ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.214 by root, Tue Feb 19 19:21:20 2008 UTC vs.
Revision 1.522 by root, Tue Dec 31 06:02:28 2019 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
41extern "C" {
42#endif
43
44#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 43# include EV_CONFIG_H
47# else 44# else
48# include "config.h" 45# include "config.h"
49# endif 46# endif
50 47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
51# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
52# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
53# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
54# endif 71# endif
55# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
57# endif 74# endif
58# else 75# else
59# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
61# endif 78# endif
62# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
63# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
64# endif 81# endif
65# endif 82# endif
66 83
84# if HAVE_NANOSLEEP
67# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
69# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
70# else 88# else
89# undef EV_USE_NANOSLEEP
71# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
72# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
73# endif 100# endif
74 101
102# if HAVE_POLL && HAVE_POLL_H
75# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
76# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
77# define EV_USE_SELECT 1
78# else
79# define EV_USE_SELECT 0
80# endif 105# endif
81# endif
82
83# ifndef EV_USE_POLL
84# if HAVE_POLL && HAVE_POLL_H
85# define EV_USE_POLL 1
86# else 106# else
107# undef EV_USE_POLL
87# define EV_USE_POLL 0 108# define EV_USE_POLL 0
88# endif
89# endif 109# endif
90 110
91# ifndef EV_USE_EPOLL
92# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
93# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
94# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
95# define EV_USE_EPOLL 0
96# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
97# endif 118# endif
98 119
99# ifndef EV_USE_KQUEUE 120# if HAVE_LINUX_AIO_ABI_H
100# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 121# ifndef EV_USE_LINUXAIO
101# define EV_USE_KQUEUE 1 122# define EV_USE_LINUXAIO 0 /* was: EV_FEATURE_BACKENDS, always off by default */
102# else
103# define EV_USE_KQUEUE 0
104# endif 123# endif
124# else
125# undef EV_USE_LINUXAIO
126# define EV_USE_LINUXAIO 0
105# endif 127# endif
106 128
129# if HAVE_LINUX_FS_H && HAVE_SYS_TIMERFD_H && HAVE_KERNEL_RWF_T
107# ifndef EV_USE_PORT 130# ifndef EV_USE_IOURING
108# if HAVE_PORT_H && HAVE_PORT_CREATE 131# define EV_USE_IOURING EV_FEATURE_BACKENDS
109# define EV_USE_PORT 1
110# else
111# define EV_USE_PORT 0
112# endif 132# endif
133# else
134# undef EV_USE_IOURING
135# define EV_USE_IOURING 0
113# endif 136# endif
114 137
115# ifndef EV_USE_INOTIFY 138# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
116# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 139# ifndef EV_USE_KQUEUE
117# define EV_USE_INOTIFY 1 140# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
118# else
119# define EV_USE_INOTIFY 0
120# endif 141# endif
142# else
143# undef EV_USE_KQUEUE
144# define EV_USE_KQUEUE 0
121# endif 145# endif
122 146
147# if HAVE_PORT_H && HAVE_PORT_CREATE
148# ifndef EV_USE_PORT
149# define EV_USE_PORT EV_FEATURE_BACKENDS
150# endif
151# else
152# undef EV_USE_PORT
153# define EV_USE_PORT 0
123#endif 154# endif
124 155
125#include <math.h> 156# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
157# ifndef EV_USE_INOTIFY
158# define EV_USE_INOTIFY EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_INOTIFY
162# define EV_USE_INOTIFY 0
163# endif
164
165# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
166# ifndef EV_USE_SIGNALFD
167# define EV_USE_SIGNALFD EV_FEATURE_OS
168# endif
169# else
170# undef EV_USE_SIGNALFD
171# define EV_USE_SIGNALFD 0
172# endif
173
174# if HAVE_EVENTFD
175# ifndef EV_USE_EVENTFD
176# define EV_USE_EVENTFD EV_FEATURE_OS
177# endif
178# else
179# undef EV_USE_EVENTFD
180# define EV_USE_EVENTFD 0
181# endif
182
183# if HAVE_SYS_TIMERFD_H
184# ifndef EV_USE_TIMERFD
185# define EV_USE_TIMERFD EV_FEATURE_OS
186# endif
187# else
188# undef EV_USE_TIMERFD
189# define EV_USE_TIMERFD 0
190# endif
191
192#endif
193
194/* OS X, in its infinite idiocy, actually HARDCODES
195 * a limit of 1024 into their select. Where people have brains,
196 * OS X engineers apparently have a vacuum. Or maybe they were
197 * ordered to have a vacuum, or they do anything for money.
198 * This might help. Or not.
199 * Note that this must be defined early, as other include files
200 * will rely on this define as well.
201 */
202#define _DARWIN_UNLIMITED_SELECT 1
203
126#include <stdlib.h> 204#include <stdlib.h>
205#include <string.h>
127#include <fcntl.h> 206#include <fcntl.h>
128#include <stddef.h> 207#include <stddef.h>
129 208
130#include <stdio.h> 209#include <stdio.h>
131 210
132#include <assert.h> 211#include <assert.h>
133#include <errno.h> 212#include <errno.h>
134#include <sys/types.h> 213#include <sys/types.h>
135#include <time.h> 214#include <time.h>
215#include <limits.h>
136 216
137#include <signal.h> 217#include <signal.h>
138 218
139#ifdef EV_H 219#ifdef EV_H
140# include EV_H 220# include EV_H
141#else 221#else
142# include "ev.h" 222# include "ev.h"
223#endif
224
225#if EV_NO_THREADS
226# undef EV_NO_SMP
227# define EV_NO_SMP 1
228# undef ECB_NO_THREADS
229# define ECB_NO_THREADS 1
230#endif
231#if EV_NO_SMP
232# undef EV_NO_SMP
233# define ECB_NO_SMP 1
143#endif 234#endif
144 235
145#ifndef _WIN32 236#ifndef _WIN32
146# include <sys/time.h> 237# include <sys/time.h>
147# include <sys/wait.h> 238# include <sys/wait.h>
148# include <unistd.h> 239# include <unistd.h>
149#else 240#else
241# include <io.h>
150# define WIN32_LEAN_AND_MEAN 242# define WIN32_LEAN_AND_MEAN
243# include <winsock2.h>
151# include <windows.h> 244# include <windows.h>
152# ifndef EV_SELECT_IS_WINSOCKET 245# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 246# define EV_SELECT_IS_WINSOCKET 1
154# endif 247# endif
248# undef EV_AVOID_STDIO
249#endif
250
251/* this block tries to deduce configuration from header-defined symbols and defaults */
252
253/* try to deduce the maximum number of signals on this platform */
254#if defined EV_NSIG
255/* use what's provided */
256#elif defined NSIG
257# define EV_NSIG (NSIG)
258#elif defined _NSIG
259# define EV_NSIG (_NSIG)
260#elif defined SIGMAX
261# define EV_NSIG (SIGMAX+1)
262#elif defined SIG_MAX
263# define EV_NSIG (SIG_MAX+1)
264#elif defined _SIG_MAX
265# define EV_NSIG (_SIG_MAX+1)
266#elif defined MAXSIG
267# define EV_NSIG (MAXSIG+1)
268#elif defined MAX_SIG
269# define EV_NSIG (MAX_SIG+1)
270#elif defined SIGARRAYSIZE
271# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
272#elif defined _sys_nsig
273# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
274#else
275# define EV_NSIG (8 * sizeof (sigset_t) + 1)
276#endif
277
278#ifndef EV_USE_FLOOR
279# define EV_USE_FLOOR 0
280#endif
281
282#ifndef EV_USE_CLOCK_SYSCALL
283# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
284# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
285# else
286# define EV_USE_CLOCK_SYSCALL 0
155#endif 287# endif
288#endif
156 289
157/**/ 290#if !(_POSIX_TIMERS > 0)
291# ifndef EV_USE_MONOTONIC
292# define EV_USE_MONOTONIC 0
293# endif
294# ifndef EV_USE_REALTIME
295# define EV_USE_REALTIME 0
296# endif
297#endif
158 298
159#ifndef EV_USE_MONOTONIC 299#ifndef EV_USE_MONOTONIC
300# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
301# define EV_USE_MONOTONIC EV_FEATURE_OS
302# else
160# define EV_USE_MONOTONIC 0 303# define EV_USE_MONOTONIC 0
304# endif
161#endif 305#endif
162 306
163#ifndef EV_USE_REALTIME 307#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0 308# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
165#endif 309#endif
166 310
167#ifndef EV_USE_NANOSLEEP 311#ifndef EV_USE_NANOSLEEP
312# if _POSIX_C_SOURCE >= 199309L
313# define EV_USE_NANOSLEEP EV_FEATURE_OS
314# else
168# define EV_USE_NANOSLEEP 0 315# define EV_USE_NANOSLEEP 0
316# endif
169#endif 317#endif
170 318
171#ifndef EV_USE_SELECT 319#ifndef EV_USE_SELECT
172# define EV_USE_SELECT 1 320# define EV_USE_SELECT EV_FEATURE_BACKENDS
173#endif 321#endif
174 322
175#ifndef EV_USE_POLL 323#ifndef EV_USE_POLL
176# ifdef _WIN32 324# ifdef _WIN32
177# define EV_USE_POLL 0 325# define EV_USE_POLL 0
178# else 326# else
179# define EV_USE_POLL 1 327# define EV_USE_POLL EV_FEATURE_BACKENDS
180# endif 328# endif
181#endif 329#endif
182 330
183#ifndef EV_USE_EPOLL 331#ifndef EV_USE_EPOLL
332# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
333# define EV_USE_EPOLL EV_FEATURE_BACKENDS
334# else
184# define EV_USE_EPOLL 0 335# define EV_USE_EPOLL 0
336# endif
185#endif 337#endif
186 338
187#ifndef EV_USE_KQUEUE 339#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 340# define EV_USE_KQUEUE 0
189#endif 341#endif
190 342
191#ifndef EV_USE_PORT 343#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 344# define EV_USE_PORT 0
193#endif 345#endif
194 346
347#ifndef EV_USE_LINUXAIO
348# if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
349# define EV_USE_LINUXAIO 0 /* was: 1, always off by default */
350# else
351# define EV_USE_LINUXAIO 0
352# endif
353#endif
354
355#ifndef EV_USE_IOURING
356# if __linux /* later checks might disable again */
357# define EV_USE_IOURING 1
358# else
359# define EV_USE_IOURING 0
360# endif
361#endif
362
195#ifndef EV_USE_INOTIFY 363#ifndef EV_USE_INOTIFY
364# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
365# define EV_USE_INOTIFY EV_FEATURE_OS
366# else
196# define EV_USE_INOTIFY 0 367# define EV_USE_INOTIFY 0
368# endif
197#endif 369#endif
198 370
199#ifndef EV_PID_HASHSIZE 371#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 372# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
201# define EV_PID_HASHSIZE 1 373#endif
374
375#ifndef EV_INOTIFY_HASHSIZE
376# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
377#endif
378
379#ifndef EV_USE_EVENTFD
380# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
381# define EV_USE_EVENTFD EV_FEATURE_OS
202# else 382# else
203# define EV_PID_HASHSIZE 16 383# define EV_USE_EVENTFD 0
204# endif 384# endif
205#endif 385#endif
206 386
207#ifndef EV_INOTIFY_HASHSIZE 387#ifndef EV_USE_SIGNALFD
208# if EV_MINIMAL 388# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
209# define EV_INOTIFY_HASHSIZE 1 389# define EV_USE_SIGNALFD EV_FEATURE_OS
210# else 390# else
211# define EV_INOTIFY_HASHSIZE 16 391# define EV_USE_SIGNALFD 0
212# endif 392# endif
213#endif 393#endif
214 394
215/**/ 395#ifndef EV_USE_TIMERFD
396# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 8))
397# define EV_USE_TIMERFD EV_FEATURE_OS
398# else
399# define EV_USE_TIMERFD 0
400# endif
401#endif
402
403#if 0 /* debugging */
404# define EV_VERIFY 3
405# define EV_USE_4HEAP 1
406# define EV_HEAP_CACHE_AT 1
407#endif
408
409#ifndef EV_VERIFY
410# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
411#endif
412
413#ifndef EV_USE_4HEAP
414# define EV_USE_4HEAP EV_FEATURE_DATA
415#endif
416
417#ifndef EV_HEAP_CACHE_AT
418# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
419#endif
420
421#ifdef __ANDROID__
422/* supposedly, android doesn't typedef fd_mask */
423# undef EV_USE_SELECT
424# define EV_USE_SELECT 0
425/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
426# undef EV_USE_CLOCK_SYSCALL
427# define EV_USE_CLOCK_SYSCALL 0
428#endif
429
430/* aix's poll.h seems to cause lots of trouble */
431#ifdef _AIX
432/* AIX has a completely broken poll.h header */
433# undef EV_USE_POLL
434# define EV_USE_POLL 0
435#endif
436
437/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
438/* which makes programs even slower. might work on other unices, too. */
439#if EV_USE_CLOCK_SYSCALL
440# include <sys/syscall.h>
441# ifdef SYS_clock_gettime
442# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
443# undef EV_USE_MONOTONIC
444# define EV_USE_MONOTONIC 1
445# define EV_NEED_SYSCALL 1
446# else
447# undef EV_USE_CLOCK_SYSCALL
448# define EV_USE_CLOCK_SYSCALL 0
449# endif
450#endif
451
452/* this block fixes any misconfiguration where we know we run into trouble otherwise */
216 453
217#ifndef CLOCK_MONOTONIC 454#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 455# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 456# define EV_USE_MONOTONIC 0
220#endif 457#endif
227#if !EV_STAT_ENABLE 464#if !EV_STAT_ENABLE
228# undef EV_USE_INOTIFY 465# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0 466# define EV_USE_INOTIFY 0
230#endif 467#endif
231 468
469#if __linux && EV_USE_IOURING
470# include <linux/version.h>
471# if LINUX_VERSION_CODE < KERNEL_VERSION(4,14,0)
472# undef EV_USE_IOURING
473# define EV_USE_IOURING 0
474# endif
475#endif
476
232#if !EV_USE_NANOSLEEP 477#if !EV_USE_NANOSLEEP
233# ifndef _WIN32 478/* hp-ux has it in sys/time.h, which we unconditionally include above */
479# if !defined _WIN32 && !defined __hpux
234# include <sys/select.h> 480# include <sys/select.h>
235# endif 481# endif
236#endif 482#endif
237 483
484#if EV_USE_LINUXAIO
485# include <sys/syscall.h>
486# if SYS_io_getevents && EV_USE_EPOLL /* linuxaio backend requires epoll backend */
487# define EV_NEED_SYSCALL 1
488# else
489# undef EV_USE_LINUXAIO
490# define EV_USE_LINUXAIO 0
491# endif
492#endif
493
494#if EV_USE_IOURING
495# include <sys/syscall.h>
496# if !SYS_io_uring_setup && __linux && !__alpha
497# define SYS_io_uring_setup 425
498# define SYS_io_uring_enter 426
499# define SYS_io_uring_wregister 427
500# endif
501# if SYS_io_uring_setup && EV_USE_EPOLL /* iouring backend requires epoll backend */
502# define EV_NEED_SYSCALL 1
503# else
504# undef EV_USE_IOURING
505# define EV_USE_IOURING 0
506# endif
507#endif
508
238#if EV_USE_INOTIFY 509#if EV_USE_INOTIFY
510# include <sys/statfs.h>
239# include <sys/inotify.h> 511# include <sys/inotify.h>
512/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
513# ifndef IN_DONT_FOLLOW
514# undef EV_USE_INOTIFY
515# define EV_USE_INOTIFY 0
240#endif 516# endif
517#endif
241 518
242#if EV_SELECT_IS_WINSOCKET 519#if EV_USE_EVENTFD
520/* our minimum requirement is glibc 2.7 which has the stub, but not the full header */
243# include <winsock.h> 521# include <stdint.h>
522# ifndef EFD_NONBLOCK
523# define EFD_NONBLOCK O_NONBLOCK
244#endif 524# endif
525# ifndef EFD_CLOEXEC
526# ifdef O_CLOEXEC
527# define EFD_CLOEXEC O_CLOEXEC
528# else
529# define EFD_CLOEXEC 02000000
530# endif
531# endif
532EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
533#endif
245 534
246/**/ 535#if EV_USE_SIGNALFD
536/* our minimum requirement is glibc 2.7 which has the stub, but not the full header */
537# include <stdint.h>
538# ifndef SFD_NONBLOCK
539# define SFD_NONBLOCK O_NONBLOCK
540# endif
541# ifndef SFD_CLOEXEC
542# ifdef O_CLOEXEC
543# define SFD_CLOEXEC O_CLOEXEC
544# else
545# define SFD_CLOEXEC 02000000
546# endif
547# endif
548EV_CPP (extern "C") int (signalfd) (int fd, const sigset_t *mask, int flags);
549
550struct signalfd_siginfo
551{
552 uint32_t ssi_signo;
553 char pad[128 - sizeof (uint32_t)];
554};
555#endif
556
557/* for timerfd, libev core requires TFD_TIMER_CANCEL_ON_SET &c */
558#if EV_USE_TIMERFD
559# include <sys/timerfd.h>
560/* timerfd is only used for periodics */
561# if !(defined (TFD_TIMER_CANCEL_ON_SET) && defined (TFD_CLOEXEC) && defined (TFD_NONBLOCK)) || !EV_PERIODIC_ENABLE
562# undef EV_USE_TIMERFD
563# define EV_USE_TIMERFD 0
564# endif
565#endif
566
567/*****************************************************************************/
568
569#if EV_VERIFY >= 3
570# define EV_FREQUENT_CHECK ev_verify (EV_A)
571#else
572# define EV_FREQUENT_CHECK do { } while (0)
573#endif
247 574
248/* 575/*
249 * This is used to avoid floating point rounding problems. 576 * This is used to work around floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding
252 * errors are against us.
253 * This value is good at least till the year 4000. 577 * This value is good at least till the year 4000.
254 * Better solutions welcome.
255 */ 578 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 579#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
580/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
257 581
258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 582#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 583#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
261 584
585/* find a portable timestamp that is "always" in the future but fits into time_t.
586 * this is quite hard, and we are mostly guessing - we handle 32 bit signed/unsigned time_t,
587 * and sizes larger than 32 bit, and maybe the unlikely floating point time_t */
588#define EV_TSTAMP_HUGE \
589 (sizeof (time_t) >= 8 ? 10000000000000. \
590 : 0 < (time_t)4294967295 ? 4294967295. \
591 : 2147483647.) \
592
593#ifndef EV_TS_CONST
594# define EV_TS_CONST(nv) nv
595# define EV_TS_TO_MSEC(a) a * 1e3 + 0.9999
596# define EV_TS_FROM_USEC(us) us * 1e-6
597# define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
598# define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
599# define EV_TV_GET(tv) ((tv).tv_sec + (tv).tv_usec * 1e-6)
600# define EV_TS_GET(ts) ((ts).tv_sec + (ts).tv_nsec * 1e-9)
601#endif
602
603/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
604/* ECB.H BEGIN */
605/*
606 * libecb - http://software.schmorp.de/pkg/libecb
607 *
608 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
609 * Copyright (©) 2011 Emanuele Giaquinta
610 * All rights reserved.
611 *
612 * Redistribution and use in source and binary forms, with or without modifica-
613 * tion, are permitted provided that the following conditions are met:
614 *
615 * 1. Redistributions of source code must retain the above copyright notice,
616 * this list of conditions and the following disclaimer.
617 *
618 * 2. Redistributions in binary form must reproduce the above copyright
619 * notice, this list of conditions and the following disclaimer in the
620 * documentation and/or other materials provided with the distribution.
621 *
622 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
623 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
624 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
625 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
626 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
627 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
628 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
629 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
630 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
631 * OF THE POSSIBILITY OF SUCH DAMAGE.
632 *
633 * Alternatively, the contents of this file may be used under the terms of
634 * the GNU General Public License ("GPL") version 2 or any later version,
635 * in which case the provisions of the GPL are applicable instead of
636 * the above. If you wish to allow the use of your version of this file
637 * only under the terms of the GPL and not to allow others to use your
638 * version of this file under the BSD license, indicate your decision
639 * by deleting the provisions above and replace them with the notice
640 * and other provisions required by the GPL. If you do not delete the
641 * provisions above, a recipient may use your version of this file under
642 * either the BSD or the GPL.
643 */
644
645#ifndef ECB_H
646#define ECB_H
647
648/* 16 bits major, 16 bits minor */
649#define ECB_VERSION 0x00010006
650
651#ifdef _WIN32
652 typedef signed char int8_t;
653 typedef unsigned char uint8_t;
654 typedef signed short int16_t;
655 typedef unsigned short uint16_t;
656 typedef signed int int32_t;
657 typedef unsigned int uint32_t;
262#if __GNUC__ >= 4 658 #if __GNUC__
263# define expect(expr,value) __builtin_expect ((expr),(value)) 659 typedef signed long long int64_t;
264# define noinline __attribute__ ((noinline)) 660 typedef unsigned long long uint64_t;
661 #else /* _MSC_VER || __BORLANDC__ */
662 typedef signed __int64 int64_t;
663 typedef unsigned __int64 uint64_t;
664 #endif
665 #ifdef _WIN64
666 #define ECB_PTRSIZE 8
667 typedef uint64_t uintptr_t;
668 typedef int64_t intptr_t;
669 #else
670 #define ECB_PTRSIZE 4
671 typedef uint32_t uintptr_t;
672 typedef int32_t intptr_t;
673 #endif
265#else 674#else
266# define expect(expr,value) (expr) 675 #include <inttypes.h>
267# define noinline 676 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
268# if __STDC_VERSION__ < 199901L 677 #define ECB_PTRSIZE 8
269# define inline 678 #else
679 #define ECB_PTRSIZE 4
680 #endif
270# endif 681#endif
682
683#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
684#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
685
686/* work around x32 idiocy by defining proper macros */
687#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
688 #if _ILP32
689 #define ECB_AMD64_X32 1
690 #else
691 #define ECB_AMD64 1
271#endif 692 #endif
693#endif
272 694
273#define expect_false(expr) expect ((expr) != 0, 0) 695/* many compilers define _GNUC_ to some versions but then only implement
274#define expect_true(expr) expect ((expr) != 0, 1) 696 * what their idiot authors think are the "more important" extensions,
275#define inline_size static inline 697 * causing enormous grief in return for some better fake benchmark numbers.
276 698 * or so.
277#if EV_MINIMAL 699 * we try to detect these and simply assume they are not gcc - if they have
278# define inline_speed static noinline 700 * an issue with that they should have done it right in the first place.
701 */
702#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
703 #define ECB_GCC_VERSION(major,minor) 0
279#else 704#else
705 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
706#endif
707
708#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
709
710#if __clang__ && defined __has_builtin
711 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
712#else
713 #define ECB_CLANG_BUILTIN(x) 0
714#endif
715
716#if __clang__ && defined __has_extension
717 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
718#else
719 #define ECB_CLANG_EXTENSION(x) 0
720#endif
721
722#define ECB_CPP (__cplusplus+0)
723#define ECB_CPP11 (__cplusplus >= 201103L)
724#define ECB_CPP14 (__cplusplus >= 201402L)
725#define ECB_CPP17 (__cplusplus >= 201703L)
726
727#if ECB_CPP
728 #define ECB_C 0
729 #define ECB_STDC_VERSION 0
730#else
731 #define ECB_C 1
732 #define ECB_STDC_VERSION __STDC_VERSION__
733#endif
734
735#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
736#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
737#define ECB_C17 (ECB_STDC_VERSION >= 201710L)
738
739#if ECB_CPP
740 #define ECB_EXTERN_C extern "C"
741 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
742 #define ECB_EXTERN_C_END }
743#else
744 #define ECB_EXTERN_C extern
745 #define ECB_EXTERN_C_BEG
746 #define ECB_EXTERN_C_END
747#endif
748
749/*****************************************************************************/
750
751/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
752/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
753
754#if ECB_NO_THREADS
755 #define ECB_NO_SMP 1
756#endif
757
758#if ECB_NO_SMP
759 #define ECB_MEMORY_FENCE do { } while (0)
760#endif
761
762/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
763#if __xlC__ && ECB_CPP
764 #include <builtins.h>
765#endif
766
767#if 1400 <= _MSC_VER
768 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
769#endif
770
771#ifndef ECB_MEMORY_FENCE
772 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
773 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
774 #if __i386 || __i386__
775 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
776 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
777 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
778 #elif ECB_GCC_AMD64
779 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
780 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
781 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
782 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
783 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
784 #elif defined __ARM_ARCH_2__ \
785 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
786 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
787 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
788 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
789 || defined __ARM_ARCH_5TEJ__
790 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
791 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
792 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
793 || defined __ARM_ARCH_6T2__
794 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
795 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
796 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
797 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
798 #elif __aarch64__
799 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
800 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
801 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
802 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
803 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
804 #elif defined __s390__ || defined __s390x__
805 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
806 #elif defined __mips__
807 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
808 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
809 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
810 #elif defined __alpha__
811 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
812 #elif defined __hppa__
813 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
814 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
815 #elif defined __ia64__
816 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
817 #elif defined __m68k__
818 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
819 #elif defined __m88k__
820 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
821 #elif defined __sh__
822 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
823 #endif
824 #endif
825#endif
826
827#ifndef ECB_MEMORY_FENCE
828 #if ECB_GCC_VERSION(4,7)
829 /* see comment below (stdatomic.h) about the C11 memory model. */
830 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
831 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
832 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
833 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
834
835 #elif ECB_CLANG_EXTENSION(c_atomic)
836 /* see comment below (stdatomic.h) about the C11 memory model. */
837 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
838 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
839 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
840 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
841
842 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
843 #define ECB_MEMORY_FENCE __sync_synchronize ()
844 #elif _MSC_VER >= 1500 /* VC++ 2008 */
845 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
846 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
847 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
848 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
849 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
850 #elif _MSC_VER >= 1400 /* VC++ 2005 */
851 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
852 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
853 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
854 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
855 #elif defined _WIN32
856 #include <WinNT.h>
857 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
858 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
859 #include <mbarrier.h>
860 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
861 #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
862 #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
863 #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
864 #elif __xlC__
865 #define ECB_MEMORY_FENCE __sync ()
866 #endif
867#endif
868
869#ifndef ECB_MEMORY_FENCE
870 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
871 /* we assume that these memory fences work on all variables/all memory accesses, */
872 /* not just C11 atomics and atomic accesses */
873 #include <stdatomic.h>
874 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
875 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
876 #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
877 #endif
878#endif
879
880#ifndef ECB_MEMORY_FENCE
881 #if !ECB_AVOID_PTHREADS
882 /*
883 * if you get undefined symbol references to pthread_mutex_lock,
884 * or failure to find pthread.h, then you should implement
885 * the ECB_MEMORY_FENCE operations for your cpu/compiler
886 * OR provide pthread.h and link against the posix thread library
887 * of your system.
888 */
889 #include <pthread.h>
890 #define ECB_NEEDS_PTHREADS 1
891 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
892
893 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
894 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
895 #endif
896#endif
897
898#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
899 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
900#endif
901
902#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
903 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
904#endif
905
906#if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
907 #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
908#endif
909
910/*****************************************************************************/
911
912#if ECB_CPP
913 #define ecb_inline static inline
914#elif ECB_GCC_VERSION(2,5)
915 #define ecb_inline static __inline__
916#elif ECB_C99
917 #define ecb_inline static inline
918#else
919 #define ecb_inline static
920#endif
921
922#if ECB_GCC_VERSION(3,3)
923 #define ecb_restrict __restrict__
924#elif ECB_C99
925 #define ecb_restrict restrict
926#else
927 #define ecb_restrict
928#endif
929
930typedef int ecb_bool;
931
932#define ECB_CONCAT_(a, b) a ## b
933#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
934#define ECB_STRINGIFY_(a) # a
935#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
936#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
937
938#define ecb_function_ ecb_inline
939
940#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
941 #define ecb_attribute(attrlist) __attribute__ (attrlist)
942#else
943 #define ecb_attribute(attrlist)
944#endif
945
946#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
947 #define ecb_is_constant(expr) __builtin_constant_p (expr)
948#else
949 /* possible C11 impl for integral types
950 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
951 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
952
953 #define ecb_is_constant(expr) 0
954#endif
955
956#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
957 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
958#else
959 #define ecb_expect(expr,value) (expr)
960#endif
961
962#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
963 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
964#else
965 #define ecb_prefetch(addr,rw,locality)
966#endif
967
968/* no emulation for ecb_decltype */
969#if ECB_CPP11
970 // older implementations might have problems with decltype(x)::type, work around it
971 template<class T> struct ecb_decltype_t { typedef T type; };
972 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
973#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
974 #define ecb_decltype(x) __typeof__ (x)
975#endif
976
977#if _MSC_VER >= 1300
978 #define ecb_deprecated __declspec (deprecated)
979#else
980 #define ecb_deprecated ecb_attribute ((__deprecated__))
981#endif
982
983#if _MSC_VER >= 1500
984 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
985#elif ECB_GCC_VERSION(4,5)
986 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
987#else
988 #define ecb_deprecated_message(msg) ecb_deprecated
989#endif
990
991#if _MSC_VER >= 1400
992 #define ecb_noinline __declspec (noinline)
993#else
994 #define ecb_noinline ecb_attribute ((__noinline__))
995#endif
996
997#define ecb_unused ecb_attribute ((__unused__))
998#define ecb_const ecb_attribute ((__const__))
999#define ecb_pure ecb_attribute ((__pure__))
1000
1001#if ECB_C11 || __IBMC_NORETURN
1002 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
1003 #define ecb_noreturn _Noreturn
1004#elif ECB_CPP11
1005 #define ecb_noreturn [[noreturn]]
1006#elif _MSC_VER >= 1200
1007 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
1008 #define ecb_noreturn __declspec (noreturn)
1009#else
1010 #define ecb_noreturn ecb_attribute ((__noreturn__))
1011#endif
1012
1013#if ECB_GCC_VERSION(4,3)
1014 #define ecb_artificial ecb_attribute ((__artificial__))
1015 #define ecb_hot ecb_attribute ((__hot__))
1016 #define ecb_cold ecb_attribute ((__cold__))
1017#else
1018 #define ecb_artificial
1019 #define ecb_hot
1020 #define ecb_cold
1021#endif
1022
1023/* put around conditional expressions if you are very sure that the */
1024/* expression is mostly true or mostly false. note that these return */
1025/* booleans, not the expression. */
1026#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
1027#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
1028/* for compatibility to the rest of the world */
1029#define ecb_likely(expr) ecb_expect_true (expr)
1030#define ecb_unlikely(expr) ecb_expect_false (expr)
1031
1032/* count trailing zero bits and count # of one bits */
1033#if ECB_GCC_VERSION(3,4) \
1034 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
1035 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
1036 && ECB_CLANG_BUILTIN(__builtin_popcount))
1037 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
1038 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
1039 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
1040 #define ecb_ctz32(x) __builtin_ctz (x)
1041 #define ecb_ctz64(x) __builtin_ctzll (x)
1042 #define ecb_popcount32(x) __builtin_popcount (x)
1043 /* no popcountll */
1044#else
1045 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
1046 ecb_function_ ecb_const int
1047 ecb_ctz32 (uint32_t x)
1048 {
1049#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1050 unsigned long r;
1051 _BitScanForward (&r, x);
1052 return (int)r;
1053#else
1054 int r = 0;
1055
1056 x &= ~x + 1; /* this isolates the lowest bit */
1057
1058#if ECB_branchless_on_i386
1059 r += !!(x & 0xaaaaaaaa) << 0;
1060 r += !!(x & 0xcccccccc) << 1;
1061 r += !!(x & 0xf0f0f0f0) << 2;
1062 r += !!(x & 0xff00ff00) << 3;
1063 r += !!(x & 0xffff0000) << 4;
1064#else
1065 if (x & 0xaaaaaaaa) r += 1;
1066 if (x & 0xcccccccc) r += 2;
1067 if (x & 0xf0f0f0f0) r += 4;
1068 if (x & 0xff00ff00) r += 8;
1069 if (x & 0xffff0000) r += 16;
1070#endif
1071
1072 return r;
1073#endif
1074 }
1075
1076 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
1077 ecb_function_ ecb_const int
1078 ecb_ctz64 (uint64_t x)
1079 {
1080#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1081 unsigned long r;
1082 _BitScanForward64 (&r, x);
1083 return (int)r;
1084#else
1085 int shift = x & 0xffffffff ? 0 : 32;
1086 return ecb_ctz32 (x >> shift) + shift;
1087#endif
1088 }
1089
1090 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1091 ecb_function_ ecb_const int
1092 ecb_popcount32 (uint32_t x)
1093 {
1094 x -= (x >> 1) & 0x55555555;
1095 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1096 x = ((x >> 4) + x) & 0x0f0f0f0f;
1097 x *= 0x01010101;
1098
1099 return x >> 24;
1100 }
1101
1102 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1103 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1104 {
1105#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1106 unsigned long r;
1107 _BitScanReverse (&r, x);
1108 return (int)r;
1109#else
1110 int r = 0;
1111
1112 if (x >> 16) { x >>= 16; r += 16; }
1113 if (x >> 8) { x >>= 8; r += 8; }
1114 if (x >> 4) { x >>= 4; r += 4; }
1115 if (x >> 2) { x >>= 2; r += 2; }
1116 if (x >> 1) { r += 1; }
1117
1118 return r;
1119#endif
1120 }
1121
1122 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1123 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1124 {
1125#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1126 unsigned long r;
1127 _BitScanReverse64 (&r, x);
1128 return (int)r;
1129#else
1130 int r = 0;
1131
1132 if (x >> 32) { x >>= 32; r += 32; }
1133
1134 return r + ecb_ld32 (x);
1135#endif
1136 }
1137#endif
1138
1139ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1140ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1141ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1142ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1143
1144ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1145ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1146{
1147 return ( (x * 0x0802U & 0x22110U)
1148 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1149}
1150
1151ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1152ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1153{
1154 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1155 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1156 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1157 x = ( x >> 8 ) | ( x << 8);
1158
1159 return x;
1160}
1161
1162ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1163ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1164{
1165 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1166 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1167 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1168 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1169 x = ( x >> 16 ) | ( x << 16);
1170
1171 return x;
1172}
1173
1174/* popcount64 is only available on 64 bit cpus as gcc builtin */
1175/* so for this version we are lazy */
1176ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1177ecb_function_ ecb_const int
1178ecb_popcount64 (uint64_t x)
1179{
1180 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1181}
1182
1183ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1184ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1185ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1186ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1187ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1188ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1189ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1190ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1191
1192ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1193ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1194ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1195ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1196ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1197ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1198ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1199ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1200
1201#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1202 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1203 #define ecb_bswap16(x) __builtin_bswap16 (x)
1204 #else
1205 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1206 #endif
1207 #define ecb_bswap32(x) __builtin_bswap32 (x)
1208 #define ecb_bswap64(x) __builtin_bswap64 (x)
1209#elif _MSC_VER
1210 #include <stdlib.h>
1211 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1212 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1213 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1214#else
1215 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1216 ecb_function_ ecb_const uint16_t
1217 ecb_bswap16 (uint16_t x)
1218 {
1219 return ecb_rotl16 (x, 8);
1220 }
1221
1222 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1223 ecb_function_ ecb_const uint32_t
1224 ecb_bswap32 (uint32_t x)
1225 {
1226 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1227 }
1228
1229 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1230 ecb_function_ ecb_const uint64_t
1231 ecb_bswap64 (uint64_t x)
1232 {
1233 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1234 }
1235#endif
1236
1237#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1238 #define ecb_unreachable() __builtin_unreachable ()
1239#else
1240 /* this seems to work fine, but gcc always emits a warning for it :/ */
1241 ecb_inline ecb_noreturn void ecb_unreachable (void);
1242 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1243#endif
1244
1245/* try to tell the compiler that some condition is definitely true */
1246#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1247
1248ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1249ecb_inline ecb_const uint32_t
1250ecb_byteorder_helper (void)
1251{
1252 /* the union code still generates code under pressure in gcc, */
1253 /* but less than using pointers, and always seems to */
1254 /* successfully return a constant. */
1255 /* the reason why we have this horrible preprocessor mess */
1256 /* is to avoid it in all cases, at least on common architectures */
1257 /* or when using a recent enough gcc version (>= 4.6) */
1258#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1259 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1260 #define ECB_LITTLE_ENDIAN 1
1261 return 0x44332211;
1262#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1263 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1264 #define ECB_BIG_ENDIAN 1
1265 return 0x11223344;
1266#else
1267 union
1268 {
1269 uint8_t c[4];
1270 uint32_t u;
1271 } u = { 0x11, 0x22, 0x33, 0x44 };
1272 return u.u;
1273#endif
1274}
1275
1276ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1277ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1278ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1279ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1280
1281#if ECB_GCC_VERSION(3,0) || ECB_C99
1282 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1283#else
1284 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1285#endif
1286
1287#if ECB_CPP
1288 template<typename T>
1289 static inline T ecb_div_rd (T val, T div)
1290 {
1291 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1292 }
1293 template<typename T>
1294 static inline T ecb_div_ru (T val, T div)
1295 {
1296 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1297 }
1298#else
1299 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1300 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1301#endif
1302
1303#if ecb_cplusplus_does_not_suck
1304 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1305 template<typename T, int N>
1306 static inline int ecb_array_length (const T (&arr)[N])
1307 {
1308 return N;
1309 }
1310#else
1311 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1312#endif
1313
1314ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1315ecb_function_ ecb_const uint32_t
1316ecb_binary16_to_binary32 (uint32_t x)
1317{
1318 unsigned int s = (x & 0x8000) << (31 - 15);
1319 int e = (x >> 10) & 0x001f;
1320 unsigned int m = x & 0x03ff;
1321
1322 if (ecb_expect_false (e == 31))
1323 /* infinity or NaN */
1324 e = 255 - (127 - 15);
1325 else if (ecb_expect_false (!e))
1326 {
1327 if (ecb_expect_true (!m))
1328 /* zero, handled by code below by forcing e to 0 */
1329 e = 0 - (127 - 15);
1330 else
1331 {
1332 /* subnormal, renormalise */
1333 unsigned int s = 10 - ecb_ld32 (m);
1334
1335 m = (m << s) & 0x3ff; /* mask implicit bit */
1336 e -= s - 1;
1337 }
1338 }
1339
1340 /* e and m now are normalised, or zero, (or inf or nan) */
1341 e += 127 - 15;
1342
1343 return s | (e << 23) | (m << (23 - 10));
1344}
1345
1346ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1347ecb_function_ ecb_const uint16_t
1348ecb_binary32_to_binary16 (uint32_t x)
1349{
1350 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1351 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1352 unsigned int m = x & 0x007fffff;
1353
1354 x &= 0x7fffffff;
1355
1356 /* if it's within range of binary16 normals, use fast path */
1357 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1358 {
1359 /* mantissa round-to-even */
1360 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1361
1362 /* handle overflow */
1363 if (ecb_expect_false (m >= 0x00800000))
1364 {
1365 m >>= 1;
1366 e += 1;
1367 }
1368
1369 return s | (e << 10) | (m >> (23 - 10));
1370 }
1371
1372 /* handle large numbers and infinity */
1373 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1374 return s | 0x7c00;
1375
1376 /* handle zero, subnormals and small numbers */
1377 if (ecb_expect_true (x < 0x38800000))
1378 {
1379 /* zero */
1380 if (ecb_expect_true (!x))
1381 return s;
1382
1383 /* handle subnormals */
1384
1385 /* too small, will be zero */
1386 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1387 return s;
1388
1389 m |= 0x00800000; /* make implicit bit explicit */
1390
1391 /* very tricky - we need to round to the nearest e (+10) bit value */
1392 {
1393 unsigned int bits = 14 - e;
1394 unsigned int half = (1 << (bits - 1)) - 1;
1395 unsigned int even = (m >> bits) & 1;
1396
1397 /* if this overflows, we will end up with a normalised number */
1398 m = (m + half + even) >> bits;
1399 }
1400
1401 return s | m;
1402 }
1403
1404 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1405 m >>= 13;
1406
1407 return s | 0x7c00 | m | !m;
1408}
1409
1410/*******************************************************************************/
1411/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1412
1413/* basically, everything uses "ieee pure-endian" floating point numbers */
1414/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1415#if 0 \
1416 || __i386 || __i386__ \
1417 || ECB_GCC_AMD64 \
1418 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1419 || defined __s390__ || defined __s390x__ \
1420 || defined __mips__ \
1421 || defined __alpha__ \
1422 || defined __hppa__ \
1423 || defined __ia64__ \
1424 || defined __m68k__ \
1425 || defined __m88k__ \
1426 || defined __sh__ \
1427 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1428 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1429 || defined __aarch64__
1430 #define ECB_STDFP 1
1431 #include <string.h> /* for memcpy */
1432#else
1433 #define ECB_STDFP 0
1434#endif
1435
1436#ifndef ECB_NO_LIBM
1437
1438 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1439
1440 /* only the oldest of old doesn't have this one. solaris. */
1441 #ifdef INFINITY
1442 #define ECB_INFINITY INFINITY
1443 #else
1444 #define ECB_INFINITY HUGE_VAL
1445 #endif
1446
1447 #ifdef NAN
1448 #define ECB_NAN NAN
1449 #else
1450 #define ECB_NAN ECB_INFINITY
1451 #endif
1452
1453 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1454 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1455 #define ecb_frexpf(x,e) frexpf ((x), (e))
1456 #else
1457 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1458 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1459 #endif
1460
1461 /* convert a float to ieee single/binary32 */
1462 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1463 ecb_function_ ecb_const uint32_t
1464 ecb_float_to_binary32 (float x)
1465 {
1466 uint32_t r;
1467
1468 #if ECB_STDFP
1469 memcpy (&r, &x, 4);
1470 #else
1471 /* slow emulation, works for anything but -0 */
1472 uint32_t m;
1473 int e;
1474
1475 if (x == 0e0f ) return 0x00000000U;
1476 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1477 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1478 if (x != x ) return 0x7fbfffffU;
1479
1480 m = ecb_frexpf (x, &e) * 0x1000000U;
1481
1482 r = m & 0x80000000U;
1483
1484 if (r)
1485 m = -m;
1486
1487 if (e <= -126)
1488 {
1489 m &= 0xffffffU;
1490 m >>= (-125 - e);
1491 e = -126;
1492 }
1493
1494 r |= (e + 126) << 23;
1495 r |= m & 0x7fffffU;
1496 #endif
1497
1498 return r;
1499 }
1500
1501 /* converts an ieee single/binary32 to a float */
1502 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1503 ecb_function_ ecb_const float
1504 ecb_binary32_to_float (uint32_t x)
1505 {
1506 float r;
1507
1508 #if ECB_STDFP
1509 memcpy (&r, &x, 4);
1510 #else
1511 /* emulation, only works for normals and subnormals and +0 */
1512 int neg = x >> 31;
1513 int e = (x >> 23) & 0xffU;
1514
1515 x &= 0x7fffffU;
1516
1517 if (e)
1518 x |= 0x800000U;
1519 else
1520 e = 1;
1521
1522 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1523 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1524
1525 r = neg ? -r : r;
1526 #endif
1527
1528 return r;
1529 }
1530
1531 /* convert a double to ieee double/binary64 */
1532 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1533 ecb_function_ ecb_const uint64_t
1534 ecb_double_to_binary64 (double x)
1535 {
1536 uint64_t r;
1537
1538 #if ECB_STDFP
1539 memcpy (&r, &x, 8);
1540 #else
1541 /* slow emulation, works for anything but -0 */
1542 uint64_t m;
1543 int e;
1544
1545 if (x == 0e0 ) return 0x0000000000000000U;
1546 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1547 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1548 if (x != x ) return 0X7ff7ffffffffffffU;
1549
1550 m = frexp (x, &e) * 0x20000000000000U;
1551
1552 r = m & 0x8000000000000000;;
1553
1554 if (r)
1555 m = -m;
1556
1557 if (e <= -1022)
1558 {
1559 m &= 0x1fffffffffffffU;
1560 m >>= (-1021 - e);
1561 e = -1022;
1562 }
1563
1564 r |= ((uint64_t)(e + 1022)) << 52;
1565 r |= m & 0xfffffffffffffU;
1566 #endif
1567
1568 return r;
1569 }
1570
1571 /* converts an ieee double/binary64 to a double */
1572 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1573 ecb_function_ ecb_const double
1574 ecb_binary64_to_double (uint64_t x)
1575 {
1576 double r;
1577
1578 #if ECB_STDFP
1579 memcpy (&r, &x, 8);
1580 #else
1581 /* emulation, only works for normals and subnormals and +0 */
1582 int neg = x >> 63;
1583 int e = (x >> 52) & 0x7ffU;
1584
1585 x &= 0xfffffffffffffU;
1586
1587 if (e)
1588 x |= 0x10000000000000U;
1589 else
1590 e = 1;
1591
1592 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1593 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1594
1595 r = neg ? -r : r;
1596 #endif
1597
1598 return r;
1599 }
1600
1601 /* convert a float to ieee half/binary16 */
1602 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1603 ecb_function_ ecb_const uint16_t
1604 ecb_float_to_binary16 (float x)
1605 {
1606 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1607 }
1608
1609 /* convert an ieee half/binary16 to float */
1610 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1611 ecb_function_ ecb_const float
1612 ecb_binary16_to_float (uint16_t x)
1613 {
1614 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1615 }
1616
1617#endif
1618
1619#endif
1620
1621/* ECB.H END */
1622
1623#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1624/* if your architecture doesn't need memory fences, e.g. because it is
1625 * single-cpu/core, or if you use libev in a project that doesn't use libev
1626 * from multiple threads, then you can define ECB_NO_THREADS when compiling
1627 * libev, in which cases the memory fences become nops.
1628 * alternatively, you can remove this #error and link against libpthread,
1629 * which will then provide the memory fences.
1630 */
1631# error "memory fences not defined for your architecture, please report"
1632#endif
1633
1634#ifndef ECB_MEMORY_FENCE
1635# define ECB_MEMORY_FENCE do { } while (0)
1636# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1637# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1638#endif
1639
1640#define inline_size ecb_inline
1641
1642#if EV_FEATURE_CODE
280# define inline_speed static inline 1643# define inline_speed ecb_inline
1644#else
1645# define inline_speed ecb_noinline static
281#endif 1646#endif
282 1647
1648/*****************************************************************************/
1649/* raw syscall wrappers */
1650
1651#if EV_NEED_SYSCALL
1652
1653#include <sys/syscall.h>
1654
1655/*
1656 * define some syscall wrappers for common architectures
1657 * this is mostly for nice looks during debugging, not performance.
1658 * our syscalls return < 0, not == -1, on error. which is good
1659 * enough for linux aio.
1660 * TODO: arm is also common nowadays, maybe even mips and x86
1661 * TODO: after implementing this, it suddenly looks like overkill, but its hard to remove...
1662 */
1663#if __GNUC__ && __linux && ECB_AMD64 && !EV_FEATURE_CODE
1664 /* the costly errno access probably kills this for size optimisation */
1665
1666 #define ev_syscall(nr,narg,arg1,arg2,arg3,arg4,arg5,arg6) \
1667 ({ \
1668 long res; \
1669 register unsigned long r6 __asm__ ("r9" ); \
1670 register unsigned long r5 __asm__ ("r8" ); \
1671 register unsigned long r4 __asm__ ("r10"); \
1672 register unsigned long r3 __asm__ ("rdx"); \
1673 register unsigned long r2 __asm__ ("rsi"); \
1674 register unsigned long r1 __asm__ ("rdi"); \
1675 if (narg >= 6) r6 = (unsigned long)(arg6); \
1676 if (narg >= 5) r5 = (unsigned long)(arg5); \
1677 if (narg >= 4) r4 = (unsigned long)(arg4); \
1678 if (narg >= 3) r3 = (unsigned long)(arg3); \
1679 if (narg >= 2) r2 = (unsigned long)(arg2); \
1680 if (narg >= 1) r1 = (unsigned long)(arg1); \
1681 __asm__ __volatile__ ( \
1682 "syscall\n\t" \
1683 : "=a" (res) \
1684 : "0" (nr), "r" (r1), "r" (r2), "r" (r3), "r" (r4), "r" (r5) \
1685 : "cc", "r11", "cx", "memory"); \
1686 errno = -res; \
1687 res; \
1688 })
1689
1690#endif
1691
1692#ifdef ev_syscall
1693 #define ev_syscall0(nr) ev_syscall (nr, 0, 0, 0, 0, 0, 0, 0)
1694 #define ev_syscall1(nr,arg1) ev_syscall (nr, 1, arg1, 0, 0, 0, 0, 0)
1695 #define ev_syscall2(nr,arg1,arg2) ev_syscall (nr, 2, arg1, arg2, 0, 0, 0, 0)
1696 #define ev_syscall3(nr,arg1,arg2,arg3) ev_syscall (nr, 3, arg1, arg2, arg3, 0, 0, 0)
1697 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) ev_syscall (nr, 3, arg1, arg2, arg3, arg4, 0, 0)
1698 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) ev_syscall (nr, 5, arg1, arg2, arg3, arg4, arg5, 0)
1699 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) ev_syscall (nr, 6, arg1, arg2, arg3, arg4, arg5,arg6)
1700#else
1701 #define ev_syscall0(nr) syscall (nr)
1702 #define ev_syscall1(nr,arg1) syscall (nr, arg1)
1703 #define ev_syscall2(nr,arg1,arg2) syscall (nr, arg1, arg2)
1704 #define ev_syscall3(nr,arg1,arg2,arg3) syscall (nr, arg1, arg2, arg3)
1705 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) syscall (nr, arg1, arg2, arg3, arg4)
1706 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) syscall (nr, arg1, arg2, arg3, arg4, arg5)
1707 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) syscall (nr, arg1, arg2, arg3, arg4, arg5,arg6)
1708#endif
1709
1710#endif
1711
1712/*****************************************************************************/
1713
283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1714#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1715
1716#if EV_MINPRI == EV_MAXPRI
1717# define ABSPRI(w) (((W)w), 0)
1718#else
284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1719# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1720#endif
285 1721
286#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1722#define EMPTY /* required for microsofts broken pseudo-c compiler */
287#define EMPTY2(a,b) /* used to suppress some warnings */
288 1723
289typedef ev_watcher *W; 1724typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 1725typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 1726typedef ev_watcher_time *WT;
292 1727
1728#define ev_active(w) ((W)(w))->active
1729#define ev_at(w) ((WT)(w))->at
1730
1731#if EV_USE_REALTIME
1732/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1733/* giving it a reasonably high chance of working on typical architectures */
1734static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1735#endif
1736
293#if EV_USE_MONOTONIC 1737#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1738static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1739#endif
1740
1741#ifndef EV_FD_TO_WIN32_HANDLE
1742# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1743#endif
1744#ifndef EV_WIN32_HANDLE_TO_FD
1745# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1746#endif
1747#ifndef EV_WIN32_CLOSE_FD
1748# define EV_WIN32_CLOSE_FD(fd) close (fd)
297#endif 1749#endif
298 1750
299#ifdef _WIN32 1751#ifdef _WIN32
300# include "ev_win32.c" 1752# include "ev_win32.c"
301#endif 1753#endif
302 1754
303/*****************************************************************************/ 1755/*****************************************************************************/
304 1756
1757#if EV_USE_LINUXAIO
1758# include <linux/aio_abi.h> /* probably only needed for aio_context_t */
1759#endif
1760
1761/* define a suitable floor function (only used by periodics atm) */
1762
1763#if EV_USE_FLOOR
1764# include <math.h>
1765# define ev_floor(v) floor (v)
1766#else
1767
1768#include <float.h>
1769
1770/* a floor() replacement function, should be independent of ev_tstamp type */
1771ecb_noinline
1772static ev_tstamp
1773ev_floor (ev_tstamp v)
1774{
1775 /* the choice of shift factor is not terribly important */
1776#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1777 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1778#else
1779 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1780#endif
1781
1782 /* special treatment for negative arguments */
1783 if (ecb_expect_false (v < 0.))
1784 {
1785 ev_tstamp f = -ev_floor (-v);
1786
1787 return f - (f == v ? 0 : 1);
1788 }
1789
1790 /* argument too large for an unsigned long? then reduce it */
1791 if (ecb_expect_false (v >= shift))
1792 {
1793 ev_tstamp f;
1794
1795 if (v == v - 1.)
1796 return v; /* very large numbers are assumed to be integer */
1797
1798 f = shift * ev_floor (v * (1. / shift));
1799 return f + ev_floor (v - f);
1800 }
1801
1802 /* fits into an unsigned long */
1803 return (unsigned long)v;
1804}
1805
1806#endif
1807
1808/*****************************************************************************/
1809
1810#ifdef __linux
1811# include <sys/utsname.h>
1812#endif
1813
1814ecb_noinline ecb_cold
1815static unsigned int
1816ev_linux_version (void)
1817{
1818#ifdef __linux
1819 unsigned int v = 0;
1820 struct utsname buf;
1821 int i;
1822 char *p = buf.release;
1823
1824 if (uname (&buf))
1825 return 0;
1826
1827 for (i = 3+1; --i; )
1828 {
1829 unsigned int c = 0;
1830
1831 for (;;)
1832 {
1833 if (*p >= '0' && *p <= '9')
1834 c = c * 10 + *p++ - '0';
1835 else
1836 {
1837 p += *p == '.';
1838 break;
1839 }
1840 }
1841
1842 v = (v << 8) | c;
1843 }
1844
1845 return v;
1846#else
1847 return 0;
1848#endif
1849}
1850
1851/*****************************************************************************/
1852
1853#if EV_AVOID_STDIO
1854ecb_noinline ecb_cold
1855static void
1856ev_printerr (const char *msg)
1857{
1858 write (STDERR_FILENO, msg, strlen (msg));
1859}
1860#endif
1861
305static void (*syserr_cb)(const char *msg); 1862static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
306 1863
1864ecb_cold
307void 1865void
308ev_set_syserr_cb (void (*cb)(const char *msg)) 1866ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
309{ 1867{
310 syserr_cb = cb; 1868 syserr_cb = cb;
311} 1869}
312 1870
313static void noinline 1871ecb_noinline ecb_cold
1872static void
314syserr (const char *msg) 1873ev_syserr (const char *msg)
315{ 1874{
316 if (!msg) 1875 if (!msg)
317 msg = "(libev) system error"; 1876 msg = "(libev) system error";
318 1877
319 if (syserr_cb) 1878 if (syserr_cb)
320 syserr_cb (msg); 1879 syserr_cb (msg);
321 else 1880 else
322 { 1881 {
1882#if EV_AVOID_STDIO
1883 ev_printerr (msg);
1884 ev_printerr (": ");
1885 ev_printerr (strerror (errno));
1886 ev_printerr ("\n");
1887#else
323 perror (msg); 1888 perror (msg);
1889#endif
324 abort (); 1890 abort ();
325 } 1891 }
326} 1892}
327 1893
328static void *(*alloc)(void *ptr, long size); 1894static void *
1895ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
1896{
1897 /* some systems, notably openbsd and darwin, fail to properly
1898 * implement realloc (x, 0) (as required by both ansi c-89 and
1899 * the single unix specification, so work around them here.
1900 * recently, also (at least) fedora and debian started breaking it,
1901 * despite documenting it otherwise.
1902 */
329 1903
1904 if (size)
1905 return realloc (ptr, size);
1906
1907 free (ptr);
1908 return 0;
1909}
1910
1911static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
1912
1913ecb_cold
330void 1914void
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 1915ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
332{ 1916{
333 alloc = cb; 1917 alloc = cb;
334} 1918}
335 1919
336inline_speed void * 1920inline_speed void *
337ev_realloc (void *ptr, long size) 1921ev_realloc (void *ptr, long size)
338{ 1922{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1923 ptr = alloc (ptr, size);
340 1924
341 if (!ptr && size) 1925 if (!ptr && size)
342 { 1926 {
1927#if EV_AVOID_STDIO
1928 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1929#else
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1930 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1931#endif
344 abort (); 1932 abort ();
345 } 1933 }
346 1934
347 return ptr; 1935 return ptr;
348} 1936}
350#define ev_malloc(size) ev_realloc (0, (size)) 1938#define ev_malloc(size) ev_realloc (0, (size))
351#define ev_free(ptr) ev_realloc ((ptr), 0) 1939#define ev_free(ptr) ev_realloc ((ptr), 0)
352 1940
353/*****************************************************************************/ 1941/*****************************************************************************/
354 1942
1943/* set in reify when reification needed */
1944#define EV_ANFD_REIFY 1
1945
1946/* file descriptor info structure */
355typedef struct 1947typedef struct
356{ 1948{
357 WL head; 1949 WL head;
358 unsigned char events; 1950 unsigned char events; /* the events watched for */
359 unsigned char reify; 1951 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1952 unsigned char emask; /* some backends store the actual kernel mask in here */
1953 unsigned char eflags; /* flags field for use by backends */
1954#if EV_USE_EPOLL
1955 unsigned int egen; /* generation counter to counter epoll bugs */
1956#endif
360#if EV_SELECT_IS_WINSOCKET 1957#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
361 SOCKET handle; 1958 SOCKET handle;
362#endif 1959#endif
1960#if EV_USE_IOCP
1961 OVERLAPPED or, ow;
1962#endif
363} ANFD; 1963} ANFD;
364 1964
1965/* stores the pending event set for a given watcher */
365typedef struct 1966typedef struct
366{ 1967{
367 W w; 1968 W w;
368 int events; 1969 int events; /* the pending event set for the given watcher */
369} ANPENDING; 1970} ANPENDING;
370 1971
371#if EV_USE_INOTIFY 1972#if EV_USE_INOTIFY
1973/* hash table entry per inotify-id */
372typedef struct 1974typedef struct
373{ 1975{
374 WL head; 1976 WL head;
375} ANFS; 1977} ANFS;
1978#endif
1979
1980/* Heap Entry */
1981#if EV_HEAP_CACHE_AT
1982 /* a heap element */
1983 typedef struct {
1984 ev_tstamp at;
1985 WT w;
1986 } ANHE;
1987
1988 #define ANHE_w(he) (he).w /* access watcher, read-write */
1989 #define ANHE_at(he) (he).at /* access cached at, read-only */
1990 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1991#else
1992 /* a heap element */
1993 typedef WT ANHE;
1994
1995 #define ANHE_w(he) (he)
1996 #define ANHE_at(he) (he)->at
1997 #define ANHE_at_cache(he)
376#endif 1998#endif
377 1999
378#if EV_MULTIPLICITY 2000#if EV_MULTIPLICITY
379 2001
380 struct ev_loop 2002 struct ev_loop
386 #undef VAR 2008 #undef VAR
387 }; 2009 };
388 #include "ev_wrap.h" 2010 #include "ev_wrap.h"
389 2011
390 static struct ev_loop default_loop_struct; 2012 static struct ev_loop default_loop_struct;
391 struct ev_loop *ev_default_loop_ptr; 2013 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
392 2014
393#else 2015#else
394 2016
395 ev_tstamp ev_rt_now; 2017 EV_API_DECL ev_tstamp ev_rt_now = EV_TS_CONST (0.); /* needs to be initialised to make it a definition despite extern */
396 #define VAR(name,decl) static decl; 2018 #define VAR(name,decl) static decl;
397 #include "ev_vars.h" 2019 #include "ev_vars.h"
398 #undef VAR 2020 #undef VAR
399 2021
400 static int ev_default_loop_ptr; 2022 static int ev_default_loop_ptr;
401 2023
402#endif 2024#endif
403 2025
2026#if EV_FEATURE_API
2027# define EV_RELEASE_CB if (ecb_expect_false (release_cb)) release_cb (EV_A)
2028# define EV_ACQUIRE_CB if (ecb_expect_false (acquire_cb)) acquire_cb (EV_A)
2029# define EV_INVOKE_PENDING invoke_cb (EV_A)
2030#else
2031# define EV_RELEASE_CB (void)0
2032# define EV_ACQUIRE_CB (void)0
2033# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
2034#endif
2035
2036#define EVBREAK_RECURSE 0x80
2037
404/*****************************************************************************/ 2038/*****************************************************************************/
405 2039
2040#ifndef EV_HAVE_EV_TIME
406ev_tstamp 2041ev_tstamp
407ev_time (void) 2042ev_time (void) EV_NOEXCEPT
408{ 2043{
409#if EV_USE_REALTIME 2044#if EV_USE_REALTIME
2045 if (ecb_expect_true (have_realtime))
2046 {
410 struct timespec ts; 2047 struct timespec ts;
411 clock_gettime (CLOCK_REALTIME, &ts); 2048 clock_gettime (CLOCK_REALTIME, &ts);
412 return ts.tv_sec + ts.tv_nsec * 1e-9; 2049 return EV_TS_GET (ts);
413#else 2050 }
2051#endif
2052
2053 {
414 struct timeval tv; 2054 struct timeval tv;
415 gettimeofday (&tv, 0); 2055 gettimeofday (&tv, 0);
416 return tv.tv_sec + tv.tv_usec * 1e-6; 2056 return EV_TV_GET (tv);
417#endif 2057 }
418} 2058}
2059#endif
419 2060
420ev_tstamp inline_size 2061inline_size ev_tstamp
421get_clock (void) 2062get_clock (void)
422{ 2063{
423#if EV_USE_MONOTONIC 2064#if EV_USE_MONOTONIC
424 if (expect_true (have_monotonic)) 2065 if (ecb_expect_true (have_monotonic))
425 { 2066 {
426 struct timespec ts; 2067 struct timespec ts;
427 clock_gettime (CLOCK_MONOTONIC, &ts); 2068 clock_gettime (CLOCK_MONOTONIC, &ts);
428 return ts.tv_sec + ts.tv_nsec * 1e-9; 2069 return EV_TS_GET (ts);
429 } 2070 }
430#endif 2071#endif
431 2072
432 return ev_time (); 2073 return ev_time ();
433} 2074}
434 2075
435#if EV_MULTIPLICITY 2076#if EV_MULTIPLICITY
436ev_tstamp 2077ev_tstamp
437ev_now (EV_P) 2078ev_now (EV_P) EV_NOEXCEPT
438{ 2079{
439 return ev_rt_now; 2080 return ev_rt_now;
440} 2081}
441#endif 2082#endif
442 2083
443void 2084void
444ev_sleep (ev_tstamp delay) 2085ev_sleep (ev_tstamp delay) EV_NOEXCEPT
445{ 2086{
446 if (delay > 0.) 2087 if (delay > EV_TS_CONST (0.))
447 { 2088 {
448#if EV_USE_NANOSLEEP 2089#if EV_USE_NANOSLEEP
449 struct timespec ts; 2090 struct timespec ts;
450 2091
451 ts.tv_sec = (time_t)delay; 2092 EV_TS_SET (ts, delay);
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0); 2093 nanosleep (&ts, 0);
455#elif defined(_WIN32) 2094#elif defined _WIN32
456 Sleep (delay * 1e3); 2095 /* maybe this should round up, as ms is very low resolution */
2096 /* compared to select (µs) or nanosleep (ns) */
2097 Sleep ((unsigned long)(EV_TS_TO_MSEC (delay)));
457#else 2098#else
458 struct timeval tv; 2099 struct timeval tv;
459 2100
460 tv.tv_sec = (time_t)delay; 2101 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 2102 /* something not guaranteed by newer posix versions, but guaranteed */
462 2103 /* by older ones */
2104 EV_TV_SET (tv, delay);
463 select (0, 0, 0, 0, &tv); 2105 select (0, 0, 0, 0, &tv);
464#endif 2106#endif
465 } 2107 }
466} 2108}
467 2109
468/*****************************************************************************/ 2110/*****************************************************************************/
469 2111
470int inline_size 2112#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
2113
2114/* find a suitable new size for the given array, */
2115/* hopefully by rounding to a nice-to-malloc size */
2116inline_size int
471array_nextsize (int elem, int cur, int cnt) 2117array_nextsize (int elem, int cur, int cnt)
472{ 2118{
473 int ncur = cur + 1; 2119 int ncur = cur + 1;
474 2120
475 do 2121 do
476 ncur <<= 1; 2122 ncur <<= 1;
477 while (cnt > ncur); 2123 while (cnt > ncur);
478 2124
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 2125 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
480 if (elem * ncur > 4096) 2126 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 2127 {
482 ncur *= elem; 2128 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 2129 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 2130 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 2131 ncur /= elem;
486 } 2132 }
487 2133
488 return ncur; 2134 return ncur;
489} 2135}
490 2136
491static noinline void * 2137ecb_noinline ecb_cold
2138static void *
492array_realloc (int elem, void *base, int *cur, int cnt) 2139array_realloc (int elem, void *base, int *cur, int cnt)
493{ 2140{
494 *cur = array_nextsize (elem, *cur, cnt); 2141 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur); 2142 return ev_realloc (base, elem * *cur);
496} 2143}
497 2144
2145#define array_needsize_noinit(base,offset,count)
2146
2147#define array_needsize_zerofill(base,offset,count) \
2148 memset ((void *)(base + offset), 0, sizeof (*(base)) * (count))
2149
498#define array_needsize(type,base,cur,cnt,init) \ 2150#define array_needsize(type,base,cur,cnt,init) \
499 if (expect_false ((cnt) > (cur))) \ 2151 if (ecb_expect_false ((cnt) > (cur))) \
500 { \ 2152 { \
501 int ocur_ = (cur); \ 2153 ecb_unused int ocur_ = (cur); \
502 (base) = (type *)array_realloc \ 2154 (base) = (type *)array_realloc \
503 (sizeof (type), (base), &(cur), (cnt)); \ 2155 (sizeof (type), (base), &(cur), (cnt)); \
504 init ((base) + (ocur_), (cur) - ocur_); \ 2156 init ((base), ocur_, ((cur) - ocur_)); \
505 } 2157 }
506 2158
507#if 0 2159#if 0
508#define array_slim(type,stem) \ 2160#define array_slim(type,stem) \
509 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 2161 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 2165 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
514 } 2166 }
515#endif 2167#endif
516 2168
517#define array_free(stem, idx) \ 2169#define array_free(stem, idx) \
518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 2170 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
519 2171
520/*****************************************************************************/ 2172/*****************************************************************************/
521 2173
522void noinline 2174/* dummy callback for pending events */
2175ecb_noinline
2176static void
2177pendingcb (EV_P_ ev_prepare *w, int revents)
2178{
2179}
2180
2181ecb_noinline
2182void
523ev_feed_event (EV_P_ void *w, int revents) 2183ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
524{ 2184{
525 W w_ = (W)w; 2185 W w_ = (W)w;
526 int pri = ABSPRI (w_); 2186 int pri = ABSPRI (w_);
527 2187
528 if (expect_false (w_->pending)) 2188 if (ecb_expect_false (w_->pending))
529 pendings [pri][w_->pending - 1].events |= revents; 2189 pendings [pri][w_->pending - 1].events |= revents;
530 else 2190 else
531 { 2191 {
532 w_->pending = ++pendingcnt [pri]; 2192 w_->pending = ++pendingcnt [pri];
533 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 2193 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
534 pendings [pri][w_->pending - 1].w = w_; 2194 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents; 2195 pendings [pri][w_->pending - 1].events = revents;
536 } 2196 }
537}
538 2197
539void inline_speed 2198 pendingpri = NUMPRI - 1;
2199}
2200
2201inline_speed void
2202feed_reverse (EV_P_ W w)
2203{
2204 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2205 rfeeds [rfeedcnt++] = w;
2206}
2207
2208inline_size void
2209feed_reverse_done (EV_P_ int revents)
2210{
2211 do
2212 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2213 while (rfeedcnt);
2214}
2215
2216inline_speed void
540queue_events (EV_P_ W *events, int eventcnt, int type) 2217queue_events (EV_P_ W *events, int eventcnt, int type)
541{ 2218{
542 int i; 2219 int i;
543 2220
544 for (i = 0; i < eventcnt; ++i) 2221 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type); 2222 ev_feed_event (EV_A_ events [i], type);
546} 2223}
547 2224
548/*****************************************************************************/ 2225/*****************************************************************************/
549 2226
550void inline_size 2227inline_speed void
551anfds_init (ANFD *base, int count)
552{
553 while (count--)
554 {
555 base->head = 0;
556 base->events = EV_NONE;
557 base->reify = 0;
558
559 ++base;
560 }
561}
562
563void inline_speed
564fd_event (EV_P_ int fd, int revents) 2228fd_event_nocheck (EV_P_ int fd, int revents)
565{ 2229{
566 ANFD *anfd = anfds + fd; 2230 ANFD *anfd = anfds + fd;
567 ev_io *w; 2231 ev_io *w;
568 2232
569 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2233 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
573 if (ev) 2237 if (ev)
574 ev_feed_event (EV_A_ (W)w, ev); 2238 ev_feed_event (EV_A_ (W)w, ev);
575 } 2239 }
576} 2240}
577 2241
578void 2242/* do not submit kernel events for fds that have reify set */
2243/* because that means they changed while we were polling for new events */
2244inline_speed void
579ev_feed_fd_event (EV_P_ int fd, int revents) 2245fd_event (EV_P_ int fd, int revents)
2246{
2247 ANFD *anfd = anfds + fd;
2248
2249 if (ecb_expect_true (!anfd->reify))
2250 fd_event_nocheck (EV_A_ fd, revents);
2251}
2252
2253void
2254ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
580{ 2255{
581 if (fd >= 0 && fd < anfdmax) 2256 if (fd >= 0 && fd < anfdmax)
582 fd_event (EV_A_ fd, revents); 2257 fd_event_nocheck (EV_A_ fd, revents);
583} 2258}
584 2259
585void inline_size 2260/* make sure the external fd watch events are in-sync */
2261/* with the kernel/libev internal state */
2262inline_size void
586fd_reify (EV_P) 2263fd_reify (EV_P)
587{ 2264{
588 int i; 2265 int i;
589 2266
2267 /* most backends do not modify the fdchanges list in backend_modfiy.
2268 * except io_uring, which has fixed-size buffers which might force us
2269 * to handle events in backend_modify, causing fdchangesd to be amended,
2270 * which could result in an endless loop.
2271 * to avoid this, we do not dynamically handle fds that were added
2272 * during fd_reify. that menas thast for those backends, fdchangecnt
2273 * might be non-zero during poll, which must cause them to not block.
2274 * to not put too much of a burden on other backends, this detail
2275 * needs to be handled in the backend.
2276 */
2277 int changecnt = fdchangecnt;
2278
2279#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
590 for (i = 0; i < fdchangecnt; ++i) 2280 for (i = 0; i < changecnt; ++i)
2281 {
2282 int fd = fdchanges [i];
2283 ANFD *anfd = anfds + fd;
2284
2285 if (anfd->reify & EV__IOFDSET && anfd->head)
2286 {
2287 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2288
2289 if (handle != anfd->handle)
2290 {
2291 unsigned long arg;
2292
2293 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2294
2295 /* handle changed, but fd didn't - we need to do it in two steps */
2296 backend_modify (EV_A_ fd, anfd->events, 0);
2297 anfd->events = 0;
2298 anfd->handle = handle;
2299 }
2300 }
2301 }
2302#endif
2303
2304 for (i = 0; i < changecnt; ++i)
591 { 2305 {
592 int fd = fdchanges [i]; 2306 int fd = fdchanges [i];
593 ANFD *anfd = anfds + fd; 2307 ANFD *anfd = anfds + fd;
594 ev_io *w; 2308 ev_io *w;
595 2309
596 unsigned char events = 0; 2310 unsigned char o_events = anfd->events;
2311 unsigned char o_reify = anfd->reify;
597 2312
598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2313 anfd->reify = 0;
599 events |= (unsigned char)w->events;
600 2314
601#if EV_SELECT_IS_WINSOCKET 2315 /*if (ecb_expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
602 if (events)
603 { 2316 {
604 unsigned long argp; 2317 anfd->events = 0;
605 #ifdef EV_FD_TO_WIN32_HANDLE 2318
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 2319 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
607 #else 2320 anfd->events |= (unsigned char)w->events;
608 anfd->handle = _get_osfhandle (fd); 2321
609 #endif 2322 if (o_events != anfd->events)
610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 2323 o_reify = EV__IOFDSET; /* actually |= */
611 } 2324 }
612#endif
613 2325
614 { 2326 if (o_reify & EV__IOFDSET)
615 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify;
617
618 anfd->reify = 0;
619 anfd->events = events;
620
621 if (o_events != events || o_reify & EV_IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events); 2327 backend_modify (EV_A_ fd, o_events, anfd->events);
623 } 2328 }
624 }
625 2329
2330 /* normally, fdchangecnt hasn't changed. if it has, then new fds have been added.
2331 * this is a rare case (see beginning comment in this function), so we copy them to the
2332 * front and hope the backend handles this case.
2333 */
2334 if (ecb_expect_false (fdchangecnt != changecnt))
2335 memmove (fdchanges, fdchanges + changecnt, (fdchangecnt - changecnt) * sizeof (*fdchanges));
2336
626 fdchangecnt = 0; 2337 fdchangecnt -= changecnt;
627} 2338}
628 2339
2340/* something about the given fd changed */
629void inline_size 2341inline_size
2342void
630fd_change (EV_P_ int fd, int flags) 2343fd_change (EV_P_ int fd, int flags)
631{ 2344{
632 unsigned char reify = anfds [fd].reify; 2345 unsigned char reify = anfds [fd].reify;
633 anfds [fd].reify |= flags; 2346 anfds [fd].reify |= flags;
634 2347
635 if (expect_true (!reify)) 2348 if (ecb_expect_true (!reify))
636 { 2349 {
637 ++fdchangecnt; 2350 ++fdchangecnt;
638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 2351 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
639 fdchanges [fdchangecnt - 1] = fd; 2352 fdchanges [fdchangecnt - 1] = fd;
640 } 2353 }
641} 2354}
642 2355
643void inline_speed 2356/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2357inline_speed ecb_cold void
644fd_kill (EV_P_ int fd) 2358fd_kill (EV_P_ int fd)
645{ 2359{
646 ev_io *w; 2360 ev_io *w;
647 2361
648 while ((w = (ev_io *)anfds [fd].head)) 2362 while ((w = (ev_io *)anfds [fd].head))
650 ev_io_stop (EV_A_ w); 2364 ev_io_stop (EV_A_ w);
651 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2365 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
652 } 2366 }
653} 2367}
654 2368
655int inline_size 2369/* check whether the given fd is actually valid, for error recovery */
2370inline_size ecb_cold int
656fd_valid (int fd) 2371fd_valid (int fd)
657{ 2372{
658#ifdef _WIN32 2373#ifdef _WIN32
659 return _get_osfhandle (fd) != -1; 2374 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
660#else 2375#else
661 return fcntl (fd, F_GETFD) != -1; 2376 return fcntl (fd, F_GETFD) != -1;
662#endif 2377#endif
663} 2378}
664 2379
665/* called on EBADF to verify fds */ 2380/* called on EBADF to verify fds */
666static void noinline 2381ecb_noinline ecb_cold
2382static void
667fd_ebadf (EV_P) 2383fd_ebadf (EV_P)
668{ 2384{
669 int fd; 2385 int fd;
670 2386
671 for (fd = 0; fd < anfdmax; ++fd) 2387 for (fd = 0; fd < anfdmax; ++fd)
672 if (anfds [fd].events) 2388 if (anfds [fd].events)
673 if (!fd_valid (fd) == -1 && errno == EBADF) 2389 if (!fd_valid (fd) && errno == EBADF)
674 fd_kill (EV_A_ fd); 2390 fd_kill (EV_A_ fd);
675} 2391}
676 2392
677/* called on ENOMEM in select/poll to kill some fds and retry */ 2393/* called on ENOMEM in select/poll to kill some fds and retry */
678static void noinline 2394ecb_noinline ecb_cold
2395static void
679fd_enomem (EV_P) 2396fd_enomem (EV_P)
680{ 2397{
681 int fd; 2398 int fd;
682 2399
683 for (fd = anfdmax; fd--; ) 2400 for (fd = anfdmax; fd--; )
684 if (anfds [fd].events) 2401 if (anfds [fd].events)
685 { 2402 {
686 fd_kill (EV_A_ fd); 2403 fd_kill (EV_A_ fd);
687 return; 2404 break;
688 } 2405 }
689} 2406}
690 2407
691/* usually called after fork if backend needs to re-arm all fds from scratch */ 2408/* usually called after fork if backend needs to re-arm all fds from scratch */
692static void noinline 2409ecb_noinline
2410static void
693fd_rearm_all (EV_P) 2411fd_rearm_all (EV_P)
694{ 2412{
695 int fd; 2413 int fd;
696 2414
697 for (fd = 0; fd < anfdmax; ++fd) 2415 for (fd = 0; fd < anfdmax; ++fd)
698 if (anfds [fd].events) 2416 if (anfds [fd].events)
699 { 2417 {
700 anfds [fd].events = 0; 2418 anfds [fd].events = 0;
2419 anfds [fd].emask = 0;
701 fd_change (EV_A_ fd, EV_IOFDSET | 1); 2420 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
702 } 2421 }
703} 2422}
704 2423
705/*****************************************************************************/ 2424/* used to prepare libev internal fd's */
706 2425/* this is not fork-safe */
707void inline_speed 2426inline_speed void
708upheap (WT *heap, int k)
709{
710 WT w = heap [k];
711
712 while (k)
713 {
714 int p = (k - 1) >> 1;
715
716 if (heap [p]->at <= w->at)
717 break;
718
719 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1;
721 k = p;
722 }
723
724 heap [k] = w;
725 ((W)heap [k])->active = k + 1;
726}
727
728void inline_speed
729downheap (WT *heap, int N, int k)
730{
731 WT w = heap [k];
732
733 for (;;)
734 {
735 int c = (k << 1) + 1;
736
737 if (c >= N)
738 break;
739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
746 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1;
748
749 k = c;
750 }
751
752 heap [k] = w;
753 ((W)heap [k])->active = k + 1;
754}
755
756void inline_size
757adjustheap (WT *heap, int N, int k)
758{
759 upheap (heap, k);
760 downheap (heap, N, k);
761}
762
763/*****************************************************************************/
764
765typedef struct
766{
767 WL head;
768 EV_ATOMIC_T gotsig;
769} ANSIG;
770
771static ANSIG *signals;
772static int signalmax;
773
774static EV_ATOMIC_T gotsig;
775
776void inline_size
777signals_init (ANSIG *base, int count)
778{
779 while (count--)
780 {
781 base->head = 0;
782 base->gotsig = 0;
783
784 ++base;
785 }
786}
787
788/*****************************************************************************/
789
790void inline_speed
791fd_intern (int fd) 2427fd_intern (int fd)
792{ 2428{
793#ifdef _WIN32 2429#ifdef _WIN32
794 int arg = 1; 2430 unsigned long arg = 1;
795 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 2431 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
796#else 2432#else
797 fcntl (fd, F_SETFD, FD_CLOEXEC); 2433 fcntl (fd, F_SETFD, FD_CLOEXEC);
798 fcntl (fd, F_SETFL, O_NONBLOCK); 2434 fcntl (fd, F_SETFL, O_NONBLOCK);
799#endif 2435#endif
800} 2436}
801 2437
802static void noinline 2438/*****************************************************************************/
2439
2440/*
2441 * the heap functions want a real array index. array index 0 is guaranteed to not
2442 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2443 * the branching factor of the d-tree.
2444 */
2445
2446/*
2447 * at the moment we allow libev the luxury of two heaps,
2448 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2449 * which is more cache-efficient.
2450 * the difference is about 5% with 50000+ watchers.
2451 */
2452#if EV_USE_4HEAP
2453
2454#define DHEAP 4
2455#define HEAP0 (DHEAP - 1) /* index of first element in heap */
2456#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2457#define UPHEAP_DONE(p,k) ((p) == (k))
2458
2459/* away from the root */
2460inline_speed void
2461downheap (ANHE *heap, int N, int k)
2462{
2463 ANHE he = heap [k];
2464 ANHE *E = heap + N + HEAP0;
2465
2466 for (;;)
2467 {
2468 ev_tstamp minat;
2469 ANHE *minpos;
2470 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2471
2472 /* find minimum child */
2473 if (ecb_expect_true (pos + DHEAP - 1 < E))
2474 {
2475 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2476 if ( minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2477 if ( minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2478 if ( minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2479 }
2480 else if (pos < E)
2481 {
2482 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2483 if (pos + 1 < E && minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2484 if (pos + 2 < E && minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2485 if (pos + 3 < E && minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2486 }
2487 else
2488 break;
2489
2490 if (ANHE_at (he) <= minat)
2491 break;
2492
2493 heap [k] = *minpos;
2494 ev_active (ANHE_w (*minpos)) = k;
2495
2496 k = minpos - heap;
2497 }
2498
2499 heap [k] = he;
2500 ev_active (ANHE_w (he)) = k;
2501}
2502
2503#else /* not 4HEAP */
2504
2505#define HEAP0 1
2506#define HPARENT(k) ((k) >> 1)
2507#define UPHEAP_DONE(p,k) (!(p))
2508
2509/* away from the root */
2510inline_speed void
2511downheap (ANHE *heap, int N, int k)
2512{
2513 ANHE he = heap [k];
2514
2515 for (;;)
2516 {
2517 int c = k << 1;
2518
2519 if (c >= N + HEAP0)
2520 break;
2521
2522 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2523 ? 1 : 0;
2524
2525 if (ANHE_at (he) <= ANHE_at (heap [c]))
2526 break;
2527
2528 heap [k] = heap [c];
2529 ev_active (ANHE_w (heap [k])) = k;
2530
2531 k = c;
2532 }
2533
2534 heap [k] = he;
2535 ev_active (ANHE_w (he)) = k;
2536}
2537#endif
2538
2539/* towards the root */
2540inline_speed void
2541upheap (ANHE *heap, int k)
2542{
2543 ANHE he = heap [k];
2544
2545 for (;;)
2546 {
2547 int p = HPARENT (k);
2548
2549 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2550 break;
2551
2552 heap [k] = heap [p];
2553 ev_active (ANHE_w (heap [k])) = k;
2554 k = p;
2555 }
2556
2557 heap [k] = he;
2558 ev_active (ANHE_w (he)) = k;
2559}
2560
2561/* move an element suitably so it is in a correct place */
2562inline_size void
2563adjustheap (ANHE *heap, int N, int k)
2564{
2565 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2566 upheap (heap, k);
2567 else
2568 downheap (heap, N, k);
2569}
2570
2571/* rebuild the heap: this function is used only once and executed rarely */
2572inline_size void
2573reheap (ANHE *heap, int N)
2574{
2575 int i;
2576
2577 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2578 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2579 for (i = 0; i < N; ++i)
2580 upheap (heap, i + HEAP0);
2581}
2582
2583/*****************************************************************************/
2584
2585/* associate signal watchers to a signal */
2586typedef struct
2587{
2588 EV_ATOMIC_T pending;
2589#if EV_MULTIPLICITY
2590 EV_P;
2591#endif
2592 WL head;
2593} ANSIG;
2594
2595static ANSIG signals [EV_NSIG - 1];
2596
2597/*****************************************************************************/
2598
2599#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2600
2601ecb_noinline ecb_cold
2602static void
803evpipe_init (EV_P) 2603evpipe_init (EV_P)
804{ 2604{
805 if (!ev_is_active (&pipeev)) 2605 if (!ev_is_active (&pipe_w))
806 { 2606 {
2607 int fds [2];
2608
2609# if EV_USE_EVENTFD
2610 fds [0] = -1;
2611 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2612 if (fds [1] < 0 && errno == EINVAL)
2613 fds [1] = eventfd (0, 0);
2614
2615 if (fds [1] < 0)
2616# endif
2617 {
807 while (pipe (evpipe)) 2618 while (pipe (fds))
808 syserr ("(libev) error creating signal/async pipe"); 2619 ev_syserr ("(libev) error creating signal/async pipe");
809 2620
810 fd_intern (evpipe [0]); 2621 fd_intern (fds [0]);
2622 }
2623
2624 evpipe [0] = fds [0];
2625
2626 if (evpipe [1] < 0)
2627 evpipe [1] = fds [1]; /* first call, set write fd */
2628 else
2629 {
2630 /* on subsequent calls, do not change evpipe [1] */
2631 /* so that evpipe_write can always rely on its value. */
2632 /* this branch does not do anything sensible on windows, */
2633 /* so must not be executed on windows */
2634
2635 dup2 (fds [1], evpipe [1]);
2636 close (fds [1]);
2637 }
2638
811 fd_intern (evpipe [1]); 2639 fd_intern (evpipe [1]);
812 2640
813 ev_io_set (&pipeev, evpipe [0], EV_READ); 2641 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
814 ev_io_start (EV_A_ &pipeev); 2642 ev_io_start (EV_A_ &pipe_w);
815 ev_unref (EV_A); /* watcher should not keep loop alive */ 2643 ev_unref (EV_A); /* watcher should not keep loop alive */
816 } 2644 }
817} 2645}
818 2646
819void inline_size 2647inline_speed void
820evpipe_write (EV_P_ EV_ATOMIC_T *flag) 2648evpipe_write (EV_P_ EV_ATOMIC_T *flag)
821{ 2649{
822 if (!*flag) 2650 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2651
2652 if (ecb_expect_true (*flag))
2653 return;
2654
2655 *flag = 1;
2656 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2657
2658 pipe_write_skipped = 1;
2659
2660 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2661
2662 if (pipe_write_wanted)
823 { 2663 {
2664 int old_errno;
2665
2666 pipe_write_skipped = 0;
2667 ECB_MEMORY_FENCE_RELEASE;
2668
824 int old_errno = errno; /* save errno becaue write might clobber it */ 2669 old_errno = errno; /* save errno because write will clobber it */
825 2670
826 *flag = 1; 2671#if EV_USE_EVENTFD
827 write (evpipe [1], &old_errno, 1); 2672 if (evpipe [0] < 0)
2673 {
2674 uint64_t counter = 1;
2675 write (evpipe [1], &counter, sizeof (uint64_t));
2676 }
2677 else
2678#endif
2679 {
2680#ifdef _WIN32
2681 WSABUF buf;
2682 DWORD sent;
2683 buf.buf = (char *)&buf;
2684 buf.len = 1;
2685 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2686#else
2687 write (evpipe [1], &(evpipe [1]), 1);
2688#endif
2689 }
828 2690
829 errno = old_errno; 2691 errno = old_errno;
830 } 2692 }
831} 2693}
832 2694
2695/* called whenever the libev signal pipe */
2696/* got some events (signal, async) */
833static void 2697static void
834pipecb (EV_P_ ev_io *iow, int revents) 2698pipecb (EV_P_ ev_io *iow, int revents)
835{ 2699{
2700 int i;
2701
2702 if (revents & EV_READ)
836 { 2703 {
837 int dummy; 2704#if EV_USE_EVENTFD
2705 if (evpipe [0] < 0)
2706 {
2707 uint64_t counter;
2708 read (evpipe [1], &counter, sizeof (uint64_t));
2709 }
2710 else
2711#endif
2712 {
2713 char dummy[4];
2714#ifdef _WIN32
2715 WSABUF buf;
2716 DWORD recvd;
2717 DWORD flags = 0;
2718 buf.buf = dummy;
2719 buf.len = sizeof (dummy);
2720 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2721#else
838 read (evpipe [0], &dummy, 1); 2722 read (evpipe [0], &dummy, sizeof (dummy));
2723#endif
2724 }
839 } 2725 }
840 2726
841 if (gotsig && ev_is_default_loop (EV_A)) 2727 pipe_write_skipped = 0;
842 {
843 int signum;
844 gotsig = 0;
845 2728
846 for (signum = signalmax; signum--; ) 2729 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
847 if (signals [signum].gotsig) 2730
2731#if EV_SIGNAL_ENABLE
2732 if (sig_pending)
2733 {
2734 sig_pending = 0;
2735
2736 ECB_MEMORY_FENCE;
2737
2738 for (i = EV_NSIG - 1; i--; )
2739 if (ecb_expect_false (signals [i].pending))
848 ev_feed_signal_event (EV_A_ signum + 1); 2740 ev_feed_signal_event (EV_A_ i + 1);
849 } 2741 }
2742#endif
850 2743
851#if EV_ASYNC_ENABLE 2744#if EV_ASYNC_ENABLE
852 if (gotasync) 2745 if (async_pending)
853 { 2746 {
854 int i; 2747 async_pending = 0;
855 gotasync = 0; 2748
2749 ECB_MEMORY_FENCE;
856 2750
857 for (i = asynccnt; i--; ) 2751 for (i = asynccnt; i--; )
858 if (asyncs [i]->sent) 2752 if (asyncs [i]->sent)
859 { 2753 {
860 asyncs [i]->sent = 0; 2754 asyncs [i]->sent = 0;
2755 ECB_MEMORY_FENCE_RELEASE;
861 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2756 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
862 } 2757 }
863 } 2758 }
864#endif 2759#endif
865} 2760}
866 2761
867/*****************************************************************************/ 2762/*****************************************************************************/
868 2763
2764void
2765ev_feed_signal (int signum) EV_NOEXCEPT
2766{
2767#if EV_MULTIPLICITY
2768 EV_P;
2769 ECB_MEMORY_FENCE_ACQUIRE;
2770 EV_A = signals [signum - 1].loop;
2771
2772 if (!EV_A)
2773 return;
2774#endif
2775
2776 signals [signum - 1].pending = 1;
2777 evpipe_write (EV_A_ &sig_pending);
2778}
2779
869static void 2780static void
870sighandler (int signum) 2781ev_sighandler (int signum)
871{ 2782{
2783#ifdef _WIN32
2784 signal (signum, ev_sighandler);
2785#endif
2786
2787 ev_feed_signal (signum);
2788}
2789
2790ecb_noinline
2791void
2792ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2793{
2794 WL w;
2795
2796 if (ecb_expect_false (signum <= 0 || signum >= EV_NSIG))
2797 return;
2798
2799 --signum;
2800
872#if EV_MULTIPLICITY 2801#if EV_MULTIPLICITY
873 struct ev_loop *loop = &default_loop_struct; 2802 /* it is permissible to try to feed a signal to the wrong loop */
874#endif 2803 /* or, likely more useful, feeding a signal nobody is waiting for */
875 2804
876#if _WIN32 2805 if (ecb_expect_false (signals [signum].loop != EV_A))
877 signal (signum, sighandler);
878#endif
879
880 signals [signum - 1].gotsig = 1;
881 evpipe_write (EV_A_ &gotsig);
882}
883
884void noinline
885ev_feed_signal_event (EV_P_ int signum)
886{
887 WL w;
888
889#if EV_MULTIPLICITY
890 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
891#endif
892
893 --signum;
894
895 if (signum < 0 || signum >= signalmax)
896 return; 2806 return;
2807#endif
897 2808
898 signals [signum].gotsig = 0; 2809 signals [signum].pending = 0;
2810 ECB_MEMORY_FENCE_RELEASE;
899 2811
900 for (w = signals [signum].head; w; w = w->next) 2812 for (w = signals [signum].head; w; w = w->next)
901 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2813 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
902} 2814}
903 2815
2816#if EV_USE_SIGNALFD
2817static void
2818sigfdcb (EV_P_ ev_io *iow, int revents)
2819{
2820 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2821
2822 for (;;)
2823 {
2824 ssize_t res = read (sigfd, si, sizeof (si));
2825
2826 /* not ISO-C, as res might be -1, but works with SuS */
2827 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2828 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2829
2830 if (res < (ssize_t)sizeof (si))
2831 break;
2832 }
2833}
2834#endif
2835
2836#endif
2837
904/*****************************************************************************/ 2838/*****************************************************************************/
905 2839
2840#if EV_CHILD_ENABLE
906static WL childs [EV_PID_HASHSIZE]; 2841static WL childs [EV_PID_HASHSIZE];
907
908#ifndef _WIN32
909 2842
910static ev_signal childev; 2843static ev_signal childev;
911 2844
912#ifndef WIFCONTINUED 2845#ifndef WIFCONTINUED
913# define WIFCONTINUED(status) 0 2846# define WIFCONTINUED(status) 0
914#endif 2847#endif
915 2848
916void inline_speed 2849/* handle a single child status event */
2850inline_speed void
917child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 2851child_reap (EV_P_ int chain, int pid, int status)
918{ 2852{
919 ev_child *w; 2853 ev_child *w;
920 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2854 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
921 2855
922 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2856 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
923 { 2857 {
924 if ((w->pid == pid || !w->pid) 2858 if ((w->pid == pid || !w->pid)
925 && (!traced || (w->flags & 1))) 2859 && (!traced || (w->flags & 1)))
926 { 2860 {
927 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 2861 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
928 w->rpid = pid; 2862 w->rpid = pid;
929 w->rstatus = status; 2863 w->rstatus = status;
930 ev_feed_event (EV_A_ (W)w, EV_CHILD); 2864 ev_feed_event (EV_A_ (W)w, EV_CHILD);
931 } 2865 }
932 } 2866 }
934 2868
935#ifndef WCONTINUED 2869#ifndef WCONTINUED
936# define WCONTINUED 0 2870# define WCONTINUED 0
937#endif 2871#endif
938 2872
2873/* called on sigchld etc., calls waitpid */
939static void 2874static void
940childcb (EV_P_ ev_signal *sw, int revents) 2875childcb (EV_P_ ev_signal *sw, int revents)
941{ 2876{
942 int pid, status; 2877 int pid, status;
943 2878
946 if (!WCONTINUED 2881 if (!WCONTINUED
947 || errno != EINVAL 2882 || errno != EINVAL
948 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 2883 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
949 return; 2884 return;
950 2885
951 /* make sure we are called again until all childs have been reaped */ 2886 /* make sure we are called again until all children have been reaped */
952 /* we need to do it this way so that the callback gets called before we continue */ 2887 /* we need to do it this way so that the callback gets called before we continue */
953 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2888 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
954 2889
955 child_reap (EV_A_ sw, pid, pid, status); 2890 child_reap (EV_A_ pid, pid, status);
956 if (EV_PID_HASHSIZE > 1) 2891 if ((EV_PID_HASHSIZE) > 1)
957 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2892 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
958} 2893}
959 2894
960#endif 2895#endif
961 2896
962/*****************************************************************************/ 2897/*****************************************************************************/
963 2898
2899#if EV_USE_TIMERFD
2900
2901static void periodics_reschedule (EV_P);
2902
2903static void
2904timerfdcb (EV_P_ ev_io *iow, int revents)
2905{
2906 struct itimerspec its = { 0 };
2907
2908 /* since we can't easily come zup with a (portable) maximum value of time_t,
2909 * we wake up once per month, which hopefully is rare enough to not
2910 * be a problem. */
2911 its.it_value.tv_sec = ev_rt_now + 86400 * 30;
2912 timerfd_settime (timerfd, TFD_TIMER_ABSTIME | TFD_TIMER_CANCEL_ON_SET, &its, 0);
2913
2914 ev_rt_now = ev_time ();
2915 /* periodics_reschedule only needs ev_rt_now */
2916 /* but maybe in the future we want the full treatment. */
2917 /*
2918 now_floor = EV_TS_CONST (0.);
2919 time_update (EV_A_ EV_TSTAMP_HUGE);
2920 */
2921 periodics_reschedule (EV_A);
2922}
2923
2924ecb_noinline ecb_cold
2925static void
2926evtimerfd_init (EV_P)
2927{
2928 if (!ev_is_active (&timerfd_w))
2929 {
2930 timerfd = timerfd_create (CLOCK_REALTIME, TFD_NONBLOCK | TFD_CLOEXEC);
2931
2932 if (timerfd >= 0)
2933 {
2934 fd_intern (timerfd); /* just to be sure */
2935
2936 ev_io_init (&timerfd_w, timerfdcb, timerfd, EV_READ);
2937 ev_set_priority (&timerfd_w, EV_MINPRI);
2938 ev_io_start (EV_A_ &timerfd_w);
2939 ev_unref (EV_A); /* watcher should not keep loop alive */
2940
2941 /* (re-) arm timer */
2942 timerfdcb (EV_A_ 0, 0);
2943 }
2944 }
2945}
2946
2947#endif
2948
2949/*****************************************************************************/
2950
2951#if EV_USE_IOCP
2952# include "ev_iocp.c"
2953#endif
964#if EV_USE_PORT 2954#if EV_USE_PORT
965# include "ev_port.c" 2955# include "ev_port.c"
966#endif 2956#endif
967#if EV_USE_KQUEUE 2957#if EV_USE_KQUEUE
968# include "ev_kqueue.c" 2958# include "ev_kqueue.c"
969#endif 2959#endif
970#if EV_USE_EPOLL 2960#if EV_USE_EPOLL
971# include "ev_epoll.c" 2961# include "ev_epoll.c"
972#endif 2962#endif
2963#if EV_USE_LINUXAIO
2964# include "ev_linuxaio.c"
2965#endif
2966#if EV_USE_IOURING
2967# include "ev_iouring.c"
2968#endif
973#if EV_USE_POLL 2969#if EV_USE_POLL
974# include "ev_poll.c" 2970# include "ev_poll.c"
975#endif 2971#endif
976#if EV_USE_SELECT 2972#if EV_USE_SELECT
977# include "ev_select.c" 2973# include "ev_select.c"
978#endif 2974#endif
979 2975
980int 2976ecb_cold int
981ev_version_major (void) 2977ev_version_major (void) EV_NOEXCEPT
982{ 2978{
983 return EV_VERSION_MAJOR; 2979 return EV_VERSION_MAJOR;
984} 2980}
985 2981
986int 2982ecb_cold int
987ev_version_minor (void) 2983ev_version_minor (void) EV_NOEXCEPT
988{ 2984{
989 return EV_VERSION_MINOR; 2985 return EV_VERSION_MINOR;
990} 2986}
991 2987
992/* return true if we are running with elevated privileges and should ignore env variables */ 2988/* return true if we are running with elevated privileges and should ignore env variables */
993int inline_size 2989inline_size ecb_cold int
994enable_secure (void) 2990enable_secure (void)
995{ 2991{
996#ifdef _WIN32 2992#ifdef _WIN32
997 return 0; 2993 return 0;
998#else 2994#else
999 return getuid () != geteuid () 2995 return getuid () != geteuid ()
1000 || getgid () != getegid (); 2996 || getgid () != getegid ();
1001#endif 2997#endif
1002} 2998}
1003 2999
3000ecb_cold
1004unsigned int 3001unsigned int
1005ev_supported_backends (void) 3002ev_supported_backends (void) EV_NOEXCEPT
1006{ 3003{
1007 unsigned int flags = 0; 3004 unsigned int flags = 0;
1008 3005
1009 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 3006 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1010 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 3007 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
1011 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL; 3008 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1012 if (EV_USE_POLL ) flags |= EVBACKEND_POLL; 3009 if (EV_USE_LINUXAIO ) flags |= EVBACKEND_LINUXAIO;
1013 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 3010 if (EV_USE_IOURING && ev_linux_version () >= 0x050601) flags |= EVBACKEND_IOURING; /* 5.6.1+ */
1014 3011 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
3012 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
3013
1015 return flags; 3014 return flags;
1016} 3015}
1017 3016
3017ecb_cold
1018unsigned int 3018unsigned int
1019ev_recommended_backends (void) 3019ev_recommended_backends (void) EV_NOEXCEPT
1020{ 3020{
1021 unsigned int flags = ev_supported_backends (); 3021 unsigned int flags = ev_supported_backends ();
1022 3022
1023#ifndef __NetBSD__ 3023#ifndef __NetBSD__
1024 /* kqueue is borked on everything but netbsd apparently */ 3024 /* kqueue is borked on everything but netbsd apparently */
1025 /* it usually doesn't work correctly on anything but sockets and pipes */ 3025 /* it usually doesn't work correctly on anything but sockets and pipes */
1026 flags &= ~EVBACKEND_KQUEUE; 3026 flags &= ~EVBACKEND_KQUEUE;
1027#endif 3027#endif
1028#ifdef __APPLE__ 3028#ifdef __APPLE__
1029 // flags &= ~EVBACKEND_KQUEUE; for documentation 3029 /* only select works correctly on that "unix-certified" platform */
3030 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
3031 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
3032#endif
3033#ifdef __FreeBSD__
3034 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
3035#endif
3036
3037 /* TODO: linuxaio is very experimental */
3038#if !EV_RECOMMEND_LINUXAIO
3039 flags &= ~EVBACKEND_LINUXAIO;
3040#endif
3041 /* TODO: linuxaio is super experimental */
3042#if !EV_RECOMMEND_IOURING
1030 flags &= ~EVBACKEND_POLL; 3043 flags &= ~EVBACKEND_IOURING;
1031#endif 3044#endif
1032 3045
1033 return flags; 3046 return flags;
1034} 3047}
1035 3048
3049ecb_cold
1036unsigned int 3050unsigned int
1037ev_embeddable_backends (void) 3051ev_embeddable_backends (void) EV_NOEXCEPT
1038{ 3052{
1039 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 3053 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT | EVBACKEND_IOURING;
1040 3054
1041 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 3055 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1042 /* please fix it and tell me how to detect the fix */ 3056 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1043 flags &= ~EVBACKEND_EPOLL; 3057 flags &= ~EVBACKEND_EPOLL;
3058
3059 /* EVBACKEND_LINUXAIO is theoretically embeddable, but suffers from a performance overhead */
1044 3060
1045 return flags; 3061 return flags;
1046} 3062}
1047 3063
1048unsigned int 3064unsigned int
1049ev_backend (EV_P) 3065ev_backend (EV_P) EV_NOEXCEPT
1050{ 3066{
1051 return backend; 3067 return backend;
1052} 3068}
1053 3069
3070#if EV_FEATURE_API
1054unsigned int 3071unsigned int
1055ev_loop_count (EV_P) 3072ev_iteration (EV_P) EV_NOEXCEPT
1056{ 3073{
1057 return loop_count; 3074 return loop_count;
1058} 3075}
1059 3076
3077unsigned int
3078ev_depth (EV_P) EV_NOEXCEPT
3079{
3080 return loop_depth;
3081}
3082
1060void 3083void
1061ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 3084ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
1062{ 3085{
1063 io_blocktime = interval; 3086 io_blocktime = interval;
1064} 3087}
1065 3088
1066void 3089void
1067ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 3090ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
1068{ 3091{
1069 timeout_blocktime = interval; 3092 timeout_blocktime = interval;
1070} 3093}
1071 3094
1072static void noinline 3095void
3096ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
3097{
3098 userdata = data;
3099}
3100
3101void *
3102ev_userdata (EV_P) EV_NOEXCEPT
3103{
3104 return userdata;
3105}
3106
3107void
3108ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
3109{
3110 invoke_cb = invoke_pending_cb;
3111}
3112
3113void
3114ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
3115{
3116 release_cb = release;
3117 acquire_cb = acquire;
3118}
3119#endif
3120
3121/* initialise a loop structure, must be zero-initialised */
3122ecb_noinline ecb_cold
3123static void
1073loop_init (EV_P_ unsigned int flags) 3124loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
1074{ 3125{
1075 if (!backend) 3126 if (!backend)
1076 { 3127 {
3128 origflags = flags;
3129
3130#if EV_USE_REALTIME
3131 if (!have_realtime)
3132 {
3133 struct timespec ts;
3134
3135 if (!clock_gettime (CLOCK_REALTIME, &ts))
3136 have_realtime = 1;
3137 }
3138#endif
3139
1077#if EV_USE_MONOTONIC 3140#if EV_USE_MONOTONIC
3141 if (!have_monotonic)
1078 { 3142 {
1079 struct timespec ts; 3143 struct timespec ts;
3144
1080 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 3145 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1081 have_monotonic = 1; 3146 have_monotonic = 1;
1082 } 3147 }
1083#endif
1084
1085 ev_rt_now = ev_time ();
1086 mn_now = get_clock ();
1087 now_floor = mn_now;
1088 rtmn_diff = ev_rt_now - mn_now;
1089
1090 io_blocktime = 0.;
1091 timeout_blocktime = 0.;
1092 backend = 0;
1093 backend_fd = -1;
1094 gotasync = 0;
1095#if EV_USE_INOTIFY
1096 fs_fd = -2;
1097#endif 3148#endif
1098 3149
1099 /* pid check not overridable via env */ 3150 /* pid check not overridable via env */
1100#ifndef _WIN32 3151#ifndef _WIN32
1101 if (flags & EVFLAG_FORKCHECK) 3152 if (flags & EVFLAG_FORKCHECK)
1105 if (!(flags & EVFLAG_NOENV) 3156 if (!(flags & EVFLAG_NOENV)
1106 && !enable_secure () 3157 && !enable_secure ()
1107 && getenv ("LIBEV_FLAGS")) 3158 && getenv ("LIBEV_FLAGS"))
1108 flags = atoi (getenv ("LIBEV_FLAGS")); 3159 flags = atoi (getenv ("LIBEV_FLAGS"));
1109 3160
1110 if (!(flags & 0x0000ffffUL)) 3161 ev_rt_now = ev_time ();
3162 mn_now = get_clock ();
3163 now_floor = mn_now;
3164 rtmn_diff = ev_rt_now - mn_now;
3165#if EV_FEATURE_API
3166 invoke_cb = ev_invoke_pending;
3167#endif
3168
3169 io_blocktime = 0.;
3170 timeout_blocktime = 0.;
3171 backend = 0;
3172 backend_fd = -1;
3173 sig_pending = 0;
3174#if EV_ASYNC_ENABLE
3175 async_pending = 0;
3176#endif
3177 pipe_write_skipped = 0;
3178 pipe_write_wanted = 0;
3179 evpipe [0] = -1;
3180 evpipe [1] = -1;
3181#if EV_USE_INOTIFY
3182 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
3183#endif
3184#if EV_USE_SIGNALFD
3185 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
3186#endif
3187#if EV_USE_TIMERFD
3188 timerfd = flags & EVFLAG_NOTIMERFD ? -1 : -2;
3189#endif
3190
3191 if (!(flags & EVBACKEND_MASK))
1111 flags |= ev_recommended_backends (); 3192 flags |= ev_recommended_backends ();
1112 3193
3194#if EV_USE_IOCP
3195 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
3196#endif
1113#if EV_USE_PORT 3197#if EV_USE_PORT
1114 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 3198 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1115#endif 3199#endif
1116#if EV_USE_KQUEUE 3200#if EV_USE_KQUEUE
1117 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 3201 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
3202#endif
3203#if EV_USE_IOURING
3204 if (!backend && (flags & EVBACKEND_IOURING )) backend = iouring_init (EV_A_ flags);
3205#endif
3206#if EV_USE_LINUXAIO
3207 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
1118#endif 3208#endif
1119#if EV_USE_EPOLL 3209#if EV_USE_EPOLL
1120 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags); 3210 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1121#endif 3211#endif
1122#if EV_USE_POLL 3212#if EV_USE_POLL
1123 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags); 3213 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1124#endif 3214#endif
1125#if EV_USE_SELECT 3215#if EV_USE_SELECT
1126 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 3216 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
1127#endif 3217#endif
1128 3218
3219 ev_prepare_init (&pending_w, pendingcb);
3220
3221#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1129 ev_init (&pipeev, pipecb); 3222 ev_init (&pipe_w, pipecb);
1130 ev_set_priority (&pipeev, EV_MAXPRI); 3223 ev_set_priority (&pipe_w, EV_MAXPRI);
3224#endif
1131 } 3225 }
1132} 3226}
1133 3227
1134static void noinline 3228/* free up a loop structure */
3229ecb_cold
3230void
1135loop_destroy (EV_P) 3231ev_loop_destroy (EV_P)
1136{ 3232{
1137 int i; 3233 int i;
1138 3234
3235#if EV_MULTIPLICITY
3236 /* mimic free (0) */
3237 if (!EV_A)
3238 return;
3239#endif
3240
3241#if EV_CLEANUP_ENABLE
3242 /* queue cleanup watchers (and execute them) */
3243 if (ecb_expect_false (cleanupcnt))
3244 {
3245 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3246 EV_INVOKE_PENDING;
3247 }
3248#endif
3249
3250#if EV_CHILD_ENABLE
3251 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3252 {
3253 ev_ref (EV_A); /* child watcher */
3254 ev_signal_stop (EV_A_ &childev);
3255 }
3256#endif
3257
1139 if (ev_is_active (&pipeev)) 3258 if (ev_is_active (&pipe_w))
1140 { 3259 {
1141 ev_ref (EV_A); /* signal watcher */ 3260 /*ev_ref (EV_A);*/
1142 ev_io_stop (EV_A_ &pipeev); 3261 /*ev_io_stop (EV_A_ &pipe_w);*/
1143 3262
1144 close (evpipe [0]); evpipe [0] = 0; 3263 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
1145 close (evpipe [1]); evpipe [1] = 0; 3264 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
1146 } 3265 }
3266
3267#if EV_USE_SIGNALFD
3268 if (ev_is_active (&sigfd_w))
3269 close (sigfd);
3270#endif
3271
3272#if EV_USE_TIMERFD
3273 if (ev_is_active (&timerfd_w))
3274 close (timerfd);
3275#endif
1147 3276
1148#if EV_USE_INOTIFY 3277#if EV_USE_INOTIFY
1149 if (fs_fd >= 0) 3278 if (fs_fd >= 0)
1150 close (fs_fd); 3279 close (fs_fd);
1151#endif 3280#endif
1152 3281
1153 if (backend_fd >= 0) 3282 if (backend_fd >= 0)
1154 close (backend_fd); 3283 close (backend_fd);
1155 3284
3285#if EV_USE_IOCP
3286 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3287#endif
1156#if EV_USE_PORT 3288#if EV_USE_PORT
1157 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 3289 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1158#endif 3290#endif
1159#if EV_USE_KQUEUE 3291#if EV_USE_KQUEUE
1160 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 3292 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3293#endif
3294#if EV_USE_IOURING
3295 if (backend == EVBACKEND_IOURING ) iouring_destroy (EV_A);
3296#endif
3297#if EV_USE_LINUXAIO
3298 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
1161#endif 3299#endif
1162#if EV_USE_EPOLL 3300#if EV_USE_EPOLL
1163 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A); 3301 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1164#endif 3302#endif
1165#if EV_USE_POLL 3303#if EV_USE_POLL
1166 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A); 3304 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1167#endif 3305#endif
1168#if EV_USE_SELECT 3306#if EV_USE_SELECT
1169 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 3307 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
1170#endif 3308#endif
1171 3309
1172 for (i = NUMPRI; i--; ) 3310 for (i = NUMPRI; i--; )
1173 { 3311 {
1174 array_free (pending, [i]); 3312 array_free (pending, [i]);
1175#if EV_IDLE_ENABLE 3313#if EV_IDLE_ENABLE
1176 array_free (idle, [i]); 3314 array_free (idle, [i]);
1177#endif 3315#endif
1178 } 3316 }
1179 3317
1180 ev_free (anfds); anfdmax = 0; 3318 ev_free (anfds); anfds = 0; anfdmax = 0;
1181 3319
1182 /* have to use the microsoft-never-gets-it-right macro */ 3320 /* have to use the microsoft-never-gets-it-right macro */
3321 array_free (rfeed, EMPTY);
1183 array_free (fdchange, EMPTY); 3322 array_free (fdchange, EMPTY);
1184 array_free (timer, EMPTY); 3323 array_free (timer, EMPTY);
1185#if EV_PERIODIC_ENABLE 3324#if EV_PERIODIC_ENABLE
1186 array_free (periodic, EMPTY); 3325 array_free (periodic, EMPTY);
1187#endif 3326#endif
1188#if EV_FORK_ENABLE 3327#if EV_FORK_ENABLE
1189 array_free (fork, EMPTY); 3328 array_free (fork, EMPTY);
1190#endif 3329#endif
3330#if EV_CLEANUP_ENABLE
3331 array_free (cleanup, EMPTY);
3332#endif
1191 array_free (prepare, EMPTY); 3333 array_free (prepare, EMPTY);
1192 array_free (check, EMPTY); 3334 array_free (check, EMPTY);
1193#if EV_ASYNC_ENABLE 3335#if EV_ASYNC_ENABLE
1194 array_free (async, EMPTY); 3336 array_free (async, EMPTY);
1195#endif 3337#endif
1196 3338
1197 backend = 0; 3339 backend = 0;
1198}
1199 3340
3341#if EV_MULTIPLICITY
3342 if (ev_is_default_loop (EV_A))
3343#endif
3344 ev_default_loop_ptr = 0;
3345#if EV_MULTIPLICITY
3346 else
3347 ev_free (EV_A);
3348#endif
3349}
3350
3351#if EV_USE_INOTIFY
1200void inline_size infy_fork (EV_P); 3352inline_size void infy_fork (EV_P);
3353#endif
1201 3354
1202void inline_size 3355inline_size void
1203loop_fork (EV_P) 3356loop_fork (EV_P)
1204{ 3357{
1205#if EV_USE_PORT 3358#if EV_USE_PORT
1206 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 3359 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1207#endif 3360#endif
1208#if EV_USE_KQUEUE 3361#if EV_USE_KQUEUE
1209 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 3362 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3363#endif
3364#if EV_USE_IOURING
3365 if (backend == EVBACKEND_IOURING ) iouring_fork (EV_A);
3366#endif
3367#if EV_USE_LINUXAIO
3368 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
1210#endif 3369#endif
1211#if EV_USE_EPOLL 3370#if EV_USE_EPOLL
1212 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 3371 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1213#endif 3372#endif
1214#if EV_USE_INOTIFY 3373#if EV_USE_INOTIFY
1215 infy_fork (EV_A); 3374 infy_fork (EV_A);
1216#endif 3375#endif
1217 3376
3377 if (postfork != 2)
3378 {
3379 #if EV_USE_SIGNALFD
3380 /* surprisingly, nothing needs to be done for signalfd, accoridng to docs, it does the right thing on fork */
3381 #endif
3382
3383 #if EV_USE_TIMERFD
3384 if (ev_is_active (&timerfd_w))
3385 {
3386 ev_ref (EV_A);
3387 ev_io_stop (EV_A_ &timerfd_w);
3388
3389 close (timerfd);
3390 timerfd = -2;
3391
3392 evtimerfd_init (EV_A);
3393 /* reschedule periodics, in case we missed something */
3394 ev_feed_event (EV_A_ &timerfd_w, EV_CUSTOM);
3395 }
3396 #endif
3397
3398 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1218 if (ev_is_active (&pipeev)) 3399 if (ev_is_active (&pipe_w))
3400 {
3401 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3402
3403 ev_ref (EV_A);
3404 ev_io_stop (EV_A_ &pipe_w);
3405
3406 if (evpipe [0] >= 0)
3407 EV_WIN32_CLOSE_FD (evpipe [0]);
3408
3409 evpipe_init (EV_A);
3410 /* iterate over everything, in case we missed something before */
3411 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3412 }
3413 #endif
1219 { 3414 }
1220 /* this "locks" the handlers against writing to the pipe */ 3415
1221 /* while we modify the fd vars */ 3416 postfork = 0;
1222 gotsig = 1; 3417}
3418
3419#if EV_MULTIPLICITY
3420
3421ecb_cold
3422struct ev_loop *
3423ev_loop_new (unsigned int flags) EV_NOEXCEPT
3424{
3425 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3426
3427 memset (EV_A, 0, sizeof (struct ev_loop));
3428 loop_init (EV_A_ flags);
3429
3430 if (ev_backend (EV_A))
3431 return EV_A;
3432
3433 ev_free (EV_A);
3434 return 0;
3435}
3436
3437#endif /* multiplicity */
3438
3439#if EV_VERIFY
3440ecb_noinline ecb_cold
3441static void
3442verify_watcher (EV_P_ W w)
3443{
3444 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
3445
3446 if (w->pending)
3447 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3448}
3449
3450ecb_noinline ecb_cold
3451static void
3452verify_heap (EV_P_ ANHE *heap, int N)
3453{
3454 int i;
3455
3456 for (i = HEAP0; i < N + HEAP0; ++i)
3457 {
3458 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3459 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3460 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3461
3462 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3463 }
3464}
3465
3466ecb_noinline ecb_cold
3467static void
3468array_verify (EV_P_ W *ws, int cnt)
3469{
3470 while (cnt--)
3471 {
3472 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3473 verify_watcher (EV_A_ ws [cnt]);
3474 }
3475}
3476#endif
3477
3478#if EV_FEATURE_API
3479void ecb_cold
3480ev_verify (EV_P) EV_NOEXCEPT
3481{
3482#if EV_VERIFY
3483 int i;
3484 WL w, w2;
3485
3486 assert (activecnt >= -1);
3487
3488 assert (fdchangemax >= fdchangecnt);
3489 for (i = 0; i < fdchangecnt; ++i)
3490 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3491
3492 assert (anfdmax >= 0);
3493 for (i = 0; i < anfdmax; ++i)
3494 {
3495 int j = 0;
3496
3497 for (w = w2 = anfds [i].head; w; w = w->next)
3498 {
3499 verify_watcher (EV_A_ (W)w);
3500
3501 if (j++ & 1)
3502 {
3503 assert (("libev: io watcher list contains a loop", w != w2));
3504 w2 = w2->next;
3505 }
3506
3507 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3508 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3509 }
3510 }
3511
3512 assert (timermax >= timercnt);
3513 verify_heap (EV_A_ timers, timercnt);
3514
3515#if EV_PERIODIC_ENABLE
3516 assert (periodicmax >= periodiccnt);
3517 verify_heap (EV_A_ periodics, periodiccnt);
3518#endif
3519
3520 for (i = NUMPRI; i--; )
3521 {
3522 assert (pendingmax [i] >= pendingcnt [i]);
3523#if EV_IDLE_ENABLE
3524 assert (idleall >= 0);
3525 assert (idlemax [i] >= idlecnt [i]);
3526 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3527#endif
3528 }
3529
3530#if EV_FORK_ENABLE
3531 assert (forkmax >= forkcnt);
3532 array_verify (EV_A_ (W *)forks, forkcnt);
3533#endif
3534
3535#if EV_CLEANUP_ENABLE
3536 assert (cleanupmax >= cleanupcnt);
3537 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3538#endif
3539
1223#if EV_ASYNC_ENABLE 3540#if EV_ASYNC_ENABLE
1224 gotasync = 1; 3541 assert (asyncmax >= asynccnt);
3542 array_verify (EV_A_ (W *)asyncs, asynccnt);
3543#endif
3544
3545#if EV_PREPARE_ENABLE
3546 assert (preparemax >= preparecnt);
3547 array_verify (EV_A_ (W *)prepares, preparecnt);
3548#endif
3549
3550#if EV_CHECK_ENABLE
3551 assert (checkmax >= checkcnt);
3552 array_verify (EV_A_ (W *)checks, checkcnt);
3553#endif
3554
3555# if 0
3556#if EV_CHILD_ENABLE
3557 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3558 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3559#endif
1225#endif 3560# endif
1226 3561#endif
1227 ev_ref (EV_A);
1228 ev_io_stop (EV_A_ &pipeev);
1229 close (evpipe [0]);
1230 close (evpipe [1]);
1231
1232 evpipe_init (EV_A);
1233 /* now iterate over everything, in case we missed something */
1234 pipecb (EV_A_ &pipeev, EV_READ);
1235 }
1236
1237 postfork = 0;
1238} 3562}
3563#endif
1239 3564
1240#if EV_MULTIPLICITY 3565#if EV_MULTIPLICITY
3566ecb_cold
1241struct ev_loop * 3567struct ev_loop *
1242ev_loop_new (unsigned int flags)
1243{
1244 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1245
1246 memset (loop, 0, sizeof (struct ev_loop));
1247
1248 loop_init (EV_A_ flags);
1249
1250 if (ev_backend (EV_A))
1251 return loop;
1252
1253 return 0;
1254}
1255
1256void
1257ev_loop_destroy (EV_P)
1258{
1259 loop_destroy (EV_A);
1260 ev_free (loop);
1261}
1262
1263void
1264ev_loop_fork (EV_P)
1265{
1266 postfork = 1; /* must be in line with ev_default_fork */
1267}
1268
1269#endif
1270
1271#if EV_MULTIPLICITY
1272struct ev_loop *
1273ev_default_loop_init (unsigned int flags)
1274#else 3568#else
1275int 3569int
3570#endif
1276ev_default_loop (unsigned int flags) 3571ev_default_loop (unsigned int flags) EV_NOEXCEPT
1277#endif
1278{ 3572{
1279 if (!ev_default_loop_ptr) 3573 if (!ev_default_loop_ptr)
1280 { 3574 {
1281#if EV_MULTIPLICITY 3575#if EV_MULTIPLICITY
1282 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3576 EV_P = ev_default_loop_ptr = &default_loop_struct;
1283#else 3577#else
1284 ev_default_loop_ptr = 1; 3578 ev_default_loop_ptr = 1;
1285#endif 3579#endif
1286 3580
1287 loop_init (EV_A_ flags); 3581 loop_init (EV_A_ flags);
1288 3582
1289 if (ev_backend (EV_A)) 3583 if (ev_backend (EV_A))
1290 { 3584 {
1291#ifndef _WIN32 3585#if EV_CHILD_ENABLE
1292 ev_signal_init (&childev, childcb, SIGCHLD); 3586 ev_signal_init (&childev, childcb, SIGCHLD);
1293 ev_set_priority (&childev, EV_MAXPRI); 3587 ev_set_priority (&childev, EV_MAXPRI);
1294 ev_signal_start (EV_A_ &childev); 3588 ev_signal_start (EV_A_ &childev);
1295 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3589 ev_unref (EV_A); /* child watcher should not keep loop alive */
1296#endif 3590#endif
1301 3595
1302 return ev_default_loop_ptr; 3596 return ev_default_loop_ptr;
1303} 3597}
1304 3598
1305void 3599void
1306ev_default_destroy (void) 3600ev_loop_fork (EV_P) EV_NOEXCEPT
1307{ 3601{
1308#if EV_MULTIPLICITY 3602 postfork = 1;
1309 struct ev_loop *loop = ev_default_loop_ptr;
1310#endif
1311
1312#ifndef _WIN32
1313 ev_ref (EV_A); /* child watcher */
1314 ev_signal_stop (EV_A_ &childev);
1315#endif
1316
1317 loop_destroy (EV_A);
1318}
1319
1320void
1321ev_default_fork (void)
1322{
1323#if EV_MULTIPLICITY
1324 struct ev_loop *loop = ev_default_loop_ptr;
1325#endif
1326
1327 if (backend)
1328 postfork = 1; /* must be in line with ev_loop_fork */
1329} 3603}
1330 3604
1331/*****************************************************************************/ 3605/*****************************************************************************/
1332 3606
1333void 3607void
1334ev_invoke (EV_P_ void *w, int revents) 3608ev_invoke (EV_P_ void *w, int revents)
1335{ 3609{
1336 EV_CB_INVOKE ((W)w, revents); 3610 EV_CB_INVOKE ((W)w, revents);
1337} 3611}
1338 3612
1339void inline_speed 3613unsigned int
1340call_pending (EV_P) 3614ev_pending_count (EV_P) EV_NOEXCEPT
1341{ 3615{
1342 int pri; 3616 int pri;
3617 unsigned int count = 0;
1343 3618
1344 for (pri = NUMPRI; pri--; ) 3619 for (pri = NUMPRI; pri--; )
3620 count += pendingcnt [pri];
3621
3622 return count;
3623}
3624
3625ecb_noinline
3626void
3627ev_invoke_pending (EV_P)
3628{
3629 pendingpri = NUMPRI;
3630
3631 do
3632 {
3633 --pendingpri;
3634
3635 /* pendingpri possibly gets modified in the inner loop */
1345 while (pendingcnt [pri]) 3636 while (pendingcnt [pendingpri])
1346 {
1347 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1348
1349 if (expect_true (p->w))
1350 {
1351 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1352
1353 p->w->pending = 0;
1354 EV_CB_INVOKE (p->w, p->events);
1355 }
1356 }
1357}
1358
1359void inline_size
1360timers_reify (EV_P)
1361{
1362 while (timercnt && ((WT)timers [0])->at <= mn_now)
1363 {
1364 ev_timer *w = (ev_timer *)timers [0];
1365
1366 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1367
1368 /* first reschedule or stop timer */
1369 if (w->repeat)
1370 { 3637 {
1371 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3638 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1372 3639
1373 ((WT)w)->at += w->repeat; 3640 p->w->pending = 0;
1374 if (((WT)w)->at < mn_now) 3641 EV_CB_INVOKE (p->w, p->events);
1375 ((WT)w)->at = mn_now; 3642 EV_FREQUENT_CHECK;
1376
1377 downheap (timers, timercnt, 0);
1378 } 3643 }
1379 else
1380 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1381
1382 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1383 }
1384}
1385
1386#if EV_PERIODIC_ENABLE
1387void inline_size
1388periodics_reify (EV_P)
1389{
1390 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1391 { 3644 }
1392 ev_periodic *w = (ev_periodic *)periodics [0]; 3645 while (pendingpri);
1393
1394 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1395
1396 /* first reschedule or stop timer */
1397 if (w->reschedule_cb)
1398 {
1399 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1400 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1401 downheap (periodics, periodiccnt, 0);
1402 }
1403 else if (w->interval)
1404 {
1405 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1406 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1407 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1408 downheap (periodics, periodiccnt, 0);
1409 }
1410 else
1411 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1412
1413 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1414 }
1415} 3646}
1416
1417static void noinline
1418periodics_reschedule (EV_P)
1419{
1420 int i;
1421
1422 /* adjust periodics after time jump */
1423 for (i = 0; i < periodiccnt; ++i)
1424 {
1425 ev_periodic *w = (ev_periodic *)periodics [i];
1426
1427 if (w->reschedule_cb)
1428 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1429 else if (w->interval)
1430 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1431 }
1432
1433 /* now rebuild the heap */
1434 for (i = periodiccnt >> 1; i--; )
1435 downheap (periodics, periodiccnt, i);
1436}
1437#endif
1438 3647
1439#if EV_IDLE_ENABLE 3648#if EV_IDLE_ENABLE
1440void inline_size 3649/* make idle watchers pending. this handles the "call-idle */
3650/* only when higher priorities are idle" logic */
3651inline_size void
1441idle_reify (EV_P) 3652idle_reify (EV_P)
1442{ 3653{
1443 if (expect_false (idleall)) 3654 if (ecb_expect_false (idleall))
1444 { 3655 {
1445 int pri; 3656 int pri;
1446 3657
1447 for (pri = NUMPRI; pri--; ) 3658 for (pri = NUMPRI; pri--; )
1448 { 3659 {
1457 } 3668 }
1458 } 3669 }
1459} 3670}
1460#endif 3671#endif
1461 3672
1462void inline_speed 3673/* make timers pending */
3674inline_size void
3675timers_reify (EV_P)
3676{
3677 EV_FREQUENT_CHECK;
3678
3679 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3680 {
3681 do
3682 {
3683 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3684
3685 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3686
3687 /* first reschedule or stop timer */
3688 if (w->repeat)
3689 {
3690 ev_at (w) += w->repeat;
3691 if (ev_at (w) < mn_now)
3692 ev_at (w) = mn_now;
3693
3694 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > EV_TS_CONST (0.)));
3695
3696 ANHE_at_cache (timers [HEAP0]);
3697 downheap (timers, timercnt, HEAP0);
3698 }
3699 else
3700 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3701
3702 EV_FREQUENT_CHECK;
3703 feed_reverse (EV_A_ (W)w);
3704 }
3705 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3706
3707 feed_reverse_done (EV_A_ EV_TIMER);
3708 }
3709}
3710
3711#if EV_PERIODIC_ENABLE
3712
3713ecb_noinline
3714static void
3715periodic_recalc (EV_P_ ev_periodic *w)
3716{
3717 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3718 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3719
3720 /* the above almost always errs on the low side */
3721 while (at <= ev_rt_now)
3722 {
3723 ev_tstamp nat = at + w->interval;
3724
3725 /* when resolution fails us, we use ev_rt_now */
3726 if (ecb_expect_false (nat == at))
3727 {
3728 at = ev_rt_now;
3729 break;
3730 }
3731
3732 at = nat;
3733 }
3734
3735 ev_at (w) = at;
3736}
3737
3738/* make periodics pending */
3739inline_size void
3740periodics_reify (EV_P)
3741{
3742 EV_FREQUENT_CHECK;
3743
3744 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3745 {
3746 do
3747 {
3748 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3749
3750 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3751
3752 /* first reschedule or stop timer */
3753 if (w->reschedule_cb)
3754 {
3755 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3756
3757 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3758
3759 ANHE_at_cache (periodics [HEAP0]);
3760 downheap (periodics, periodiccnt, HEAP0);
3761 }
3762 else if (w->interval)
3763 {
3764 periodic_recalc (EV_A_ w);
3765 ANHE_at_cache (periodics [HEAP0]);
3766 downheap (periodics, periodiccnt, HEAP0);
3767 }
3768 else
3769 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3770
3771 EV_FREQUENT_CHECK;
3772 feed_reverse (EV_A_ (W)w);
3773 }
3774 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3775
3776 feed_reverse_done (EV_A_ EV_PERIODIC);
3777 }
3778}
3779
3780/* simply recalculate all periodics */
3781/* TODO: maybe ensure that at least one event happens when jumping forward? */
3782ecb_noinline ecb_cold
3783static void
3784periodics_reschedule (EV_P)
3785{
3786 int i;
3787
3788 /* adjust periodics after time jump */
3789 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3790 {
3791 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3792
3793 if (w->reschedule_cb)
3794 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3795 else if (w->interval)
3796 periodic_recalc (EV_A_ w);
3797
3798 ANHE_at_cache (periodics [i]);
3799 }
3800
3801 reheap (periodics, periodiccnt);
3802}
3803#endif
3804
3805/* adjust all timers by a given offset */
3806ecb_noinline ecb_cold
3807static void
3808timers_reschedule (EV_P_ ev_tstamp adjust)
3809{
3810 int i;
3811
3812 for (i = 0; i < timercnt; ++i)
3813 {
3814 ANHE *he = timers + i + HEAP0;
3815 ANHE_w (*he)->at += adjust;
3816 ANHE_at_cache (*he);
3817 }
3818}
3819
3820/* fetch new monotonic and realtime times from the kernel */
3821/* also detect if there was a timejump, and act accordingly */
3822inline_speed void
1463time_update (EV_P_ ev_tstamp max_block) 3823time_update (EV_P_ ev_tstamp max_block)
1464{ 3824{
1465 int i;
1466
1467#if EV_USE_MONOTONIC 3825#if EV_USE_MONOTONIC
1468 if (expect_true (have_monotonic)) 3826 if (ecb_expect_true (have_monotonic))
1469 { 3827 {
3828 int i;
1470 ev_tstamp odiff = rtmn_diff; 3829 ev_tstamp odiff = rtmn_diff;
1471 3830
1472 mn_now = get_clock (); 3831 mn_now = get_clock ();
1473 3832
1474 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3833 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1475 /* interpolate in the meantime */ 3834 /* interpolate in the meantime */
1476 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 3835 if (ecb_expect_true (mn_now - now_floor < EV_TS_CONST (MIN_TIMEJUMP * .5)))
1477 { 3836 {
1478 ev_rt_now = rtmn_diff + mn_now; 3837 ev_rt_now = rtmn_diff + mn_now;
1479 return; 3838 return;
1480 } 3839 }
1481 3840
1490 * doesn't hurt either as we only do this on time-jumps or 3849 * doesn't hurt either as we only do this on time-jumps or
1491 * in the unlikely event of having been preempted here. 3850 * in the unlikely event of having been preempted here.
1492 */ 3851 */
1493 for (i = 4; --i; ) 3852 for (i = 4; --i; )
1494 { 3853 {
3854 ev_tstamp diff;
1495 rtmn_diff = ev_rt_now - mn_now; 3855 rtmn_diff = ev_rt_now - mn_now;
1496 3856
1497 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 3857 diff = odiff - rtmn_diff;
3858
3859 if (ecb_expect_true ((diff < EV_TS_CONST (0.) ? -diff : diff) < EV_TS_CONST (MIN_TIMEJUMP)))
1498 return; /* all is well */ 3860 return; /* all is well */
1499 3861
1500 ev_rt_now = ev_time (); 3862 ev_rt_now = ev_time ();
1501 mn_now = get_clock (); 3863 mn_now = get_clock ();
1502 now_floor = mn_now; 3864 now_floor = mn_now;
1503 } 3865 }
1504 3866
3867 /* no timer adjustment, as the monotonic clock doesn't jump */
3868 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1505# if EV_PERIODIC_ENABLE 3869# if EV_PERIODIC_ENABLE
1506 periodics_reschedule (EV_A); 3870 periodics_reschedule (EV_A);
1507# endif 3871# endif
1508 /* no timer adjustment, as the monotonic clock doesn't jump */
1509 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1510 } 3872 }
1511 else 3873 else
1512#endif 3874#endif
1513 { 3875 {
1514 ev_rt_now = ev_time (); 3876 ev_rt_now = ev_time ();
1515 3877
1516 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3878 if (ecb_expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + EV_TS_CONST (MIN_TIMEJUMP)))
1517 { 3879 {
3880 /* adjust timers. this is easy, as the offset is the same for all of them */
3881 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1518#if EV_PERIODIC_ENABLE 3882#if EV_PERIODIC_ENABLE
1519 periodics_reschedule (EV_A); 3883 periodics_reschedule (EV_A);
1520#endif 3884#endif
1521 /* adjust timers. this is easy, as the offset is the same for all of them */
1522 for (i = 0; i < timercnt; ++i)
1523 ((WT)timers [i])->at += ev_rt_now - mn_now;
1524 } 3885 }
1525 3886
1526 mn_now = ev_rt_now; 3887 mn_now = ev_rt_now;
1527 } 3888 }
1528} 3889}
1529 3890
1530void 3891int
1531ev_ref (EV_P)
1532{
1533 ++activecnt;
1534}
1535
1536void
1537ev_unref (EV_P)
1538{
1539 --activecnt;
1540}
1541
1542static int loop_done;
1543
1544void
1545ev_loop (EV_P_ int flags) 3892ev_run (EV_P_ int flags)
1546{ 3893{
1547 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 3894#if EV_FEATURE_API
1548 ? EVUNLOOP_ONE 3895 ++loop_depth;
1549 : EVUNLOOP_CANCEL; 3896#endif
1550 3897
3898 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3899
3900 loop_done = EVBREAK_CANCEL;
3901
1551 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3902 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1552 3903
1553 do 3904 do
1554 { 3905 {
3906#if EV_VERIFY >= 2
3907 ev_verify (EV_A);
3908#endif
3909
1555#ifndef _WIN32 3910#ifndef _WIN32
1556 if (expect_false (curpid)) /* penalise the forking check even more */ 3911 if (ecb_expect_false (curpid)) /* penalise the forking check even more */
1557 if (expect_false (getpid () != curpid)) 3912 if (ecb_expect_false (getpid () != curpid))
1558 { 3913 {
1559 curpid = getpid (); 3914 curpid = getpid ();
1560 postfork = 1; 3915 postfork = 1;
1561 } 3916 }
1562#endif 3917#endif
1563 3918
1564#if EV_FORK_ENABLE 3919#if EV_FORK_ENABLE
1565 /* we might have forked, so queue fork handlers */ 3920 /* we might have forked, so queue fork handlers */
1566 if (expect_false (postfork)) 3921 if (ecb_expect_false (postfork))
1567 if (forkcnt) 3922 if (forkcnt)
1568 { 3923 {
1569 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3924 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1570 call_pending (EV_A); 3925 EV_INVOKE_PENDING;
1571 } 3926 }
1572#endif 3927#endif
1573 3928
3929#if EV_PREPARE_ENABLE
1574 /* queue prepare watchers (and execute them) */ 3930 /* queue prepare watchers (and execute them) */
1575 if (expect_false (preparecnt)) 3931 if (ecb_expect_false (preparecnt))
1576 { 3932 {
1577 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3933 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1578 call_pending (EV_A); 3934 EV_INVOKE_PENDING;
1579 } 3935 }
3936#endif
1580 3937
1581 if (expect_false (!activecnt)) 3938 if (ecb_expect_false (loop_done))
1582 break; 3939 break;
1583 3940
1584 /* we might have forked, so reify kernel state if necessary */ 3941 /* we might have forked, so reify kernel state if necessary */
1585 if (expect_false (postfork)) 3942 if (ecb_expect_false (postfork))
1586 loop_fork (EV_A); 3943 loop_fork (EV_A);
1587 3944
1588 /* update fd-related kernel structures */ 3945 /* update fd-related kernel structures */
1589 fd_reify (EV_A); 3946 fd_reify (EV_A);
1590 3947
1591 /* calculate blocking time */ 3948 /* calculate blocking time */
1592 { 3949 {
1593 ev_tstamp waittime = 0.; 3950 ev_tstamp waittime = 0.;
1594 ev_tstamp sleeptime = 0.; 3951 ev_tstamp sleeptime = 0.;
1595 3952
3953 /* remember old timestamp for io_blocktime calculation */
3954 ev_tstamp prev_mn_now = mn_now;
3955
3956 /* update time to cancel out callback processing overhead */
3957 time_update (EV_A_ EV_TS_CONST (EV_TSTAMP_HUGE));
3958
3959 /* from now on, we want a pipe-wake-up */
3960 pipe_write_wanted = 1;
3961
3962 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3963
1596 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3964 if (ecb_expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1597 { 3965 {
1598 /* update time to cancel out callback processing overhead */
1599 time_update (EV_A_ 1e100);
1600
1601 waittime = MAX_BLOCKTIME; 3966 waittime = EV_TS_CONST (MAX_BLOCKTIME);
1602 3967
1603 if (timercnt) 3968 if (timercnt)
1604 { 3969 {
1605 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 3970 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1606 if (waittime > to) waittime = to; 3971 if (waittime > to) waittime = to;
1607 } 3972 }
1608 3973
1609#if EV_PERIODIC_ENABLE 3974#if EV_PERIODIC_ENABLE
1610 if (periodiccnt) 3975 if (periodiccnt)
1611 { 3976 {
1612 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 3977 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1613 if (waittime > to) waittime = to; 3978 if (waittime > to) waittime = to;
1614 } 3979 }
1615#endif 3980#endif
1616 3981
3982 /* don't let timeouts decrease the waittime below timeout_blocktime */
1617 if (expect_false (waittime < timeout_blocktime)) 3983 if (ecb_expect_false (waittime < timeout_blocktime))
1618 waittime = timeout_blocktime; 3984 waittime = timeout_blocktime;
1619 3985
1620 sleeptime = waittime - backend_fudge; 3986 /* now there are two more special cases left, either we have
3987 * already-expired timers, so we should not sleep, or we have timers
3988 * that expire very soon, in which case we need to wait for a minimum
3989 * amount of time for some event loop backends.
3990 */
3991 if (ecb_expect_false (waittime < backend_mintime))
3992 waittime = waittime <= EV_TS_CONST (0.)
3993 ? EV_TS_CONST (0.)
3994 : backend_mintime;
1621 3995
3996 /* extra check because io_blocktime is commonly 0 */
1622 if (expect_true (sleeptime > io_blocktime)) 3997 if (ecb_expect_false (io_blocktime))
1623 sleeptime = io_blocktime;
1624
1625 if (sleeptime)
1626 { 3998 {
3999 sleeptime = io_blocktime - (mn_now - prev_mn_now);
4000
4001 if (sleeptime > waittime - backend_mintime)
4002 sleeptime = waittime - backend_mintime;
4003
4004 if (ecb_expect_true (sleeptime > EV_TS_CONST (0.)))
4005 {
1627 ev_sleep (sleeptime); 4006 ev_sleep (sleeptime);
1628 waittime -= sleeptime; 4007 waittime -= sleeptime;
4008 }
1629 } 4009 }
1630 } 4010 }
1631 4011
4012#if EV_FEATURE_API
1632 ++loop_count; 4013 ++loop_count;
4014#endif
4015 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1633 backend_poll (EV_A_ waittime); 4016 backend_poll (EV_A_ waittime);
4017 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
4018
4019 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
4020
4021 ECB_MEMORY_FENCE_ACQUIRE;
4022 if (pipe_write_skipped)
4023 {
4024 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
4025 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
4026 }
1634 4027
1635 /* update ev_rt_now, do magic */ 4028 /* update ev_rt_now, do magic */
1636 time_update (EV_A_ waittime + sleeptime); 4029 time_update (EV_A_ waittime + sleeptime);
1637 } 4030 }
1638 4031
1645#if EV_IDLE_ENABLE 4038#if EV_IDLE_ENABLE
1646 /* queue idle watchers unless other events are pending */ 4039 /* queue idle watchers unless other events are pending */
1647 idle_reify (EV_A); 4040 idle_reify (EV_A);
1648#endif 4041#endif
1649 4042
4043#if EV_CHECK_ENABLE
1650 /* queue check watchers, to be executed first */ 4044 /* queue check watchers, to be executed first */
1651 if (expect_false (checkcnt)) 4045 if (ecb_expect_false (checkcnt))
1652 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 4046 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
4047#endif
1653 4048
1654 call_pending (EV_A); 4049 EV_INVOKE_PENDING;
1655
1656 } 4050 }
1657 while (expect_true (activecnt && !loop_done)); 4051 while (ecb_expect_true (
4052 activecnt
4053 && !loop_done
4054 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
4055 ));
1658 4056
1659 if (loop_done == EVUNLOOP_ONE) 4057 if (loop_done == EVBREAK_ONE)
1660 loop_done = EVUNLOOP_CANCEL; 4058 loop_done = EVBREAK_CANCEL;
1661}
1662 4059
4060#if EV_FEATURE_API
4061 --loop_depth;
4062#endif
4063
4064 return activecnt;
4065}
4066
1663void 4067void
1664ev_unloop (EV_P_ int how) 4068ev_break (EV_P_ int how) EV_NOEXCEPT
1665{ 4069{
1666 loop_done = how; 4070 loop_done = how;
1667} 4071}
1668 4072
4073void
4074ev_ref (EV_P) EV_NOEXCEPT
4075{
4076 ++activecnt;
4077}
4078
4079void
4080ev_unref (EV_P) EV_NOEXCEPT
4081{
4082 --activecnt;
4083}
4084
4085void
4086ev_now_update (EV_P) EV_NOEXCEPT
4087{
4088 time_update (EV_A_ EV_TSTAMP_HUGE);
4089}
4090
4091void
4092ev_suspend (EV_P) EV_NOEXCEPT
4093{
4094 ev_now_update (EV_A);
4095}
4096
4097void
4098ev_resume (EV_P) EV_NOEXCEPT
4099{
4100 ev_tstamp mn_prev = mn_now;
4101
4102 ev_now_update (EV_A);
4103 timers_reschedule (EV_A_ mn_now - mn_prev);
4104#if EV_PERIODIC_ENABLE
4105 /* TODO: really do this? */
4106 periodics_reschedule (EV_A);
4107#endif
4108}
4109
1669/*****************************************************************************/ 4110/*****************************************************************************/
4111/* singly-linked list management, used when the expected list length is short */
1670 4112
1671void inline_size 4113inline_size void
1672wlist_add (WL *head, WL elem) 4114wlist_add (WL *head, WL elem)
1673{ 4115{
1674 elem->next = *head; 4116 elem->next = *head;
1675 *head = elem; 4117 *head = elem;
1676} 4118}
1677 4119
1678void inline_size 4120inline_size void
1679wlist_del (WL *head, WL elem) 4121wlist_del (WL *head, WL elem)
1680{ 4122{
1681 while (*head) 4123 while (*head)
1682 { 4124 {
1683 if (*head == elem) 4125 if (ecb_expect_true (*head == elem))
1684 { 4126 {
1685 *head = elem->next; 4127 *head = elem->next;
1686 return; 4128 break;
1687 } 4129 }
1688 4130
1689 head = &(*head)->next; 4131 head = &(*head)->next;
1690 } 4132 }
1691} 4133}
1692 4134
1693void inline_speed 4135/* internal, faster, version of ev_clear_pending */
4136inline_speed void
1694clear_pending (EV_P_ W w) 4137clear_pending (EV_P_ W w)
1695{ 4138{
1696 if (w->pending) 4139 if (w->pending)
1697 { 4140 {
1698 pendings [ABSPRI (w)][w->pending - 1].w = 0; 4141 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1699 w->pending = 0; 4142 w->pending = 0;
1700 } 4143 }
1701} 4144}
1702 4145
1703int 4146int
1704ev_clear_pending (EV_P_ void *w) 4147ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
1705{ 4148{
1706 W w_ = (W)w; 4149 W w_ = (W)w;
1707 int pending = w_->pending; 4150 int pending = w_->pending;
1708 4151
1709 if (expect_true (pending)) 4152 if (ecb_expect_true (pending))
1710 { 4153 {
1711 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 4154 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
4155 p->w = (W)&pending_w;
1712 w_->pending = 0; 4156 w_->pending = 0;
1713 p->w = 0;
1714 return p->events; 4157 return p->events;
1715 } 4158 }
1716 else 4159 else
1717 return 0; 4160 return 0;
1718} 4161}
1719 4162
1720void inline_size 4163inline_size void
1721pri_adjust (EV_P_ W w) 4164pri_adjust (EV_P_ W w)
1722{ 4165{
1723 int pri = w->priority; 4166 int pri = ev_priority (w);
1724 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 4167 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1725 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 4168 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1726 w->priority = pri; 4169 ev_set_priority (w, pri);
1727} 4170}
1728 4171
1729void inline_speed 4172inline_speed void
1730ev_start (EV_P_ W w, int active) 4173ev_start (EV_P_ W w, int active)
1731{ 4174{
1732 pri_adjust (EV_A_ w); 4175 pri_adjust (EV_A_ w);
1733 w->active = active; 4176 w->active = active;
1734 ev_ref (EV_A); 4177 ev_ref (EV_A);
1735} 4178}
1736 4179
1737void inline_size 4180inline_size void
1738ev_stop (EV_P_ W w) 4181ev_stop (EV_P_ W w)
1739{ 4182{
1740 ev_unref (EV_A); 4183 ev_unref (EV_A);
1741 w->active = 0; 4184 w->active = 0;
1742} 4185}
1743 4186
1744/*****************************************************************************/ 4187/*****************************************************************************/
1745 4188
1746void noinline 4189ecb_noinline
4190void
1747ev_io_start (EV_P_ ev_io *w) 4191ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
1748{ 4192{
1749 int fd = w->fd; 4193 int fd = w->fd;
1750 4194
1751 if (expect_false (ev_is_active (w))) 4195 if (ecb_expect_false (ev_is_active (w)))
1752 return; 4196 return;
1753 4197
1754 assert (("ev_io_start called with negative fd", fd >= 0)); 4198 assert (("libev: ev_io_start called with negative fd", fd >= 0));
4199 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
4200
4201#if EV_VERIFY >= 2
4202 assert (("libev: ev_io_start called on watcher with invalid fd", fd_valid (fd)));
4203#endif
4204 EV_FREQUENT_CHECK;
1755 4205
1756 ev_start (EV_A_ (W)w, 1); 4206 ev_start (EV_A_ (W)w, 1);
1757 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 4207 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
1758 wlist_add (&anfds[fd].head, (WL)w); 4208 wlist_add (&anfds[fd].head, (WL)w);
1759 4209
4210 /* common bug, apparently */
4211 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
4212
1760 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 4213 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1761 w->events &= ~EV_IOFDSET; 4214 w->events &= ~EV__IOFDSET;
1762}
1763 4215
1764void noinline 4216 EV_FREQUENT_CHECK;
4217}
4218
4219ecb_noinline
4220void
1765ev_io_stop (EV_P_ ev_io *w) 4221ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
1766{ 4222{
1767 clear_pending (EV_A_ (W)w); 4223 clear_pending (EV_A_ (W)w);
1768 if (expect_false (!ev_is_active (w))) 4224 if (ecb_expect_false (!ev_is_active (w)))
1769 return; 4225 return;
1770 4226
1771 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 4227 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
4228
4229#if EV_VERIFY >= 2
4230 assert (("libev: ev_io_stop called on watcher with invalid fd", fd_valid (w->fd)));
4231#endif
4232 EV_FREQUENT_CHECK;
1772 4233
1773 wlist_del (&anfds[w->fd].head, (WL)w); 4234 wlist_del (&anfds[w->fd].head, (WL)w);
1774 ev_stop (EV_A_ (W)w); 4235 ev_stop (EV_A_ (W)w);
1775 4236
1776 fd_change (EV_A_ w->fd, 1); 4237 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1777}
1778 4238
1779void noinline 4239 EV_FREQUENT_CHECK;
4240}
4241
4242ecb_noinline
4243void
1780ev_timer_start (EV_P_ ev_timer *w) 4244ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
1781{ 4245{
1782 if (expect_false (ev_is_active (w))) 4246 if (ecb_expect_false (ev_is_active (w)))
1783 return; 4247 return;
1784 4248
1785 ((WT)w)->at += mn_now; 4249 ev_at (w) += mn_now;
1786 4250
1787 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 4251 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1788 4252
4253 EV_FREQUENT_CHECK;
4254
4255 ++timercnt;
1789 ev_start (EV_A_ (W)w, ++timercnt); 4256 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1790 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 4257 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
1791 timers [timercnt - 1] = (WT)w; 4258 ANHE_w (timers [ev_active (w)]) = (WT)w;
1792 upheap (timers, timercnt - 1); 4259 ANHE_at_cache (timers [ev_active (w)]);
4260 upheap (timers, ev_active (w));
1793 4261
4262 EV_FREQUENT_CHECK;
4263
1794 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 4264 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1795} 4265}
1796 4266
1797void noinline 4267ecb_noinline
4268void
1798ev_timer_stop (EV_P_ ev_timer *w) 4269ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
1799{ 4270{
1800 clear_pending (EV_A_ (W)w); 4271 clear_pending (EV_A_ (W)w);
1801 if (expect_false (!ev_is_active (w))) 4272 if (ecb_expect_false (!ev_is_active (w)))
1802 return; 4273 return;
1803 4274
1804 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 4275 EV_FREQUENT_CHECK;
1805 4276
1806 { 4277 {
1807 int active = ((W)w)->active; 4278 int active = ev_active (w);
1808 4279
4280 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
4281
4282 --timercnt;
4283
1809 if (expect_true (--active < --timercnt)) 4284 if (ecb_expect_true (active < timercnt + HEAP0))
1810 { 4285 {
1811 timers [active] = timers [timercnt]; 4286 timers [active] = timers [timercnt + HEAP0];
1812 adjustheap (timers, timercnt, active); 4287 adjustheap (timers, timercnt, active);
1813 } 4288 }
1814 } 4289 }
1815 4290
1816 ((WT)w)->at -= mn_now; 4291 ev_at (w) -= mn_now;
1817 4292
1818 ev_stop (EV_A_ (W)w); 4293 ev_stop (EV_A_ (W)w);
1819}
1820 4294
1821void noinline 4295 EV_FREQUENT_CHECK;
4296}
4297
4298ecb_noinline
4299void
1822ev_timer_again (EV_P_ ev_timer *w) 4300ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
1823{ 4301{
4302 EV_FREQUENT_CHECK;
4303
4304 clear_pending (EV_A_ (W)w);
4305
1824 if (ev_is_active (w)) 4306 if (ev_is_active (w))
1825 { 4307 {
1826 if (w->repeat) 4308 if (w->repeat)
1827 { 4309 {
1828 ((WT)w)->at = mn_now + w->repeat; 4310 ev_at (w) = mn_now + w->repeat;
4311 ANHE_at_cache (timers [ev_active (w)]);
1829 adjustheap (timers, timercnt, ((W)w)->active - 1); 4312 adjustheap (timers, timercnt, ev_active (w));
1830 } 4313 }
1831 else 4314 else
1832 ev_timer_stop (EV_A_ w); 4315 ev_timer_stop (EV_A_ w);
1833 } 4316 }
1834 else if (w->repeat) 4317 else if (w->repeat)
1835 { 4318 {
1836 w->at = w->repeat; 4319 ev_at (w) = w->repeat;
1837 ev_timer_start (EV_A_ w); 4320 ev_timer_start (EV_A_ w);
1838 } 4321 }
4322
4323 EV_FREQUENT_CHECK;
4324}
4325
4326ev_tstamp
4327ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4328{
4329 return ev_at (w) - (ev_is_active (w) ? mn_now : EV_TS_CONST (0.));
1839} 4330}
1840 4331
1841#if EV_PERIODIC_ENABLE 4332#if EV_PERIODIC_ENABLE
1842void noinline 4333ecb_noinline
4334void
1843ev_periodic_start (EV_P_ ev_periodic *w) 4335ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
1844{ 4336{
1845 if (expect_false (ev_is_active (w))) 4337 if (ecb_expect_false (ev_is_active (w)))
1846 return; 4338 return;
1847 4339
4340#if EV_USE_TIMERFD
4341 if (timerfd == -2)
4342 evtimerfd_init (EV_A);
4343#endif
4344
1848 if (w->reschedule_cb) 4345 if (w->reschedule_cb)
1849 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 4346 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1850 else if (w->interval) 4347 else if (w->interval)
1851 { 4348 {
1852 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 4349 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1853 /* this formula differs from the one in periodic_reify because we do not always round up */ 4350 periodic_recalc (EV_A_ w);
1854 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1855 } 4351 }
1856 else 4352 else
1857 ((WT)w)->at = w->offset; 4353 ev_at (w) = w->offset;
1858 4354
4355 EV_FREQUENT_CHECK;
4356
4357 ++periodiccnt;
1859 ev_start (EV_A_ (W)w, ++periodiccnt); 4358 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1860 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 4359 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
1861 periodics [periodiccnt - 1] = (WT)w; 4360 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1862 upheap (periodics, periodiccnt - 1); 4361 ANHE_at_cache (periodics [ev_active (w)]);
4362 upheap (periodics, ev_active (w));
1863 4363
4364 EV_FREQUENT_CHECK;
4365
1864 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 4366 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1865} 4367}
1866 4368
1867void noinline 4369ecb_noinline
4370void
1868ev_periodic_stop (EV_P_ ev_periodic *w) 4371ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
1869{ 4372{
1870 clear_pending (EV_A_ (W)w); 4373 clear_pending (EV_A_ (W)w);
1871 if (expect_false (!ev_is_active (w))) 4374 if (ecb_expect_false (!ev_is_active (w)))
1872 return; 4375 return;
1873 4376
1874 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 4377 EV_FREQUENT_CHECK;
1875 4378
1876 { 4379 {
1877 int active = ((W)w)->active; 4380 int active = ev_active (w);
1878 4381
4382 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
4383
4384 --periodiccnt;
4385
1879 if (expect_true (--active < --periodiccnt)) 4386 if (ecb_expect_true (active < periodiccnt + HEAP0))
1880 { 4387 {
1881 periodics [active] = periodics [periodiccnt]; 4388 periodics [active] = periodics [periodiccnt + HEAP0];
1882 adjustheap (periodics, periodiccnt, active); 4389 adjustheap (periodics, periodiccnt, active);
1883 } 4390 }
1884 } 4391 }
1885 4392
1886 ev_stop (EV_A_ (W)w); 4393 ev_stop (EV_A_ (W)w);
1887}
1888 4394
1889void noinline 4395 EV_FREQUENT_CHECK;
4396}
4397
4398ecb_noinline
4399void
1890ev_periodic_again (EV_P_ ev_periodic *w) 4400ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
1891{ 4401{
1892 /* TODO: use adjustheap and recalculation */ 4402 /* TODO: use adjustheap and recalculation */
1893 ev_periodic_stop (EV_A_ w); 4403 ev_periodic_stop (EV_A_ w);
1894 ev_periodic_start (EV_A_ w); 4404 ev_periodic_start (EV_A_ w);
1895} 4405}
1897 4407
1898#ifndef SA_RESTART 4408#ifndef SA_RESTART
1899# define SA_RESTART 0 4409# define SA_RESTART 0
1900#endif 4410#endif
1901 4411
1902void noinline 4412#if EV_SIGNAL_ENABLE
4413
4414ecb_noinline
4415void
1903ev_signal_start (EV_P_ ev_signal *w) 4416ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
1904{ 4417{
4418 if (ecb_expect_false (ev_is_active (w)))
4419 return;
4420
4421 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4422
1905#if EV_MULTIPLICITY 4423#if EV_MULTIPLICITY
1906 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4424 assert (("libev: a signal must not be attached to two different loops",
1907#endif 4425 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
1908 if (expect_false (ev_is_active (w)))
1909 return;
1910 4426
1911 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 4427 signals [w->signum - 1].loop = EV_A;
4428 ECB_MEMORY_FENCE_RELEASE;
4429#endif
1912 4430
1913 evpipe_init (EV_A); 4431 EV_FREQUENT_CHECK;
1914 4432
4433#if EV_USE_SIGNALFD
4434 if (sigfd == -2)
1915 { 4435 {
1916#ifndef _WIN32 4436 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1917 sigset_t full, prev; 4437 if (sigfd < 0 && errno == EINVAL)
1918 sigfillset (&full); 4438 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1919 sigprocmask (SIG_SETMASK, &full, &prev);
1920#endif
1921 4439
1922 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 4440 if (sigfd >= 0)
4441 {
4442 fd_intern (sigfd); /* doing it twice will not hurt */
1923 4443
1924#ifndef _WIN32 4444 sigemptyset (&sigfd_set);
1925 sigprocmask (SIG_SETMASK, &prev, 0); 4445
1926#endif 4446 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4447 ev_set_priority (&sigfd_w, EV_MAXPRI);
4448 ev_io_start (EV_A_ &sigfd_w);
4449 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4450 }
1927 } 4451 }
4452
4453 if (sigfd >= 0)
4454 {
4455 /* TODO: check .head */
4456 sigaddset (&sigfd_set, w->signum);
4457 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4458
4459 signalfd (sigfd, &sigfd_set, 0);
4460 }
4461#endif
1928 4462
1929 ev_start (EV_A_ (W)w, 1); 4463 ev_start (EV_A_ (W)w, 1);
1930 wlist_add (&signals [w->signum - 1].head, (WL)w); 4464 wlist_add (&signals [w->signum - 1].head, (WL)w);
1931 4465
1932 if (!((WL)w)->next) 4466 if (!((WL)w)->next)
4467# if EV_USE_SIGNALFD
4468 if (sigfd < 0) /*TODO*/
4469# endif
1933 { 4470 {
1934#if _WIN32 4471# ifdef _WIN32
4472 evpipe_init (EV_A);
4473
1935 signal (w->signum, sighandler); 4474 signal (w->signum, ev_sighandler);
1936#else 4475# else
1937 struct sigaction sa; 4476 struct sigaction sa;
4477
4478 evpipe_init (EV_A);
4479
1938 sa.sa_handler = sighandler; 4480 sa.sa_handler = ev_sighandler;
1939 sigfillset (&sa.sa_mask); 4481 sigfillset (&sa.sa_mask);
1940 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 4482 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1941 sigaction (w->signum, &sa, 0); 4483 sigaction (w->signum, &sa, 0);
4484
4485 if (origflags & EVFLAG_NOSIGMASK)
4486 {
4487 sigemptyset (&sa.sa_mask);
4488 sigaddset (&sa.sa_mask, w->signum);
4489 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4490 }
1942#endif 4491#endif
1943 } 4492 }
1944}
1945 4493
1946void noinline 4494 EV_FREQUENT_CHECK;
4495}
4496
4497ecb_noinline
4498void
1947ev_signal_stop (EV_P_ ev_signal *w) 4499ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
1948{ 4500{
1949 clear_pending (EV_A_ (W)w); 4501 clear_pending (EV_A_ (W)w);
1950 if (expect_false (!ev_is_active (w))) 4502 if (ecb_expect_false (!ev_is_active (w)))
1951 return; 4503 return;
4504
4505 EV_FREQUENT_CHECK;
1952 4506
1953 wlist_del (&signals [w->signum - 1].head, (WL)w); 4507 wlist_del (&signals [w->signum - 1].head, (WL)w);
1954 ev_stop (EV_A_ (W)w); 4508 ev_stop (EV_A_ (W)w);
1955 4509
1956 if (!signals [w->signum - 1].head) 4510 if (!signals [w->signum - 1].head)
1957 signal (w->signum, SIG_DFL); 4511 {
1958}
1959
1960void
1961ev_child_start (EV_P_ ev_child *w)
1962{
1963#if EV_MULTIPLICITY 4512#if EV_MULTIPLICITY
4513 signals [w->signum - 1].loop = 0; /* unattach from signal */
4514#endif
4515#if EV_USE_SIGNALFD
4516 if (sigfd >= 0)
4517 {
4518 sigset_t ss;
4519
4520 sigemptyset (&ss);
4521 sigaddset (&ss, w->signum);
4522 sigdelset (&sigfd_set, w->signum);
4523
4524 signalfd (sigfd, &sigfd_set, 0);
4525 sigprocmask (SIG_UNBLOCK, &ss, 0);
4526 }
4527 else
4528#endif
4529 signal (w->signum, SIG_DFL);
4530 }
4531
4532 EV_FREQUENT_CHECK;
4533}
4534
4535#endif
4536
4537#if EV_CHILD_ENABLE
4538
4539void
4540ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4541{
4542#if EV_MULTIPLICITY
1964 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4543 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1965#endif 4544#endif
1966 if (expect_false (ev_is_active (w))) 4545 if (ecb_expect_false (ev_is_active (w)))
1967 return; 4546 return;
1968 4547
4548 EV_FREQUENT_CHECK;
4549
1969 ev_start (EV_A_ (W)w, 1); 4550 ev_start (EV_A_ (W)w, 1);
1970 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4551 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1971}
1972 4552
4553 EV_FREQUENT_CHECK;
4554}
4555
1973void 4556void
1974ev_child_stop (EV_P_ ev_child *w) 4557ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
1975{ 4558{
1976 clear_pending (EV_A_ (W)w); 4559 clear_pending (EV_A_ (W)w);
1977 if (expect_false (!ev_is_active (w))) 4560 if (ecb_expect_false (!ev_is_active (w)))
1978 return; 4561 return;
1979 4562
4563 EV_FREQUENT_CHECK;
4564
1980 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4565 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1981 ev_stop (EV_A_ (W)w); 4566 ev_stop (EV_A_ (W)w);
4567
4568 EV_FREQUENT_CHECK;
1982} 4569}
4570
4571#endif
1983 4572
1984#if EV_STAT_ENABLE 4573#if EV_STAT_ENABLE
1985 4574
1986# ifdef _WIN32 4575# ifdef _WIN32
1987# undef lstat 4576# undef lstat
1988# define lstat(a,b) _stati64 (a,b) 4577# define lstat(a,b) _stati64 (a,b)
1989# endif 4578# endif
1990 4579
1991#define DEF_STAT_INTERVAL 5.0074891 4580#define DEF_STAT_INTERVAL 5.0074891
4581#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1992#define MIN_STAT_INTERVAL 0.1074891 4582#define MIN_STAT_INTERVAL 0.1074891
1993 4583
1994static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 4584ecb_noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1995 4585
1996#if EV_USE_INOTIFY 4586#if EV_USE_INOTIFY
1997# define EV_INOTIFY_BUFSIZE 8192
1998 4587
1999static void noinline 4588/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4589# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4590
4591ecb_noinline
4592static void
2000infy_add (EV_P_ ev_stat *w) 4593infy_add (EV_P_ ev_stat *w)
2001{ 4594{
2002 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 4595 w->wd = inotify_add_watch (fs_fd, w->path,
4596 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4597 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4598 | IN_DONT_FOLLOW | IN_MASK_ADD);
2003 4599
2004 if (w->wd < 0) 4600 if (w->wd >= 0)
4601 {
4602 struct statfs sfs;
4603
4604 /* now local changes will be tracked by inotify, but remote changes won't */
4605 /* unless the filesystem is known to be local, we therefore still poll */
4606 /* also do poll on <2.6.25, but with normal frequency */
4607
4608 if (!fs_2625)
4609 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4610 else if (!statfs (w->path, &sfs)
4611 && (sfs.f_type == 0x1373 /* devfs */
4612 || sfs.f_type == 0x4006 /* fat */
4613 || sfs.f_type == 0x4d44 /* msdos */
4614 || sfs.f_type == 0xEF53 /* ext2/3 */
4615 || sfs.f_type == 0x72b6 /* jffs2 */
4616 || sfs.f_type == 0x858458f6 /* ramfs */
4617 || sfs.f_type == 0x5346544e /* ntfs */
4618 || sfs.f_type == 0x3153464a /* jfs */
4619 || sfs.f_type == 0x9123683e /* btrfs */
4620 || sfs.f_type == 0x52654973 /* reiser3 */
4621 || sfs.f_type == 0x01021994 /* tmpfs */
4622 || sfs.f_type == 0x58465342 /* xfs */))
4623 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4624 else
4625 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2005 { 4626 }
2006 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 4627 else
4628 {
4629 /* can't use inotify, continue to stat */
4630 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2007 4631
2008 /* monitor some parent directory for speedup hints */ 4632 /* if path is not there, monitor some parent directory for speedup hints */
4633 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4634 /* but an efficiency issue only */
2009 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4635 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2010 { 4636 {
2011 char path [4096]; 4637 char path [4096];
2012 strcpy (path, w->path); 4638 strcpy (path, w->path);
2013 4639
2016 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 4642 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2017 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 4643 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2018 4644
2019 char *pend = strrchr (path, '/'); 4645 char *pend = strrchr (path, '/');
2020 4646
2021 if (!pend) 4647 if (!pend || pend == path)
2022 break; /* whoops, no '/', complain to your admin */ 4648 break;
2023 4649
2024 *pend = 0; 4650 *pend = 0;
2025 w->wd = inotify_add_watch (fs_fd, path, mask); 4651 w->wd = inotify_add_watch (fs_fd, path, mask);
2026 } 4652 }
2027 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4653 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2028 } 4654 }
2029 } 4655 }
2030 else
2031 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2032 4656
2033 if (w->wd >= 0) 4657 if (w->wd >= 0)
2034 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4658 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2035}
2036 4659
2037static void noinline 4660 /* now re-arm timer, if required */
4661 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4662 ev_timer_again (EV_A_ &w->timer);
4663 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4664}
4665
4666ecb_noinline
4667static void
2038infy_del (EV_P_ ev_stat *w) 4668infy_del (EV_P_ ev_stat *w)
2039{ 4669{
2040 int slot; 4670 int slot;
2041 int wd = w->wd; 4671 int wd = w->wd;
2042 4672
2043 if (wd < 0) 4673 if (wd < 0)
2044 return; 4674 return;
2045 4675
2046 w->wd = -2; 4676 w->wd = -2;
2047 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4677 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2048 wlist_del (&fs_hash [slot].head, (WL)w); 4678 wlist_del (&fs_hash [slot].head, (WL)w);
2049 4679
2050 /* remove this watcher, if others are watching it, they will rearm */ 4680 /* remove this watcher, if others are watching it, they will rearm */
2051 inotify_rm_watch (fs_fd, wd); 4681 inotify_rm_watch (fs_fd, wd);
2052} 4682}
2053 4683
2054static void noinline 4684ecb_noinline
4685static void
2055infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4686infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2056{ 4687{
2057 if (slot < 0) 4688 if (slot < 0)
2058 /* overflow, need to check for all hahs slots */ 4689 /* overflow, need to check for all hash slots */
2059 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4690 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2060 infy_wd (EV_A_ slot, wd, ev); 4691 infy_wd (EV_A_ slot, wd, ev);
2061 else 4692 else
2062 { 4693 {
2063 WL w_; 4694 WL w_;
2064 4695
2065 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4696 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2066 { 4697 {
2067 ev_stat *w = (ev_stat *)w_; 4698 ev_stat *w = (ev_stat *)w_;
2068 w_ = w_->next; /* lets us remove this watcher and all before it */ 4699 w_ = w_->next; /* lets us remove this watcher and all before it */
2069 4700
2070 if (w->wd == wd || wd == -1) 4701 if (w->wd == wd || wd == -1)
2071 { 4702 {
2072 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4703 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2073 { 4704 {
4705 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2074 w->wd = -1; 4706 w->wd = -1;
2075 infy_add (EV_A_ w); /* re-add, no matter what */ 4707 infy_add (EV_A_ w); /* re-add, no matter what */
2076 } 4708 }
2077 4709
2078 stat_timer_cb (EV_A_ &w->timer, 0); 4710 stat_timer_cb (EV_A_ &w->timer, 0);
2083 4715
2084static void 4716static void
2085infy_cb (EV_P_ ev_io *w, int revents) 4717infy_cb (EV_P_ ev_io *w, int revents)
2086{ 4718{
2087 char buf [EV_INOTIFY_BUFSIZE]; 4719 char buf [EV_INOTIFY_BUFSIZE];
2088 struct inotify_event *ev = (struct inotify_event *)buf;
2089 int ofs; 4720 int ofs;
2090 int len = read (fs_fd, buf, sizeof (buf)); 4721 int len = read (fs_fd, buf, sizeof (buf));
2091 4722
2092 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4723 for (ofs = 0; ofs < len; )
4724 {
4725 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2093 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4726 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4727 ofs += sizeof (struct inotify_event) + ev->len;
4728 }
2094} 4729}
2095 4730
2096void inline_size 4731inline_size ecb_cold
4732void
4733ev_check_2625 (EV_P)
4734{
4735 /* kernels < 2.6.25 are borked
4736 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4737 */
4738 if (ev_linux_version () < 0x020619)
4739 return;
4740
4741 fs_2625 = 1;
4742}
4743
4744inline_size int
4745infy_newfd (void)
4746{
4747#if defined IN_CLOEXEC && defined IN_NONBLOCK
4748 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4749 if (fd >= 0)
4750 return fd;
4751#endif
4752 return inotify_init ();
4753}
4754
4755inline_size void
2097infy_init (EV_P) 4756infy_init (EV_P)
2098{ 4757{
2099 if (fs_fd != -2) 4758 if (fs_fd != -2)
2100 return; 4759 return;
2101 4760
4761 fs_fd = -1;
4762
4763 ev_check_2625 (EV_A);
4764
2102 fs_fd = inotify_init (); 4765 fs_fd = infy_newfd ();
2103 4766
2104 if (fs_fd >= 0) 4767 if (fs_fd >= 0)
2105 { 4768 {
4769 fd_intern (fs_fd);
2106 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4770 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2107 ev_set_priority (&fs_w, EV_MAXPRI); 4771 ev_set_priority (&fs_w, EV_MAXPRI);
2108 ev_io_start (EV_A_ &fs_w); 4772 ev_io_start (EV_A_ &fs_w);
4773 ev_unref (EV_A);
2109 } 4774 }
2110} 4775}
2111 4776
2112void inline_size 4777inline_size void
2113infy_fork (EV_P) 4778infy_fork (EV_P)
2114{ 4779{
2115 int slot; 4780 int slot;
2116 4781
2117 if (fs_fd < 0) 4782 if (fs_fd < 0)
2118 return; 4783 return;
2119 4784
4785 ev_ref (EV_A);
4786 ev_io_stop (EV_A_ &fs_w);
2120 close (fs_fd); 4787 close (fs_fd);
2121 fs_fd = inotify_init (); 4788 fs_fd = infy_newfd ();
2122 4789
4790 if (fs_fd >= 0)
4791 {
4792 fd_intern (fs_fd);
4793 ev_io_set (&fs_w, fs_fd, EV_READ);
4794 ev_io_start (EV_A_ &fs_w);
4795 ev_unref (EV_A);
4796 }
4797
2123 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4798 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2124 { 4799 {
2125 WL w_ = fs_hash [slot].head; 4800 WL w_ = fs_hash [slot].head;
2126 fs_hash [slot].head = 0; 4801 fs_hash [slot].head = 0;
2127 4802
2128 while (w_) 4803 while (w_)
2133 w->wd = -1; 4808 w->wd = -1;
2134 4809
2135 if (fs_fd >= 0) 4810 if (fs_fd >= 0)
2136 infy_add (EV_A_ w); /* re-add, no matter what */ 4811 infy_add (EV_A_ w); /* re-add, no matter what */
2137 else 4812 else
4813 {
4814 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4815 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2138 ev_timer_start (EV_A_ &w->timer); 4816 ev_timer_again (EV_A_ &w->timer);
4817 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4818 }
2139 } 4819 }
2140
2141 } 4820 }
2142} 4821}
2143 4822
2144#endif 4823#endif
2145 4824
4825#ifdef _WIN32
4826# define EV_LSTAT(p,b) _stati64 (p, b)
4827#else
4828# define EV_LSTAT(p,b) lstat (p, b)
4829#endif
4830
2146void 4831void
2147ev_stat_stat (EV_P_ ev_stat *w) 4832ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
2148{ 4833{
2149 if (lstat (w->path, &w->attr) < 0) 4834 if (lstat (w->path, &w->attr) < 0)
2150 w->attr.st_nlink = 0; 4835 w->attr.st_nlink = 0;
2151 else if (!w->attr.st_nlink) 4836 else if (!w->attr.st_nlink)
2152 w->attr.st_nlink = 1; 4837 w->attr.st_nlink = 1;
2153} 4838}
2154 4839
2155static void noinline 4840ecb_noinline
4841static void
2156stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4842stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2157{ 4843{
2158 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4844 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2159 4845
2160 /* we copy this here each the time so that */ 4846 ev_statdata prev = w->attr;
2161 /* prev has the old value when the callback gets invoked */
2162 w->prev = w->attr;
2163 ev_stat_stat (EV_A_ w); 4847 ev_stat_stat (EV_A_ w);
2164 4848
2165 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4849 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2166 if ( 4850 if (
2167 w->prev.st_dev != w->attr.st_dev 4851 prev.st_dev != w->attr.st_dev
2168 || w->prev.st_ino != w->attr.st_ino 4852 || prev.st_ino != w->attr.st_ino
2169 || w->prev.st_mode != w->attr.st_mode 4853 || prev.st_mode != w->attr.st_mode
2170 || w->prev.st_nlink != w->attr.st_nlink 4854 || prev.st_nlink != w->attr.st_nlink
2171 || w->prev.st_uid != w->attr.st_uid 4855 || prev.st_uid != w->attr.st_uid
2172 || w->prev.st_gid != w->attr.st_gid 4856 || prev.st_gid != w->attr.st_gid
2173 || w->prev.st_rdev != w->attr.st_rdev 4857 || prev.st_rdev != w->attr.st_rdev
2174 || w->prev.st_size != w->attr.st_size 4858 || prev.st_size != w->attr.st_size
2175 || w->prev.st_atime != w->attr.st_atime 4859 || prev.st_atime != w->attr.st_atime
2176 || w->prev.st_mtime != w->attr.st_mtime 4860 || prev.st_mtime != w->attr.st_mtime
2177 || w->prev.st_ctime != w->attr.st_ctime 4861 || prev.st_ctime != w->attr.st_ctime
2178 ) { 4862 ) {
4863 /* we only update w->prev on actual differences */
4864 /* in case we test more often than invoke the callback, */
4865 /* to ensure that prev is always different to attr */
4866 w->prev = prev;
4867
2179 #if EV_USE_INOTIFY 4868 #if EV_USE_INOTIFY
4869 if (fs_fd >= 0)
4870 {
2180 infy_del (EV_A_ w); 4871 infy_del (EV_A_ w);
2181 infy_add (EV_A_ w); 4872 infy_add (EV_A_ w);
2182 ev_stat_stat (EV_A_ w); /* avoid race... */ 4873 ev_stat_stat (EV_A_ w); /* avoid race... */
4874 }
2183 #endif 4875 #endif
2184 4876
2185 ev_feed_event (EV_A_ w, EV_STAT); 4877 ev_feed_event (EV_A_ w, EV_STAT);
2186 } 4878 }
2187} 4879}
2188 4880
2189void 4881void
2190ev_stat_start (EV_P_ ev_stat *w) 4882ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
2191{ 4883{
2192 if (expect_false (ev_is_active (w))) 4884 if (ecb_expect_false (ev_is_active (w)))
2193 return; 4885 return;
2194 4886
2195 /* since we use memcmp, we need to clear any padding data etc. */
2196 memset (&w->prev, 0, sizeof (ev_statdata));
2197 memset (&w->attr, 0, sizeof (ev_statdata));
2198
2199 ev_stat_stat (EV_A_ w); 4887 ev_stat_stat (EV_A_ w);
2200 4888
4889 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2201 if (w->interval < MIN_STAT_INTERVAL) 4890 w->interval = MIN_STAT_INTERVAL;
2202 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2203 4891
2204 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4892 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2205 ev_set_priority (&w->timer, ev_priority (w)); 4893 ev_set_priority (&w->timer, ev_priority (w));
2206 4894
2207#if EV_USE_INOTIFY 4895#if EV_USE_INOTIFY
2208 infy_init (EV_A); 4896 infy_init (EV_A);
2209 4897
2210 if (fs_fd >= 0) 4898 if (fs_fd >= 0)
2211 infy_add (EV_A_ w); 4899 infy_add (EV_A_ w);
2212 else 4900 else
2213#endif 4901#endif
4902 {
2214 ev_timer_start (EV_A_ &w->timer); 4903 ev_timer_again (EV_A_ &w->timer);
4904 ev_unref (EV_A);
4905 }
2215 4906
2216 ev_start (EV_A_ (W)w, 1); 4907 ev_start (EV_A_ (W)w, 1);
2217}
2218 4908
4909 EV_FREQUENT_CHECK;
4910}
4911
2219void 4912void
2220ev_stat_stop (EV_P_ ev_stat *w) 4913ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
2221{ 4914{
2222 clear_pending (EV_A_ (W)w); 4915 clear_pending (EV_A_ (W)w);
2223 if (expect_false (!ev_is_active (w))) 4916 if (ecb_expect_false (!ev_is_active (w)))
2224 return; 4917 return;
4918
4919 EV_FREQUENT_CHECK;
2225 4920
2226#if EV_USE_INOTIFY 4921#if EV_USE_INOTIFY
2227 infy_del (EV_A_ w); 4922 infy_del (EV_A_ w);
2228#endif 4923#endif
4924
4925 if (ev_is_active (&w->timer))
4926 {
4927 ev_ref (EV_A);
2229 ev_timer_stop (EV_A_ &w->timer); 4928 ev_timer_stop (EV_A_ &w->timer);
4929 }
2230 4930
2231 ev_stop (EV_A_ (W)w); 4931 ev_stop (EV_A_ (W)w);
4932
4933 EV_FREQUENT_CHECK;
2232} 4934}
2233#endif 4935#endif
2234 4936
2235#if EV_IDLE_ENABLE 4937#if EV_IDLE_ENABLE
2236void 4938void
2237ev_idle_start (EV_P_ ev_idle *w) 4939ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
2238{ 4940{
2239 if (expect_false (ev_is_active (w))) 4941 if (ecb_expect_false (ev_is_active (w)))
2240 return; 4942 return;
2241 4943
2242 pri_adjust (EV_A_ (W)w); 4944 pri_adjust (EV_A_ (W)w);
4945
4946 EV_FREQUENT_CHECK;
2243 4947
2244 { 4948 {
2245 int active = ++idlecnt [ABSPRI (w)]; 4949 int active = ++idlecnt [ABSPRI (w)];
2246 4950
2247 ++idleall; 4951 ++idleall;
2248 ev_start (EV_A_ (W)w, active); 4952 ev_start (EV_A_ (W)w, active);
2249 4953
2250 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 4954 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
2251 idles [ABSPRI (w)][active - 1] = w; 4955 idles [ABSPRI (w)][active - 1] = w;
2252 } 4956 }
2253}
2254 4957
4958 EV_FREQUENT_CHECK;
4959}
4960
2255void 4961void
2256ev_idle_stop (EV_P_ ev_idle *w) 4962ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
2257{ 4963{
2258 clear_pending (EV_A_ (W)w); 4964 clear_pending (EV_A_ (W)w);
2259 if (expect_false (!ev_is_active (w))) 4965 if (ecb_expect_false (!ev_is_active (w)))
2260 return; 4966 return;
2261 4967
4968 EV_FREQUENT_CHECK;
4969
2262 { 4970 {
2263 int active = ((W)w)->active; 4971 int active = ev_active (w);
2264 4972
2265 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 4973 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2266 ((W)idles [ABSPRI (w)][active - 1])->active = active; 4974 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2267 4975
2268 ev_stop (EV_A_ (W)w); 4976 ev_stop (EV_A_ (W)w);
2269 --idleall; 4977 --idleall;
2270 } 4978 }
2271}
2272#endif
2273 4979
4980 EV_FREQUENT_CHECK;
4981}
4982#endif
4983
4984#if EV_PREPARE_ENABLE
2274void 4985void
2275ev_prepare_start (EV_P_ ev_prepare *w) 4986ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
2276{ 4987{
2277 if (expect_false (ev_is_active (w))) 4988 if (ecb_expect_false (ev_is_active (w)))
2278 return; 4989 return;
2279 4990
4991 EV_FREQUENT_CHECK;
4992
2280 ev_start (EV_A_ (W)w, ++preparecnt); 4993 ev_start (EV_A_ (W)w, ++preparecnt);
2281 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4994 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
2282 prepares [preparecnt - 1] = w; 4995 prepares [preparecnt - 1] = w;
2283}
2284 4996
4997 EV_FREQUENT_CHECK;
4998}
4999
2285void 5000void
2286ev_prepare_stop (EV_P_ ev_prepare *w) 5001ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
2287{ 5002{
2288 clear_pending (EV_A_ (W)w); 5003 clear_pending (EV_A_ (W)w);
2289 if (expect_false (!ev_is_active (w))) 5004 if (ecb_expect_false (!ev_is_active (w)))
2290 return; 5005 return;
2291 5006
5007 EV_FREQUENT_CHECK;
5008
2292 { 5009 {
2293 int active = ((W)w)->active; 5010 int active = ev_active (w);
5011
2294 prepares [active - 1] = prepares [--preparecnt]; 5012 prepares [active - 1] = prepares [--preparecnt];
2295 ((W)prepares [active - 1])->active = active; 5013 ev_active (prepares [active - 1]) = active;
2296 } 5014 }
2297 5015
2298 ev_stop (EV_A_ (W)w); 5016 ev_stop (EV_A_ (W)w);
2299}
2300 5017
5018 EV_FREQUENT_CHECK;
5019}
5020#endif
5021
5022#if EV_CHECK_ENABLE
2301void 5023void
2302ev_check_start (EV_P_ ev_check *w) 5024ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
2303{ 5025{
2304 if (expect_false (ev_is_active (w))) 5026 if (ecb_expect_false (ev_is_active (w)))
2305 return; 5027 return;
2306 5028
5029 EV_FREQUENT_CHECK;
5030
2307 ev_start (EV_A_ (W)w, ++checkcnt); 5031 ev_start (EV_A_ (W)w, ++checkcnt);
2308 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 5032 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
2309 checks [checkcnt - 1] = w; 5033 checks [checkcnt - 1] = w;
2310}
2311 5034
5035 EV_FREQUENT_CHECK;
5036}
5037
2312void 5038void
2313ev_check_stop (EV_P_ ev_check *w) 5039ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
2314{ 5040{
2315 clear_pending (EV_A_ (W)w); 5041 clear_pending (EV_A_ (W)w);
2316 if (expect_false (!ev_is_active (w))) 5042 if (ecb_expect_false (!ev_is_active (w)))
2317 return; 5043 return;
2318 5044
5045 EV_FREQUENT_CHECK;
5046
2319 { 5047 {
2320 int active = ((W)w)->active; 5048 int active = ev_active (w);
5049
2321 checks [active - 1] = checks [--checkcnt]; 5050 checks [active - 1] = checks [--checkcnt];
2322 ((W)checks [active - 1])->active = active; 5051 ev_active (checks [active - 1]) = active;
2323 } 5052 }
2324 5053
2325 ev_stop (EV_A_ (W)w); 5054 ev_stop (EV_A_ (W)w);
5055
5056 EV_FREQUENT_CHECK;
2326} 5057}
5058#endif
2327 5059
2328#if EV_EMBED_ENABLE 5060#if EV_EMBED_ENABLE
2329void noinline 5061ecb_noinline
5062void
2330ev_embed_sweep (EV_P_ ev_embed *w) 5063ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
2331{ 5064{
2332 ev_loop (w->other, EVLOOP_NONBLOCK); 5065 ev_run (w->other, EVRUN_NOWAIT);
2333} 5066}
2334 5067
2335static void 5068static void
2336embed_io_cb (EV_P_ ev_io *io, int revents) 5069embed_io_cb (EV_P_ ev_io *io, int revents)
2337{ 5070{
2338 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 5071 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2339 5072
2340 if (ev_cb (w)) 5073 if (ev_cb (w))
2341 ev_feed_event (EV_A_ (W)w, EV_EMBED); 5074 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2342 else 5075 else
2343 ev_loop (w->other, EVLOOP_NONBLOCK); 5076 ev_run (w->other, EVRUN_NOWAIT);
2344} 5077}
2345 5078
2346static void 5079static void
2347embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 5080embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2348{ 5081{
2349 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 5082 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2350 5083
2351 { 5084 {
2352 struct ev_loop *loop = w->other; 5085 EV_P = w->other;
2353 5086
2354 while (fdchangecnt) 5087 while (fdchangecnt)
2355 { 5088 {
2356 fd_reify (EV_A); 5089 fd_reify (EV_A);
2357 ev_loop (EV_A_ EVLOOP_NONBLOCK); 5090 ev_run (EV_A_ EVRUN_NOWAIT);
2358 } 5091 }
2359 } 5092 }
2360} 5093}
5094
5095#if EV_FORK_ENABLE
5096static void
5097embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
5098{
5099 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
5100
5101 ev_embed_stop (EV_A_ w);
5102
5103 {
5104 EV_P = w->other;
5105
5106 ev_loop_fork (EV_A);
5107 ev_run (EV_A_ EVRUN_NOWAIT);
5108 }
5109
5110 ev_embed_start (EV_A_ w);
5111}
5112#endif
2361 5113
2362#if 0 5114#if 0
2363static void 5115static void
2364embed_idle_cb (EV_P_ ev_idle *idle, int revents) 5116embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2365{ 5117{
2366 ev_idle_stop (EV_A_ idle); 5118 ev_idle_stop (EV_A_ idle);
2367} 5119}
2368#endif 5120#endif
2369 5121
2370void 5122void
2371ev_embed_start (EV_P_ ev_embed *w) 5123ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
2372{ 5124{
2373 if (expect_false (ev_is_active (w))) 5125 if (ecb_expect_false (ev_is_active (w)))
2374 return; 5126 return;
2375 5127
2376 { 5128 {
2377 struct ev_loop *loop = w->other; 5129 EV_P = w->other;
2378 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 5130 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2379 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 5131 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2380 } 5132 }
5133
5134 EV_FREQUENT_CHECK;
2381 5135
2382 ev_set_priority (&w->io, ev_priority (w)); 5136 ev_set_priority (&w->io, ev_priority (w));
2383 ev_io_start (EV_A_ &w->io); 5137 ev_io_start (EV_A_ &w->io);
2384 5138
2385 ev_prepare_init (&w->prepare, embed_prepare_cb); 5139 ev_prepare_init (&w->prepare, embed_prepare_cb);
2386 ev_set_priority (&w->prepare, EV_MINPRI); 5140 ev_set_priority (&w->prepare, EV_MINPRI);
2387 ev_prepare_start (EV_A_ &w->prepare); 5141 ev_prepare_start (EV_A_ &w->prepare);
2388 5142
5143#if EV_FORK_ENABLE
5144 ev_fork_init (&w->fork, embed_fork_cb);
5145 ev_fork_start (EV_A_ &w->fork);
5146#endif
5147
2389 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 5148 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2390 5149
2391 ev_start (EV_A_ (W)w, 1); 5150 ev_start (EV_A_ (W)w, 1);
2392}
2393 5151
5152 EV_FREQUENT_CHECK;
5153}
5154
2394void 5155void
2395ev_embed_stop (EV_P_ ev_embed *w) 5156ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
2396{ 5157{
2397 clear_pending (EV_A_ (W)w); 5158 clear_pending (EV_A_ (W)w);
2398 if (expect_false (!ev_is_active (w))) 5159 if (ecb_expect_false (!ev_is_active (w)))
2399 return; 5160 return;
2400 5161
5162 EV_FREQUENT_CHECK;
5163
2401 ev_io_stop (EV_A_ &w->io); 5164 ev_io_stop (EV_A_ &w->io);
2402 ev_prepare_stop (EV_A_ &w->prepare); 5165 ev_prepare_stop (EV_A_ &w->prepare);
5166#if EV_FORK_ENABLE
5167 ev_fork_stop (EV_A_ &w->fork);
5168#endif
2403 5169
2404 ev_stop (EV_A_ (W)w); 5170 ev_stop (EV_A_ (W)w);
5171
5172 EV_FREQUENT_CHECK;
2405} 5173}
2406#endif 5174#endif
2407 5175
2408#if EV_FORK_ENABLE 5176#if EV_FORK_ENABLE
2409void 5177void
2410ev_fork_start (EV_P_ ev_fork *w) 5178ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
2411{ 5179{
2412 if (expect_false (ev_is_active (w))) 5180 if (ecb_expect_false (ev_is_active (w)))
2413 return; 5181 return;
2414 5182
5183 EV_FREQUENT_CHECK;
5184
2415 ev_start (EV_A_ (W)w, ++forkcnt); 5185 ev_start (EV_A_ (W)w, ++forkcnt);
2416 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 5186 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
2417 forks [forkcnt - 1] = w; 5187 forks [forkcnt - 1] = w;
2418}
2419 5188
5189 EV_FREQUENT_CHECK;
5190}
5191
2420void 5192void
2421ev_fork_stop (EV_P_ ev_fork *w) 5193ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
2422{ 5194{
2423 clear_pending (EV_A_ (W)w); 5195 clear_pending (EV_A_ (W)w);
2424 if (expect_false (!ev_is_active (w))) 5196 if (ecb_expect_false (!ev_is_active (w)))
2425 return; 5197 return;
2426 5198
5199 EV_FREQUENT_CHECK;
5200
2427 { 5201 {
2428 int active = ((W)w)->active; 5202 int active = ev_active (w);
5203
2429 forks [active - 1] = forks [--forkcnt]; 5204 forks [active - 1] = forks [--forkcnt];
2430 ((W)forks [active - 1])->active = active; 5205 ev_active (forks [active - 1]) = active;
2431 } 5206 }
2432 5207
2433 ev_stop (EV_A_ (W)w); 5208 ev_stop (EV_A_ (W)w);
5209
5210 EV_FREQUENT_CHECK;
5211}
5212#endif
5213
5214#if EV_CLEANUP_ENABLE
5215void
5216ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5217{
5218 if (ecb_expect_false (ev_is_active (w)))
5219 return;
5220
5221 EV_FREQUENT_CHECK;
5222
5223 ev_start (EV_A_ (W)w, ++cleanupcnt);
5224 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
5225 cleanups [cleanupcnt - 1] = w;
5226
5227 /* cleanup watchers should never keep a refcount on the loop */
5228 ev_unref (EV_A);
5229 EV_FREQUENT_CHECK;
5230}
5231
5232void
5233ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5234{
5235 clear_pending (EV_A_ (W)w);
5236 if (ecb_expect_false (!ev_is_active (w)))
5237 return;
5238
5239 EV_FREQUENT_CHECK;
5240 ev_ref (EV_A);
5241
5242 {
5243 int active = ev_active (w);
5244
5245 cleanups [active - 1] = cleanups [--cleanupcnt];
5246 ev_active (cleanups [active - 1]) = active;
5247 }
5248
5249 ev_stop (EV_A_ (W)w);
5250
5251 EV_FREQUENT_CHECK;
2434} 5252}
2435#endif 5253#endif
2436 5254
2437#if EV_ASYNC_ENABLE 5255#if EV_ASYNC_ENABLE
2438void 5256void
2439ev_async_start (EV_P_ ev_async *w) 5257ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
2440{ 5258{
2441 if (expect_false (ev_is_active (w))) 5259 if (ecb_expect_false (ev_is_active (w)))
2442 return; 5260 return;
2443 5261
5262 w->sent = 0;
5263
2444 evpipe_init (EV_A); 5264 evpipe_init (EV_A);
2445 5265
5266 EV_FREQUENT_CHECK;
5267
2446 ev_start (EV_A_ (W)w, ++asynccnt); 5268 ev_start (EV_A_ (W)w, ++asynccnt);
2447 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 5269 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
2448 asyncs [asynccnt - 1] = w; 5270 asyncs [asynccnt - 1] = w;
2449}
2450 5271
5272 EV_FREQUENT_CHECK;
5273}
5274
2451void 5275void
2452ev_async_stop (EV_P_ ev_async *w) 5276ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
2453{ 5277{
2454 clear_pending (EV_A_ (W)w); 5278 clear_pending (EV_A_ (W)w);
2455 if (expect_false (!ev_is_active (w))) 5279 if (ecb_expect_false (!ev_is_active (w)))
2456 return; 5280 return;
2457 5281
5282 EV_FREQUENT_CHECK;
5283
2458 { 5284 {
2459 int active = ((W)w)->active; 5285 int active = ev_active (w);
5286
2460 asyncs [active - 1] = asyncs [--asynccnt]; 5287 asyncs [active - 1] = asyncs [--asynccnt];
2461 ((W)asyncs [active - 1])->active = active; 5288 ev_active (asyncs [active - 1]) = active;
2462 } 5289 }
2463 5290
2464 ev_stop (EV_A_ (W)w); 5291 ev_stop (EV_A_ (W)w);
2465}
2466 5292
5293 EV_FREQUENT_CHECK;
5294}
5295
2467void 5296void
2468ev_async_send (EV_P_ ev_async *w) 5297ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
2469{ 5298{
2470 w->sent = 1; 5299 w->sent = 1;
2471 evpipe_write (EV_A_ &gotasync); 5300 evpipe_write (EV_A_ &async_pending);
2472} 5301}
2473#endif 5302#endif
2474 5303
2475/*****************************************************************************/ 5304/*****************************************************************************/
2476 5305
2486once_cb (EV_P_ struct ev_once *once, int revents) 5315once_cb (EV_P_ struct ev_once *once, int revents)
2487{ 5316{
2488 void (*cb)(int revents, void *arg) = once->cb; 5317 void (*cb)(int revents, void *arg) = once->cb;
2489 void *arg = once->arg; 5318 void *arg = once->arg;
2490 5319
2491 ev_io_stop (EV_A_ &once->io); 5320 ev_io_stop (EV_A_ &once->io);
2492 ev_timer_stop (EV_A_ &once->to); 5321 ev_timer_stop (EV_A_ &once->to);
2493 ev_free (once); 5322 ev_free (once);
2494 5323
2495 cb (revents, arg); 5324 cb (revents, arg);
2496} 5325}
2497 5326
2498static void 5327static void
2499once_cb_io (EV_P_ ev_io *w, int revents) 5328once_cb_io (EV_P_ ev_io *w, int revents)
2500{ 5329{
2501 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 5330 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
5331
5332 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2502} 5333}
2503 5334
2504static void 5335static void
2505once_cb_to (EV_P_ ev_timer *w, int revents) 5336once_cb_to (EV_P_ ev_timer *w, int revents)
2506{ 5337{
2507 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 5338 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
2508}
2509 5339
5340 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
5341}
5342
2510void 5343void
2511ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 5344ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
2512{ 5345{
2513 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 5346 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2514
2515 if (expect_false (!once))
2516 {
2517 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
2518 return;
2519 }
2520 5347
2521 once->cb = cb; 5348 once->cb = cb;
2522 once->arg = arg; 5349 once->arg = arg;
2523 5350
2524 ev_init (&once->io, once_cb_io); 5351 ev_init (&once->io, once_cb_io);
2534 ev_timer_set (&once->to, timeout, 0.); 5361 ev_timer_set (&once->to, timeout, 0.);
2535 ev_timer_start (EV_A_ &once->to); 5362 ev_timer_start (EV_A_ &once->to);
2536 } 5363 }
2537} 5364}
2538 5365
5366/*****************************************************************************/
5367
5368#if EV_WALK_ENABLE
5369ecb_cold
5370void
5371ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5372{
5373 int i, j;
5374 ev_watcher_list *wl, *wn;
5375
5376 if (types & (EV_IO | EV_EMBED))
5377 for (i = 0; i < anfdmax; ++i)
5378 for (wl = anfds [i].head; wl; )
5379 {
5380 wn = wl->next;
5381
5382#if EV_EMBED_ENABLE
5383 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5384 {
5385 if (types & EV_EMBED)
5386 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5387 }
5388 else
5389#endif
5390#if EV_USE_INOTIFY
5391 if (ev_cb ((ev_io *)wl) == infy_cb)
5392 ;
5393 else
5394#endif
5395 if ((ev_io *)wl != &pipe_w)
5396 if (types & EV_IO)
5397 cb (EV_A_ EV_IO, wl);
5398
5399 wl = wn;
5400 }
5401
5402 if (types & (EV_TIMER | EV_STAT))
5403 for (i = timercnt + HEAP0; i-- > HEAP0; )
5404#if EV_STAT_ENABLE
5405 /*TODO: timer is not always active*/
5406 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5407 {
5408 if (types & EV_STAT)
5409 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5410 }
5411 else
5412#endif
5413 if (types & EV_TIMER)
5414 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5415
5416#if EV_PERIODIC_ENABLE
5417 if (types & EV_PERIODIC)
5418 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5419 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5420#endif
5421
5422#if EV_IDLE_ENABLE
5423 if (types & EV_IDLE)
5424 for (j = NUMPRI; j--; )
5425 for (i = idlecnt [j]; i--; )
5426 cb (EV_A_ EV_IDLE, idles [j][i]);
5427#endif
5428
5429#if EV_FORK_ENABLE
5430 if (types & EV_FORK)
5431 for (i = forkcnt; i--; )
5432 if (ev_cb (forks [i]) != embed_fork_cb)
5433 cb (EV_A_ EV_FORK, forks [i]);
5434#endif
5435
5436#if EV_ASYNC_ENABLE
5437 if (types & EV_ASYNC)
5438 for (i = asynccnt; i--; )
5439 cb (EV_A_ EV_ASYNC, asyncs [i]);
5440#endif
5441
5442#if EV_PREPARE_ENABLE
5443 if (types & EV_PREPARE)
5444 for (i = preparecnt; i--; )
5445# if EV_EMBED_ENABLE
5446 if (ev_cb (prepares [i]) != embed_prepare_cb)
5447# endif
5448 cb (EV_A_ EV_PREPARE, prepares [i]);
5449#endif
5450
5451#if EV_CHECK_ENABLE
5452 if (types & EV_CHECK)
5453 for (i = checkcnt; i--; )
5454 cb (EV_A_ EV_CHECK, checks [i]);
5455#endif
5456
5457#if EV_SIGNAL_ENABLE
5458 if (types & EV_SIGNAL)
5459 for (i = 0; i < EV_NSIG - 1; ++i)
5460 for (wl = signals [i].head; wl; )
5461 {
5462 wn = wl->next;
5463 cb (EV_A_ EV_SIGNAL, wl);
5464 wl = wn;
5465 }
5466#endif
5467
5468#if EV_CHILD_ENABLE
5469 if (types & EV_CHILD)
5470 for (i = (EV_PID_HASHSIZE); i--; )
5471 for (wl = childs [i]; wl; )
5472 {
5473 wn = wl->next;
5474 cb (EV_A_ EV_CHILD, wl);
5475 wl = wn;
5476 }
5477#endif
5478/* EV_STAT 0x00001000 /* stat data changed */
5479/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5480}
5481#endif
5482
2539#if EV_MULTIPLICITY 5483#if EV_MULTIPLICITY
2540 #include "ev_wrap.h" 5484 #include "ev_wrap.h"
2541#endif 5485#endif
2542 5486
2543#ifdef __cplusplus
2544}
2545#endif
2546

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines