ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.221 by root, Sun Apr 6 12:44:49 2008 UTC vs.
Revision 1.523 by root, Tue Jan 21 23:52:35 2020 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
100# ifndef EV_USE_KQUEUE 120# if HAVE_LINUX_AIO_ABI_H
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 121# ifndef EV_USE_LINUXAIO
102# define EV_USE_KQUEUE 1 122# define EV_USE_LINUXAIO 0 /* was: EV_FEATURE_BACKENDS, always off by default */
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_LINUXAIO
126# define EV_USE_LINUXAIO 0
106# endif 127# endif
107 128
129# if HAVE_LINUX_FS_H && HAVE_SYS_TIMERFD_H && HAVE_KERNEL_RWF_T
108# ifndef EV_USE_PORT 130# ifndef EV_USE_IOURING
109# if HAVE_PORT_H && HAVE_PORT_CREATE 131# define EV_USE_IOURING EV_FEATURE_BACKENDS
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_IOURING
135# define EV_USE_IOURING 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY 138# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 139# ifndef EV_USE_KQUEUE
118# define EV_USE_INOTIFY 1 140# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
119# else
120# define EV_USE_INOTIFY 0
121# endif 141# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else 142# else
143# undef EV_USE_KQUEUE
128# define EV_USE_EVENTFD 0 144# define EV_USE_KQUEUE 0
129# endif
130# endif 145# endif
131 146
147# if HAVE_PORT_H && HAVE_PORT_CREATE
148# ifndef EV_USE_PORT
149# define EV_USE_PORT EV_FEATURE_BACKENDS
150# endif
151# else
152# undef EV_USE_PORT
153# define EV_USE_PORT 0
132#endif 154# endif
133 155
134#include <math.h> 156# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
157# ifndef EV_USE_INOTIFY
158# define EV_USE_INOTIFY EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_INOTIFY
162# define EV_USE_INOTIFY 0
163# endif
164
165# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
166# ifndef EV_USE_SIGNALFD
167# define EV_USE_SIGNALFD EV_FEATURE_OS
168# endif
169# else
170# undef EV_USE_SIGNALFD
171# define EV_USE_SIGNALFD 0
172# endif
173
174# if HAVE_EVENTFD
175# ifndef EV_USE_EVENTFD
176# define EV_USE_EVENTFD EV_FEATURE_OS
177# endif
178# else
179# undef EV_USE_EVENTFD
180# define EV_USE_EVENTFD 0
181# endif
182
183# if HAVE_SYS_TIMERFD_H
184# ifndef EV_USE_TIMERFD
185# define EV_USE_TIMERFD EV_FEATURE_OS
186# endif
187# else
188# undef EV_USE_TIMERFD
189# define EV_USE_TIMERFD 0
190# endif
191
192#endif
193
194/* OS X, in its infinite idiocy, actually HARDCODES
195 * a limit of 1024 into their select. Where people have brains,
196 * OS X engineers apparently have a vacuum. Or maybe they were
197 * ordered to have a vacuum, or they do anything for money.
198 * This might help. Or not.
199 * Note that this must be defined early, as other include files
200 * will rely on this define as well.
201 */
202#define _DARWIN_UNLIMITED_SELECT 1
203
135#include <stdlib.h> 204#include <stdlib.h>
205#include <string.h>
136#include <fcntl.h> 206#include <fcntl.h>
137#include <stddef.h> 207#include <stddef.h>
138 208
139#include <stdio.h> 209#include <stdio.h>
140 210
141#include <assert.h> 211#include <assert.h>
142#include <errno.h> 212#include <errno.h>
143#include <sys/types.h> 213#include <sys/types.h>
144#include <time.h> 214#include <time.h>
215#include <limits.h>
145 216
146#include <signal.h> 217#include <signal.h>
147 218
148#ifdef EV_H 219#ifdef EV_H
149# include EV_H 220# include EV_H
150#else 221#else
151# include "ev.h" 222# include "ev.h"
223#endif
224
225#if EV_NO_THREADS
226# undef EV_NO_SMP
227# define EV_NO_SMP 1
228# undef ECB_NO_THREADS
229# define ECB_NO_THREADS 1
230#endif
231#if EV_NO_SMP
232# undef EV_NO_SMP
233# define ECB_NO_SMP 1
152#endif 234#endif
153 235
154#ifndef _WIN32 236#ifndef _WIN32
155# include <sys/time.h> 237# include <sys/time.h>
156# include <sys/wait.h> 238# include <sys/wait.h>
157# include <unistd.h> 239# include <unistd.h>
158#else 240#else
241# include <io.h>
159# define WIN32_LEAN_AND_MEAN 242# define WIN32_LEAN_AND_MEAN
243# include <winsock2.h>
160# include <windows.h> 244# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 245# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 246# define EV_SELECT_IS_WINSOCKET 1
163# endif 247# endif
248# undef EV_AVOID_STDIO
164#endif 249#endif
165 250
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 251/* this block tries to deduce configuration from header-defined symbols and defaults */
167 252
253/* try to deduce the maximum number of signals on this platform */
254#if defined EV_NSIG
255/* use what's provided */
256#elif defined NSIG
257# define EV_NSIG (NSIG)
258#elif defined _NSIG
259# define EV_NSIG (_NSIG)
260#elif defined SIGMAX
261# define EV_NSIG (SIGMAX+1)
262#elif defined SIG_MAX
263# define EV_NSIG (SIG_MAX+1)
264#elif defined _SIG_MAX
265# define EV_NSIG (_SIG_MAX+1)
266#elif defined MAXSIG
267# define EV_NSIG (MAXSIG+1)
268#elif defined MAX_SIG
269# define EV_NSIG (MAX_SIG+1)
270#elif defined SIGARRAYSIZE
271# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
272#elif defined _sys_nsig
273# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
274#else
275# define EV_NSIG (8 * sizeof (sigset_t) + 1)
276#endif
277
278#ifndef EV_USE_FLOOR
279# define EV_USE_FLOOR 0
280#endif
281
282#ifndef EV_USE_CLOCK_SYSCALL
283# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
284# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
285# else
286# define EV_USE_CLOCK_SYSCALL 0
287# endif
288#endif
289
290#if !(_POSIX_TIMERS > 0)
291# ifndef EV_USE_MONOTONIC
292# define EV_USE_MONOTONIC 0
293# endif
294# ifndef EV_USE_REALTIME
295# define EV_USE_REALTIME 0
296# endif
297#endif
298
168#ifndef EV_USE_MONOTONIC 299#ifndef EV_USE_MONOTONIC
300# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
301# define EV_USE_MONOTONIC EV_FEATURE_OS
302# else
169# define EV_USE_MONOTONIC 0 303# define EV_USE_MONOTONIC 0
304# endif
170#endif 305#endif
171 306
172#ifndef EV_USE_REALTIME 307#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 308# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 309#endif
175 310
176#ifndef EV_USE_NANOSLEEP 311#ifndef EV_USE_NANOSLEEP
312# if _POSIX_C_SOURCE >= 199309L
313# define EV_USE_NANOSLEEP EV_FEATURE_OS
314# else
177# define EV_USE_NANOSLEEP 0 315# define EV_USE_NANOSLEEP 0
316# endif
178#endif 317#endif
179 318
180#ifndef EV_USE_SELECT 319#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 320# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 321#endif
183 322
184#ifndef EV_USE_POLL 323#ifndef EV_USE_POLL
185# ifdef _WIN32 324# ifdef _WIN32
186# define EV_USE_POLL 0 325# define EV_USE_POLL 0
187# else 326# else
188# define EV_USE_POLL 1 327# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 328# endif
190#endif 329#endif
191 330
192#ifndef EV_USE_EPOLL 331#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 332# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 333# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 334# else
196# define EV_USE_EPOLL 0 335# define EV_USE_EPOLL 0
197# endif 336# endif
198#endif 337#endif
199 338
203 342
204#ifndef EV_USE_PORT 343#ifndef EV_USE_PORT
205# define EV_USE_PORT 0 344# define EV_USE_PORT 0
206#endif 345#endif
207 346
347#ifndef EV_USE_LINUXAIO
348# if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
349# define EV_USE_LINUXAIO 0 /* was: 1, always off by default */
350# else
351# define EV_USE_LINUXAIO 0
352# endif
353#endif
354
355#ifndef EV_USE_IOURING
356# if __linux /* later checks might disable again */
357# define EV_USE_IOURING 1
358# else
359# define EV_USE_IOURING 0
360# endif
361#endif
362
208#ifndef EV_USE_INOTIFY 363#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 364# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 365# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 366# else
212# define EV_USE_INOTIFY 0 367# define EV_USE_INOTIFY 0
213# endif 368# endif
214#endif 369#endif
215 370
216#ifndef EV_PID_HASHSIZE 371#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 372# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 373#endif
223 374
224#ifndef EV_INOTIFY_HASHSIZE 375#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 376# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 377#endif
231 378
232#ifndef EV_USE_EVENTFD 379#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 380# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 381# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 382# else
236# define EV_USE_EVENTFD 0 383# define EV_USE_EVENTFD 0
237# endif 384# endif
238#endif 385#endif
239 386
387#ifndef EV_USE_SIGNALFD
388# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
389# define EV_USE_SIGNALFD EV_FEATURE_OS
390# else
391# define EV_USE_SIGNALFD 0
392# endif
393#endif
394
395#ifndef EV_USE_TIMERFD
396# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 8))
397# define EV_USE_TIMERFD EV_FEATURE_OS
398# else
399# define EV_USE_TIMERFD 0
400# endif
401#endif
402
403#if 0 /* debugging */
404# define EV_VERIFY 3
405# define EV_USE_4HEAP 1
406# define EV_HEAP_CACHE_AT 1
407#endif
408
409#ifndef EV_VERIFY
410# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
411#endif
412
413#ifndef EV_USE_4HEAP
414# define EV_USE_4HEAP EV_FEATURE_DATA
415#endif
416
417#ifndef EV_HEAP_CACHE_AT
418# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
419#endif
420
421#ifdef __ANDROID__
422/* supposedly, android doesn't typedef fd_mask */
423# undef EV_USE_SELECT
424# define EV_USE_SELECT 0
425/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
426# undef EV_USE_CLOCK_SYSCALL
427# define EV_USE_CLOCK_SYSCALL 0
428#endif
429
430/* aix's poll.h seems to cause lots of trouble */
431#ifdef _AIX
432/* AIX has a completely broken poll.h header */
433# undef EV_USE_POLL
434# define EV_USE_POLL 0
435#endif
436
437/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
438/* which makes programs even slower. might work on other unices, too. */
439#if EV_USE_CLOCK_SYSCALL
440# include <sys/syscall.h>
441# ifdef SYS_clock_gettime
442# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
443# undef EV_USE_MONOTONIC
444# define EV_USE_MONOTONIC 1
445# define EV_NEED_SYSCALL 1
446# else
447# undef EV_USE_CLOCK_SYSCALL
448# define EV_USE_CLOCK_SYSCALL 0
449# endif
450#endif
451
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 452/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 453
242#ifndef CLOCK_MONOTONIC 454#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 455# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 456# define EV_USE_MONOTONIC 0
252#if !EV_STAT_ENABLE 464#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY 465# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0 466# define EV_USE_INOTIFY 0
255#endif 467#endif
256 468
469#if __linux && EV_USE_IOURING
470# include <linux/version.h>
471# if LINUX_VERSION_CODE < KERNEL_VERSION(4,14,0)
472# undef EV_USE_IOURING
473# define EV_USE_IOURING 0
474# endif
475#endif
476
257#if !EV_USE_NANOSLEEP 477#if !EV_USE_NANOSLEEP
258# ifndef _WIN32 478/* hp-ux has it in sys/time.h, which we unconditionally include above */
479# if !defined _WIN32 && !defined __hpux
259# include <sys/select.h> 480# include <sys/select.h>
260# endif 481# endif
261#endif 482#endif
262 483
484#if EV_USE_LINUXAIO
485# include <sys/syscall.h>
486# if SYS_io_getevents && EV_USE_EPOLL /* linuxaio backend requires epoll backend */
487# define EV_NEED_SYSCALL 1
488# else
489# undef EV_USE_LINUXAIO
490# define EV_USE_LINUXAIO 0
491# endif
492#endif
493
494#if EV_USE_IOURING
495# include <sys/syscall.h>
496# if !SYS_io_uring_setup && __linux && !__alpha
497# define SYS_io_uring_setup 425
498# define SYS_io_uring_enter 426
499# define SYS_io_uring_wregister 427
500# endif
501# if SYS_io_uring_setup && EV_USE_EPOLL /* iouring backend requires epoll backend */
502# define EV_NEED_SYSCALL 1
503# else
504# undef EV_USE_IOURING
505# define EV_USE_IOURING 0
506# endif
507#endif
508
263#if EV_USE_INOTIFY 509#if EV_USE_INOTIFY
510# include <sys/statfs.h>
264# include <sys/inotify.h> 511# include <sys/inotify.h>
512/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
513# ifndef IN_DONT_FOLLOW
514# undef EV_USE_INOTIFY
515# define EV_USE_INOTIFY 0
265#endif 516# endif
266
267#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h>
269#endif 517#endif
270 518
271#if EV_USE_EVENTFD 519#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 520/* our minimum requirement is glibc 2.7 which has the stub, but not the full header */
273# include <stdint.h> 521# include <stdint.h>
274int eventfd (unsigned int initval, int flags); 522# ifndef EFD_NONBLOCK
523# define EFD_NONBLOCK O_NONBLOCK
275#endif 524# endif
525# ifndef EFD_CLOEXEC
526# ifdef O_CLOEXEC
527# define EFD_CLOEXEC O_CLOEXEC
528# else
529# define EFD_CLOEXEC 02000000
530# endif
531# endif
532EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
533#endif
276 534
277/**/ 535#if EV_USE_SIGNALFD
536/* our minimum requirement is glibc 2.7 which has the stub, but not the full header */
537# include <stdint.h>
538# ifndef SFD_NONBLOCK
539# define SFD_NONBLOCK O_NONBLOCK
540# endif
541# ifndef SFD_CLOEXEC
542# ifdef O_CLOEXEC
543# define SFD_CLOEXEC O_CLOEXEC
544# else
545# define SFD_CLOEXEC 02000000
546# endif
547# endif
548EV_CPP (extern "C") int (signalfd) (int fd, const sigset_t *mask, int flags);
549
550struct signalfd_siginfo
551{
552 uint32_t ssi_signo;
553 char pad[128 - sizeof (uint32_t)];
554};
555#endif
556
557/* for timerfd, libev core requires TFD_TIMER_CANCEL_ON_SET &c */
558#if EV_USE_TIMERFD
559# include <sys/timerfd.h>
560/* timerfd is only used for periodics */
561# if !(defined (TFD_TIMER_CANCEL_ON_SET) && defined (TFD_CLOEXEC) && defined (TFD_NONBLOCK)) || !EV_PERIODIC_ENABLE
562# undef EV_USE_TIMERFD
563# define EV_USE_TIMERFD 0
564# endif
565#endif
566
567/*****************************************************************************/
568
569#if EV_VERIFY >= 3
570# define EV_FREQUENT_CHECK ev_verify (EV_A)
571#else
572# define EV_FREQUENT_CHECK do { } while (0)
573#endif
278 574
279/* 575/*
280 * This is used to avoid floating point rounding problems. 576 * This is used to work around floating point rounding problems.
281 * It is added to ev_rt_now when scheduling periodics
282 * to ensure progress, time-wise, even when rounding
283 * errors are against us.
284 * This value is good at least till the year 4000. 577 * This value is good at least till the year 4000.
285 * Better solutions welcome.
286 */ 578 */
287#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 579#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
580/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
288 581
289#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 582#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
290#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 583#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
291/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 584#define MAX_BLOCKTIME2 1500001.07 /* same, but when timerfd is used to detect jumps, also safe delay to not overflow */
292 585
586/* find a portable timestamp that is "always" in the future but fits into time_t.
587 * this is quite hard, and we are mostly guessing - we handle 32 bit signed/unsigned time_t,
588 * and sizes larger than 32 bit, and maybe the unlikely floating point time_t */
589#define EV_TSTAMP_HUGE \
590 (sizeof (time_t) >= 8 ? 10000000000000. \
591 : 0 < (time_t)4294967295 ? 4294967295. \
592 : 2147483647.) \
593
594#ifndef EV_TS_CONST
595# define EV_TS_CONST(nv) nv
596# define EV_TS_TO_MSEC(a) a * 1e3 + 0.9999
597# define EV_TS_FROM_USEC(us) us * 1e-6
598# define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
599# define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
600# define EV_TV_GET(tv) ((tv).tv_sec + (tv).tv_usec * 1e-6)
601# define EV_TS_GET(ts) ((ts).tv_sec + (ts).tv_nsec * 1e-9)
602#endif
603
604/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
605/* ECB.H BEGIN */
606/*
607 * libecb - http://software.schmorp.de/pkg/libecb
608 *
609 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
610 * Copyright (©) 2011 Emanuele Giaquinta
611 * All rights reserved.
612 *
613 * Redistribution and use in source and binary forms, with or without modifica-
614 * tion, are permitted provided that the following conditions are met:
615 *
616 * 1. Redistributions of source code must retain the above copyright notice,
617 * this list of conditions and the following disclaimer.
618 *
619 * 2. Redistributions in binary form must reproduce the above copyright
620 * notice, this list of conditions and the following disclaimer in the
621 * documentation and/or other materials provided with the distribution.
622 *
623 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
624 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
625 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
626 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
627 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
628 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
629 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
630 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
631 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
632 * OF THE POSSIBILITY OF SUCH DAMAGE.
633 *
634 * Alternatively, the contents of this file may be used under the terms of
635 * the GNU General Public License ("GPL") version 2 or any later version,
636 * in which case the provisions of the GPL are applicable instead of
637 * the above. If you wish to allow the use of your version of this file
638 * only under the terms of the GPL and not to allow others to use your
639 * version of this file under the BSD license, indicate your decision
640 * by deleting the provisions above and replace them with the notice
641 * and other provisions required by the GPL. If you do not delete the
642 * provisions above, a recipient may use your version of this file under
643 * either the BSD or the GPL.
644 */
645
646#ifndef ECB_H
647#define ECB_H
648
649/* 16 bits major, 16 bits minor */
650#define ECB_VERSION 0x00010008
651
652#include <string.h> /* for memcpy */
653
654#ifdef _WIN32
655 typedef signed char int8_t;
656 typedef unsigned char uint8_t;
657 typedef signed char int_fast8_t;
658 typedef unsigned char uint_fast8_t;
659 typedef signed short int16_t;
660 typedef unsigned short uint16_t;
661 typedef signed int int_fast16_t;
662 typedef unsigned int uint_fast16_t;
663 typedef signed int int32_t;
664 typedef unsigned int uint32_t;
665 typedef signed int int_fast32_t;
666 typedef unsigned int uint_fast32_t;
293#if __GNUC__ >= 4 667 #if __GNUC__
294# define expect(expr,value) __builtin_expect ((expr),(value)) 668 typedef signed long long int64_t;
295# define noinline __attribute__ ((noinline)) 669 typedef unsigned long long uint64_t;
670 #else /* _MSC_VER || __BORLANDC__ */
671 typedef signed __int64 int64_t;
672 typedef unsigned __int64 uint64_t;
673 #endif
674 typedef int64_t int_fast64_t;
675 typedef uint64_t uint_fast64_t;
676 #ifdef _WIN64
677 #define ECB_PTRSIZE 8
678 typedef uint64_t uintptr_t;
679 typedef int64_t intptr_t;
680 #else
681 #define ECB_PTRSIZE 4
682 typedef uint32_t uintptr_t;
683 typedef int32_t intptr_t;
684 #endif
296#else 685#else
297# define expect(expr,value) (expr) 686 #include <inttypes.h>
298# define noinline 687 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
299# if __STDC_VERSION__ < 199901L 688 #define ECB_PTRSIZE 8
300# define inline 689 #else
690 #define ECB_PTRSIZE 4
691 #endif
301# endif 692#endif
693
694#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
695#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
696
697#ifndef ECB_OPTIMIZE_SIZE
698 #if __OPTIMIZE_SIZE__
699 #define ECB_OPTIMIZE_SIZE 1
700 #else
701 #define ECB_OPTIMIZE_SIZE 0
302#endif 702 #endif
703#endif
303 704
304#define expect_false(expr) expect ((expr) != 0, 0) 705/* work around x32 idiocy by defining proper macros */
305#define expect_true(expr) expect ((expr) != 0, 1) 706#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
306#define inline_size static inline 707 #if _ILP32
708 #define ECB_AMD64_X32 1
709 #else
710 #define ECB_AMD64 1
711 #endif
712#endif
307 713
308#if EV_MINIMAL 714/* many compilers define _GNUC_ to some versions but then only implement
309# define inline_speed static noinline 715 * what their idiot authors think are the "more important" extensions,
716 * causing enormous grief in return for some better fake benchmark numbers.
717 * or so.
718 * we try to detect these and simply assume they are not gcc - if they have
719 * an issue with that they should have done it right in the first place.
720 */
721#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
722 #define ECB_GCC_VERSION(major,minor) 0
310#else 723#else
724 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
725#endif
726
727#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
728
729#if __clang__ && defined __has_builtin
730 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
731#else
732 #define ECB_CLANG_BUILTIN(x) 0
733#endif
734
735#if __clang__ && defined __has_extension
736 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
737#else
738 #define ECB_CLANG_EXTENSION(x) 0
739#endif
740
741#define ECB_CPP (__cplusplus+0)
742#define ECB_CPP11 (__cplusplus >= 201103L)
743#define ECB_CPP14 (__cplusplus >= 201402L)
744#define ECB_CPP17 (__cplusplus >= 201703L)
745
746#if ECB_CPP
747 #define ECB_C 0
748 #define ECB_STDC_VERSION 0
749#else
750 #define ECB_C 1
751 #define ECB_STDC_VERSION __STDC_VERSION__
752#endif
753
754#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
755#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
756#define ECB_C17 (ECB_STDC_VERSION >= 201710L)
757
758#if ECB_CPP
759 #define ECB_EXTERN_C extern "C"
760 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
761 #define ECB_EXTERN_C_END }
762#else
763 #define ECB_EXTERN_C extern
764 #define ECB_EXTERN_C_BEG
765 #define ECB_EXTERN_C_END
766#endif
767
768/*****************************************************************************/
769
770/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
771/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
772
773#if ECB_NO_THREADS
774 #define ECB_NO_SMP 1
775#endif
776
777#if ECB_NO_SMP
778 #define ECB_MEMORY_FENCE do { } while (0)
779#endif
780
781/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
782#if __xlC__ && ECB_CPP
783 #include <builtins.h>
784#endif
785
786#if 1400 <= _MSC_VER
787 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
788#endif
789
790#ifndef ECB_MEMORY_FENCE
791 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
792 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
793 #if __i386 || __i386__
794 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
795 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
796 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
797 #elif ECB_GCC_AMD64
798 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
799 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
800 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
801 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
802 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
803 #elif defined __ARM_ARCH_2__ \
804 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
805 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
806 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
807 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
808 || defined __ARM_ARCH_5TEJ__
809 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
810 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
811 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
812 || defined __ARM_ARCH_6T2__
813 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
814 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
815 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
816 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
817 #elif __aarch64__
818 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
819 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
820 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
821 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
822 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
823 #elif defined __s390__ || defined __s390x__
824 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
825 #elif defined __mips__
826 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
827 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
828 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
829 #elif defined __alpha__
830 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
831 #elif defined __hppa__
832 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
833 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
834 #elif defined __ia64__
835 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
836 #elif defined __m68k__
837 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
838 #elif defined __m88k__
839 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
840 #elif defined __sh__
841 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
842 #endif
843 #endif
844#endif
845
846#ifndef ECB_MEMORY_FENCE
847 #if ECB_GCC_VERSION(4,7)
848 /* see comment below (stdatomic.h) about the C11 memory model. */
849 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
850 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
851 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
852 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
853
854 #elif ECB_CLANG_EXTENSION(c_atomic)
855 /* see comment below (stdatomic.h) about the C11 memory model. */
856 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
857 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
858 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
859 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
860
861 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
862 #define ECB_MEMORY_FENCE __sync_synchronize ()
863 #elif _MSC_VER >= 1500 /* VC++ 2008 */
864 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
865 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
866 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
867 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
868 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
869 #elif _MSC_VER >= 1400 /* VC++ 2005 */
870 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
871 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
872 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
873 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
874 #elif defined _WIN32
875 #include <WinNT.h>
876 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
877 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
878 #include <mbarrier.h>
879 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
880 #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
881 #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
882 #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
883 #elif __xlC__
884 #define ECB_MEMORY_FENCE __sync ()
885 #endif
886#endif
887
888#ifndef ECB_MEMORY_FENCE
889 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
890 /* we assume that these memory fences work on all variables/all memory accesses, */
891 /* not just C11 atomics and atomic accesses */
892 #include <stdatomic.h>
893 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
894 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
895 #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
896 #endif
897#endif
898
899#ifndef ECB_MEMORY_FENCE
900 #if !ECB_AVOID_PTHREADS
901 /*
902 * if you get undefined symbol references to pthread_mutex_lock,
903 * or failure to find pthread.h, then you should implement
904 * the ECB_MEMORY_FENCE operations for your cpu/compiler
905 * OR provide pthread.h and link against the posix thread library
906 * of your system.
907 */
908 #include <pthread.h>
909 #define ECB_NEEDS_PTHREADS 1
910 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
911
912 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
913 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
914 #endif
915#endif
916
917#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
918 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
919#endif
920
921#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
922 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
923#endif
924
925#if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
926 #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
927#endif
928
929/*****************************************************************************/
930
931#if ECB_CPP
932 #define ecb_inline static inline
933#elif ECB_GCC_VERSION(2,5)
934 #define ecb_inline static __inline__
935#elif ECB_C99
936 #define ecb_inline static inline
937#else
938 #define ecb_inline static
939#endif
940
941#if ECB_GCC_VERSION(3,3)
942 #define ecb_restrict __restrict__
943#elif ECB_C99
944 #define ecb_restrict restrict
945#else
946 #define ecb_restrict
947#endif
948
949typedef int ecb_bool;
950
951#define ECB_CONCAT_(a, b) a ## b
952#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
953#define ECB_STRINGIFY_(a) # a
954#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
955#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
956
957#define ecb_function_ ecb_inline
958
959#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
960 #define ecb_attribute(attrlist) __attribute__ (attrlist)
961#else
962 #define ecb_attribute(attrlist)
963#endif
964
965#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
966 #define ecb_is_constant(expr) __builtin_constant_p (expr)
967#else
968 /* possible C11 impl for integral types
969 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
970 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
971
972 #define ecb_is_constant(expr) 0
973#endif
974
975#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
976 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
977#else
978 #define ecb_expect(expr,value) (expr)
979#endif
980
981#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
982 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
983#else
984 #define ecb_prefetch(addr,rw,locality)
985#endif
986
987/* no emulation for ecb_decltype */
988#if ECB_CPP11
989 // older implementations might have problems with decltype(x)::type, work around it
990 template<class T> struct ecb_decltype_t { typedef T type; };
991 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
992#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
993 #define ecb_decltype(x) __typeof__ (x)
994#endif
995
996#if _MSC_VER >= 1300
997 #define ecb_deprecated __declspec (deprecated)
998#else
999 #define ecb_deprecated ecb_attribute ((__deprecated__))
1000#endif
1001
1002#if _MSC_VER >= 1500
1003 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
1004#elif ECB_GCC_VERSION(4,5)
1005 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
1006#else
1007 #define ecb_deprecated_message(msg) ecb_deprecated
1008#endif
1009
1010#if _MSC_VER >= 1400
1011 #define ecb_noinline __declspec (noinline)
1012#else
1013 #define ecb_noinline ecb_attribute ((__noinline__))
1014#endif
1015
1016#define ecb_unused ecb_attribute ((__unused__))
1017#define ecb_const ecb_attribute ((__const__))
1018#define ecb_pure ecb_attribute ((__pure__))
1019
1020#if ECB_C11 || __IBMC_NORETURN
1021 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
1022 #define ecb_noreturn _Noreturn
1023#elif ECB_CPP11
1024 #define ecb_noreturn [[noreturn]]
1025#elif _MSC_VER >= 1200
1026 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
1027 #define ecb_noreturn __declspec (noreturn)
1028#else
1029 #define ecb_noreturn ecb_attribute ((__noreturn__))
1030#endif
1031
1032#if ECB_GCC_VERSION(4,3)
1033 #define ecb_artificial ecb_attribute ((__artificial__))
1034 #define ecb_hot ecb_attribute ((__hot__))
1035 #define ecb_cold ecb_attribute ((__cold__))
1036#else
1037 #define ecb_artificial
1038 #define ecb_hot
1039 #define ecb_cold
1040#endif
1041
1042/* put around conditional expressions if you are very sure that the */
1043/* expression is mostly true or mostly false. note that these return */
1044/* booleans, not the expression. */
1045#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
1046#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
1047/* for compatibility to the rest of the world */
1048#define ecb_likely(expr) ecb_expect_true (expr)
1049#define ecb_unlikely(expr) ecb_expect_false (expr)
1050
1051/* count trailing zero bits and count # of one bits */
1052#if ECB_GCC_VERSION(3,4) \
1053 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
1054 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
1055 && ECB_CLANG_BUILTIN(__builtin_popcount))
1056 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
1057 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
1058 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
1059 #define ecb_ctz32(x) __builtin_ctz (x)
1060 #define ecb_ctz64(x) __builtin_ctzll (x)
1061 #define ecb_popcount32(x) __builtin_popcount (x)
1062 /* no popcountll */
1063#else
1064 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
1065 ecb_function_ ecb_const int
1066 ecb_ctz32 (uint32_t x)
1067 {
1068#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1069 unsigned long r;
1070 _BitScanForward (&r, x);
1071 return (int)r;
1072#else
1073 int r = 0;
1074
1075 x &= ~x + 1; /* this isolates the lowest bit */
1076
1077#if ECB_branchless_on_i386
1078 r += !!(x & 0xaaaaaaaa) << 0;
1079 r += !!(x & 0xcccccccc) << 1;
1080 r += !!(x & 0xf0f0f0f0) << 2;
1081 r += !!(x & 0xff00ff00) << 3;
1082 r += !!(x & 0xffff0000) << 4;
1083#else
1084 if (x & 0xaaaaaaaa) r += 1;
1085 if (x & 0xcccccccc) r += 2;
1086 if (x & 0xf0f0f0f0) r += 4;
1087 if (x & 0xff00ff00) r += 8;
1088 if (x & 0xffff0000) r += 16;
1089#endif
1090
1091 return r;
1092#endif
1093 }
1094
1095 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
1096 ecb_function_ ecb_const int
1097 ecb_ctz64 (uint64_t x)
1098 {
1099#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1100 unsigned long r;
1101 _BitScanForward64 (&r, x);
1102 return (int)r;
1103#else
1104 int shift = x & 0xffffffff ? 0 : 32;
1105 return ecb_ctz32 (x >> shift) + shift;
1106#endif
1107 }
1108
1109 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1110 ecb_function_ ecb_const int
1111 ecb_popcount32 (uint32_t x)
1112 {
1113 x -= (x >> 1) & 0x55555555;
1114 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1115 x = ((x >> 4) + x) & 0x0f0f0f0f;
1116 x *= 0x01010101;
1117
1118 return x >> 24;
1119 }
1120
1121 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1122 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1123 {
1124#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1125 unsigned long r;
1126 _BitScanReverse (&r, x);
1127 return (int)r;
1128#else
1129 int r = 0;
1130
1131 if (x >> 16) { x >>= 16; r += 16; }
1132 if (x >> 8) { x >>= 8; r += 8; }
1133 if (x >> 4) { x >>= 4; r += 4; }
1134 if (x >> 2) { x >>= 2; r += 2; }
1135 if (x >> 1) { r += 1; }
1136
1137 return r;
1138#endif
1139 }
1140
1141 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1142 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1143 {
1144#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1145 unsigned long r;
1146 _BitScanReverse64 (&r, x);
1147 return (int)r;
1148#else
1149 int r = 0;
1150
1151 if (x >> 32) { x >>= 32; r += 32; }
1152
1153 return r + ecb_ld32 (x);
1154#endif
1155 }
1156#endif
1157
1158ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1159ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1160ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1161ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1162
1163ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1164ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1165{
1166 return ( (x * 0x0802U & 0x22110U)
1167 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1168}
1169
1170ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1171ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1172{
1173 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1174 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1175 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1176 x = ( x >> 8 ) | ( x << 8);
1177
1178 return x;
1179}
1180
1181ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1182ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1183{
1184 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1185 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1186 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1187 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1188 x = ( x >> 16 ) | ( x << 16);
1189
1190 return x;
1191}
1192
1193/* popcount64 is only available on 64 bit cpus as gcc builtin */
1194/* so for this version we are lazy */
1195ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1196ecb_function_ ecb_const int
1197ecb_popcount64 (uint64_t x)
1198{
1199 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1200}
1201
1202ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1203ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1204ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1205ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1206ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1207ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1208ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1209ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1210
1211ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1212ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1213ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1214ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1215ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1216ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1217ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1218ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1219
1220#if ECB_CPP
1221
1222inline uint8_t ecb_ctz (uint8_t v) { return ecb_ctz32 (v); }
1223inline uint16_t ecb_ctz (uint16_t v) { return ecb_ctz32 (v); }
1224inline uint32_t ecb_ctz (uint32_t v) { return ecb_ctz32 (v); }
1225inline uint64_t ecb_ctz (uint64_t v) { return ecb_ctz64 (v); }
1226
1227inline bool ecb_is_pot (uint8_t v) { return ecb_is_pot32 (v); }
1228inline bool ecb_is_pot (uint16_t v) { return ecb_is_pot32 (v); }
1229inline bool ecb_is_pot (uint32_t v) { return ecb_is_pot32 (v); }
1230inline bool ecb_is_pot (uint64_t v) { return ecb_is_pot64 (v); }
1231
1232inline int ecb_ld (uint8_t v) { return ecb_ld32 (v); }
1233inline int ecb_ld (uint16_t v) { return ecb_ld32 (v); }
1234inline int ecb_ld (uint32_t v) { return ecb_ld32 (v); }
1235inline int ecb_ld (uint64_t v) { return ecb_ld64 (v); }
1236
1237inline int ecb_popcount (uint8_t v) { return ecb_popcount32 (v); }
1238inline int ecb_popcount (uint16_t v) { return ecb_popcount32 (v); }
1239inline int ecb_popcount (uint32_t v) { return ecb_popcount32 (v); }
1240inline int ecb_popcount (uint64_t v) { return ecb_popcount64 (v); }
1241
1242inline uint8_t ecb_bitrev (uint8_t v) { return ecb_bitrev8 (v); }
1243inline uint16_t ecb_bitrev (uint16_t v) { return ecb_bitrev16 (v); }
1244inline uint32_t ecb_bitrev (uint32_t v) { return ecb_bitrev32 (v); }
1245
1246inline uint8_t ecb_rotl (uint8_t v, unsigned int count) { return ecb_rotl8 (v, count); }
1247inline uint16_t ecb_rotl (uint16_t v, unsigned int count) { return ecb_rotl16 (v, count); }
1248inline uint32_t ecb_rotl (uint32_t v, unsigned int count) { return ecb_rotl32 (v, count); }
1249inline uint64_t ecb_rotl (uint64_t v, unsigned int count) { return ecb_rotl64 (v, count); }
1250
1251inline uint8_t ecb_rotr (uint8_t v, unsigned int count) { return ecb_rotr8 (v, count); }
1252inline uint16_t ecb_rotr (uint16_t v, unsigned int count) { return ecb_rotr16 (v, count); }
1253inline uint32_t ecb_rotr (uint32_t v, unsigned int count) { return ecb_rotr32 (v, count); }
1254inline uint64_t ecb_rotr (uint64_t v, unsigned int count) { return ecb_rotr64 (v, count); }
1255
1256#endif
1257
1258#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1259 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1260 #define ecb_bswap16(x) __builtin_bswap16 (x)
1261 #else
1262 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1263 #endif
1264 #define ecb_bswap32(x) __builtin_bswap32 (x)
1265 #define ecb_bswap64(x) __builtin_bswap64 (x)
1266#elif _MSC_VER
1267 #include <stdlib.h>
1268 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1269 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1270 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1271#else
1272 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1273 ecb_function_ ecb_const uint16_t
1274 ecb_bswap16 (uint16_t x)
1275 {
1276 return ecb_rotl16 (x, 8);
1277 }
1278
1279 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1280 ecb_function_ ecb_const uint32_t
1281 ecb_bswap32 (uint32_t x)
1282 {
1283 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1284 }
1285
1286 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1287 ecb_function_ ecb_const uint64_t
1288 ecb_bswap64 (uint64_t x)
1289 {
1290 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1291 }
1292#endif
1293
1294#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1295 #define ecb_unreachable() __builtin_unreachable ()
1296#else
1297 /* this seems to work fine, but gcc always emits a warning for it :/ */
1298 ecb_inline ecb_noreturn void ecb_unreachable (void);
1299 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1300#endif
1301
1302/* try to tell the compiler that some condition is definitely true */
1303#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1304
1305ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1306ecb_inline ecb_const uint32_t
1307ecb_byteorder_helper (void)
1308{
1309 /* the union code still generates code under pressure in gcc, */
1310 /* but less than using pointers, and always seems to */
1311 /* successfully return a constant. */
1312 /* the reason why we have this horrible preprocessor mess */
1313 /* is to avoid it in all cases, at least on common architectures */
1314 /* or when using a recent enough gcc version (>= 4.6) */
1315#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1316 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1317 #define ECB_LITTLE_ENDIAN 1
1318 return 0x44332211;
1319#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1320 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1321 #define ECB_BIG_ENDIAN 1
1322 return 0x11223344;
1323#else
1324 union
1325 {
1326 uint8_t c[4];
1327 uint32_t u;
1328 } u = { 0x11, 0x22, 0x33, 0x44 };
1329 return u.u;
1330#endif
1331}
1332
1333ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1334ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1335ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1336ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1337
1338/*****************************************************************************/
1339/* unaligned load/store */
1340
1341ecb_inline uint_fast16_t ecb_be_u16_to_host (uint_fast16_t v) { return ecb_little_endian () ? ecb_bswap16 (v) : v; }
1342ecb_inline uint_fast32_t ecb_be_u32_to_host (uint_fast32_t v) { return ecb_little_endian () ? ecb_bswap32 (v) : v; }
1343ecb_inline uint_fast64_t ecb_be_u64_to_host (uint_fast64_t v) { return ecb_little_endian () ? ecb_bswap64 (v) : v; }
1344
1345ecb_inline uint_fast16_t ecb_le_u16_to_host (uint_fast16_t v) { return ecb_big_endian () ? ecb_bswap16 (v) : v; }
1346ecb_inline uint_fast32_t ecb_le_u32_to_host (uint_fast32_t v) { return ecb_big_endian () ? ecb_bswap32 (v) : v; }
1347ecb_inline uint_fast64_t ecb_le_u64_to_host (uint_fast64_t v) { return ecb_big_endian () ? ecb_bswap64 (v) : v; }
1348
1349ecb_inline uint_fast16_t ecb_peek_u16_u (const void *ptr) { uint16_t v; memcpy (&v, ptr, sizeof (v)); return v; }
1350ecb_inline uint_fast32_t ecb_peek_u32_u (const void *ptr) { uint32_t v; memcpy (&v, ptr, sizeof (v)); return v; }
1351ecb_inline uint_fast64_t ecb_peek_u64_u (const void *ptr) { uint64_t v; memcpy (&v, ptr, sizeof (v)); return v; }
1352
1353ecb_inline uint_fast16_t ecb_peek_be_u16_u (const void *ptr) { return ecb_be_u16_to_host (ecb_peek_u16_u (ptr)); }
1354ecb_inline uint_fast32_t ecb_peek_be_u32_u (const void *ptr) { return ecb_be_u32_to_host (ecb_peek_u32_u (ptr)); }
1355ecb_inline uint_fast64_t ecb_peek_be_u64_u (const void *ptr) { return ecb_be_u64_to_host (ecb_peek_u64_u (ptr)); }
1356
1357ecb_inline uint_fast16_t ecb_peek_le_u16_u (const void *ptr) { return ecb_le_u16_to_host (ecb_peek_u16_u (ptr)); }
1358ecb_inline uint_fast32_t ecb_peek_le_u32_u (const void *ptr) { return ecb_le_u32_to_host (ecb_peek_u32_u (ptr)); }
1359ecb_inline uint_fast64_t ecb_peek_le_u64_u (const void *ptr) { return ecb_le_u64_to_host (ecb_peek_u64_u (ptr)); }
1360
1361ecb_inline uint_fast16_t ecb_host_to_be_u16 (uint_fast16_t v) { return ecb_little_endian () ? ecb_bswap16 (v) : v; }
1362ecb_inline uint_fast32_t ecb_host_to_be_u32 (uint_fast32_t v) { return ecb_little_endian () ? ecb_bswap32 (v) : v; }
1363ecb_inline uint_fast64_t ecb_host_to_be_u64 (uint_fast64_t v) { return ecb_little_endian () ? ecb_bswap64 (v) : v; }
1364
1365ecb_inline uint_fast16_t ecb_host_to_le_u16 (uint_fast16_t v) { return ecb_big_endian () ? ecb_bswap16 (v) : v; }
1366ecb_inline uint_fast32_t ecb_host_to_le_u32 (uint_fast32_t v) { return ecb_big_endian () ? ecb_bswap32 (v) : v; }
1367ecb_inline uint_fast64_t ecb_host_to_le_u64 (uint_fast64_t v) { return ecb_big_endian () ? ecb_bswap64 (v) : v; }
1368
1369ecb_inline void ecb_poke_u16_u (void *ptr, uint16_t v) { memcpy (ptr, &v, sizeof (v)); }
1370ecb_inline void ecb_poke_u32_u (void *ptr, uint32_t v) { memcpy (ptr, &v, sizeof (v)); }
1371ecb_inline void ecb_poke_u64_u (void *ptr, uint64_t v) { memcpy (ptr, &v, sizeof (v)); }
1372
1373ecb_inline void ecb_poke_be_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_be_u16 (v)); }
1374ecb_inline void ecb_poke_be_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_be_u32 (v)); }
1375ecb_inline void ecb_poke_be_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_be_u64 (v)); }
1376
1377ecb_inline void ecb_poke_le_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_le_u16 (v)); }
1378ecb_inline void ecb_poke_le_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_le_u32 (v)); }
1379ecb_inline void ecb_poke_le_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_le_u64 (v)); }
1380
1381#if ECB_CPP
1382
1383inline uint8_t ecb_bswap (uint8_t v) { return v; }
1384inline uint16_t ecb_bswap (uint16_t v) { return ecb_bswap16 (v); }
1385inline uint32_t ecb_bswap (uint32_t v) { return ecb_bswap32 (v); }
1386inline uint64_t ecb_bswap (uint64_t v) { return ecb_bswap64 (v); }
1387
1388template<typename T> inline T ecb_be_to_host (T v) { return ecb_little_endian () ? ecb_bswap (v) : v; }
1389template<typename T> inline T ecb_le_to_host (T v) { return ecb_big_endian () ? ecb_bswap (v) : v; }
1390template<typename T> inline T ecb_peek (const void *ptr) { return *(const T *)ptr; }
1391template<typename T> inline T ecb_peek_be (const void *ptr) { return ecb_be_to_host (ecb_peek <T> (ptr)); }
1392template<typename T> inline T ecb_peek_le (const void *ptr) { return ecb_le_to_host (ecb_peek <T> (ptr)); }
1393template<typename T> inline T ecb_peek_u (const void *ptr) { T v; memcpy (&v, ptr, sizeof (v)); return v; }
1394template<typename T> inline T ecb_peek_be_u (const void *ptr) { return ecb_be_to_host (ecb_peek_u<T> (ptr)); }
1395template<typename T> inline T ecb_peek_le_u (const void *ptr) { return ecb_le_to_host (ecb_peek_u<T> (ptr)); }
1396
1397template<typename T> inline T ecb_host_to_be (T v) { return ecb_little_endian () ? ecb_bswap (v) : v; }
1398template<typename T> inline T ecb_host_to_le (T v) { return ecb_big_endian () ? ecb_bswap (v) : v; }
1399template<typename T> inline void ecb_poke (void *ptr, T v) { *(T *)ptr = v; }
1400template<typename T> inline void ecb_poke_be (void *ptr, T v) { return ecb_poke <T> (ptr, ecb_host_to_be (v)); }
1401template<typename T> inline void ecb_poke_le (void *ptr, T v) { return ecb_poke <T> (ptr, ecb_host_to_le (v)); }
1402template<typename T> inline void ecb_poke_u (void *ptr, T v) { memcpy (ptr, &v, sizeof (v)); }
1403template<typename T> inline void ecb_poke_be_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_be (v)); }
1404template<typename T> inline void ecb_poke_le_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_le (v)); }
1405
1406#endif
1407
1408/*****************************************************************************/
1409
1410#if ECB_GCC_VERSION(3,0) || ECB_C99
1411 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1412#else
1413 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1414#endif
1415
1416#if ECB_CPP
1417 template<typename T>
1418 static inline T ecb_div_rd (T val, T div)
1419 {
1420 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1421 }
1422 template<typename T>
1423 static inline T ecb_div_ru (T val, T div)
1424 {
1425 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1426 }
1427#else
1428 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1429 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1430#endif
1431
1432#if ecb_cplusplus_does_not_suck
1433 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1434 template<typename T, int N>
1435 static inline int ecb_array_length (const T (&arr)[N])
1436 {
1437 return N;
1438 }
1439#else
1440 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1441#endif
1442
1443/*****************************************************************************/
1444
1445ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1446ecb_function_ ecb_const uint32_t
1447ecb_binary16_to_binary32 (uint32_t x)
1448{
1449 unsigned int s = (x & 0x8000) << (31 - 15);
1450 int e = (x >> 10) & 0x001f;
1451 unsigned int m = x & 0x03ff;
1452
1453 if (ecb_expect_false (e == 31))
1454 /* infinity or NaN */
1455 e = 255 - (127 - 15);
1456 else if (ecb_expect_false (!e))
1457 {
1458 if (ecb_expect_true (!m))
1459 /* zero, handled by code below by forcing e to 0 */
1460 e = 0 - (127 - 15);
1461 else
1462 {
1463 /* subnormal, renormalise */
1464 unsigned int s = 10 - ecb_ld32 (m);
1465
1466 m = (m << s) & 0x3ff; /* mask implicit bit */
1467 e -= s - 1;
1468 }
1469 }
1470
1471 /* e and m now are normalised, or zero, (or inf or nan) */
1472 e += 127 - 15;
1473
1474 return s | (e << 23) | (m << (23 - 10));
1475}
1476
1477ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1478ecb_function_ ecb_const uint16_t
1479ecb_binary32_to_binary16 (uint32_t x)
1480{
1481 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1482 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1483 unsigned int m = x & 0x007fffff;
1484
1485 x &= 0x7fffffff;
1486
1487 /* if it's within range of binary16 normals, use fast path */
1488 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1489 {
1490 /* mantissa round-to-even */
1491 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1492
1493 /* handle overflow */
1494 if (ecb_expect_false (m >= 0x00800000))
1495 {
1496 m >>= 1;
1497 e += 1;
1498 }
1499
1500 return s | (e << 10) | (m >> (23 - 10));
1501 }
1502
1503 /* handle large numbers and infinity */
1504 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1505 return s | 0x7c00;
1506
1507 /* handle zero, subnormals and small numbers */
1508 if (ecb_expect_true (x < 0x38800000))
1509 {
1510 /* zero */
1511 if (ecb_expect_true (!x))
1512 return s;
1513
1514 /* handle subnormals */
1515
1516 /* too small, will be zero */
1517 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1518 return s;
1519
1520 m |= 0x00800000; /* make implicit bit explicit */
1521
1522 /* very tricky - we need to round to the nearest e (+10) bit value */
1523 {
1524 unsigned int bits = 14 - e;
1525 unsigned int half = (1 << (bits - 1)) - 1;
1526 unsigned int even = (m >> bits) & 1;
1527
1528 /* if this overflows, we will end up with a normalised number */
1529 m = (m + half + even) >> bits;
1530 }
1531
1532 return s | m;
1533 }
1534
1535 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1536 m >>= 13;
1537
1538 return s | 0x7c00 | m | !m;
1539}
1540
1541/*******************************************************************************/
1542/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1543
1544/* basically, everything uses "ieee pure-endian" floating point numbers */
1545/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1546#if 0 \
1547 || __i386 || __i386__ \
1548 || ECB_GCC_AMD64 \
1549 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1550 || defined __s390__ || defined __s390x__ \
1551 || defined __mips__ \
1552 || defined __alpha__ \
1553 || defined __hppa__ \
1554 || defined __ia64__ \
1555 || defined __m68k__ \
1556 || defined __m88k__ \
1557 || defined __sh__ \
1558 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1559 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1560 || defined __aarch64__
1561 #define ECB_STDFP 1
1562#else
1563 #define ECB_STDFP 0
1564#endif
1565
1566#ifndef ECB_NO_LIBM
1567
1568 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1569
1570 /* only the oldest of old doesn't have this one. solaris. */
1571 #ifdef INFINITY
1572 #define ECB_INFINITY INFINITY
1573 #else
1574 #define ECB_INFINITY HUGE_VAL
1575 #endif
1576
1577 #ifdef NAN
1578 #define ECB_NAN NAN
1579 #else
1580 #define ECB_NAN ECB_INFINITY
1581 #endif
1582
1583 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1584 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1585 #define ecb_frexpf(x,e) frexpf ((x), (e))
1586 #else
1587 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1588 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1589 #endif
1590
1591 /* convert a float to ieee single/binary32 */
1592 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1593 ecb_function_ ecb_const uint32_t
1594 ecb_float_to_binary32 (float x)
1595 {
1596 uint32_t r;
1597
1598 #if ECB_STDFP
1599 memcpy (&r, &x, 4);
1600 #else
1601 /* slow emulation, works for anything but -0 */
1602 uint32_t m;
1603 int e;
1604
1605 if (x == 0e0f ) return 0x00000000U;
1606 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1607 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1608 if (x != x ) return 0x7fbfffffU;
1609
1610 m = ecb_frexpf (x, &e) * 0x1000000U;
1611
1612 r = m & 0x80000000U;
1613
1614 if (r)
1615 m = -m;
1616
1617 if (e <= -126)
1618 {
1619 m &= 0xffffffU;
1620 m >>= (-125 - e);
1621 e = -126;
1622 }
1623
1624 r |= (e + 126) << 23;
1625 r |= m & 0x7fffffU;
1626 #endif
1627
1628 return r;
1629 }
1630
1631 /* converts an ieee single/binary32 to a float */
1632 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1633 ecb_function_ ecb_const float
1634 ecb_binary32_to_float (uint32_t x)
1635 {
1636 float r;
1637
1638 #if ECB_STDFP
1639 memcpy (&r, &x, 4);
1640 #else
1641 /* emulation, only works for normals and subnormals and +0 */
1642 int neg = x >> 31;
1643 int e = (x >> 23) & 0xffU;
1644
1645 x &= 0x7fffffU;
1646
1647 if (e)
1648 x |= 0x800000U;
1649 else
1650 e = 1;
1651
1652 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1653 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1654
1655 r = neg ? -r : r;
1656 #endif
1657
1658 return r;
1659 }
1660
1661 /* convert a double to ieee double/binary64 */
1662 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1663 ecb_function_ ecb_const uint64_t
1664 ecb_double_to_binary64 (double x)
1665 {
1666 uint64_t r;
1667
1668 #if ECB_STDFP
1669 memcpy (&r, &x, 8);
1670 #else
1671 /* slow emulation, works for anything but -0 */
1672 uint64_t m;
1673 int e;
1674
1675 if (x == 0e0 ) return 0x0000000000000000U;
1676 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1677 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1678 if (x != x ) return 0X7ff7ffffffffffffU;
1679
1680 m = frexp (x, &e) * 0x20000000000000U;
1681
1682 r = m & 0x8000000000000000;;
1683
1684 if (r)
1685 m = -m;
1686
1687 if (e <= -1022)
1688 {
1689 m &= 0x1fffffffffffffU;
1690 m >>= (-1021 - e);
1691 e = -1022;
1692 }
1693
1694 r |= ((uint64_t)(e + 1022)) << 52;
1695 r |= m & 0xfffffffffffffU;
1696 #endif
1697
1698 return r;
1699 }
1700
1701 /* converts an ieee double/binary64 to a double */
1702 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1703 ecb_function_ ecb_const double
1704 ecb_binary64_to_double (uint64_t x)
1705 {
1706 double r;
1707
1708 #if ECB_STDFP
1709 memcpy (&r, &x, 8);
1710 #else
1711 /* emulation, only works for normals and subnormals and +0 */
1712 int neg = x >> 63;
1713 int e = (x >> 52) & 0x7ffU;
1714
1715 x &= 0xfffffffffffffU;
1716
1717 if (e)
1718 x |= 0x10000000000000U;
1719 else
1720 e = 1;
1721
1722 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1723 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1724
1725 r = neg ? -r : r;
1726 #endif
1727
1728 return r;
1729 }
1730
1731 /* convert a float to ieee half/binary16 */
1732 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1733 ecb_function_ ecb_const uint16_t
1734 ecb_float_to_binary16 (float x)
1735 {
1736 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1737 }
1738
1739 /* convert an ieee half/binary16 to float */
1740 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1741 ecb_function_ ecb_const float
1742 ecb_binary16_to_float (uint16_t x)
1743 {
1744 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1745 }
1746
1747#endif
1748
1749#endif
1750
1751/* ECB.H END */
1752
1753#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1754/* if your architecture doesn't need memory fences, e.g. because it is
1755 * single-cpu/core, or if you use libev in a project that doesn't use libev
1756 * from multiple threads, then you can define ECB_NO_THREADS when compiling
1757 * libev, in which cases the memory fences become nops.
1758 * alternatively, you can remove this #error and link against libpthread,
1759 * which will then provide the memory fences.
1760 */
1761# error "memory fences not defined for your architecture, please report"
1762#endif
1763
1764#ifndef ECB_MEMORY_FENCE
1765# define ECB_MEMORY_FENCE do { } while (0)
1766# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1767# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1768#endif
1769
1770#define inline_size ecb_inline
1771
1772#if EV_FEATURE_CODE
311# define inline_speed static inline 1773# define inline_speed ecb_inline
1774#else
1775# define inline_speed ecb_noinline static
312#endif 1776#endif
313 1777
1778/*****************************************************************************/
1779/* raw syscall wrappers */
1780
1781#if EV_NEED_SYSCALL
1782
1783#include <sys/syscall.h>
1784
1785/*
1786 * define some syscall wrappers for common architectures
1787 * this is mostly for nice looks during debugging, not performance.
1788 * our syscalls return < 0, not == -1, on error. which is good
1789 * enough for linux aio.
1790 * TODO: arm is also common nowadays, maybe even mips and x86
1791 * TODO: after implementing this, it suddenly looks like overkill, but its hard to remove...
1792 */
1793#if __GNUC__ && __linux && ECB_AMD64 && !EV_FEATURE_CODE
1794 /* the costly errno access probably kills this for size optimisation */
1795
1796 #define ev_syscall(nr,narg,arg1,arg2,arg3,arg4,arg5,arg6) \
1797 ({ \
1798 long res; \
1799 register unsigned long r6 __asm__ ("r9" ); \
1800 register unsigned long r5 __asm__ ("r8" ); \
1801 register unsigned long r4 __asm__ ("r10"); \
1802 register unsigned long r3 __asm__ ("rdx"); \
1803 register unsigned long r2 __asm__ ("rsi"); \
1804 register unsigned long r1 __asm__ ("rdi"); \
1805 if (narg >= 6) r6 = (unsigned long)(arg6); \
1806 if (narg >= 5) r5 = (unsigned long)(arg5); \
1807 if (narg >= 4) r4 = (unsigned long)(arg4); \
1808 if (narg >= 3) r3 = (unsigned long)(arg3); \
1809 if (narg >= 2) r2 = (unsigned long)(arg2); \
1810 if (narg >= 1) r1 = (unsigned long)(arg1); \
1811 __asm__ __volatile__ ( \
1812 "syscall\n\t" \
1813 : "=a" (res) \
1814 : "0" (nr), "r" (r1), "r" (r2), "r" (r3), "r" (r4), "r" (r5) \
1815 : "cc", "r11", "cx", "memory"); \
1816 errno = -res; \
1817 res; \
1818 })
1819
1820#endif
1821
1822#ifdef ev_syscall
1823 #define ev_syscall0(nr) ev_syscall (nr, 0, 0, 0, 0, 0, 0, 0)
1824 #define ev_syscall1(nr,arg1) ev_syscall (nr, 1, arg1, 0, 0, 0, 0, 0)
1825 #define ev_syscall2(nr,arg1,arg2) ev_syscall (nr, 2, arg1, arg2, 0, 0, 0, 0)
1826 #define ev_syscall3(nr,arg1,arg2,arg3) ev_syscall (nr, 3, arg1, arg2, arg3, 0, 0, 0)
1827 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) ev_syscall (nr, 3, arg1, arg2, arg3, arg4, 0, 0)
1828 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) ev_syscall (nr, 5, arg1, arg2, arg3, arg4, arg5, 0)
1829 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) ev_syscall (nr, 6, arg1, arg2, arg3, arg4, arg5,arg6)
1830#else
1831 #define ev_syscall0(nr) syscall (nr)
1832 #define ev_syscall1(nr,arg1) syscall (nr, arg1)
1833 #define ev_syscall2(nr,arg1,arg2) syscall (nr, arg1, arg2)
1834 #define ev_syscall3(nr,arg1,arg2,arg3) syscall (nr, arg1, arg2, arg3)
1835 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) syscall (nr, arg1, arg2, arg3, arg4)
1836 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) syscall (nr, arg1, arg2, arg3, arg4, arg5)
1837 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) syscall (nr, arg1, arg2, arg3, arg4, arg5,arg6)
1838#endif
1839
1840#endif
1841
1842/*****************************************************************************/
1843
314#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1844#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1845
1846#if EV_MINPRI == EV_MAXPRI
1847# define ABSPRI(w) (((W)w), 0)
1848#else
315#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1849# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1850#endif
316 1851
317#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1852#define EMPTY /* required for microsofts broken pseudo-c compiler */
318#define EMPTY2(a,b) /* used to suppress some warnings */
319 1853
320typedef ev_watcher *W; 1854typedef ev_watcher *W;
321typedef ev_watcher_list *WL; 1855typedef ev_watcher_list *WL;
322typedef ev_watcher_time *WT; 1856typedef ev_watcher_time *WT;
323 1857
1858#define ev_active(w) ((W)(w))->active
1859#define ev_at(w) ((WT)(w))->at
1860
1861#if EV_USE_REALTIME
1862/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1863/* giving it a reasonably high chance of working on typical architectures */
1864static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1865#endif
1866
324#if EV_USE_MONOTONIC 1867#if EV_USE_MONOTONIC
325/* sig_atomic_t is used to avoid per-thread variables or locking but still */
326/* giving it a reasonably high chance of working on typical architetcures */
327static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1868static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1869#endif
1870
1871#ifndef EV_FD_TO_WIN32_HANDLE
1872# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1873#endif
1874#ifndef EV_WIN32_HANDLE_TO_FD
1875# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1876#endif
1877#ifndef EV_WIN32_CLOSE_FD
1878# define EV_WIN32_CLOSE_FD(fd) close (fd)
328#endif 1879#endif
329 1880
330#ifdef _WIN32 1881#ifdef _WIN32
331# include "ev_win32.c" 1882# include "ev_win32.c"
332#endif 1883#endif
333 1884
334/*****************************************************************************/ 1885/*****************************************************************************/
335 1886
1887#if EV_USE_LINUXAIO
1888# include <linux/aio_abi.h> /* probably only needed for aio_context_t */
1889#endif
1890
1891/* define a suitable floor function (only used by periodics atm) */
1892
1893#if EV_USE_FLOOR
1894# include <math.h>
1895# define ev_floor(v) floor (v)
1896#else
1897
1898#include <float.h>
1899
1900/* a floor() replacement function, should be independent of ev_tstamp type */
1901ecb_noinline
1902static ev_tstamp
1903ev_floor (ev_tstamp v)
1904{
1905 /* the choice of shift factor is not terribly important */
1906#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1907 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1908#else
1909 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1910#endif
1911
1912 /* special treatment for negative arguments */
1913 if (ecb_expect_false (v < 0.))
1914 {
1915 ev_tstamp f = -ev_floor (-v);
1916
1917 return f - (f == v ? 0 : 1);
1918 }
1919
1920 /* argument too large for an unsigned long? then reduce it */
1921 if (ecb_expect_false (v >= shift))
1922 {
1923 ev_tstamp f;
1924
1925 if (v == v - 1.)
1926 return v; /* very large numbers are assumed to be integer */
1927
1928 f = shift * ev_floor (v * (1. / shift));
1929 return f + ev_floor (v - f);
1930 }
1931
1932 /* fits into an unsigned long */
1933 return (unsigned long)v;
1934}
1935
1936#endif
1937
1938/*****************************************************************************/
1939
1940#ifdef __linux
1941# include <sys/utsname.h>
1942#endif
1943
1944ecb_noinline ecb_cold
1945static unsigned int
1946ev_linux_version (void)
1947{
1948#ifdef __linux
1949 unsigned int v = 0;
1950 struct utsname buf;
1951 int i;
1952 char *p = buf.release;
1953
1954 if (uname (&buf))
1955 return 0;
1956
1957 for (i = 3+1; --i; )
1958 {
1959 unsigned int c = 0;
1960
1961 for (;;)
1962 {
1963 if (*p >= '0' && *p <= '9')
1964 c = c * 10 + *p++ - '0';
1965 else
1966 {
1967 p += *p == '.';
1968 break;
1969 }
1970 }
1971
1972 v = (v << 8) | c;
1973 }
1974
1975 return v;
1976#else
1977 return 0;
1978#endif
1979}
1980
1981/*****************************************************************************/
1982
1983#if EV_AVOID_STDIO
1984ecb_noinline ecb_cold
1985static void
1986ev_printerr (const char *msg)
1987{
1988 write (STDERR_FILENO, msg, strlen (msg));
1989}
1990#endif
1991
336static void (*syserr_cb)(const char *msg); 1992static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
337 1993
1994ecb_cold
338void 1995void
339ev_set_syserr_cb (void (*cb)(const char *msg)) 1996ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
340{ 1997{
341 syserr_cb = cb; 1998 syserr_cb = cb;
342} 1999}
343 2000
344static void noinline 2001ecb_noinline ecb_cold
2002static void
345syserr (const char *msg) 2003ev_syserr (const char *msg)
346{ 2004{
347 if (!msg) 2005 if (!msg)
348 msg = "(libev) system error"; 2006 msg = "(libev) system error";
349 2007
350 if (syserr_cb) 2008 if (syserr_cb)
351 syserr_cb (msg); 2009 syserr_cb (msg);
352 else 2010 else
353 { 2011 {
2012#if EV_AVOID_STDIO
2013 ev_printerr (msg);
2014 ev_printerr (": ");
2015 ev_printerr (strerror (errno));
2016 ev_printerr ("\n");
2017#else
354 perror (msg); 2018 perror (msg);
2019#endif
355 abort (); 2020 abort ();
356 } 2021 }
357} 2022}
358 2023
359static void *(*alloc)(void *ptr, long size); 2024static void *
2025ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
2026{
2027 /* some systems, notably openbsd and darwin, fail to properly
2028 * implement realloc (x, 0) (as required by both ansi c-89 and
2029 * the single unix specification, so work around them here.
2030 * recently, also (at least) fedora and debian started breaking it,
2031 * despite documenting it otherwise.
2032 */
360 2033
2034 if (size)
2035 return realloc (ptr, size);
2036
2037 free (ptr);
2038 return 0;
2039}
2040
2041static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
2042
2043ecb_cold
361void 2044void
362ev_set_allocator (void *(*cb)(void *ptr, long size)) 2045ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
363{ 2046{
364 alloc = cb; 2047 alloc = cb;
365} 2048}
366 2049
367inline_speed void * 2050inline_speed void *
368ev_realloc (void *ptr, long size) 2051ev_realloc (void *ptr, long size)
369{ 2052{
370 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 2053 ptr = alloc (ptr, size);
371 2054
372 if (!ptr && size) 2055 if (!ptr && size)
373 { 2056 {
2057#if EV_AVOID_STDIO
2058 ev_printerr ("(libev) memory allocation failed, aborting.\n");
2059#else
374 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 2060 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
2061#endif
375 abort (); 2062 abort ();
376 } 2063 }
377 2064
378 return ptr; 2065 return ptr;
379} 2066}
381#define ev_malloc(size) ev_realloc (0, (size)) 2068#define ev_malloc(size) ev_realloc (0, (size))
382#define ev_free(ptr) ev_realloc ((ptr), 0) 2069#define ev_free(ptr) ev_realloc ((ptr), 0)
383 2070
384/*****************************************************************************/ 2071/*****************************************************************************/
385 2072
2073/* set in reify when reification needed */
2074#define EV_ANFD_REIFY 1
2075
2076/* file descriptor info structure */
386typedef struct 2077typedef struct
387{ 2078{
388 WL head; 2079 WL head;
389 unsigned char events; 2080 unsigned char events; /* the events watched for */
390 unsigned char reify; 2081 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
2082 unsigned char emask; /* some backends store the actual kernel mask in here */
2083 unsigned char eflags; /* flags field for use by backends */
2084#if EV_USE_EPOLL
2085 unsigned int egen; /* generation counter to counter epoll bugs */
2086#endif
391#if EV_SELECT_IS_WINSOCKET 2087#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
392 SOCKET handle; 2088 SOCKET handle;
393#endif 2089#endif
2090#if EV_USE_IOCP
2091 OVERLAPPED or, ow;
2092#endif
394} ANFD; 2093} ANFD;
395 2094
2095/* stores the pending event set for a given watcher */
396typedef struct 2096typedef struct
397{ 2097{
398 W w; 2098 W w;
399 int events; 2099 int events; /* the pending event set for the given watcher */
400} ANPENDING; 2100} ANPENDING;
401 2101
402#if EV_USE_INOTIFY 2102#if EV_USE_INOTIFY
2103/* hash table entry per inotify-id */
403typedef struct 2104typedef struct
404{ 2105{
405 WL head; 2106 WL head;
406} ANFS; 2107} ANFS;
2108#endif
2109
2110/* Heap Entry */
2111#if EV_HEAP_CACHE_AT
2112 /* a heap element */
2113 typedef struct {
2114 ev_tstamp at;
2115 WT w;
2116 } ANHE;
2117
2118 #define ANHE_w(he) (he).w /* access watcher, read-write */
2119 #define ANHE_at(he) (he).at /* access cached at, read-only */
2120 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
2121#else
2122 /* a heap element */
2123 typedef WT ANHE;
2124
2125 #define ANHE_w(he) (he)
2126 #define ANHE_at(he) (he)->at
2127 #define ANHE_at_cache(he)
407#endif 2128#endif
408 2129
409#if EV_MULTIPLICITY 2130#if EV_MULTIPLICITY
410 2131
411 struct ev_loop 2132 struct ev_loop
417 #undef VAR 2138 #undef VAR
418 }; 2139 };
419 #include "ev_wrap.h" 2140 #include "ev_wrap.h"
420 2141
421 static struct ev_loop default_loop_struct; 2142 static struct ev_loop default_loop_struct;
422 struct ev_loop *ev_default_loop_ptr; 2143 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
423 2144
424#else 2145#else
425 2146
426 ev_tstamp ev_rt_now; 2147 EV_API_DECL ev_tstamp ev_rt_now = EV_TS_CONST (0.); /* needs to be initialised to make it a definition despite extern */
427 #define VAR(name,decl) static decl; 2148 #define VAR(name,decl) static decl;
428 #include "ev_vars.h" 2149 #include "ev_vars.h"
429 #undef VAR 2150 #undef VAR
430 2151
431 static int ev_default_loop_ptr; 2152 static int ev_default_loop_ptr;
432 2153
433#endif 2154#endif
434 2155
2156#if EV_FEATURE_API
2157# define EV_RELEASE_CB if (ecb_expect_false (release_cb)) release_cb (EV_A)
2158# define EV_ACQUIRE_CB if (ecb_expect_false (acquire_cb)) acquire_cb (EV_A)
2159# define EV_INVOKE_PENDING invoke_cb (EV_A)
2160#else
2161# define EV_RELEASE_CB (void)0
2162# define EV_ACQUIRE_CB (void)0
2163# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
2164#endif
2165
2166#define EVBREAK_RECURSE 0x80
2167
435/*****************************************************************************/ 2168/*****************************************************************************/
436 2169
2170#ifndef EV_HAVE_EV_TIME
437ev_tstamp 2171ev_tstamp
438ev_time (void) 2172ev_time (void) EV_NOEXCEPT
439{ 2173{
440#if EV_USE_REALTIME 2174#if EV_USE_REALTIME
2175 if (ecb_expect_true (have_realtime))
2176 {
441 struct timespec ts; 2177 struct timespec ts;
442 clock_gettime (CLOCK_REALTIME, &ts); 2178 clock_gettime (CLOCK_REALTIME, &ts);
443 return ts.tv_sec + ts.tv_nsec * 1e-9; 2179 return EV_TS_GET (ts);
444#else 2180 }
2181#endif
2182
2183 {
445 struct timeval tv; 2184 struct timeval tv;
446 gettimeofday (&tv, 0); 2185 gettimeofday (&tv, 0);
447 return tv.tv_sec + tv.tv_usec * 1e-6; 2186 return EV_TV_GET (tv);
448#endif 2187 }
449} 2188}
2189#endif
450 2190
451ev_tstamp inline_size 2191inline_size ev_tstamp
452get_clock (void) 2192get_clock (void)
453{ 2193{
454#if EV_USE_MONOTONIC 2194#if EV_USE_MONOTONIC
455 if (expect_true (have_monotonic)) 2195 if (ecb_expect_true (have_monotonic))
456 { 2196 {
457 struct timespec ts; 2197 struct timespec ts;
458 clock_gettime (CLOCK_MONOTONIC, &ts); 2198 clock_gettime (CLOCK_MONOTONIC, &ts);
459 return ts.tv_sec + ts.tv_nsec * 1e-9; 2199 return EV_TS_GET (ts);
460 } 2200 }
461#endif 2201#endif
462 2202
463 return ev_time (); 2203 return ev_time ();
464} 2204}
465 2205
466#if EV_MULTIPLICITY 2206#if EV_MULTIPLICITY
467ev_tstamp 2207ev_tstamp
468ev_now (EV_P) 2208ev_now (EV_P) EV_NOEXCEPT
469{ 2209{
470 return ev_rt_now; 2210 return ev_rt_now;
471} 2211}
472#endif 2212#endif
473 2213
474void 2214void
475ev_sleep (ev_tstamp delay) 2215ev_sleep (ev_tstamp delay) EV_NOEXCEPT
476{ 2216{
477 if (delay > 0.) 2217 if (delay > EV_TS_CONST (0.))
478 { 2218 {
479#if EV_USE_NANOSLEEP 2219#if EV_USE_NANOSLEEP
480 struct timespec ts; 2220 struct timespec ts;
481 2221
482 ts.tv_sec = (time_t)delay; 2222 EV_TS_SET (ts, delay);
483 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
484
485 nanosleep (&ts, 0); 2223 nanosleep (&ts, 0);
486#elif defined(_WIN32) 2224#elif defined _WIN32
2225 /* maybe this should round up, as ms is very low resolution */
2226 /* compared to select (µs) or nanosleep (ns) */
487 Sleep ((unsigned long)(delay * 1e3)); 2227 Sleep ((unsigned long)(EV_TS_TO_MSEC (delay)));
488#else 2228#else
489 struct timeval tv; 2229 struct timeval tv;
490 2230
491 tv.tv_sec = (time_t)delay; 2231 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
492 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 2232 /* something not guaranteed by newer posix versions, but guaranteed */
493 2233 /* by older ones */
2234 EV_TV_SET (tv, delay);
494 select (0, 0, 0, 0, &tv); 2235 select (0, 0, 0, 0, &tv);
495#endif 2236#endif
496 } 2237 }
497} 2238}
498 2239
499/*****************************************************************************/ 2240/*****************************************************************************/
500 2241
501int inline_size 2242#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
2243
2244/* find a suitable new size for the given array, */
2245/* hopefully by rounding to a nice-to-malloc size */
2246inline_size int
502array_nextsize (int elem, int cur, int cnt) 2247array_nextsize (int elem, int cur, int cnt)
503{ 2248{
504 int ncur = cur + 1; 2249 int ncur = cur + 1;
505 2250
506 do 2251 do
507 ncur <<= 1; 2252 ncur <<= 1;
508 while (cnt > ncur); 2253 while (cnt > ncur);
509 2254
510 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 2255 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
511 if (elem * ncur > 4096) 2256 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
512 { 2257 {
513 ncur *= elem; 2258 ncur *= elem;
514 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 2259 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
515 ncur = ncur - sizeof (void *) * 4; 2260 ncur = ncur - sizeof (void *) * 4;
516 ncur /= elem; 2261 ncur /= elem;
517 } 2262 }
518 2263
519 return ncur; 2264 return ncur;
520} 2265}
521 2266
522static noinline void * 2267ecb_noinline ecb_cold
2268static void *
523array_realloc (int elem, void *base, int *cur, int cnt) 2269array_realloc (int elem, void *base, int *cur, int cnt)
524{ 2270{
525 *cur = array_nextsize (elem, *cur, cnt); 2271 *cur = array_nextsize (elem, *cur, cnt);
526 return ev_realloc (base, elem * *cur); 2272 return ev_realloc (base, elem * *cur);
527} 2273}
528 2274
2275#define array_needsize_noinit(base,offset,count)
2276
2277#define array_needsize_zerofill(base,offset,count) \
2278 memset ((void *)(base + offset), 0, sizeof (*(base)) * (count))
2279
529#define array_needsize(type,base,cur,cnt,init) \ 2280#define array_needsize(type,base,cur,cnt,init) \
530 if (expect_false ((cnt) > (cur))) \ 2281 if (ecb_expect_false ((cnt) > (cur))) \
531 { \ 2282 { \
532 int ocur_ = (cur); \ 2283 ecb_unused int ocur_ = (cur); \
533 (base) = (type *)array_realloc \ 2284 (base) = (type *)array_realloc \
534 (sizeof (type), (base), &(cur), (cnt)); \ 2285 (sizeof (type), (base), &(cur), (cnt)); \
535 init ((base) + (ocur_), (cur) - ocur_); \ 2286 init ((base), ocur_, ((cur) - ocur_)); \
536 } 2287 }
537 2288
538#if 0 2289#if 0
539#define array_slim(type,stem) \ 2290#define array_slim(type,stem) \
540 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 2291 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
544 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 2295 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
545 } 2296 }
546#endif 2297#endif
547 2298
548#define array_free(stem, idx) \ 2299#define array_free(stem, idx) \
549 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 2300 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
550 2301
551/*****************************************************************************/ 2302/*****************************************************************************/
552 2303
553void noinline 2304/* dummy callback for pending events */
2305ecb_noinline
2306static void
2307pendingcb (EV_P_ ev_prepare *w, int revents)
2308{
2309}
2310
2311ecb_noinline
2312void
554ev_feed_event (EV_P_ void *w, int revents) 2313ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
555{ 2314{
556 W w_ = (W)w; 2315 W w_ = (W)w;
557 int pri = ABSPRI (w_); 2316 int pri = ABSPRI (w_);
558 2317
559 if (expect_false (w_->pending)) 2318 if (ecb_expect_false (w_->pending))
560 pendings [pri][w_->pending - 1].events |= revents; 2319 pendings [pri][w_->pending - 1].events |= revents;
561 else 2320 else
562 { 2321 {
563 w_->pending = ++pendingcnt [pri]; 2322 w_->pending = ++pendingcnt [pri];
564 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 2323 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
565 pendings [pri][w_->pending - 1].w = w_; 2324 pendings [pri][w_->pending - 1].w = w_;
566 pendings [pri][w_->pending - 1].events = revents; 2325 pendings [pri][w_->pending - 1].events = revents;
567 } 2326 }
568}
569 2327
570void inline_speed 2328 pendingpri = NUMPRI - 1;
2329}
2330
2331inline_speed void
2332feed_reverse (EV_P_ W w)
2333{
2334 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2335 rfeeds [rfeedcnt++] = w;
2336}
2337
2338inline_size void
2339feed_reverse_done (EV_P_ int revents)
2340{
2341 do
2342 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2343 while (rfeedcnt);
2344}
2345
2346inline_speed void
571queue_events (EV_P_ W *events, int eventcnt, int type) 2347queue_events (EV_P_ W *events, int eventcnt, int type)
572{ 2348{
573 int i; 2349 int i;
574 2350
575 for (i = 0; i < eventcnt; ++i) 2351 for (i = 0; i < eventcnt; ++i)
576 ev_feed_event (EV_A_ events [i], type); 2352 ev_feed_event (EV_A_ events [i], type);
577} 2353}
578 2354
579/*****************************************************************************/ 2355/*****************************************************************************/
580 2356
581void inline_size 2357inline_speed void
582anfds_init (ANFD *base, int count)
583{
584 while (count--)
585 {
586 base->head = 0;
587 base->events = EV_NONE;
588 base->reify = 0;
589
590 ++base;
591 }
592}
593
594void inline_speed
595fd_event (EV_P_ int fd, int revents) 2358fd_event_nocheck (EV_P_ int fd, int revents)
596{ 2359{
597 ANFD *anfd = anfds + fd; 2360 ANFD *anfd = anfds + fd;
598 ev_io *w; 2361 ev_io *w;
599 2362
600 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2363 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
604 if (ev) 2367 if (ev)
605 ev_feed_event (EV_A_ (W)w, ev); 2368 ev_feed_event (EV_A_ (W)w, ev);
606 } 2369 }
607} 2370}
608 2371
2372/* do not submit kernel events for fds that have reify set */
2373/* because that means they changed while we were polling for new events */
2374inline_speed void
2375fd_event (EV_P_ int fd, int revents)
2376{
2377 ANFD *anfd = anfds + fd;
2378
2379 if (ecb_expect_true (!anfd->reify))
2380 fd_event_nocheck (EV_A_ fd, revents);
2381}
2382
609void 2383void
610ev_feed_fd_event (EV_P_ int fd, int revents) 2384ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
611{ 2385{
612 if (fd >= 0 && fd < anfdmax) 2386 if (fd >= 0 && fd < anfdmax)
613 fd_event (EV_A_ fd, revents); 2387 fd_event_nocheck (EV_A_ fd, revents);
614} 2388}
615 2389
616void inline_size 2390/* make sure the external fd watch events are in-sync */
2391/* with the kernel/libev internal state */
2392inline_size void
617fd_reify (EV_P) 2393fd_reify (EV_P)
618{ 2394{
619 int i; 2395 int i;
620 2396
2397 /* most backends do not modify the fdchanges list in backend_modfiy.
2398 * except io_uring, which has fixed-size buffers which might force us
2399 * to handle events in backend_modify, causing fdchangesd to be amended,
2400 * which could result in an endless loop.
2401 * to avoid this, we do not dynamically handle fds that were added
2402 * during fd_reify. that menas thast for those backends, fdchangecnt
2403 * might be non-zero during poll, which must cause them to not block.
2404 * to not put too much of a burden on other backends, this detail
2405 * needs to be handled in the backend.
2406 */
2407 int changecnt = fdchangecnt;
2408
2409#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
621 for (i = 0; i < fdchangecnt; ++i) 2410 for (i = 0; i < changecnt; ++i)
2411 {
2412 int fd = fdchanges [i];
2413 ANFD *anfd = anfds + fd;
2414
2415 if (anfd->reify & EV__IOFDSET && anfd->head)
2416 {
2417 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2418
2419 if (handle != anfd->handle)
2420 {
2421 unsigned long arg;
2422
2423 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2424
2425 /* handle changed, but fd didn't - we need to do it in two steps */
2426 backend_modify (EV_A_ fd, anfd->events, 0);
2427 anfd->events = 0;
2428 anfd->handle = handle;
2429 }
2430 }
2431 }
2432#endif
2433
2434 for (i = 0; i < changecnt; ++i)
622 { 2435 {
623 int fd = fdchanges [i]; 2436 int fd = fdchanges [i];
624 ANFD *anfd = anfds + fd; 2437 ANFD *anfd = anfds + fd;
625 ev_io *w; 2438 ev_io *w;
626 2439
627 unsigned char events = 0; 2440 unsigned char o_events = anfd->events;
2441 unsigned char o_reify = anfd->reify;
628 2442
629 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2443 anfd->reify = 0;
630 events |= (unsigned char)w->events;
631 2444
632#if EV_SELECT_IS_WINSOCKET 2445 /*if (ecb_expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
633 if (events)
634 { 2446 {
635 unsigned long argp; 2447 anfd->events = 0;
636 #ifdef EV_FD_TO_WIN32_HANDLE 2448
637 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 2449 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
638 #else 2450 anfd->events |= (unsigned char)w->events;
639 anfd->handle = _get_osfhandle (fd); 2451
640 #endif 2452 if (o_events != anfd->events)
641 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 2453 o_reify = EV__IOFDSET; /* actually |= */
642 } 2454 }
643#endif
644 2455
645 { 2456 if (o_reify & EV__IOFDSET)
646 unsigned char o_events = anfd->events;
647 unsigned char o_reify = anfd->reify;
648
649 anfd->reify = 0;
650 anfd->events = events;
651
652 if (o_events != events || o_reify & EV_IOFDSET)
653 backend_modify (EV_A_ fd, o_events, events); 2457 backend_modify (EV_A_ fd, o_events, anfd->events);
654 } 2458 }
655 }
656 2459
2460 /* normally, fdchangecnt hasn't changed. if it has, then new fds have been added.
2461 * this is a rare case (see beginning comment in this function), so we copy them to the
2462 * front and hope the backend handles this case.
2463 */
2464 if (ecb_expect_false (fdchangecnt != changecnt))
2465 memmove (fdchanges, fdchanges + changecnt, (fdchangecnt - changecnt) * sizeof (*fdchanges));
2466
657 fdchangecnt = 0; 2467 fdchangecnt -= changecnt;
658} 2468}
659 2469
2470/* something about the given fd changed */
660void inline_size 2471inline_size
2472void
661fd_change (EV_P_ int fd, int flags) 2473fd_change (EV_P_ int fd, int flags)
662{ 2474{
663 unsigned char reify = anfds [fd].reify; 2475 unsigned char reify = anfds [fd].reify;
664 anfds [fd].reify |= flags; 2476 anfds [fd].reify |= flags;
665 2477
666 if (expect_true (!reify)) 2478 if (ecb_expect_true (!reify))
667 { 2479 {
668 ++fdchangecnt; 2480 ++fdchangecnt;
669 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 2481 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
670 fdchanges [fdchangecnt - 1] = fd; 2482 fdchanges [fdchangecnt - 1] = fd;
671 } 2483 }
672} 2484}
673 2485
674void inline_speed 2486/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2487inline_speed ecb_cold void
675fd_kill (EV_P_ int fd) 2488fd_kill (EV_P_ int fd)
676{ 2489{
677 ev_io *w; 2490 ev_io *w;
678 2491
679 while ((w = (ev_io *)anfds [fd].head)) 2492 while ((w = (ev_io *)anfds [fd].head))
681 ev_io_stop (EV_A_ w); 2494 ev_io_stop (EV_A_ w);
682 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2495 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
683 } 2496 }
684} 2497}
685 2498
686int inline_size 2499/* check whether the given fd is actually valid, for error recovery */
2500inline_size ecb_cold int
687fd_valid (int fd) 2501fd_valid (int fd)
688{ 2502{
689#ifdef _WIN32 2503#ifdef _WIN32
690 return _get_osfhandle (fd) != -1; 2504 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
691#else 2505#else
692 return fcntl (fd, F_GETFD) != -1; 2506 return fcntl (fd, F_GETFD) != -1;
693#endif 2507#endif
694} 2508}
695 2509
696/* called on EBADF to verify fds */ 2510/* called on EBADF to verify fds */
697static void noinline 2511ecb_noinline ecb_cold
2512static void
698fd_ebadf (EV_P) 2513fd_ebadf (EV_P)
699{ 2514{
700 int fd; 2515 int fd;
701 2516
702 for (fd = 0; fd < anfdmax; ++fd) 2517 for (fd = 0; fd < anfdmax; ++fd)
703 if (anfds [fd].events) 2518 if (anfds [fd].events)
704 if (!fd_valid (fd) == -1 && errno == EBADF) 2519 if (!fd_valid (fd) && errno == EBADF)
705 fd_kill (EV_A_ fd); 2520 fd_kill (EV_A_ fd);
706} 2521}
707 2522
708/* called on ENOMEM in select/poll to kill some fds and retry */ 2523/* called on ENOMEM in select/poll to kill some fds and retry */
709static void noinline 2524ecb_noinline ecb_cold
2525static void
710fd_enomem (EV_P) 2526fd_enomem (EV_P)
711{ 2527{
712 int fd; 2528 int fd;
713 2529
714 for (fd = anfdmax; fd--; ) 2530 for (fd = anfdmax; fd--; )
715 if (anfds [fd].events) 2531 if (anfds [fd].events)
716 { 2532 {
717 fd_kill (EV_A_ fd); 2533 fd_kill (EV_A_ fd);
718 return; 2534 break;
719 } 2535 }
720} 2536}
721 2537
722/* usually called after fork if backend needs to re-arm all fds from scratch */ 2538/* usually called after fork if backend needs to re-arm all fds from scratch */
723static void noinline 2539ecb_noinline
2540static void
724fd_rearm_all (EV_P) 2541fd_rearm_all (EV_P)
725{ 2542{
726 int fd; 2543 int fd;
727 2544
728 for (fd = 0; fd < anfdmax; ++fd) 2545 for (fd = 0; fd < anfdmax; ++fd)
729 if (anfds [fd].events) 2546 if (anfds [fd].events)
730 { 2547 {
731 anfds [fd].events = 0; 2548 anfds [fd].events = 0;
2549 anfds [fd].emask = 0;
732 fd_change (EV_A_ fd, EV_IOFDSET | 1); 2550 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
733 } 2551 }
734} 2552}
735 2553
736/*****************************************************************************/ 2554/* used to prepare libev internal fd's */
737 2555/* this is not fork-safe */
738void inline_speed 2556inline_speed void
739upheap (WT *heap, int k)
740{
741 WT w = heap [k];
742
743 while (k)
744 {
745 int p = (k - 1) >> 1;
746
747 if (heap [p]->at <= w->at)
748 break;
749
750 heap [k] = heap [p];
751 ((W)heap [k])->active = k + 1;
752 k = p;
753 }
754
755 heap [k] = w;
756 ((W)heap [k])->active = k + 1;
757}
758
759void inline_speed
760downheap (WT *heap, int N, int k)
761{
762 WT w = heap [k];
763
764 for (;;)
765 {
766 int c = (k << 1) + 1;
767
768 if (c >= N)
769 break;
770
771 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
772 ? 1 : 0;
773
774 if (w->at <= heap [c]->at)
775 break;
776
777 heap [k] = heap [c];
778 ((W)heap [k])->active = k + 1;
779
780 k = c;
781 }
782
783 heap [k] = w;
784 ((W)heap [k])->active = k + 1;
785}
786
787void inline_size
788adjustheap (WT *heap, int N, int k)
789{
790 upheap (heap, k);
791 downheap (heap, N, k);
792}
793
794/*****************************************************************************/
795
796typedef struct
797{
798 WL head;
799 EV_ATOMIC_T gotsig;
800} ANSIG;
801
802static ANSIG *signals;
803static int signalmax;
804
805static EV_ATOMIC_T gotsig;
806
807void inline_size
808signals_init (ANSIG *base, int count)
809{
810 while (count--)
811 {
812 base->head = 0;
813 base->gotsig = 0;
814
815 ++base;
816 }
817}
818
819/*****************************************************************************/
820
821void inline_speed
822fd_intern (int fd) 2557fd_intern (int fd)
823{ 2558{
824#ifdef _WIN32 2559#ifdef _WIN32
825 int arg = 1; 2560 unsigned long arg = 1;
826 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 2561 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
827#else 2562#else
828 fcntl (fd, F_SETFD, FD_CLOEXEC); 2563 fcntl (fd, F_SETFD, FD_CLOEXEC);
829 fcntl (fd, F_SETFL, O_NONBLOCK); 2564 fcntl (fd, F_SETFL, O_NONBLOCK);
830#endif 2565#endif
831} 2566}
832 2567
833static void noinline 2568/*****************************************************************************/
834evpipe_init (EV_P) 2569
2570/*
2571 * the heap functions want a real array index. array index 0 is guaranteed to not
2572 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2573 * the branching factor of the d-tree.
2574 */
2575
2576/*
2577 * at the moment we allow libev the luxury of two heaps,
2578 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2579 * which is more cache-efficient.
2580 * the difference is about 5% with 50000+ watchers.
2581 */
2582#if EV_USE_4HEAP
2583
2584#define DHEAP 4
2585#define HEAP0 (DHEAP - 1) /* index of first element in heap */
2586#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2587#define UPHEAP_DONE(p,k) ((p) == (k))
2588
2589/* away from the root */
2590inline_speed void
2591downheap (ANHE *heap, int N, int k)
835{ 2592{
836 if (!ev_is_active (&pipeev)) 2593 ANHE he = heap [k];
2594 ANHE *E = heap + N + HEAP0;
2595
2596 for (;;)
837 { 2597 {
838#if EV_USE_EVENTFD 2598 ev_tstamp minat;
839 if ((evfd = eventfd (0, 0)) >= 0) 2599 ANHE *minpos;
2600 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2601
2602 /* find minimum child */
2603 if (ecb_expect_true (pos + DHEAP - 1 < E))
840 { 2604 {
841 evpipe [0] = -1; 2605 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
842 fd_intern (evfd); 2606 if ( minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
843 ev_io_set (&pipeev, evfd, EV_READ); 2607 if ( minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2608 if ( minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2609 }
2610 else if (pos < E)
2611 {
2612 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2613 if (pos + 1 < E && minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2614 if (pos + 2 < E && minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2615 if (pos + 3 < E && minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
844 } 2616 }
845 else 2617 else
2618 break;
2619
2620 if (ANHE_at (he) <= minat)
2621 break;
2622
2623 heap [k] = *minpos;
2624 ev_active (ANHE_w (*minpos)) = k;
2625
2626 k = minpos - heap;
2627 }
2628
2629 heap [k] = he;
2630 ev_active (ANHE_w (he)) = k;
2631}
2632
2633#else /* not 4HEAP */
2634
2635#define HEAP0 1
2636#define HPARENT(k) ((k) >> 1)
2637#define UPHEAP_DONE(p,k) (!(p))
2638
2639/* away from the root */
2640inline_speed void
2641downheap (ANHE *heap, int N, int k)
2642{
2643 ANHE he = heap [k];
2644
2645 for (;;)
2646 {
2647 int c = k << 1;
2648
2649 if (c >= N + HEAP0)
2650 break;
2651
2652 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2653 ? 1 : 0;
2654
2655 if (ANHE_at (he) <= ANHE_at (heap [c]))
2656 break;
2657
2658 heap [k] = heap [c];
2659 ev_active (ANHE_w (heap [k])) = k;
2660
2661 k = c;
2662 }
2663
2664 heap [k] = he;
2665 ev_active (ANHE_w (he)) = k;
2666}
2667#endif
2668
2669/* towards the root */
2670inline_speed void
2671upheap (ANHE *heap, int k)
2672{
2673 ANHE he = heap [k];
2674
2675 for (;;)
2676 {
2677 int p = HPARENT (k);
2678
2679 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2680 break;
2681
2682 heap [k] = heap [p];
2683 ev_active (ANHE_w (heap [k])) = k;
2684 k = p;
2685 }
2686
2687 heap [k] = he;
2688 ev_active (ANHE_w (he)) = k;
2689}
2690
2691/* move an element suitably so it is in a correct place */
2692inline_size void
2693adjustheap (ANHE *heap, int N, int k)
2694{
2695 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2696 upheap (heap, k);
2697 else
2698 downheap (heap, N, k);
2699}
2700
2701/* rebuild the heap: this function is used only once and executed rarely */
2702inline_size void
2703reheap (ANHE *heap, int N)
2704{
2705 int i;
2706
2707 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2708 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2709 for (i = 0; i < N; ++i)
2710 upheap (heap, i + HEAP0);
2711}
2712
2713/*****************************************************************************/
2714
2715/* associate signal watchers to a signal */
2716typedef struct
2717{
2718 EV_ATOMIC_T pending;
2719#if EV_MULTIPLICITY
2720 EV_P;
2721#endif
2722 WL head;
2723} ANSIG;
2724
2725static ANSIG signals [EV_NSIG - 1];
2726
2727/*****************************************************************************/
2728
2729#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2730
2731ecb_noinline ecb_cold
2732static void
2733evpipe_init (EV_P)
2734{
2735 if (!ev_is_active (&pipe_w))
2736 {
2737 int fds [2];
2738
2739# if EV_USE_EVENTFD
2740 fds [0] = -1;
2741 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2742 if (fds [1] < 0 && errno == EINVAL)
2743 fds [1] = eventfd (0, 0);
2744
2745 if (fds [1] < 0)
846#endif 2746# endif
847 { 2747 {
848 while (pipe (evpipe)) 2748 while (pipe (fds))
849 syserr ("(libev) error creating signal/async pipe"); 2749 ev_syserr ("(libev) error creating signal/async pipe");
850 2750
851 fd_intern (evpipe [0]); 2751 fd_intern (fds [0]);
852 fd_intern (evpipe [1]);
853 ev_io_set (&pipeev, evpipe [0], EV_READ);
854 } 2752 }
855 2753
2754 evpipe [0] = fds [0];
2755
2756 if (evpipe [1] < 0)
2757 evpipe [1] = fds [1]; /* first call, set write fd */
2758 else
2759 {
2760 /* on subsequent calls, do not change evpipe [1] */
2761 /* so that evpipe_write can always rely on its value. */
2762 /* this branch does not do anything sensible on windows, */
2763 /* so must not be executed on windows */
2764
2765 dup2 (fds [1], evpipe [1]);
2766 close (fds [1]);
2767 }
2768
2769 fd_intern (evpipe [1]);
2770
2771 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
856 ev_io_start (EV_A_ &pipeev); 2772 ev_io_start (EV_A_ &pipe_w);
857 ev_unref (EV_A); /* watcher should not keep loop alive */ 2773 ev_unref (EV_A); /* watcher should not keep loop alive */
858 } 2774 }
859} 2775}
860 2776
861void inline_size 2777inline_speed void
862evpipe_write (EV_P_ EV_ATOMIC_T *flag) 2778evpipe_write (EV_P_ EV_ATOMIC_T *flag)
863{ 2779{
864 if (!*flag) 2780 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2781
2782 if (ecb_expect_true (*flag))
2783 return;
2784
2785 *flag = 1;
2786 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2787
2788 pipe_write_skipped = 1;
2789
2790 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2791
2792 if (pipe_write_wanted)
865 { 2793 {
2794 int old_errno;
2795
2796 pipe_write_skipped = 0;
2797 ECB_MEMORY_FENCE_RELEASE;
2798
866 int old_errno = errno; /* save errno because write might clobber it */ 2799 old_errno = errno; /* save errno because write will clobber it */
867
868 *flag = 1;
869 2800
870#if EV_USE_EVENTFD 2801#if EV_USE_EVENTFD
871 if (evfd >= 0) 2802 if (evpipe [0] < 0)
872 { 2803 {
873 uint64_t counter = 1; 2804 uint64_t counter = 1;
874 write (evfd, &counter, sizeof (uint64_t)); 2805 write (evpipe [1], &counter, sizeof (uint64_t));
875 } 2806 }
876 else 2807 else
877#endif 2808#endif
2809 {
2810#ifdef _WIN32
2811 WSABUF buf;
2812 DWORD sent;
2813 buf.buf = (char *)&buf;
2814 buf.len = 1;
2815 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2816#else
878 write (evpipe [1], &old_errno, 1); 2817 write (evpipe [1], &(evpipe [1]), 1);
2818#endif
2819 }
879 2820
880 errno = old_errno; 2821 errno = old_errno;
881 } 2822 }
882} 2823}
883 2824
2825/* called whenever the libev signal pipe */
2826/* got some events (signal, async) */
884static void 2827static void
885pipecb (EV_P_ ev_io *iow, int revents) 2828pipecb (EV_P_ ev_io *iow, int revents)
886{ 2829{
2830 int i;
2831
2832 if (revents & EV_READ)
2833 {
887#if EV_USE_EVENTFD 2834#if EV_USE_EVENTFD
888 if (evfd >= 0) 2835 if (evpipe [0] < 0)
889 { 2836 {
890 uint64_t counter = 1; 2837 uint64_t counter;
891 read (evfd, &counter, sizeof (uint64_t)); 2838 read (evpipe [1], &counter, sizeof (uint64_t));
892 } 2839 }
893 else 2840 else
894#endif 2841#endif
895 { 2842 {
896 char dummy; 2843 char dummy[4];
2844#ifdef _WIN32
2845 WSABUF buf;
2846 DWORD recvd;
2847 DWORD flags = 0;
2848 buf.buf = dummy;
2849 buf.len = sizeof (dummy);
2850 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2851#else
897 read (evpipe [0], &dummy, 1); 2852 read (evpipe [0], &dummy, sizeof (dummy));
2853#endif
2854 }
2855 }
2856
2857 pipe_write_skipped = 0;
2858
2859 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2860
2861#if EV_SIGNAL_ENABLE
2862 if (sig_pending)
898 } 2863 {
2864 sig_pending = 0;
899 2865
900 if (gotsig && ev_is_default_loop (EV_A)) 2866 ECB_MEMORY_FENCE;
901 {
902 int signum;
903 gotsig = 0;
904 2867
905 for (signum = signalmax; signum--; ) 2868 for (i = EV_NSIG - 1; i--; )
906 if (signals [signum].gotsig) 2869 if (ecb_expect_false (signals [i].pending))
907 ev_feed_signal_event (EV_A_ signum + 1); 2870 ev_feed_signal_event (EV_A_ i + 1);
908 } 2871 }
2872#endif
909 2873
910#if EV_ASYNC_ENABLE 2874#if EV_ASYNC_ENABLE
911 if (gotasync) 2875 if (async_pending)
912 { 2876 {
913 int i; 2877 async_pending = 0;
914 gotasync = 0; 2878
2879 ECB_MEMORY_FENCE;
915 2880
916 for (i = asynccnt; i--; ) 2881 for (i = asynccnt; i--; )
917 if (asyncs [i]->sent) 2882 if (asyncs [i]->sent)
918 { 2883 {
919 asyncs [i]->sent = 0; 2884 asyncs [i]->sent = 0;
2885 ECB_MEMORY_FENCE_RELEASE;
920 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2886 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
921 } 2887 }
922 } 2888 }
923#endif 2889#endif
924} 2890}
925 2891
926/*****************************************************************************/ 2892/*****************************************************************************/
927 2893
2894void
2895ev_feed_signal (int signum) EV_NOEXCEPT
2896{
2897#if EV_MULTIPLICITY
2898 EV_P;
2899 ECB_MEMORY_FENCE_ACQUIRE;
2900 EV_A = signals [signum - 1].loop;
2901
2902 if (!EV_A)
2903 return;
2904#endif
2905
2906 signals [signum - 1].pending = 1;
2907 evpipe_write (EV_A_ &sig_pending);
2908}
2909
928static void 2910static void
929ev_sighandler (int signum) 2911ev_sighandler (int signum)
930{ 2912{
2913#ifdef _WIN32
2914 signal (signum, ev_sighandler);
2915#endif
2916
2917 ev_feed_signal (signum);
2918}
2919
2920ecb_noinline
2921void
2922ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2923{
2924 WL w;
2925
2926 if (ecb_expect_false (signum <= 0 || signum >= EV_NSIG))
2927 return;
2928
2929 --signum;
2930
931#if EV_MULTIPLICITY 2931#if EV_MULTIPLICITY
932 struct ev_loop *loop = &default_loop_struct; 2932 /* it is permissible to try to feed a signal to the wrong loop */
933#endif 2933 /* or, likely more useful, feeding a signal nobody is waiting for */
934 2934
935#if _WIN32 2935 if (ecb_expect_false (signals [signum].loop != EV_A))
936 signal (signum, ev_sighandler);
937#endif
938
939 signals [signum - 1].gotsig = 1;
940 evpipe_write (EV_A_ &gotsig);
941}
942
943void noinline
944ev_feed_signal_event (EV_P_ int signum)
945{
946 WL w;
947
948#if EV_MULTIPLICITY
949 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
950#endif
951
952 --signum;
953
954 if (signum < 0 || signum >= signalmax)
955 return; 2936 return;
2937#endif
956 2938
957 signals [signum].gotsig = 0; 2939 signals [signum].pending = 0;
2940 ECB_MEMORY_FENCE_RELEASE;
958 2941
959 for (w = signals [signum].head; w; w = w->next) 2942 for (w = signals [signum].head; w; w = w->next)
960 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2943 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
961} 2944}
962 2945
2946#if EV_USE_SIGNALFD
2947static void
2948sigfdcb (EV_P_ ev_io *iow, int revents)
2949{
2950 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2951
2952 for (;;)
2953 {
2954 ssize_t res = read (sigfd, si, sizeof (si));
2955
2956 /* not ISO-C, as res might be -1, but works with SuS */
2957 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2958 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2959
2960 if (res < (ssize_t)sizeof (si))
2961 break;
2962 }
2963}
2964#endif
2965
2966#endif
2967
963/*****************************************************************************/ 2968/*****************************************************************************/
964 2969
2970#if EV_CHILD_ENABLE
965static WL childs [EV_PID_HASHSIZE]; 2971static WL childs [EV_PID_HASHSIZE];
966
967#ifndef _WIN32
968 2972
969static ev_signal childev; 2973static ev_signal childev;
970 2974
971#ifndef WIFCONTINUED 2975#ifndef WIFCONTINUED
972# define WIFCONTINUED(status) 0 2976# define WIFCONTINUED(status) 0
973#endif 2977#endif
974 2978
975void inline_speed 2979/* handle a single child status event */
2980inline_speed void
976child_reap (EV_P_ int chain, int pid, int status) 2981child_reap (EV_P_ int chain, int pid, int status)
977{ 2982{
978 ev_child *w; 2983 ev_child *w;
979 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2984 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
980 2985
981 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2986 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
982 { 2987 {
983 if ((w->pid == pid || !w->pid) 2988 if ((w->pid == pid || !w->pid)
984 && (!traced || (w->flags & 1))) 2989 && (!traced || (w->flags & 1)))
985 { 2990 {
986 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2991 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
993 2998
994#ifndef WCONTINUED 2999#ifndef WCONTINUED
995# define WCONTINUED 0 3000# define WCONTINUED 0
996#endif 3001#endif
997 3002
3003/* called on sigchld etc., calls waitpid */
998static void 3004static void
999childcb (EV_P_ ev_signal *sw, int revents) 3005childcb (EV_P_ ev_signal *sw, int revents)
1000{ 3006{
1001 int pid, status; 3007 int pid, status;
1002 3008
1010 /* make sure we are called again until all children have been reaped */ 3016 /* make sure we are called again until all children have been reaped */
1011 /* we need to do it this way so that the callback gets called before we continue */ 3017 /* we need to do it this way so that the callback gets called before we continue */
1012 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 3018 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1013 3019
1014 child_reap (EV_A_ pid, pid, status); 3020 child_reap (EV_A_ pid, pid, status);
1015 if (EV_PID_HASHSIZE > 1) 3021 if ((EV_PID_HASHSIZE) > 1)
1016 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 3022 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1017} 3023}
1018 3024
1019#endif 3025#endif
1020 3026
1021/*****************************************************************************/ 3027/*****************************************************************************/
1022 3028
3029#if EV_USE_TIMERFD
3030
3031static void periodics_reschedule (EV_P);
3032
3033static void
3034timerfdcb (EV_P_ ev_io *iow, int revents)
3035{
3036 struct itimerspec its = { 0 };
3037
3038 its.it_value.tv_sec = ev_rt_now + (int)MAX_BLOCKTIME2;
3039 timerfd_settime (timerfd, TFD_TIMER_ABSTIME | TFD_TIMER_CANCEL_ON_SET, &its, 0);
3040
3041 ev_rt_now = ev_time ();
3042 /* periodics_reschedule only needs ev_rt_now */
3043 /* but maybe in the future we want the full treatment. */
3044 /*
3045 now_floor = EV_TS_CONST (0.);
3046 time_update (EV_A_ EV_TSTAMP_HUGE);
3047 */
3048 periodics_reschedule (EV_A);
3049}
3050
3051ecb_noinline ecb_cold
3052static void
3053evtimerfd_init (EV_P)
3054{
3055 if (!ev_is_active (&timerfd_w))
3056 {
3057 timerfd = timerfd_create (CLOCK_REALTIME, TFD_NONBLOCK | TFD_CLOEXEC);
3058
3059 if (timerfd >= 0)
3060 {
3061 fd_intern (timerfd); /* just to be sure */
3062
3063 ev_io_init (&timerfd_w, timerfdcb, timerfd, EV_READ);
3064 ev_set_priority (&timerfd_w, EV_MINPRI);
3065 ev_io_start (EV_A_ &timerfd_w);
3066 ev_unref (EV_A); /* watcher should not keep loop alive */
3067
3068 /* (re-) arm timer */
3069 timerfdcb (EV_A_ 0, 0);
3070 }
3071 }
3072}
3073
3074#endif
3075
3076/*****************************************************************************/
3077
3078#if EV_USE_IOCP
3079# include "ev_iocp.c"
3080#endif
1023#if EV_USE_PORT 3081#if EV_USE_PORT
1024# include "ev_port.c" 3082# include "ev_port.c"
1025#endif 3083#endif
1026#if EV_USE_KQUEUE 3084#if EV_USE_KQUEUE
1027# include "ev_kqueue.c" 3085# include "ev_kqueue.c"
1028#endif 3086#endif
1029#if EV_USE_EPOLL 3087#if EV_USE_EPOLL
1030# include "ev_epoll.c" 3088# include "ev_epoll.c"
1031#endif 3089#endif
3090#if EV_USE_LINUXAIO
3091# include "ev_linuxaio.c"
3092#endif
3093#if EV_USE_IOURING
3094# include "ev_iouring.c"
3095#endif
1032#if EV_USE_POLL 3096#if EV_USE_POLL
1033# include "ev_poll.c" 3097# include "ev_poll.c"
1034#endif 3098#endif
1035#if EV_USE_SELECT 3099#if EV_USE_SELECT
1036# include "ev_select.c" 3100# include "ev_select.c"
1037#endif 3101#endif
1038 3102
1039int 3103ecb_cold int
1040ev_version_major (void) 3104ev_version_major (void) EV_NOEXCEPT
1041{ 3105{
1042 return EV_VERSION_MAJOR; 3106 return EV_VERSION_MAJOR;
1043} 3107}
1044 3108
1045int 3109ecb_cold int
1046ev_version_minor (void) 3110ev_version_minor (void) EV_NOEXCEPT
1047{ 3111{
1048 return EV_VERSION_MINOR; 3112 return EV_VERSION_MINOR;
1049} 3113}
1050 3114
1051/* return true if we are running with elevated privileges and should ignore env variables */ 3115/* return true if we are running with elevated privileges and should ignore env variables */
1052int inline_size 3116inline_size ecb_cold int
1053enable_secure (void) 3117enable_secure (void)
1054{ 3118{
1055#ifdef _WIN32 3119#ifdef _WIN32
1056 return 0; 3120 return 0;
1057#else 3121#else
1058 return getuid () != geteuid () 3122 return getuid () != geteuid ()
1059 || getgid () != getegid (); 3123 || getgid () != getegid ();
1060#endif 3124#endif
1061} 3125}
1062 3126
3127ecb_cold
1063unsigned int 3128unsigned int
1064ev_supported_backends (void) 3129ev_supported_backends (void) EV_NOEXCEPT
1065{ 3130{
1066 unsigned int flags = 0; 3131 unsigned int flags = 0;
1067 3132
1068 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 3133 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1069 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 3134 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
1070 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL; 3135 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1071 if (EV_USE_POLL ) flags |= EVBACKEND_POLL; 3136 if (EV_USE_LINUXAIO ) flags |= EVBACKEND_LINUXAIO;
1072 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 3137 if (EV_USE_IOURING && ev_linux_version () >= 0x050601) flags |= EVBACKEND_IOURING; /* 5.6.1+ */
1073 3138 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
3139 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
3140
1074 return flags; 3141 return flags;
1075} 3142}
1076 3143
3144ecb_cold
1077unsigned int 3145unsigned int
1078ev_recommended_backends (void) 3146ev_recommended_backends (void) EV_NOEXCEPT
1079{ 3147{
1080 unsigned int flags = ev_supported_backends (); 3148 unsigned int flags = ev_supported_backends ();
1081 3149
1082#ifndef __NetBSD__ 3150#ifndef __NetBSD__
1083 /* kqueue is borked on everything but netbsd apparently */ 3151 /* kqueue is borked on everything but netbsd apparently */
1084 /* it usually doesn't work correctly on anything but sockets and pipes */ 3152 /* it usually doesn't work correctly on anything but sockets and pipes */
1085 flags &= ~EVBACKEND_KQUEUE; 3153 flags &= ~EVBACKEND_KQUEUE;
1086#endif 3154#endif
1087#ifdef __APPLE__ 3155#ifdef __APPLE__
1088 // flags &= ~EVBACKEND_KQUEUE; for documentation 3156 /* only select works correctly on that "unix-certified" platform */
3157 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
3158 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
3159#endif
3160#ifdef __FreeBSD__
3161 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
3162#endif
3163
3164 /* TODO: linuxaio is very experimental */
3165#if !EV_RECOMMEND_LINUXAIO
3166 flags &= ~EVBACKEND_LINUXAIO;
3167#endif
3168 /* TODO: linuxaio is super experimental */
3169#if !EV_RECOMMEND_IOURING
1089 flags &= ~EVBACKEND_POLL; 3170 flags &= ~EVBACKEND_IOURING;
1090#endif 3171#endif
1091 3172
1092 return flags; 3173 return flags;
1093} 3174}
1094 3175
3176ecb_cold
1095unsigned int 3177unsigned int
1096ev_embeddable_backends (void) 3178ev_embeddable_backends (void) EV_NOEXCEPT
1097{ 3179{
1098 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 3180 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT | EVBACKEND_IOURING;
1099 3181
1100 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 3182 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1101 /* please fix it and tell me how to detect the fix */ 3183 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1102 flags &= ~EVBACKEND_EPOLL; 3184 flags &= ~EVBACKEND_EPOLL;
3185
3186 /* EVBACKEND_LINUXAIO is theoretically embeddable, but suffers from a performance overhead */
1103 3187
1104 return flags; 3188 return flags;
1105} 3189}
1106 3190
1107unsigned int 3191unsigned int
1108ev_backend (EV_P) 3192ev_backend (EV_P) EV_NOEXCEPT
1109{ 3193{
1110 return backend; 3194 return backend;
1111} 3195}
1112 3196
3197#if EV_FEATURE_API
1113unsigned int 3198unsigned int
1114ev_loop_count (EV_P) 3199ev_iteration (EV_P) EV_NOEXCEPT
1115{ 3200{
1116 return loop_count; 3201 return loop_count;
1117} 3202}
1118 3203
3204unsigned int
3205ev_depth (EV_P) EV_NOEXCEPT
3206{
3207 return loop_depth;
3208}
3209
1119void 3210void
1120ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 3211ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
1121{ 3212{
1122 io_blocktime = interval; 3213 io_blocktime = interval;
1123} 3214}
1124 3215
1125void 3216void
1126ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 3217ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
1127{ 3218{
1128 timeout_blocktime = interval; 3219 timeout_blocktime = interval;
1129} 3220}
1130 3221
1131static void noinline 3222void
3223ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
3224{
3225 userdata = data;
3226}
3227
3228void *
3229ev_userdata (EV_P) EV_NOEXCEPT
3230{
3231 return userdata;
3232}
3233
3234void
3235ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
3236{
3237 invoke_cb = invoke_pending_cb;
3238}
3239
3240void
3241ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
3242{
3243 release_cb = release;
3244 acquire_cb = acquire;
3245}
3246#endif
3247
3248/* initialise a loop structure, must be zero-initialised */
3249ecb_noinline ecb_cold
3250static void
1132loop_init (EV_P_ unsigned int flags) 3251loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
1133{ 3252{
1134 if (!backend) 3253 if (!backend)
1135 { 3254 {
3255 origflags = flags;
3256
3257#if EV_USE_REALTIME
3258 if (!have_realtime)
3259 {
3260 struct timespec ts;
3261
3262 if (!clock_gettime (CLOCK_REALTIME, &ts))
3263 have_realtime = 1;
3264 }
3265#endif
3266
1136#if EV_USE_MONOTONIC 3267#if EV_USE_MONOTONIC
3268 if (!have_monotonic)
1137 { 3269 {
1138 struct timespec ts; 3270 struct timespec ts;
3271
1139 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 3272 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1140 have_monotonic = 1; 3273 have_monotonic = 1;
1141 } 3274 }
1142#endif
1143
1144 ev_rt_now = ev_time ();
1145 mn_now = get_clock ();
1146 now_floor = mn_now;
1147 rtmn_diff = ev_rt_now - mn_now;
1148
1149 io_blocktime = 0.;
1150 timeout_blocktime = 0.;
1151 backend = 0;
1152 backend_fd = -1;
1153 gotasync = 0;
1154#if EV_USE_INOTIFY
1155 fs_fd = -2;
1156#endif 3275#endif
1157 3276
1158 /* pid check not overridable via env */ 3277 /* pid check not overridable via env */
1159#ifndef _WIN32 3278#ifndef _WIN32
1160 if (flags & EVFLAG_FORKCHECK) 3279 if (flags & EVFLAG_FORKCHECK)
1164 if (!(flags & EVFLAG_NOENV) 3283 if (!(flags & EVFLAG_NOENV)
1165 && !enable_secure () 3284 && !enable_secure ()
1166 && getenv ("LIBEV_FLAGS")) 3285 && getenv ("LIBEV_FLAGS"))
1167 flags = atoi (getenv ("LIBEV_FLAGS")); 3286 flags = atoi (getenv ("LIBEV_FLAGS"));
1168 3287
1169 if (!(flags & 0x0000ffffUL)) 3288 ev_rt_now = ev_time ();
3289 mn_now = get_clock ();
3290 now_floor = mn_now;
3291 rtmn_diff = ev_rt_now - mn_now;
3292#if EV_FEATURE_API
3293 invoke_cb = ev_invoke_pending;
3294#endif
3295
3296 io_blocktime = 0.;
3297 timeout_blocktime = 0.;
3298 backend = 0;
3299 backend_fd = -1;
3300 sig_pending = 0;
3301#if EV_ASYNC_ENABLE
3302 async_pending = 0;
3303#endif
3304 pipe_write_skipped = 0;
3305 pipe_write_wanted = 0;
3306 evpipe [0] = -1;
3307 evpipe [1] = -1;
3308#if EV_USE_INOTIFY
3309 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
3310#endif
3311#if EV_USE_SIGNALFD
3312 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
3313#endif
3314#if EV_USE_TIMERFD
3315 timerfd = flags & EVFLAG_NOTIMERFD ? -1 : -2;
3316#endif
3317
3318 if (!(flags & EVBACKEND_MASK))
1170 flags |= ev_recommended_backends (); 3319 flags |= ev_recommended_backends ();
1171 3320
3321#if EV_USE_IOCP
3322 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
3323#endif
1172#if EV_USE_PORT 3324#if EV_USE_PORT
1173 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 3325 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1174#endif 3326#endif
1175#if EV_USE_KQUEUE 3327#if EV_USE_KQUEUE
1176 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 3328 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
3329#endif
3330#if EV_USE_IOURING
3331 if (!backend && (flags & EVBACKEND_IOURING )) backend = iouring_init (EV_A_ flags);
3332#endif
3333#if EV_USE_LINUXAIO
3334 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
1177#endif 3335#endif
1178#if EV_USE_EPOLL 3336#if EV_USE_EPOLL
1179 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags); 3337 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1180#endif 3338#endif
1181#if EV_USE_POLL 3339#if EV_USE_POLL
1182 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags); 3340 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1183#endif 3341#endif
1184#if EV_USE_SELECT 3342#if EV_USE_SELECT
1185 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 3343 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
1186#endif 3344#endif
1187 3345
3346 ev_prepare_init (&pending_w, pendingcb);
3347
3348#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1188 ev_init (&pipeev, pipecb); 3349 ev_init (&pipe_w, pipecb);
1189 ev_set_priority (&pipeev, EV_MAXPRI); 3350 ev_set_priority (&pipe_w, EV_MAXPRI);
3351#endif
1190 } 3352 }
1191} 3353}
1192 3354
1193static void noinline 3355/* free up a loop structure */
3356ecb_cold
3357void
1194loop_destroy (EV_P) 3358ev_loop_destroy (EV_P)
1195{ 3359{
1196 int i; 3360 int i;
1197 3361
3362#if EV_MULTIPLICITY
3363 /* mimic free (0) */
3364 if (!EV_A)
3365 return;
3366#endif
3367
3368#if EV_CLEANUP_ENABLE
3369 /* queue cleanup watchers (and execute them) */
3370 if (ecb_expect_false (cleanupcnt))
3371 {
3372 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3373 EV_INVOKE_PENDING;
3374 }
3375#endif
3376
3377#if EV_CHILD_ENABLE
3378 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3379 {
3380 ev_ref (EV_A); /* child watcher */
3381 ev_signal_stop (EV_A_ &childev);
3382 }
3383#endif
3384
1198 if (ev_is_active (&pipeev)) 3385 if (ev_is_active (&pipe_w))
1199 { 3386 {
1200 ev_ref (EV_A); /* signal watcher */ 3387 /*ev_ref (EV_A);*/
1201 ev_io_stop (EV_A_ &pipeev); 3388 /*ev_io_stop (EV_A_ &pipe_w);*/
1202 3389
3390 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3391 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3392 }
3393
3394#if EV_USE_SIGNALFD
3395 if (ev_is_active (&sigfd_w))
3396 close (sigfd);
3397#endif
3398
1203#if EV_USE_EVENTFD 3399#if EV_USE_TIMERFD
1204 if (evfd >= 0) 3400 if (ev_is_active (&timerfd_w))
1205 close (evfd); 3401 close (timerfd);
1206#endif 3402#endif
1207
1208 if (evpipe [0] >= 0)
1209 {
1210 close (evpipe [0]);
1211 close (evpipe [1]);
1212 }
1213 }
1214 3403
1215#if EV_USE_INOTIFY 3404#if EV_USE_INOTIFY
1216 if (fs_fd >= 0) 3405 if (fs_fd >= 0)
1217 close (fs_fd); 3406 close (fs_fd);
1218#endif 3407#endif
1219 3408
1220 if (backend_fd >= 0) 3409 if (backend_fd >= 0)
1221 close (backend_fd); 3410 close (backend_fd);
1222 3411
3412#if EV_USE_IOCP
3413 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3414#endif
1223#if EV_USE_PORT 3415#if EV_USE_PORT
1224 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 3416 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1225#endif 3417#endif
1226#if EV_USE_KQUEUE 3418#if EV_USE_KQUEUE
1227 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 3419 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3420#endif
3421#if EV_USE_IOURING
3422 if (backend == EVBACKEND_IOURING ) iouring_destroy (EV_A);
3423#endif
3424#if EV_USE_LINUXAIO
3425 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
1228#endif 3426#endif
1229#if EV_USE_EPOLL 3427#if EV_USE_EPOLL
1230 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A); 3428 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1231#endif 3429#endif
1232#if EV_USE_POLL 3430#if EV_USE_POLL
1233 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A); 3431 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1234#endif 3432#endif
1235#if EV_USE_SELECT 3433#if EV_USE_SELECT
1236 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 3434 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
1237#endif 3435#endif
1238 3436
1239 for (i = NUMPRI; i--; ) 3437 for (i = NUMPRI; i--; )
1240 { 3438 {
1241 array_free (pending, [i]); 3439 array_free (pending, [i]);
1242#if EV_IDLE_ENABLE 3440#if EV_IDLE_ENABLE
1243 array_free (idle, [i]); 3441 array_free (idle, [i]);
1244#endif 3442#endif
1245 } 3443 }
1246 3444
1247 ev_free (anfds); anfdmax = 0; 3445 ev_free (anfds); anfds = 0; anfdmax = 0;
1248 3446
1249 /* have to use the microsoft-never-gets-it-right macro */ 3447 /* have to use the microsoft-never-gets-it-right macro */
3448 array_free (rfeed, EMPTY);
1250 array_free (fdchange, EMPTY); 3449 array_free (fdchange, EMPTY);
1251 array_free (timer, EMPTY); 3450 array_free (timer, EMPTY);
1252#if EV_PERIODIC_ENABLE 3451#if EV_PERIODIC_ENABLE
1253 array_free (periodic, EMPTY); 3452 array_free (periodic, EMPTY);
1254#endif 3453#endif
1255#if EV_FORK_ENABLE 3454#if EV_FORK_ENABLE
1256 array_free (fork, EMPTY); 3455 array_free (fork, EMPTY);
1257#endif 3456#endif
3457#if EV_CLEANUP_ENABLE
3458 array_free (cleanup, EMPTY);
3459#endif
1258 array_free (prepare, EMPTY); 3460 array_free (prepare, EMPTY);
1259 array_free (check, EMPTY); 3461 array_free (check, EMPTY);
1260#if EV_ASYNC_ENABLE 3462#if EV_ASYNC_ENABLE
1261 array_free (async, EMPTY); 3463 array_free (async, EMPTY);
1262#endif 3464#endif
1263 3465
1264 backend = 0; 3466 backend = 0;
1265}
1266 3467
3468#if EV_MULTIPLICITY
3469 if (ev_is_default_loop (EV_A))
3470#endif
3471 ev_default_loop_ptr = 0;
3472#if EV_MULTIPLICITY
3473 else
3474 ev_free (EV_A);
3475#endif
3476}
3477
3478#if EV_USE_INOTIFY
1267void inline_size infy_fork (EV_P); 3479inline_size void infy_fork (EV_P);
3480#endif
1268 3481
1269void inline_size 3482inline_size void
1270loop_fork (EV_P) 3483loop_fork (EV_P)
1271{ 3484{
1272#if EV_USE_PORT 3485#if EV_USE_PORT
1273 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 3486 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1274#endif 3487#endif
1275#if EV_USE_KQUEUE 3488#if EV_USE_KQUEUE
1276 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 3489 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3490#endif
3491#if EV_USE_IOURING
3492 if (backend == EVBACKEND_IOURING ) iouring_fork (EV_A);
3493#endif
3494#if EV_USE_LINUXAIO
3495 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
1277#endif 3496#endif
1278#if EV_USE_EPOLL 3497#if EV_USE_EPOLL
1279 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 3498 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1280#endif 3499#endif
1281#if EV_USE_INOTIFY 3500#if EV_USE_INOTIFY
1282 infy_fork (EV_A); 3501 infy_fork (EV_A);
1283#endif 3502#endif
1284 3503
3504 if (postfork != 2)
3505 {
3506 #if EV_USE_SIGNALFD
3507 /* surprisingly, nothing needs to be done for signalfd, accoridng to docs, it does the right thing on fork */
3508 #endif
3509
3510 #if EV_USE_TIMERFD
3511 if (ev_is_active (&timerfd_w))
3512 {
3513 ev_ref (EV_A);
3514 ev_io_stop (EV_A_ &timerfd_w);
3515
3516 close (timerfd);
3517 timerfd = -2;
3518
3519 evtimerfd_init (EV_A);
3520 /* reschedule periodics, in case we missed something */
3521 ev_feed_event (EV_A_ &timerfd_w, EV_CUSTOM);
3522 }
3523 #endif
3524
3525 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1285 if (ev_is_active (&pipeev)) 3526 if (ev_is_active (&pipe_w))
3527 {
3528 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3529
3530 ev_ref (EV_A);
3531 ev_io_stop (EV_A_ &pipe_w);
3532
3533 if (evpipe [0] >= 0)
3534 EV_WIN32_CLOSE_FD (evpipe [0]);
3535
3536 evpipe_init (EV_A);
3537 /* iterate over everything, in case we missed something before */
3538 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3539 }
3540 #endif
1286 { 3541 }
1287 /* this "locks" the handlers against writing to the pipe */ 3542
1288 /* while we modify the fd vars */ 3543 postfork = 0;
1289 gotsig = 1; 3544}
3545
3546#if EV_MULTIPLICITY
3547
3548ecb_cold
3549struct ev_loop *
3550ev_loop_new (unsigned int flags) EV_NOEXCEPT
3551{
3552 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3553
3554 memset (EV_A, 0, sizeof (struct ev_loop));
3555 loop_init (EV_A_ flags);
3556
3557 if (ev_backend (EV_A))
3558 return EV_A;
3559
3560 ev_free (EV_A);
3561 return 0;
3562}
3563
3564#endif /* multiplicity */
3565
3566#if EV_VERIFY
3567ecb_noinline ecb_cold
3568static void
3569verify_watcher (EV_P_ W w)
3570{
3571 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
3572
3573 if (w->pending)
3574 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3575}
3576
3577ecb_noinline ecb_cold
3578static void
3579verify_heap (EV_P_ ANHE *heap, int N)
3580{
3581 int i;
3582
3583 for (i = HEAP0; i < N + HEAP0; ++i)
3584 {
3585 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3586 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3587 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3588
3589 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3590 }
3591}
3592
3593ecb_noinline ecb_cold
3594static void
3595array_verify (EV_P_ W *ws, int cnt)
3596{
3597 while (cnt--)
3598 {
3599 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3600 verify_watcher (EV_A_ ws [cnt]);
3601 }
3602}
3603#endif
3604
3605#if EV_FEATURE_API
3606void ecb_cold
3607ev_verify (EV_P) EV_NOEXCEPT
3608{
3609#if EV_VERIFY
3610 int i;
3611 WL w, w2;
3612
3613 assert (activecnt >= -1);
3614
3615 assert (fdchangemax >= fdchangecnt);
3616 for (i = 0; i < fdchangecnt; ++i)
3617 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3618
3619 assert (anfdmax >= 0);
3620 for (i = 0; i < anfdmax; ++i)
3621 {
3622 int j = 0;
3623
3624 for (w = w2 = anfds [i].head; w; w = w->next)
3625 {
3626 verify_watcher (EV_A_ (W)w);
3627
3628 if (j++ & 1)
3629 {
3630 assert (("libev: io watcher list contains a loop", w != w2));
3631 w2 = w2->next;
3632 }
3633
3634 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3635 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3636 }
3637 }
3638
3639 assert (timermax >= timercnt);
3640 verify_heap (EV_A_ timers, timercnt);
3641
3642#if EV_PERIODIC_ENABLE
3643 assert (periodicmax >= periodiccnt);
3644 verify_heap (EV_A_ periodics, periodiccnt);
3645#endif
3646
3647 for (i = NUMPRI; i--; )
3648 {
3649 assert (pendingmax [i] >= pendingcnt [i]);
3650#if EV_IDLE_ENABLE
3651 assert (idleall >= 0);
3652 assert (idlemax [i] >= idlecnt [i]);
3653 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3654#endif
3655 }
3656
3657#if EV_FORK_ENABLE
3658 assert (forkmax >= forkcnt);
3659 array_verify (EV_A_ (W *)forks, forkcnt);
3660#endif
3661
3662#if EV_CLEANUP_ENABLE
3663 assert (cleanupmax >= cleanupcnt);
3664 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3665#endif
3666
1290#if EV_ASYNC_ENABLE 3667#if EV_ASYNC_ENABLE
1291 gotasync = 1; 3668 assert (asyncmax >= asynccnt);
3669 array_verify (EV_A_ (W *)asyncs, asynccnt);
3670#endif
3671
3672#if EV_PREPARE_ENABLE
3673 assert (preparemax >= preparecnt);
3674 array_verify (EV_A_ (W *)prepares, preparecnt);
3675#endif
3676
3677#if EV_CHECK_ENABLE
3678 assert (checkmax >= checkcnt);
3679 array_verify (EV_A_ (W *)checks, checkcnt);
3680#endif
3681
3682# if 0
3683#if EV_CHILD_ENABLE
3684 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3685 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3686#endif
1292#endif 3687# endif
1293
1294 ev_ref (EV_A);
1295 ev_io_stop (EV_A_ &pipeev);
1296
1297#if EV_USE_EVENTFD
1298 if (evfd >= 0)
1299 close (evfd);
1300#endif 3688#endif
1301
1302 if (evpipe [0] >= 0)
1303 {
1304 close (evpipe [0]);
1305 close (evpipe [1]);
1306 }
1307
1308 evpipe_init (EV_A);
1309 /* now iterate over everything, in case we missed something */
1310 pipecb (EV_A_ &pipeev, EV_READ);
1311 }
1312
1313 postfork = 0;
1314} 3689}
3690#endif
1315 3691
1316#if EV_MULTIPLICITY 3692#if EV_MULTIPLICITY
3693ecb_cold
1317struct ev_loop * 3694struct ev_loop *
1318ev_loop_new (unsigned int flags)
1319{
1320 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1321
1322 memset (loop, 0, sizeof (struct ev_loop));
1323
1324 loop_init (EV_A_ flags);
1325
1326 if (ev_backend (EV_A))
1327 return loop;
1328
1329 return 0;
1330}
1331
1332void
1333ev_loop_destroy (EV_P)
1334{
1335 loop_destroy (EV_A);
1336 ev_free (loop);
1337}
1338
1339void
1340ev_loop_fork (EV_P)
1341{
1342 postfork = 1; /* must be in line with ev_default_fork */
1343}
1344
1345#endif
1346
1347#if EV_MULTIPLICITY
1348struct ev_loop *
1349ev_default_loop_init (unsigned int flags)
1350#else 3695#else
1351int 3696int
3697#endif
1352ev_default_loop (unsigned int flags) 3698ev_default_loop (unsigned int flags) EV_NOEXCEPT
1353#endif
1354{ 3699{
1355 if (!ev_default_loop_ptr) 3700 if (!ev_default_loop_ptr)
1356 { 3701 {
1357#if EV_MULTIPLICITY 3702#if EV_MULTIPLICITY
1358 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3703 EV_P = ev_default_loop_ptr = &default_loop_struct;
1359#else 3704#else
1360 ev_default_loop_ptr = 1; 3705 ev_default_loop_ptr = 1;
1361#endif 3706#endif
1362 3707
1363 loop_init (EV_A_ flags); 3708 loop_init (EV_A_ flags);
1364 3709
1365 if (ev_backend (EV_A)) 3710 if (ev_backend (EV_A))
1366 { 3711 {
1367#ifndef _WIN32 3712#if EV_CHILD_ENABLE
1368 ev_signal_init (&childev, childcb, SIGCHLD); 3713 ev_signal_init (&childev, childcb, SIGCHLD);
1369 ev_set_priority (&childev, EV_MAXPRI); 3714 ev_set_priority (&childev, EV_MAXPRI);
1370 ev_signal_start (EV_A_ &childev); 3715 ev_signal_start (EV_A_ &childev);
1371 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3716 ev_unref (EV_A); /* child watcher should not keep loop alive */
1372#endif 3717#endif
1377 3722
1378 return ev_default_loop_ptr; 3723 return ev_default_loop_ptr;
1379} 3724}
1380 3725
1381void 3726void
1382ev_default_destroy (void) 3727ev_loop_fork (EV_P) EV_NOEXCEPT
1383{ 3728{
1384#if EV_MULTIPLICITY 3729 postfork = 1;
1385 struct ev_loop *loop = ev_default_loop_ptr;
1386#endif
1387
1388#ifndef _WIN32
1389 ev_ref (EV_A); /* child watcher */
1390 ev_signal_stop (EV_A_ &childev);
1391#endif
1392
1393 loop_destroy (EV_A);
1394}
1395
1396void
1397ev_default_fork (void)
1398{
1399#if EV_MULTIPLICITY
1400 struct ev_loop *loop = ev_default_loop_ptr;
1401#endif
1402
1403 if (backend)
1404 postfork = 1; /* must be in line with ev_loop_fork */
1405} 3730}
1406 3731
1407/*****************************************************************************/ 3732/*****************************************************************************/
1408 3733
1409void 3734void
1410ev_invoke (EV_P_ void *w, int revents) 3735ev_invoke (EV_P_ void *w, int revents)
1411{ 3736{
1412 EV_CB_INVOKE ((W)w, revents); 3737 EV_CB_INVOKE ((W)w, revents);
1413} 3738}
1414 3739
1415void inline_speed 3740unsigned int
1416call_pending (EV_P) 3741ev_pending_count (EV_P) EV_NOEXCEPT
1417{ 3742{
1418 int pri; 3743 int pri;
3744 unsigned int count = 0;
1419 3745
1420 for (pri = NUMPRI; pri--; ) 3746 for (pri = NUMPRI; pri--; )
3747 count += pendingcnt [pri];
3748
3749 return count;
3750}
3751
3752ecb_noinline
3753void
3754ev_invoke_pending (EV_P)
3755{
3756 pendingpri = NUMPRI;
3757
3758 do
3759 {
3760 --pendingpri;
3761
3762 /* pendingpri possibly gets modified in the inner loop */
1421 while (pendingcnt [pri]) 3763 while (pendingcnt [pendingpri])
1422 {
1423 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1424
1425 if (expect_true (p->w))
1426 {
1427 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1428
1429 p->w->pending = 0;
1430 EV_CB_INVOKE (p->w, p->events);
1431 }
1432 }
1433}
1434
1435void inline_size
1436timers_reify (EV_P)
1437{
1438 while (timercnt && ((WT)timers [0])->at <= mn_now)
1439 {
1440 ev_timer *w = (ev_timer *)timers [0];
1441
1442 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1443
1444 /* first reschedule or stop timer */
1445 if (w->repeat)
1446 { 3764 {
1447 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3765 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1448 3766
1449 ((WT)w)->at += w->repeat; 3767 p->w->pending = 0;
1450 if (((WT)w)->at < mn_now) 3768 EV_CB_INVOKE (p->w, p->events);
1451 ((WT)w)->at = mn_now; 3769 EV_FREQUENT_CHECK;
1452
1453 downheap (timers, timercnt, 0);
1454 } 3770 }
1455 else
1456 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1457
1458 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1459 }
1460}
1461
1462#if EV_PERIODIC_ENABLE
1463void inline_size
1464periodics_reify (EV_P)
1465{
1466 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1467 { 3771 }
1468 ev_periodic *w = (ev_periodic *)periodics [0]; 3772 while (pendingpri);
1469
1470 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1471
1472 /* first reschedule or stop timer */
1473 if (w->reschedule_cb)
1474 {
1475 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1476 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1477 downheap (periodics, periodiccnt, 0);
1478 }
1479 else if (w->interval)
1480 {
1481 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1482 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1483 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1484 downheap (periodics, periodiccnt, 0);
1485 }
1486 else
1487 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1488
1489 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1490 }
1491} 3773}
1492
1493static void noinline
1494periodics_reschedule (EV_P)
1495{
1496 int i;
1497
1498 /* adjust periodics after time jump */
1499 for (i = 0; i < periodiccnt; ++i)
1500 {
1501 ev_periodic *w = (ev_periodic *)periodics [i];
1502
1503 if (w->reschedule_cb)
1504 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1505 else if (w->interval)
1506 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1507 }
1508
1509 /* now rebuild the heap */
1510 for (i = periodiccnt >> 1; i--; )
1511 downheap (periodics, periodiccnt, i);
1512}
1513#endif
1514 3774
1515#if EV_IDLE_ENABLE 3775#if EV_IDLE_ENABLE
1516void inline_size 3776/* make idle watchers pending. this handles the "call-idle */
3777/* only when higher priorities are idle" logic */
3778inline_size void
1517idle_reify (EV_P) 3779idle_reify (EV_P)
1518{ 3780{
1519 if (expect_false (idleall)) 3781 if (ecb_expect_false (idleall))
1520 { 3782 {
1521 int pri; 3783 int pri;
1522 3784
1523 for (pri = NUMPRI; pri--; ) 3785 for (pri = NUMPRI; pri--; )
1524 { 3786 {
1533 } 3795 }
1534 } 3796 }
1535} 3797}
1536#endif 3798#endif
1537 3799
1538void inline_speed 3800/* make timers pending */
3801inline_size void
3802timers_reify (EV_P)
3803{
3804 EV_FREQUENT_CHECK;
3805
3806 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3807 {
3808 do
3809 {
3810 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3811
3812 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3813
3814 /* first reschedule or stop timer */
3815 if (w->repeat)
3816 {
3817 ev_at (w) += w->repeat;
3818 if (ev_at (w) < mn_now)
3819 ev_at (w) = mn_now;
3820
3821 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > EV_TS_CONST (0.)));
3822
3823 ANHE_at_cache (timers [HEAP0]);
3824 downheap (timers, timercnt, HEAP0);
3825 }
3826 else
3827 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3828
3829 EV_FREQUENT_CHECK;
3830 feed_reverse (EV_A_ (W)w);
3831 }
3832 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3833
3834 feed_reverse_done (EV_A_ EV_TIMER);
3835 }
3836}
3837
3838#if EV_PERIODIC_ENABLE
3839
3840ecb_noinline
3841static void
3842periodic_recalc (EV_P_ ev_periodic *w)
3843{
3844 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3845 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3846
3847 /* the above almost always errs on the low side */
3848 while (at <= ev_rt_now)
3849 {
3850 ev_tstamp nat = at + w->interval;
3851
3852 /* when resolution fails us, we use ev_rt_now */
3853 if (ecb_expect_false (nat == at))
3854 {
3855 at = ev_rt_now;
3856 break;
3857 }
3858
3859 at = nat;
3860 }
3861
3862 ev_at (w) = at;
3863}
3864
3865/* make periodics pending */
3866inline_size void
3867periodics_reify (EV_P)
3868{
3869 EV_FREQUENT_CHECK;
3870
3871 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3872 {
3873 do
3874 {
3875 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3876
3877 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3878
3879 /* first reschedule or stop timer */
3880 if (w->reschedule_cb)
3881 {
3882 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3883
3884 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3885
3886 ANHE_at_cache (periodics [HEAP0]);
3887 downheap (periodics, periodiccnt, HEAP0);
3888 }
3889 else if (w->interval)
3890 {
3891 periodic_recalc (EV_A_ w);
3892 ANHE_at_cache (periodics [HEAP0]);
3893 downheap (periodics, periodiccnt, HEAP0);
3894 }
3895 else
3896 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3897
3898 EV_FREQUENT_CHECK;
3899 feed_reverse (EV_A_ (W)w);
3900 }
3901 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3902
3903 feed_reverse_done (EV_A_ EV_PERIODIC);
3904 }
3905}
3906
3907/* simply recalculate all periodics */
3908/* TODO: maybe ensure that at least one event happens when jumping forward? */
3909ecb_noinline ecb_cold
3910static void
3911periodics_reschedule (EV_P)
3912{
3913 int i;
3914
3915 /* adjust periodics after time jump */
3916 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3917 {
3918 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3919
3920 if (w->reschedule_cb)
3921 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3922 else if (w->interval)
3923 periodic_recalc (EV_A_ w);
3924
3925 ANHE_at_cache (periodics [i]);
3926 }
3927
3928 reheap (periodics, periodiccnt);
3929}
3930#endif
3931
3932/* adjust all timers by a given offset */
3933ecb_noinline ecb_cold
3934static void
3935timers_reschedule (EV_P_ ev_tstamp adjust)
3936{
3937 int i;
3938
3939 for (i = 0; i < timercnt; ++i)
3940 {
3941 ANHE *he = timers + i + HEAP0;
3942 ANHE_w (*he)->at += adjust;
3943 ANHE_at_cache (*he);
3944 }
3945}
3946
3947/* fetch new monotonic and realtime times from the kernel */
3948/* also detect if there was a timejump, and act accordingly */
3949inline_speed void
1539time_update (EV_P_ ev_tstamp max_block) 3950time_update (EV_P_ ev_tstamp max_block)
1540{ 3951{
1541 int i;
1542
1543#if EV_USE_MONOTONIC 3952#if EV_USE_MONOTONIC
1544 if (expect_true (have_monotonic)) 3953 if (ecb_expect_true (have_monotonic))
1545 { 3954 {
3955 int i;
1546 ev_tstamp odiff = rtmn_diff; 3956 ev_tstamp odiff = rtmn_diff;
1547 3957
1548 mn_now = get_clock (); 3958 mn_now = get_clock ();
1549 3959
1550 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3960 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1551 /* interpolate in the meantime */ 3961 /* interpolate in the meantime */
1552 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 3962 if (ecb_expect_true (mn_now - now_floor < EV_TS_CONST (MIN_TIMEJUMP * .5)))
1553 { 3963 {
1554 ev_rt_now = rtmn_diff + mn_now; 3964 ev_rt_now = rtmn_diff + mn_now;
1555 return; 3965 return;
1556 } 3966 }
1557 3967
1566 * doesn't hurt either as we only do this on time-jumps or 3976 * doesn't hurt either as we only do this on time-jumps or
1567 * in the unlikely event of having been preempted here. 3977 * in the unlikely event of having been preempted here.
1568 */ 3978 */
1569 for (i = 4; --i; ) 3979 for (i = 4; --i; )
1570 { 3980 {
3981 ev_tstamp diff;
1571 rtmn_diff = ev_rt_now - mn_now; 3982 rtmn_diff = ev_rt_now - mn_now;
1572 3983
1573 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 3984 diff = odiff - rtmn_diff;
3985
3986 if (ecb_expect_true ((diff < EV_TS_CONST (0.) ? -diff : diff) < EV_TS_CONST (MIN_TIMEJUMP)))
1574 return; /* all is well */ 3987 return; /* all is well */
1575 3988
1576 ev_rt_now = ev_time (); 3989 ev_rt_now = ev_time ();
1577 mn_now = get_clock (); 3990 mn_now = get_clock ();
1578 now_floor = mn_now; 3991 now_floor = mn_now;
1579 } 3992 }
1580 3993
3994 /* no timer adjustment, as the monotonic clock doesn't jump */
3995 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1581# if EV_PERIODIC_ENABLE 3996# if EV_PERIODIC_ENABLE
1582 periodics_reschedule (EV_A); 3997 periodics_reschedule (EV_A);
1583# endif 3998# endif
1584 /* no timer adjustment, as the monotonic clock doesn't jump */
1585 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1586 } 3999 }
1587 else 4000 else
1588#endif 4001#endif
1589 { 4002 {
1590 ev_rt_now = ev_time (); 4003 ev_rt_now = ev_time ();
1591 4004
1592 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 4005 if (ecb_expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + EV_TS_CONST (MIN_TIMEJUMP)))
1593 { 4006 {
4007 /* adjust timers. this is easy, as the offset is the same for all of them */
4008 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1594#if EV_PERIODIC_ENABLE 4009#if EV_PERIODIC_ENABLE
1595 periodics_reschedule (EV_A); 4010 periodics_reschedule (EV_A);
1596#endif 4011#endif
1597 /* adjust timers. this is easy, as the offset is the same for all of them */
1598 for (i = 0; i < timercnt; ++i)
1599 ((WT)timers [i])->at += ev_rt_now - mn_now;
1600 } 4012 }
1601 4013
1602 mn_now = ev_rt_now; 4014 mn_now = ev_rt_now;
1603 } 4015 }
1604} 4016}
1605 4017
1606void 4018int
1607ev_ref (EV_P)
1608{
1609 ++activecnt;
1610}
1611
1612void
1613ev_unref (EV_P)
1614{
1615 --activecnt;
1616}
1617
1618static int loop_done;
1619
1620void
1621ev_loop (EV_P_ int flags) 4019ev_run (EV_P_ int flags)
1622{ 4020{
4021#if EV_FEATURE_API
4022 ++loop_depth;
4023#endif
4024
4025 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
4026
1623 loop_done = EVUNLOOP_CANCEL; 4027 loop_done = EVBREAK_CANCEL;
1624 4028
1625 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 4029 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1626 4030
1627 do 4031 do
1628 { 4032 {
4033#if EV_VERIFY >= 2
4034 ev_verify (EV_A);
4035#endif
4036
1629#ifndef _WIN32 4037#ifndef _WIN32
1630 if (expect_false (curpid)) /* penalise the forking check even more */ 4038 if (ecb_expect_false (curpid)) /* penalise the forking check even more */
1631 if (expect_false (getpid () != curpid)) 4039 if (ecb_expect_false (getpid () != curpid))
1632 { 4040 {
1633 curpid = getpid (); 4041 curpid = getpid ();
1634 postfork = 1; 4042 postfork = 1;
1635 } 4043 }
1636#endif 4044#endif
1637 4045
1638#if EV_FORK_ENABLE 4046#if EV_FORK_ENABLE
1639 /* we might have forked, so queue fork handlers */ 4047 /* we might have forked, so queue fork handlers */
1640 if (expect_false (postfork)) 4048 if (ecb_expect_false (postfork))
1641 if (forkcnt) 4049 if (forkcnt)
1642 { 4050 {
1643 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 4051 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1644 call_pending (EV_A); 4052 EV_INVOKE_PENDING;
1645 } 4053 }
1646#endif 4054#endif
1647 4055
4056#if EV_PREPARE_ENABLE
1648 /* queue prepare watchers (and execute them) */ 4057 /* queue prepare watchers (and execute them) */
1649 if (expect_false (preparecnt)) 4058 if (ecb_expect_false (preparecnt))
1650 { 4059 {
1651 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 4060 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1652 call_pending (EV_A); 4061 EV_INVOKE_PENDING;
1653 } 4062 }
4063#endif
1654 4064
1655 if (expect_false (!activecnt)) 4065 if (ecb_expect_false (loop_done))
1656 break; 4066 break;
1657 4067
1658 /* we might have forked, so reify kernel state if necessary */ 4068 /* we might have forked, so reify kernel state if necessary */
1659 if (expect_false (postfork)) 4069 if (ecb_expect_false (postfork))
1660 loop_fork (EV_A); 4070 loop_fork (EV_A);
1661 4071
1662 /* update fd-related kernel structures */ 4072 /* update fd-related kernel structures */
1663 fd_reify (EV_A); 4073 fd_reify (EV_A);
1664 4074
1665 /* calculate blocking time */ 4075 /* calculate blocking time */
1666 { 4076 {
1667 ev_tstamp waittime = 0.; 4077 ev_tstamp waittime = 0.;
1668 ev_tstamp sleeptime = 0.; 4078 ev_tstamp sleeptime = 0.;
1669 4079
4080 /* remember old timestamp for io_blocktime calculation */
4081 ev_tstamp prev_mn_now = mn_now;
4082
4083 /* update time to cancel out callback processing overhead */
4084 time_update (EV_A_ EV_TS_CONST (EV_TSTAMP_HUGE));
4085
4086 /* from now on, we want a pipe-wake-up */
4087 pipe_write_wanted = 1;
4088
4089 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
4090
1670 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 4091 if (ecb_expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1671 { 4092 {
1672 /* update time to cancel out callback processing overhead */
1673 time_update (EV_A_ 1e100);
1674
1675 waittime = MAX_BLOCKTIME; 4093 waittime = EV_TS_CONST (MAX_BLOCKTIME);
4094
4095#if EV_USE_TIMERFD
4096 /* sleep a lot longer when we can reliably detect timejumps */
4097 if (ecb_expect_true (timerfd >= 0))
4098 waittime = EV_TS_CONST (MAX_BLOCKTIME2);
4099#endif
1676 4100
1677 if (timercnt) 4101 if (timercnt)
1678 { 4102 {
1679 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 4103 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1680 if (waittime > to) waittime = to; 4104 if (waittime > to) waittime = to;
1681 } 4105 }
1682 4106
1683#if EV_PERIODIC_ENABLE 4107#if EV_PERIODIC_ENABLE
1684 if (periodiccnt) 4108 if (periodiccnt)
1685 { 4109 {
1686 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 4110 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1687 if (waittime > to) waittime = to; 4111 if (waittime > to) waittime = to;
1688 } 4112 }
1689#endif 4113#endif
1690 4114
4115 /* don't let timeouts decrease the waittime below timeout_blocktime */
1691 if (expect_false (waittime < timeout_blocktime)) 4116 if (ecb_expect_false (waittime < timeout_blocktime))
1692 waittime = timeout_blocktime; 4117 waittime = timeout_blocktime;
1693 4118
1694 sleeptime = waittime - backend_fudge; 4119 /* now there are two more special cases left, either we have
4120 * already-expired timers, so we should not sleep, or we have timers
4121 * that expire very soon, in which case we need to wait for a minimum
4122 * amount of time for some event loop backends.
4123 */
4124 if (ecb_expect_false (waittime < backend_mintime))
4125 waittime = waittime <= EV_TS_CONST (0.)
4126 ? EV_TS_CONST (0.)
4127 : backend_mintime;
1695 4128
4129 /* extra check because io_blocktime is commonly 0 */
1696 if (expect_true (sleeptime > io_blocktime)) 4130 if (ecb_expect_false (io_blocktime))
1697 sleeptime = io_blocktime;
1698
1699 if (sleeptime)
1700 { 4131 {
4132 sleeptime = io_blocktime - (mn_now - prev_mn_now);
4133
4134 if (sleeptime > waittime - backend_mintime)
4135 sleeptime = waittime - backend_mintime;
4136
4137 if (ecb_expect_true (sleeptime > EV_TS_CONST (0.)))
4138 {
1701 ev_sleep (sleeptime); 4139 ev_sleep (sleeptime);
1702 waittime -= sleeptime; 4140 waittime -= sleeptime;
4141 }
1703 } 4142 }
1704 } 4143 }
1705 4144
4145#if EV_FEATURE_API
1706 ++loop_count; 4146 ++loop_count;
4147#endif
4148 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1707 backend_poll (EV_A_ waittime); 4149 backend_poll (EV_A_ waittime);
4150 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
4151
4152 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
4153
4154 ECB_MEMORY_FENCE_ACQUIRE;
4155 if (pipe_write_skipped)
4156 {
4157 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
4158 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
4159 }
1708 4160
1709 /* update ev_rt_now, do magic */ 4161 /* update ev_rt_now, do magic */
1710 time_update (EV_A_ waittime + sleeptime); 4162 time_update (EV_A_ waittime + sleeptime);
1711 } 4163 }
1712 4164
1719#if EV_IDLE_ENABLE 4171#if EV_IDLE_ENABLE
1720 /* queue idle watchers unless other events are pending */ 4172 /* queue idle watchers unless other events are pending */
1721 idle_reify (EV_A); 4173 idle_reify (EV_A);
1722#endif 4174#endif
1723 4175
4176#if EV_CHECK_ENABLE
1724 /* queue check watchers, to be executed first */ 4177 /* queue check watchers, to be executed first */
1725 if (expect_false (checkcnt)) 4178 if (ecb_expect_false (checkcnt))
1726 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 4179 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
4180#endif
1727 4181
1728 call_pending (EV_A); 4182 EV_INVOKE_PENDING;
1729 } 4183 }
1730 while (expect_true ( 4184 while (ecb_expect_true (
1731 activecnt 4185 activecnt
1732 && !loop_done 4186 && !loop_done
1733 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 4187 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1734 )); 4188 ));
1735 4189
1736 if (loop_done == EVUNLOOP_ONE) 4190 if (loop_done == EVBREAK_ONE)
1737 loop_done = EVUNLOOP_CANCEL; 4191 loop_done = EVBREAK_CANCEL;
4192
4193#if EV_FEATURE_API
4194 --loop_depth;
4195#endif
4196
4197 return activecnt;
1738} 4198}
1739 4199
1740void 4200void
1741ev_unloop (EV_P_ int how) 4201ev_break (EV_P_ int how) EV_NOEXCEPT
1742{ 4202{
1743 loop_done = how; 4203 loop_done = how;
1744} 4204}
1745 4205
4206void
4207ev_ref (EV_P) EV_NOEXCEPT
4208{
4209 ++activecnt;
4210}
4211
4212void
4213ev_unref (EV_P) EV_NOEXCEPT
4214{
4215 --activecnt;
4216}
4217
4218void
4219ev_now_update (EV_P) EV_NOEXCEPT
4220{
4221 time_update (EV_A_ EV_TSTAMP_HUGE);
4222}
4223
4224void
4225ev_suspend (EV_P) EV_NOEXCEPT
4226{
4227 ev_now_update (EV_A);
4228}
4229
4230void
4231ev_resume (EV_P) EV_NOEXCEPT
4232{
4233 ev_tstamp mn_prev = mn_now;
4234
4235 ev_now_update (EV_A);
4236 timers_reschedule (EV_A_ mn_now - mn_prev);
4237#if EV_PERIODIC_ENABLE
4238 /* TODO: really do this? */
4239 periodics_reschedule (EV_A);
4240#endif
4241}
4242
1746/*****************************************************************************/ 4243/*****************************************************************************/
4244/* singly-linked list management, used when the expected list length is short */
1747 4245
1748void inline_size 4246inline_size void
1749wlist_add (WL *head, WL elem) 4247wlist_add (WL *head, WL elem)
1750{ 4248{
1751 elem->next = *head; 4249 elem->next = *head;
1752 *head = elem; 4250 *head = elem;
1753} 4251}
1754 4252
1755void inline_size 4253inline_size void
1756wlist_del (WL *head, WL elem) 4254wlist_del (WL *head, WL elem)
1757{ 4255{
1758 while (*head) 4256 while (*head)
1759 { 4257 {
1760 if (*head == elem) 4258 if (ecb_expect_true (*head == elem))
1761 { 4259 {
1762 *head = elem->next; 4260 *head = elem->next;
1763 return; 4261 break;
1764 } 4262 }
1765 4263
1766 head = &(*head)->next; 4264 head = &(*head)->next;
1767 } 4265 }
1768} 4266}
1769 4267
1770void inline_speed 4268/* internal, faster, version of ev_clear_pending */
4269inline_speed void
1771clear_pending (EV_P_ W w) 4270clear_pending (EV_P_ W w)
1772{ 4271{
1773 if (w->pending) 4272 if (w->pending)
1774 { 4273 {
1775 pendings [ABSPRI (w)][w->pending - 1].w = 0; 4274 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1776 w->pending = 0; 4275 w->pending = 0;
1777 } 4276 }
1778} 4277}
1779 4278
1780int 4279int
1781ev_clear_pending (EV_P_ void *w) 4280ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
1782{ 4281{
1783 W w_ = (W)w; 4282 W w_ = (W)w;
1784 int pending = w_->pending; 4283 int pending = w_->pending;
1785 4284
1786 if (expect_true (pending)) 4285 if (ecb_expect_true (pending))
1787 { 4286 {
1788 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 4287 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
4288 p->w = (W)&pending_w;
1789 w_->pending = 0; 4289 w_->pending = 0;
1790 p->w = 0;
1791 return p->events; 4290 return p->events;
1792 } 4291 }
1793 else 4292 else
1794 return 0; 4293 return 0;
1795} 4294}
1796 4295
1797void inline_size 4296inline_size void
1798pri_adjust (EV_P_ W w) 4297pri_adjust (EV_P_ W w)
1799{ 4298{
1800 int pri = w->priority; 4299 int pri = ev_priority (w);
1801 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 4300 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1802 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 4301 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1803 w->priority = pri; 4302 ev_set_priority (w, pri);
1804} 4303}
1805 4304
1806void inline_speed 4305inline_speed void
1807ev_start (EV_P_ W w, int active) 4306ev_start (EV_P_ W w, int active)
1808{ 4307{
1809 pri_adjust (EV_A_ w); 4308 pri_adjust (EV_A_ w);
1810 w->active = active; 4309 w->active = active;
1811 ev_ref (EV_A); 4310 ev_ref (EV_A);
1812} 4311}
1813 4312
1814void inline_size 4313inline_size void
1815ev_stop (EV_P_ W w) 4314ev_stop (EV_P_ W w)
1816{ 4315{
1817 ev_unref (EV_A); 4316 ev_unref (EV_A);
1818 w->active = 0; 4317 w->active = 0;
1819} 4318}
1820 4319
1821/*****************************************************************************/ 4320/*****************************************************************************/
1822 4321
1823void noinline 4322ecb_noinline
4323void
1824ev_io_start (EV_P_ ev_io *w) 4324ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
1825{ 4325{
1826 int fd = w->fd; 4326 int fd = w->fd;
1827 4327
1828 if (expect_false (ev_is_active (w))) 4328 if (ecb_expect_false (ev_is_active (w)))
1829 return; 4329 return;
1830 4330
1831 assert (("ev_io_start called with negative fd", fd >= 0)); 4331 assert (("libev: ev_io_start called with negative fd", fd >= 0));
4332 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
4333
4334#if EV_VERIFY >= 2
4335 assert (("libev: ev_io_start called on watcher with invalid fd", fd_valid (fd)));
4336#endif
4337 EV_FREQUENT_CHECK;
1832 4338
1833 ev_start (EV_A_ (W)w, 1); 4339 ev_start (EV_A_ (W)w, 1);
1834 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 4340 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
1835 wlist_add (&anfds[fd].head, (WL)w); 4341 wlist_add (&anfds[fd].head, (WL)w);
1836 4342
4343 /* common bug, apparently */
4344 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
4345
1837 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 4346 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1838 w->events &= ~EV_IOFDSET; 4347 w->events &= ~EV__IOFDSET;
1839}
1840 4348
1841void noinline 4349 EV_FREQUENT_CHECK;
4350}
4351
4352ecb_noinline
4353void
1842ev_io_stop (EV_P_ ev_io *w) 4354ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
1843{ 4355{
1844 clear_pending (EV_A_ (W)w); 4356 clear_pending (EV_A_ (W)w);
1845 if (expect_false (!ev_is_active (w))) 4357 if (ecb_expect_false (!ev_is_active (w)))
1846 return; 4358 return;
1847 4359
1848 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 4360 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
4361
4362#if EV_VERIFY >= 2
4363 assert (("libev: ev_io_stop called on watcher with invalid fd", fd_valid (w->fd)));
4364#endif
4365 EV_FREQUENT_CHECK;
1849 4366
1850 wlist_del (&anfds[w->fd].head, (WL)w); 4367 wlist_del (&anfds[w->fd].head, (WL)w);
1851 ev_stop (EV_A_ (W)w); 4368 ev_stop (EV_A_ (W)w);
1852 4369
1853 fd_change (EV_A_ w->fd, 1); 4370 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1854}
1855 4371
1856void noinline 4372 EV_FREQUENT_CHECK;
4373}
4374
4375ecb_noinline
4376void
1857ev_timer_start (EV_P_ ev_timer *w) 4377ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
1858{ 4378{
1859 if (expect_false (ev_is_active (w))) 4379 if (ecb_expect_false (ev_is_active (w)))
1860 return; 4380 return;
1861 4381
1862 ((WT)w)->at += mn_now; 4382 ev_at (w) += mn_now;
1863 4383
1864 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 4384 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1865 4385
4386 EV_FREQUENT_CHECK;
4387
4388 ++timercnt;
1866 ev_start (EV_A_ (W)w, ++timercnt); 4389 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1867 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 4390 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
1868 timers [timercnt - 1] = (WT)w; 4391 ANHE_w (timers [ev_active (w)]) = (WT)w;
1869 upheap (timers, timercnt - 1); 4392 ANHE_at_cache (timers [ev_active (w)]);
4393 upheap (timers, ev_active (w));
1870 4394
4395 EV_FREQUENT_CHECK;
4396
1871 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 4397 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1872} 4398}
1873 4399
1874void noinline 4400ecb_noinline
4401void
1875ev_timer_stop (EV_P_ ev_timer *w) 4402ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
1876{ 4403{
1877 clear_pending (EV_A_ (W)w); 4404 clear_pending (EV_A_ (W)w);
1878 if (expect_false (!ev_is_active (w))) 4405 if (ecb_expect_false (!ev_is_active (w)))
1879 return; 4406 return;
1880 4407
1881 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 4408 EV_FREQUENT_CHECK;
1882 4409
1883 { 4410 {
1884 int active = ((W)w)->active; 4411 int active = ev_active (w);
1885 4412
4413 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
4414
4415 --timercnt;
4416
1886 if (expect_true (--active < --timercnt)) 4417 if (ecb_expect_true (active < timercnt + HEAP0))
1887 { 4418 {
1888 timers [active] = timers [timercnt]; 4419 timers [active] = timers [timercnt + HEAP0];
1889 adjustheap (timers, timercnt, active); 4420 adjustheap (timers, timercnt, active);
1890 } 4421 }
1891 } 4422 }
1892 4423
1893 ((WT)w)->at -= mn_now; 4424 ev_at (w) -= mn_now;
1894 4425
1895 ev_stop (EV_A_ (W)w); 4426 ev_stop (EV_A_ (W)w);
1896}
1897 4427
1898void noinline 4428 EV_FREQUENT_CHECK;
4429}
4430
4431ecb_noinline
4432void
1899ev_timer_again (EV_P_ ev_timer *w) 4433ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
1900{ 4434{
4435 EV_FREQUENT_CHECK;
4436
4437 clear_pending (EV_A_ (W)w);
4438
1901 if (ev_is_active (w)) 4439 if (ev_is_active (w))
1902 { 4440 {
1903 if (w->repeat) 4441 if (w->repeat)
1904 { 4442 {
1905 ((WT)w)->at = mn_now + w->repeat; 4443 ev_at (w) = mn_now + w->repeat;
4444 ANHE_at_cache (timers [ev_active (w)]);
1906 adjustheap (timers, timercnt, ((W)w)->active - 1); 4445 adjustheap (timers, timercnt, ev_active (w));
1907 } 4446 }
1908 else 4447 else
1909 ev_timer_stop (EV_A_ w); 4448 ev_timer_stop (EV_A_ w);
1910 } 4449 }
1911 else if (w->repeat) 4450 else if (w->repeat)
1912 { 4451 {
1913 w->at = w->repeat; 4452 ev_at (w) = w->repeat;
1914 ev_timer_start (EV_A_ w); 4453 ev_timer_start (EV_A_ w);
1915 } 4454 }
4455
4456 EV_FREQUENT_CHECK;
4457}
4458
4459ev_tstamp
4460ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4461{
4462 return ev_at (w) - (ev_is_active (w) ? mn_now : EV_TS_CONST (0.));
1916} 4463}
1917 4464
1918#if EV_PERIODIC_ENABLE 4465#if EV_PERIODIC_ENABLE
1919void noinline 4466ecb_noinline
4467void
1920ev_periodic_start (EV_P_ ev_periodic *w) 4468ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
1921{ 4469{
1922 if (expect_false (ev_is_active (w))) 4470 if (ecb_expect_false (ev_is_active (w)))
1923 return; 4471 return;
1924 4472
4473#if EV_USE_TIMERFD
4474 if (timerfd == -2)
4475 evtimerfd_init (EV_A);
4476#endif
4477
1925 if (w->reschedule_cb) 4478 if (w->reschedule_cb)
1926 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 4479 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1927 else if (w->interval) 4480 else if (w->interval)
1928 { 4481 {
1929 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 4482 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1930 /* this formula differs from the one in periodic_reify because we do not always round up */ 4483 periodic_recalc (EV_A_ w);
1931 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1932 } 4484 }
1933 else 4485 else
1934 ((WT)w)->at = w->offset; 4486 ev_at (w) = w->offset;
1935 4487
4488 EV_FREQUENT_CHECK;
4489
4490 ++periodiccnt;
1936 ev_start (EV_A_ (W)w, ++periodiccnt); 4491 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1937 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 4492 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
1938 periodics [periodiccnt - 1] = (WT)w; 4493 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1939 upheap (periodics, periodiccnt - 1); 4494 ANHE_at_cache (periodics [ev_active (w)]);
4495 upheap (periodics, ev_active (w));
1940 4496
4497 EV_FREQUENT_CHECK;
4498
1941 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 4499 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1942} 4500}
1943 4501
1944void noinline 4502ecb_noinline
4503void
1945ev_periodic_stop (EV_P_ ev_periodic *w) 4504ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
1946{ 4505{
1947 clear_pending (EV_A_ (W)w); 4506 clear_pending (EV_A_ (W)w);
1948 if (expect_false (!ev_is_active (w))) 4507 if (ecb_expect_false (!ev_is_active (w)))
1949 return; 4508 return;
1950 4509
1951 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 4510 EV_FREQUENT_CHECK;
1952 4511
1953 { 4512 {
1954 int active = ((W)w)->active; 4513 int active = ev_active (w);
1955 4514
4515 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
4516
4517 --periodiccnt;
4518
1956 if (expect_true (--active < --periodiccnt)) 4519 if (ecb_expect_true (active < periodiccnt + HEAP0))
1957 { 4520 {
1958 periodics [active] = periodics [periodiccnt]; 4521 periodics [active] = periodics [periodiccnt + HEAP0];
1959 adjustheap (periodics, periodiccnt, active); 4522 adjustheap (periodics, periodiccnt, active);
1960 } 4523 }
1961 } 4524 }
1962 4525
1963 ev_stop (EV_A_ (W)w); 4526 ev_stop (EV_A_ (W)w);
1964}
1965 4527
1966void noinline 4528 EV_FREQUENT_CHECK;
4529}
4530
4531ecb_noinline
4532void
1967ev_periodic_again (EV_P_ ev_periodic *w) 4533ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
1968{ 4534{
1969 /* TODO: use adjustheap and recalculation */ 4535 /* TODO: use adjustheap and recalculation */
1970 ev_periodic_stop (EV_A_ w); 4536 ev_periodic_stop (EV_A_ w);
1971 ev_periodic_start (EV_A_ w); 4537 ev_periodic_start (EV_A_ w);
1972} 4538}
1974 4540
1975#ifndef SA_RESTART 4541#ifndef SA_RESTART
1976# define SA_RESTART 0 4542# define SA_RESTART 0
1977#endif 4543#endif
1978 4544
1979void noinline 4545#if EV_SIGNAL_ENABLE
4546
4547ecb_noinline
4548void
1980ev_signal_start (EV_P_ ev_signal *w) 4549ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
1981{ 4550{
4551 if (ecb_expect_false (ev_is_active (w)))
4552 return;
4553
4554 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4555
1982#if EV_MULTIPLICITY 4556#if EV_MULTIPLICITY
1983 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4557 assert (("libev: a signal must not be attached to two different loops",
1984#endif 4558 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
1985 if (expect_false (ev_is_active (w)))
1986 return;
1987 4559
1988 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 4560 signals [w->signum - 1].loop = EV_A;
4561 ECB_MEMORY_FENCE_RELEASE;
4562#endif
1989 4563
1990 evpipe_init (EV_A); 4564 EV_FREQUENT_CHECK;
1991 4565
4566#if EV_USE_SIGNALFD
4567 if (sigfd == -2)
1992 { 4568 {
1993#ifndef _WIN32 4569 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1994 sigset_t full, prev; 4570 if (sigfd < 0 && errno == EINVAL)
1995 sigfillset (&full); 4571 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1996 sigprocmask (SIG_SETMASK, &full, &prev);
1997#endif
1998 4572
1999 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 4573 if (sigfd >= 0)
4574 {
4575 fd_intern (sigfd); /* doing it twice will not hurt */
2000 4576
2001#ifndef _WIN32 4577 sigemptyset (&sigfd_set);
2002 sigprocmask (SIG_SETMASK, &prev, 0); 4578
2003#endif 4579 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4580 ev_set_priority (&sigfd_w, EV_MAXPRI);
4581 ev_io_start (EV_A_ &sigfd_w);
4582 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4583 }
2004 } 4584 }
4585
4586 if (sigfd >= 0)
4587 {
4588 /* TODO: check .head */
4589 sigaddset (&sigfd_set, w->signum);
4590 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4591
4592 signalfd (sigfd, &sigfd_set, 0);
4593 }
4594#endif
2005 4595
2006 ev_start (EV_A_ (W)w, 1); 4596 ev_start (EV_A_ (W)w, 1);
2007 wlist_add (&signals [w->signum - 1].head, (WL)w); 4597 wlist_add (&signals [w->signum - 1].head, (WL)w);
2008 4598
2009 if (!((WL)w)->next) 4599 if (!((WL)w)->next)
4600# if EV_USE_SIGNALFD
4601 if (sigfd < 0) /*TODO*/
4602# endif
2010 { 4603 {
2011#if _WIN32 4604# ifdef _WIN32
4605 evpipe_init (EV_A);
4606
2012 signal (w->signum, ev_sighandler); 4607 signal (w->signum, ev_sighandler);
2013#else 4608# else
2014 struct sigaction sa; 4609 struct sigaction sa;
4610
4611 evpipe_init (EV_A);
4612
2015 sa.sa_handler = ev_sighandler; 4613 sa.sa_handler = ev_sighandler;
2016 sigfillset (&sa.sa_mask); 4614 sigfillset (&sa.sa_mask);
2017 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 4615 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2018 sigaction (w->signum, &sa, 0); 4616 sigaction (w->signum, &sa, 0);
4617
4618 if (origflags & EVFLAG_NOSIGMASK)
4619 {
4620 sigemptyset (&sa.sa_mask);
4621 sigaddset (&sa.sa_mask, w->signum);
4622 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4623 }
2019#endif 4624#endif
2020 } 4625 }
2021}
2022 4626
2023void noinline 4627 EV_FREQUENT_CHECK;
4628}
4629
4630ecb_noinline
4631void
2024ev_signal_stop (EV_P_ ev_signal *w) 4632ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
2025{ 4633{
2026 clear_pending (EV_A_ (W)w); 4634 clear_pending (EV_A_ (W)w);
2027 if (expect_false (!ev_is_active (w))) 4635 if (ecb_expect_false (!ev_is_active (w)))
2028 return; 4636 return;
4637
4638 EV_FREQUENT_CHECK;
2029 4639
2030 wlist_del (&signals [w->signum - 1].head, (WL)w); 4640 wlist_del (&signals [w->signum - 1].head, (WL)w);
2031 ev_stop (EV_A_ (W)w); 4641 ev_stop (EV_A_ (W)w);
2032 4642
2033 if (!signals [w->signum - 1].head) 4643 if (!signals [w->signum - 1].head)
4644 {
4645#if EV_MULTIPLICITY
4646 signals [w->signum - 1].loop = 0; /* unattach from signal */
4647#endif
4648#if EV_USE_SIGNALFD
4649 if (sigfd >= 0)
4650 {
4651 sigset_t ss;
4652
4653 sigemptyset (&ss);
4654 sigaddset (&ss, w->signum);
4655 sigdelset (&sigfd_set, w->signum);
4656
4657 signalfd (sigfd, &sigfd_set, 0);
4658 sigprocmask (SIG_UNBLOCK, &ss, 0);
4659 }
4660 else
4661#endif
2034 signal (w->signum, SIG_DFL); 4662 signal (w->signum, SIG_DFL);
4663 }
4664
4665 EV_FREQUENT_CHECK;
2035} 4666}
4667
4668#endif
4669
4670#if EV_CHILD_ENABLE
2036 4671
2037void 4672void
2038ev_child_start (EV_P_ ev_child *w) 4673ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
2039{ 4674{
2040#if EV_MULTIPLICITY 4675#if EV_MULTIPLICITY
2041 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4676 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2042#endif 4677#endif
2043 if (expect_false (ev_is_active (w))) 4678 if (ecb_expect_false (ev_is_active (w)))
2044 return; 4679 return;
2045 4680
4681 EV_FREQUENT_CHECK;
4682
2046 ev_start (EV_A_ (W)w, 1); 4683 ev_start (EV_A_ (W)w, 1);
2047 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4684 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4685
4686 EV_FREQUENT_CHECK;
2048} 4687}
2049 4688
2050void 4689void
2051ev_child_stop (EV_P_ ev_child *w) 4690ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
2052{ 4691{
2053 clear_pending (EV_A_ (W)w); 4692 clear_pending (EV_A_ (W)w);
2054 if (expect_false (!ev_is_active (w))) 4693 if (ecb_expect_false (!ev_is_active (w)))
2055 return; 4694 return;
2056 4695
4696 EV_FREQUENT_CHECK;
4697
2057 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4698 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2058 ev_stop (EV_A_ (W)w); 4699 ev_stop (EV_A_ (W)w);
4700
4701 EV_FREQUENT_CHECK;
2059} 4702}
4703
4704#endif
2060 4705
2061#if EV_STAT_ENABLE 4706#if EV_STAT_ENABLE
2062 4707
2063# ifdef _WIN32 4708# ifdef _WIN32
2064# undef lstat 4709# undef lstat
2065# define lstat(a,b) _stati64 (a,b) 4710# define lstat(a,b) _stati64 (a,b)
2066# endif 4711# endif
2067 4712
2068#define DEF_STAT_INTERVAL 5.0074891 4713#define DEF_STAT_INTERVAL 5.0074891
4714#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2069#define MIN_STAT_INTERVAL 0.1074891 4715#define MIN_STAT_INTERVAL 0.1074891
2070 4716
2071static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 4717ecb_noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2072 4718
2073#if EV_USE_INOTIFY 4719#if EV_USE_INOTIFY
2074# define EV_INOTIFY_BUFSIZE 8192
2075 4720
2076static void noinline 4721/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4722# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4723
4724ecb_noinline
4725static void
2077infy_add (EV_P_ ev_stat *w) 4726infy_add (EV_P_ ev_stat *w)
2078{ 4727{
2079 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 4728 w->wd = inotify_add_watch (fs_fd, w->path,
4729 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4730 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4731 | IN_DONT_FOLLOW | IN_MASK_ADD);
2080 4732
2081 if (w->wd < 0) 4733 if (w->wd >= 0)
4734 {
4735 struct statfs sfs;
4736
4737 /* now local changes will be tracked by inotify, but remote changes won't */
4738 /* unless the filesystem is known to be local, we therefore still poll */
4739 /* also do poll on <2.6.25, but with normal frequency */
4740
4741 if (!fs_2625)
4742 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4743 else if (!statfs (w->path, &sfs)
4744 && (sfs.f_type == 0x1373 /* devfs */
4745 || sfs.f_type == 0x4006 /* fat */
4746 || sfs.f_type == 0x4d44 /* msdos */
4747 || sfs.f_type == 0xEF53 /* ext2/3 */
4748 || sfs.f_type == 0x72b6 /* jffs2 */
4749 || sfs.f_type == 0x858458f6 /* ramfs */
4750 || sfs.f_type == 0x5346544e /* ntfs */
4751 || sfs.f_type == 0x3153464a /* jfs */
4752 || sfs.f_type == 0x9123683e /* btrfs */
4753 || sfs.f_type == 0x52654973 /* reiser3 */
4754 || sfs.f_type == 0x01021994 /* tmpfs */
4755 || sfs.f_type == 0x58465342 /* xfs */))
4756 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4757 else
4758 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2082 { 4759 }
2083 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 4760 else
4761 {
4762 /* can't use inotify, continue to stat */
4763 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2084 4764
2085 /* monitor some parent directory for speedup hints */ 4765 /* if path is not there, monitor some parent directory for speedup hints */
4766 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4767 /* but an efficiency issue only */
2086 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4768 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2087 { 4769 {
2088 char path [4096]; 4770 char path [4096];
2089 strcpy (path, w->path); 4771 strcpy (path, w->path);
2090 4772
2093 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 4775 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2094 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 4776 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2095 4777
2096 char *pend = strrchr (path, '/'); 4778 char *pend = strrchr (path, '/');
2097 4779
2098 if (!pend) 4780 if (!pend || pend == path)
2099 break; /* whoops, no '/', complain to your admin */ 4781 break;
2100 4782
2101 *pend = 0; 4783 *pend = 0;
2102 w->wd = inotify_add_watch (fs_fd, path, mask); 4784 w->wd = inotify_add_watch (fs_fd, path, mask);
2103 } 4785 }
2104 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4786 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2105 } 4787 }
2106 } 4788 }
2107 else
2108 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2109 4789
2110 if (w->wd >= 0) 4790 if (w->wd >= 0)
2111 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4791 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2112}
2113 4792
2114static void noinline 4793 /* now re-arm timer, if required */
4794 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4795 ev_timer_again (EV_A_ &w->timer);
4796 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4797}
4798
4799ecb_noinline
4800static void
2115infy_del (EV_P_ ev_stat *w) 4801infy_del (EV_P_ ev_stat *w)
2116{ 4802{
2117 int slot; 4803 int slot;
2118 int wd = w->wd; 4804 int wd = w->wd;
2119 4805
2120 if (wd < 0) 4806 if (wd < 0)
2121 return; 4807 return;
2122 4808
2123 w->wd = -2; 4809 w->wd = -2;
2124 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4810 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2125 wlist_del (&fs_hash [slot].head, (WL)w); 4811 wlist_del (&fs_hash [slot].head, (WL)w);
2126 4812
2127 /* remove this watcher, if others are watching it, they will rearm */ 4813 /* remove this watcher, if others are watching it, they will rearm */
2128 inotify_rm_watch (fs_fd, wd); 4814 inotify_rm_watch (fs_fd, wd);
2129} 4815}
2130 4816
2131static void noinline 4817ecb_noinline
4818static void
2132infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4819infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2133{ 4820{
2134 if (slot < 0) 4821 if (slot < 0)
2135 /* overflow, need to check for all hahs slots */ 4822 /* overflow, need to check for all hash slots */
2136 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4823 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2137 infy_wd (EV_A_ slot, wd, ev); 4824 infy_wd (EV_A_ slot, wd, ev);
2138 else 4825 else
2139 { 4826 {
2140 WL w_; 4827 WL w_;
2141 4828
2142 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4829 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2143 { 4830 {
2144 ev_stat *w = (ev_stat *)w_; 4831 ev_stat *w = (ev_stat *)w_;
2145 w_ = w_->next; /* lets us remove this watcher and all before it */ 4832 w_ = w_->next; /* lets us remove this watcher and all before it */
2146 4833
2147 if (w->wd == wd || wd == -1) 4834 if (w->wd == wd || wd == -1)
2148 { 4835 {
2149 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4836 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2150 { 4837 {
4838 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2151 w->wd = -1; 4839 w->wd = -1;
2152 infy_add (EV_A_ w); /* re-add, no matter what */ 4840 infy_add (EV_A_ w); /* re-add, no matter what */
2153 } 4841 }
2154 4842
2155 stat_timer_cb (EV_A_ &w->timer, 0); 4843 stat_timer_cb (EV_A_ &w->timer, 0);
2160 4848
2161static void 4849static void
2162infy_cb (EV_P_ ev_io *w, int revents) 4850infy_cb (EV_P_ ev_io *w, int revents)
2163{ 4851{
2164 char buf [EV_INOTIFY_BUFSIZE]; 4852 char buf [EV_INOTIFY_BUFSIZE];
2165 struct inotify_event *ev = (struct inotify_event *)buf;
2166 int ofs; 4853 int ofs;
2167 int len = read (fs_fd, buf, sizeof (buf)); 4854 int len = read (fs_fd, buf, sizeof (buf));
2168 4855
2169 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4856 for (ofs = 0; ofs < len; )
4857 {
4858 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2170 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4859 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4860 ofs += sizeof (struct inotify_event) + ev->len;
4861 }
2171} 4862}
2172 4863
2173void inline_size 4864inline_size ecb_cold
4865void
4866ev_check_2625 (EV_P)
4867{
4868 /* kernels < 2.6.25 are borked
4869 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4870 */
4871 if (ev_linux_version () < 0x020619)
4872 return;
4873
4874 fs_2625 = 1;
4875}
4876
4877inline_size int
4878infy_newfd (void)
4879{
4880#if defined IN_CLOEXEC && defined IN_NONBLOCK
4881 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4882 if (fd >= 0)
4883 return fd;
4884#endif
4885 return inotify_init ();
4886}
4887
4888inline_size void
2174infy_init (EV_P) 4889infy_init (EV_P)
2175{ 4890{
2176 if (fs_fd != -2) 4891 if (fs_fd != -2)
2177 return; 4892 return;
2178 4893
4894 fs_fd = -1;
4895
4896 ev_check_2625 (EV_A);
4897
2179 fs_fd = inotify_init (); 4898 fs_fd = infy_newfd ();
2180 4899
2181 if (fs_fd >= 0) 4900 if (fs_fd >= 0)
2182 { 4901 {
4902 fd_intern (fs_fd);
2183 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4903 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2184 ev_set_priority (&fs_w, EV_MAXPRI); 4904 ev_set_priority (&fs_w, EV_MAXPRI);
2185 ev_io_start (EV_A_ &fs_w); 4905 ev_io_start (EV_A_ &fs_w);
4906 ev_unref (EV_A);
2186 } 4907 }
2187} 4908}
2188 4909
2189void inline_size 4910inline_size void
2190infy_fork (EV_P) 4911infy_fork (EV_P)
2191{ 4912{
2192 int slot; 4913 int slot;
2193 4914
2194 if (fs_fd < 0) 4915 if (fs_fd < 0)
2195 return; 4916 return;
2196 4917
4918 ev_ref (EV_A);
4919 ev_io_stop (EV_A_ &fs_w);
2197 close (fs_fd); 4920 close (fs_fd);
2198 fs_fd = inotify_init (); 4921 fs_fd = infy_newfd ();
2199 4922
4923 if (fs_fd >= 0)
4924 {
4925 fd_intern (fs_fd);
4926 ev_io_set (&fs_w, fs_fd, EV_READ);
4927 ev_io_start (EV_A_ &fs_w);
4928 ev_unref (EV_A);
4929 }
4930
2200 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4931 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2201 { 4932 {
2202 WL w_ = fs_hash [slot].head; 4933 WL w_ = fs_hash [slot].head;
2203 fs_hash [slot].head = 0; 4934 fs_hash [slot].head = 0;
2204 4935
2205 while (w_) 4936 while (w_)
2210 w->wd = -1; 4941 w->wd = -1;
2211 4942
2212 if (fs_fd >= 0) 4943 if (fs_fd >= 0)
2213 infy_add (EV_A_ w); /* re-add, no matter what */ 4944 infy_add (EV_A_ w); /* re-add, no matter what */
2214 else 4945 else
4946 {
4947 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4948 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2215 ev_timer_start (EV_A_ &w->timer); 4949 ev_timer_again (EV_A_ &w->timer);
4950 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4951 }
2216 } 4952 }
2217
2218 } 4953 }
2219} 4954}
2220 4955
4956#endif
4957
4958#ifdef _WIN32
4959# define EV_LSTAT(p,b) _stati64 (p, b)
4960#else
4961# define EV_LSTAT(p,b) lstat (p, b)
2221#endif 4962#endif
2222 4963
2223void 4964void
2224ev_stat_stat (EV_P_ ev_stat *w) 4965ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
2225{ 4966{
2226 if (lstat (w->path, &w->attr) < 0) 4967 if (lstat (w->path, &w->attr) < 0)
2227 w->attr.st_nlink = 0; 4968 w->attr.st_nlink = 0;
2228 else if (!w->attr.st_nlink) 4969 else if (!w->attr.st_nlink)
2229 w->attr.st_nlink = 1; 4970 w->attr.st_nlink = 1;
2230} 4971}
2231 4972
2232static void noinline 4973ecb_noinline
4974static void
2233stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4975stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2234{ 4976{
2235 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4977 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2236 4978
2237 /* we copy this here each the time so that */ 4979 ev_statdata prev = w->attr;
2238 /* prev has the old value when the callback gets invoked */
2239 w->prev = w->attr;
2240 ev_stat_stat (EV_A_ w); 4980 ev_stat_stat (EV_A_ w);
2241 4981
2242 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4982 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2243 if ( 4983 if (
2244 w->prev.st_dev != w->attr.st_dev 4984 prev.st_dev != w->attr.st_dev
2245 || w->prev.st_ino != w->attr.st_ino 4985 || prev.st_ino != w->attr.st_ino
2246 || w->prev.st_mode != w->attr.st_mode 4986 || prev.st_mode != w->attr.st_mode
2247 || w->prev.st_nlink != w->attr.st_nlink 4987 || prev.st_nlink != w->attr.st_nlink
2248 || w->prev.st_uid != w->attr.st_uid 4988 || prev.st_uid != w->attr.st_uid
2249 || w->prev.st_gid != w->attr.st_gid 4989 || prev.st_gid != w->attr.st_gid
2250 || w->prev.st_rdev != w->attr.st_rdev 4990 || prev.st_rdev != w->attr.st_rdev
2251 || w->prev.st_size != w->attr.st_size 4991 || prev.st_size != w->attr.st_size
2252 || w->prev.st_atime != w->attr.st_atime 4992 || prev.st_atime != w->attr.st_atime
2253 || w->prev.st_mtime != w->attr.st_mtime 4993 || prev.st_mtime != w->attr.st_mtime
2254 || w->prev.st_ctime != w->attr.st_ctime 4994 || prev.st_ctime != w->attr.st_ctime
2255 ) { 4995 ) {
4996 /* we only update w->prev on actual differences */
4997 /* in case we test more often than invoke the callback, */
4998 /* to ensure that prev is always different to attr */
4999 w->prev = prev;
5000
2256 #if EV_USE_INOTIFY 5001 #if EV_USE_INOTIFY
5002 if (fs_fd >= 0)
5003 {
2257 infy_del (EV_A_ w); 5004 infy_del (EV_A_ w);
2258 infy_add (EV_A_ w); 5005 infy_add (EV_A_ w);
2259 ev_stat_stat (EV_A_ w); /* avoid race... */ 5006 ev_stat_stat (EV_A_ w); /* avoid race... */
5007 }
2260 #endif 5008 #endif
2261 5009
2262 ev_feed_event (EV_A_ w, EV_STAT); 5010 ev_feed_event (EV_A_ w, EV_STAT);
2263 } 5011 }
2264} 5012}
2265 5013
2266void 5014void
2267ev_stat_start (EV_P_ ev_stat *w) 5015ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
2268{ 5016{
2269 if (expect_false (ev_is_active (w))) 5017 if (ecb_expect_false (ev_is_active (w)))
2270 return; 5018 return;
2271 5019
2272 /* since we use memcmp, we need to clear any padding data etc. */
2273 memset (&w->prev, 0, sizeof (ev_statdata));
2274 memset (&w->attr, 0, sizeof (ev_statdata));
2275
2276 ev_stat_stat (EV_A_ w); 5020 ev_stat_stat (EV_A_ w);
2277 5021
5022 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2278 if (w->interval < MIN_STAT_INTERVAL) 5023 w->interval = MIN_STAT_INTERVAL;
2279 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2280 5024
2281 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 5025 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2282 ev_set_priority (&w->timer, ev_priority (w)); 5026 ev_set_priority (&w->timer, ev_priority (w));
2283 5027
2284#if EV_USE_INOTIFY 5028#if EV_USE_INOTIFY
2285 infy_init (EV_A); 5029 infy_init (EV_A);
2286 5030
2287 if (fs_fd >= 0) 5031 if (fs_fd >= 0)
2288 infy_add (EV_A_ w); 5032 infy_add (EV_A_ w);
2289 else 5033 else
2290#endif 5034#endif
5035 {
2291 ev_timer_start (EV_A_ &w->timer); 5036 ev_timer_again (EV_A_ &w->timer);
5037 ev_unref (EV_A);
5038 }
2292 5039
2293 ev_start (EV_A_ (W)w, 1); 5040 ev_start (EV_A_ (W)w, 1);
5041
5042 EV_FREQUENT_CHECK;
2294} 5043}
2295 5044
2296void 5045void
2297ev_stat_stop (EV_P_ ev_stat *w) 5046ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
2298{ 5047{
2299 clear_pending (EV_A_ (W)w); 5048 clear_pending (EV_A_ (W)w);
2300 if (expect_false (!ev_is_active (w))) 5049 if (ecb_expect_false (!ev_is_active (w)))
2301 return; 5050 return;
5051
5052 EV_FREQUENT_CHECK;
2302 5053
2303#if EV_USE_INOTIFY 5054#if EV_USE_INOTIFY
2304 infy_del (EV_A_ w); 5055 infy_del (EV_A_ w);
2305#endif 5056#endif
5057
5058 if (ev_is_active (&w->timer))
5059 {
5060 ev_ref (EV_A);
2306 ev_timer_stop (EV_A_ &w->timer); 5061 ev_timer_stop (EV_A_ &w->timer);
5062 }
2307 5063
2308 ev_stop (EV_A_ (W)w); 5064 ev_stop (EV_A_ (W)w);
5065
5066 EV_FREQUENT_CHECK;
2309} 5067}
2310#endif 5068#endif
2311 5069
2312#if EV_IDLE_ENABLE 5070#if EV_IDLE_ENABLE
2313void 5071void
2314ev_idle_start (EV_P_ ev_idle *w) 5072ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
2315{ 5073{
2316 if (expect_false (ev_is_active (w))) 5074 if (ecb_expect_false (ev_is_active (w)))
2317 return; 5075 return;
2318 5076
2319 pri_adjust (EV_A_ (W)w); 5077 pri_adjust (EV_A_ (W)w);
5078
5079 EV_FREQUENT_CHECK;
2320 5080
2321 { 5081 {
2322 int active = ++idlecnt [ABSPRI (w)]; 5082 int active = ++idlecnt [ABSPRI (w)];
2323 5083
2324 ++idleall; 5084 ++idleall;
2325 ev_start (EV_A_ (W)w, active); 5085 ev_start (EV_A_ (W)w, active);
2326 5086
2327 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 5087 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
2328 idles [ABSPRI (w)][active - 1] = w; 5088 idles [ABSPRI (w)][active - 1] = w;
2329 } 5089 }
5090
5091 EV_FREQUENT_CHECK;
2330} 5092}
2331 5093
2332void 5094void
2333ev_idle_stop (EV_P_ ev_idle *w) 5095ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
2334{ 5096{
2335 clear_pending (EV_A_ (W)w); 5097 clear_pending (EV_A_ (W)w);
2336 if (expect_false (!ev_is_active (w))) 5098 if (ecb_expect_false (!ev_is_active (w)))
2337 return; 5099 return;
2338 5100
5101 EV_FREQUENT_CHECK;
5102
2339 { 5103 {
2340 int active = ((W)w)->active; 5104 int active = ev_active (w);
2341 5105
2342 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 5106 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2343 ((W)idles [ABSPRI (w)][active - 1])->active = active; 5107 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2344 5108
2345 ev_stop (EV_A_ (W)w); 5109 ev_stop (EV_A_ (W)w);
2346 --idleall; 5110 --idleall;
2347 } 5111 }
2348}
2349#endif
2350 5112
5113 EV_FREQUENT_CHECK;
5114}
5115#endif
5116
5117#if EV_PREPARE_ENABLE
2351void 5118void
2352ev_prepare_start (EV_P_ ev_prepare *w) 5119ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
2353{ 5120{
2354 if (expect_false (ev_is_active (w))) 5121 if (ecb_expect_false (ev_is_active (w)))
2355 return; 5122 return;
2356 5123
5124 EV_FREQUENT_CHECK;
5125
2357 ev_start (EV_A_ (W)w, ++preparecnt); 5126 ev_start (EV_A_ (W)w, ++preparecnt);
2358 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 5127 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
2359 prepares [preparecnt - 1] = w; 5128 prepares [preparecnt - 1] = w;
5129
5130 EV_FREQUENT_CHECK;
2360} 5131}
2361 5132
2362void 5133void
2363ev_prepare_stop (EV_P_ ev_prepare *w) 5134ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
2364{ 5135{
2365 clear_pending (EV_A_ (W)w); 5136 clear_pending (EV_A_ (W)w);
2366 if (expect_false (!ev_is_active (w))) 5137 if (ecb_expect_false (!ev_is_active (w)))
2367 return; 5138 return;
2368 5139
5140 EV_FREQUENT_CHECK;
5141
2369 { 5142 {
2370 int active = ((W)w)->active; 5143 int active = ev_active (w);
5144
2371 prepares [active - 1] = prepares [--preparecnt]; 5145 prepares [active - 1] = prepares [--preparecnt];
2372 ((W)prepares [active - 1])->active = active; 5146 ev_active (prepares [active - 1]) = active;
2373 } 5147 }
2374 5148
2375 ev_stop (EV_A_ (W)w); 5149 ev_stop (EV_A_ (W)w);
2376}
2377 5150
5151 EV_FREQUENT_CHECK;
5152}
5153#endif
5154
5155#if EV_CHECK_ENABLE
2378void 5156void
2379ev_check_start (EV_P_ ev_check *w) 5157ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
2380{ 5158{
2381 if (expect_false (ev_is_active (w))) 5159 if (ecb_expect_false (ev_is_active (w)))
2382 return; 5160 return;
2383 5161
5162 EV_FREQUENT_CHECK;
5163
2384 ev_start (EV_A_ (W)w, ++checkcnt); 5164 ev_start (EV_A_ (W)w, ++checkcnt);
2385 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 5165 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
2386 checks [checkcnt - 1] = w; 5166 checks [checkcnt - 1] = w;
5167
5168 EV_FREQUENT_CHECK;
2387} 5169}
2388 5170
2389void 5171void
2390ev_check_stop (EV_P_ ev_check *w) 5172ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
2391{ 5173{
2392 clear_pending (EV_A_ (W)w); 5174 clear_pending (EV_A_ (W)w);
2393 if (expect_false (!ev_is_active (w))) 5175 if (ecb_expect_false (!ev_is_active (w)))
2394 return; 5176 return;
2395 5177
5178 EV_FREQUENT_CHECK;
5179
2396 { 5180 {
2397 int active = ((W)w)->active; 5181 int active = ev_active (w);
5182
2398 checks [active - 1] = checks [--checkcnt]; 5183 checks [active - 1] = checks [--checkcnt];
2399 ((W)checks [active - 1])->active = active; 5184 ev_active (checks [active - 1]) = active;
2400 } 5185 }
2401 5186
2402 ev_stop (EV_A_ (W)w); 5187 ev_stop (EV_A_ (W)w);
5188
5189 EV_FREQUENT_CHECK;
2403} 5190}
5191#endif
2404 5192
2405#if EV_EMBED_ENABLE 5193#if EV_EMBED_ENABLE
2406void noinline 5194ecb_noinline
5195void
2407ev_embed_sweep (EV_P_ ev_embed *w) 5196ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
2408{ 5197{
2409 ev_loop (w->other, EVLOOP_NONBLOCK); 5198 ev_run (w->other, EVRUN_NOWAIT);
2410} 5199}
2411 5200
2412static void 5201static void
2413embed_io_cb (EV_P_ ev_io *io, int revents) 5202embed_io_cb (EV_P_ ev_io *io, int revents)
2414{ 5203{
2415 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 5204 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2416 5205
2417 if (ev_cb (w)) 5206 if (ev_cb (w))
2418 ev_feed_event (EV_A_ (W)w, EV_EMBED); 5207 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2419 else 5208 else
2420 ev_loop (w->other, EVLOOP_NONBLOCK); 5209 ev_run (w->other, EVRUN_NOWAIT);
2421} 5210}
2422 5211
2423static void 5212static void
2424embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 5213embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2425{ 5214{
2426 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 5215 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2427 5216
2428 { 5217 {
2429 struct ev_loop *loop = w->other; 5218 EV_P = w->other;
2430 5219
2431 while (fdchangecnt) 5220 while (fdchangecnt)
2432 { 5221 {
2433 fd_reify (EV_A); 5222 fd_reify (EV_A);
2434 ev_loop (EV_A_ EVLOOP_NONBLOCK); 5223 ev_run (EV_A_ EVRUN_NOWAIT);
2435 } 5224 }
2436 } 5225 }
2437} 5226}
5227
5228#if EV_FORK_ENABLE
5229static void
5230embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
5231{
5232 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
5233
5234 ev_embed_stop (EV_A_ w);
5235
5236 {
5237 EV_P = w->other;
5238
5239 ev_loop_fork (EV_A);
5240 ev_run (EV_A_ EVRUN_NOWAIT);
5241 }
5242
5243 ev_embed_start (EV_A_ w);
5244}
5245#endif
2438 5246
2439#if 0 5247#if 0
2440static void 5248static void
2441embed_idle_cb (EV_P_ ev_idle *idle, int revents) 5249embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2442{ 5250{
2443 ev_idle_stop (EV_A_ idle); 5251 ev_idle_stop (EV_A_ idle);
2444} 5252}
2445#endif 5253#endif
2446 5254
2447void 5255void
2448ev_embed_start (EV_P_ ev_embed *w) 5256ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
2449{ 5257{
2450 if (expect_false (ev_is_active (w))) 5258 if (ecb_expect_false (ev_is_active (w)))
2451 return; 5259 return;
2452 5260
2453 { 5261 {
2454 struct ev_loop *loop = w->other; 5262 EV_P = w->other;
2455 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 5263 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2456 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 5264 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2457 } 5265 }
5266
5267 EV_FREQUENT_CHECK;
2458 5268
2459 ev_set_priority (&w->io, ev_priority (w)); 5269 ev_set_priority (&w->io, ev_priority (w));
2460 ev_io_start (EV_A_ &w->io); 5270 ev_io_start (EV_A_ &w->io);
2461 5271
2462 ev_prepare_init (&w->prepare, embed_prepare_cb); 5272 ev_prepare_init (&w->prepare, embed_prepare_cb);
2463 ev_set_priority (&w->prepare, EV_MINPRI); 5273 ev_set_priority (&w->prepare, EV_MINPRI);
2464 ev_prepare_start (EV_A_ &w->prepare); 5274 ev_prepare_start (EV_A_ &w->prepare);
2465 5275
5276#if EV_FORK_ENABLE
5277 ev_fork_init (&w->fork, embed_fork_cb);
5278 ev_fork_start (EV_A_ &w->fork);
5279#endif
5280
2466 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 5281 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2467 5282
2468 ev_start (EV_A_ (W)w, 1); 5283 ev_start (EV_A_ (W)w, 1);
5284
5285 EV_FREQUENT_CHECK;
2469} 5286}
2470 5287
2471void 5288void
2472ev_embed_stop (EV_P_ ev_embed *w) 5289ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
2473{ 5290{
2474 clear_pending (EV_A_ (W)w); 5291 clear_pending (EV_A_ (W)w);
2475 if (expect_false (!ev_is_active (w))) 5292 if (ecb_expect_false (!ev_is_active (w)))
2476 return; 5293 return;
2477 5294
5295 EV_FREQUENT_CHECK;
5296
2478 ev_io_stop (EV_A_ &w->io); 5297 ev_io_stop (EV_A_ &w->io);
2479 ev_prepare_stop (EV_A_ &w->prepare); 5298 ev_prepare_stop (EV_A_ &w->prepare);
5299#if EV_FORK_ENABLE
5300 ev_fork_stop (EV_A_ &w->fork);
5301#endif
2480 5302
2481 ev_stop (EV_A_ (W)w); 5303 ev_stop (EV_A_ (W)w);
5304
5305 EV_FREQUENT_CHECK;
2482} 5306}
2483#endif 5307#endif
2484 5308
2485#if EV_FORK_ENABLE 5309#if EV_FORK_ENABLE
2486void 5310void
2487ev_fork_start (EV_P_ ev_fork *w) 5311ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
2488{ 5312{
2489 if (expect_false (ev_is_active (w))) 5313 if (ecb_expect_false (ev_is_active (w)))
2490 return; 5314 return;
2491 5315
5316 EV_FREQUENT_CHECK;
5317
2492 ev_start (EV_A_ (W)w, ++forkcnt); 5318 ev_start (EV_A_ (W)w, ++forkcnt);
2493 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 5319 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
2494 forks [forkcnt - 1] = w; 5320 forks [forkcnt - 1] = w;
5321
5322 EV_FREQUENT_CHECK;
2495} 5323}
2496 5324
2497void 5325void
2498ev_fork_stop (EV_P_ ev_fork *w) 5326ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
2499{ 5327{
2500 clear_pending (EV_A_ (W)w); 5328 clear_pending (EV_A_ (W)w);
2501 if (expect_false (!ev_is_active (w))) 5329 if (ecb_expect_false (!ev_is_active (w)))
2502 return; 5330 return;
2503 5331
5332 EV_FREQUENT_CHECK;
5333
2504 { 5334 {
2505 int active = ((W)w)->active; 5335 int active = ev_active (w);
5336
2506 forks [active - 1] = forks [--forkcnt]; 5337 forks [active - 1] = forks [--forkcnt];
2507 ((W)forks [active - 1])->active = active; 5338 ev_active (forks [active - 1]) = active;
2508 } 5339 }
2509 5340
2510 ev_stop (EV_A_ (W)w); 5341 ev_stop (EV_A_ (W)w);
5342
5343 EV_FREQUENT_CHECK;
5344}
5345#endif
5346
5347#if EV_CLEANUP_ENABLE
5348void
5349ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5350{
5351 if (ecb_expect_false (ev_is_active (w)))
5352 return;
5353
5354 EV_FREQUENT_CHECK;
5355
5356 ev_start (EV_A_ (W)w, ++cleanupcnt);
5357 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
5358 cleanups [cleanupcnt - 1] = w;
5359
5360 /* cleanup watchers should never keep a refcount on the loop */
5361 ev_unref (EV_A);
5362 EV_FREQUENT_CHECK;
5363}
5364
5365void
5366ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5367{
5368 clear_pending (EV_A_ (W)w);
5369 if (ecb_expect_false (!ev_is_active (w)))
5370 return;
5371
5372 EV_FREQUENT_CHECK;
5373 ev_ref (EV_A);
5374
5375 {
5376 int active = ev_active (w);
5377
5378 cleanups [active - 1] = cleanups [--cleanupcnt];
5379 ev_active (cleanups [active - 1]) = active;
5380 }
5381
5382 ev_stop (EV_A_ (W)w);
5383
5384 EV_FREQUENT_CHECK;
2511} 5385}
2512#endif 5386#endif
2513 5387
2514#if EV_ASYNC_ENABLE 5388#if EV_ASYNC_ENABLE
2515void 5389void
2516ev_async_start (EV_P_ ev_async *w) 5390ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
2517{ 5391{
2518 if (expect_false (ev_is_active (w))) 5392 if (ecb_expect_false (ev_is_active (w)))
2519 return; 5393 return;
2520 5394
5395 w->sent = 0;
5396
2521 evpipe_init (EV_A); 5397 evpipe_init (EV_A);
2522 5398
5399 EV_FREQUENT_CHECK;
5400
2523 ev_start (EV_A_ (W)w, ++asynccnt); 5401 ev_start (EV_A_ (W)w, ++asynccnt);
2524 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 5402 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
2525 asyncs [asynccnt - 1] = w; 5403 asyncs [asynccnt - 1] = w;
5404
5405 EV_FREQUENT_CHECK;
2526} 5406}
2527 5407
2528void 5408void
2529ev_async_stop (EV_P_ ev_async *w) 5409ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
2530{ 5410{
2531 clear_pending (EV_A_ (W)w); 5411 clear_pending (EV_A_ (W)w);
2532 if (expect_false (!ev_is_active (w))) 5412 if (ecb_expect_false (!ev_is_active (w)))
2533 return; 5413 return;
2534 5414
5415 EV_FREQUENT_CHECK;
5416
2535 { 5417 {
2536 int active = ((W)w)->active; 5418 int active = ev_active (w);
5419
2537 asyncs [active - 1] = asyncs [--asynccnt]; 5420 asyncs [active - 1] = asyncs [--asynccnt];
2538 ((W)asyncs [active - 1])->active = active; 5421 ev_active (asyncs [active - 1]) = active;
2539 } 5422 }
2540 5423
2541 ev_stop (EV_A_ (W)w); 5424 ev_stop (EV_A_ (W)w);
5425
5426 EV_FREQUENT_CHECK;
2542} 5427}
2543 5428
2544void 5429void
2545ev_async_send (EV_P_ ev_async *w) 5430ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
2546{ 5431{
2547 w->sent = 1; 5432 w->sent = 1;
2548 evpipe_write (EV_A_ &gotasync); 5433 evpipe_write (EV_A_ &async_pending);
2549} 5434}
2550#endif 5435#endif
2551 5436
2552/*****************************************************************************/ 5437/*****************************************************************************/
2553 5438
2563once_cb (EV_P_ struct ev_once *once, int revents) 5448once_cb (EV_P_ struct ev_once *once, int revents)
2564{ 5449{
2565 void (*cb)(int revents, void *arg) = once->cb; 5450 void (*cb)(int revents, void *arg) = once->cb;
2566 void *arg = once->arg; 5451 void *arg = once->arg;
2567 5452
2568 ev_io_stop (EV_A_ &once->io); 5453 ev_io_stop (EV_A_ &once->io);
2569 ev_timer_stop (EV_A_ &once->to); 5454 ev_timer_stop (EV_A_ &once->to);
2570 ev_free (once); 5455 ev_free (once);
2571 5456
2572 cb (revents, arg); 5457 cb (revents, arg);
2573} 5458}
2574 5459
2575static void 5460static void
2576once_cb_io (EV_P_ ev_io *w, int revents) 5461once_cb_io (EV_P_ ev_io *w, int revents)
2577{ 5462{
2578 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 5463 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
5464
5465 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2579} 5466}
2580 5467
2581static void 5468static void
2582once_cb_to (EV_P_ ev_timer *w, int revents) 5469once_cb_to (EV_P_ ev_timer *w, int revents)
2583{ 5470{
2584 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 5471 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
5472
5473 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2585} 5474}
2586 5475
2587void 5476void
2588ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 5477ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
2589{ 5478{
2590 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 5479 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2591
2592 if (expect_false (!once))
2593 {
2594 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
2595 return;
2596 }
2597 5480
2598 once->cb = cb; 5481 once->cb = cb;
2599 once->arg = arg; 5482 once->arg = arg;
2600 5483
2601 ev_init (&once->io, once_cb_io); 5484 ev_init (&once->io, once_cb_io);
2611 ev_timer_set (&once->to, timeout, 0.); 5494 ev_timer_set (&once->to, timeout, 0.);
2612 ev_timer_start (EV_A_ &once->to); 5495 ev_timer_start (EV_A_ &once->to);
2613 } 5496 }
2614} 5497}
2615 5498
5499/*****************************************************************************/
5500
5501#if EV_WALK_ENABLE
5502ecb_cold
5503void
5504ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5505{
5506 int i, j;
5507 ev_watcher_list *wl, *wn;
5508
5509 if (types & (EV_IO | EV_EMBED))
5510 for (i = 0; i < anfdmax; ++i)
5511 for (wl = anfds [i].head; wl; )
5512 {
5513 wn = wl->next;
5514
5515#if EV_EMBED_ENABLE
5516 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5517 {
5518 if (types & EV_EMBED)
5519 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5520 }
5521 else
5522#endif
5523#if EV_USE_INOTIFY
5524 if (ev_cb ((ev_io *)wl) == infy_cb)
5525 ;
5526 else
5527#endif
5528 if ((ev_io *)wl != &pipe_w)
5529 if (types & EV_IO)
5530 cb (EV_A_ EV_IO, wl);
5531
5532 wl = wn;
5533 }
5534
5535 if (types & (EV_TIMER | EV_STAT))
5536 for (i = timercnt + HEAP0; i-- > HEAP0; )
5537#if EV_STAT_ENABLE
5538 /*TODO: timer is not always active*/
5539 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5540 {
5541 if (types & EV_STAT)
5542 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5543 }
5544 else
5545#endif
5546 if (types & EV_TIMER)
5547 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5548
5549#if EV_PERIODIC_ENABLE
5550 if (types & EV_PERIODIC)
5551 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5552 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5553#endif
5554
5555#if EV_IDLE_ENABLE
5556 if (types & EV_IDLE)
5557 for (j = NUMPRI; j--; )
5558 for (i = idlecnt [j]; i--; )
5559 cb (EV_A_ EV_IDLE, idles [j][i]);
5560#endif
5561
5562#if EV_FORK_ENABLE
5563 if (types & EV_FORK)
5564 for (i = forkcnt; i--; )
5565 if (ev_cb (forks [i]) != embed_fork_cb)
5566 cb (EV_A_ EV_FORK, forks [i]);
5567#endif
5568
5569#if EV_ASYNC_ENABLE
5570 if (types & EV_ASYNC)
5571 for (i = asynccnt; i--; )
5572 cb (EV_A_ EV_ASYNC, asyncs [i]);
5573#endif
5574
5575#if EV_PREPARE_ENABLE
5576 if (types & EV_PREPARE)
5577 for (i = preparecnt; i--; )
5578# if EV_EMBED_ENABLE
5579 if (ev_cb (prepares [i]) != embed_prepare_cb)
5580# endif
5581 cb (EV_A_ EV_PREPARE, prepares [i]);
5582#endif
5583
5584#if EV_CHECK_ENABLE
5585 if (types & EV_CHECK)
5586 for (i = checkcnt; i--; )
5587 cb (EV_A_ EV_CHECK, checks [i]);
5588#endif
5589
5590#if EV_SIGNAL_ENABLE
5591 if (types & EV_SIGNAL)
5592 for (i = 0; i < EV_NSIG - 1; ++i)
5593 for (wl = signals [i].head; wl; )
5594 {
5595 wn = wl->next;
5596 cb (EV_A_ EV_SIGNAL, wl);
5597 wl = wn;
5598 }
5599#endif
5600
5601#if EV_CHILD_ENABLE
5602 if (types & EV_CHILD)
5603 for (i = (EV_PID_HASHSIZE); i--; )
5604 for (wl = childs [i]; wl; )
5605 {
5606 wn = wl->next;
5607 cb (EV_A_ EV_CHILD, wl);
5608 wl = wn;
5609 }
5610#endif
5611/* EV_STAT 0x00001000 /* stat data changed */
5612/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5613}
5614#endif
5615
2616#if EV_MULTIPLICITY 5616#if EV_MULTIPLICITY
2617 #include "ev_wrap.h" 5617 #include "ev_wrap.h"
2618#endif 5618#endif
2619 5619
2620#ifdef __cplusplus
2621}
2622#endif
2623

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines