ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.151 by root, Tue Nov 27 19:59:08 2007 UTC vs.
Revision 1.524 by root, Wed Jan 22 02:20:47 2020 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
43# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
46# endif 71# endif
47# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
49# endif 74# endif
50# else 75# else
51# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
53# endif 78# endif
54# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
56# endif 81# endif
57# endif 82# endif
58 83
84# if HAVE_NANOSLEEP
59# ifndef EV_USE_SELECT 85# ifndef EV_USE_NANOSLEEP
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif 87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
65# endif 91# endif
66 92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
67# ifndef EV_USE_POLL 94# ifndef EV_USE_SELECT
68# if HAVE_POLL && HAVE_POLL_H 95# define EV_USE_SELECT EV_FEATURE_BACKENDS
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
73# endif 109# endif
74 110
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
78# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
79# define EV_USE_EPOLL 0
80# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
81# endif 118# endif
82 119
83# ifndef EV_USE_KQUEUE 120# if HAVE_LINUX_AIO_ABI_H
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 121# ifndef EV_USE_LINUXAIO
85# define EV_USE_KQUEUE 1 122# define EV_USE_LINUXAIO 0 /* was: EV_FEATURE_BACKENDS, always off by default */
86# else
87# define EV_USE_KQUEUE 0
88# endif 123# endif
124# else
125# undef EV_USE_LINUXAIO
126# define EV_USE_LINUXAIO 0
89# endif 127# endif
90 128
129# if HAVE_LINUX_FS_H && HAVE_SYS_TIMERFD_H && HAVE_KERNEL_RWF_T
91# ifndef EV_USE_PORT 130# ifndef EV_USE_IOURING
92# if HAVE_PORT_H && HAVE_PORT_CREATE 131# define EV_USE_IOURING EV_FEATURE_BACKENDS
93# define EV_USE_PORT 1
94# else
95# define EV_USE_PORT 0
96# endif 132# endif
133# else
134# undef EV_USE_IOURING
135# define EV_USE_IOURING 0
97# endif 136# endif
98 137
138# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
139# ifndef EV_USE_KQUEUE
140# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
141# endif
142# else
143# undef EV_USE_KQUEUE
144# define EV_USE_KQUEUE 0
99#endif 145# endif
146
147# if HAVE_PORT_H && HAVE_PORT_CREATE
148# ifndef EV_USE_PORT
149# define EV_USE_PORT EV_FEATURE_BACKENDS
150# endif
151# else
152# undef EV_USE_PORT
153# define EV_USE_PORT 0
154# endif
100 155
101#include <math.h> 156# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
157# ifndef EV_USE_INOTIFY
158# define EV_USE_INOTIFY EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_INOTIFY
162# define EV_USE_INOTIFY 0
163# endif
164
165# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
166# ifndef EV_USE_SIGNALFD
167# define EV_USE_SIGNALFD EV_FEATURE_OS
168# endif
169# else
170# undef EV_USE_SIGNALFD
171# define EV_USE_SIGNALFD 0
172# endif
173
174# if HAVE_EVENTFD
175# ifndef EV_USE_EVENTFD
176# define EV_USE_EVENTFD EV_FEATURE_OS
177# endif
178# else
179# undef EV_USE_EVENTFD
180# define EV_USE_EVENTFD 0
181# endif
182
183# if HAVE_SYS_TIMERFD_H
184# ifndef EV_USE_TIMERFD
185# define EV_USE_TIMERFD EV_FEATURE_OS
186# endif
187# else
188# undef EV_USE_TIMERFD
189# define EV_USE_TIMERFD 0
190# endif
191
192#endif
193
194/* OS X, in its infinite idiocy, actually HARDCODES
195 * a limit of 1024 into their select. Where people have brains,
196 * OS X engineers apparently have a vacuum. Or maybe they were
197 * ordered to have a vacuum, or they do anything for money.
198 * This might help. Or not.
199 * Note that this must be defined early, as other include files
200 * will rely on this define as well.
201 */
202#define _DARWIN_UNLIMITED_SELECT 1
203
102#include <stdlib.h> 204#include <stdlib.h>
205#include <string.h>
103#include <fcntl.h> 206#include <fcntl.h>
104#include <stddef.h> 207#include <stddef.h>
105 208
106#include <stdio.h> 209#include <stdio.h>
107 210
108#include <assert.h> 211#include <assert.h>
109#include <errno.h> 212#include <errno.h>
110#include <sys/types.h> 213#include <sys/types.h>
111#include <time.h> 214#include <time.h>
215#include <limits.h>
112 216
113#include <signal.h> 217#include <signal.h>
218
219#ifdef EV_H
220# include EV_H
221#else
222# include "ev.h"
223#endif
224
225#if EV_NO_THREADS
226# undef EV_NO_SMP
227# define EV_NO_SMP 1
228# undef ECB_NO_THREADS
229# define ECB_NO_THREADS 1
230#endif
231#if EV_NO_SMP
232# undef EV_NO_SMP
233# define ECB_NO_SMP 1
234#endif
114 235
115#ifndef _WIN32 236#ifndef _WIN32
116# include <sys/time.h> 237# include <sys/time.h>
117# include <sys/wait.h> 238# include <sys/wait.h>
118# include <unistd.h> 239# include <unistd.h>
119#else 240#else
241# include <io.h>
120# define WIN32_LEAN_AND_MEAN 242# define WIN32_LEAN_AND_MEAN
243# include <winsock2.h>
121# include <windows.h> 244# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET 245# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 246# define EV_SELECT_IS_WINSOCKET 1
124# endif 247# endif
248# undef EV_AVOID_STDIO
249#endif
250
251/* this block tries to deduce configuration from header-defined symbols and defaults */
252
253/* try to deduce the maximum number of signals on this platform */
254#if defined EV_NSIG
255/* use what's provided */
256#elif defined NSIG
257# define EV_NSIG (NSIG)
258#elif defined _NSIG
259# define EV_NSIG (_NSIG)
260#elif defined SIGMAX
261# define EV_NSIG (SIGMAX+1)
262#elif defined SIG_MAX
263# define EV_NSIG (SIG_MAX+1)
264#elif defined _SIG_MAX
265# define EV_NSIG (_SIG_MAX+1)
266#elif defined MAXSIG
267# define EV_NSIG (MAXSIG+1)
268#elif defined MAX_SIG
269# define EV_NSIG (MAX_SIG+1)
270#elif defined SIGARRAYSIZE
271# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
272#elif defined _sys_nsig
273# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
274#else
275# define EV_NSIG (8 * sizeof (sigset_t) + 1)
276#endif
277
278#ifndef EV_USE_FLOOR
279# define EV_USE_FLOOR 0
280#endif
281
282#ifndef EV_USE_CLOCK_SYSCALL
283# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
284# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
285# else
286# define EV_USE_CLOCK_SYSCALL 0
125#endif 287# endif
288#endif
126 289
127/**/ 290#if !(_POSIX_TIMERS > 0)
291# ifndef EV_USE_MONOTONIC
292# define EV_USE_MONOTONIC 0
293# endif
294# ifndef EV_USE_REALTIME
295# define EV_USE_REALTIME 0
296# endif
297#endif
128 298
129#ifndef EV_USE_MONOTONIC 299#ifndef EV_USE_MONOTONIC
300# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
301# define EV_USE_MONOTONIC EV_FEATURE_OS
302# else
130# define EV_USE_MONOTONIC 0 303# define EV_USE_MONOTONIC 0
304# endif
131#endif 305#endif
132 306
133#ifndef EV_USE_REALTIME 307#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0 308# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
309#endif
310
311#ifndef EV_USE_NANOSLEEP
312# if _POSIX_C_SOURCE >= 199309L
313# define EV_USE_NANOSLEEP EV_FEATURE_OS
314# else
315# define EV_USE_NANOSLEEP 0
316# endif
135#endif 317#endif
136 318
137#ifndef EV_USE_SELECT 319#ifndef EV_USE_SELECT
138# define EV_USE_SELECT 1 320# define EV_USE_SELECT EV_FEATURE_BACKENDS
139#endif 321#endif
140 322
141#ifndef EV_USE_POLL 323#ifndef EV_USE_POLL
142# ifdef _WIN32 324# ifdef _WIN32
143# define EV_USE_POLL 0 325# define EV_USE_POLL 0
144# else 326# else
145# define EV_USE_POLL 1 327# define EV_USE_POLL EV_FEATURE_BACKENDS
146# endif 328# endif
147#endif 329#endif
148 330
149#ifndef EV_USE_EPOLL 331#ifndef EV_USE_EPOLL
332# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
333# define EV_USE_EPOLL EV_FEATURE_BACKENDS
334# else
150# define EV_USE_EPOLL 0 335# define EV_USE_EPOLL 0
336# endif
151#endif 337#endif
152 338
153#ifndef EV_USE_KQUEUE 339#ifndef EV_USE_KQUEUE
154# define EV_USE_KQUEUE 0 340# define EV_USE_KQUEUE 0
155#endif 341#endif
156 342
157#ifndef EV_USE_PORT 343#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 344# define EV_USE_PORT 0
159#endif 345#endif
160 346
347#ifndef EV_USE_LINUXAIO
348# if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
349# define EV_USE_LINUXAIO 0 /* was: 1, always off by default */
350# else
351# define EV_USE_LINUXAIO 0
352# endif
353#endif
354
355#ifndef EV_USE_IOURING
356# if __linux /* later checks might disable again */
357# define EV_USE_IOURING 1
358# else
359# define EV_USE_IOURING 0
360# endif
361#endif
362
363#ifndef EV_USE_INOTIFY
364# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
365# define EV_USE_INOTIFY EV_FEATURE_OS
366# else
367# define EV_USE_INOTIFY 0
368# endif
369#endif
370
161#ifndef EV_PID_HASHSIZE 371#ifndef EV_PID_HASHSIZE
162# if EV_MINIMAL 372# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
163# define EV_PID_HASHSIZE 1 373#endif
374
375#ifndef EV_INOTIFY_HASHSIZE
376# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
377#endif
378
379#ifndef EV_USE_EVENTFD
380# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
381# define EV_USE_EVENTFD EV_FEATURE_OS
164# else 382# else
165# define EV_PID_HASHSIZE 16 383# define EV_USE_EVENTFD 0
166# endif 384# endif
167#endif 385#endif
168 386
169/**/ 387#ifndef EV_USE_SIGNALFD
388# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
389# define EV_USE_SIGNALFD EV_FEATURE_OS
390# else
391# define EV_USE_SIGNALFD 0
392# endif
393#endif
394
395#ifndef EV_USE_TIMERFD
396# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 8))
397# define EV_USE_TIMERFD EV_FEATURE_OS
398# else
399# define EV_USE_TIMERFD 0
400# endif
401#endif
402
403#if 0 /* debugging */
404# define EV_VERIFY 3
405# define EV_USE_4HEAP 1
406# define EV_HEAP_CACHE_AT 1
407#endif
408
409#ifndef EV_VERIFY
410# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
411#endif
412
413#ifndef EV_USE_4HEAP
414# define EV_USE_4HEAP EV_FEATURE_DATA
415#endif
416
417#ifndef EV_HEAP_CACHE_AT
418# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
419#endif
420
421#ifdef __ANDROID__
422/* supposedly, android doesn't typedef fd_mask */
423# undef EV_USE_SELECT
424# define EV_USE_SELECT 0
425/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
426# undef EV_USE_CLOCK_SYSCALL
427# define EV_USE_CLOCK_SYSCALL 0
428#endif
429
430/* aix's poll.h seems to cause lots of trouble */
431#ifdef _AIX
432/* AIX has a completely broken poll.h header */
433# undef EV_USE_POLL
434# define EV_USE_POLL 0
435#endif
436
437/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
438/* which makes programs even slower. might work on other unices, too. */
439#if EV_USE_CLOCK_SYSCALL
440# include <sys/syscall.h>
441# ifdef SYS_clock_gettime
442# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
443# undef EV_USE_MONOTONIC
444# define EV_USE_MONOTONIC 1
445# define EV_NEED_SYSCALL 1
446# else
447# undef EV_USE_CLOCK_SYSCALL
448# define EV_USE_CLOCK_SYSCALL 0
449# endif
450#endif
451
452/* this block fixes any misconfiguration where we know we run into trouble otherwise */
170 453
171#ifndef CLOCK_MONOTONIC 454#ifndef CLOCK_MONOTONIC
172# undef EV_USE_MONOTONIC 455# undef EV_USE_MONOTONIC
173# define EV_USE_MONOTONIC 0 456# define EV_USE_MONOTONIC 0
174#endif 457#endif
176#ifndef CLOCK_REALTIME 459#ifndef CLOCK_REALTIME
177# undef EV_USE_REALTIME 460# undef EV_USE_REALTIME
178# define EV_USE_REALTIME 0 461# define EV_USE_REALTIME 0
179#endif 462#endif
180 463
181#if EV_SELECT_IS_WINSOCKET 464#if !EV_STAT_ENABLE
465# undef EV_USE_INOTIFY
466# define EV_USE_INOTIFY 0
467#endif
468
469#if __linux && EV_USE_IOURING
182# include <winsock.h> 470# include <linux/version.h>
471# if LINUX_VERSION_CODE < KERNEL_VERSION(4,14,0)
472# undef EV_USE_IOURING
473# define EV_USE_IOURING 0
183#endif 474# endif
475#endif
184 476
185/**/ 477#if !EV_USE_NANOSLEEP
478/* hp-ux has it in sys/time.h, which we unconditionally include above */
479# if !defined _WIN32 && !defined __hpux
480# include <sys/select.h>
481# endif
482#endif
186 483
187#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 484#if EV_USE_LINUXAIO
188#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 485# include <sys/syscall.h>
189/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 486# if SYS_io_getevents && EV_USE_EPOLL /* linuxaio backend requires epoll backend */
487# define EV_NEED_SYSCALL 1
488# else
489# undef EV_USE_LINUXAIO
490# define EV_USE_LINUXAIO 0
491# endif
492#endif
190 493
191#ifdef EV_H 494#if EV_USE_IOURING
192# include EV_H 495# include <sys/syscall.h>
496# if !SYS_io_uring_setup && __linux && !__alpha
497# define SYS_io_uring_setup 425
498# define SYS_io_uring_enter 426
499# define SYS_io_uring_wregister 427
500# endif
501# if SYS_io_uring_setup && EV_USE_EPOLL /* iouring backend requires epoll backend */
502# define EV_NEED_SYSCALL 1
503# else
504# undef EV_USE_IOURING
505# define EV_USE_IOURING 0
506# endif
507#endif
508
509#if EV_USE_INOTIFY
510# include <sys/statfs.h>
511# include <sys/inotify.h>
512/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
513# ifndef IN_DONT_FOLLOW
514# undef EV_USE_INOTIFY
515# define EV_USE_INOTIFY 0
516# endif
517#endif
518
519#if EV_USE_EVENTFD
520/* our minimum requirement is glibc 2.7 which has the stub, but not the full header */
521# include <stdint.h>
522# ifndef EFD_NONBLOCK
523# define EFD_NONBLOCK O_NONBLOCK
524# endif
525# ifndef EFD_CLOEXEC
526# ifdef O_CLOEXEC
527# define EFD_CLOEXEC O_CLOEXEC
528# else
529# define EFD_CLOEXEC 02000000
530# endif
531# endif
532EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
533#endif
534
535#if EV_USE_SIGNALFD
536/* our minimum requirement is glibc 2.7 which has the stub, but not the full header */
537# include <stdint.h>
538# ifndef SFD_NONBLOCK
539# define SFD_NONBLOCK O_NONBLOCK
540# endif
541# ifndef SFD_CLOEXEC
542# ifdef O_CLOEXEC
543# define SFD_CLOEXEC O_CLOEXEC
544# else
545# define SFD_CLOEXEC 02000000
546# endif
547# endif
548EV_CPP (extern "C") int (signalfd) (int fd, const sigset_t *mask, int flags);
549
550struct signalfd_siginfo
551{
552 uint32_t ssi_signo;
553 char pad[128 - sizeof (uint32_t)];
554};
555#endif
556
557/* for timerfd, libev core requires TFD_TIMER_CANCEL_ON_SET &c */
558#if EV_USE_TIMERFD
559# include <sys/timerfd.h>
560/* timerfd is only used for periodics */
561# if !(defined (TFD_TIMER_CANCEL_ON_SET) && defined (TFD_CLOEXEC) && defined (TFD_NONBLOCK)) || !EV_PERIODIC_ENABLE
562# undef EV_USE_TIMERFD
563# define EV_USE_TIMERFD 0
564# endif
565#endif
566
567/*****************************************************************************/
568
569#if EV_VERIFY >= 3
570# define EV_FREQUENT_CHECK ev_verify (EV_A)
193#else 571#else
194# include "ev.h" 572# define EV_FREQUENT_CHECK do { } while (0)
195#endif
196
197#if __GNUC__ >= 3
198# define expect(expr,value) __builtin_expect ((expr),(value))
199# define inline_size static inline /* inline for codesize */
200# if EV_MINIMAL
201# define noinline __attribute__ ((noinline))
202# define inline_speed static noinline
203# else
204# define noinline
205# define inline_speed static inline
206# endif 573#endif
574
575/*
576 * This is used to work around floating point rounding problems.
577 * This value is good at least till the year 4000.
578 */
579#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
580/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
581
582#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
583#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
584#define MAX_BLOCKTIME2 1500001.07 /* same, but when timerfd is used to detect jumps, also safe delay to not overflow */
585
586/* find a portable timestamp that is "always" in the future but fits into time_t.
587 * this is quite hard, and we are mostly guessing - we handle 32 bit signed/unsigned time_t,
588 * and sizes larger than 32 bit, and maybe the unlikely floating point time_t */
589#define EV_TSTAMP_HUGE \
590 (sizeof (time_t) >= 8 ? 10000000000000. \
591 : 0 < (time_t)4294967295 ? 4294967295. \
592 : 2147483647.) \
593
594#ifndef EV_TS_CONST
595# define EV_TS_CONST(nv) nv
596# define EV_TS_TO_MSEC(a) a * 1e3 + 0.9999
597# define EV_TS_FROM_USEC(us) us * 1e-6
598# define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
599# define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
600# define EV_TV_GET(tv) ((tv).tv_sec + (tv).tv_usec * 1e-6)
601# define EV_TS_GET(ts) ((ts).tv_sec + (ts).tv_nsec * 1e-9)
602#endif
603
604/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
605/* ECB.H BEGIN */
606/*
607 * libecb - http://software.schmorp.de/pkg/libecb
608 *
609 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
610 * Copyright (©) 2011 Emanuele Giaquinta
611 * All rights reserved.
612 *
613 * Redistribution and use in source and binary forms, with or without modifica-
614 * tion, are permitted provided that the following conditions are met:
615 *
616 * 1. Redistributions of source code must retain the above copyright notice,
617 * this list of conditions and the following disclaimer.
618 *
619 * 2. Redistributions in binary form must reproduce the above copyright
620 * notice, this list of conditions and the following disclaimer in the
621 * documentation and/or other materials provided with the distribution.
622 *
623 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
624 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
625 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
626 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
627 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
628 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
629 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
630 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
631 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
632 * OF THE POSSIBILITY OF SUCH DAMAGE.
633 *
634 * Alternatively, the contents of this file may be used under the terms of
635 * the GNU General Public License ("GPL") version 2 or any later version,
636 * in which case the provisions of the GPL are applicable instead of
637 * the above. If you wish to allow the use of your version of this file
638 * only under the terms of the GPL and not to allow others to use your
639 * version of this file under the BSD license, indicate your decision
640 * by deleting the provisions above and replace them with the notice
641 * and other provisions required by the GPL. If you do not delete the
642 * provisions above, a recipient may use your version of this file under
643 * either the BSD or the GPL.
644 */
645
646#ifndef ECB_H
647#define ECB_H
648
649/* 16 bits major, 16 bits minor */
650#define ECB_VERSION 0x00010008
651
652#include <string.h> /* for memcpy */
653
654#ifdef _WIN32
655 typedef signed char int8_t;
656 typedef unsigned char uint8_t;
657 typedef signed char int_fast8_t;
658 typedef unsigned char uint_fast8_t;
659 typedef signed short int16_t;
660 typedef unsigned short uint16_t;
661 typedef signed int int_fast16_t;
662 typedef unsigned int uint_fast16_t;
663 typedef signed int int32_t;
664 typedef unsigned int uint32_t;
665 typedef signed int int_fast32_t;
666 typedef unsigned int uint_fast32_t;
667 #if __GNUC__
668 typedef signed long long int64_t;
669 typedef unsigned long long uint64_t;
670 #else /* _MSC_VER || __BORLANDC__ */
671 typedef signed __int64 int64_t;
672 typedef unsigned __int64 uint64_t;
673 #endif
674 typedef int64_t int_fast64_t;
675 typedef uint64_t uint_fast64_t;
676 #ifdef _WIN64
677 #define ECB_PTRSIZE 8
678 typedef uint64_t uintptr_t;
679 typedef int64_t intptr_t;
680 #else
681 #define ECB_PTRSIZE 4
682 typedef uint32_t uintptr_t;
683 typedef int32_t intptr_t;
684 #endif
207#else 685#else
686 #include <inttypes.h>
687 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
688 #define ECB_PTRSIZE 8
689 #else
690 #define ECB_PTRSIZE 4
691 #endif
692#endif
693
694#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
695#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
696
697#ifndef ECB_OPTIMIZE_SIZE
698 #if __OPTIMIZE_SIZE__
699 #define ECB_OPTIMIZE_SIZE 1
700 #else
701 #define ECB_OPTIMIZE_SIZE 0
702 #endif
703#endif
704
705/* work around x32 idiocy by defining proper macros */
706#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
707 #if _ILP32
708 #define ECB_AMD64_X32 1
709 #else
710 #define ECB_AMD64 1
711 #endif
712#endif
713
714/* many compilers define _GNUC_ to some versions but then only implement
715 * what their idiot authors think are the "more important" extensions,
716 * causing enormous grief in return for some better fake benchmark numbers.
717 * or so.
718 * we try to detect these and simply assume they are not gcc - if they have
719 * an issue with that they should have done it right in the first place.
720 */
721#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
722 #define ECB_GCC_VERSION(major,minor) 0
723#else
724 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
725#endif
726
727#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
728
729#if __clang__ && defined __has_builtin
730 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
731#else
732 #define ECB_CLANG_BUILTIN(x) 0
733#endif
734
735#if __clang__ && defined __has_extension
736 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
737#else
738 #define ECB_CLANG_EXTENSION(x) 0
739#endif
740
741#define ECB_CPP (__cplusplus+0)
742#define ECB_CPP11 (__cplusplus >= 201103L)
743#define ECB_CPP14 (__cplusplus >= 201402L)
744#define ECB_CPP17 (__cplusplus >= 201703L)
745
746#if ECB_CPP
747 #define ECB_C 0
748 #define ECB_STDC_VERSION 0
749#else
750 #define ECB_C 1
751 #define ECB_STDC_VERSION __STDC_VERSION__
752#endif
753
754#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
755#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
756#define ECB_C17 (ECB_STDC_VERSION >= 201710L)
757
758#if ECB_CPP
759 #define ECB_EXTERN_C extern "C"
760 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
761 #define ECB_EXTERN_C_END }
762#else
763 #define ECB_EXTERN_C extern
764 #define ECB_EXTERN_C_BEG
765 #define ECB_EXTERN_C_END
766#endif
767
768/*****************************************************************************/
769
770/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
771/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
772
773#if ECB_NO_THREADS
774 #define ECB_NO_SMP 1
775#endif
776
777#if ECB_NO_SMP
778 #define ECB_MEMORY_FENCE do { } while (0)
779#endif
780
781/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
782#if __xlC__ && ECB_CPP
783 #include <builtins.h>
784#endif
785
786#if 1400 <= _MSC_VER
787 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
788#endif
789
790#ifndef ECB_MEMORY_FENCE
791 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
792 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
793 #if __i386 || __i386__
794 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
795 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
796 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
797 #elif ECB_GCC_AMD64
798 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
799 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
800 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
801 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
802 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
803 #elif defined __ARM_ARCH_2__ \
804 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
805 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
806 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
807 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
808 || defined __ARM_ARCH_5TEJ__
809 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
810 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
811 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
812 || defined __ARM_ARCH_6T2__
813 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
814 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
815 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
816 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
817 #elif __aarch64__
818 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
819 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
820 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
821 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
822 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
823 #elif defined __s390__ || defined __s390x__
824 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
825 #elif defined __mips__
826 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
827 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
828 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
829 #elif defined __alpha__
830 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
831 #elif defined __hppa__
832 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
833 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
834 #elif defined __ia64__
835 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
836 #elif defined __m68k__
837 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
838 #elif defined __m88k__
839 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
840 #elif defined __sh__
841 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
842 #endif
843 #endif
844#endif
845
846#ifndef ECB_MEMORY_FENCE
847 #if ECB_GCC_VERSION(4,7)
848 /* see comment below (stdatomic.h) about the C11 memory model. */
849 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
850 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
851 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
852 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
853
854 #elif ECB_CLANG_EXTENSION(c_atomic)
855 /* see comment below (stdatomic.h) about the C11 memory model. */
856 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
857 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
858 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
859 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
860
861 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
862 #define ECB_MEMORY_FENCE __sync_synchronize ()
863 #elif _MSC_VER >= 1500 /* VC++ 2008 */
864 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
865 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
866 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
867 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
868 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
869 #elif _MSC_VER >= 1400 /* VC++ 2005 */
870 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
871 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
872 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
873 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
874 #elif defined _WIN32
875 #include <WinNT.h>
876 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
877 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
878 #include <mbarrier.h>
879 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
880 #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
881 #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
882 #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
883 #elif __xlC__
884 #define ECB_MEMORY_FENCE __sync ()
885 #endif
886#endif
887
888#ifndef ECB_MEMORY_FENCE
889 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
890 /* we assume that these memory fences work on all variables/all memory accesses, */
891 /* not just C11 atomics and atomic accesses */
892 #include <stdatomic.h>
893 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
894 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
895 #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
896 #endif
897#endif
898
899#ifndef ECB_MEMORY_FENCE
900 #if !ECB_AVOID_PTHREADS
901 /*
902 * if you get undefined symbol references to pthread_mutex_lock,
903 * or failure to find pthread.h, then you should implement
904 * the ECB_MEMORY_FENCE operations for your cpu/compiler
905 * OR provide pthread.h and link against the posix thread library
906 * of your system.
907 */
908 #include <pthread.h>
909 #define ECB_NEEDS_PTHREADS 1
910 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
911
912 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
913 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
914 #endif
915#endif
916
917#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
918 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
919#endif
920
921#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
922 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
923#endif
924
925#if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
926 #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
927#endif
928
929/*****************************************************************************/
930
931#if ECB_CPP
932 #define ecb_inline static inline
933#elif ECB_GCC_VERSION(2,5)
934 #define ecb_inline static __inline__
935#elif ECB_C99
936 #define ecb_inline static inline
937#else
938 #define ecb_inline static
939#endif
940
941#if ECB_GCC_VERSION(3,3)
942 #define ecb_restrict __restrict__
943#elif ECB_C99
944 #define ecb_restrict restrict
945#else
946 #define ecb_restrict
947#endif
948
949typedef int ecb_bool;
950
951#define ECB_CONCAT_(a, b) a ## b
952#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
953#define ECB_STRINGIFY_(a) # a
954#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
955#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
956
957#define ecb_function_ ecb_inline
958
959#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
960 #define ecb_attribute(attrlist) __attribute__ (attrlist)
961#else
962 #define ecb_attribute(attrlist)
963#endif
964
965#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
966 #define ecb_is_constant(expr) __builtin_constant_p (expr)
967#else
968 /* possible C11 impl for integral types
969 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
970 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
971
972 #define ecb_is_constant(expr) 0
973#endif
974
975#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
976 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
977#else
208# define expect(expr,value) (expr) 978 #define ecb_expect(expr,value) (expr)
209# define inline_speed static
210# define inline_size static
211# define noinline
212#endif 979#endif
213 980
981#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
982 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
983#else
984 #define ecb_prefetch(addr,rw,locality)
985#endif
986
987/* no emulation for ecb_decltype */
988#if ECB_CPP11
989 // older implementations might have problems with decltype(x)::type, work around it
990 template<class T> struct ecb_decltype_t { typedef T type; };
991 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
992#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
993 #define ecb_decltype(x) __typeof__ (x)
994#endif
995
996#if _MSC_VER >= 1300
997 #define ecb_deprecated __declspec (deprecated)
998#else
999 #define ecb_deprecated ecb_attribute ((__deprecated__))
1000#endif
1001
1002#if _MSC_VER >= 1500
1003 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
1004#elif ECB_GCC_VERSION(4,5)
1005 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
1006#else
1007 #define ecb_deprecated_message(msg) ecb_deprecated
1008#endif
1009
1010#if _MSC_VER >= 1400
1011 #define ecb_noinline __declspec (noinline)
1012#else
1013 #define ecb_noinline ecb_attribute ((__noinline__))
1014#endif
1015
1016#define ecb_unused ecb_attribute ((__unused__))
1017#define ecb_const ecb_attribute ((__const__))
1018#define ecb_pure ecb_attribute ((__pure__))
1019
1020#if ECB_C11 || __IBMC_NORETURN
1021 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
1022 #define ecb_noreturn _Noreturn
1023#elif ECB_CPP11
1024 #define ecb_noreturn [[noreturn]]
1025#elif _MSC_VER >= 1200
1026 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
1027 #define ecb_noreturn __declspec (noreturn)
1028#else
1029 #define ecb_noreturn ecb_attribute ((__noreturn__))
1030#endif
1031
1032#if ECB_GCC_VERSION(4,3)
1033 #define ecb_artificial ecb_attribute ((__artificial__))
1034 #define ecb_hot ecb_attribute ((__hot__))
1035 #define ecb_cold ecb_attribute ((__cold__))
1036#else
1037 #define ecb_artificial
1038 #define ecb_hot
1039 #define ecb_cold
1040#endif
1041
1042/* put around conditional expressions if you are very sure that the */
1043/* expression is mostly true or mostly false. note that these return */
1044/* booleans, not the expression. */
214#define expect_false(expr) expect ((expr) != 0, 0) 1045#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
215#define expect_true(expr) expect ((expr) != 0, 1) 1046#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
1047/* for compatibility to the rest of the world */
1048#define ecb_likely(expr) ecb_expect_true (expr)
1049#define ecb_unlikely(expr) ecb_expect_false (expr)
216 1050
1051/* count trailing zero bits and count # of one bits */
1052#if ECB_GCC_VERSION(3,4) \
1053 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
1054 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
1055 && ECB_CLANG_BUILTIN(__builtin_popcount))
1056 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
1057 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
1058 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
1059 #define ecb_ctz32(x) __builtin_ctz (x)
1060 #define ecb_ctz64(x) __builtin_ctzll (x)
1061 #define ecb_popcount32(x) __builtin_popcount (x)
1062 /* no popcountll */
1063#else
1064 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
1065 ecb_function_ ecb_const int
1066 ecb_ctz32 (uint32_t x)
1067 {
1068#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1069 unsigned long r;
1070 _BitScanForward (&r, x);
1071 return (int)r;
1072#else
1073 int r = 0;
1074
1075 x &= ~x + 1; /* this isolates the lowest bit */
1076
1077#if ECB_branchless_on_i386
1078 r += !!(x & 0xaaaaaaaa) << 0;
1079 r += !!(x & 0xcccccccc) << 1;
1080 r += !!(x & 0xf0f0f0f0) << 2;
1081 r += !!(x & 0xff00ff00) << 3;
1082 r += !!(x & 0xffff0000) << 4;
1083#else
1084 if (x & 0xaaaaaaaa) r += 1;
1085 if (x & 0xcccccccc) r += 2;
1086 if (x & 0xf0f0f0f0) r += 4;
1087 if (x & 0xff00ff00) r += 8;
1088 if (x & 0xffff0000) r += 16;
1089#endif
1090
1091 return r;
1092#endif
1093 }
1094
1095 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
1096 ecb_function_ ecb_const int
1097 ecb_ctz64 (uint64_t x)
1098 {
1099#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1100 unsigned long r;
1101 _BitScanForward64 (&r, x);
1102 return (int)r;
1103#else
1104 int shift = x & 0xffffffff ? 0 : 32;
1105 return ecb_ctz32 (x >> shift) + shift;
1106#endif
1107 }
1108
1109 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1110 ecb_function_ ecb_const int
1111 ecb_popcount32 (uint32_t x)
1112 {
1113 x -= (x >> 1) & 0x55555555;
1114 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1115 x = ((x >> 4) + x) & 0x0f0f0f0f;
1116 x *= 0x01010101;
1117
1118 return x >> 24;
1119 }
1120
1121 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1122 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1123 {
1124#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1125 unsigned long r;
1126 _BitScanReverse (&r, x);
1127 return (int)r;
1128#else
1129 int r = 0;
1130
1131 if (x >> 16) { x >>= 16; r += 16; }
1132 if (x >> 8) { x >>= 8; r += 8; }
1133 if (x >> 4) { x >>= 4; r += 4; }
1134 if (x >> 2) { x >>= 2; r += 2; }
1135 if (x >> 1) { r += 1; }
1136
1137 return r;
1138#endif
1139 }
1140
1141 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1142 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1143 {
1144#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1145 unsigned long r;
1146 _BitScanReverse64 (&r, x);
1147 return (int)r;
1148#else
1149 int r = 0;
1150
1151 if (x >> 32) { x >>= 32; r += 32; }
1152
1153 return r + ecb_ld32 (x);
1154#endif
1155 }
1156#endif
1157
1158ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1159ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1160ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1161ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1162
1163ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1164ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1165{
1166 return ( (x * 0x0802U & 0x22110U)
1167 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1168}
1169
1170ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1171ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1172{
1173 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1174 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1175 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1176 x = ( x >> 8 ) | ( x << 8);
1177
1178 return x;
1179}
1180
1181ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1182ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1183{
1184 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1185 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1186 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1187 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1188 x = ( x >> 16 ) | ( x << 16);
1189
1190 return x;
1191}
1192
1193/* popcount64 is only available on 64 bit cpus as gcc builtin */
1194/* so for this version we are lazy */
1195ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1196ecb_function_ ecb_const int
1197ecb_popcount64 (uint64_t x)
1198{
1199 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1200}
1201
1202ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1203ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1204ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1205ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1206ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1207ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1208ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1209ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1210
1211ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1212ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1213ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1214ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1215ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1216ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1217ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1218ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1219
1220#if ECB_CPP
1221
1222inline uint8_t ecb_ctz (uint8_t v) { return ecb_ctz32 (v); }
1223inline uint16_t ecb_ctz (uint16_t v) { return ecb_ctz32 (v); }
1224inline uint32_t ecb_ctz (uint32_t v) { return ecb_ctz32 (v); }
1225inline uint64_t ecb_ctz (uint64_t v) { return ecb_ctz64 (v); }
1226
1227inline bool ecb_is_pot (uint8_t v) { return ecb_is_pot32 (v); }
1228inline bool ecb_is_pot (uint16_t v) { return ecb_is_pot32 (v); }
1229inline bool ecb_is_pot (uint32_t v) { return ecb_is_pot32 (v); }
1230inline bool ecb_is_pot (uint64_t v) { return ecb_is_pot64 (v); }
1231
1232inline int ecb_ld (uint8_t v) { return ecb_ld32 (v); }
1233inline int ecb_ld (uint16_t v) { return ecb_ld32 (v); }
1234inline int ecb_ld (uint32_t v) { return ecb_ld32 (v); }
1235inline int ecb_ld (uint64_t v) { return ecb_ld64 (v); }
1236
1237inline int ecb_popcount (uint8_t v) { return ecb_popcount32 (v); }
1238inline int ecb_popcount (uint16_t v) { return ecb_popcount32 (v); }
1239inline int ecb_popcount (uint32_t v) { return ecb_popcount32 (v); }
1240inline int ecb_popcount (uint64_t v) { return ecb_popcount64 (v); }
1241
1242inline uint8_t ecb_bitrev (uint8_t v) { return ecb_bitrev8 (v); }
1243inline uint16_t ecb_bitrev (uint16_t v) { return ecb_bitrev16 (v); }
1244inline uint32_t ecb_bitrev (uint32_t v) { return ecb_bitrev32 (v); }
1245
1246inline uint8_t ecb_rotl (uint8_t v, unsigned int count) { return ecb_rotl8 (v, count); }
1247inline uint16_t ecb_rotl (uint16_t v, unsigned int count) { return ecb_rotl16 (v, count); }
1248inline uint32_t ecb_rotl (uint32_t v, unsigned int count) { return ecb_rotl32 (v, count); }
1249inline uint64_t ecb_rotl (uint64_t v, unsigned int count) { return ecb_rotl64 (v, count); }
1250
1251inline uint8_t ecb_rotr (uint8_t v, unsigned int count) { return ecb_rotr8 (v, count); }
1252inline uint16_t ecb_rotr (uint16_t v, unsigned int count) { return ecb_rotr16 (v, count); }
1253inline uint32_t ecb_rotr (uint32_t v, unsigned int count) { return ecb_rotr32 (v, count); }
1254inline uint64_t ecb_rotr (uint64_t v, unsigned int count) { return ecb_rotr64 (v, count); }
1255
1256#endif
1257
1258#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1259 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1260 #define ecb_bswap16(x) __builtin_bswap16 (x)
1261 #else
1262 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1263 #endif
1264 #define ecb_bswap32(x) __builtin_bswap32 (x)
1265 #define ecb_bswap64(x) __builtin_bswap64 (x)
1266#elif _MSC_VER
1267 #include <stdlib.h>
1268 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1269 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1270 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1271#else
1272 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1273 ecb_function_ ecb_const uint16_t
1274 ecb_bswap16 (uint16_t x)
1275 {
1276 return ecb_rotl16 (x, 8);
1277 }
1278
1279 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1280 ecb_function_ ecb_const uint32_t
1281 ecb_bswap32 (uint32_t x)
1282 {
1283 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1284 }
1285
1286 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1287 ecb_function_ ecb_const uint64_t
1288 ecb_bswap64 (uint64_t x)
1289 {
1290 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1291 }
1292#endif
1293
1294#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1295 #define ecb_unreachable() __builtin_unreachable ()
1296#else
1297 /* this seems to work fine, but gcc always emits a warning for it :/ */
1298 ecb_inline ecb_noreturn void ecb_unreachable (void);
1299 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1300#endif
1301
1302/* try to tell the compiler that some condition is definitely true */
1303#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1304
1305ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1306ecb_inline ecb_const uint32_t
1307ecb_byteorder_helper (void)
1308{
1309 /* the union code still generates code under pressure in gcc, */
1310 /* but less than using pointers, and always seems to */
1311 /* successfully return a constant. */
1312 /* the reason why we have this horrible preprocessor mess */
1313 /* is to avoid it in all cases, at least on common architectures */
1314 /* or when using a recent enough gcc version (>= 4.6) */
1315#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1316 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1317 #define ECB_LITTLE_ENDIAN 1
1318 return 0x44332211;
1319#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1320 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1321 #define ECB_BIG_ENDIAN 1
1322 return 0x11223344;
1323#else
1324 union
1325 {
1326 uint8_t c[4];
1327 uint32_t u;
1328 } u = { 0x11, 0x22, 0x33, 0x44 };
1329 return u.u;
1330#endif
1331}
1332
1333ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1334ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1335ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1336ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1337
1338/*****************************************************************************/
1339/* unaligned load/store */
1340
1341ecb_inline uint_fast16_t ecb_be_u16_to_host (uint_fast16_t v) { return ecb_little_endian () ? ecb_bswap16 (v) : v; }
1342ecb_inline uint_fast32_t ecb_be_u32_to_host (uint_fast32_t v) { return ecb_little_endian () ? ecb_bswap32 (v) : v; }
1343ecb_inline uint_fast64_t ecb_be_u64_to_host (uint_fast64_t v) { return ecb_little_endian () ? ecb_bswap64 (v) : v; }
1344
1345ecb_inline uint_fast16_t ecb_le_u16_to_host (uint_fast16_t v) { return ecb_big_endian () ? ecb_bswap16 (v) : v; }
1346ecb_inline uint_fast32_t ecb_le_u32_to_host (uint_fast32_t v) { return ecb_big_endian () ? ecb_bswap32 (v) : v; }
1347ecb_inline uint_fast64_t ecb_le_u64_to_host (uint_fast64_t v) { return ecb_big_endian () ? ecb_bswap64 (v) : v; }
1348
1349ecb_inline uint_fast16_t ecb_peek_u16_u (const void *ptr) { uint16_t v; memcpy (&v, ptr, sizeof (v)); return v; }
1350ecb_inline uint_fast32_t ecb_peek_u32_u (const void *ptr) { uint32_t v; memcpy (&v, ptr, sizeof (v)); return v; }
1351ecb_inline uint_fast64_t ecb_peek_u64_u (const void *ptr) { uint64_t v; memcpy (&v, ptr, sizeof (v)); return v; }
1352
1353ecb_inline uint_fast16_t ecb_peek_be_u16_u (const void *ptr) { return ecb_be_u16_to_host (ecb_peek_u16_u (ptr)); }
1354ecb_inline uint_fast32_t ecb_peek_be_u32_u (const void *ptr) { return ecb_be_u32_to_host (ecb_peek_u32_u (ptr)); }
1355ecb_inline uint_fast64_t ecb_peek_be_u64_u (const void *ptr) { return ecb_be_u64_to_host (ecb_peek_u64_u (ptr)); }
1356
1357ecb_inline uint_fast16_t ecb_peek_le_u16_u (const void *ptr) { return ecb_le_u16_to_host (ecb_peek_u16_u (ptr)); }
1358ecb_inline uint_fast32_t ecb_peek_le_u32_u (const void *ptr) { return ecb_le_u32_to_host (ecb_peek_u32_u (ptr)); }
1359ecb_inline uint_fast64_t ecb_peek_le_u64_u (const void *ptr) { return ecb_le_u64_to_host (ecb_peek_u64_u (ptr)); }
1360
1361ecb_inline uint_fast16_t ecb_host_to_be_u16 (uint_fast16_t v) { return ecb_little_endian () ? ecb_bswap16 (v) : v; }
1362ecb_inline uint_fast32_t ecb_host_to_be_u32 (uint_fast32_t v) { return ecb_little_endian () ? ecb_bswap32 (v) : v; }
1363ecb_inline uint_fast64_t ecb_host_to_be_u64 (uint_fast64_t v) { return ecb_little_endian () ? ecb_bswap64 (v) : v; }
1364
1365ecb_inline uint_fast16_t ecb_host_to_le_u16 (uint_fast16_t v) { return ecb_big_endian () ? ecb_bswap16 (v) : v; }
1366ecb_inline uint_fast32_t ecb_host_to_le_u32 (uint_fast32_t v) { return ecb_big_endian () ? ecb_bswap32 (v) : v; }
1367ecb_inline uint_fast64_t ecb_host_to_le_u64 (uint_fast64_t v) { return ecb_big_endian () ? ecb_bswap64 (v) : v; }
1368
1369ecb_inline void ecb_poke_u16_u (void *ptr, uint16_t v) { memcpy (ptr, &v, sizeof (v)); }
1370ecb_inline void ecb_poke_u32_u (void *ptr, uint32_t v) { memcpy (ptr, &v, sizeof (v)); }
1371ecb_inline void ecb_poke_u64_u (void *ptr, uint64_t v) { memcpy (ptr, &v, sizeof (v)); }
1372
1373ecb_inline void ecb_poke_be_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_be_u16 (v)); }
1374ecb_inline void ecb_poke_be_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_be_u32 (v)); }
1375ecb_inline void ecb_poke_be_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_be_u64 (v)); }
1376
1377ecb_inline void ecb_poke_le_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_le_u16 (v)); }
1378ecb_inline void ecb_poke_le_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_le_u32 (v)); }
1379ecb_inline void ecb_poke_le_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_le_u64 (v)); }
1380
1381#if ECB_CPP
1382
1383inline uint8_t ecb_bswap (uint8_t v) { return v; }
1384inline uint16_t ecb_bswap (uint16_t v) { return ecb_bswap16 (v); }
1385inline uint32_t ecb_bswap (uint32_t v) { return ecb_bswap32 (v); }
1386inline uint64_t ecb_bswap (uint64_t v) { return ecb_bswap64 (v); }
1387
1388template<typename T> inline T ecb_be_to_host (T v) { return ecb_little_endian () ? ecb_bswap (v) : v; }
1389template<typename T> inline T ecb_le_to_host (T v) { return ecb_big_endian () ? ecb_bswap (v) : v; }
1390template<typename T> inline T ecb_peek (const void *ptr) { return *(const T *)ptr; }
1391template<typename T> inline T ecb_peek_be (const void *ptr) { return ecb_be_to_host (ecb_peek <T> (ptr)); }
1392template<typename T> inline T ecb_peek_le (const void *ptr) { return ecb_le_to_host (ecb_peek <T> (ptr)); }
1393template<typename T> inline T ecb_peek_u (const void *ptr) { T v; memcpy (&v, ptr, sizeof (v)); return v; }
1394template<typename T> inline T ecb_peek_be_u (const void *ptr) { return ecb_be_to_host (ecb_peek_u<T> (ptr)); }
1395template<typename T> inline T ecb_peek_le_u (const void *ptr) { return ecb_le_to_host (ecb_peek_u<T> (ptr)); }
1396
1397template<typename T> inline T ecb_host_to_be (T v) { return ecb_little_endian () ? ecb_bswap (v) : v; }
1398template<typename T> inline T ecb_host_to_le (T v) { return ecb_big_endian () ? ecb_bswap (v) : v; }
1399template<typename T> inline void ecb_poke (void *ptr, T v) { *(T *)ptr = v; }
1400template<typename T> inline void ecb_poke_be (void *ptr, T v) { return ecb_poke <T> (ptr, ecb_host_to_be (v)); }
1401template<typename T> inline void ecb_poke_le (void *ptr, T v) { return ecb_poke <T> (ptr, ecb_host_to_le (v)); }
1402template<typename T> inline void ecb_poke_u (void *ptr, T v) { memcpy (ptr, &v, sizeof (v)); }
1403template<typename T> inline void ecb_poke_be_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_be (v)); }
1404template<typename T> inline void ecb_poke_le_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_le (v)); }
1405
1406#endif
1407
1408/*****************************************************************************/
1409
1410#if ECB_GCC_VERSION(3,0) || ECB_C99
1411 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1412#else
1413 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1414#endif
1415
1416#if ECB_CPP
1417 template<typename T>
1418 static inline T ecb_div_rd (T val, T div)
1419 {
1420 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1421 }
1422 template<typename T>
1423 static inline T ecb_div_ru (T val, T div)
1424 {
1425 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1426 }
1427#else
1428 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1429 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1430#endif
1431
1432#if ecb_cplusplus_does_not_suck
1433 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1434 template<typename T, int N>
1435 static inline int ecb_array_length (const T (&arr)[N])
1436 {
1437 return N;
1438 }
1439#else
1440 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1441#endif
1442
1443/*****************************************************************************/
1444
1445ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1446ecb_function_ ecb_const uint32_t
1447ecb_binary16_to_binary32 (uint32_t x)
1448{
1449 unsigned int s = (x & 0x8000) << (31 - 15);
1450 int e = (x >> 10) & 0x001f;
1451 unsigned int m = x & 0x03ff;
1452
1453 if (ecb_expect_false (e == 31))
1454 /* infinity or NaN */
1455 e = 255 - (127 - 15);
1456 else if (ecb_expect_false (!e))
1457 {
1458 if (ecb_expect_true (!m))
1459 /* zero, handled by code below by forcing e to 0 */
1460 e = 0 - (127 - 15);
1461 else
1462 {
1463 /* subnormal, renormalise */
1464 unsigned int s = 10 - ecb_ld32 (m);
1465
1466 m = (m << s) & 0x3ff; /* mask implicit bit */
1467 e -= s - 1;
1468 }
1469 }
1470
1471 /* e and m now are normalised, or zero, (or inf or nan) */
1472 e += 127 - 15;
1473
1474 return s | (e << 23) | (m << (23 - 10));
1475}
1476
1477ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1478ecb_function_ ecb_const uint16_t
1479ecb_binary32_to_binary16 (uint32_t x)
1480{
1481 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1482 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1483 unsigned int m = x & 0x007fffff;
1484
1485 x &= 0x7fffffff;
1486
1487 /* if it's within range of binary16 normals, use fast path */
1488 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1489 {
1490 /* mantissa round-to-even */
1491 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1492
1493 /* handle overflow */
1494 if (ecb_expect_false (m >= 0x00800000))
1495 {
1496 m >>= 1;
1497 e += 1;
1498 }
1499
1500 return s | (e << 10) | (m >> (23 - 10));
1501 }
1502
1503 /* handle large numbers and infinity */
1504 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1505 return s | 0x7c00;
1506
1507 /* handle zero, subnormals and small numbers */
1508 if (ecb_expect_true (x < 0x38800000))
1509 {
1510 /* zero */
1511 if (ecb_expect_true (!x))
1512 return s;
1513
1514 /* handle subnormals */
1515
1516 /* too small, will be zero */
1517 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1518 return s;
1519
1520 m |= 0x00800000; /* make implicit bit explicit */
1521
1522 /* very tricky - we need to round to the nearest e (+10) bit value */
1523 {
1524 unsigned int bits = 14 - e;
1525 unsigned int half = (1 << (bits - 1)) - 1;
1526 unsigned int even = (m >> bits) & 1;
1527
1528 /* if this overflows, we will end up with a normalised number */
1529 m = (m + half + even) >> bits;
1530 }
1531
1532 return s | m;
1533 }
1534
1535 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1536 m >>= 13;
1537
1538 return s | 0x7c00 | m | !m;
1539}
1540
1541/*******************************************************************************/
1542/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1543
1544/* basically, everything uses "ieee pure-endian" floating point numbers */
1545/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1546#if 0 \
1547 || __i386 || __i386__ \
1548 || ECB_GCC_AMD64 \
1549 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1550 || defined __s390__ || defined __s390x__ \
1551 || defined __mips__ \
1552 || defined __alpha__ \
1553 || defined __hppa__ \
1554 || defined __ia64__ \
1555 || defined __m68k__ \
1556 || defined __m88k__ \
1557 || defined __sh__ \
1558 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1559 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1560 || defined __aarch64__
1561 #define ECB_STDFP 1
1562#else
1563 #define ECB_STDFP 0
1564#endif
1565
1566#ifndef ECB_NO_LIBM
1567
1568 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1569
1570 /* only the oldest of old doesn't have this one. solaris. */
1571 #ifdef INFINITY
1572 #define ECB_INFINITY INFINITY
1573 #else
1574 #define ECB_INFINITY HUGE_VAL
1575 #endif
1576
1577 #ifdef NAN
1578 #define ECB_NAN NAN
1579 #else
1580 #define ECB_NAN ECB_INFINITY
1581 #endif
1582
1583 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1584 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1585 #define ecb_frexpf(x,e) frexpf ((x), (e))
1586 #else
1587 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1588 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1589 #endif
1590
1591 /* convert a float to ieee single/binary32 */
1592 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1593 ecb_function_ ecb_const uint32_t
1594 ecb_float_to_binary32 (float x)
1595 {
1596 uint32_t r;
1597
1598 #if ECB_STDFP
1599 memcpy (&r, &x, 4);
1600 #else
1601 /* slow emulation, works for anything but -0 */
1602 uint32_t m;
1603 int e;
1604
1605 if (x == 0e0f ) return 0x00000000U;
1606 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1607 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1608 if (x != x ) return 0x7fbfffffU;
1609
1610 m = ecb_frexpf (x, &e) * 0x1000000U;
1611
1612 r = m & 0x80000000U;
1613
1614 if (r)
1615 m = -m;
1616
1617 if (e <= -126)
1618 {
1619 m &= 0xffffffU;
1620 m >>= (-125 - e);
1621 e = -126;
1622 }
1623
1624 r |= (e + 126) << 23;
1625 r |= m & 0x7fffffU;
1626 #endif
1627
1628 return r;
1629 }
1630
1631 /* converts an ieee single/binary32 to a float */
1632 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1633 ecb_function_ ecb_const float
1634 ecb_binary32_to_float (uint32_t x)
1635 {
1636 float r;
1637
1638 #if ECB_STDFP
1639 memcpy (&r, &x, 4);
1640 #else
1641 /* emulation, only works for normals and subnormals and +0 */
1642 int neg = x >> 31;
1643 int e = (x >> 23) & 0xffU;
1644
1645 x &= 0x7fffffU;
1646
1647 if (e)
1648 x |= 0x800000U;
1649 else
1650 e = 1;
1651
1652 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1653 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1654
1655 r = neg ? -r : r;
1656 #endif
1657
1658 return r;
1659 }
1660
1661 /* convert a double to ieee double/binary64 */
1662 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1663 ecb_function_ ecb_const uint64_t
1664 ecb_double_to_binary64 (double x)
1665 {
1666 uint64_t r;
1667
1668 #if ECB_STDFP
1669 memcpy (&r, &x, 8);
1670 #else
1671 /* slow emulation, works for anything but -0 */
1672 uint64_t m;
1673 int e;
1674
1675 if (x == 0e0 ) return 0x0000000000000000U;
1676 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1677 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1678 if (x != x ) return 0X7ff7ffffffffffffU;
1679
1680 m = frexp (x, &e) * 0x20000000000000U;
1681
1682 r = m & 0x8000000000000000;;
1683
1684 if (r)
1685 m = -m;
1686
1687 if (e <= -1022)
1688 {
1689 m &= 0x1fffffffffffffU;
1690 m >>= (-1021 - e);
1691 e = -1022;
1692 }
1693
1694 r |= ((uint64_t)(e + 1022)) << 52;
1695 r |= m & 0xfffffffffffffU;
1696 #endif
1697
1698 return r;
1699 }
1700
1701 /* converts an ieee double/binary64 to a double */
1702 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1703 ecb_function_ ecb_const double
1704 ecb_binary64_to_double (uint64_t x)
1705 {
1706 double r;
1707
1708 #if ECB_STDFP
1709 memcpy (&r, &x, 8);
1710 #else
1711 /* emulation, only works for normals and subnormals and +0 */
1712 int neg = x >> 63;
1713 int e = (x >> 52) & 0x7ffU;
1714
1715 x &= 0xfffffffffffffU;
1716
1717 if (e)
1718 x |= 0x10000000000000U;
1719 else
1720 e = 1;
1721
1722 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1723 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1724
1725 r = neg ? -r : r;
1726 #endif
1727
1728 return r;
1729 }
1730
1731 /* convert a float to ieee half/binary16 */
1732 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1733 ecb_function_ ecb_const uint16_t
1734 ecb_float_to_binary16 (float x)
1735 {
1736 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1737 }
1738
1739 /* convert an ieee half/binary16 to float */
1740 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1741 ecb_function_ ecb_const float
1742 ecb_binary16_to_float (uint16_t x)
1743 {
1744 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1745 }
1746
1747#endif
1748
1749#endif
1750
1751/* ECB.H END */
1752
1753#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1754/* if your architecture doesn't need memory fences, e.g. because it is
1755 * single-cpu/core, or if you use libev in a project that doesn't use libev
1756 * from multiple threads, then you can define ECB_NO_THREADS when compiling
1757 * libev, in which cases the memory fences become nops.
1758 * alternatively, you can remove this #error and link against libpthread,
1759 * which will then provide the memory fences.
1760 */
1761# error "memory fences not defined for your architecture, please report"
1762#endif
1763
1764#ifndef ECB_MEMORY_FENCE
1765# define ECB_MEMORY_FENCE do { } while (0)
1766# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1767# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1768#endif
1769
1770#define inline_size ecb_inline
1771
1772#if EV_FEATURE_CODE
1773# define inline_speed ecb_inline
1774#else
1775# define inline_speed ecb_noinline static
1776#endif
1777
1778/*****************************************************************************/
1779/* raw syscall wrappers */
1780
1781#if EV_NEED_SYSCALL
1782
1783#include <sys/syscall.h>
1784
1785/*
1786 * define some syscall wrappers for common architectures
1787 * this is mostly for nice looks during debugging, not performance.
1788 * our syscalls return < 0, not == -1, on error. which is good
1789 * enough for linux aio.
1790 * TODO: arm is also common nowadays, maybe even mips and x86
1791 * TODO: after implementing this, it suddenly looks like overkill, but its hard to remove...
1792 */
1793#if __GNUC__ && __linux && ECB_AMD64 && !EV_FEATURE_CODE
1794 /* the costly errno access probably kills this for size optimisation */
1795
1796 #define ev_syscall(nr,narg,arg1,arg2,arg3,arg4,arg5,arg6) \
1797 ({ \
1798 long res; \
1799 register unsigned long r6 __asm__ ("r9" ); \
1800 register unsigned long r5 __asm__ ("r8" ); \
1801 register unsigned long r4 __asm__ ("r10"); \
1802 register unsigned long r3 __asm__ ("rdx"); \
1803 register unsigned long r2 __asm__ ("rsi"); \
1804 register unsigned long r1 __asm__ ("rdi"); \
1805 if (narg >= 6) r6 = (unsigned long)(arg6); \
1806 if (narg >= 5) r5 = (unsigned long)(arg5); \
1807 if (narg >= 4) r4 = (unsigned long)(arg4); \
1808 if (narg >= 3) r3 = (unsigned long)(arg3); \
1809 if (narg >= 2) r2 = (unsigned long)(arg2); \
1810 if (narg >= 1) r1 = (unsigned long)(arg1); \
1811 __asm__ __volatile__ ( \
1812 "syscall\n\t" \
1813 : "=a" (res) \
1814 : "0" (nr), "r" (r1), "r" (r2), "r" (r3), "r" (r4), "r" (r5) \
1815 : "cc", "r11", "cx", "memory"); \
1816 errno = -res; \
1817 res; \
1818 })
1819
1820#endif
1821
1822#ifdef ev_syscall
1823 #define ev_syscall0(nr) ev_syscall (nr, 0, 0, 0, 0, 0, 0, 0)
1824 #define ev_syscall1(nr,arg1) ev_syscall (nr, 1, arg1, 0, 0, 0, 0, 0)
1825 #define ev_syscall2(nr,arg1,arg2) ev_syscall (nr, 2, arg1, arg2, 0, 0, 0, 0)
1826 #define ev_syscall3(nr,arg1,arg2,arg3) ev_syscall (nr, 3, arg1, arg2, arg3, 0, 0, 0)
1827 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) ev_syscall (nr, 3, arg1, arg2, arg3, arg4, 0, 0)
1828 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) ev_syscall (nr, 5, arg1, arg2, arg3, arg4, arg5, 0)
1829 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) ev_syscall (nr, 6, arg1, arg2, arg3, arg4, arg5,arg6)
1830#else
1831 #define ev_syscall0(nr) syscall (nr)
1832 #define ev_syscall1(nr,arg1) syscall (nr, arg1)
1833 #define ev_syscall2(nr,arg1,arg2) syscall (nr, arg1, arg2)
1834 #define ev_syscall3(nr,arg1,arg2,arg3) syscall (nr, arg1, arg2, arg3)
1835 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) syscall (nr, arg1, arg2, arg3, arg4)
1836 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) syscall (nr, arg1, arg2, arg3, arg4, arg5)
1837 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) syscall (nr, arg1, arg2, arg3, arg4, arg5,arg6)
1838#endif
1839
1840#endif
1841
1842/*****************************************************************************/
1843
217#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1844#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1845
1846#if EV_MINPRI == EV_MAXPRI
1847# define ABSPRI(w) (((W)w), 0)
1848#else
218#define ABSPRI(w) ((w)->priority - EV_MINPRI) 1849# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1850#endif
219 1851
220#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 1852#define EMPTY /* required for microsofts broken pseudo-c compiler */
221#define EMPTY2(a,b) /* used to suppress some warnings */
222 1853
223typedef ev_watcher *W; 1854typedef ev_watcher *W;
224typedef ev_watcher_list *WL; 1855typedef ev_watcher_list *WL;
225typedef ev_watcher_time *WT; 1856typedef ev_watcher_time *WT;
226 1857
1858#define ev_active(w) ((W)(w))->active
1859#define ev_at(w) ((WT)(w))->at
1860
1861#if EV_USE_REALTIME
1862/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1863/* giving it a reasonably high chance of working on typical architectures */
1864static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1865#endif
1866
1867#if EV_USE_MONOTONIC
227static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1868static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1869#endif
1870
1871#ifndef EV_FD_TO_WIN32_HANDLE
1872# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1873#endif
1874#ifndef EV_WIN32_HANDLE_TO_FD
1875# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1876#endif
1877#ifndef EV_WIN32_CLOSE_FD
1878# define EV_WIN32_CLOSE_FD(fd) close (fd)
1879#endif
228 1880
229#ifdef _WIN32 1881#ifdef _WIN32
230# include "ev_win32.c" 1882# include "ev_win32.c"
231#endif 1883#endif
232 1884
233/*****************************************************************************/ 1885/*****************************************************************************/
234 1886
1887#if EV_USE_LINUXAIO
1888# include <linux/aio_abi.h> /* probably only needed for aio_context_t */
1889#endif
1890
1891/* define a suitable floor function (only used by periodics atm) */
1892
1893#if EV_USE_FLOOR
1894# include <math.h>
1895# define ev_floor(v) floor (v)
1896#else
1897
1898#include <float.h>
1899
1900/* a floor() replacement function, should be independent of ev_tstamp type */
1901ecb_noinline
1902static ev_tstamp
1903ev_floor (ev_tstamp v)
1904{
1905 /* the choice of shift factor is not terribly important */
1906#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1907 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1908#else
1909 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1910#endif
1911
1912 /* special treatment for negative arguments */
1913 if (ecb_expect_false (v < 0.))
1914 {
1915 ev_tstamp f = -ev_floor (-v);
1916
1917 return f - (f == v ? 0 : 1);
1918 }
1919
1920 /* argument too large for an unsigned long? then reduce it */
1921 if (ecb_expect_false (v >= shift))
1922 {
1923 ev_tstamp f;
1924
1925 if (v == v - 1.)
1926 return v; /* very large numbers are assumed to be integer */
1927
1928 f = shift * ev_floor (v * (1. / shift));
1929 return f + ev_floor (v - f);
1930 }
1931
1932 /* fits into an unsigned long */
1933 return (unsigned long)v;
1934}
1935
1936#endif
1937
1938/*****************************************************************************/
1939
1940#ifdef __linux
1941# include <sys/utsname.h>
1942#endif
1943
1944ecb_noinline ecb_cold
1945static unsigned int
1946ev_linux_version (void)
1947{
1948#ifdef __linux
1949 unsigned int v = 0;
1950 struct utsname buf;
1951 int i;
1952 char *p = buf.release;
1953
1954 if (uname (&buf))
1955 return 0;
1956
1957 for (i = 3+1; --i; )
1958 {
1959 unsigned int c = 0;
1960
1961 for (;;)
1962 {
1963 if (*p >= '0' && *p <= '9')
1964 c = c * 10 + *p++ - '0';
1965 else
1966 {
1967 p += *p == '.';
1968 break;
1969 }
1970 }
1971
1972 v = (v << 8) | c;
1973 }
1974
1975 return v;
1976#else
1977 return 0;
1978#endif
1979}
1980
1981/*****************************************************************************/
1982
1983#if EV_AVOID_STDIO
1984ecb_noinline ecb_cold
1985static void
1986ev_printerr (const char *msg)
1987{
1988 write (STDERR_FILENO, msg, strlen (msg));
1989}
1990#endif
1991
235static void (*syserr_cb)(const char *msg); 1992static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
236 1993
1994ecb_cold
237void 1995void
238ev_set_syserr_cb (void (*cb)(const char *msg)) 1996ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
239{ 1997{
240 syserr_cb = cb; 1998 syserr_cb = cb;
241} 1999}
242 2000
243static void noinline 2001ecb_noinline ecb_cold
2002static void
244syserr (const char *msg) 2003ev_syserr (const char *msg)
245{ 2004{
246 if (!msg) 2005 if (!msg)
247 msg = "(libev) system error"; 2006 msg = "(libev) system error";
248 2007
249 if (syserr_cb) 2008 if (syserr_cb)
250 syserr_cb (msg); 2009 syserr_cb (msg);
251 else 2010 else
252 { 2011 {
2012#if EV_AVOID_STDIO
2013 ev_printerr (msg);
2014 ev_printerr (": ");
2015 ev_printerr (strerror (errno));
2016 ev_printerr ("\n");
2017#else
253 perror (msg); 2018 perror (msg);
2019#endif
254 abort (); 2020 abort ();
255 } 2021 }
256} 2022}
257 2023
2024static void *
2025ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
2026{
2027 /* some systems, notably openbsd and darwin, fail to properly
2028 * implement realloc (x, 0) (as required by both ansi c-89 and
2029 * the single unix specification, so work around them here.
2030 * recently, also (at least) fedora and debian started breaking it,
2031 * despite documenting it otherwise.
2032 */
2033
2034 if (size)
2035 return realloc (ptr, size);
2036
2037 free (ptr);
2038 return 0;
2039}
2040
258static void *(*alloc)(void *ptr, size_t size) = realloc; 2041static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
259 2042
2043ecb_cold
260void 2044void
261ev_set_allocator (void *(*cb)(void *ptr, size_t size)) 2045ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
262{ 2046{
263 alloc = cb; 2047 alloc = cb;
264} 2048}
265 2049
266inline_speed void * 2050inline_speed void *
267ev_realloc (void *ptr, size_t size) 2051ev_realloc (void *ptr, long size)
268{ 2052{
269 ptr = alloc (ptr, size); 2053 ptr = alloc (ptr, size);
270 2054
271 if (!ptr && size) 2055 if (!ptr && size)
272 { 2056 {
2057#if EV_AVOID_STDIO
2058 ev_printerr ("(libev) memory allocation failed, aborting.\n");
2059#else
273 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", (long)size); 2060 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
2061#endif
274 abort (); 2062 abort ();
275 } 2063 }
276 2064
277 return ptr; 2065 return ptr;
278} 2066}
280#define ev_malloc(size) ev_realloc (0, (size)) 2068#define ev_malloc(size) ev_realloc (0, (size))
281#define ev_free(ptr) ev_realloc ((ptr), 0) 2069#define ev_free(ptr) ev_realloc ((ptr), 0)
282 2070
283/*****************************************************************************/ 2071/*****************************************************************************/
284 2072
2073/* set in reify when reification needed */
2074#define EV_ANFD_REIFY 1
2075
2076/* file descriptor info structure */
285typedef struct 2077typedef struct
286{ 2078{
287 WL head; 2079 WL head;
288 unsigned char events; 2080 unsigned char events; /* the events watched for */
289 unsigned char reify; 2081 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
2082 unsigned char emask; /* some backends store the actual kernel mask in here */
2083 unsigned char eflags; /* flags field for use by backends */
2084#if EV_USE_EPOLL
2085 unsigned int egen; /* generation counter to counter epoll bugs */
2086#endif
290#if EV_SELECT_IS_WINSOCKET 2087#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
291 SOCKET handle; 2088 SOCKET handle;
292#endif 2089#endif
2090#if EV_USE_IOCP
2091 OVERLAPPED or, ow;
2092#endif
293} ANFD; 2093} ANFD;
294 2094
2095/* stores the pending event set for a given watcher */
295typedef struct 2096typedef struct
296{ 2097{
297 W w; 2098 W w;
298 int events; 2099 int events; /* the pending event set for the given watcher */
299} ANPENDING; 2100} ANPENDING;
2101
2102#if EV_USE_INOTIFY
2103/* hash table entry per inotify-id */
2104typedef struct
2105{
2106 WL head;
2107} ANFS;
2108#endif
2109
2110/* Heap Entry */
2111#if EV_HEAP_CACHE_AT
2112 /* a heap element */
2113 typedef struct {
2114 ev_tstamp at;
2115 WT w;
2116 } ANHE;
2117
2118 #define ANHE_w(he) (he).w /* access watcher, read-write */
2119 #define ANHE_at(he) (he).at /* access cached at, read-only */
2120 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
2121#else
2122 /* a heap element */
2123 typedef WT ANHE;
2124
2125 #define ANHE_w(he) (he)
2126 #define ANHE_at(he) (he)->at
2127 #define ANHE_at_cache(he)
2128#endif
300 2129
301#if EV_MULTIPLICITY 2130#if EV_MULTIPLICITY
302 2131
303 struct ev_loop 2132 struct ev_loop
304 { 2133 {
309 #undef VAR 2138 #undef VAR
310 }; 2139 };
311 #include "ev_wrap.h" 2140 #include "ev_wrap.h"
312 2141
313 static struct ev_loop default_loop_struct; 2142 static struct ev_loop default_loop_struct;
314 struct ev_loop *ev_default_loop_ptr; 2143 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
315 2144
316#else 2145#else
317 2146
318 ev_tstamp ev_rt_now; 2147 EV_API_DECL ev_tstamp ev_rt_now = EV_TS_CONST (0.); /* needs to be initialised to make it a definition despite extern */
319 #define VAR(name,decl) static decl; 2148 #define VAR(name,decl) static decl;
320 #include "ev_vars.h" 2149 #include "ev_vars.h"
321 #undef VAR 2150 #undef VAR
322 2151
323 static int ev_default_loop_ptr; 2152 static int ev_default_loop_ptr;
324 2153
325#endif 2154#endif
326 2155
2156#if EV_FEATURE_API
2157# define EV_RELEASE_CB if (ecb_expect_false (release_cb)) release_cb (EV_A)
2158# define EV_ACQUIRE_CB if (ecb_expect_false (acquire_cb)) acquire_cb (EV_A)
2159# define EV_INVOKE_PENDING invoke_cb (EV_A)
2160#else
2161# define EV_RELEASE_CB (void)0
2162# define EV_ACQUIRE_CB (void)0
2163# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
2164#endif
2165
2166#define EVBREAK_RECURSE 0x80
2167
327/*****************************************************************************/ 2168/*****************************************************************************/
328 2169
2170#ifndef EV_HAVE_EV_TIME
329ev_tstamp 2171ev_tstamp
330ev_time (void) 2172ev_time (void) EV_NOEXCEPT
331{ 2173{
332#if EV_USE_REALTIME 2174#if EV_USE_REALTIME
2175 if (ecb_expect_true (have_realtime))
2176 {
333 struct timespec ts; 2177 struct timespec ts;
334 clock_gettime (CLOCK_REALTIME, &ts); 2178 clock_gettime (CLOCK_REALTIME, &ts);
335 return ts.tv_sec + ts.tv_nsec * 1e-9; 2179 return EV_TS_GET (ts);
336#else 2180 }
2181#endif
2182
2183 {
337 struct timeval tv; 2184 struct timeval tv;
338 gettimeofday (&tv, 0); 2185 gettimeofday (&tv, 0);
339 return tv.tv_sec + tv.tv_usec * 1e-6; 2186 return EV_TV_GET (tv);
340#endif 2187 }
341} 2188}
2189#endif
342 2190
343ev_tstamp inline_size 2191inline_size ev_tstamp
344get_clock (void) 2192get_clock (void)
345{ 2193{
346#if EV_USE_MONOTONIC 2194#if EV_USE_MONOTONIC
347 if (expect_true (have_monotonic)) 2195 if (ecb_expect_true (have_monotonic))
348 { 2196 {
349 struct timespec ts; 2197 struct timespec ts;
350 clock_gettime (CLOCK_MONOTONIC, &ts); 2198 clock_gettime (CLOCK_MONOTONIC, &ts);
351 return ts.tv_sec + ts.tv_nsec * 1e-9; 2199 return EV_TS_GET (ts);
352 } 2200 }
353#endif 2201#endif
354 2202
355 return ev_time (); 2203 return ev_time ();
356} 2204}
357 2205
358#if EV_MULTIPLICITY 2206#if EV_MULTIPLICITY
359ev_tstamp 2207ev_tstamp
360ev_now (EV_P) 2208ev_now (EV_P) EV_NOEXCEPT
361{ 2209{
362 return ev_rt_now; 2210 return ev_rt_now;
363} 2211}
364#endif 2212#endif
365 2213
366#define array_roundsize(type,n) (((n) | 4) & ~3) 2214void
2215ev_sleep (ev_tstamp delay) EV_NOEXCEPT
2216{
2217 if (delay > EV_TS_CONST (0.))
2218 {
2219#if EV_USE_NANOSLEEP
2220 struct timespec ts;
2221
2222 EV_TS_SET (ts, delay);
2223 nanosleep (&ts, 0);
2224#elif defined _WIN32
2225 /* maybe this should round up, as ms is very low resolution */
2226 /* compared to select (µs) or nanosleep (ns) */
2227 Sleep ((unsigned long)(EV_TS_TO_MSEC (delay)));
2228#else
2229 struct timeval tv;
2230
2231 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
2232 /* something not guaranteed by newer posix versions, but guaranteed */
2233 /* by older ones */
2234 EV_TV_SET (tv, delay);
2235 select (0, 0, 0, 0, &tv);
2236#endif
2237 }
2238}
2239
2240/*****************************************************************************/
2241
2242#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
2243
2244/* find a suitable new size for the given array, */
2245/* hopefully by rounding to a nice-to-malloc size */
2246inline_size int
2247array_nextsize (int elem, int cur, int cnt)
2248{
2249 int ncur = cur + 1;
2250
2251 do
2252 ncur <<= 1;
2253 while (cnt > ncur);
2254
2255 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
2256 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
2257 {
2258 ncur *= elem;
2259 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
2260 ncur = ncur - sizeof (void *) * 4;
2261 ncur /= elem;
2262 }
2263
2264 return ncur;
2265}
2266
2267ecb_noinline ecb_cold
2268static void *
2269array_realloc (int elem, void *base, int *cur, int cnt)
2270{
2271 *cur = array_nextsize (elem, *cur, cnt);
2272 return ev_realloc (base, elem * *cur);
2273}
2274
2275#define array_needsize_noinit(base,offset,count)
2276
2277#define array_needsize_zerofill(base,offset,count) \
2278 memset ((void *)(base + offset), 0, sizeof (*(base)) * (count))
367 2279
368#define array_needsize(type,base,cur,cnt,init) \ 2280#define array_needsize(type,base,cur,cnt,init) \
369 if (expect_false ((cnt) > cur)) \ 2281 if (ecb_expect_false ((cnt) > (cur))) \
370 { \ 2282 { \
371 int newcnt = cur; \ 2283 ecb_unused int ocur_ = (cur); \
372 do \ 2284 (base) = (type *)array_realloc \
373 { \ 2285 (sizeof (type), (base), &(cur), (cnt)); \
374 newcnt = array_roundsize (type, newcnt << 1); \ 2286 init ((base), ocur_, ((cur) - ocur_)); \
375 } \
376 while ((cnt) > newcnt); \
377 \
378 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
379 init (base + cur, newcnt - cur); \
380 cur = newcnt; \
381 } 2287 }
382 2288
2289#if 0
383#define array_slim(type,stem) \ 2290#define array_slim(type,stem) \
384 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 2291 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
385 { \ 2292 { \
386 stem ## max = array_roundsize (stem ## cnt >> 1); \ 2293 stem ## max = array_roundsize (stem ## cnt >> 1); \
387 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 2294 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
388 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 2295 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
389 } 2296 }
2297#endif
390 2298
391#define array_free(stem, idx) \ 2299#define array_free(stem, idx) \
392 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 2300 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
393 2301
394/*****************************************************************************/ 2302/*****************************************************************************/
395 2303
396void noinline 2304/* dummy callback for pending events */
2305ecb_noinline
2306static void
2307pendingcb (EV_P_ ev_prepare *w, int revents)
2308{
2309}
2310
2311ecb_noinline
2312void
397ev_feed_event (EV_P_ void *w, int revents) 2313ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
398{ 2314{
399 W w_ = (W)w; 2315 W w_ = (W)w;
2316 int pri = ABSPRI (w_);
400 2317
401 if (expect_false (w_->pending)) 2318 if (ecb_expect_false (w_->pending))
2319 pendings [pri][w_->pending - 1].events |= revents;
2320 else
402 { 2321 {
2322 w_->pending = ++pendingcnt [pri];
2323 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
2324 pendings [pri][w_->pending - 1].w = w_;
403 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 2325 pendings [pri][w_->pending - 1].events = revents;
404 return;
405 } 2326 }
406 2327
407 w_->pending = ++pendingcnt [ABSPRI (w_)]; 2328 pendingpri = NUMPRI - 1;
408 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
409 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
410 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
411} 2329}
412 2330
413void inline_size 2331inline_speed void
2332feed_reverse (EV_P_ W w)
2333{
2334 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2335 rfeeds [rfeedcnt++] = w;
2336}
2337
2338inline_size void
2339feed_reverse_done (EV_P_ int revents)
2340{
2341 do
2342 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2343 while (rfeedcnt);
2344}
2345
2346inline_speed void
414queue_events (EV_P_ W *events, int eventcnt, int type) 2347queue_events (EV_P_ W *events, int eventcnt, int type)
415{ 2348{
416 int i; 2349 int i;
417 2350
418 for (i = 0; i < eventcnt; ++i) 2351 for (i = 0; i < eventcnt; ++i)
419 ev_feed_event (EV_A_ events [i], type); 2352 ev_feed_event (EV_A_ events [i], type);
420} 2353}
421 2354
422/*****************************************************************************/ 2355/*****************************************************************************/
423 2356
424void inline_size 2357inline_speed void
425anfds_init (ANFD *base, int count)
426{
427 while (count--)
428 {
429 base->head = 0;
430 base->events = EV_NONE;
431 base->reify = 0;
432
433 ++base;
434 }
435}
436
437void inline_speed
438fd_event (EV_P_ int fd, int revents) 2358fd_event_nocheck (EV_P_ int fd, int revents)
439{ 2359{
440 ANFD *anfd = anfds + fd; 2360 ANFD *anfd = anfds + fd;
441 ev_io *w; 2361 ev_io *w;
442 2362
443 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2363 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
447 if (ev) 2367 if (ev)
448 ev_feed_event (EV_A_ (W)w, ev); 2368 ev_feed_event (EV_A_ (W)w, ev);
449 } 2369 }
450} 2370}
451 2371
2372/* do not submit kernel events for fds that have reify set */
2373/* because that means they changed while we were polling for new events */
2374inline_speed void
2375fd_event (EV_P_ int fd, int revents)
2376{
2377 ANFD *anfd = anfds + fd;
2378
2379 if (ecb_expect_true (!anfd->reify))
2380 fd_event_nocheck (EV_A_ fd, revents);
2381}
2382
452void 2383void
453ev_feed_fd_event (EV_P_ int fd, int revents) 2384ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
454{ 2385{
2386 if (fd >= 0 && fd < anfdmax)
455 fd_event (EV_A_ fd, revents); 2387 fd_event_nocheck (EV_A_ fd, revents);
456} 2388}
457 2389
458void inline_size 2390/* make sure the external fd watch events are in-sync */
2391/* with the kernel/libev internal state */
2392inline_size void
459fd_reify (EV_P) 2393fd_reify (EV_P)
460{ 2394{
461 int i; 2395 int i;
462 2396
2397 /* most backends do not modify the fdchanges list in backend_modfiy.
2398 * except io_uring, which has fixed-size buffers which might force us
2399 * to handle events in backend_modify, causing fdchanges to be amended,
2400 * which could result in an endless loop.
2401 * to avoid this, we do not dynamically handle fds that were added
2402 * during fd_reify. that means that for those backends, fdchangecnt
2403 * might be non-zero during poll, which must cause them to not block.
2404 * to not put too much of a burden on other backends, this detail
2405 * needs to be handled in the backend.
2406 */
2407 int changecnt = fdchangecnt;
2408
2409#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
463 for (i = 0; i < fdchangecnt; ++i) 2410 for (i = 0; i < changecnt; ++i)
2411 {
2412 int fd = fdchanges [i];
2413 ANFD *anfd = anfds + fd;
2414
2415 if (anfd->reify & EV__IOFDSET && anfd->head)
2416 {
2417 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2418
2419 if (handle != anfd->handle)
2420 {
2421 unsigned long arg;
2422
2423 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2424
2425 /* handle changed, but fd didn't - we need to do it in two steps */
2426 backend_modify (EV_A_ fd, anfd->events, 0);
2427 anfd->events = 0;
2428 anfd->handle = handle;
2429 }
2430 }
2431 }
2432#endif
2433
2434 for (i = 0; i < changecnt; ++i)
464 { 2435 {
465 int fd = fdchanges [i]; 2436 int fd = fdchanges [i];
466 ANFD *anfd = anfds + fd; 2437 ANFD *anfd = anfds + fd;
467 ev_io *w; 2438 ev_io *w;
468 2439
469 int events = 0; 2440 unsigned char o_events = anfd->events;
2441 unsigned char o_reify = anfd->reify;
470 2442
471 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2443 anfd->reify = 0;
472 events |= w->events;
473 2444
474#if EV_SELECT_IS_WINSOCKET 2445 /*if (ecb_expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
475 if (events)
476 { 2446 {
477 unsigned long argp; 2447 anfd->events = 0;
478 anfd->handle = _get_osfhandle (fd); 2448
479 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 2449 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2450 anfd->events |= (unsigned char)w->events;
2451
2452 if (o_events != anfd->events)
2453 o_reify = EV__IOFDSET; /* actually |= */
480 } 2454 }
481#endif
482 2455
483 anfd->reify = 0; 2456 if (o_reify & EV__IOFDSET)
484
485 backend_modify (EV_A_ fd, anfd->events, events); 2457 backend_modify (EV_A_ fd, o_events, anfd->events);
486 anfd->events = events;
487 } 2458 }
488 2459
2460 /* normally, fdchangecnt hasn't changed. if it has, then new fds have been added.
2461 * this is a rare case (see beginning comment in this function), so we copy them to the
2462 * front and hope the backend handles this case.
2463 */
2464 if (ecb_expect_false (fdchangecnt != changecnt))
2465 memmove (fdchanges, fdchanges + changecnt, (fdchangecnt - changecnt) * sizeof (*fdchanges));
2466
489 fdchangecnt = 0; 2467 fdchangecnt -= changecnt;
490} 2468}
491 2469
2470/* something about the given fd changed */
492void inline_size 2471inline_size
2472void
493fd_change (EV_P_ int fd) 2473fd_change (EV_P_ int fd, int flags)
494{ 2474{
495 if (expect_false (anfds [fd].reify)) 2475 unsigned char reify = anfds [fd].reify;
496 return;
497
498 anfds [fd].reify = 1; 2476 anfds [fd].reify |= flags;
499 2477
2478 if (ecb_expect_true (!reify))
2479 {
500 ++fdchangecnt; 2480 ++fdchangecnt;
501 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 2481 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
502 fdchanges [fdchangecnt - 1] = fd; 2482 fdchanges [fdchangecnt - 1] = fd;
2483 }
503} 2484}
504 2485
505void inline_speed 2486/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2487inline_speed ecb_cold void
506fd_kill (EV_P_ int fd) 2488fd_kill (EV_P_ int fd)
507{ 2489{
508 ev_io *w; 2490 ev_io *w;
509 2491
510 while ((w = (ev_io *)anfds [fd].head)) 2492 while ((w = (ev_io *)anfds [fd].head))
512 ev_io_stop (EV_A_ w); 2494 ev_io_stop (EV_A_ w);
513 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2495 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
514 } 2496 }
515} 2497}
516 2498
517int inline_size 2499/* check whether the given fd is actually valid, for error recovery */
2500inline_size ecb_cold int
518fd_valid (int fd) 2501fd_valid (int fd)
519{ 2502{
520#ifdef _WIN32 2503#ifdef _WIN32
521 return _get_osfhandle (fd) != -1; 2504 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
522#else 2505#else
523 return fcntl (fd, F_GETFD) != -1; 2506 return fcntl (fd, F_GETFD) != -1;
524#endif 2507#endif
525} 2508}
526 2509
527/* called on EBADF to verify fds */ 2510/* called on EBADF to verify fds */
528static void noinline 2511ecb_noinline ecb_cold
2512static void
529fd_ebadf (EV_P) 2513fd_ebadf (EV_P)
530{ 2514{
531 int fd; 2515 int fd;
532 2516
533 for (fd = 0; fd < anfdmax; ++fd) 2517 for (fd = 0; fd < anfdmax; ++fd)
534 if (anfds [fd].events) 2518 if (anfds [fd].events)
535 if (!fd_valid (fd) == -1 && errno == EBADF) 2519 if (!fd_valid (fd) && errno == EBADF)
536 fd_kill (EV_A_ fd); 2520 fd_kill (EV_A_ fd);
537} 2521}
538 2522
539/* called on ENOMEM in select/poll to kill some fds and retry */ 2523/* called on ENOMEM in select/poll to kill some fds and retry */
540static void noinline 2524ecb_noinline ecb_cold
2525static void
541fd_enomem (EV_P) 2526fd_enomem (EV_P)
542{ 2527{
543 int fd; 2528 int fd;
544 2529
545 for (fd = anfdmax; fd--; ) 2530 for (fd = anfdmax; fd--; )
546 if (anfds [fd].events) 2531 if (anfds [fd].events)
547 { 2532 {
548 fd_kill (EV_A_ fd); 2533 fd_kill (EV_A_ fd);
549 return; 2534 break;
550 } 2535 }
551} 2536}
552 2537
553/* usually called after fork if backend needs to re-arm all fds from scratch */ 2538/* usually called after fork if backend needs to re-arm all fds from scratch */
554static void noinline 2539ecb_noinline
2540static void
555fd_rearm_all (EV_P) 2541fd_rearm_all (EV_P)
556{ 2542{
557 int fd; 2543 int fd;
558 2544
559 /* this should be highly optimised to not do anything but set a flag */
560 for (fd = 0; fd < anfdmax; ++fd) 2545 for (fd = 0; fd < anfdmax; ++fd)
561 if (anfds [fd].events) 2546 if (anfds [fd].events)
562 { 2547 {
563 anfds [fd].events = 0; 2548 anfds [fd].events = 0;
564 fd_change (EV_A_ fd); 2549 anfds [fd].emask = 0;
2550 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
565 } 2551 }
566} 2552}
567 2553
568/*****************************************************************************/ 2554/* used to prepare libev internal fd's */
569 2555/* this is not fork-safe */
570void inline_speed 2556inline_speed void
571upheap (WT *heap, int k)
572{
573 WT w = heap [k];
574
575 while (k && heap [k >> 1]->at > w->at)
576 {
577 heap [k] = heap [k >> 1];
578 ((W)heap [k])->active = k + 1;
579 k >>= 1;
580 }
581
582 heap [k] = w;
583 ((W)heap [k])->active = k + 1;
584
585}
586
587void inline_speed
588downheap (WT *heap, int N, int k)
589{
590 WT w = heap [k];
591
592 while (k < (N >> 1))
593 {
594 int j = k << 1;
595
596 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
597 ++j;
598
599 if (w->at <= heap [j]->at)
600 break;
601
602 heap [k] = heap [j];
603 ((W)heap [k])->active = k + 1;
604 k = j;
605 }
606
607 heap [k] = w;
608 ((W)heap [k])->active = k + 1;
609}
610
611void inline_size
612adjustheap (WT *heap, int N, int k)
613{
614 upheap (heap, k);
615 downheap (heap, N, k);
616}
617
618/*****************************************************************************/
619
620typedef struct
621{
622 WL head;
623 sig_atomic_t volatile gotsig;
624} ANSIG;
625
626static ANSIG *signals;
627static int signalmax;
628
629static int sigpipe [2];
630static sig_atomic_t volatile gotsig;
631static ev_io sigev;
632
633void inline_size
634signals_init (ANSIG *base, int count)
635{
636 while (count--)
637 {
638 base->head = 0;
639 base->gotsig = 0;
640
641 ++base;
642 }
643}
644
645static void
646sighandler (int signum)
647{
648#if _WIN32
649 signal (signum, sighandler);
650#endif
651
652 signals [signum - 1].gotsig = 1;
653
654 if (!gotsig)
655 {
656 int old_errno = errno;
657 gotsig = 1;
658 write (sigpipe [1], &signum, 1);
659 errno = old_errno;
660 }
661}
662
663void noinline
664ev_feed_signal_event (EV_P_ int signum)
665{
666 WL w;
667
668#if EV_MULTIPLICITY
669 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
670#endif
671
672 --signum;
673
674 if (signum < 0 || signum >= signalmax)
675 return;
676
677 signals [signum].gotsig = 0;
678
679 for (w = signals [signum].head; w; w = w->next)
680 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
681}
682
683static void
684sigcb (EV_P_ ev_io *iow, int revents)
685{
686 int signum;
687
688 read (sigpipe [0], &revents, 1);
689 gotsig = 0;
690
691 for (signum = signalmax; signum--; )
692 if (signals [signum].gotsig)
693 ev_feed_signal_event (EV_A_ signum + 1);
694}
695
696void inline_size
697fd_intern (int fd) 2557fd_intern (int fd)
698{ 2558{
699#ifdef _WIN32 2559#ifdef _WIN32
700 int arg = 1; 2560 unsigned long arg = 1;
701 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 2561 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
702#else 2562#else
703 fcntl (fd, F_SETFD, FD_CLOEXEC); 2563 fcntl (fd, F_SETFD, FD_CLOEXEC);
704 fcntl (fd, F_SETFL, O_NONBLOCK); 2564 fcntl (fd, F_SETFL, O_NONBLOCK);
705#endif 2565#endif
706} 2566}
707 2567
708static void noinline
709siginit (EV_P)
710{
711 fd_intern (sigpipe [0]);
712 fd_intern (sigpipe [1]);
713
714 ev_io_set (&sigev, sigpipe [0], EV_READ);
715 ev_io_start (EV_A_ &sigev);
716 ev_unref (EV_A); /* child watcher should not keep loop alive */
717}
718
719/*****************************************************************************/ 2568/*****************************************************************************/
720 2569
721static ev_child *childs [EV_PID_HASHSIZE]; 2570/*
2571 * the heap functions want a real array index. array index 0 is guaranteed to not
2572 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2573 * the branching factor of the d-tree.
2574 */
722 2575
2576/*
2577 * at the moment we allow libev the luxury of two heaps,
2578 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2579 * which is more cache-efficient.
2580 * the difference is about 5% with 50000+ watchers.
2581 */
2582#if EV_USE_4HEAP
2583
2584#define DHEAP 4
2585#define HEAP0 (DHEAP - 1) /* index of first element in heap */
2586#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2587#define UPHEAP_DONE(p,k) ((p) == (k))
2588
2589/* away from the root */
2590inline_speed void
2591downheap (ANHE *heap, int N, int k)
2592{
2593 ANHE he = heap [k];
2594 ANHE *E = heap + N + HEAP0;
2595
2596 for (;;)
2597 {
2598 ev_tstamp minat;
2599 ANHE *minpos;
2600 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2601
2602 /* find minimum child */
2603 if (ecb_expect_true (pos + DHEAP - 1 < E))
2604 {
2605 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2606 if ( minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2607 if ( minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2608 if ( minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2609 }
2610 else if (pos < E)
2611 {
2612 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2613 if (pos + 1 < E && minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2614 if (pos + 2 < E && minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2615 if (pos + 3 < E && minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2616 }
2617 else
2618 break;
2619
2620 if (ANHE_at (he) <= minat)
2621 break;
2622
2623 heap [k] = *minpos;
2624 ev_active (ANHE_w (*minpos)) = k;
2625
2626 k = minpos - heap;
2627 }
2628
2629 heap [k] = he;
2630 ev_active (ANHE_w (he)) = k;
2631}
2632
2633#else /* not 4HEAP */
2634
2635#define HEAP0 1
2636#define HPARENT(k) ((k) >> 1)
2637#define UPHEAP_DONE(p,k) (!(p))
2638
2639/* away from the root */
2640inline_speed void
2641downheap (ANHE *heap, int N, int k)
2642{
2643 ANHE he = heap [k];
2644
2645 for (;;)
2646 {
2647 int c = k << 1;
2648
2649 if (c >= N + HEAP0)
2650 break;
2651
2652 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2653 ? 1 : 0;
2654
2655 if (ANHE_at (he) <= ANHE_at (heap [c]))
2656 break;
2657
2658 heap [k] = heap [c];
2659 ev_active (ANHE_w (heap [k])) = k;
2660
2661 k = c;
2662 }
2663
2664 heap [k] = he;
2665 ev_active (ANHE_w (he)) = k;
2666}
2667#endif
2668
2669/* towards the root */
2670inline_speed void
2671upheap (ANHE *heap, int k)
2672{
2673 ANHE he = heap [k];
2674
2675 for (;;)
2676 {
2677 int p = HPARENT (k);
2678
2679 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2680 break;
2681
2682 heap [k] = heap [p];
2683 ev_active (ANHE_w (heap [k])) = k;
2684 k = p;
2685 }
2686
2687 heap [k] = he;
2688 ev_active (ANHE_w (he)) = k;
2689}
2690
2691/* move an element suitably so it is in a correct place */
2692inline_size void
2693adjustheap (ANHE *heap, int N, int k)
2694{
2695 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2696 upheap (heap, k);
2697 else
2698 downheap (heap, N, k);
2699}
2700
2701/* rebuild the heap: this function is used only once and executed rarely */
2702inline_size void
2703reheap (ANHE *heap, int N)
2704{
2705 int i;
2706
2707 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2708 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2709 for (i = 0; i < N; ++i)
2710 upheap (heap, i + HEAP0);
2711}
2712
2713/*****************************************************************************/
2714
2715/* associate signal watchers to a signal */
2716typedef struct
2717{
2718 EV_ATOMIC_T pending;
2719#if EV_MULTIPLICITY
2720 EV_P;
2721#endif
2722 WL head;
2723} ANSIG;
2724
2725static ANSIG signals [EV_NSIG - 1];
2726
2727/*****************************************************************************/
2728
2729#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2730
2731ecb_noinline ecb_cold
2732static void
2733evpipe_init (EV_P)
2734{
2735 if (!ev_is_active (&pipe_w))
2736 {
2737 int fds [2];
2738
2739# if EV_USE_EVENTFD
2740 fds [0] = -1;
2741 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2742 if (fds [1] < 0 && errno == EINVAL)
2743 fds [1] = eventfd (0, 0);
2744
2745 if (fds [1] < 0)
2746# endif
2747 {
2748 while (pipe (fds))
2749 ev_syserr ("(libev) error creating signal/async pipe");
2750
2751 fd_intern (fds [0]);
2752 }
2753
2754 evpipe [0] = fds [0];
2755
2756 if (evpipe [1] < 0)
2757 evpipe [1] = fds [1]; /* first call, set write fd */
2758 else
2759 {
2760 /* on subsequent calls, do not change evpipe [1] */
2761 /* so that evpipe_write can always rely on its value. */
2762 /* this branch does not do anything sensible on windows, */
2763 /* so must not be executed on windows */
2764
2765 dup2 (fds [1], evpipe [1]);
2766 close (fds [1]);
2767 }
2768
2769 fd_intern (evpipe [1]);
2770
2771 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2772 ev_io_start (EV_A_ &pipe_w);
2773 ev_unref (EV_A); /* watcher should not keep loop alive */
2774 }
2775}
2776
2777inline_speed void
2778evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2779{
2780 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2781
2782 if (ecb_expect_true (*flag))
2783 return;
2784
2785 *flag = 1;
2786 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2787
2788 pipe_write_skipped = 1;
2789
2790 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2791
2792 if (pipe_write_wanted)
2793 {
2794 int old_errno;
2795
2796 pipe_write_skipped = 0;
2797 ECB_MEMORY_FENCE_RELEASE;
2798
2799 old_errno = errno; /* save errno because write will clobber it */
2800
2801#if EV_USE_EVENTFD
2802 if (evpipe [0] < 0)
2803 {
2804 uint64_t counter = 1;
2805 write (evpipe [1], &counter, sizeof (uint64_t));
2806 }
2807 else
2808#endif
2809 {
723#ifndef _WIN32 2810#ifdef _WIN32
2811 WSABUF buf;
2812 DWORD sent;
2813 buf.buf = (char *)&buf;
2814 buf.len = 1;
2815 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2816#else
2817 write (evpipe [1], &(evpipe [1]), 1);
2818#endif
2819 }
2820
2821 errno = old_errno;
2822 }
2823}
2824
2825/* called whenever the libev signal pipe */
2826/* got some events (signal, async) */
2827static void
2828pipecb (EV_P_ ev_io *iow, int revents)
2829{
2830 int i;
2831
2832 if (revents & EV_READ)
2833 {
2834#if EV_USE_EVENTFD
2835 if (evpipe [0] < 0)
2836 {
2837 uint64_t counter;
2838 read (evpipe [1], &counter, sizeof (uint64_t));
2839 }
2840 else
2841#endif
2842 {
2843 char dummy[4];
2844#ifdef _WIN32
2845 WSABUF buf;
2846 DWORD recvd;
2847 DWORD flags = 0;
2848 buf.buf = dummy;
2849 buf.len = sizeof (dummy);
2850 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2851#else
2852 read (evpipe [0], &dummy, sizeof (dummy));
2853#endif
2854 }
2855 }
2856
2857 pipe_write_skipped = 0;
2858
2859 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2860
2861#if EV_SIGNAL_ENABLE
2862 if (sig_pending)
2863 {
2864 sig_pending = 0;
2865
2866 ECB_MEMORY_FENCE;
2867
2868 for (i = EV_NSIG - 1; i--; )
2869 if (ecb_expect_false (signals [i].pending))
2870 ev_feed_signal_event (EV_A_ i + 1);
2871 }
2872#endif
2873
2874#if EV_ASYNC_ENABLE
2875 if (async_pending)
2876 {
2877 async_pending = 0;
2878
2879 ECB_MEMORY_FENCE;
2880
2881 for (i = asynccnt; i--; )
2882 if (asyncs [i]->sent)
2883 {
2884 asyncs [i]->sent = 0;
2885 ECB_MEMORY_FENCE_RELEASE;
2886 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2887 }
2888 }
2889#endif
2890}
2891
2892/*****************************************************************************/
2893
2894void
2895ev_feed_signal (int signum) EV_NOEXCEPT
2896{
2897#if EV_MULTIPLICITY
2898 EV_P;
2899 ECB_MEMORY_FENCE_ACQUIRE;
2900 EV_A = signals [signum - 1].loop;
2901
2902 if (!EV_A)
2903 return;
2904#endif
2905
2906 signals [signum - 1].pending = 1;
2907 evpipe_write (EV_A_ &sig_pending);
2908}
2909
2910static void
2911ev_sighandler (int signum)
2912{
2913#ifdef _WIN32
2914 signal (signum, ev_sighandler);
2915#endif
2916
2917 ev_feed_signal (signum);
2918}
2919
2920ecb_noinline
2921void
2922ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2923{
2924 WL w;
2925
2926 if (ecb_expect_false (signum <= 0 || signum >= EV_NSIG))
2927 return;
2928
2929 --signum;
2930
2931#if EV_MULTIPLICITY
2932 /* it is permissible to try to feed a signal to the wrong loop */
2933 /* or, likely more useful, feeding a signal nobody is waiting for */
2934
2935 if (ecb_expect_false (signals [signum].loop != EV_A))
2936 return;
2937#endif
2938
2939 signals [signum].pending = 0;
2940 ECB_MEMORY_FENCE_RELEASE;
2941
2942 for (w = signals [signum].head; w; w = w->next)
2943 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2944}
2945
2946#if EV_USE_SIGNALFD
2947static void
2948sigfdcb (EV_P_ ev_io *iow, int revents)
2949{
2950 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2951
2952 for (;;)
2953 {
2954 ssize_t res = read (sigfd, si, sizeof (si));
2955
2956 /* not ISO-C, as res might be -1, but works with SuS */
2957 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2958 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2959
2960 if (res < (ssize_t)sizeof (si))
2961 break;
2962 }
2963}
2964#endif
2965
2966#endif
2967
2968/*****************************************************************************/
2969
2970#if EV_CHILD_ENABLE
2971static WL childs [EV_PID_HASHSIZE];
724 2972
725static ev_signal childev; 2973static ev_signal childev;
726 2974
727void inline_speed 2975#ifndef WIFCONTINUED
2976# define WIFCONTINUED(status) 0
2977#endif
2978
2979/* handle a single child status event */
2980inline_speed void
728child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 2981child_reap (EV_P_ int chain, int pid, int status)
729{ 2982{
730 ev_child *w; 2983 ev_child *w;
2984 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
731 2985
732 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2986 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2987 {
733 if (w->pid == pid || !w->pid) 2988 if ((w->pid == pid || !w->pid)
2989 && (!traced || (w->flags & 1)))
734 { 2990 {
735 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 2991 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
736 w->rpid = pid; 2992 w->rpid = pid;
737 w->rstatus = status; 2993 w->rstatus = status;
738 ev_feed_event (EV_A_ (W)w, EV_CHILD); 2994 ev_feed_event (EV_A_ (W)w, EV_CHILD);
739 } 2995 }
2996 }
740} 2997}
741 2998
742#ifndef WCONTINUED 2999#ifndef WCONTINUED
743# define WCONTINUED 0 3000# define WCONTINUED 0
744#endif 3001#endif
745 3002
3003/* called on sigchld etc., calls waitpid */
746static void 3004static void
747childcb (EV_P_ ev_signal *sw, int revents) 3005childcb (EV_P_ ev_signal *sw, int revents)
748{ 3006{
749 int pid, status; 3007 int pid, status;
750 3008
753 if (!WCONTINUED 3011 if (!WCONTINUED
754 || errno != EINVAL 3012 || errno != EINVAL
755 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 3013 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
756 return; 3014 return;
757 3015
758 /* make sure we are called again until all childs have been reaped */ 3016 /* make sure we are called again until all children have been reaped */
759 /* we need to do it this way so that the callback gets called before we continue */ 3017 /* we need to do it this way so that the callback gets called before we continue */
760 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 3018 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
761 3019
762 child_reap (EV_A_ sw, pid, pid, status); 3020 child_reap (EV_A_ pid, pid, status);
763 if (EV_PID_HASHSIZE > 1) 3021 if ((EV_PID_HASHSIZE) > 1)
764 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 3022 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
765} 3023}
766 3024
767#endif 3025#endif
768 3026
769/*****************************************************************************/ 3027/*****************************************************************************/
770 3028
3029#if EV_USE_TIMERFD
3030
3031static void periodics_reschedule (EV_P);
3032
3033static void
3034timerfdcb (EV_P_ ev_io *iow, int revents)
3035{
3036 struct itimerspec its = { 0 };
3037
3038 its.it_value.tv_sec = ev_rt_now + (int)MAX_BLOCKTIME2;
3039 timerfd_settime (timerfd, TFD_TIMER_ABSTIME | TFD_TIMER_CANCEL_ON_SET, &its, 0);
3040
3041 ev_rt_now = ev_time ();
3042 /* periodics_reschedule only needs ev_rt_now */
3043 /* but maybe in the future we want the full treatment. */
3044 /*
3045 now_floor = EV_TS_CONST (0.);
3046 time_update (EV_A_ EV_TSTAMP_HUGE);
3047 */
3048 periodics_reschedule (EV_A);
3049}
3050
3051ecb_noinline ecb_cold
3052static void
3053evtimerfd_init (EV_P)
3054{
3055 if (!ev_is_active (&timerfd_w))
3056 {
3057 timerfd = timerfd_create (CLOCK_REALTIME, TFD_NONBLOCK | TFD_CLOEXEC);
3058
3059 if (timerfd >= 0)
3060 {
3061 fd_intern (timerfd); /* just to be sure */
3062
3063 ev_io_init (&timerfd_w, timerfdcb, timerfd, EV_READ);
3064 ev_set_priority (&timerfd_w, EV_MINPRI);
3065 ev_io_start (EV_A_ &timerfd_w);
3066 ev_unref (EV_A); /* watcher should not keep loop alive */
3067
3068 /* (re-) arm timer */
3069 timerfdcb (EV_A_ 0, 0);
3070 }
3071 }
3072}
3073
3074#endif
3075
3076/*****************************************************************************/
3077
3078#if EV_USE_IOCP
3079# include "ev_iocp.c"
3080#endif
771#if EV_USE_PORT 3081#if EV_USE_PORT
772# include "ev_port.c" 3082# include "ev_port.c"
773#endif 3083#endif
774#if EV_USE_KQUEUE 3084#if EV_USE_KQUEUE
775# include "ev_kqueue.c" 3085# include "ev_kqueue.c"
776#endif 3086#endif
777#if EV_USE_EPOLL 3087#if EV_USE_EPOLL
778# include "ev_epoll.c" 3088# include "ev_epoll.c"
779#endif 3089#endif
3090#if EV_USE_LINUXAIO
3091# include "ev_linuxaio.c"
3092#endif
3093#if EV_USE_IOURING
3094# include "ev_iouring.c"
3095#endif
780#if EV_USE_POLL 3096#if EV_USE_POLL
781# include "ev_poll.c" 3097# include "ev_poll.c"
782#endif 3098#endif
783#if EV_USE_SELECT 3099#if EV_USE_SELECT
784# include "ev_select.c" 3100# include "ev_select.c"
785#endif 3101#endif
786 3102
787int 3103ecb_cold int
788ev_version_major (void) 3104ev_version_major (void) EV_NOEXCEPT
789{ 3105{
790 return EV_VERSION_MAJOR; 3106 return EV_VERSION_MAJOR;
791} 3107}
792 3108
793int 3109ecb_cold int
794ev_version_minor (void) 3110ev_version_minor (void) EV_NOEXCEPT
795{ 3111{
796 return EV_VERSION_MINOR; 3112 return EV_VERSION_MINOR;
797} 3113}
798 3114
799/* return true if we are running with elevated privileges and should ignore env variables */ 3115/* return true if we are running with elevated privileges and should ignore env variables */
800int inline_size 3116inline_size ecb_cold int
801enable_secure (void) 3117enable_secure (void)
802{ 3118{
803#ifdef _WIN32 3119#ifdef _WIN32
804 return 0; 3120 return 0;
805#else 3121#else
806 return getuid () != geteuid () 3122 return getuid () != geteuid ()
807 || getgid () != getegid (); 3123 || getgid () != getegid ();
808#endif 3124#endif
809} 3125}
810 3126
3127ecb_cold
811unsigned int 3128unsigned int
812ev_supported_backends (void) 3129ev_supported_backends (void) EV_NOEXCEPT
813{ 3130{
814 unsigned int flags = 0; 3131 unsigned int flags = 0;
815 3132
816 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 3133 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
817 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 3134 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
818 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL; 3135 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
819 if (EV_USE_POLL ) flags |= EVBACKEND_POLL; 3136 if (EV_USE_LINUXAIO ) flags |= EVBACKEND_LINUXAIO;
820 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 3137 if (EV_USE_IOURING && ev_linux_version () >= 0x050601) flags |= EVBACKEND_IOURING; /* 5.6.1+ */
821 3138 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
3139 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
3140
822 return flags; 3141 return flags;
823} 3142}
824 3143
3144ecb_cold
825unsigned int 3145unsigned int
826ev_recommended_backends (void) 3146ev_recommended_backends (void) EV_NOEXCEPT
827{ 3147{
828 unsigned int flags = ev_supported_backends (); 3148 unsigned int flags = ev_supported_backends ();
829 3149
830#ifndef __NetBSD__ 3150#ifndef __NetBSD__
831 /* kqueue is borked on everything but netbsd apparently */ 3151 /* kqueue is borked on everything but netbsd apparently */
832 /* it usually doesn't work correctly on anything but sockets and pipes */ 3152 /* it usually doesn't work correctly on anything but sockets and pipes */
833 flags &= ~EVBACKEND_KQUEUE; 3153 flags &= ~EVBACKEND_KQUEUE;
834#endif 3154#endif
835#ifdef __APPLE__ 3155#ifdef __APPLE__
836 // flags &= ~EVBACKEND_KQUEUE; for documentation 3156 /* only select works correctly on that "unix-certified" platform */
3157 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
3158 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
3159#endif
3160#ifdef __FreeBSD__
3161 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
3162#endif
3163
3164 /* TODO: linuxaio is very experimental */
3165#if !EV_RECOMMEND_LINUXAIO
3166 flags &= ~EVBACKEND_LINUXAIO;
3167#endif
3168 /* TODO: linuxaio is super experimental */
3169#if !EV_RECOMMEND_IOURING
837 flags &= ~EVBACKEND_POLL; 3170 flags &= ~EVBACKEND_IOURING;
838#endif 3171#endif
839 3172
840 return flags; 3173 return flags;
841} 3174}
842 3175
3176ecb_cold
843unsigned int 3177unsigned int
844ev_embeddable_backends (void) 3178ev_embeddable_backends (void) EV_NOEXCEPT
845{ 3179{
846 return EVBACKEND_EPOLL 3180 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT | EVBACKEND_IOURING;
847 | EVBACKEND_KQUEUE 3181
848 | EVBACKEND_PORT; 3182 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
3183 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
3184 flags &= ~EVBACKEND_EPOLL;
3185
3186 /* EVBACKEND_LINUXAIO is theoretically embeddable, but suffers from a performance overhead */
3187
3188 return flags;
849} 3189}
850 3190
851unsigned int 3191unsigned int
852ev_backend (EV_P) 3192ev_backend (EV_P) EV_NOEXCEPT
853{ 3193{
854 return backend; 3194 return backend;
855} 3195}
856 3196
857static void noinline 3197#if EV_FEATURE_API
3198unsigned int
3199ev_iteration (EV_P) EV_NOEXCEPT
3200{
3201 return loop_count;
3202}
3203
3204unsigned int
3205ev_depth (EV_P) EV_NOEXCEPT
3206{
3207 return loop_depth;
3208}
3209
3210void
3211ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
3212{
3213 io_blocktime = interval;
3214}
3215
3216void
3217ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
3218{
3219 timeout_blocktime = interval;
3220}
3221
3222void
3223ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
3224{
3225 userdata = data;
3226}
3227
3228void *
3229ev_userdata (EV_P) EV_NOEXCEPT
3230{
3231 return userdata;
3232}
3233
3234void
3235ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
3236{
3237 invoke_cb = invoke_pending_cb;
3238}
3239
3240void
3241ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
3242{
3243 release_cb = release;
3244 acquire_cb = acquire;
3245}
3246#endif
3247
3248/* initialise a loop structure, must be zero-initialised */
3249ecb_noinline ecb_cold
3250static void
858loop_init (EV_P_ unsigned int flags) 3251loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
859{ 3252{
860 if (!backend) 3253 if (!backend)
861 { 3254 {
3255 origflags = flags;
3256
3257#if EV_USE_REALTIME
3258 if (!have_realtime)
3259 {
3260 struct timespec ts;
3261
3262 if (!clock_gettime (CLOCK_REALTIME, &ts))
3263 have_realtime = 1;
3264 }
3265#endif
3266
862#if EV_USE_MONOTONIC 3267#if EV_USE_MONOTONIC
3268 if (!have_monotonic)
863 { 3269 {
864 struct timespec ts; 3270 struct timespec ts;
3271
865 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 3272 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
866 have_monotonic = 1; 3273 have_monotonic = 1;
867 } 3274 }
868#endif 3275#endif
869 3276
870 ev_rt_now = ev_time (); 3277 /* pid check not overridable via env */
871 mn_now = get_clock (); 3278#ifndef _WIN32
872 now_floor = mn_now; 3279 if (flags & EVFLAG_FORKCHECK)
873 rtmn_diff = ev_rt_now - mn_now; 3280 curpid = getpid ();
3281#endif
874 3282
875 if (!(flags & EVFLAG_NOENV) 3283 if (!(flags & EVFLAG_NOENV)
876 && !enable_secure () 3284 && !enable_secure ()
877 && getenv ("LIBEV_FLAGS")) 3285 && getenv ("LIBEV_FLAGS"))
878 flags = atoi (getenv ("LIBEV_FLAGS")); 3286 flags = atoi (getenv ("LIBEV_FLAGS"));
879 3287
880 if (!(flags & 0x0000ffffUL)) 3288 ev_rt_now = ev_time ();
3289 mn_now = get_clock ();
3290 now_floor = mn_now;
3291 rtmn_diff = ev_rt_now - mn_now;
3292#if EV_FEATURE_API
3293 invoke_cb = ev_invoke_pending;
3294#endif
3295
3296 io_blocktime = 0.;
3297 timeout_blocktime = 0.;
3298 backend = 0;
3299 backend_fd = -1;
3300 sig_pending = 0;
3301#if EV_ASYNC_ENABLE
3302 async_pending = 0;
3303#endif
3304 pipe_write_skipped = 0;
3305 pipe_write_wanted = 0;
3306 evpipe [0] = -1;
3307 evpipe [1] = -1;
3308#if EV_USE_INOTIFY
3309 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
3310#endif
3311#if EV_USE_SIGNALFD
3312 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
3313#endif
3314#if EV_USE_TIMERFD
3315 timerfd = flags & EVFLAG_NOTIMERFD ? -1 : -2;
3316#endif
3317
3318 if (!(flags & EVBACKEND_MASK))
881 flags |= ev_recommended_backends (); 3319 flags |= ev_recommended_backends ();
882 3320
883 backend = 0; 3321#if EV_USE_IOCP
3322 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
3323#endif
884#if EV_USE_PORT 3324#if EV_USE_PORT
885 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 3325 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
886#endif 3326#endif
887#if EV_USE_KQUEUE 3327#if EV_USE_KQUEUE
888 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 3328 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
3329#endif
3330#if EV_USE_IOURING
3331 if (!backend && (flags & EVBACKEND_IOURING )) backend = iouring_init (EV_A_ flags);
3332#endif
3333#if EV_USE_LINUXAIO
3334 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
889#endif 3335#endif
890#if EV_USE_EPOLL 3336#if EV_USE_EPOLL
891 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags); 3337 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
892#endif 3338#endif
893#if EV_USE_POLL 3339#if EV_USE_POLL
894 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags); 3340 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
895#endif 3341#endif
896#if EV_USE_SELECT 3342#if EV_USE_SELECT
897 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 3343 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
898#endif 3344#endif
899 3345
3346 ev_prepare_init (&pending_w, pendingcb);
3347
3348#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
900 ev_init (&sigev, sigcb); 3349 ev_init (&pipe_w, pipecb);
901 ev_set_priority (&sigev, EV_MAXPRI); 3350 ev_set_priority (&pipe_w, EV_MAXPRI);
902 }
903}
904
905static void noinline
906loop_destroy (EV_P)
907{
908 int i;
909
910#if EV_USE_PORT
911 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
912#endif 3351#endif
913#if EV_USE_KQUEUE
914 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
915#endif
916#if EV_USE_EPOLL
917 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
918#endif
919#if EV_USE_POLL
920 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
921#endif
922#if EV_USE_SELECT
923 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
924#endif
925
926 for (i = NUMPRI; i--; )
927 array_free (pending, [i]);
928
929 /* have to use the microsoft-never-gets-it-right macro */
930 array_free (fdchange, EMPTY0);
931 array_free (timer, EMPTY0);
932#if EV_PERIODIC_ENABLE
933 array_free (periodic, EMPTY0);
934#endif
935 array_free (idle, EMPTY0);
936 array_free (prepare, EMPTY0);
937 array_free (check, EMPTY0);
938
939 backend = 0;
940}
941
942void inline_size
943loop_fork (EV_P)
944{
945#if EV_USE_PORT
946 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
947#endif
948#if EV_USE_KQUEUE
949 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
950#endif
951#if EV_USE_EPOLL
952 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
953#endif
954
955 if (ev_is_active (&sigev))
956 { 3352 }
957 /* default loop */
958
959 ev_ref (EV_A);
960 ev_io_stop (EV_A_ &sigev);
961 close (sigpipe [0]);
962 close (sigpipe [1]);
963
964 while (pipe (sigpipe))
965 syserr ("(libev) error creating pipe");
966
967 siginit (EV_A);
968 }
969
970 postfork = 0;
971} 3353}
972 3354
973#if EV_MULTIPLICITY 3355/* free up a loop structure */
974struct ev_loop * 3356ecb_cold
975ev_loop_new (unsigned int flags)
976{
977 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
978
979 memset (loop, 0, sizeof (struct ev_loop));
980
981 loop_init (EV_A_ flags);
982
983 if (ev_backend (EV_A))
984 return loop;
985
986 return 0;
987}
988
989void 3357void
990ev_loop_destroy (EV_P) 3358ev_loop_destroy (EV_P)
991{ 3359{
992 loop_destroy (EV_A); 3360 int i;
993 ev_free (loop);
994}
995
996void
997ev_loop_fork (EV_P)
998{
999 postfork = 1;
1000}
1001
1002#endif
1003 3361
1004#if EV_MULTIPLICITY 3362#if EV_MULTIPLICITY
3363 /* mimic free (0) */
3364 if (!EV_A)
3365 return;
3366#endif
3367
3368#if EV_CLEANUP_ENABLE
3369 /* queue cleanup watchers (and execute them) */
3370 if (ecb_expect_false (cleanupcnt))
3371 {
3372 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3373 EV_INVOKE_PENDING;
3374 }
3375#endif
3376
3377#if EV_CHILD_ENABLE
3378 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3379 {
3380 ev_ref (EV_A); /* child watcher */
3381 ev_signal_stop (EV_A_ &childev);
3382 }
3383#endif
3384
3385 if (ev_is_active (&pipe_w))
3386 {
3387 /*ev_ref (EV_A);*/
3388 /*ev_io_stop (EV_A_ &pipe_w);*/
3389
3390 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3391 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3392 }
3393
3394#if EV_USE_SIGNALFD
3395 if (ev_is_active (&sigfd_w))
3396 close (sigfd);
3397#endif
3398
3399#if EV_USE_TIMERFD
3400 if (ev_is_active (&timerfd_w))
3401 close (timerfd);
3402#endif
3403
3404#if EV_USE_INOTIFY
3405 if (fs_fd >= 0)
3406 close (fs_fd);
3407#endif
3408
3409 if (backend_fd >= 0)
3410 close (backend_fd);
3411
3412#if EV_USE_IOCP
3413 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3414#endif
3415#if EV_USE_PORT
3416 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
3417#endif
3418#if EV_USE_KQUEUE
3419 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3420#endif
3421#if EV_USE_IOURING
3422 if (backend == EVBACKEND_IOURING ) iouring_destroy (EV_A);
3423#endif
3424#if EV_USE_LINUXAIO
3425 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
3426#endif
3427#if EV_USE_EPOLL
3428 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
3429#endif
3430#if EV_USE_POLL
3431 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
3432#endif
3433#if EV_USE_SELECT
3434 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
3435#endif
3436
3437 for (i = NUMPRI; i--; )
3438 {
3439 array_free (pending, [i]);
3440#if EV_IDLE_ENABLE
3441 array_free (idle, [i]);
3442#endif
3443 }
3444
3445 ev_free (anfds); anfds = 0; anfdmax = 0;
3446
3447 /* have to use the microsoft-never-gets-it-right macro */
3448 array_free (rfeed, EMPTY);
3449 array_free (fdchange, EMPTY);
3450 array_free (timer, EMPTY);
3451#if EV_PERIODIC_ENABLE
3452 array_free (periodic, EMPTY);
3453#endif
3454#if EV_FORK_ENABLE
3455 array_free (fork, EMPTY);
3456#endif
3457#if EV_CLEANUP_ENABLE
3458 array_free (cleanup, EMPTY);
3459#endif
3460 array_free (prepare, EMPTY);
3461 array_free (check, EMPTY);
3462#if EV_ASYNC_ENABLE
3463 array_free (async, EMPTY);
3464#endif
3465
3466 backend = 0;
3467
3468#if EV_MULTIPLICITY
3469 if (ev_is_default_loop (EV_A))
3470#endif
3471 ev_default_loop_ptr = 0;
3472#if EV_MULTIPLICITY
3473 else
3474 ev_free (EV_A);
3475#endif
3476}
3477
3478#if EV_USE_INOTIFY
3479inline_size void infy_fork (EV_P);
3480#endif
3481
3482inline_size void
3483loop_fork (EV_P)
3484{
3485#if EV_USE_PORT
3486 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
3487#endif
3488#if EV_USE_KQUEUE
3489 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3490#endif
3491#if EV_USE_IOURING
3492 if (backend == EVBACKEND_IOURING ) iouring_fork (EV_A);
3493#endif
3494#if EV_USE_LINUXAIO
3495 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
3496#endif
3497#if EV_USE_EPOLL
3498 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
3499#endif
3500#if EV_USE_INOTIFY
3501 infy_fork (EV_A);
3502#endif
3503
3504 if (postfork != 2)
3505 {
3506 #if EV_USE_SIGNALFD
3507 /* surprisingly, nothing needs to be done for signalfd, accoridng to docs, it does the right thing on fork */
3508 #endif
3509
3510 #if EV_USE_TIMERFD
3511 if (ev_is_active (&timerfd_w))
3512 {
3513 ev_ref (EV_A);
3514 ev_io_stop (EV_A_ &timerfd_w);
3515
3516 close (timerfd);
3517 timerfd = -2;
3518
3519 evtimerfd_init (EV_A);
3520 /* reschedule periodics, in case we missed something */
3521 ev_feed_event (EV_A_ &timerfd_w, EV_CUSTOM);
3522 }
3523 #endif
3524
3525 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3526 if (ev_is_active (&pipe_w))
3527 {
3528 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3529
3530 ev_ref (EV_A);
3531 ev_io_stop (EV_A_ &pipe_w);
3532
3533 if (evpipe [0] >= 0)
3534 EV_WIN32_CLOSE_FD (evpipe [0]);
3535
3536 evpipe_init (EV_A);
3537 /* iterate over everything, in case we missed something before */
3538 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3539 }
3540 #endif
3541 }
3542
3543 postfork = 0;
3544}
3545
3546#if EV_MULTIPLICITY
3547
3548ecb_cold
1005struct ev_loop * 3549struct ev_loop *
1006ev_default_loop_init (unsigned int flags) 3550ev_loop_new (unsigned int flags) EV_NOEXCEPT
3551{
3552 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3553
3554 memset (EV_A, 0, sizeof (struct ev_loop));
3555 loop_init (EV_A_ flags);
3556
3557 if (ev_backend (EV_A))
3558 return EV_A;
3559
3560 ev_free (EV_A);
3561 return 0;
3562}
3563
3564#endif /* multiplicity */
3565
3566#if EV_VERIFY
3567ecb_noinline ecb_cold
3568static void
3569verify_watcher (EV_P_ W w)
3570{
3571 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
3572
3573 if (w->pending)
3574 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3575}
3576
3577ecb_noinline ecb_cold
3578static void
3579verify_heap (EV_P_ ANHE *heap, int N)
3580{
3581 int i;
3582
3583 for (i = HEAP0; i < N + HEAP0; ++i)
3584 {
3585 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3586 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3587 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3588
3589 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3590 }
3591}
3592
3593ecb_noinline ecb_cold
3594static void
3595array_verify (EV_P_ W *ws, int cnt)
3596{
3597 while (cnt--)
3598 {
3599 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3600 verify_watcher (EV_A_ ws [cnt]);
3601 }
3602}
3603#endif
3604
3605#if EV_FEATURE_API
3606void ecb_cold
3607ev_verify (EV_P) EV_NOEXCEPT
3608{
3609#if EV_VERIFY
3610 int i;
3611 WL w, w2;
3612
3613 assert (activecnt >= -1);
3614
3615 assert (fdchangemax >= fdchangecnt);
3616 for (i = 0; i < fdchangecnt; ++i)
3617 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3618
3619 assert (anfdmax >= 0);
3620 for (i = 0; i < anfdmax; ++i)
3621 {
3622 int j = 0;
3623
3624 for (w = w2 = anfds [i].head; w; w = w->next)
3625 {
3626 verify_watcher (EV_A_ (W)w);
3627
3628 if (j++ & 1)
3629 {
3630 assert (("libev: io watcher list contains a loop", w != w2));
3631 w2 = w2->next;
3632 }
3633
3634 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3635 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3636 }
3637 }
3638
3639 assert (timermax >= timercnt);
3640 verify_heap (EV_A_ timers, timercnt);
3641
3642#if EV_PERIODIC_ENABLE
3643 assert (periodicmax >= periodiccnt);
3644 verify_heap (EV_A_ periodics, periodiccnt);
3645#endif
3646
3647 for (i = NUMPRI; i--; )
3648 {
3649 assert (pendingmax [i] >= pendingcnt [i]);
3650#if EV_IDLE_ENABLE
3651 assert (idleall >= 0);
3652 assert (idlemax [i] >= idlecnt [i]);
3653 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3654#endif
3655 }
3656
3657#if EV_FORK_ENABLE
3658 assert (forkmax >= forkcnt);
3659 array_verify (EV_A_ (W *)forks, forkcnt);
3660#endif
3661
3662#if EV_CLEANUP_ENABLE
3663 assert (cleanupmax >= cleanupcnt);
3664 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3665#endif
3666
3667#if EV_ASYNC_ENABLE
3668 assert (asyncmax >= asynccnt);
3669 array_verify (EV_A_ (W *)asyncs, asynccnt);
3670#endif
3671
3672#if EV_PREPARE_ENABLE
3673 assert (preparemax >= preparecnt);
3674 array_verify (EV_A_ (W *)prepares, preparecnt);
3675#endif
3676
3677#if EV_CHECK_ENABLE
3678 assert (checkmax >= checkcnt);
3679 array_verify (EV_A_ (W *)checks, checkcnt);
3680#endif
3681
3682# if 0
3683#if EV_CHILD_ENABLE
3684 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3685 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3686#endif
3687# endif
3688#endif
3689}
3690#endif
3691
3692#if EV_MULTIPLICITY
3693ecb_cold
3694struct ev_loop *
1007#else 3695#else
1008int 3696int
3697#endif
1009ev_default_loop (unsigned int flags) 3698ev_default_loop (unsigned int flags) EV_NOEXCEPT
1010#endif
1011{ 3699{
1012 if (sigpipe [0] == sigpipe [1])
1013 if (pipe (sigpipe))
1014 return 0;
1015
1016 if (!ev_default_loop_ptr) 3700 if (!ev_default_loop_ptr)
1017 { 3701 {
1018#if EV_MULTIPLICITY 3702#if EV_MULTIPLICITY
1019 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3703 EV_P = ev_default_loop_ptr = &default_loop_struct;
1020#else 3704#else
1021 ev_default_loop_ptr = 1; 3705 ev_default_loop_ptr = 1;
1022#endif 3706#endif
1023 3707
1024 loop_init (EV_A_ flags); 3708 loop_init (EV_A_ flags);
1025 3709
1026 if (ev_backend (EV_A)) 3710 if (ev_backend (EV_A))
1027 { 3711 {
1028 siginit (EV_A); 3712#if EV_CHILD_ENABLE
1029
1030#ifndef _WIN32
1031 ev_signal_init (&childev, childcb, SIGCHLD); 3713 ev_signal_init (&childev, childcb, SIGCHLD);
1032 ev_set_priority (&childev, EV_MAXPRI); 3714 ev_set_priority (&childev, EV_MAXPRI);
1033 ev_signal_start (EV_A_ &childev); 3715 ev_signal_start (EV_A_ &childev);
1034 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3716 ev_unref (EV_A); /* child watcher should not keep loop alive */
1035#endif 3717#endif
1040 3722
1041 return ev_default_loop_ptr; 3723 return ev_default_loop_ptr;
1042} 3724}
1043 3725
1044void 3726void
1045ev_default_destroy (void) 3727ev_loop_fork (EV_P) EV_NOEXCEPT
1046{ 3728{
1047#if EV_MULTIPLICITY 3729 postfork = 1;
1048 struct ev_loop *loop = ev_default_loop_ptr;
1049#endif
1050
1051#ifndef _WIN32
1052 ev_ref (EV_A); /* child watcher */
1053 ev_signal_stop (EV_A_ &childev);
1054#endif
1055
1056 ev_ref (EV_A); /* signal watcher */
1057 ev_io_stop (EV_A_ &sigev);
1058
1059 close (sigpipe [0]); sigpipe [0] = 0;
1060 close (sigpipe [1]); sigpipe [1] = 0;
1061
1062 loop_destroy (EV_A);
1063} 3730}
3731
3732/*****************************************************************************/
1064 3733
1065void 3734void
1066ev_default_fork (void) 3735ev_invoke (EV_P_ void *w, int revents)
1067{ 3736{
1068#if EV_MULTIPLICITY 3737 EV_CB_INVOKE ((W)w, revents);
1069 struct ev_loop *loop = ev_default_loop_ptr;
1070#endif
1071
1072 if (backend)
1073 postfork = 1;
1074} 3738}
1075 3739
1076/*****************************************************************************/ 3740unsigned int
1077 3741ev_pending_count (EV_P) EV_NOEXCEPT
1078int inline_size
1079any_pending (EV_P)
1080{ 3742{
1081 int pri; 3743 int pri;
3744 unsigned int count = 0;
1082 3745
1083 for (pri = NUMPRI; pri--; ) 3746 for (pri = NUMPRI; pri--; )
1084 if (pendingcnt [pri]) 3747 count += pendingcnt [pri];
1085 return 1;
1086 3748
1087 return 0; 3749 return count;
1088} 3750}
1089 3751
1090void inline_speed 3752ecb_noinline
1091call_pending (EV_P) 3753void
3754ev_invoke_pending (EV_P)
1092{ 3755{
1093 int pri; 3756 pendingpri = NUMPRI;
1094 3757
1095 for (pri = NUMPRI; pri--; ) 3758 do
3759 {
3760 --pendingpri;
3761
3762 /* pendingpri possibly gets modified in the inner loop */
1096 while (pendingcnt [pri]) 3763 while (pendingcnt [pendingpri])
1097 {
1098 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1099
1100 if (expect_true (p->w))
1101 { 3764 {
1102 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 3765 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1103 3766
1104 p->w->pending = 0; 3767 p->w->pending = 0;
1105 EV_CB_INVOKE (p->w, p->events); 3768 EV_CB_INVOKE (p->w, p->events);
3769 EV_FREQUENT_CHECK;
3770 }
3771 }
3772 while (pendingpri);
3773}
3774
3775#if EV_IDLE_ENABLE
3776/* make idle watchers pending. this handles the "call-idle */
3777/* only when higher priorities are idle" logic */
3778inline_size void
3779idle_reify (EV_P)
3780{
3781 if (ecb_expect_false (idleall))
3782 {
3783 int pri;
3784
3785 for (pri = NUMPRI; pri--; )
3786 {
3787 if (pendingcnt [pri])
3788 break;
3789
3790 if (idlecnt [pri])
3791 {
3792 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3793 break;
1106 } 3794 }
1107 } 3795 }
3796 }
1108} 3797}
3798#endif
1109 3799
1110void inline_size 3800/* make timers pending */
3801inline_size void
1111timers_reify (EV_P) 3802timers_reify (EV_P)
1112{ 3803{
3804 EV_FREQUENT_CHECK;
3805
1113 while (timercnt && ((WT)timers [0])->at <= mn_now) 3806 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1114 { 3807 {
1115 ev_timer *w = timers [0]; 3808 do
1116
1117 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1118
1119 /* first reschedule or stop timer */
1120 if (w->repeat)
1121 { 3809 {
3810 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3811
3812 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3813
3814 /* first reschedule or stop timer */
3815 if (w->repeat)
3816 {
3817 ev_at (w) += w->repeat;
3818 if (ev_at (w) < mn_now)
3819 ev_at (w) = mn_now;
3820
1122 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3821 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > EV_TS_CONST (0.)));
1123 3822
1124 ((WT)w)->at += w->repeat; 3823 ANHE_at_cache (timers [HEAP0]);
1125 if (((WT)w)->at < mn_now)
1126 ((WT)w)->at = mn_now;
1127
1128 downheap ((WT *)timers, timercnt, 0); 3824 downheap (timers, timercnt, HEAP0);
3825 }
3826 else
3827 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3828
3829 EV_FREQUENT_CHECK;
3830 feed_reverse (EV_A_ (W)w);
1129 } 3831 }
1130 else 3832 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1131 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1132 3833
1133 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 3834 feed_reverse_done (EV_A_ EV_TIMER);
1134 } 3835 }
1135} 3836}
1136 3837
1137#if EV_PERIODIC_ENABLE 3838#if EV_PERIODIC_ENABLE
1138void inline_size 3839
3840ecb_noinline
3841static void
3842periodic_recalc (EV_P_ ev_periodic *w)
3843{
3844 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3845 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3846
3847 /* the above almost always errs on the low side */
3848 while (at <= ev_rt_now)
3849 {
3850 ev_tstamp nat = at + w->interval;
3851
3852 /* when resolution fails us, we use ev_rt_now */
3853 if (ecb_expect_false (nat == at))
3854 {
3855 at = ev_rt_now;
3856 break;
3857 }
3858
3859 at = nat;
3860 }
3861
3862 ev_at (w) = at;
3863}
3864
3865/* make periodics pending */
3866inline_size void
1139periodics_reify (EV_P) 3867periodics_reify (EV_P)
1140{ 3868{
3869 EV_FREQUENT_CHECK;
3870
1141 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 3871 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1142 { 3872 {
1143 ev_periodic *w = periodics [0]; 3873 do
3874 {
3875 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1144 3876
1145 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 3877 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1146 3878
1147 /* first reschedule or stop timer */ 3879 /* first reschedule or stop timer */
3880 if (w->reschedule_cb)
3881 {
3882 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3883
3884 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3885
3886 ANHE_at_cache (periodics [HEAP0]);
3887 downheap (periodics, periodiccnt, HEAP0);
3888 }
3889 else if (w->interval)
3890 {
3891 periodic_recalc (EV_A_ w);
3892 ANHE_at_cache (periodics [HEAP0]);
3893 downheap (periodics, periodiccnt, HEAP0);
3894 }
3895 else
3896 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3897
3898 EV_FREQUENT_CHECK;
3899 feed_reverse (EV_A_ (W)w);
3900 }
3901 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3902
3903 feed_reverse_done (EV_A_ EV_PERIODIC);
3904 }
3905}
3906
3907/* simply recalculate all periodics */
3908/* TODO: maybe ensure that at least one event happens when jumping forward? */
3909ecb_noinline ecb_cold
3910static void
3911periodics_reschedule (EV_P)
3912{
3913 int i;
3914
3915 /* adjust periodics after time jump */
3916 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3917 {
3918 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3919
1148 if (w->reschedule_cb) 3920 if (w->reschedule_cb)
3921 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3922 else if (w->interval)
3923 periodic_recalc (EV_A_ w);
3924
3925 ANHE_at_cache (periodics [i]);
3926 }
3927
3928 reheap (periodics, periodiccnt);
3929}
3930#endif
3931
3932/* adjust all timers by a given offset */
3933ecb_noinline ecb_cold
3934static void
3935timers_reschedule (EV_P_ ev_tstamp adjust)
3936{
3937 int i;
3938
3939 for (i = 0; i < timercnt; ++i)
3940 {
3941 ANHE *he = timers + i + HEAP0;
3942 ANHE_w (*he)->at += adjust;
3943 ANHE_at_cache (*he);
3944 }
3945}
3946
3947/* fetch new monotonic and realtime times from the kernel */
3948/* also detect if there was a timejump, and act accordingly */
3949inline_speed void
3950time_update (EV_P_ ev_tstamp max_block)
3951{
3952#if EV_USE_MONOTONIC
3953 if (ecb_expect_true (have_monotonic))
3954 {
3955 int i;
3956 ev_tstamp odiff = rtmn_diff;
3957
3958 mn_now = get_clock ();
3959
3960 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3961 /* interpolate in the meantime */
3962 if (ecb_expect_true (mn_now - now_floor < EV_TS_CONST (MIN_TIMEJUMP * .5)))
1149 { 3963 {
1150 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 3964 ev_rt_now = rtmn_diff + mn_now;
1151 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 3965 return;
1152 downheap ((WT *)periodics, periodiccnt, 0);
1153 } 3966 }
1154 else if (w->interval)
1155 {
1156 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1157 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1158 downheap ((WT *)periodics, periodiccnt, 0);
1159 }
1160 else
1161 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1162 3967
1163 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1164 }
1165}
1166
1167static void noinline
1168periodics_reschedule (EV_P)
1169{
1170 int i;
1171
1172 /* adjust periodics after time jump */
1173 for (i = 0; i < periodiccnt; ++i)
1174 {
1175 ev_periodic *w = periodics [i];
1176
1177 if (w->reschedule_cb)
1178 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1179 else if (w->interval)
1180 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1181 }
1182
1183 /* now rebuild the heap */
1184 for (i = periodiccnt >> 1; i--; )
1185 downheap ((WT *)periodics, periodiccnt, i);
1186}
1187#endif
1188
1189int inline_size
1190time_update_monotonic (EV_P)
1191{
1192 mn_now = get_clock ();
1193
1194 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1195 {
1196 ev_rt_now = rtmn_diff + mn_now;
1197 return 0;
1198 }
1199 else
1200 {
1201 now_floor = mn_now; 3968 now_floor = mn_now;
1202 ev_rt_now = ev_time (); 3969 ev_rt_now = ev_time ();
1203 return 1;
1204 }
1205}
1206 3970
1207void inline_size 3971 /* loop a few times, before making important decisions.
1208time_update (EV_P) 3972 * on the choice of "4": one iteration isn't enough,
1209{ 3973 * in case we get preempted during the calls to
1210 int i; 3974 * ev_time and get_clock. a second call is almost guaranteed
1211 3975 * to succeed in that case, though. and looping a few more times
1212#if EV_USE_MONOTONIC 3976 * doesn't hurt either as we only do this on time-jumps or
1213 if (expect_true (have_monotonic)) 3977 * in the unlikely event of having been preempted here.
1214 { 3978 */
1215 if (time_update_monotonic (EV_A)) 3979 for (i = 4; --i; )
1216 { 3980 {
1217 ev_tstamp odiff = rtmn_diff; 3981 ev_tstamp diff;
1218
1219 /* loop a few times, before making important decisions.
1220 * on the choice of "4": one iteration isn't enough,
1221 * in case we get preempted during the calls to
1222 * ev_time and get_clock. a second call is almost guarenteed
1223 * to succeed in that case, though. and looping a few more times
1224 * doesn't hurt either as we only do this on time-jumps or
1225 * in the unlikely event of getting preempted here.
1226 */
1227 for (i = 4; --i; )
1228 {
1229 rtmn_diff = ev_rt_now - mn_now; 3982 rtmn_diff = ev_rt_now - mn_now;
1230 3983
1231 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 3984 diff = odiff - rtmn_diff;
3985
3986 if (ecb_expect_true ((diff < EV_TS_CONST (0.) ? -diff : diff) < EV_TS_CONST (MIN_TIMEJUMP)))
1232 return; /* all is well */ 3987 return; /* all is well */
1233 3988
1234 ev_rt_now = ev_time (); 3989 ev_rt_now = ev_time ();
1235 mn_now = get_clock (); 3990 mn_now = get_clock ();
1236 now_floor = mn_now; 3991 now_floor = mn_now;
1237 } 3992 }
1238 3993
3994 /* no timer adjustment, as the monotonic clock doesn't jump */
3995 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1239# if EV_PERIODIC_ENABLE 3996# if EV_PERIODIC_ENABLE
1240 periodics_reschedule (EV_A); 3997 periodics_reschedule (EV_A);
1241# endif 3998# endif
1242 /* no timer adjustment, as the monotonic clock doesn't jump */
1243 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1244 }
1245 } 3999 }
1246 else 4000 else
1247#endif 4001#endif
1248 { 4002 {
1249 ev_rt_now = ev_time (); 4003 ev_rt_now = ev_time ();
1250 4004
1251 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 4005 if (ecb_expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + EV_TS_CONST (MIN_TIMEJUMP)))
1252 { 4006 {
4007 /* adjust timers. this is easy, as the offset is the same for all of them */
4008 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1253#if EV_PERIODIC_ENABLE 4009#if EV_PERIODIC_ENABLE
1254 periodics_reschedule (EV_A); 4010 periodics_reschedule (EV_A);
1255#endif 4011#endif
1256
1257 /* adjust timers. this is easy, as the offset is the same for all */
1258 for (i = 0; i < timercnt; ++i)
1259 ((WT)timers [i])->at += ev_rt_now - mn_now;
1260 } 4012 }
1261 4013
1262 mn_now = ev_rt_now; 4014 mn_now = ev_rt_now;
1263 } 4015 }
1264} 4016}
1265 4017
1266void 4018int
1267ev_ref (EV_P)
1268{
1269 ++activecnt;
1270}
1271
1272void
1273ev_unref (EV_P)
1274{
1275 --activecnt;
1276}
1277
1278static int loop_done;
1279
1280void
1281ev_loop (EV_P_ int flags) 4019ev_run (EV_P_ int flags)
1282{ 4020{
1283 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 4021#if EV_FEATURE_API
1284 ? EVUNLOOP_ONE 4022 ++loop_depth;
1285 : EVUNLOOP_CANCEL; 4023#endif
1286 4024
1287 while (activecnt) 4025 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
4026
4027 loop_done = EVBREAK_CANCEL;
4028
4029 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
4030
4031 do
1288 { 4032 {
1289 /* we might have forked, so reify kernel state if necessary */ 4033#if EV_VERIFY >= 2
4034 ev_verify (EV_A);
4035#endif
4036
4037#ifndef _WIN32
4038 if (ecb_expect_false (curpid)) /* penalise the forking check even more */
4039 if (ecb_expect_false (getpid () != curpid))
4040 {
4041 curpid = getpid ();
4042 postfork = 1;
4043 }
4044#endif
4045
1290 #if EV_FORK_ENABLE 4046#if EV_FORK_ENABLE
4047 /* we might have forked, so queue fork handlers */
1291 if (expect_false (postfork)) 4048 if (ecb_expect_false (postfork))
1292 if (forkcnt) 4049 if (forkcnt)
1293 { 4050 {
1294 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 4051 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1295 call_pending (EV_A); 4052 EV_INVOKE_PENDING;
1296 } 4053 }
1297 #endif 4054#endif
1298 4055
4056#if EV_PREPARE_ENABLE
1299 /* queue check watchers (and execute them) */ 4057 /* queue prepare watchers (and execute them) */
1300 if (expect_false (preparecnt)) 4058 if (ecb_expect_false (preparecnt))
1301 { 4059 {
1302 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 4060 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1303 call_pending (EV_A); 4061 EV_INVOKE_PENDING;
1304 } 4062 }
4063#endif
4064
4065 if (ecb_expect_false (loop_done))
4066 break;
1305 4067
1306 /* we might have forked, so reify kernel state if necessary */ 4068 /* we might have forked, so reify kernel state if necessary */
1307 if (expect_false (postfork)) 4069 if (ecb_expect_false (postfork))
1308 loop_fork (EV_A); 4070 loop_fork (EV_A);
1309 4071
1310 /* update fd-related kernel structures */ 4072 /* update fd-related kernel structures */
1311 fd_reify (EV_A); 4073 fd_reify (EV_A);
1312 4074
1313 /* calculate blocking time */ 4075 /* calculate blocking time */
1314 { 4076 {
1315 double block; 4077 ev_tstamp waittime = 0.;
4078 ev_tstamp sleeptime = 0.;
1316 4079
1317 if (flags & EVLOOP_NONBLOCK || idlecnt) 4080 /* remember old timestamp for io_blocktime calculation */
1318 block = 0.; /* do not block at all */ 4081 ev_tstamp prev_mn_now = mn_now;
1319 else 4082
4083 /* update time to cancel out callback processing overhead */
4084 time_update (EV_A_ EV_TS_CONST (EV_TSTAMP_HUGE));
4085
4086 /* from now on, we want a pipe-wake-up */
4087 pipe_write_wanted = 1;
4088
4089 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
4090
4091 if (ecb_expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1320 { 4092 {
1321 /* update time to cancel out callback processing overhead */ 4093 waittime = EV_TS_CONST (MAX_BLOCKTIME);
1322#if EV_USE_MONOTONIC
1323 if (expect_true (have_monotonic))
1324 time_update_monotonic (EV_A);
1325 else
1326#endif
1327 {
1328 ev_rt_now = ev_time ();
1329 mn_now = ev_rt_now;
1330 }
1331 4094
1332 block = MAX_BLOCKTIME; 4095#if EV_USE_TIMERFD
4096 /* sleep a lot longer when we can reliably detect timejumps */
4097 if (ecb_expect_true (timerfd >= 0))
4098 waittime = EV_TS_CONST (MAX_BLOCKTIME2);
4099#endif
1333 4100
1334 if (timercnt) 4101 if (timercnt)
1335 { 4102 {
1336 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 4103 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1337 if (block > to) block = to; 4104 if (waittime > to) waittime = to;
1338 } 4105 }
1339 4106
1340#if EV_PERIODIC_ENABLE 4107#if EV_PERIODIC_ENABLE
1341 if (periodiccnt) 4108 if (periodiccnt)
1342 { 4109 {
1343 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 4110 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1344 if (block > to) block = to; 4111 if (waittime > to) waittime = to;
1345 } 4112 }
1346#endif 4113#endif
1347 4114
1348 if (expect_false (block < 0.)) block = 0.; 4115 /* don't let timeouts decrease the waittime below timeout_blocktime */
4116 if (ecb_expect_false (waittime < timeout_blocktime))
4117 waittime = timeout_blocktime;
4118
4119 /* now there are two more special cases left, either we have
4120 * already-expired timers, so we should not sleep, or we have timers
4121 * that expire very soon, in which case we need to wait for a minimum
4122 * amount of time for some event loop backends.
4123 */
4124 if (ecb_expect_false (waittime < backend_mintime))
4125 waittime = waittime <= EV_TS_CONST (0.)
4126 ? EV_TS_CONST (0.)
4127 : backend_mintime;
4128
4129 /* extra check because io_blocktime is commonly 0 */
4130 if (ecb_expect_false (io_blocktime))
4131 {
4132 sleeptime = io_blocktime - (mn_now - prev_mn_now);
4133
4134 if (sleeptime > waittime - backend_mintime)
4135 sleeptime = waittime - backend_mintime;
4136
4137 if (ecb_expect_true (sleeptime > EV_TS_CONST (0.)))
4138 {
4139 ev_sleep (sleeptime);
4140 waittime -= sleeptime;
4141 }
4142 }
1349 } 4143 }
1350 4144
4145#if EV_FEATURE_API
4146 ++loop_count;
4147#endif
4148 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1351 backend_poll (EV_A_ block); 4149 backend_poll (EV_A_ waittime);
4150 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
4151
4152 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
4153
4154 ECB_MEMORY_FENCE_ACQUIRE;
4155 if (pipe_write_skipped)
4156 {
4157 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
4158 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
4159 }
4160
4161 /* update ev_rt_now, do magic */
4162 time_update (EV_A_ waittime + sleeptime);
1352 } 4163 }
1353
1354 /* update ev_rt_now, do magic */
1355 time_update (EV_A);
1356 4164
1357 /* queue pending timers and reschedule them */ 4165 /* queue pending timers and reschedule them */
1358 timers_reify (EV_A); /* relative timers called last */ 4166 timers_reify (EV_A); /* relative timers called last */
1359#if EV_PERIODIC_ENABLE 4167#if EV_PERIODIC_ENABLE
1360 periodics_reify (EV_A); /* absolute timers called first */ 4168 periodics_reify (EV_A); /* absolute timers called first */
1361#endif 4169#endif
1362 4170
4171#if EV_IDLE_ENABLE
1363 /* queue idle watchers unless other events are pending */ 4172 /* queue idle watchers unless other events are pending */
1364 if (idlecnt && !any_pending (EV_A)) 4173 idle_reify (EV_A);
1365 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 4174#endif
1366 4175
4176#if EV_CHECK_ENABLE
1367 /* queue check watchers, to be executed first */ 4177 /* queue check watchers, to be executed first */
1368 if (expect_false (checkcnt)) 4178 if (ecb_expect_false (checkcnt))
1369 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 4179 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
4180#endif
1370 4181
1371 call_pending (EV_A); 4182 EV_INVOKE_PENDING;
1372
1373 if (expect_false (loop_done))
1374 break;
1375 } 4183 }
4184 while (ecb_expect_true (
4185 activecnt
4186 && !loop_done
4187 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
4188 ));
1376 4189
1377 if (loop_done == EVUNLOOP_ONE) 4190 if (loop_done == EVBREAK_ONE)
1378 loop_done = EVUNLOOP_CANCEL; 4191 loop_done = EVBREAK_CANCEL;
4192
4193#if EV_FEATURE_API
4194 --loop_depth;
4195#endif
4196
4197 return activecnt;
1379} 4198}
1380 4199
1381void 4200void
1382ev_unloop (EV_P_ int how) 4201ev_break (EV_P_ int how) EV_NOEXCEPT
1383{ 4202{
1384 loop_done = how; 4203 loop_done = how;
1385} 4204}
1386 4205
4206void
4207ev_ref (EV_P) EV_NOEXCEPT
4208{
4209 ++activecnt;
4210}
4211
4212void
4213ev_unref (EV_P) EV_NOEXCEPT
4214{
4215 --activecnt;
4216}
4217
4218void
4219ev_now_update (EV_P) EV_NOEXCEPT
4220{
4221 time_update (EV_A_ EV_TSTAMP_HUGE);
4222}
4223
4224void
4225ev_suspend (EV_P) EV_NOEXCEPT
4226{
4227 ev_now_update (EV_A);
4228}
4229
4230void
4231ev_resume (EV_P) EV_NOEXCEPT
4232{
4233 ev_tstamp mn_prev = mn_now;
4234
4235 ev_now_update (EV_A);
4236 timers_reschedule (EV_A_ mn_now - mn_prev);
4237#if EV_PERIODIC_ENABLE
4238 /* TODO: really do this? */
4239 periodics_reschedule (EV_A);
4240#endif
4241}
4242
1387/*****************************************************************************/ 4243/*****************************************************************************/
4244/* singly-linked list management, used when the expected list length is short */
1388 4245
1389void inline_size 4246inline_size void
1390wlist_add (WL *head, WL elem) 4247wlist_add (WL *head, WL elem)
1391{ 4248{
1392 elem->next = *head; 4249 elem->next = *head;
1393 *head = elem; 4250 *head = elem;
1394} 4251}
1395 4252
1396void inline_size 4253inline_size void
1397wlist_del (WL *head, WL elem) 4254wlist_del (WL *head, WL elem)
1398{ 4255{
1399 while (*head) 4256 while (*head)
1400 { 4257 {
1401 if (*head == elem) 4258 if (ecb_expect_true (*head == elem))
1402 { 4259 {
1403 *head = elem->next; 4260 *head = elem->next;
1404 return; 4261 break;
1405 } 4262 }
1406 4263
1407 head = &(*head)->next; 4264 head = &(*head)->next;
1408 } 4265 }
1409} 4266}
1410 4267
1411void inline_speed 4268/* internal, faster, version of ev_clear_pending */
4269inline_speed void
1412ev_clear_pending (EV_P_ W w) 4270clear_pending (EV_P_ W w)
1413{ 4271{
1414 if (w->pending) 4272 if (w->pending)
1415 { 4273 {
1416 pendings [ABSPRI (w)][w->pending - 1].w = 0; 4274 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1417 w->pending = 0; 4275 w->pending = 0;
1418 } 4276 }
1419} 4277}
1420 4278
1421void inline_speed 4279int
4280ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
4281{
4282 W w_ = (W)w;
4283 int pending = w_->pending;
4284
4285 if (ecb_expect_true (pending))
4286 {
4287 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
4288 p->w = (W)&pending_w;
4289 w_->pending = 0;
4290 return p->events;
4291 }
4292 else
4293 return 0;
4294}
4295
4296inline_size void
4297pri_adjust (EV_P_ W w)
4298{
4299 int pri = ev_priority (w);
4300 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
4301 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
4302 ev_set_priority (w, pri);
4303}
4304
4305inline_speed void
1422ev_start (EV_P_ W w, int active) 4306ev_start (EV_P_ W w, int active)
1423{ 4307{
1424 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 4308 pri_adjust (EV_A_ w);
1425 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1426
1427 w->active = active; 4309 w->active = active;
1428 ev_ref (EV_A); 4310 ev_ref (EV_A);
1429} 4311}
1430 4312
1431void inline_size 4313inline_size void
1432ev_stop (EV_P_ W w) 4314ev_stop (EV_P_ W w)
1433{ 4315{
1434 ev_unref (EV_A); 4316 ev_unref (EV_A);
1435 w->active = 0; 4317 w->active = 0;
1436} 4318}
1437 4319
1438/*****************************************************************************/ 4320/*****************************************************************************/
1439 4321
4322ecb_noinline
1440void 4323void
1441ev_io_start (EV_P_ ev_io *w) 4324ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
1442{ 4325{
1443 int fd = w->fd; 4326 int fd = w->fd;
1444 4327
1445 if (expect_false (ev_is_active (w))) 4328 if (ecb_expect_false (ev_is_active (w)))
1446 return; 4329 return;
1447 4330
1448 assert (("ev_io_start called with negative fd", fd >= 0)); 4331 assert (("libev: ev_io_start called with negative fd", fd >= 0));
4332 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
4333
4334#if EV_VERIFY >= 2
4335 assert (("libev: ev_io_start called on watcher with invalid fd", fd_valid (fd)));
4336#endif
4337 EV_FREQUENT_CHECK;
1449 4338
1450 ev_start (EV_A_ (W)w, 1); 4339 ev_start (EV_A_ (W)w, 1);
1451 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 4340 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
1452 wlist_add ((WL *)&anfds[fd].head, (WL)w); 4341 wlist_add (&anfds[fd].head, (WL)w);
1453 4342
1454 fd_change (EV_A_ fd); 4343 /* common bug, apparently */
1455} 4344 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
1456 4345
4346 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
4347 w->events &= ~EV__IOFDSET;
4348
4349 EV_FREQUENT_CHECK;
4350}
4351
4352ecb_noinline
1457void 4353void
1458ev_io_stop (EV_P_ ev_io *w) 4354ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
1459{ 4355{
1460 ev_clear_pending (EV_A_ (W)w); 4356 clear_pending (EV_A_ (W)w);
1461 if (expect_false (!ev_is_active (w))) 4357 if (ecb_expect_false (!ev_is_active (w)))
1462 return; 4358 return;
1463 4359
1464 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 4360 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1465 4361
4362#if EV_VERIFY >= 2
4363 assert (("libev: ev_io_stop called on watcher with invalid fd", fd_valid (w->fd)));
4364#endif
4365 EV_FREQUENT_CHECK;
4366
1466 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 4367 wlist_del (&anfds[w->fd].head, (WL)w);
1467 ev_stop (EV_A_ (W)w); 4368 ev_stop (EV_A_ (W)w);
1468 4369
1469 fd_change (EV_A_ w->fd); 4370 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1470}
1471 4371
4372 EV_FREQUENT_CHECK;
4373}
4374
4375ecb_noinline
1472void 4376void
1473ev_timer_start (EV_P_ ev_timer *w) 4377ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
1474{ 4378{
1475 if (expect_false (ev_is_active (w))) 4379 if (ecb_expect_false (ev_is_active (w)))
1476 return; 4380 return;
1477 4381
1478 ((WT)w)->at += mn_now; 4382 ev_at (w) += mn_now;
1479 4383
1480 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 4384 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1481 4385
4386 EV_FREQUENT_CHECK;
4387
4388 ++timercnt;
1482 ev_start (EV_A_ (W)w, ++timercnt); 4389 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1483 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 4390 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
1484 timers [timercnt - 1] = w; 4391 ANHE_w (timers [ev_active (w)]) = (WT)w;
1485 upheap ((WT *)timers, timercnt - 1); 4392 ANHE_at_cache (timers [ev_active (w)]);
4393 upheap (timers, ev_active (w));
1486 4394
4395 EV_FREQUENT_CHECK;
4396
1487 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 4397 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1488} 4398}
1489 4399
4400ecb_noinline
1490void 4401void
1491ev_timer_stop (EV_P_ ev_timer *w) 4402ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
1492{ 4403{
1493 ev_clear_pending (EV_A_ (W)w); 4404 clear_pending (EV_A_ (W)w);
1494 if (expect_false (!ev_is_active (w))) 4405 if (ecb_expect_false (!ev_is_active (w)))
1495 return; 4406 return;
1496 4407
1497 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 4408 EV_FREQUENT_CHECK;
1498 4409
1499 { 4410 {
1500 int active = ((W)w)->active; 4411 int active = ev_active (w);
1501 4412
4413 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
4414
4415 --timercnt;
4416
1502 if (expect_true (--active < --timercnt)) 4417 if (ecb_expect_true (active < timercnt + HEAP0))
1503 { 4418 {
1504 timers [active] = timers [timercnt]; 4419 timers [active] = timers [timercnt + HEAP0];
1505 adjustheap ((WT *)timers, timercnt, active); 4420 adjustheap (timers, timercnt, active);
1506 } 4421 }
1507 } 4422 }
1508 4423
1509 ((WT)w)->at -= mn_now; 4424 ev_at (w) -= mn_now;
1510 4425
1511 ev_stop (EV_A_ (W)w); 4426 ev_stop (EV_A_ (W)w);
1512}
1513 4427
4428 EV_FREQUENT_CHECK;
4429}
4430
4431ecb_noinline
1514void 4432void
1515ev_timer_again (EV_P_ ev_timer *w) 4433ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
1516{ 4434{
4435 EV_FREQUENT_CHECK;
4436
4437 clear_pending (EV_A_ (W)w);
4438
1517 if (ev_is_active (w)) 4439 if (ev_is_active (w))
1518 { 4440 {
1519 if (w->repeat) 4441 if (w->repeat)
1520 { 4442 {
1521 ((WT)w)->at = mn_now + w->repeat; 4443 ev_at (w) = mn_now + w->repeat;
4444 ANHE_at_cache (timers [ev_active (w)]);
1522 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 4445 adjustheap (timers, timercnt, ev_active (w));
1523 } 4446 }
1524 else 4447 else
1525 ev_timer_stop (EV_A_ w); 4448 ev_timer_stop (EV_A_ w);
1526 } 4449 }
1527 else if (w->repeat) 4450 else if (w->repeat)
1528 { 4451 {
1529 w->at = w->repeat; 4452 ev_at (w) = w->repeat;
1530 ev_timer_start (EV_A_ w); 4453 ev_timer_start (EV_A_ w);
1531 } 4454 }
4455
4456 EV_FREQUENT_CHECK;
4457}
4458
4459ev_tstamp
4460ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4461{
4462 return ev_at (w) - (ev_is_active (w) ? mn_now : EV_TS_CONST (0.));
1532} 4463}
1533 4464
1534#if EV_PERIODIC_ENABLE 4465#if EV_PERIODIC_ENABLE
4466ecb_noinline
1535void 4467void
1536ev_periodic_start (EV_P_ ev_periodic *w) 4468ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
1537{ 4469{
1538 if (expect_false (ev_is_active (w))) 4470 if (ecb_expect_false (ev_is_active (w)))
1539 return; 4471 return;
1540 4472
4473#if EV_USE_TIMERFD
4474 if (timerfd == -2)
4475 evtimerfd_init (EV_A);
4476#endif
4477
1541 if (w->reschedule_cb) 4478 if (w->reschedule_cb)
1542 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 4479 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1543 else if (w->interval) 4480 else if (w->interval)
1544 { 4481 {
1545 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 4482 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1546 /* this formula differs from the one in periodic_reify because we do not always round up */ 4483 periodic_recalc (EV_A_ w);
1547 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1548 } 4484 }
4485 else
4486 ev_at (w) = w->offset;
1549 4487
4488 EV_FREQUENT_CHECK;
4489
4490 ++periodiccnt;
1550 ev_start (EV_A_ (W)w, ++periodiccnt); 4491 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1551 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 4492 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
1552 periodics [periodiccnt - 1] = w; 4493 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1553 upheap ((WT *)periodics, periodiccnt - 1); 4494 ANHE_at_cache (periodics [ev_active (w)]);
4495 upheap (periodics, ev_active (w));
1554 4496
4497 EV_FREQUENT_CHECK;
4498
1555 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 4499 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1556} 4500}
1557 4501
4502ecb_noinline
1558void 4503void
1559ev_periodic_stop (EV_P_ ev_periodic *w) 4504ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
1560{ 4505{
1561 ev_clear_pending (EV_A_ (W)w); 4506 clear_pending (EV_A_ (W)w);
1562 if (expect_false (!ev_is_active (w))) 4507 if (ecb_expect_false (!ev_is_active (w)))
1563 return; 4508 return;
1564 4509
1565 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 4510 EV_FREQUENT_CHECK;
1566 4511
1567 { 4512 {
1568 int active = ((W)w)->active; 4513 int active = ev_active (w);
1569 4514
4515 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
4516
4517 --periodiccnt;
4518
1570 if (expect_true (--active < --periodiccnt)) 4519 if (ecb_expect_true (active < periodiccnt + HEAP0))
1571 { 4520 {
1572 periodics [active] = periodics [periodiccnt]; 4521 periodics [active] = periodics [periodiccnt + HEAP0];
1573 adjustheap ((WT *)periodics, periodiccnt, active); 4522 adjustheap (periodics, periodiccnt, active);
1574 } 4523 }
1575 } 4524 }
1576 4525
1577 ev_stop (EV_A_ (W)w); 4526 ev_stop (EV_A_ (W)w);
1578}
1579 4527
4528 EV_FREQUENT_CHECK;
4529}
4530
4531ecb_noinline
1580void 4532void
1581ev_periodic_again (EV_P_ ev_periodic *w) 4533ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
1582{ 4534{
1583 /* TODO: use adjustheap and recalculation */ 4535 /* TODO: use adjustheap and recalculation */
1584 ev_periodic_stop (EV_A_ w); 4536 ev_periodic_stop (EV_A_ w);
1585 ev_periodic_start (EV_A_ w); 4537 ev_periodic_start (EV_A_ w);
1586} 4538}
1588 4540
1589#ifndef SA_RESTART 4541#ifndef SA_RESTART
1590# define SA_RESTART 0 4542# define SA_RESTART 0
1591#endif 4543#endif
1592 4544
4545#if EV_SIGNAL_ENABLE
4546
4547ecb_noinline
1593void 4548void
1594ev_signal_start (EV_P_ ev_signal *w) 4549ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
1595{ 4550{
4551 if (ecb_expect_false (ev_is_active (w)))
4552 return;
4553
4554 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4555
1596#if EV_MULTIPLICITY 4556#if EV_MULTIPLICITY
1597 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4557 assert (("libev: a signal must not be attached to two different loops",
4558 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4559
4560 signals [w->signum - 1].loop = EV_A;
4561 ECB_MEMORY_FENCE_RELEASE;
4562#endif
4563
4564 EV_FREQUENT_CHECK;
4565
4566#if EV_USE_SIGNALFD
4567 if (sigfd == -2)
4568 {
4569 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
4570 if (sigfd < 0 && errno == EINVAL)
4571 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
4572
4573 if (sigfd >= 0)
4574 {
4575 fd_intern (sigfd); /* doing it twice will not hurt */
4576
4577 sigemptyset (&sigfd_set);
4578
4579 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4580 ev_set_priority (&sigfd_w, EV_MAXPRI);
4581 ev_io_start (EV_A_ &sigfd_w);
4582 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4583 }
4584 }
4585
4586 if (sigfd >= 0)
4587 {
4588 /* TODO: check .head */
4589 sigaddset (&sigfd_set, w->signum);
4590 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4591
4592 signalfd (sigfd, &sigfd_set, 0);
4593 }
4594#endif
4595
4596 ev_start (EV_A_ (W)w, 1);
4597 wlist_add (&signals [w->signum - 1].head, (WL)w);
4598
4599 if (!((WL)w)->next)
4600# if EV_USE_SIGNALFD
4601 if (sigfd < 0) /*TODO*/
1598#endif 4602# endif
4603 {
4604# ifdef _WIN32
4605 evpipe_init (EV_A);
4606
4607 signal (w->signum, ev_sighandler);
4608# else
4609 struct sigaction sa;
4610
4611 evpipe_init (EV_A);
4612
4613 sa.sa_handler = ev_sighandler;
4614 sigfillset (&sa.sa_mask);
4615 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
4616 sigaction (w->signum, &sa, 0);
4617
4618 if (origflags & EVFLAG_NOSIGMASK)
4619 {
4620 sigemptyset (&sa.sa_mask);
4621 sigaddset (&sa.sa_mask, w->signum);
4622 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4623 }
4624#endif
4625 }
4626
4627 EV_FREQUENT_CHECK;
4628}
4629
4630ecb_noinline
4631void
4632ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
4633{
4634 clear_pending (EV_A_ (W)w);
1599 if (expect_false (ev_is_active (w))) 4635 if (ecb_expect_false (!ev_is_active (w)))
1600 return; 4636 return;
1601 4637
1602 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 4638 EV_FREQUENT_CHECK;
4639
4640 wlist_del (&signals [w->signum - 1].head, (WL)w);
4641 ev_stop (EV_A_ (W)w);
4642
4643 if (!signals [w->signum - 1].head)
4644 {
4645#if EV_MULTIPLICITY
4646 signals [w->signum - 1].loop = 0; /* unattach from signal */
4647#endif
4648#if EV_USE_SIGNALFD
4649 if (sigfd >= 0)
4650 {
4651 sigset_t ss;
4652
4653 sigemptyset (&ss);
4654 sigaddset (&ss, w->signum);
4655 sigdelset (&sigfd_set, w->signum);
4656
4657 signalfd (sigfd, &sigfd_set, 0);
4658 sigprocmask (SIG_UNBLOCK, &ss, 0);
4659 }
4660 else
4661#endif
4662 signal (w->signum, SIG_DFL);
4663 }
4664
4665 EV_FREQUENT_CHECK;
4666}
4667
4668#endif
4669
4670#if EV_CHILD_ENABLE
4671
4672void
4673ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4674{
4675#if EV_MULTIPLICITY
4676 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
4677#endif
4678 if (ecb_expect_false (ev_is_active (w)))
4679 return;
4680
4681 EV_FREQUENT_CHECK;
1603 4682
1604 ev_start (EV_A_ (W)w, 1); 4683 ev_start (EV_A_ (W)w, 1);
1605 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 4684 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1606 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1607 4685
1608 if (!((WL)w)->next) 4686 EV_FREQUENT_CHECK;
1609 {
1610#if _WIN32
1611 signal (w->signum, sighandler);
1612#else
1613 struct sigaction sa;
1614 sa.sa_handler = sighandler;
1615 sigfillset (&sa.sa_mask);
1616 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1617 sigaction (w->signum, &sa, 0);
1618#endif
1619 }
1620} 4687}
1621 4688
1622void 4689void
1623ev_signal_stop (EV_P_ ev_signal *w) 4690ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
1624{ 4691{
1625 ev_clear_pending (EV_A_ (W)w); 4692 clear_pending (EV_A_ (W)w);
1626 if (expect_false (!ev_is_active (w))) 4693 if (ecb_expect_false (!ev_is_active (w)))
1627 return; 4694 return;
1628 4695
1629 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 4696 EV_FREQUENT_CHECK;
4697
4698 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1630 ev_stop (EV_A_ (W)w); 4699 ev_stop (EV_A_ (W)w);
1631 4700
1632 if (!signals [w->signum - 1].head) 4701 EV_FREQUENT_CHECK;
1633 signal (w->signum, SIG_DFL);
1634} 4702}
1635 4703
1636void
1637ev_child_start (EV_P_ ev_child *w)
1638{
1639#if EV_MULTIPLICITY
1640 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1641#endif 4704#endif
1642 if (expect_false (ev_is_active (w)))
1643 return;
1644
1645 ev_start (EV_A_ (W)w, 1);
1646 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1647}
1648
1649void
1650ev_child_stop (EV_P_ ev_child *w)
1651{
1652 ev_clear_pending (EV_A_ (W)w);
1653 if (expect_false (!ev_is_active (w)))
1654 return;
1655
1656 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1657 ev_stop (EV_A_ (W)w);
1658}
1659 4705
1660#if EV_STAT_ENABLE 4706#if EV_STAT_ENABLE
1661 4707
1662# ifdef _WIN32 4708# ifdef _WIN32
1663# undef lstat 4709# undef lstat
1664# define lstat(a,b) _stati64 (a,b) 4710# define lstat(a,b) _stati64 (a,b)
1665# endif 4711# endif
1666 4712
1667#define DEF_STAT_INTERVAL 5.0074891 4713#define DEF_STAT_INTERVAL 5.0074891
4714#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1668#define MIN_STAT_INTERVAL 0.1074891 4715#define MIN_STAT_INTERVAL 0.1074891
1669 4716
4717ecb_noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4718
4719#if EV_USE_INOTIFY
4720
4721/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4722# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4723
4724ecb_noinline
4725static void
4726infy_add (EV_P_ ev_stat *w)
4727{
4728 w->wd = inotify_add_watch (fs_fd, w->path,
4729 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4730 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4731 | IN_DONT_FOLLOW | IN_MASK_ADD);
4732
4733 if (w->wd >= 0)
4734 {
4735 struct statfs sfs;
4736
4737 /* now local changes will be tracked by inotify, but remote changes won't */
4738 /* unless the filesystem is known to be local, we therefore still poll */
4739 /* also do poll on <2.6.25, but with normal frequency */
4740
4741 if (!fs_2625)
4742 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4743 else if (!statfs (w->path, &sfs)
4744 && (sfs.f_type == 0x1373 /* devfs */
4745 || sfs.f_type == 0x4006 /* fat */
4746 || sfs.f_type == 0x4d44 /* msdos */
4747 || sfs.f_type == 0xEF53 /* ext2/3 */
4748 || sfs.f_type == 0x72b6 /* jffs2 */
4749 || sfs.f_type == 0x858458f6 /* ramfs */
4750 || sfs.f_type == 0x5346544e /* ntfs */
4751 || sfs.f_type == 0x3153464a /* jfs */
4752 || sfs.f_type == 0x9123683e /* btrfs */
4753 || sfs.f_type == 0x52654973 /* reiser3 */
4754 || sfs.f_type == 0x01021994 /* tmpfs */
4755 || sfs.f_type == 0x58465342 /* xfs */))
4756 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4757 else
4758 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
4759 }
4760 else
4761 {
4762 /* can't use inotify, continue to stat */
4763 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4764
4765 /* if path is not there, monitor some parent directory for speedup hints */
4766 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4767 /* but an efficiency issue only */
4768 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4769 {
4770 char path [4096];
4771 strcpy (path, w->path);
4772
4773 do
4774 {
4775 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4776 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4777
4778 char *pend = strrchr (path, '/');
4779
4780 if (!pend || pend == path)
4781 break;
4782
4783 *pend = 0;
4784 w->wd = inotify_add_watch (fs_fd, path, mask);
4785 }
4786 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4787 }
4788 }
4789
4790 if (w->wd >= 0)
4791 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4792
4793 /* now re-arm timer, if required */
4794 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4795 ev_timer_again (EV_A_ &w->timer);
4796 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4797}
4798
4799ecb_noinline
4800static void
4801infy_del (EV_P_ ev_stat *w)
4802{
4803 int slot;
4804 int wd = w->wd;
4805
4806 if (wd < 0)
4807 return;
4808
4809 w->wd = -2;
4810 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4811 wlist_del (&fs_hash [slot].head, (WL)w);
4812
4813 /* remove this watcher, if others are watching it, they will rearm */
4814 inotify_rm_watch (fs_fd, wd);
4815}
4816
4817ecb_noinline
4818static void
4819infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4820{
4821 if (slot < 0)
4822 /* overflow, need to check for all hash slots */
4823 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4824 infy_wd (EV_A_ slot, wd, ev);
4825 else
4826 {
4827 WL w_;
4828
4829 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4830 {
4831 ev_stat *w = (ev_stat *)w_;
4832 w_ = w_->next; /* lets us remove this watcher and all before it */
4833
4834 if (w->wd == wd || wd == -1)
4835 {
4836 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4837 {
4838 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4839 w->wd = -1;
4840 infy_add (EV_A_ w); /* re-add, no matter what */
4841 }
4842
4843 stat_timer_cb (EV_A_ &w->timer, 0);
4844 }
4845 }
4846 }
4847}
4848
4849static void
4850infy_cb (EV_P_ ev_io *w, int revents)
4851{
4852 char buf [EV_INOTIFY_BUFSIZE];
4853 int ofs;
4854 int len = read (fs_fd, buf, sizeof (buf));
4855
4856 for (ofs = 0; ofs < len; )
4857 {
4858 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4859 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4860 ofs += sizeof (struct inotify_event) + ev->len;
4861 }
4862}
4863
4864inline_size ecb_cold
1670void 4865void
4866ev_check_2625 (EV_P)
4867{
4868 /* kernels < 2.6.25 are borked
4869 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4870 */
4871 if (ev_linux_version () < 0x020619)
4872 return;
4873
4874 fs_2625 = 1;
4875}
4876
4877inline_size int
4878infy_newfd (void)
4879{
4880#if defined IN_CLOEXEC && defined IN_NONBLOCK
4881 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4882 if (fd >= 0)
4883 return fd;
4884#endif
4885 return inotify_init ();
4886}
4887
4888inline_size void
4889infy_init (EV_P)
4890{
4891 if (fs_fd != -2)
4892 return;
4893
4894 fs_fd = -1;
4895
4896 ev_check_2625 (EV_A);
4897
4898 fs_fd = infy_newfd ();
4899
4900 if (fs_fd >= 0)
4901 {
4902 fd_intern (fs_fd);
4903 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4904 ev_set_priority (&fs_w, EV_MAXPRI);
4905 ev_io_start (EV_A_ &fs_w);
4906 ev_unref (EV_A);
4907 }
4908}
4909
4910inline_size void
4911infy_fork (EV_P)
4912{
4913 int slot;
4914
4915 if (fs_fd < 0)
4916 return;
4917
4918 ev_ref (EV_A);
4919 ev_io_stop (EV_A_ &fs_w);
4920 close (fs_fd);
4921 fs_fd = infy_newfd ();
4922
4923 if (fs_fd >= 0)
4924 {
4925 fd_intern (fs_fd);
4926 ev_io_set (&fs_w, fs_fd, EV_READ);
4927 ev_io_start (EV_A_ &fs_w);
4928 ev_unref (EV_A);
4929 }
4930
4931 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4932 {
4933 WL w_ = fs_hash [slot].head;
4934 fs_hash [slot].head = 0;
4935
4936 while (w_)
4937 {
4938 ev_stat *w = (ev_stat *)w_;
4939 w_ = w_->next; /* lets us add this watcher */
4940
4941 w->wd = -1;
4942
4943 if (fs_fd >= 0)
4944 infy_add (EV_A_ w); /* re-add, no matter what */
4945 else
4946 {
4947 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4948 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4949 ev_timer_again (EV_A_ &w->timer);
4950 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4951 }
4952 }
4953 }
4954}
4955
4956#endif
4957
4958#ifdef _WIN32
4959# define EV_LSTAT(p,b) _stati64 (p, b)
4960#else
4961# define EV_LSTAT(p,b) lstat (p, b)
4962#endif
4963
4964void
1671ev_stat_stat (EV_P_ ev_stat *w) 4965ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
1672{ 4966{
1673 if (lstat (w->path, &w->attr) < 0) 4967 if (lstat (w->path, &w->attr) < 0)
1674 w->attr.st_nlink = 0; 4968 w->attr.st_nlink = 0;
1675 else if (!w->attr.st_nlink) 4969 else if (!w->attr.st_nlink)
1676 w->attr.st_nlink = 1; 4970 w->attr.st_nlink = 1;
1677} 4971}
1678 4972
4973ecb_noinline
1679static void 4974static void
1680stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4975stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1681{ 4976{
1682 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4977 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1683 4978
1684 /* we copy this here each the time so that */ 4979 ev_statdata prev = w->attr;
1685 /* prev has the old value when the callback gets invoked */
1686 w->prev = w->attr;
1687 ev_stat_stat (EV_A_ w); 4980 ev_stat_stat (EV_A_ w);
1688 4981
1689 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata))) 4982 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4983 if (
4984 prev.st_dev != w->attr.st_dev
4985 || prev.st_ino != w->attr.st_ino
4986 || prev.st_mode != w->attr.st_mode
4987 || prev.st_nlink != w->attr.st_nlink
4988 || prev.st_uid != w->attr.st_uid
4989 || prev.st_gid != w->attr.st_gid
4990 || prev.st_rdev != w->attr.st_rdev
4991 || prev.st_size != w->attr.st_size
4992 || prev.st_atime != w->attr.st_atime
4993 || prev.st_mtime != w->attr.st_mtime
4994 || prev.st_ctime != w->attr.st_ctime
4995 ) {
4996 /* we only update w->prev on actual differences */
4997 /* in case we test more often than invoke the callback, */
4998 /* to ensure that prev is always different to attr */
4999 w->prev = prev;
5000
5001 #if EV_USE_INOTIFY
5002 if (fs_fd >= 0)
5003 {
5004 infy_del (EV_A_ w);
5005 infy_add (EV_A_ w);
5006 ev_stat_stat (EV_A_ w); /* avoid race... */
5007 }
5008 #endif
5009
1690 ev_feed_event (EV_A_ w, EV_STAT); 5010 ev_feed_event (EV_A_ w, EV_STAT);
5011 }
1691} 5012}
1692 5013
1693void 5014void
1694ev_stat_start (EV_P_ ev_stat *w) 5015ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
1695{ 5016{
1696 if (expect_false (ev_is_active (w))) 5017 if (ecb_expect_false (ev_is_active (w)))
1697 return; 5018 return;
1698 5019
1699 /* since we use memcmp, we need to clear any padding data etc. */
1700 memset (&w->prev, 0, sizeof (ev_statdata));
1701 memset (&w->attr, 0, sizeof (ev_statdata));
1702
1703 ev_stat_stat (EV_A_ w); 5020 ev_stat_stat (EV_A_ w);
1704 5021
5022 if (w->interval < MIN_STAT_INTERVAL && w->interval)
1705 if (w->interval < MIN_STAT_INTERVAL) 5023 w->interval = MIN_STAT_INTERVAL;
1706 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1707 5024
1708 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 5025 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
1709 ev_set_priority (&w->timer, ev_priority (w)); 5026 ev_set_priority (&w->timer, ev_priority (w));
5027
5028#if EV_USE_INOTIFY
5029 infy_init (EV_A);
5030
5031 if (fs_fd >= 0)
5032 infy_add (EV_A_ w);
5033 else
5034#endif
5035 {
1710 ev_timer_start (EV_A_ &w->timer); 5036 ev_timer_again (EV_A_ &w->timer);
5037 ev_unref (EV_A);
5038 }
1711 5039
1712 ev_start (EV_A_ (W)w, 1); 5040 ev_start (EV_A_ (W)w, 1);
5041
5042 EV_FREQUENT_CHECK;
1713} 5043}
1714 5044
1715void 5045void
1716ev_stat_stop (EV_P_ ev_stat *w) 5046ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
1717{ 5047{
1718 ev_clear_pending (EV_A_ (W)w); 5048 clear_pending (EV_A_ (W)w);
1719 if (expect_false (!ev_is_active (w))) 5049 if (ecb_expect_false (!ev_is_active (w)))
1720 return; 5050 return;
1721 5051
5052 EV_FREQUENT_CHECK;
5053
5054#if EV_USE_INOTIFY
5055 infy_del (EV_A_ w);
5056#endif
5057
5058 if (ev_is_active (&w->timer))
5059 {
5060 ev_ref (EV_A);
1722 ev_timer_stop (EV_A_ &w->timer); 5061 ev_timer_stop (EV_A_ &w->timer);
5062 }
1723 5063
1724 ev_stop (EV_A_ (W)w); 5064 ev_stop (EV_A_ (W)w);
1725}
1726#endif
1727 5065
5066 EV_FREQUENT_CHECK;
5067}
5068#endif
5069
5070#if EV_IDLE_ENABLE
1728void 5071void
1729ev_idle_start (EV_P_ ev_idle *w) 5072ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
1730{ 5073{
1731 if (expect_false (ev_is_active (w))) 5074 if (ecb_expect_false (ev_is_active (w)))
1732 return; 5075 return;
1733 5076
5077 pri_adjust (EV_A_ (W)w);
5078
5079 EV_FREQUENT_CHECK;
5080
5081 {
5082 int active = ++idlecnt [ABSPRI (w)];
5083
5084 ++idleall;
1734 ev_start (EV_A_ (W)w, ++idlecnt); 5085 ev_start (EV_A_ (W)w, active);
1735 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 5086
1736 idles [idlecnt - 1] = w; 5087 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
5088 idles [ABSPRI (w)][active - 1] = w;
5089 }
5090
5091 EV_FREQUENT_CHECK;
1737} 5092}
1738 5093
1739void 5094void
1740ev_idle_stop (EV_P_ ev_idle *w) 5095ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
1741{ 5096{
1742 ev_clear_pending (EV_A_ (W)w); 5097 clear_pending (EV_A_ (W)w);
1743 if (expect_false (!ev_is_active (w))) 5098 if (ecb_expect_false (!ev_is_active (w)))
1744 return; 5099 return;
1745 5100
5101 EV_FREQUENT_CHECK;
5102
1746 { 5103 {
1747 int active = ((W)w)->active; 5104 int active = ev_active (w);
1748 idles [active - 1] = idles [--idlecnt]; 5105
1749 ((W)idles [active - 1])->active = active; 5106 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
5107 ev_active (idles [ABSPRI (w)][active - 1]) = active;
5108
5109 ev_stop (EV_A_ (W)w);
5110 --idleall;
1750 } 5111 }
1751 5112
5113 EV_FREQUENT_CHECK;
5114}
5115#endif
5116
5117#if EV_PREPARE_ENABLE
5118void
5119ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
5120{
5121 if (ecb_expect_false (ev_is_active (w)))
5122 return;
5123
5124 EV_FREQUENT_CHECK;
5125
5126 ev_start (EV_A_ (W)w, ++preparecnt);
5127 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
5128 prepares [preparecnt - 1] = w;
5129
5130 EV_FREQUENT_CHECK;
5131}
5132
5133void
5134ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
5135{
5136 clear_pending (EV_A_ (W)w);
5137 if (ecb_expect_false (!ev_is_active (w)))
5138 return;
5139
5140 EV_FREQUENT_CHECK;
5141
5142 {
5143 int active = ev_active (w);
5144
5145 prepares [active - 1] = prepares [--preparecnt];
5146 ev_active (prepares [active - 1]) = active;
5147 }
5148
1752 ev_stop (EV_A_ (W)w); 5149 ev_stop (EV_A_ (W)w);
1753}
1754 5150
5151 EV_FREQUENT_CHECK;
5152}
5153#endif
5154
5155#if EV_CHECK_ENABLE
1755void 5156void
1756ev_prepare_start (EV_P_ ev_prepare *w) 5157ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
1757{ 5158{
1758 if (expect_false (ev_is_active (w))) 5159 if (ecb_expect_false (ev_is_active (w)))
1759 return; 5160 return;
1760 5161
5162 EV_FREQUENT_CHECK;
5163
1761 ev_start (EV_A_ (W)w, ++preparecnt); 5164 ev_start (EV_A_ (W)w, ++checkcnt);
1762 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 5165 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
1763 prepares [preparecnt - 1] = w; 5166 checks [checkcnt - 1] = w;
5167
5168 EV_FREQUENT_CHECK;
1764} 5169}
1765 5170
1766void 5171void
1767ev_prepare_stop (EV_P_ ev_prepare *w) 5172ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
1768{ 5173{
1769 ev_clear_pending (EV_A_ (W)w); 5174 clear_pending (EV_A_ (W)w);
1770 if (expect_false (!ev_is_active (w))) 5175 if (ecb_expect_false (!ev_is_active (w)))
1771 return; 5176 return;
1772 5177
5178 EV_FREQUENT_CHECK;
5179
1773 { 5180 {
1774 int active = ((W)w)->active; 5181 int active = ev_active (w);
1775 prepares [active - 1] = prepares [--preparecnt]; 5182
1776 ((W)prepares [active - 1])->active = active; 5183 checks [active - 1] = checks [--checkcnt];
5184 ev_active (checks [active - 1]) = active;
1777 } 5185 }
1778 5186
1779 ev_stop (EV_A_ (W)w); 5187 ev_stop (EV_A_ (W)w);
1780}
1781 5188
5189 EV_FREQUENT_CHECK;
5190}
5191#endif
5192
5193#if EV_EMBED_ENABLE
5194ecb_noinline
1782void 5195void
1783ev_check_start (EV_P_ ev_check *w)
1784{
1785 if (expect_false (ev_is_active (w)))
1786 return;
1787
1788 ev_start (EV_A_ (W)w, ++checkcnt);
1789 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1790 checks [checkcnt - 1] = w;
1791}
1792
1793void
1794ev_check_stop (EV_P_ ev_check *w)
1795{
1796 ev_clear_pending (EV_A_ (W)w);
1797 if (expect_false (!ev_is_active (w)))
1798 return;
1799
1800 {
1801 int active = ((W)w)->active;
1802 checks [active - 1] = checks [--checkcnt];
1803 ((W)checks [active - 1])->active = active;
1804 }
1805
1806 ev_stop (EV_A_ (W)w);
1807}
1808
1809#if EV_EMBED_ENABLE
1810void noinline
1811ev_embed_sweep (EV_P_ ev_embed *w) 5196ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
1812{ 5197{
1813 ev_loop (w->loop, EVLOOP_NONBLOCK); 5198 ev_run (w->other, EVRUN_NOWAIT);
1814} 5199}
1815 5200
1816static void 5201static void
1817embed_cb (EV_P_ ev_io *io, int revents) 5202embed_io_cb (EV_P_ ev_io *io, int revents)
1818{ 5203{
1819 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 5204 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
1820 5205
1821 if (ev_cb (w)) 5206 if (ev_cb (w))
1822 ev_feed_event (EV_A_ (W)w, EV_EMBED); 5207 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1823 else 5208 else
1824 ev_embed_sweep (loop, w); 5209 ev_run (w->other, EVRUN_NOWAIT);
1825} 5210}
5211
5212static void
5213embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
5214{
5215 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
5216
5217 {
5218 EV_P = w->other;
5219
5220 while (fdchangecnt)
5221 {
5222 fd_reify (EV_A);
5223 ev_run (EV_A_ EVRUN_NOWAIT);
5224 }
5225 }
5226}
5227
5228#if EV_FORK_ENABLE
5229static void
5230embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
5231{
5232 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
5233
5234 ev_embed_stop (EV_A_ w);
5235
5236 {
5237 EV_P = w->other;
5238
5239 ev_loop_fork (EV_A);
5240 ev_run (EV_A_ EVRUN_NOWAIT);
5241 }
5242
5243 ev_embed_start (EV_A_ w);
5244}
5245#endif
5246
5247#if 0
5248static void
5249embed_idle_cb (EV_P_ ev_idle *idle, int revents)
5250{
5251 ev_idle_stop (EV_A_ idle);
5252}
5253#endif
1826 5254
1827void 5255void
1828ev_embed_start (EV_P_ ev_embed *w) 5256ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
1829{ 5257{
1830 if (expect_false (ev_is_active (w))) 5258 if (ecb_expect_false (ev_is_active (w)))
1831 return; 5259 return;
1832 5260
1833 { 5261 {
1834 struct ev_loop *loop = w->loop; 5262 EV_P = w->other;
1835 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 5263 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1836 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 5264 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
1837 } 5265 }
5266
5267 EV_FREQUENT_CHECK;
1838 5268
1839 ev_set_priority (&w->io, ev_priority (w)); 5269 ev_set_priority (&w->io, ev_priority (w));
1840 ev_io_start (EV_A_ &w->io); 5270 ev_io_start (EV_A_ &w->io);
1841 5271
5272 ev_prepare_init (&w->prepare, embed_prepare_cb);
5273 ev_set_priority (&w->prepare, EV_MINPRI);
5274 ev_prepare_start (EV_A_ &w->prepare);
5275
5276#if EV_FORK_ENABLE
5277 ev_fork_init (&w->fork, embed_fork_cb);
5278 ev_fork_start (EV_A_ &w->fork);
5279#endif
5280
5281 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
5282
1842 ev_start (EV_A_ (W)w, 1); 5283 ev_start (EV_A_ (W)w, 1);
5284
5285 EV_FREQUENT_CHECK;
1843} 5286}
1844 5287
1845void 5288void
1846ev_embed_stop (EV_P_ ev_embed *w) 5289ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
1847{ 5290{
1848 ev_clear_pending (EV_A_ (W)w); 5291 clear_pending (EV_A_ (W)w);
1849 if (expect_false (!ev_is_active (w))) 5292 if (ecb_expect_false (!ev_is_active (w)))
1850 return; 5293 return;
1851 5294
5295 EV_FREQUENT_CHECK;
5296
1852 ev_io_stop (EV_A_ &w->io); 5297 ev_io_stop (EV_A_ &w->io);
5298 ev_prepare_stop (EV_A_ &w->prepare);
5299#if EV_FORK_ENABLE
5300 ev_fork_stop (EV_A_ &w->fork);
5301#endif
1853 5302
1854 ev_stop (EV_A_ (W)w); 5303 ev_stop (EV_A_ (W)w);
5304
5305 EV_FREQUENT_CHECK;
1855} 5306}
1856#endif 5307#endif
1857 5308
1858#if EV_FORK_ENABLE 5309#if EV_FORK_ENABLE
1859void 5310void
1860ev_fork_start (EV_P_ ev_fork *w) 5311ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
1861{ 5312{
1862 if (expect_false (ev_is_active (w))) 5313 if (ecb_expect_false (ev_is_active (w)))
1863 return; 5314 return;
1864 5315
5316 EV_FREQUENT_CHECK;
5317
1865 ev_start (EV_A_ (W)w, ++forkcnt); 5318 ev_start (EV_A_ (W)w, ++forkcnt);
1866 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 5319 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
1867 forks [forkcnt - 1] = w; 5320 forks [forkcnt - 1] = w;
5321
5322 EV_FREQUENT_CHECK;
1868} 5323}
1869 5324
1870void 5325void
1871ev_fork_stop (EV_P_ ev_fork *w) 5326ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
1872{ 5327{
1873 ev_clear_pending (EV_A_ (W)w); 5328 clear_pending (EV_A_ (W)w);
1874 if (expect_false (!ev_is_active (w))) 5329 if (ecb_expect_false (!ev_is_active (w)))
1875 return; 5330 return;
1876 5331
5332 EV_FREQUENT_CHECK;
5333
1877 { 5334 {
1878 int active = ((W)w)->active; 5335 int active = ev_active (w);
5336
1879 forks [active - 1] = forks [--forkcnt]; 5337 forks [active - 1] = forks [--forkcnt];
1880 ((W)forks [active - 1])->active = active; 5338 ev_active (forks [active - 1]) = active;
1881 } 5339 }
1882 5340
1883 ev_stop (EV_A_ (W)w); 5341 ev_stop (EV_A_ (W)w);
5342
5343 EV_FREQUENT_CHECK;
5344}
5345#endif
5346
5347#if EV_CLEANUP_ENABLE
5348void
5349ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5350{
5351 if (ecb_expect_false (ev_is_active (w)))
5352 return;
5353
5354 EV_FREQUENT_CHECK;
5355
5356 ev_start (EV_A_ (W)w, ++cleanupcnt);
5357 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
5358 cleanups [cleanupcnt - 1] = w;
5359
5360 /* cleanup watchers should never keep a refcount on the loop */
5361 ev_unref (EV_A);
5362 EV_FREQUENT_CHECK;
5363}
5364
5365void
5366ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5367{
5368 clear_pending (EV_A_ (W)w);
5369 if (ecb_expect_false (!ev_is_active (w)))
5370 return;
5371
5372 EV_FREQUENT_CHECK;
5373 ev_ref (EV_A);
5374
5375 {
5376 int active = ev_active (w);
5377
5378 cleanups [active - 1] = cleanups [--cleanupcnt];
5379 ev_active (cleanups [active - 1]) = active;
5380 }
5381
5382 ev_stop (EV_A_ (W)w);
5383
5384 EV_FREQUENT_CHECK;
5385}
5386#endif
5387
5388#if EV_ASYNC_ENABLE
5389void
5390ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
5391{
5392 if (ecb_expect_false (ev_is_active (w)))
5393 return;
5394
5395 w->sent = 0;
5396
5397 evpipe_init (EV_A);
5398
5399 EV_FREQUENT_CHECK;
5400
5401 ev_start (EV_A_ (W)w, ++asynccnt);
5402 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
5403 asyncs [asynccnt - 1] = w;
5404
5405 EV_FREQUENT_CHECK;
5406}
5407
5408void
5409ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
5410{
5411 clear_pending (EV_A_ (W)w);
5412 if (ecb_expect_false (!ev_is_active (w)))
5413 return;
5414
5415 EV_FREQUENT_CHECK;
5416
5417 {
5418 int active = ev_active (w);
5419
5420 asyncs [active - 1] = asyncs [--asynccnt];
5421 ev_active (asyncs [active - 1]) = active;
5422 }
5423
5424 ev_stop (EV_A_ (W)w);
5425
5426 EV_FREQUENT_CHECK;
5427}
5428
5429void
5430ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
5431{
5432 w->sent = 1;
5433 evpipe_write (EV_A_ &async_pending);
1884} 5434}
1885#endif 5435#endif
1886 5436
1887/*****************************************************************************/ 5437/*****************************************************************************/
1888 5438
1898once_cb (EV_P_ struct ev_once *once, int revents) 5448once_cb (EV_P_ struct ev_once *once, int revents)
1899{ 5449{
1900 void (*cb)(int revents, void *arg) = once->cb; 5450 void (*cb)(int revents, void *arg) = once->cb;
1901 void *arg = once->arg; 5451 void *arg = once->arg;
1902 5452
1903 ev_io_stop (EV_A_ &once->io); 5453 ev_io_stop (EV_A_ &once->io);
1904 ev_timer_stop (EV_A_ &once->to); 5454 ev_timer_stop (EV_A_ &once->to);
1905 ev_free (once); 5455 ev_free (once);
1906 5456
1907 cb (revents, arg); 5457 cb (revents, arg);
1908} 5458}
1909 5459
1910static void 5460static void
1911once_cb_io (EV_P_ ev_io *w, int revents) 5461once_cb_io (EV_P_ ev_io *w, int revents)
1912{ 5462{
1913 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 5463 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
5464
5465 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1914} 5466}
1915 5467
1916static void 5468static void
1917once_cb_to (EV_P_ ev_timer *w, int revents) 5469once_cb_to (EV_P_ ev_timer *w, int revents)
1918{ 5470{
1919 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 5471 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
5472
5473 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1920} 5474}
1921 5475
1922void 5476void
1923ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 5477ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
1924{ 5478{
1925 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 5479 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1926
1927 if (expect_false (!once))
1928 {
1929 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1930 return;
1931 }
1932 5480
1933 once->cb = cb; 5481 once->cb = cb;
1934 once->arg = arg; 5482 once->arg = arg;
1935 5483
1936 ev_init (&once->io, once_cb_io); 5484 ev_init (&once->io, once_cb_io);
1946 ev_timer_set (&once->to, timeout, 0.); 5494 ev_timer_set (&once->to, timeout, 0.);
1947 ev_timer_start (EV_A_ &once->to); 5495 ev_timer_start (EV_A_ &once->to);
1948 } 5496 }
1949} 5497}
1950 5498
1951#ifdef __cplusplus 5499/*****************************************************************************/
1952} 5500
5501#if EV_WALK_ENABLE
5502ecb_cold
5503void
5504ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5505{
5506 int i, j;
5507 ev_watcher_list *wl, *wn;
5508
5509 if (types & (EV_IO | EV_EMBED))
5510 for (i = 0; i < anfdmax; ++i)
5511 for (wl = anfds [i].head; wl; )
5512 {
5513 wn = wl->next;
5514
5515#if EV_EMBED_ENABLE
5516 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5517 {
5518 if (types & EV_EMBED)
5519 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5520 }
5521 else
5522#endif
5523#if EV_USE_INOTIFY
5524 if (ev_cb ((ev_io *)wl) == infy_cb)
5525 ;
5526 else
5527#endif
5528 if ((ev_io *)wl != &pipe_w)
5529 if (types & EV_IO)
5530 cb (EV_A_ EV_IO, wl);
5531
5532 wl = wn;
5533 }
5534
5535 if (types & (EV_TIMER | EV_STAT))
5536 for (i = timercnt + HEAP0; i-- > HEAP0; )
5537#if EV_STAT_ENABLE
5538 /*TODO: timer is not always active*/
5539 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5540 {
5541 if (types & EV_STAT)
5542 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5543 }
5544 else
5545#endif
5546 if (types & EV_TIMER)
5547 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5548
5549#if EV_PERIODIC_ENABLE
5550 if (types & EV_PERIODIC)
5551 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5552 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5553#endif
5554
5555#if EV_IDLE_ENABLE
5556 if (types & EV_IDLE)
5557 for (j = NUMPRI; j--; )
5558 for (i = idlecnt [j]; i--; )
5559 cb (EV_A_ EV_IDLE, idles [j][i]);
5560#endif
5561
5562#if EV_FORK_ENABLE
5563 if (types & EV_FORK)
5564 for (i = forkcnt; i--; )
5565 if (ev_cb (forks [i]) != embed_fork_cb)
5566 cb (EV_A_ EV_FORK, forks [i]);
5567#endif
5568
5569#if EV_ASYNC_ENABLE
5570 if (types & EV_ASYNC)
5571 for (i = asynccnt; i--; )
5572 cb (EV_A_ EV_ASYNC, asyncs [i]);
5573#endif
5574
5575#if EV_PREPARE_ENABLE
5576 if (types & EV_PREPARE)
5577 for (i = preparecnt; i--; )
5578# if EV_EMBED_ENABLE
5579 if (ev_cb (prepares [i]) != embed_prepare_cb)
1953#endif 5580# endif
5581 cb (EV_A_ EV_PREPARE, prepares [i]);
5582#endif
1954 5583
5584#if EV_CHECK_ENABLE
5585 if (types & EV_CHECK)
5586 for (i = checkcnt; i--; )
5587 cb (EV_A_ EV_CHECK, checks [i]);
5588#endif
5589
5590#if EV_SIGNAL_ENABLE
5591 if (types & EV_SIGNAL)
5592 for (i = 0; i < EV_NSIG - 1; ++i)
5593 for (wl = signals [i].head; wl; )
5594 {
5595 wn = wl->next;
5596 cb (EV_A_ EV_SIGNAL, wl);
5597 wl = wn;
5598 }
5599#endif
5600
5601#if EV_CHILD_ENABLE
5602 if (types & EV_CHILD)
5603 for (i = (EV_PID_HASHSIZE); i--; )
5604 for (wl = childs [i]; wl; )
5605 {
5606 wn = wl->next;
5607 cb (EV_A_ EV_CHILD, wl);
5608 wl = wn;
5609 }
5610#endif
5611/* EV_STAT 0x00001000 /* stat data changed */
5612/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5613}
5614#endif
5615
5616#if EV_MULTIPLICITY
5617 #include "ev_wrap.h"
5618#endif
5619

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines