134
1493#if EV_USE_REALTIME 3135#if EV_USE_REALTIME
1494 if (!have_realtime) 3136 if (!have_realtime)
1495 { 3137 {
1496 struct timespec ts; 3138 struct timespec ts;
1497 3139
1508 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 3150 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1509 have_monotonic = 1; 3151 have_monotonic = 1;
1510 } 3152 }
1511#endif 3153#endif
1512 3154
1513 ev_rt_now = ev_time ();
1514 mn_now = get_clock ();
1515 now_floor = mn_now;
1516 rtmn_diff = ev_rt_now - mn_now;
1517#if EV_MINIMAL < 2
1518 invoke_cb = ev_invoke_pending;
1519#endif
1520
1521 io_blocktime = 0.;
1522 timeout_blocktime = 0.;
1523 backend = 0;
1524 backend_fd = -1;
1525 gotasync = 0;
1526#if EV_USE_INOTIFY
1527 fs_fd = -2;
1528#endif
1529#if EV_USE_SIGNALFD
1530 sigfd = -2;
1531#endif
1532
1533 /* pid check not overridable via env */ 3155 /* pid check not overridable via env */
1534#ifndef _WIN32 3156#ifndef _WIN32
1535 if (flags & EVFLAG_FORKCHECK) 3157 if (flags & EVFLAG_FORKCHECK)
1536 curpid = getpid (); 3158 curpid = getpid ();
1537#endif 3159#endif
1539 if (!(flags & EVFLAG_NOENV) 3161 if (!(flags & EVFLAG_NOENV)
1540 && !enable_secure () 3162 && !enable_secure ()
1541 && getenv ("LIBEV_FLAGS")) 3163 && getenv ("LIBEV_FLAGS"))
1542 flags = atoi (getenv ("LIBEV_FLAGS")); 3164 flags = atoi (getenv ("LIBEV_FLAGS"));
1543 3165
1544 if (!(flags & 0x0000ffffU)) 3166 ev_rt_now = ev_time ();
3167 mn_now = get_clock ();
3168 now_floor = mn_now;
3169 rtmn_diff = ev_rt_now - mn_now;
3170#if EV_FEATURE_API
3171 invoke_cb = ev_invoke_pending;
3172#endif
3173
3174 io_blocktime = 0.;
3175 timeout_blocktime = 0.;
3176 backend = 0;
3177 backend_fd = -1;
3178 sig_pending = 0;
3179#if EV_ASYNC_ENABLE
3180 async_pending = 0;
3181#endif
3182 pipe_write_skipped = 0;
3183 pipe_write_wanted = 0;
3184 evpipe [0] = -1;
3185 evpipe [1] = -1;
3186#if EV_USE_INOTIFY
3187 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
3188#endif
3189#if EV_USE_SIGNALFD
3190 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
3191#endif
3192#if EV_USE_TIMERFD
3193 timerfd = flags & EVFLAG_NOTIMERFD ? -1 : -2;
3194#endif
3195
3196 if (!(flags & EVBACKEND_MASK))
1545 flags |= ev_recommended_backends (); 3197 flags |= ev_recommended_backends ();
1546 3198
3199#if EV_USE_IOCP
3200 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
3201#endif
1547#if EV_USE_PORT 3202#if EV_USE_PORT
1548 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 3203 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1549#endif 3204#endif
1550#if EV_USE_KQUEUE 3205#if EV_USE_KQUEUE
1551 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 3206 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
3207#endif
3208#if EV_USE_IOURING
3209 if (!backend && (flags & EVBACKEND_IOURING )) backend = iouring_init (EV_A_ flags);
3210#endif
3211#if EV_USE_LINUXAIO
3212 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
1552#endif 3213#endif
1553#if EV_USE_EPOLL 3214#if EV_USE_EPOLL
1554 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags); 3215 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1555#endif 3216#endif
1556#if EV_USE_POLL 3217#if EV_USE_POLL
1557 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags); 3218 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1558#endif 3219#endif
1559#if EV_USE_SELECT 3220#if EV_USE_SELECT
1560 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 3221 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
1561#endif 3222#endif
1562 3223
1563 ev_prepare_init (&pending_w, pendingcb); 3224 ev_prepare_init (&pending_w, pendingcb);
1564 3225
3226#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1565 ev_init (&pipe_w, pipecb); 3227 ev_init (&pipe_w, pipecb);
1566 ev_set_priority (&pipe_w, EV_MAXPRI); 3228 ev_set_priority (&pipe_w, EV_MAXPRI);
3229#endif
1567 } 3230 }
1568} 3231}
1569 3232
1570/* free up a loop structure */ 3233/* free up a loop structure */
1571static void noinline 3234ecb_cold
3235void
1572loop_destroy (EV_P) 3236ev_loop_destroy (EV_P)
1573{ 3237{
1574 int i; 3238 int i;
3239
3240#if EV_MULTIPLICITY
3241 /* mimic free (0) */
3242 if (!EV_A)
3243 return;
3244#endif
3245
3246#if EV_CLEANUP_ENABLE
3247 /* queue cleanup watchers (and execute them) */
3248 if (ecb_expect_false (cleanupcnt))
3249 {
3250 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3251 EV_INVOKE_PENDING;
3252 }
3253#endif
3254
3255#if EV_CHILD_ENABLE
3256 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3257 {
3258 ev_ref (EV_A); /* child watcher */
3259 ev_signal_stop (EV_A_ &childev);
3260 }
3261#endif
1575 3262
1576 if (ev_is_active (&pipe_w)) 3263 if (ev_is_active (&pipe_w))
1577 { 3264 {
1578 /*ev_ref (EV_A);*/ 3265 /*ev_ref (EV_A);*/
1579 /*ev_io_stop (EV_A_ &pipe_w);*/ 3266 /*ev_io_stop (EV_A_ &pipe_w);*/
1580 3267
1581#if EV_USE_EVENTFD 3268 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
1582 if (evfd >= 0) 3269 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
1583 close (evfd);
1584#endif
1585
1586 if (evpipe [0] >= 0)
1587 {
1588 close (evpipe [0]);
1589 close (evpipe [1]);
1590 }
1591 } 3270 }
1592 3271
1593#if EV_USE_SIGNALFD 3272#if EV_USE_SIGNALFD
1594 if (ev_is_active (&sigfd_w)) 3273 if (ev_is_active (&sigfd_w))
1595 {
1596 /*ev_ref (EV_A);*/
1597 /*ev_io_stop (EV_A_ &sigfd_w);*/
1598
1599 close (sigfd); 3274 close (sigfd);
1600 } 3275#endif
3276
3277#if EV_USE_TIMERFD
3278 if (ev_is_active (&timerfd_w))
3279 close (timerfd);
1601#endif 3280#endif
1602 3281
1603#if EV_USE_INOTIFY 3282#if EV_USE_INOTIFY
1604 if (fs_fd >= 0) 3283 if (fs_fd >= 0)
1605 close (fs_fd); 3284 close (fs_fd);
1606#endif 3285#endif
1607 3286
1608 if (backend_fd >= 0) 3287 if (backend_fd >= 0)
1609 close (backend_fd); 3288 close (backend_fd);
1610 3289
3290#if EV_USE_IOCP
3291 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3292#endif
1611#if EV_USE_PORT 3293#if EV_USE_PORT
1612 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 3294 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1613#endif 3295#endif
1614#if EV_USE_KQUEUE 3296#if EV_USE_KQUEUE
1615 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 3297 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3298#endif
3299#if EV_USE_IOURING
3300 if (backend == EVBACKEND_IOURING ) iouring_destroy (EV_A);
3301#endif
3302#if EV_USE_LINUXAIO
3303 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
1616#endif 3304#endif
1617#if EV_USE_EPOLL 3305#if EV_USE_EPOLL
1618 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A); 3306 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1619#endif 3307#endif
1620#if EV_USE_POLL 3308#if EV_USE_POLL
1621 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A); 3309 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1622#endif 3310#endif
1623#if EV_USE_SELECT 3311#if EV_USE_SELECT
1624 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 3312 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
1625#endif 3313#endif
1626 3314
1627 for (i = NUMPRI; i--; ) 3315 for (i = NUMPRI; i--; )
1628 { 3316 {
1629 array_free (pending, [i]); 3317 array_free (pending, [i]);
1630#if EV_IDLE_ENABLE 3318#if EV_IDLE_ENABLE
1631 array_free (idle, [i]); 3319 array_free (idle, [i]);
1632#endif 3320#endif
1633 } 3321 }
1634 3322
1635 ev_free (anfds); anfdmax = 0; 3323 ev_free (anfds); anfds = 0; anfdmax = 0;
1636 3324
1637 /* have to use the microsoft-never-gets-it-right macro */ 3325 /* have to use the microsoft-never-gets-it-right macro */
1638 array_free (rfeed, EMPTY); 3326 array_free (rfeed, EMPTY);
1639 array_free (fdchange, EMPTY); 3327 array_free (fdchange, EMPTY);
1640 array_free (timer, EMPTY); 3328 array_free (timer, EMPTY);
1642 array_free (periodic, EMPTY); 3330 array_free (periodic, EMPTY);
1643#endif 3331#endif
1644#if EV_FORK_ENABLE 3332#if EV_FORK_ENABLE
1645 array_free (fork, EMPTY); 3333 array_free (fork, EMPTY);
1646#endif 3334#endif
3335#if EV_CLEANUP_ENABLE
3336 array_free (cleanup, EMPTY);
3337#endif
1647 array_free (prepare, EMPTY); 3338 array_free (prepare, EMPTY);
1648 array_free (check, EMPTY); 3339 array_free (check, EMPTY);
1649#if EV_ASYNC_ENABLE 3340#if EV_ASYNC_ENABLE
1650 array_free (async, EMPTY); 3341 array_free (async, EMPTY);
1651#endif 3342#endif
1652 3343
1653 backend = 0; 3344 backend = 0;
3345
3346#if EV_MULTIPLICITY
3347 if (ev_is_default_loop (EV_A))
3348#endif
3349 ev_default_loop_ptr = 0;
3350#if EV_MULTIPLICITY
3351 else
3352 ev_free (EV_A);
3353#endif
1654} 3354}
1655 3355
1656#if EV_USE_INOTIFY 3356#if EV_USE_INOTIFY
1657inline_size void infy_fork (EV_P); 3357inline_size void infy_fork (EV_P);
1658#endif 3358#endif
1659 3359
1660inline_size void 3360inline_size void
1661loop_fork (EV_P) 3361loop_fork (EV_P)
1662{ 3362{
1663#if EV_USE_PORT 3363#if EV_USE_PORT
1664 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 3364 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1665#endif 3365#endif
1666#if EV_USE_KQUEUE 3366#if EV_USE_KQUEUE
1667 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 3367 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3368#endif
3369#if EV_USE_IOURING
3370 if (backend == EVBACKEND_IOURING ) iouring_fork (EV_A);
3371#endif
3372#if EV_USE_LINUXAIO
3373 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
1668#endif 3374#endif
1669#if EV_USE_EPOLL 3375#if EV_USE_EPOLL
1670 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 3376 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1671#endif 3377#endif
1672#if EV_USE_INOTIFY 3378#if EV_USE_INOTIFY
1673 infy_fork (EV_A); 3379 infy_fork (EV_A);
1674#endif 3380#endif
1675 3381
3382 if (postfork != 2)
3383 {
3384 #if EV_USE_SIGNALFD
3385 /* surprisingly, nothing needs to be done for signalfd, accoridng to docs, it does the right thing on fork */
3386 #endif
3387
3388 #if EV_USE_TIMERFD
3389 if (ev_is_active (&timerfd_w))
3390 {
3391 ev_ref (EV_A);
3392 ev_io_stop (EV_A_ &timerfd_w);
3393
3394 close (timerfd);
3395 timerfd = -2;
3396
3397 evtimerfd_init (EV_A);
3398 /* reschedule periodics, in case we missed something */
3399 ev_feed_event (EV_A_ &timerfd_w, EV_CUSTOM);
3400 }
3401 #endif
3402
3403 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1676 if (ev_is_active (&pipe_w)) 3404 if (ev_is_active (&pipe_w))
1677 { 3405 {
1678 /* this "locks" the handlers against writing to the pipe */ 3406 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1679 /* while we modify the fd vars */ 3407
1680 gotsig = 1;
1681#if EV_ASYNC_ENABLE
1682 gotasync = 1;
1683#endif
1684
1685 ev_ref (EV_A); 3408 ev_ref (EV_A);
1686 ev_io_stop (EV_A_ &pipe_w); 3409 ev_io_stop (EV_A_ &pipe_w);
1687 3410
1688#if EV_USE_EVENTFD
1689 if (evfd >= 0)
1690 close (evfd);
1691#endif
1692
1693 if (evpipe [0] >= 0) 3411 if (evpipe [0] >= 0)
3412 EV_WIN32_CLOSE_FD (evpipe [0]);
1694 { 3413
1695 close (evpipe [0]); 3414 evpipe_init (EV_A);
1696 close (evpipe [1]); 3415 /* iterate over everything, in case we missed something before */
3416 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1697 } 3417 }
1698 3418 #endif
1699 evpipe_init (EV_A);
1700 /* now iterate over everything, in case we missed something */
1701 pipecb (EV_A_ &pipe_w, EV_READ);
1702 } 3419 }
1703 3420
1704 postfork = 0; 3421 postfork = 0;
1705} 3422}
1706 3423
1707#if EV_MULTIPLICITY 3424#if EV_MULTIPLICITY
1708 3425
3426ecb_cold
1709struct ev_loop * 3427struct ev_loop *
1710ev_loop_new (unsigned int flags) 3428ev_loop_new (unsigned int flags) EV_NOEXCEPT
1711{ 3429{
1712 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 3430 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1713 3431
1714 memset (loop, 0, sizeof (struct ev_loop)); 3432 memset (EV_A, 0, sizeof (struct ev_loop));
1715 loop_init (EV_A_ flags); 3433 loop_init (EV_A_ flags);
1716 3434
1717 if (ev_backend (EV_A)) 3435 if (ev_backend (EV_A))
1718 return loop; 3436 return EV_A;
1719 3437
3438 ev_free (EV_A);
1720 return 0; 3439 return 0;
1721} 3440}
1722 3441
1723void
1724ev_loop_destroy (EV_P)
1725{
1726 loop_destroy (EV_A);
1727 ev_free (loop);
1728}
1729
1730void
1731ev_loop_fork (EV_P)
1732{
1733 postfork = 1; /* must be in line with ev_default_fork */
1734}
1735#endif /* multiplicity */ 3442#endif /* multiplicity */
1736 3443
1737#if EV_VERIFY 3444#if EV_VERIFY
1738static void noinline 3445ecb_noinline ecb_cold
3446static void
1739verify_watcher (EV_P_ W w) 3447verify_watcher (EV_P_ W w)
1740{ 3448{
1741 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 3449 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1742 3450
1743 if (w->pending) 3451 if (w->pending)
1744 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 3452 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1745} 3453}
1746 3454
1747static void noinline 3455ecb_noinline ecb_cold
3456static void
1748verify_heap (EV_P_ ANHE *heap, int N) 3457verify_heap (EV_P_ ANHE *heap, int N)
1749{ 3458{
1750 int i; 3459 int i;
1751 3460
1752 for (i = HEAP0; i < N + HEAP0; ++i) 3461 for (i = HEAP0; i < N + HEAP0; ++i)
1757 3466
1758 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 3467 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1759 } 3468 }
1760} 3469}
1761 3470
1762static void noinline 3471ecb_noinline ecb_cold
3472static void
1763array_verify (EV_P_ W *ws, int cnt) 3473array_verify (EV_P_ W *ws, int cnt)
1764{ 3474{
1765 while (cnt--) 3475 while (cnt--)
1766 { 3476 {
1767 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 3477 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1768 verify_watcher (EV_A_ ws [cnt]); 3478 verify_watcher (EV_A_ ws [cnt]);
1769 } 3479 }
1770} 3480}
1771#endif 3481#endif
1772 3482
1773#if EV_MINIMAL < 2 3483#if EV_FEATURE_API
1774void 3484void ecb_cold
1775ev_loop_verify (EV_P) 3485ev_verify (EV_P) EV_NOEXCEPT
1776{ 3486{
1777#if EV_VERIFY 3487#if EV_VERIFY
1778 int i; 3488 int i;
1779 WL w; 3489 WL w, w2;
1780 3490
1781 assert (activecnt >= -1); 3491 assert (activecnt >= -1);
1782 3492
1783 assert (fdchangemax >= fdchangecnt); 3493 assert (fdchangemax >= fdchangecnt);
1784 for (i = 0; i < fdchangecnt; ++i) 3494 for (i = 0; i < fdchangecnt; ++i)
1785 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0)); 3495 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1786 3496
1787 assert (anfdmax >= 0); 3497 assert (anfdmax >= 0);
1788 for (i = 0; i < anfdmax; ++i) 3498 for (i = 0; i < anfdmax; ++i)
3499 {
3500 int j = 0;
3501
1789 for (w = anfds [i].head; w; w = w->next) 3502 for (w = w2 = anfds [i].head; w; w = w->next)
1790 { 3503 {
1791 verify_watcher (EV_A_ (W)w); 3504 verify_watcher (EV_A_ (W)w);
3505
3506 if (j++ & 1)
3507 {
3508 assert (("libev: io watcher list contains a loop", w != w2));
3509 w2 = w2->next;
3510 }
3511
1792 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1)); 3512 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1793 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 3513 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1794 } 3514 }
3515 }
1795 3516
1796 assert (timermax >= timercnt); 3517 assert (timermax >= timercnt);
1797 verify_heap (EV_A_ timers, timercnt); 3518 verify_heap (EV_A_ timers, timercnt);
1798 3519
1799#if EV_PERIODIC_ENABLE 3520#if EV_PERIODIC_ENABLE
1814#if EV_FORK_ENABLE 3535#if EV_FORK_ENABLE
1815 assert (forkmax >= forkcnt); 3536 assert (forkmax >= forkcnt);
1816 array_verify (EV_A_ (W *)forks, forkcnt); 3537 array_verify (EV_A_ (W *)forks, forkcnt);
1817#endif 3538#endif
1818 3539
3540#if EV_CLEANUP_ENABLE
3541 assert (cleanupmax >= cleanupcnt);
3542 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3543#endif
3544
1819#if EV_ASYNC_ENABLE 3545#if EV_ASYNC_ENABLE
1820 assert (asyncmax >= asynccnt); 3546 assert (asyncmax >= asynccnt);
1821 array_verify (EV_A_ (W *)asyncs, asynccnt); 3547 array_verify (EV_A_ (W *)asyncs, asynccnt);
1822#endif 3548#endif
1823 3549
3550#if EV_PREPARE_ENABLE
1824 assert (preparemax >= preparecnt); 3551 assert (preparemax >= preparecnt);
1825 array_verify (EV_A_ (W *)prepares, preparecnt); 3552 array_verify (EV_A_ (W *)prepares, preparecnt);
3553#endif
1826 3554
3555#if EV_CHECK_ENABLE
1827 assert (checkmax >= checkcnt); 3556 assert (checkmax >= checkcnt);
1828 array_verify (EV_A_ (W *)checks, checkcnt); 3557 array_verify (EV_A_ (W *)checks, checkcnt);
3558#endif
1829 3559
1830# if 0 3560# if 0
3561#if EV_CHILD_ENABLE
1831 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 3562 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1832 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 3563 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3564#endif
1833# endif 3565# endif
1834#endif 3566#endif
1835} 3567}
1836#endif 3568#endif
1837 3569
1838#if EV_MULTIPLICITY 3570#if EV_MULTIPLICITY
3571ecb_cold
1839struct ev_loop * 3572struct ev_loop *
1840ev_default_loop_init (unsigned int flags)
1841#else 3573#else
1842int 3574int
3575#endif
1843ev_default_loop (unsigned int flags) 3576ev_default_loop (unsigned int flags) EV_NOEXCEPT
1844#endif
1845{ 3577{
1846 if (!ev_default_loop_ptr) 3578 if (!ev_default_loop_ptr)
1847 { 3579 {
1848#if EV_MULTIPLICITY 3580#if EV_MULTIPLICITY
1849 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3581 EV_P = ev_default_loop_ptr = &default_loop_struct;
1850#else 3582#else
1851 ev_default_loop_ptr = 1; 3583 ev_default_loop_ptr = 1;
1852#endif 3584#endif
1853 3585
1854 loop_init (EV_A_ flags); 3586 loop_init (EV_A_ flags);
1855 3587
1856 if (ev_backend (EV_A)) 3588 if (ev_backend (EV_A))
1857 { 3589 {
1858#ifndef _WIN32 3590#if EV_CHILD_ENABLE
1859 ev_signal_init (&childev, childcb, SIGCHLD); 3591 ev_signal_init (&childev, childcb, SIGCHLD);
1860 ev_set_priority (&childev, EV_MAXPRI); 3592 ev_set_priority (&childev, EV_MAXPRI);
1861 ev_signal_start (EV_A_ &childev); 3593 ev_signal_start (EV_A_ &childev);
1862 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3594 ev_unref (EV_A); /* child watcher should not keep loop alive */
1863#endif 3595#endif
1868 3600
1869 return ev_default_loop_ptr; 3601 return ev_default_loop_ptr;
1870} 3602}
1871 3603
1872void 3604void
1873ev_default_destroy (void) 3605ev_loop_fork (EV_P) EV_NOEXCEPT
1874{ 3606{
1875#if EV_MULTIPLICITY 3607 postfork = 1;
1876 struct ev_loop *loop = ev_default_loop_ptr;
1877#endif
1878
1879 ev_default_loop_ptr = 0;
1880
1881#ifndef _WIN32
1882 ev_ref (EV_A); /* child watcher */
1883 ev_signal_stop (EV_A_ &childev);
1884#endif
1885
1886 loop_destroy (EV_A);
1887}
1888
1889void
1890ev_default_fork (void)
1891{
1892#if EV_MULTIPLICITY
1893 struct ev_loop *loop = ev_default_loop_ptr;
1894#endif
1895
1896 postfork = 1; /* must be in line with ev_loop_fork */
1897} 3608}
1898 3609
1899/*****************************************************************************/ 3610/*****************************************************************************/
1900 3611
1901void 3612void
1903{ 3614{
1904 EV_CB_INVOKE ((W)w, revents); 3615 EV_CB_INVOKE ((W)w, revents);
1905} 3616}
1906 3617
1907unsigned int 3618unsigned int
1908ev_pending_count (EV_P) 3619ev_pending_count (EV_P) EV_NOEXCEPT
1909{ 3620{
1910 int pri; 3621 int pri;
1911 unsigned int count = 0; 3622 unsigned int count = 0;
1912 3623
1913 for (pri = NUMPRI; pri--; ) 3624 for (pri = NUMPRI; pri--; )
1914 count += pendingcnt [pri]; 3625 count += pendingcnt [pri];
1915 3626
1916 return count; 3627 return count;
1917} 3628}
1918 3629
1919void noinline 3630ecb_noinline
3631void
1920ev_invoke_pending (EV_P) 3632ev_invoke_pending (EV_P)
1921{ 3633{
1922 int pri; 3634 pendingpri = NUMPRI;
1923 3635
1924 for (pri = NUMPRI; pri--; ) 3636 do
3637 {
3638 --pendingpri;
3639
3640 /* pendingpri possibly gets modified in the inner loop */
1925 while (pendingcnt [pri]) 3641 while (pendingcnt [pendingpri])
1926 { 3642 {
1927 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 3643 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1928 3644
1929 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1930 /* ^ this is no longer true, as pending_w could be here */
1931
1932 p->w->pending = 0; 3645 p->w->pending = 0;
1933 EV_CB_INVOKE (p->w, p->events); 3646 EV_CB_INVOKE (p->w, p->events);
1934 EV_FREQUENT_CHECK; 3647 EV_FREQUENT_CHECK;
1935 } 3648 }
3649 }
3650 while (pendingpri);
1936} 3651}
1937 3652
1938#if EV_IDLE_ENABLE 3653#if EV_IDLE_ENABLE
1939/* make idle watchers pending. this handles the "call-idle */ 3654/* make idle watchers pending. this handles the "call-idle */
1940/* only when higher priorities are idle" logic */ 3655/* only when higher priorities are idle" logic */
1941inline_size void 3656inline_size void
1942idle_reify (EV_P) 3657idle_reify (EV_P)
1943{ 3658{
1944 if (expect_false (idleall)) 3659 if (ecb_expect_false (idleall))
1945 { 3660 {
1946 int pri; 3661 int pri;
1947 3662
1948 for (pri = NUMPRI; pri--; ) 3663 for (pri = NUMPRI; pri--; )
1949 { 3664 {
1979 { 3694 {
1980 ev_at (w) += w->repeat; 3695 ev_at (w) += w->repeat;
1981 if (ev_at (w) < mn_now) 3696 if (ev_at (w) < mn_now)
1982 ev_at (w) = mn_now; 3697 ev_at (w) = mn_now;
1983 3698
1984 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3699 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > EV_TS_CONST (0.)));
1985 3700
1986 ANHE_at_cache (timers [HEAP0]); 3701 ANHE_at_cache (timers [HEAP0]);
1987 downheap (timers, timercnt, HEAP0); 3702 downheap (timers, timercnt, HEAP0);
1988 } 3703 }
1989 else 3704 else
1992 EV_FREQUENT_CHECK; 3707 EV_FREQUENT_CHECK;
1993 feed_reverse (EV_A_ (W)w); 3708 feed_reverse (EV_A_ (W)w);
1994 } 3709 }
1995 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now); 3710 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1996 3711
1997 feed_reverse_done (EV_A_ EV_TIMEOUT); 3712 feed_reverse_done (EV_A_ EV_TIMER);
1998 } 3713 }
1999} 3714}
2000 3715
2001#if EV_PERIODIC_ENABLE 3716#if EV_PERIODIC_ENABLE
3717
3718ecb_noinline
3719static void
3720periodic_recalc (EV_P_ ev_periodic *w)
3721{
3722 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3723 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3724
3725 /* the above almost always errs on the low side */
3726 while (at <= ev_rt_now)
3727 {
3728 ev_tstamp nat = at + w->interval;
3729
3730 /* when resolution fails us, we use ev_rt_now */
3731 if (ecb_expect_false (nat == at))
3732 {
3733 at = ev_rt_now;
3734 break;
3735 }
3736
3737 at = nat;
3738 }
3739
3740 ev_at (w) = at;
3741}
3742
2002/* make periodics pending */ 3743/* make periodics pending */
2003inline_size void 3744inline_size void
2004periodics_reify (EV_P) 3745periodics_reify (EV_P)
2005{ 3746{
2006 EV_FREQUENT_CHECK; 3747 EV_FREQUENT_CHECK;
2007 3748
2008 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 3749 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2009 { 3750 {
2010 int feed_count = 0;
2011
2012 do 3751 do
2013 { 3752 {
2014 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 3753 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2015 3754
2016 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/ 3755 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2025 ANHE_at_cache (periodics [HEAP0]); 3764 ANHE_at_cache (periodics [HEAP0]);
2026 downheap (periodics, periodiccnt, HEAP0); 3765 downheap (periodics, periodiccnt, HEAP0);
2027 } 3766 }
2028 else if (w->interval) 3767 else if (w->interval)
2029 { 3768 {
2030 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 3769 periodic_recalc (EV_A_ w);
2031 /* if next trigger time is not sufficiently in the future, put it there */
2032 /* this might happen because of floating point inexactness */
2033 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2034 {
2035 ev_at (w) += w->interval;
2036
2037 /* if interval is unreasonably low we might still have a time in the past */
2038 /* so correct this. this will make the periodic very inexact, but the user */
2039 /* has effectively asked to get triggered more often than possible */
2040 if (ev_at (w) < ev_rt_now)
2041 ev_at (w) = ev_rt_now;
2042 }
2043
2044 ANHE_at_cache (periodics [HEAP0]); 3770 ANHE_at_cache (periodics [HEAP0]);
2045 downheap (periodics, periodiccnt, HEAP0); 3771 downheap (periodics, periodiccnt, HEAP0);
2046 } 3772 }
2047 else 3773 else
2048 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 3774 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2055 feed_reverse_done (EV_A_ EV_PERIODIC); 3781 feed_reverse_done (EV_A_ EV_PERIODIC);
2056 } 3782 }
2057} 3783}
2058 3784
2059/* simply recalculate all periodics */ 3785/* simply recalculate all periodics */
2060/* TODO: maybe ensure that at leats one event happens when jumping forward? */ 3786/* TODO: maybe ensure that at least one event happens when jumping forward? */
2061static void noinline 3787ecb_noinline ecb_cold
3788static void
2062periodics_reschedule (EV_P) 3789periodics_reschedule (EV_P)
2063{ 3790{
2064 int i; 3791 int i;
2065 3792
2066 /* adjust periodics after time jump */ 3793 /* adjust periodics after time jump */
2069 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 3796 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2070 3797
2071 if (w->reschedule_cb) 3798 if (w->reschedule_cb)
2072 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3799 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2073 else if (w->interval) 3800 else if (w->interval)
2074 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 3801 periodic_recalc (EV_A_ w);
2075 3802
2076 ANHE_at_cache (periodics [i]); 3803 ANHE_at_cache (periodics [i]);
2077 } 3804 }
2078 3805
2079 reheap (periodics, periodiccnt); 3806 reheap (periodics, periodiccnt);
2080} 3807}
2081#endif 3808#endif
2082 3809
2083/* adjust all timers by a given offset */ 3810/* adjust all timers by a given offset */
2084static void noinline 3811ecb_noinline ecb_cold
3812static void
2085timers_reschedule (EV_P_ ev_tstamp adjust) 3813timers_reschedule (EV_P_ ev_tstamp adjust)
2086{ 3814{
2087 int i; 3815 int i;
2088 3816
2089 for (i = 0; i < timercnt; ++i) 3817 for (i = 0; i < timercnt; ++i)
2093 ANHE_at_cache (*he); 3821 ANHE_at_cache (*he);
2094 } 3822 }
2095} 3823}
2096 3824
2097/* fetch new monotonic and realtime times from the kernel */ 3825/* fetch new monotonic and realtime times from the kernel */
2098/* also detetc if there was a timejump, and act accordingly */ 3826/* also detect if there was a timejump, and act accordingly */
2099inline_speed void 3827inline_speed void
2100time_update (EV_P_ ev_tstamp max_block) 3828time_update (EV_P_ ev_tstamp max_block)
2101{ 3829{
2102#if EV_USE_MONOTONIC 3830#if EV_USE_MONOTONIC
2103 if (expect_true (have_monotonic)) 3831 if (ecb_expect_true (have_monotonic))
2104 { 3832 {
2105 int i; 3833 int i;
2106 ev_tstamp odiff = rtmn_diff; 3834 ev_tstamp odiff = rtmn_diff;
2107 3835
2108 mn_now = get_clock (); 3836 mn_now = get_clock ();
2109 3837
2110 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3838 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2111 /* interpolate in the meantime */ 3839 /* interpolate in the meantime */
2112 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 3840 if (ecb_expect_true (mn_now - now_floor < EV_TS_CONST (MIN_TIMEJUMP * .5)))
2113 { 3841 {
2114 ev_rt_now = rtmn_diff + mn_now; 3842 ev_rt_now = rtmn_diff + mn_now;
2115 return; 3843 return;
2116 } 3844 }
2117 3845
2126 * doesn't hurt either as we only do this on time-jumps or 3854 * doesn't hurt either as we only do this on time-jumps or
2127 * in the unlikely event of having been preempted here. 3855 * in the unlikely event of having been preempted here.
2128 */ 3856 */
2129 for (i = 4; --i; ) 3857 for (i = 4; --i; )
2130 { 3858 {
3859 ev_tstamp diff;
2131 rtmn_diff = ev_rt_now - mn_now; 3860 rtmn_diff = ev_rt_now - mn_now;
2132 3861
2133 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 3862 diff = odiff - rtmn_diff;
3863
3864 if (ecb_expect_true ((diff < EV_TS_CONST (0.) ? -diff : diff) < EV_TS_CONST (MIN_TIMEJUMP)))
2134 return; /* all is well */ 3865 return; /* all is well */
2135 3866
2136 ev_rt_now = ev_time (); 3867 ev_rt_now = ev_time ();
2137 mn_now = get_clock (); 3868 mn_now = get_clock ();
2138 now_floor = mn_now; 3869 now_floor = mn_now;
2147 else 3878 else
2148#endif 3879#endif
2149 { 3880 {
2150 ev_rt_now = ev_time (); 3881 ev_rt_now = ev_time ();
2151 3882
2152 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3883 if (ecb_expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + EV_TS_CONST (MIN_TIMEJUMP)))
2153 { 3884 {
2154 /* adjust timers. this is easy, as the offset is the same for all of them */ 3885 /* adjust timers. this is easy, as the offset is the same for all of them */
2155 timers_reschedule (EV_A_ ev_rt_now - mn_now); 3886 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2156#if EV_PERIODIC_ENABLE 3887#if EV_PERIODIC_ENABLE
2157 periodics_reschedule (EV_A); 3888 periodics_reschedule (EV_A);
2160 3891
2161 mn_now = ev_rt_now; 3892 mn_now = ev_rt_now;
2162 } 3893 }
2163} 3894}
2164 3895
2165void 3896int
2166ev_loop (EV_P_ int flags) 3897ev_run (EV_P_ int flags)
2167{ 3898{
2168#if EV_MINIMAL < 2 3899#if EV_FEATURE_API
2169 ++loop_depth; 3900 ++loop_depth;
2170#endif 3901#endif
2171 3902
2172 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE)); 3903 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2173 3904
2174 loop_done = EVUNLOOP_CANCEL; 3905 loop_done = EVBREAK_CANCEL;
2175 3906
2176 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */ 3907 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2177 3908
2178 do 3909 do
2179 { 3910 {
2180#if EV_VERIFY >= 2 3911#if EV_VERIFY >= 2
2181 ev_loop_verify (EV_A); 3912 ev_verify (EV_A);
2182#endif 3913#endif
2183 3914
2184#ifndef _WIN32 3915#ifndef _WIN32
2185 if (expect_false (curpid)) /* penalise the forking check even more */ 3916 if (ecb_expect_false (curpid)) /* penalise the forking check even more */
2186 if (expect_false (getpid () != curpid)) 3917 if (ecb_expect_false (getpid () != curpid))
2187 { 3918 {
2188 curpid = getpid (); 3919 curpid = getpid ();
2189 postfork = 1; 3920 postfork = 1;
2190 } 3921 }
2191#endif 3922#endif
2192 3923
2193#if EV_FORK_ENABLE 3924#if EV_FORK_ENABLE
2194 /* we might have forked, so queue fork handlers */ 3925 /* we might have forked, so queue fork handlers */
2195 if (expect_false (postfork)) 3926 if (ecb_expect_false (postfork))
2196 if (forkcnt) 3927 if (forkcnt)
2197 { 3928 {
2198 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3929 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2199 EV_INVOKE_PENDING; 3930 EV_INVOKE_PENDING;
2200 } 3931 }
2201#endif 3932#endif
2202 3933
3934#if EV_PREPARE_ENABLE
2203 /* queue prepare watchers (and execute them) */ 3935 /* queue prepare watchers (and execute them) */
2204 if (expect_false (preparecnt)) 3936 if (ecb_expect_false (preparecnt))
2205 { 3937 {
2206 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3938 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2207 EV_INVOKE_PENDING; 3939 EV_INVOKE_PENDING;
2208 } 3940 }
3941#endif
2209 3942
2210 if (expect_false (loop_done)) 3943 if (ecb_expect_false (loop_done))
2211 break; 3944 break;
2212 3945
2213 /* we might have forked, so reify kernel state if necessary */ 3946 /* we might have forked, so reify kernel state if necessary */
2214 if (expect_false (postfork)) 3947 if (ecb_expect_false (postfork))
2215 loop_fork (EV_A); 3948 loop_fork (EV_A);
2216 3949
2217 /* update fd-related kernel structures */ 3950 /* update fd-related kernel structures */
2218 fd_reify (EV_A); 3951 fd_reify (EV_A);
2219 3952
2220 /* calculate blocking time */ 3953 /* calculate blocking time */
2221 { 3954 {
2222 ev_tstamp waittime = 0.; 3955 ev_tstamp waittime = 0.;
2223 ev_tstamp sleeptime = 0.; 3956 ev_tstamp sleeptime = 0.;
2224 3957
3958 /* remember old timestamp for io_blocktime calculation */
3959 ev_tstamp prev_mn_now = mn_now;
3960
3961 /* update time to cancel out callback processing overhead */
3962 time_update (EV_A_ EV_TS_CONST (EV_TSTAMP_HUGE));
3963
3964 /* from now on, we want a pipe-wake-up */
3965 pipe_write_wanted = 1;
3966
3967 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3968
2225 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3969 if (ecb_expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
2226 { 3970 {
2227 /* remember old timestamp for io_blocktime calculation */
2228 ev_tstamp prev_mn_now = mn_now;
2229
2230 /* update time to cancel out callback processing overhead */
2231 time_update (EV_A_ 1e100);
2232
2233 waittime = MAX_BLOCKTIME; 3971 waittime = EV_TS_CONST (MAX_BLOCKTIME);
2234 3972
2235 if (timercnt) 3973 if (timercnt)
2236 { 3974 {
2237 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 3975 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
2238 if (waittime > to) waittime = to; 3976 if (waittime > to) waittime = to;
2239 } 3977 }
2240 3978
2241#if EV_PERIODIC_ENABLE 3979#if EV_PERIODIC_ENABLE
2242 if (periodiccnt) 3980 if (periodiccnt)
2243 { 3981 {
2244 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3982 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
2245 if (waittime > to) waittime = to; 3983 if (waittime > to) waittime = to;
2246 } 3984 }
2247#endif 3985#endif
2248 3986
2249 /* don't let timeouts decrease the waittime below timeout_blocktime */ 3987 /* don't let timeouts decrease the waittime below timeout_blocktime */
2250 if (expect_false (waittime < timeout_blocktime)) 3988 if (ecb_expect_false (waittime < timeout_blocktime))
2251 waittime = timeout_blocktime; 3989 waittime = timeout_blocktime;
2252 3990
3991 /* now there are two more special cases left, either we have
3992 * already-expired timers, so we should not sleep, or we have timers
3993 * that expire very soon, in which case we need to wait for a minimum
3994 * amount of time for some event loop backends.
3995 */
3996 if (ecb_expect_false (waittime < backend_mintime))
3997 waittime = waittime <= EV_TS_CONST (0.)
3998 ? EV_TS_CONST (0.)
3999 : backend_mintime;
4000
2253 /* extra check because io_blocktime is commonly 0 */ 4001 /* extra check because io_blocktime is commonly 0 */
2254 if (expect_false (io_blocktime)) 4002 if (ecb_expect_false (io_blocktime))
2255 { 4003 {
2256 sleeptime = io_blocktime - (mn_now - prev_mn_now); 4004 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2257 4005
2258 if (sleeptime > waittime - backend_fudge) 4006 if (sleeptime > waittime - backend_mintime)
2259 sleeptime = waittime - backend_fudge; 4007 sleeptime = waittime - backend_mintime;
2260 4008
2261 if (expect_true (sleeptime > 0.)) 4009 if (ecb_expect_true (sleeptime > EV_TS_CONST (0.)))
2262 { 4010 {
2263 ev_sleep (sleeptime); 4011 ev_sleep (sleeptime);
2264 waittime -= sleeptime; 4012 waittime -= sleeptime;
2265 } 4013 }
2266 } 4014 }
2267 } 4015 }
2268 4016
2269#if EV_MINIMAL < 2 4017#if EV_FEATURE_API
2270 ++loop_count; 4018 ++loop_count;
2271#endif 4019#endif
2272 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */ 4020 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2273 backend_poll (EV_A_ waittime); 4021 backend_poll (EV_A_ waittime);
2274 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */ 4022 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
4023
4024 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
4025
4026 ECB_MEMORY_FENCE_ACQUIRE;
4027 if (pipe_write_skipped)
4028 {
4029 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
4030 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
4031 }
2275 4032
2276 /* update ev_rt_now, do magic */ 4033 /* update ev_rt_now, do magic */
2277 time_update (EV_A_ waittime + sleeptime); 4034 time_update (EV_A_ waittime + sleeptime);
2278 } 4035 }
2279 4036
2286#if EV_IDLE_ENABLE 4043#if EV_IDLE_ENABLE
2287 /* queue idle watchers unless other events are pending */ 4044 /* queue idle watchers unless other events are pending */
2288 idle_reify (EV_A); 4045 idle_reify (EV_A);
2289#endif 4046#endif
2290 4047
4048#if EV_CHECK_ENABLE
2291 /* queue check watchers, to be executed first */ 4049 /* queue check watchers, to be executed first */
2292 if (expect_false (checkcnt)) 4050 if (ecb_expect_false (checkcnt))
2293 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 4051 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
4052#endif
2294 4053
2295 EV_INVOKE_PENDING; 4054 EV_INVOKE_PENDING;
2296 } 4055 }
2297 while (expect_true ( 4056 while (ecb_expect_true (
2298 activecnt 4057 activecnt
2299 && !loop_done 4058 && !loop_done
2300 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 4059 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2301 )); 4060 ));
2302 4061
2303 if (loop_done == EVUNLOOP_ONE) 4062 if (loop_done == EVBREAK_ONE)
2304 loop_done = EVUNLOOP_CANCEL; 4063 loop_done = EVBREAK_CANCEL;
2305 4064
2306#if EV_MINIMAL < 2 4065#if EV_FEATURE_API
2307 --loop_depth; 4066 --loop_depth;
2308#endif 4067#endif
2309}
2310 4068
4069 return activecnt;
4070}
4071
2311void 4072void
2312ev_unloop (EV_P_ int how) 4073ev_break (EV_P_ int how) EV_NOEXCEPT
2313{ 4074{
2314 loop_done = how; 4075 loop_done = how;
2315} 4076}
2316 4077
2317void 4078void
2318ev_ref (EV_P) 4079ev_ref (EV_P) EV_NOEXCEPT
2319{ 4080{
2320 ++activecnt; 4081 ++activecnt;
2321} 4082}
2322 4083
2323void 4084void
2324ev_unref (EV_P) 4085ev_unref (EV_P) EV_NOEXCEPT
2325{ 4086{
2326 --activecnt; 4087 --activecnt;
2327} 4088}
2328 4089
2329void 4090void
2330ev_now_update (EV_P) 4091ev_now_update (EV_P) EV_NOEXCEPT
2331{ 4092{
2332 time_update (EV_A_ 1e100); 4093 time_update (EV_A_ EV_TSTAMP_HUGE);
2333} 4094}
2334 4095
2335void 4096void
2336ev_suspend (EV_P) 4097ev_suspend (EV_P) EV_NOEXCEPT
2337{ 4098{
2338 ev_now_update (EV_A); 4099 ev_now_update (EV_A);
2339} 4100}
2340 4101
2341void 4102void
2342ev_resume (EV_P) 4103ev_resume (EV_P) EV_NOEXCEPT
2343{ 4104{
2344 ev_tstamp mn_prev = mn_now; 4105 ev_tstamp mn_prev = mn_now;
2345 4106
2346 ev_now_update (EV_A); 4107 ev_now_update (EV_A);
2347 timers_reschedule (EV_A_ mn_now - mn_prev); 4108 timers_reschedule (EV_A_ mn_now - mn_prev);
2364inline_size void 4125inline_size void
2365wlist_del (WL *head, WL elem) 4126wlist_del (WL *head, WL elem)
2366{ 4127{
2367 while (*head) 4128 while (*head)
2368 { 4129 {
2369 if (*head == elem) 4130 if (ecb_expect_true (*head == elem))
2370 { 4131 {
2371 *head = elem->next; 4132 *head = elem->next;
2372 return; 4133 break;
2373 } 4134 }
2374 4135
2375 head = &(*head)->next; 4136 head = &(*head)->next;
2376 } 4137 }
2377} 4138}
2386 w->pending = 0; 4147 w->pending = 0;
2387 } 4148 }
2388} 4149}
2389 4150
2390int 4151int
2391ev_clear_pending (EV_P_ void *w) 4152ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
2392{ 4153{
2393 W w_ = (W)w; 4154 W w_ = (W)w;
2394 int pending = w_->pending; 4155 int pending = w_->pending;
2395 4156
2396 if (expect_true (pending)) 4157 if (ecb_expect_true (pending))
2397 { 4158 {
2398 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 4159 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2399 p->w = (W)&pending_w; 4160 p->w = (W)&pending_w;
2400 w_->pending = 0; 4161 w_->pending = 0;
2401 return p->events; 4162 return p->events;
2428 w->active = 0; 4189 w->active = 0;
2429} 4190}
2430 4191
2431/*****************************************************************************/ 4192/*****************************************************************************/
2432 4193
2433void noinline 4194ecb_noinline
4195void
2434ev_io_start (EV_P_ ev_io *w) 4196ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
2435{ 4197{
2436 int fd = w->fd; 4198 int fd = w->fd;
2437 4199
2438 if (expect_false (ev_is_active (w))) 4200 if (ecb_expect_false (ev_is_active (w)))
2439 return; 4201 return;
2440 4202
2441 assert (("libev: ev_io_start called with negative fd", fd >= 0)); 4203 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2442 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE)))); 4204 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2443 4205
4206#if EV_VERIFY >= 2
4207 assert (("libev: ev_io_start called on watcher with invalid fd", fd_valid (fd)));
4208#endif
2444 EV_FREQUENT_CHECK; 4209 EV_FREQUENT_CHECK;
2445 4210
2446 ev_start (EV_A_ (W)w, 1); 4211 ev_start (EV_A_ (W)w, 1);
2447 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); 4212 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
2448 wlist_add (&anfds[fd].head, (WL)w); 4213 wlist_add (&anfds[fd].head, (WL)w);
4214
4215 /* common bug, apparently */
4216 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
2449 4217
2450 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY); 4218 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2451 w->events &= ~EV__IOFDSET; 4219 w->events &= ~EV__IOFDSET;
2452 4220
2453 EV_FREQUENT_CHECK; 4221 EV_FREQUENT_CHECK;
2454} 4222}
2455 4223
2456void noinline 4224ecb_noinline
4225void
2457ev_io_stop (EV_P_ ev_io *w) 4226ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
2458{ 4227{
2459 clear_pending (EV_A_ (W)w); 4228 clear_pending (EV_A_ (W)w);
2460 if (expect_false (!ev_is_active (w))) 4229 if (ecb_expect_false (!ev_is_active (w)))
2461 return; 4230 return;
2462 4231
2463 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 4232 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2464 4233
4234#if EV_VERIFY >= 2
4235 assert (("libev: ev_io_stop called on watcher with invalid fd", fd_valid (w->fd)));
4236#endif
2465 EV_FREQUENT_CHECK; 4237 EV_FREQUENT_CHECK;
2466 4238
2467 wlist_del (&anfds[w->fd].head, (WL)w); 4239 wlist_del (&anfds[w->fd].head, (WL)w);
2468 ev_stop (EV_A_ (W)w); 4240 ev_stop (EV_A_ (W)w);
2469 4241
2470 fd_change (EV_A_ w->fd, 1); 4242 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2471 4243
2472 EV_FREQUENT_CHECK; 4244 EV_FREQUENT_CHECK;
2473} 4245}
2474 4246
2475void noinline 4247ecb_noinline
4248void
2476ev_timer_start (EV_P_ ev_timer *w) 4249ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
2477{ 4250{
2478 if (expect_false (ev_is_active (w))) 4251 if (ecb_expect_false (ev_is_active (w)))
2479 return; 4252 return;
2480 4253
2481 ev_at (w) += mn_now; 4254 ev_at (w) += mn_now;
2482 4255
2483 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 4256 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2484 4257
2485 EV_FREQUENT_CHECK; 4258 EV_FREQUENT_CHECK;
2486 4259
2487 ++timercnt; 4260 ++timercnt;
2488 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 4261 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2489 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 4262 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
2490 ANHE_w (timers [ev_active (w)]) = (WT)w; 4263 ANHE_w (timers [ev_active (w)]) = (WT)w;
2491 ANHE_at_cache (timers [ev_active (w)]); 4264 ANHE_at_cache (timers [ev_active (w)]);
2492 upheap (timers, ev_active (w)); 4265 upheap (timers, ev_active (w));
2493 4266
2494 EV_FREQUENT_CHECK; 4267 EV_FREQUENT_CHECK;
2495 4268
2496 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 4269 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2497} 4270}
2498 4271
2499void noinline 4272ecb_noinline
4273void
2500ev_timer_stop (EV_P_ ev_timer *w) 4274ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
2501{ 4275{
2502 clear_pending (EV_A_ (W)w); 4276 clear_pending (EV_A_ (W)w);
2503 if (expect_false (!ev_is_active (w))) 4277 if (ecb_expect_false (!ev_is_active (w)))
2504 return; 4278 return;
2505 4279
2506 EV_FREQUENT_CHECK; 4280 EV_FREQUENT_CHECK;
2507 4281
2508 { 4282 {
2510 4284
2511 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 4285 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2512 4286
2513 --timercnt; 4287 --timercnt;
2514 4288
2515 if (expect_true (active < timercnt + HEAP0)) 4289 if (ecb_expect_true (active < timercnt + HEAP0))
2516 { 4290 {
2517 timers [active] = timers [timercnt + HEAP0]; 4291 timers [active] = timers [timercnt + HEAP0];
2518 adjustheap (timers, timercnt, active); 4292 adjustheap (timers, timercnt, active);
2519 } 4293 }
2520 } 4294 }
2521 4295
4296 ev_at (w) -= mn_now;
4297
4298 ev_stop (EV_A_ (W)w);
4299
2522 EV_FREQUENT_CHECK; 4300 EV_FREQUENT_CHECK;
2523
2524 ev_at (w) -= mn_now;
2525
2526 ev_stop (EV_A_ (W)w);
2527} 4301}
2528 4302
2529void noinline 4303ecb_noinline
4304void
2530ev_timer_again (EV_P_ ev_timer *w) 4305ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
2531{ 4306{
2532 EV_FREQUENT_CHECK; 4307 EV_FREQUENT_CHECK;
4308
4309 clear_pending (EV_A_ (W)w);
2533 4310
2534 if (ev_is_active (w)) 4311 if (ev_is_active (w))
2535 { 4312 {
2536 if (w->repeat) 4313 if (w->repeat)
2537 { 4314 {
2550 4327
2551 EV_FREQUENT_CHECK; 4328 EV_FREQUENT_CHECK;
2552} 4329}
2553 4330
2554ev_tstamp 4331ev_tstamp
2555ev_timer_remaining (EV_P_ ev_timer *w) 4332ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
2556{ 4333{
2557 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.); 4334 return ev_at (w) - (ev_is_active (w) ? mn_now : EV_TS_CONST (0.));
2558} 4335}
2559 4336
2560#if EV_PERIODIC_ENABLE 4337#if EV_PERIODIC_ENABLE
2561void noinline 4338ecb_noinline
4339void
2562ev_periodic_start (EV_P_ ev_periodic *w) 4340ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
2563{ 4341{
2564 if (expect_false (ev_is_active (w))) 4342 if (ecb_expect_false (ev_is_active (w)))
2565 return; 4343 return;
4344
4345#if EV_USE_TIMERFD
4346 if (timerfd == -2)
4347 evtimerfd_init (EV_A);
4348#endif
2566 4349
2567 if (w->reschedule_cb) 4350 if (w->reschedule_cb)
2568 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 4351 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2569 else if (w->interval) 4352 else if (w->interval)
2570 { 4353 {
2571 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.)); 4354 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2572 /* this formula differs from the one in periodic_reify because we do not always round up */ 4355 periodic_recalc (EV_A_ w);
2573 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2574 } 4356 }
2575 else 4357 else
2576 ev_at (w) = w->offset; 4358 ev_at (w) = w->offset;
2577 4359
2578 EV_FREQUENT_CHECK; 4360 EV_FREQUENT_CHECK;
2579 4361
2580 ++periodiccnt; 4362 ++periodiccnt;
2581 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1); 4363 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2582 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 4364 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
2583 ANHE_w (periodics [ev_active (w)]) = (WT)w; 4365 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2584 ANHE_at_cache (periodics [ev_active (w)]); 4366 ANHE_at_cache (periodics [ev_active (w)]);
2585 upheap (periodics, ev_active (w)); 4367 upheap (periodics, ev_active (w));
2586 4368
2587 EV_FREQUENT_CHECK; 4369 EV_FREQUENT_CHECK;
2588 4370
2589 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 4371 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2590} 4372}
2591 4373
2592void noinline 4374ecb_noinline
4375void
2593ev_periodic_stop (EV_P_ ev_periodic *w) 4376ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
2594{ 4377{
2595 clear_pending (EV_A_ (W)w); 4378 clear_pending (EV_A_ (W)w);
2596 if (expect_false (!ev_is_active (w))) 4379 if (ecb_expect_false (!ev_is_active (w)))
2597 return; 4380 return;
2598 4381
2599 EV_FREQUENT_CHECK; 4382 EV_FREQUENT_CHECK;
2600 4383
2601 { 4384 {
2603 4386
2604 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 4387 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2605 4388
2606 --periodiccnt; 4389 --periodiccnt;
2607 4390
2608 if (expect_true (active < periodiccnt + HEAP0)) 4391 if (ecb_expect_true (active < periodiccnt + HEAP0))
2609 { 4392 {
2610 periodics [active] = periodics [periodiccnt + HEAP0]; 4393 periodics [active] = periodics [periodiccnt + HEAP0];
2611 adjustheap (periodics, periodiccnt, active); 4394 adjustheap (periodics, periodiccnt, active);
2612 } 4395 }
2613 } 4396 }
2614 4397
4398 ev_stop (EV_A_ (W)w);
4399
2615 EV_FREQUENT_CHECK; 4400 EV_FREQUENT_CHECK;
2616
2617 ev_stop (EV_A_ (W)w);
2618} 4401}
2619 4402
2620void noinline 4403ecb_noinline
4404void
2621ev_periodic_again (EV_P_ ev_periodic *w) 4405ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
2622{ 4406{
2623 /* TODO: use adjustheap and recalculation */ 4407 /* TODO: use adjustheap and recalculation */
2624 ev_periodic_stop (EV_A_ w); 4408 ev_periodic_stop (EV_A_ w);
2625 ev_periodic_start (EV_A_ w); 4409 ev_periodic_start (EV_A_ w);
2626} 4410}
2628 4412
2629#ifndef SA_RESTART 4413#ifndef SA_RESTART
2630# define SA_RESTART 0 4414# define SA_RESTART 0
2631#endif 4415#endif
2632 4416
2633void noinline 4417#if EV_SIGNAL_ENABLE
4418
4419ecb_noinline
4420void
2634ev_signal_start (EV_P_ ev_signal *w) 4421ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
2635{ 4422{
4423 if (ecb_expect_false (ev_is_active (w)))
4424 return;
4425
4426 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4427
2636#if EV_MULTIPLICITY 4428#if EV_MULTIPLICITY
2637 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4429 assert (("libev: a signal must not be attached to two different loops",
2638#endif 4430 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2639 if (expect_false (ev_is_active (w)))
2640 return;
2641 4431
2642 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0)); 4432 signals [w->signum - 1].loop = EV_A;
4433 ECB_MEMORY_FENCE_RELEASE;
4434#endif
2643 4435
2644 EV_FREQUENT_CHECK; 4436 EV_FREQUENT_CHECK;
2645 4437
2646#if EV_USE_SIGNALFD 4438#if EV_USE_SIGNALFD
2647 if (sigfd == -2) 4439 if (sigfd == -2)
2669 sigaddset (&sigfd_set, w->signum); 4461 sigaddset (&sigfd_set, w->signum);
2670 sigprocmask (SIG_BLOCK, &sigfd_set, 0); 4462 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2671 4463
2672 signalfd (sigfd, &sigfd_set, 0); 4464 signalfd (sigfd, &sigfd_set, 0);
2673 } 4465 }
2674 else
2675#endif
2676 evpipe_init (EV_A);
2677
2678 {
2679#ifndef _WIN32
2680 sigset_t full, prev;
2681 sigfillset (&full);
2682 sigprocmask (SIG_SETMASK, &full, &prev);
2683#endif
2684
2685 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2686
2687#ifndef _WIN32
2688# if EV_USE_SIGNALFD
2689 if (sigfd < 0)/*TODO*/
2690# endif 4466#endif
2691 sigdelset (&prev, w->signum);
2692 sigprocmask (SIG_SETMASK, &prev, 0);
2693#endif
2694 }
2695 4467
2696 ev_start (EV_A_ (W)w, 1); 4468 ev_start (EV_A_ (W)w, 1);
2697 wlist_add (&signals [w->signum - 1].head, (WL)w); 4469 wlist_add (&signals [w->signum - 1].head, (WL)w);
2698 4470
2699 if (!((WL)w)->next) 4471 if (!((WL)w)->next)
2700 {
2701#if _WIN32
2702 signal (w->signum, ev_sighandler);
2703#else
2704# if EV_USE_SIGNALFD 4472# if EV_USE_SIGNALFD
2705 if (sigfd < 0) /*TODO*/ 4473 if (sigfd < 0) /*TODO*/
2706# endif 4474# endif
2707 { 4475 {
4476# ifdef _WIN32
4477 evpipe_init (EV_A);
4478
4479 signal (w->signum, ev_sighandler);
4480# else
2708 struct sigaction sa = { }; 4481 struct sigaction sa;
4482
4483 evpipe_init (EV_A);
4484
2709 sa.sa_handler = ev_sighandler; 4485 sa.sa_handler = ev_sighandler;
2710 sigfillset (&sa.sa_mask); 4486 sigfillset (&sa.sa_mask);
2711 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 4487 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2712 sigaction (w->signum, &sa, 0); 4488 sigaction (w->signum, &sa, 0);
4489
4490 if (origflags & EVFLAG_NOSIGMASK)
4491 {
4492 sigemptyset (&sa.sa_mask);
4493 sigaddset (&sa.sa_mask, w->signum);
4494 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2713 } 4495 }
2714#endif 4496#endif
2715 } 4497 }
2716 4498
2717 EV_FREQUENT_CHECK; 4499 EV_FREQUENT_CHECK;
2718} 4500}
2719 4501
2720void noinline 4502ecb_noinline
4503void
2721ev_signal_stop (EV_P_ ev_signal *w) 4504ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
2722{ 4505{
2723 clear_pending (EV_A_ (W)w); 4506 clear_pending (EV_A_ (W)w);
2724 if (expect_false (!ev_is_active (w))) 4507 if (ecb_expect_false (!ev_is_active (w)))
2725 return; 4508 return;
2726 4509
2727 EV_FREQUENT_CHECK; 4510 EV_FREQUENT_CHECK;
2728 4511
2729 wlist_del (&signals [w->signum - 1].head, (WL)w); 4512 wlist_del (&signals [w->signum - 1].head, (WL)w);
2730 ev_stop (EV_A_ (W)w); 4513 ev_stop (EV_A_ (W)w);
2731 4514
2732 if (!signals [w->signum - 1].head) 4515 if (!signals [w->signum - 1].head)
4516 {
4517#if EV_MULTIPLICITY
4518 signals [w->signum - 1].loop = 0; /* unattach from signal */
4519#endif
2733#if EV_USE_SIGNALFD 4520#if EV_USE_SIGNALFD
2734 if (sigfd >= 0) 4521 if (sigfd >= 0)
2735 { 4522 {
2736 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D 4523 sigset_t ss;
4524
4525 sigemptyset (&ss);
4526 sigaddset (&ss, w->signum);
2737 sigdelset (&sigfd_set, w->signum); 4527 sigdelset (&sigfd_set, w->signum);
4528
2738 signalfd (sigfd, &sigfd_set, 0); 4529 signalfd (sigfd, &sigfd_set, 0);
2739 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D 4530 sigprocmask (SIG_UNBLOCK, &ss, 0);
2740 /*TODO: maybe unblock signal? */
2741 } 4531 }
2742 else 4532 else
2743#endif 4533#endif
2744 signal (w->signum, SIG_DFL); 4534 signal (w->signum, SIG_DFL);
4535 }
2745 4536
2746 EV_FREQUENT_CHECK; 4537 EV_FREQUENT_CHECK;
2747} 4538}
2748 4539
4540#endif
4541
4542#if EV_CHILD_ENABLE
4543
2749void 4544void
2750ev_child_start (EV_P_ ev_child *w) 4545ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
2751{ 4546{
2752#if EV_MULTIPLICITY 4547#if EV_MULTIPLICITY
2753 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4548 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2754#endif 4549#endif
2755 if (expect_false (ev_is_active (w))) 4550 if (ecb_expect_false (ev_is_active (w)))
2756 return; 4551 return;
2757 4552
2758 EV_FREQUENT_CHECK; 4553 EV_FREQUENT_CHECK;
2759 4554
2760 ev_start (EV_A_ (W)w, 1); 4555 ev_start (EV_A_ (W)w, 1);
2761 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4556 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2762 4557
2763 EV_FREQUENT_CHECK; 4558 EV_FREQUENT_CHECK;
2764} 4559}
2765 4560
2766void 4561void
2767ev_child_stop (EV_P_ ev_child *w) 4562ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
2768{ 4563{
2769 clear_pending (EV_A_ (W)w); 4564 clear_pending (EV_A_ (W)w);
2770 if (expect_false (!ev_is_active (w))) 4565 if (ecb_expect_false (!ev_is_active (w)))
2771 return; 4566 return;
2772 4567
2773 EV_FREQUENT_CHECK; 4568 EV_FREQUENT_CHECK;
2774 4569
2775 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4570 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2776 ev_stop (EV_A_ (W)w); 4571 ev_stop (EV_A_ (W)w);
2777 4572
2778 EV_FREQUENT_CHECK; 4573 EV_FREQUENT_CHECK;
2779} 4574}
4575
4576#endif
2780 4577
2781#if EV_STAT_ENABLE 4578#if EV_STAT_ENABLE
2782 4579
2783# ifdef _WIN32 4580# ifdef _WIN32
2784# undef lstat 4581# undef lstat
2787 4584
2788#define DEF_STAT_INTERVAL 5.0074891 4585#define DEF_STAT_INTERVAL 5.0074891
2789#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */ 4586#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2790#define MIN_STAT_INTERVAL 0.1074891 4587#define MIN_STAT_INTERVAL 0.1074891
2791 4588
2792static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 4589ecb_noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2793 4590
2794#if EV_USE_INOTIFY 4591#if EV_USE_INOTIFY
2795# define EV_INOTIFY_BUFSIZE 8192
2796 4592
2797static void noinline 4593/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4594# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4595
4596ecb_noinline
4597static void
2798infy_add (EV_P_ ev_stat *w) 4598infy_add (EV_P_ ev_stat *w)
2799{ 4599{
2800 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 4600 w->wd = inotify_add_watch (fs_fd, w->path,
4601 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4602 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4603 | IN_DONT_FOLLOW | IN_MASK_ADD);
2801 4604
2802 if (w->wd < 0) 4605 if (w->wd >= 0)
4606 {
4607 struct statfs sfs;
4608
4609 /* now local changes will be tracked by inotify, but remote changes won't */
4610 /* unless the filesystem is known to be local, we therefore still poll */
4611 /* also do poll on <2.6.25, but with normal frequency */
4612
4613 if (!fs_2625)
4614 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4615 else if (!statfs (w->path, &sfs)
4616 && (sfs.f_type == 0x1373 /* devfs */
4617 || sfs.f_type == 0x4006 /* fat */
4618 || sfs.f_type == 0x4d44 /* msdos */
4619 || sfs.f_type == 0xEF53 /* ext2/3 */
4620 || sfs.f_type == 0x72b6 /* jffs2 */
4621 || sfs.f_type == 0x858458f6 /* ramfs */
4622 || sfs.f_type == 0x5346544e /* ntfs */
4623 || sfs.f_type == 0x3153464a /* jfs */
4624 || sfs.f_type == 0x9123683e /* btrfs */
4625 || sfs.f_type == 0x52654973 /* reiser3 */
4626 || sfs.f_type == 0x01021994 /* tmpfs */
4627 || sfs.f_type == 0x58465342 /* xfs */))
4628 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4629 else
4630 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2803 { 4631 }
4632 else
4633 {
4634 /* can't use inotify, continue to stat */
2804 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL; 4635 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2805 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2806 4636
2807 /* monitor some parent directory for speedup hints */ 4637 /* if path is not there, monitor some parent directory for speedup hints */
2808 /* note that exceeding the hardcoded path limit is not a correctness issue, */ 4638 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2809 /* but an efficiency issue only */ 4639 /* but an efficiency issue only */
2810 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4640 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2811 { 4641 {
2812 char path [4096]; 4642 char path [4096];
2822 if (!pend || pend == path) 4652 if (!pend || pend == path)
2823 break; 4653 break;
2824 4654
2825 *pend = 0; 4655 *pend = 0;
2826 w->wd = inotify_add_watch (fs_fd, path, mask); 4656 w->wd = inotify_add_watch (fs_fd, path, mask);
2827 } 4657 }
2828 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4658 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2829 } 4659 }
2830 } 4660 }
2831 4661
2832 if (w->wd >= 0) 4662 if (w->wd >= 0)
2833 {
2834 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4663 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2835 4664
2836 /* now local changes will be tracked by inotify, but remote changes won't */ 4665 /* now re-arm timer, if required */
2837 /* unless the filesystem it known to be local, we therefore still poll */ 4666 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2838 /* also do poll on <2.6.25, but with normal frequency */
2839 struct statfs sfs;
2840
2841 if (fs_2625 && !statfs (w->path, &sfs))
2842 if (sfs.f_type == 0x1373 /* devfs */
2843 || sfs.f_type == 0xEF53 /* ext2/3 */
2844 || sfs.f_type == 0x3153464a /* jfs */
2845 || sfs.f_type == 0x52654973 /* reiser3 */
2846 || sfs.f_type == 0x01021994 /* tempfs */
2847 || sfs.f_type == 0x58465342 /* xfs */)
2848 return;
2849
2850 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2851 ev_timer_again (EV_A_ &w->timer); 4667 ev_timer_again (EV_A_ &w->timer);
2852 } 4668 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2853} 4669}
2854 4670
2855static void noinline 4671ecb_noinline
4672static void
2856infy_del (EV_P_ ev_stat *w) 4673infy_del (EV_P_ ev_stat *w)
2857{ 4674{
2858 int slot; 4675 int slot;
2859 int wd = w->wd; 4676 int wd = w->wd;
2860 4677
2861 if (wd < 0) 4678 if (wd < 0)
2862 return; 4679 return;
2863 4680
2864 w->wd = -2; 4681 w->wd = -2;
2865 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4682 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2866 wlist_del (&fs_hash [slot].head, (WL)w); 4683 wlist_del (&fs_hash [slot].head, (WL)w);
2867 4684
2868 /* remove this watcher, if others are watching it, they will rearm */ 4685 /* remove this watcher, if others are watching it, they will rearm */
2869 inotify_rm_watch (fs_fd, wd); 4686 inotify_rm_watch (fs_fd, wd);
2870} 4687}
2871 4688
2872static void noinline 4689ecb_noinline
4690static void
2873infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4691infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2874{ 4692{
2875 if (slot < 0) 4693 if (slot < 0)
2876 /* overflow, need to check for all hash slots */ 4694 /* overflow, need to check for all hash slots */
2877 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4695 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2878 infy_wd (EV_A_ slot, wd, ev); 4696 infy_wd (EV_A_ slot, wd, ev);
2879 else 4697 else
2880 { 4698 {
2881 WL w_; 4699 WL w_;
2882 4700
2883 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4701 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2884 { 4702 {
2885 ev_stat *w = (ev_stat *)w_; 4703 ev_stat *w = (ev_stat *)w_;
2886 w_ = w_->next; /* lets us remove this watcher and all before it */ 4704 w_ = w_->next; /* lets us remove this watcher and all before it */
2887 4705
2888 if (w->wd == wd || wd == -1) 4706 if (w->wd == wd || wd == -1)
2889 { 4707 {
2890 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4708 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2891 { 4709 {
2892 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4710 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2893 w->wd = -1; 4711 w->wd = -1;
2894 infy_add (EV_A_ w); /* re-add, no matter what */ 4712 infy_add (EV_A_ w); /* re-add, no matter what */
2895 } 4713 }
2896 4714
2897 stat_timer_cb (EV_A_ &w->timer, 0); 4715 stat_timer_cb (EV_A_ &w->timer, 0);
2902 4720
2903static void 4721static void
2904infy_cb (EV_P_ ev_io *w, int revents) 4722infy_cb (EV_P_ ev_io *w, int revents)
2905{ 4723{
2906 char buf [EV_INOTIFY_BUFSIZE]; 4724 char buf [EV_INOTIFY_BUFSIZE];
2907 struct inotify_event *ev = (struct inotify_event *)buf;
2908 int ofs; 4725 int ofs;
2909 int len = read (fs_fd, buf, sizeof (buf)); 4726 int len = read (fs_fd, buf, sizeof (buf));
2910 4727
2911 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4728 for (ofs = 0; ofs < len; )
4729 {
4730 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2912 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4731 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4732 ofs += sizeof (struct inotify_event) + ev->len;
4733 }
2913} 4734}
2914 4735
2915inline_size void 4736inline_size ecb_cold
4737void
2916check_2625 (EV_P) 4738ev_check_2625 (EV_P)
2917{ 4739{
2918 /* kernels < 2.6.25 are borked 4740 /* kernels < 2.6.25 are borked
2919 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 4741 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2920 */ 4742 */
2921 struct utsname buf; 4743 if (ev_linux_version () < 0x020619)
2922 int major, minor, micro;
2923
2924 if (uname (&buf))
2925 return; 4744 return;
2926 4745
2927 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2928 return;
2929
2930 if (major < 2
2931 || (major == 2 && minor < 6)
2932 || (major == 2 && minor == 6 && micro < 25))
2933 return;
2934
2935 fs_2625 = 1; 4746 fs_2625 = 1;
4747}
4748
4749inline_size int
4750infy_newfd (void)
4751{
4752#if defined IN_CLOEXEC && defined IN_NONBLOCK
4753 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4754 if (fd >= 0)
4755 return fd;
4756#endif
4757 return inotify_init ();
2936} 4758}
2937 4759
2938inline_size void 4760inline_size void
2939infy_init (EV_P) 4761infy_init (EV_P)
2940{ 4762{
2941 if (fs_fd != -2) 4763 if (fs_fd != -2)
2942 return; 4764 return;
2943 4765
2944 fs_fd = -1; 4766 fs_fd = -1;
2945 4767
2946 check_2625 (EV_A); 4768 ev_check_2625 (EV_A);
2947 4769
2948 fs_fd = inotify_init (); 4770 fs_fd = infy_newfd ();
2949 4771
2950 if (fs_fd >= 0) 4772 if (fs_fd >= 0)
2951 { 4773 {
4774 fd_intern (fs_fd);
2952 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4775 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2953 ev_set_priority (&fs_w, EV_MAXPRI); 4776 ev_set_priority (&fs_w, EV_MAXPRI);
2954 ev_io_start (EV_A_ &fs_w); 4777 ev_io_start (EV_A_ &fs_w);
4778 ev_unref (EV_A);
2955 } 4779 }
2956} 4780}
2957 4781
2958inline_size void 4782inline_size void
2959infy_fork (EV_P) 4783infy_fork (EV_P)
2961 int slot; 4785 int slot;
2962 4786
2963 if (fs_fd < 0) 4787 if (fs_fd < 0)
2964 return; 4788 return;
2965 4789
4790 ev_ref (EV_A);
4791 ev_io_stop (EV_A_ &fs_w);
2966 close (fs_fd); 4792 close (fs_fd);
2967 fs_fd = inotify_init (); 4793 fs_fd = infy_newfd ();
2968 4794
4795 if (fs_fd >= 0)
4796 {
4797 fd_intern (fs_fd);
4798 ev_io_set (&fs_w, fs_fd, EV_READ);
4799 ev_io_start (EV_A_ &fs_w);
4800 ev_unref (EV_A);
4801 }
4802
2969 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4803 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2970 { 4804 {
2971 WL w_ = fs_hash [slot].head; 4805 WL w_ = fs_hash [slot].head;
2972 fs_hash [slot].head = 0; 4806 fs_hash [slot].head = 0;
2973 4807
2974 while (w_) 4808 while (w_)
2979 w->wd = -1; 4813 w->wd = -1;
2980 4814
2981 if (fs_fd >= 0) 4815 if (fs_fd >= 0)
2982 infy_add (EV_A_ w); /* re-add, no matter what */ 4816 infy_add (EV_A_ w); /* re-add, no matter what */
2983 else 4817 else
4818 {
4819 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4820 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2984 ev_timer_again (EV_A_ &w->timer); 4821 ev_timer_again (EV_A_ &w->timer);
4822 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4823 }
2985 } 4824 }
2986 } 4825 }
2987} 4826}
2988 4827
2989#endif 4828#endif
2993#else 4832#else
2994# define EV_LSTAT(p,b) lstat (p, b) 4833# define EV_LSTAT(p,b) lstat (p, b)
2995#endif 4834#endif
2996 4835
2997void 4836void
2998ev_stat_stat (EV_P_ ev_stat *w) 4837ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
2999{ 4838{
3000 if (lstat (w->path, &w->attr) < 0) 4839 if (lstat (w->path, &w->attr) < 0)
3001 w->attr.st_nlink = 0; 4840 w->attr.st_nlink = 0;
3002 else if (!w->attr.st_nlink) 4841 else if (!w->attr.st_nlink)
3003 w->attr.st_nlink = 1; 4842 w->attr.st_nlink = 1;
3004} 4843}
3005 4844
3006static void noinline 4845ecb_noinline
4846static void
3007stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4847stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3008{ 4848{
3009 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4849 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3010 4850
3011 /* we copy this here each the time so that */ 4851 ev_statdata prev = w->attr;
3012 /* prev has the old value when the callback gets invoked */
3013 w->prev = w->attr;
3014 ev_stat_stat (EV_A_ w); 4852 ev_stat_stat (EV_A_ w);
3015 4853
3016 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4854 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3017 if ( 4855 if (
3018 w->prev.st_dev != w->attr.st_dev 4856 prev.st_dev != w->attr.st_dev
3019 || w->prev.st_ino != w->attr.st_ino 4857 || prev.st_ino != w->attr.st_ino
3020 || w->prev.st_mode != w->attr.st_mode 4858 || prev.st_mode != w->attr.st_mode
3021 || w->prev.st_nlink != w->attr.st_nlink 4859 || prev.st_nlink != w->attr.st_nlink
3022 || w->prev.st_uid != w->attr.st_uid 4860 || prev.st_uid != w->attr.st_uid
3023 || w->prev.st_gid != w->attr.st_gid 4861 || prev.st_gid != w->attr.st_gid
3024 || w->prev.st_rdev != w->attr.st_rdev 4862 || prev.st_rdev != w->attr.st_rdev
3025 || w->prev.st_size != w->attr.st_size 4863 || prev.st_size != w->attr.st_size
3026 || w->prev.st_atime != w->attr.st_atime 4864 || prev.st_atime != w->attr.st_atime
3027 || w->prev.st_mtime != w->attr.st_mtime 4865 || prev.st_mtime != w->attr.st_mtime
3028 || w->prev.st_ctime != w->attr.st_ctime 4866 || prev.st_ctime != w->attr.st_ctime
3029 ) { 4867 ) {
4868 /* we only update w->prev on actual differences */
4869 /* in case we test more often than invoke the callback, */
4870 /* to ensure that prev is always different to attr */
4871 w->prev = prev;
4872
3030 #if EV_USE_INOTIFY 4873 #if EV_USE_INOTIFY
3031 if (fs_fd >= 0) 4874 if (fs_fd >= 0)
3032 { 4875 {
3033 infy_del (EV_A_ w); 4876 infy_del (EV_A_ w);
3034 infy_add (EV_A_ w); 4877 infy_add (EV_A_ w);
3039 ev_feed_event (EV_A_ w, EV_STAT); 4882 ev_feed_event (EV_A_ w, EV_STAT);
3040 } 4883 }
3041} 4884}
3042 4885
3043void 4886void
3044ev_stat_start (EV_P_ ev_stat *w) 4887ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
3045{ 4888{
3046 if (expect_false (ev_is_active (w))) 4889 if (ecb_expect_false (ev_is_active (w)))
3047 return; 4890 return;
3048 4891
3049 ev_stat_stat (EV_A_ w); 4892 ev_stat_stat (EV_A_ w);
3050 4893
3051 if (w->interval < MIN_STAT_INTERVAL && w->interval) 4894 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3059 4902
3060 if (fs_fd >= 0) 4903 if (fs_fd >= 0)
3061 infy_add (EV_A_ w); 4904 infy_add (EV_A_ w);
3062 else 4905 else
3063#endif 4906#endif
4907 {
3064 ev_timer_again (EV_A_ &w->timer); 4908 ev_timer_again (EV_A_ &w->timer);
4909 ev_unref (EV_A);
4910 }
3065 4911
3066 ev_start (EV_A_ (W)w, 1); 4912 ev_start (EV_A_ (W)w, 1);
3067 4913
3068 EV_FREQUENT_CHECK; 4914 EV_FREQUENT_CHECK;
3069} 4915}
3070 4916
3071void 4917void
3072ev_stat_stop (EV_P_ ev_stat *w) 4918ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
3073{ 4919{
3074 clear_pending (EV_A_ (W)w); 4920 clear_pending (EV_A_ (W)w);
3075 if (expect_false (!ev_is_active (w))) 4921 if (ecb_expect_false (!ev_is_active (w)))
3076 return; 4922 return;
3077 4923
3078 EV_FREQUENT_CHECK; 4924 EV_FREQUENT_CHECK;
3079 4925
3080#if EV_USE_INOTIFY 4926#if EV_USE_INOTIFY
3081 infy_del (EV_A_ w); 4927 infy_del (EV_A_ w);
3082#endif 4928#endif
4929
4930 if (ev_is_active (&w->timer))
4931 {
4932 ev_ref (EV_A);
3083 ev_timer_stop (EV_A_ &w->timer); 4933 ev_timer_stop (EV_A_ &w->timer);
4934 }
3084 4935
3085 ev_stop (EV_A_ (W)w); 4936 ev_stop (EV_A_ (W)w);
3086 4937
3087 EV_FREQUENT_CHECK; 4938 EV_FREQUENT_CHECK;
3088} 4939}
3089#endif 4940#endif
3090 4941
3091#if EV_IDLE_ENABLE 4942#if EV_IDLE_ENABLE
3092void 4943void
3093ev_idle_start (EV_P_ ev_idle *w) 4944ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
3094{ 4945{
3095 if (expect_false (ev_is_active (w))) 4946 if (ecb_expect_false (ev_is_active (w)))
3096 return; 4947 return;
3097 4948
3098 pri_adjust (EV_A_ (W)w); 4949 pri_adjust (EV_A_ (W)w);
3099 4950
3100 EV_FREQUENT_CHECK; 4951 EV_FREQUENT_CHECK;
3103 int active = ++idlecnt [ABSPRI (w)]; 4954 int active = ++idlecnt [ABSPRI (w)];
3104 4955
3105 ++idleall; 4956 ++idleall;
3106 ev_start (EV_A_ (W)w, active); 4957 ev_start (EV_A_ (W)w, active);
3107 4958
3108 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 4959 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
3109 idles [ABSPRI (w)][active - 1] = w; 4960 idles [ABSPRI (w)][active - 1] = w;
3110 } 4961 }
3111 4962
3112 EV_FREQUENT_CHECK; 4963 EV_FREQUENT_CHECK;
3113} 4964}
3114 4965
3115void 4966void
3116ev_idle_stop (EV_P_ ev_idle *w) 4967ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
3117{ 4968{
3118 clear_pending (EV_A_ (W)w); 4969 clear_pending (EV_A_ (W)w);
3119 if (expect_false (!ev_is_active (w))) 4970 if (ecb_expect_false (!ev_is_active (w)))
3120 return; 4971 return;
3121 4972
3122 EV_FREQUENT_CHECK; 4973 EV_FREQUENT_CHECK;
3123 4974
3124 { 4975 {
3133 4984
3134 EV_FREQUENT_CHECK; 4985 EV_FREQUENT_CHECK;
3135} 4986}
3136#endif 4987#endif
3137 4988
4989#if EV_PREPARE_ENABLE
3138void 4990void
3139ev_prepare_start (EV_P_ ev_prepare *w) 4991ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
3140{ 4992{
3141 if (expect_false (ev_is_active (w))) 4993 if (ecb_expect_false (ev_is_active (w)))
3142 return; 4994 return;
3143 4995
3144 EV_FREQUENT_CHECK; 4996 EV_FREQUENT_CHECK;
3145 4997
3146 ev_start (EV_A_ (W)w, ++preparecnt); 4998 ev_start (EV_A_ (W)w, ++preparecnt);
3147 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4999 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
3148 prepares [preparecnt - 1] = w; 5000 prepares [preparecnt - 1] = w;
3149 5001
3150 EV_FREQUENT_CHECK; 5002 EV_FREQUENT_CHECK;
3151} 5003}
3152 5004
3153void 5005void
3154ev_prepare_stop (EV_P_ ev_prepare *w) 5006ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
3155{ 5007{
3156 clear_pending (EV_A_ (W)w); 5008 clear_pending (EV_A_ (W)w);
3157 if (expect_false (!ev_is_active (w))) 5009 if (ecb_expect_false (!ev_is_active (w)))
3158 return; 5010 return;
3159 5011
3160 EV_FREQUENT_CHECK; 5012 EV_FREQUENT_CHECK;
3161 5013
3162 { 5014 {
3168 5020
3169 ev_stop (EV_A_ (W)w); 5021 ev_stop (EV_A_ (W)w);
3170 5022
3171 EV_FREQUENT_CHECK; 5023 EV_FREQUENT_CHECK;
3172} 5024}
5025#endif
3173 5026
5027#if EV_CHECK_ENABLE
3174void 5028void
3175ev_check_start (EV_P_ ev_check *w) 5029ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
3176{ 5030{
3177 if (expect_false (ev_is_active (w))) 5031 if (ecb_expect_false (ev_is_active (w)))
3178 return; 5032 return;
3179 5033
3180 EV_FREQUENT_CHECK; 5034 EV_FREQUENT_CHECK;
3181 5035
3182 ev_start (EV_A_ (W)w, ++checkcnt); 5036 ev_start (EV_A_ (W)w, ++checkcnt);
3183 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 5037 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
3184 checks [checkcnt - 1] = w; 5038 checks [checkcnt - 1] = w;
3185 5039
3186 EV_FREQUENT_CHECK; 5040 EV_FREQUENT_CHECK;
3187} 5041}
3188 5042
3189void 5043void
3190ev_check_stop (EV_P_ ev_check *w) 5044ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
3191{ 5045{
3192 clear_pending (EV_A_ (W)w); 5046 clear_pending (EV_A_ (W)w);
3193 if (expect_false (!ev_is_active (w))) 5047 if (ecb_expect_false (!ev_is_active (w)))
3194 return; 5048 return;
3195 5049
3196 EV_FREQUENT_CHECK; 5050 EV_FREQUENT_CHECK;
3197 5051
3198 { 5052 {
3204 5058
3205 ev_stop (EV_A_ (W)w); 5059 ev_stop (EV_A_ (W)w);
3206 5060
3207 EV_FREQUENT_CHECK; 5061 EV_FREQUENT_CHECK;
3208} 5062}
5063#endif
3209 5064
3210#if EV_EMBED_ENABLE 5065#if EV_EMBED_ENABLE
3211void noinline 5066ecb_noinline
5067void
3212ev_embed_sweep (EV_P_ ev_embed *w) 5068ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
3213{ 5069{
3214 ev_loop (w->other, EVLOOP_NONBLOCK); 5070 ev_run (w->other, EVRUN_NOWAIT);
3215} 5071}
3216 5072
3217static void 5073static void
3218embed_io_cb (EV_P_ ev_io *io, int revents) 5074embed_io_cb (EV_P_ ev_io *io, int revents)
3219{ 5075{
3220 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 5076 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3221 5077
3222 if (ev_cb (w)) 5078 if (ev_cb (w))
3223 ev_feed_event (EV_A_ (W)w, EV_EMBED); 5079 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3224 else 5080 else
3225 ev_loop (w->other, EVLOOP_NONBLOCK); 5081 ev_run (w->other, EVRUN_NOWAIT);
3226} 5082}
3227 5083
3228static void 5084static void
3229embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 5085embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3230{ 5086{
3231 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 5087 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3232 5088
3233 { 5089 {
3234 struct ev_loop *loop = w->other; 5090 EV_P = w->other;
3235 5091
3236 while (fdchangecnt) 5092 while (fdchangecnt)
3237 { 5093 {
3238 fd_reify (EV_A); 5094 fd_reify (EV_A);
3239 ev_loop (EV_A_ EVLOOP_NONBLOCK); 5095 ev_run (EV_A_ EVRUN_NOWAIT);
3240 } 5096 }
3241 } 5097 }
3242} 5098}
3243 5099
5100#if EV_FORK_ENABLE
3244static void 5101static void
3245embed_fork_cb (EV_P_ ev_fork *fork_w, int revents) 5102embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3246{ 5103{
3247 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 5104 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3248 5105
3249 ev_embed_stop (EV_A_ w); 5106 ev_embed_stop (EV_A_ w);
3250 5107
3251 { 5108 {
3252 struct ev_loop *loop = w->other; 5109 EV_P = w->other;
3253 5110
3254 ev_loop_fork (EV_A); 5111 ev_loop_fork (EV_A);
3255 ev_loop (EV_A_ EVLOOP_NONBLOCK); 5112 ev_run (EV_A_ EVRUN_NOWAIT);
3256 } 5113 }
3257 5114
3258 ev_embed_start (EV_A_ w); 5115 ev_embed_start (EV_A_ w);
3259} 5116}
5117#endif
3260 5118
3261#if 0 5119#if 0
3262static void 5120static void
3263embed_idle_cb (EV_P_ ev_idle *idle, int revents) 5121embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3264{ 5122{
3265 ev_idle_stop (EV_A_ idle); 5123 ev_idle_stop (EV_A_ idle);
3266} 5124}
3267#endif 5125#endif
3268 5126
3269void 5127void
3270ev_embed_start (EV_P_ ev_embed *w) 5128ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
3271{ 5129{
3272 if (expect_false (ev_is_active (w))) 5130 if (ecb_expect_false (ev_is_active (w)))
3273 return; 5131 return;
3274 5132
3275 { 5133 {
3276 struct ev_loop *loop = w->other; 5134 EV_P = w->other;
3277 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 5135 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3278 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 5136 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3279 } 5137 }
3280 5138
3281 EV_FREQUENT_CHECK; 5139 EV_FREQUENT_CHECK;
3285 5143
3286 ev_prepare_init (&w->prepare, embed_prepare_cb); 5144 ev_prepare_init (&w->prepare, embed_prepare_cb);
3287 ev_set_priority (&w->prepare, EV_MINPRI); 5145 ev_set_priority (&w->prepare, EV_MINPRI);
3288 ev_prepare_start (EV_A_ &w->prepare); 5146 ev_prepare_start (EV_A_ &w->prepare);
3289 5147
5148#if EV_FORK_ENABLE
3290 ev_fork_init (&w->fork, embed_fork_cb); 5149 ev_fork_init (&w->fork, embed_fork_cb);
3291 ev_fork_start (EV_A_ &w->fork); 5150 ev_fork_start (EV_A_ &w->fork);
5151#endif
3292 5152
3293 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 5153 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3294 5154
3295 ev_start (EV_A_ (W)w, 1); 5155 ev_start (EV_A_ (W)w, 1);
3296 5156
3297 EV_FREQUENT_CHECK; 5157 EV_FREQUENT_CHECK;
3298} 5158}
3299 5159
3300void 5160void
3301ev_embed_stop (EV_P_ ev_embed *w) 5161ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
3302{ 5162{
3303 clear_pending (EV_A_ (W)w); 5163 clear_pending (EV_A_ (W)w);
3304 if (expect_false (!ev_is_active (w))) 5164 if (ecb_expect_false (!ev_is_active (w)))
3305 return; 5165 return;
3306 5166
3307 EV_FREQUENT_CHECK; 5167 EV_FREQUENT_CHECK;
3308 5168
3309 ev_io_stop (EV_A_ &w->io); 5169 ev_io_stop (EV_A_ &w->io);
3310 ev_prepare_stop (EV_A_ &w->prepare); 5170 ev_prepare_stop (EV_A_ &w->prepare);
5171#if EV_FORK_ENABLE
3311 ev_fork_stop (EV_A_ &w->fork); 5172 ev_fork_stop (EV_A_ &w->fork);
5173#endif
5174
5175 ev_stop (EV_A_ (W)w);
3312 5176
3313 EV_FREQUENT_CHECK; 5177 EV_FREQUENT_CHECK;
3314} 5178}
3315#endif 5179#endif
3316 5180
3317#if EV_FORK_ENABLE 5181#if EV_FORK_ENABLE
3318void 5182void
3319ev_fork_start (EV_P_ ev_fork *w) 5183ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
3320{ 5184{
3321 if (expect_false (ev_is_active (w))) 5185 if (ecb_expect_false (ev_is_active (w)))
3322 return; 5186 return;
3323 5187
3324 EV_FREQUENT_CHECK; 5188 EV_FREQUENT_CHECK;
3325 5189
3326 ev_start (EV_A_ (W)w, ++forkcnt); 5190 ev_start (EV_A_ (W)w, ++forkcnt);
3327 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 5191 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
3328 forks [forkcnt - 1] = w; 5192 forks [forkcnt - 1] = w;
3329 5193
3330 EV_FREQUENT_CHECK; 5194 EV_FREQUENT_CHECK;
3331} 5195}
3332 5196
3333void 5197void
3334ev_fork_stop (EV_P_ ev_fork *w) 5198ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
3335{ 5199{
3336 clear_pending (EV_A_ (W)w); 5200 clear_pending (EV_A_ (W)w);
3337 if (expect_false (!ev_is_active (w))) 5201 if (ecb_expect_false (!ev_is_active (w)))
3338 return; 5202 return;
3339 5203
3340 EV_FREQUENT_CHECK; 5204 EV_FREQUENT_CHECK;
3341 5205
3342 { 5206 {
3350 5214
3351 EV_FREQUENT_CHECK; 5215 EV_FREQUENT_CHECK;
3352} 5216}
3353#endif 5217#endif
3354 5218
5219#if EV_CLEANUP_ENABLE
5220void
5221ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5222{
5223 if (ecb_expect_false (ev_is_active (w)))
5224 return;
5225
5226 EV_FREQUENT_CHECK;
5227
5228 ev_start (EV_A_ (W)w, ++cleanupcnt);
5229 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
5230 cleanups [cleanupcnt - 1] = w;
5231
5232 /* cleanup watchers should never keep a refcount on the loop */
5233 ev_unref (EV_A);
5234 EV_FREQUENT_CHECK;
5235}
5236
5237void
5238ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5239{
5240 clear_pending (EV_A_ (W)w);
5241 if (ecb_expect_false (!ev_is_active (w)))
5242 return;
5243
5244 EV_FREQUENT_CHECK;
5245 ev_ref (EV_A);
5246
5247 {
5248 int active = ev_active (w);
5249
5250 cleanups [active - 1] = cleanups [--cleanupcnt];
5251 ev_active (cleanups [active - 1]) = active;
5252 }
5253
5254 ev_stop (EV_A_ (W)w);
5255
5256 EV_FREQUENT_CHECK;
5257}
5258#endif
5259
3355#if EV_ASYNC_ENABLE 5260#if EV_ASYNC_ENABLE
3356void 5261void
3357ev_async_start (EV_P_ ev_async *w) 5262ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
3358{ 5263{
3359 if (expect_false (ev_is_active (w))) 5264 if (ecb_expect_false (ev_is_active (w)))
3360 return; 5265 return;
3361 5266
5267 w->sent = 0;
5268
3362 evpipe_init (EV_A); 5269 evpipe_init (EV_A);
3363 5270
3364 EV_FREQUENT_CHECK; 5271 EV_FREQUENT_CHECK;
3365 5272
3366 ev_start (EV_A_ (W)w, ++asynccnt); 5273 ev_start (EV_A_ (W)w, ++asynccnt);
3367 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 5274 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
3368 asyncs [asynccnt - 1] = w; 5275 asyncs [asynccnt - 1] = w;
3369 5276
3370 EV_FREQUENT_CHECK; 5277 EV_FREQUENT_CHECK;
3371} 5278}
3372 5279
3373void 5280void
3374ev_async_stop (EV_P_ ev_async *w) 5281ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
3375{ 5282{
3376 clear_pending (EV_A_ (W)w); 5283 clear_pending (EV_A_ (W)w);
3377 if (expect_false (!ev_is_active (w))) 5284 if (ecb_expect_false (!ev_is_active (w)))
3378 return; 5285 return;
3379 5286
3380 EV_FREQUENT_CHECK; 5287 EV_FREQUENT_CHECK;
3381 5288
3382 { 5289 {
3390 5297
3391 EV_FREQUENT_CHECK; 5298 EV_FREQUENT_CHECK;
3392} 5299}
3393 5300
3394void 5301void
3395ev_async_send (EV_P_ ev_async *w) 5302ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
3396{ 5303{
3397 w->sent = 1; 5304 w->sent = 1;
3398 evpipe_write (EV_A_ &gotasync); 5305 evpipe_write (EV_A_ &async_pending);
3399} 5306}
3400#endif 5307#endif
3401 5308
3402/*****************************************************************************/ 5309/*****************************************************************************/
3403 5310
3437 5344
3438 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io)); 5345 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3439} 5346}
3440 5347
3441void 5348void
3442ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 5349ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
3443{ 5350{
3444 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 5351 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3445
3446 if (expect_false (!once))
3447 {
3448 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
3449 return;
3450 }
3451 5352
3452 once->cb = cb; 5353 once->cb = cb;
3453 once->arg = arg; 5354 once->arg = arg;
3454 5355
3455 ev_init (&once->io, once_cb_io); 5356 ev_init (&once->io, once_cb_io);
3468} 5369}
3469 5370
3470/*****************************************************************************/ 5371/*****************************************************************************/
3471 5372
3472#if EV_WALK_ENABLE 5373#if EV_WALK_ENABLE
5374ecb_cold
3473void 5375void
3474ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) 5376ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
3475{ 5377{
3476 int i, j; 5378 int i, j;
3477 ev_watcher_list *wl, *wn; 5379 ev_watcher_list *wl, *wn;
3478 5380
3479 if (types & (EV_IO | EV_EMBED)) 5381 if (types & (EV_IO | EV_EMBED))
3522 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i])); 5424 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3523#endif 5425#endif
3524 5426
3525#if EV_IDLE_ENABLE 5427#if EV_IDLE_ENABLE
3526 if (types & EV_IDLE) 5428 if (types & EV_IDLE)
3527 for (j = NUMPRI; i--; ) 5429 for (j = NUMPRI; j--; )
3528 for (i = idlecnt [j]; i--; ) 5430 for (i = idlecnt [j]; i--; )
3529 cb (EV_A_ EV_IDLE, idles [j][i]); 5431 cb (EV_A_ EV_IDLE, idles [j][i]);
3530#endif 5432#endif
3531 5433
3532#if EV_FORK_ENABLE 5434#if EV_FORK_ENABLE
3540 if (types & EV_ASYNC) 5442 if (types & EV_ASYNC)
3541 for (i = asynccnt; i--; ) 5443 for (i = asynccnt; i--; )
3542 cb (EV_A_ EV_ASYNC, asyncs [i]); 5444 cb (EV_A_ EV_ASYNC, asyncs [i]);
3543#endif 5445#endif
3544 5446
5447#if EV_PREPARE_ENABLE
3545 if (types & EV_PREPARE) 5448 if (types & EV_PREPARE)
3546 for (i = preparecnt; i--; ) 5449 for (i = preparecnt; i--; )
3547#if EV_EMBED_ENABLE 5450# if EV_EMBED_ENABLE
3548 if (ev_cb (prepares [i]) != embed_prepare_cb) 5451 if (ev_cb (prepares [i]) != embed_prepare_cb)
3549#endif 5452# endif
3550 cb (EV_A_ EV_PREPARE, prepares [i]); 5453 cb (EV_A_ EV_PREPARE, prepares [i]);
5454#endif
3551 5455
5456#if EV_CHECK_ENABLE
3552 if (types & EV_CHECK) 5457 if (types & EV_CHECK)
3553 for (i = checkcnt; i--; ) 5458 for (i = checkcnt; i--; )
3554 cb (EV_A_ EV_CHECK, checks [i]); 5459 cb (EV_A_ EV_CHECK, checks [i]);
5460#endif
3555 5461
5462#if EV_SIGNAL_ENABLE
3556 if (types & EV_SIGNAL) 5463 if (types & EV_SIGNAL)
3557 for (i = 0; i < signalmax; ++i) 5464 for (i = 0; i < EV_NSIG - 1; ++i)
3558 for (wl = signals [i].head; wl; ) 5465 for (wl = signals [i].head; wl; )
3559 { 5466 {
3560 wn = wl->next; 5467 wn = wl->next;
3561 cb (EV_A_ EV_SIGNAL, wl); 5468 cb (EV_A_ EV_SIGNAL, wl);
3562 wl = wn; 5469 wl = wn;
3563 } 5470 }
5471#endif
3564 5472
5473#if EV_CHILD_ENABLE
3565 if (types & EV_CHILD) 5474 if (types & EV_CHILD)
3566 for (i = EV_PID_HASHSIZE; i--; ) 5475 for (i = (EV_PID_HASHSIZE); i--; )
3567 for (wl = childs [i]; wl; ) 5476 for (wl = childs [i]; wl; )
3568 { 5477 {
3569 wn = wl->next; 5478 wn = wl->next;
3570 cb (EV_A_ EV_CHILD, wl); 5479 cb (EV_A_ EV_CHILD, wl);
3571 wl = wn; 5480 wl = wn;
3572 } 5481 }
5482#endif
3573/* EV_STAT 0x00001000 /* stat data changed */ 5483/* EV_STAT 0x00001000 /* stat data changed */
3574/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */ 5484/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3575} 5485}
3576#endif 5486#endif
3577 5487
3578#if EV_MULTIPLICITY 5488#if EV_MULTIPLICITY
3579 #include "ev_wrap.h" 5489 #include "ev_wrap.h"
3580#endif 5490#endif
3581 5491
3582#ifdef __cplusplus
3583}
3584#endif
3585

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines