ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.245 by root, Wed May 21 00:26:01 2008 UTC vs.
Revision 1.524 by root, Wed Jan 22 02:20:47 2020 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
100# ifndef EV_USE_KQUEUE 120# if HAVE_LINUX_AIO_ABI_H
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 121# ifndef EV_USE_LINUXAIO
102# define EV_USE_KQUEUE 1 122# define EV_USE_LINUXAIO 0 /* was: EV_FEATURE_BACKENDS, always off by default */
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_LINUXAIO
126# define EV_USE_LINUXAIO 0
106# endif 127# endif
107 128
129# if HAVE_LINUX_FS_H && HAVE_SYS_TIMERFD_H && HAVE_KERNEL_RWF_T
108# ifndef EV_USE_PORT 130# ifndef EV_USE_IOURING
109# if HAVE_PORT_H && HAVE_PORT_CREATE 131# define EV_USE_IOURING EV_FEATURE_BACKENDS
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_IOURING
135# define EV_USE_IOURING 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY 138# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 139# ifndef EV_USE_KQUEUE
118# define EV_USE_INOTIFY 1 140# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
119# else
120# define EV_USE_INOTIFY 0
121# endif 141# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else 142# else
143# undef EV_USE_KQUEUE
128# define EV_USE_EVENTFD 0 144# define EV_USE_KQUEUE 0
129# endif
130# endif 145# endif
131 146
147# if HAVE_PORT_H && HAVE_PORT_CREATE
148# ifndef EV_USE_PORT
149# define EV_USE_PORT EV_FEATURE_BACKENDS
150# endif
151# else
152# undef EV_USE_PORT
153# define EV_USE_PORT 0
132#endif 154# endif
133 155
134#include <math.h> 156# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
157# ifndef EV_USE_INOTIFY
158# define EV_USE_INOTIFY EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_INOTIFY
162# define EV_USE_INOTIFY 0
163# endif
164
165# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
166# ifndef EV_USE_SIGNALFD
167# define EV_USE_SIGNALFD EV_FEATURE_OS
168# endif
169# else
170# undef EV_USE_SIGNALFD
171# define EV_USE_SIGNALFD 0
172# endif
173
174# if HAVE_EVENTFD
175# ifndef EV_USE_EVENTFD
176# define EV_USE_EVENTFD EV_FEATURE_OS
177# endif
178# else
179# undef EV_USE_EVENTFD
180# define EV_USE_EVENTFD 0
181# endif
182
183# if HAVE_SYS_TIMERFD_H
184# ifndef EV_USE_TIMERFD
185# define EV_USE_TIMERFD EV_FEATURE_OS
186# endif
187# else
188# undef EV_USE_TIMERFD
189# define EV_USE_TIMERFD 0
190# endif
191
192#endif
193
194/* OS X, in its infinite idiocy, actually HARDCODES
195 * a limit of 1024 into their select. Where people have brains,
196 * OS X engineers apparently have a vacuum. Or maybe they were
197 * ordered to have a vacuum, or they do anything for money.
198 * This might help. Or not.
199 * Note that this must be defined early, as other include files
200 * will rely on this define as well.
201 */
202#define _DARWIN_UNLIMITED_SELECT 1
203
135#include <stdlib.h> 204#include <stdlib.h>
205#include <string.h>
136#include <fcntl.h> 206#include <fcntl.h>
137#include <stddef.h> 207#include <stddef.h>
138 208
139#include <stdio.h> 209#include <stdio.h>
140 210
141#include <assert.h> 211#include <assert.h>
142#include <errno.h> 212#include <errno.h>
143#include <sys/types.h> 213#include <sys/types.h>
144#include <time.h> 214#include <time.h>
215#include <limits.h>
145 216
146#include <signal.h> 217#include <signal.h>
147 218
148#ifdef EV_H 219#ifdef EV_H
149# include EV_H 220# include EV_H
150#else 221#else
151# include "ev.h" 222# include "ev.h"
223#endif
224
225#if EV_NO_THREADS
226# undef EV_NO_SMP
227# define EV_NO_SMP 1
228# undef ECB_NO_THREADS
229# define ECB_NO_THREADS 1
230#endif
231#if EV_NO_SMP
232# undef EV_NO_SMP
233# define ECB_NO_SMP 1
152#endif 234#endif
153 235
154#ifndef _WIN32 236#ifndef _WIN32
155# include <sys/time.h> 237# include <sys/time.h>
156# include <sys/wait.h> 238# include <sys/wait.h>
157# include <unistd.h> 239# include <unistd.h>
158#else 240#else
241# include <io.h>
159# define WIN32_LEAN_AND_MEAN 242# define WIN32_LEAN_AND_MEAN
243# include <winsock2.h>
160# include <windows.h> 244# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 245# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 246# define EV_SELECT_IS_WINSOCKET 1
163# endif 247# endif
248# undef EV_AVOID_STDIO
164#endif 249#endif
165 250
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 251/* this block tries to deduce configuration from header-defined symbols and defaults */
167 252
253/* try to deduce the maximum number of signals on this platform */
254#if defined EV_NSIG
255/* use what's provided */
256#elif defined NSIG
257# define EV_NSIG (NSIG)
258#elif defined _NSIG
259# define EV_NSIG (_NSIG)
260#elif defined SIGMAX
261# define EV_NSIG (SIGMAX+1)
262#elif defined SIG_MAX
263# define EV_NSIG (SIG_MAX+1)
264#elif defined _SIG_MAX
265# define EV_NSIG (_SIG_MAX+1)
266#elif defined MAXSIG
267# define EV_NSIG (MAXSIG+1)
268#elif defined MAX_SIG
269# define EV_NSIG (MAX_SIG+1)
270#elif defined SIGARRAYSIZE
271# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
272#elif defined _sys_nsig
273# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
274#else
275# define EV_NSIG (8 * sizeof (sigset_t) + 1)
276#endif
277
278#ifndef EV_USE_FLOOR
279# define EV_USE_FLOOR 0
280#endif
281
282#ifndef EV_USE_CLOCK_SYSCALL
283# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
284# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
285# else
286# define EV_USE_CLOCK_SYSCALL 0
287# endif
288#endif
289
290#if !(_POSIX_TIMERS > 0)
291# ifndef EV_USE_MONOTONIC
292# define EV_USE_MONOTONIC 0
293# endif
294# ifndef EV_USE_REALTIME
295# define EV_USE_REALTIME 0
296# endif
297#endif
298
168#ifndef EV_USE_MONOTONIC 299#ifndef EV_USE_MONOTONIC
300# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
301# define EV_USE_MONOTONIC EV_FEATURE_OS
302# else
169# define EV_USE_MONOTONIC 0 303# define EV_USE_MONOTONIC 0
304# endif
170#endif 305#endif
171 306
172#ifndef EV_USE_REALTIME 307#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 308# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 309#endif
175 310
176#ifndef EV_USE_NANOSLEEP 311#ifndef EV_USE_NANOSLEEP
312# if _POSIX_C_SOURCE >= 199309L
313# define EV_USE_NANOSLEEP EV_FEATURE_OS
314# else
177# define EV_USE_NANOSLEEP 0 315# define EV_USE_NANOSLEEP 0
316# endif
178#endif 317#endif
179 318
180#ifndef EV_USE_SELECT 319#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 320# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 321#endif
183 322
184#ifndef EV_USE_POLL 323#ifndef EV_USE_POLL
185# ifdef _WIN32 324# ifdef _WIN32
186# define EV_USE_POLL 0 325# define EV_USE_POLL 0
187# else 326# else
188# define EV_USE_POLL 1 327# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 328# endif
190#endif 329#endif
191 330
192#ifndef EV_USE_EPOLL 331#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 332# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 333# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 334# else
196# define EV_USE_EPOLL 0 335# define EV_USE_EPOLL 0
197# endif 336# endif
198#endif 337#endif
199 338
203 342
204#ifndef EV_USE_PORT 343#ifndef EV_USE_PORT
205# define EV_USE_PORT 0 344# define EV_USE_PORT 0
206#endif 345#endif
207 346
347#ifndef EV_USE_LINUXAIO
348# if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
349# define EV_USE_LINUXAIO 0 /* was: 1, always off by default */
350# else
351# define EV_USE_LINUXAIO 0
352# endif
353#endif
354
355#ifndef EV_USE_IOURING
356# if __linux /* later checks might disable again */
357# define EV_USE_IOURING 1
358# else
359# define EV_USE_IOURING 0
360# endif
361#endif
362
208#ifndef EV_USE_INOTIFY 363#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 364# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 365# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 366# else
212# define EV_USE_INOTIFY 0 367# define EV_USE_INOTIFY 0
213# endif 368# endif
214#endif 369#endif
215 370
216#ifndef EV_PID_HASHSIZE 371#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 372# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 373#endif
223 374
224#ifndef EV_INOTIFY_HASHSIZE 375#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 376# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 377#endif
231 378
232#ifndef EV_USE_EVENTFD 379#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 380# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 381# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 382# else
236# define EV_USE_EVENTFD 0 383# define EV_USE_EVENTFD 0
237# endif 384# endif
238#endif 385#endif
239 386
387#ifndef EV_USE_SIGNALFD
388# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
389# define EV_USE_SIGNALFD EV_FEATURE_OS
390# else
391# define EV_USE_SIGNALFD 0
392# endif
393#endif
394
395#ifndef EV_USE_TIMERFD
396# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 8))
397# define EV_USE_TIMERFD EV_FEATURE_OS
398# else
399# define EV_USE_TIMERFD 0
400# endif
401#endif
402
403#if 0 /* debugging */
404# define EV_VERIFY 3
405# define EV_USE_4HEAP 1
406# define EV_HEAP_CACHE_AT 1
407#endif
408
409#ifndef EV_VERIFY
410# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
411#endif
412
240#ifndef EV_USE_4HEAP 413#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL 414# define EV_USE_4HEAP EV_FEATURE_DATA
242#endif 415#endif
243 416
244#ifndef EV_HEAP_CACHE_AT 417#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL 418# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
419#endif
420
421#ifdef __ANDROID__
422/* supposedly, android doesn't typedef fd_mask */
423# undef EV_USE_SELECT
424# define EV_USE_SELECT 0
425/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
426# undef EV_USE_CLOCK_SYSCALL
427# define EV_USE_CLOCK_SYSCALL 0
428#endif
429
430/* aix's poll.h seems to cause lots of trouble */
431#ifdef _AIX
432/* AIX has a completely broken poll.h header */
433# undef EV_USE_POLL
434# define EV_USE_POLL 0
435#endif
436
437/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
438/* which makes programs even slower. might work on other unices, too. */
439#if EV_USE_CLOCK_SYSCALL
440# include <sys/syscall.h>
441# ifdef SYS_clock_gettime
442# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
443# undef EV_USE_MONOTONIC
444# define EV_USE_MONOTONIC 1
445# define EV_NEED_SYSCALL 1
446# else
447# undef EV_USE_CLOCK_SYSCALL
448# define EV_USE_CLOCK_SYSCALL 0
449# endif
246#endif 450#endif
247 451
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 452/* this block fixes any misconfiguration where we know we run into trouble otherwise */
249 453
250#ifndef CLOCK_MONOTONIC 454#ifndef CLOCK_MONOTONIC
260#if !EV_STAT_ENABLE 464#if !EV_STAT_ENABLE
261# undef EV_USE_INOTIFY 465# undef EV_USE_INOTIFY
262# define EV_USE_INOTIFY 0 466# define EV_USE_INOTIFY 0
263#endif 467#endif
264 468
469#if __linux && EV_USE_IOURING
470# include <linux/version.h>
471# if LINUX_VERSION_CODE < KERNEL_VERSION(4,14,0)
472# undef EV_USE_IOURING
473# define EV_USE_IOURING 0
474# endif
475#endif
476
265#if !EV_USE_NANOSLEEP 477#if !EV_USE_NANOSLEEP
266# ifndef _WIN32 478/* hp-ux has it in sys/time.h, which we unconditionally include above */
479# if !defined _WIN32 && !defined __hpux
267# include <sys/select.h> 480# include <sys/select.h>
268# endif 481# endif
269#endif 482#endif
270 483
484#if EV_USE_LINUXAIO
485# include <sys/syscall.h>
486# if SYS_io_getevents && EV_USE_EPOLL /* linuxaio backend requires epoll backend */
487# define EV_NEED_SYSCALL 1
488# else
489# undef EV_USE_LINUXAIO
490# define EV_USE_LINUXAIO 0
491# endif
492#endif
493
494#if EV_USE_IOURING
495# include <sys/syscall.h>
496# if !SYS_io_uring_setup && __linux && !__alpha
497# define SYS_io_uring_setup 425
498# define SYS_io_uring_enter 426
499# define SYS_io_uring_wregister 427
500# endif
501# if SYS_io_uring_setup && EV_USE_EPOLL /* iouring backend requires epoll backend */
502# define EV_NEED_SYSCALL 1
503# else
504# undef EV_USE_IOURING
505# define EV_USE_IOURING 0
506# endif
507#endif
508
271#if EV_USE_INOTIFY 509#if EV_USE_INOTIFY
510# include <sys/statfs.h>
272# include <sys/inotify.h> 511# include <sys/inotify.h>
512/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
513# ifndef IN_DONT_FOLLOW
514# undef EV_USE_INOTIFY
515# define EV_USE_INOTIFY 0
273#endif 516# endif
274
275#if EV_SELECT_IS_WINSOCKET
276# include <winsock.h>
277#endif 517#endif
278 518
279#if EV_USE_EVENTFD 519#if EV_USE_EVENTFD
280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 520/* our minimum requirement is glibc 2.7 which has the stub, but not the full header */
281# include <stdint.h> 521# include <stdint.h>
282# ifdef __cplusplus 522# ifndef EFD_NONBLOCK
283extern "C" { 523# define EFD_NONBLOCK O_NONBLOCK
284# endif 524# endif
285int eventfd (unsigned int initval, int flags); 525# ifndef EFD_CLOEXEC
286# ifdef __cplusplus 526# ifdef O_CLOEXEC
287} 527# define EFD_CLOEXEC O_CLOEXEC
528# else
529# define EFD_CLOEXEC 02000000
530# endif
288# endif 531# endif
532EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
533#endif
534
535#if EV_USE_SIGNALFD
536/* our minimum requirement is glibc 2.7 which has the stub, but not the full header */
537# include <stdint.h>
538# ifndef SFD_NONBLOCK
539# define SFD_NONBLOCK O_NONBLOCK
289#endif 540# endif
541# ifndef SFD_CLOEXEC
542# ifdef O_CLOEXEC
543# define SFD_CLOEXEC O_CLOEXEC
544# else
545# define SFD_CLOEXEC 02000000
546# endif
547# endif
548EV_CPP (extern "C") int (signalfd) (int fd, const sigset_t *mask, int flags);
290 549
291/**/ 550struct signalfd_siginfo
551{
552 uint32_t ssi_signo;
553 char pad[128 - sizeof (uint32_t)];
554};
555#endif
556
557/* for timerfd, libev core requires TFD_TIMER_CANCEL_ON_SET &c */
558#if EV_USE_TIMERFD
559# include <sys/timerfd.h>
560/* timerfd is only used for periodics */
561# if !(defined (TFD_TIMER_CANCEL_ON_SET) && defined (TFD_CLOEXEC) && defined (TFD_NONBLOCK)) || !EV_PERIODIC_ENABLE
562# undef EV_USE_TIMERFD
563# define EV_USE_TIMERFD 0
564# endif
565#endif
566
567/*****************************************************************************/
568
569#if EV_VERIFY >= 3
570# define EV_FREQUENT_CHECK ev_verify (EV_A)
571#else
572# define EV_FREQUENT_CHECK do { } while (0)
573#endif
292 574
293/* 575/*
294 * This is used to avoid floating point rounding problems. 576 * This is used to work around floating point rounding problems.
295 * It is added to ev_rt_now when scheduling periodics
296 * to ensure progress, time-wise, even when rounding
297 * errors are against us.
298 * This value is good at least till the year 4000. 577 * This value is good at least till the year 4000.
299 * Better solutions welcome.
300 */ 578 */
301#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 579#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
580/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
302 581
303#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 582#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
304#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 583#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
305/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 584#define MAX_BLOCKTIME2 1500001.07 /* same, but when timerfd is used to detect jumps, also safe delay to not overflow */
306 585
586/* find a portable timestamp that is "always" in the future but fits into time_t.
587 * this is quite hard, and we are mostly guessing - we handle 32 bit signed/unsigned time_t,
588 * and sizes larger than 32 bit, and maybe the unlikely floating point time_t */
589#define EV_TSTAMP_HUGE \
590 (sizeof (time_t) >= 8 ? 10000000000000. \
591 : 0 < (time_t)4294967295 ? 4294967295. \
592 : 2147483647.) \
593
594#ifndef EV_TS_CONST
595# define EV_TS_CONST(nv) nv
596# define EV_TS_TO_MSEC(a) a * 1e3 + 0.9999
597# define EV_TS_FROM_USEC(us) us * 1e-6
598# define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
599# define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
600# define EV_TV_GET(tv) ((tv).tv_sec + (tv).tv_usec * 1e-6)
601# define EV_TS_GET(ts) ((ts).tv_sec + (ts).tv_nsec * 1e-9)
602#endif
603
604/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
605/* ECB.H BEGIN */
606/*
607 * libecb - http://software.schmorp.de/pkg/libecb
608 *
609 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
610 * Copyright (©) 2011 Emanuele Giaquinta
611 * All rights reserved.
612 *
613 * Redistribution and use in source and binary forms, with or without modifica-
614 * tion, are permitted provided that the following conditions are met:
615 *
616 * 1. Redistributions of source code must retain the above copyright notice,
617 * this list of conditions and the following disclaimer.
618 *
619 * 2. Redistributions in binary form must reproduce the above copyright
620 * notice, this list of conditions and the following disclaimer in the
621 * documentation and/or other materials provided with the distribution.
622 *
623 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
624 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
625 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
626 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
627 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
628 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
629 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
630 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
631 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
632 * OF THE POSSIBILITY OF SUCH DAMAGE.
633 *
634 * Alternatively, the contents of this file may be used under the terms of
635 * the GNU General Public License ("GPL") version 2 or any later version,
636 * in which case the provisions of the GPL are applicable instead of
637 * the above. If you wish to allow the use of your version of this file
638 * only under the terms of the GPL and not to allow others to use your
639 * version of this file under the BSD license, indicate your decision
640 * by deleting the provisions above and replace them with the notice
641 * and other provisions required by the GPL. If you do not delete the
642 * provisions above, a recipient may use your version of this file under
643 * either the BSD or the GPL.
644 */
645
646#ifndef ECB_H
647#define ECB_H
648
649/* 16 bits major, 16 bits minor */
650#define ECB_VERSION 0x00010008
651
652#include <string.h> /* for memcpy */
653
654#ifdef _WIN32
655 typedef signed char int8_t;
656 typedef unsigned char uint8_t;
657 typedef signed char int_fast8_t;
658 typedef unsigned char uint_fast8_t;
659 typedef signed short int16_t;
660 typedef unsigned short uint16_t;
661 typedef signed int int_fast16_t;
662 typedef unsigned int uint_fast16_t;
663 typedef signed int int32_t;
664 typedef unsigned int uint32_t;
665 typedef signed int int_fast32_t;
666 typedef unsigned int uint_fast32_t;
307#if __GNUC__ >= 4 667 #if __GNUC__
308# define expect(expr,value) __builtin_expect ((expr),(value)) 668 typedef signed long long int64_t;
309# define noinline __attribute__ ((noinline)) 669 typedef unsigned long long uint64_t;
670 #else /* _MSC_VER || __BORLANDC__ */
671 typedef signed __int64 int64_t;
672 typedef unsigned __int64 uint64_t;
673 #endif
674 typedef int64_t int_fast64_t;
675 typedef uint64_t uint_fast64_t;
676 #ifdef _WIN64
677 #define ECB_PTRSIZE 8
678 typedef uint64_t uintptr_t;
679 typedef int64_t intptr_t;
680 #else
681 #define ECB_PTRSIZE 4
682 typedef uint32_t uintptr_t;
683 typedef int32_t intptr_t;
684 #endif
310#else 685#else
311# define expect(expr,value) (expr) 686 #include <inttypes.h>
312# define noinline 687 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
313# if __STDC_VERSION__ < 199901L && __GNUC__ < 2 688 #define ECB_PTRSIZE 8
314# define inline 689 #else
690 #define ECB_PTRSIZE 4
691 #endif
315# endif 692#endif
693
694#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
695#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
696
697#ifndef ECB_OPTIMIZE_SIZE
698 #if __OPTIMIZE_SIZE__
699 #define ECB_OPTIMIZE_SIZE 1
700 #else
701 #define ECB_OPTIMIZE_SIZE 0
316#endif 702 #endif
703#endif
317 704
318#define expect_false(expr) expect ((expr) != 0, 0) 705/* work around x32 idiocy by defining proper macros */
319#define expect_true(expr) expect ((expr) != 0, 1) 706#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
320#define inline_size static inline 707 #if _ILP32
708 #define ECB_AMD64_X32 1
709 #else
710 #define ECB_AMD64 1
711 #endif
712#endif
321 713
322#if EV_MINIMAL 714/* many compilers define _GNUC_ to some versions but then only implement
323# define inline_speed static noinline 715 * what their idiot authors think are the "more important" extensions,
716 * causing enormous grief in return for some better fake benchmark numbers.
717 * or so.
718 * we try to detect these and simply assume they are not gcc - if they have
719 * an issue with that they should have done it right in the first place.
720 */
721#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
722 #define ECB_GCC_VERSION(major,minor) 0
324#else 723#else
724 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
725#endif
726
727#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
728
729#if __clang__ && defined __has_builtin
730 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
731#else
732 #define ECB_CLANG_BUILTIN(x) 0
733#endif
734
735#if __clang__ && defined __has_extension
736 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
737#else
738 #define ECB_CLANG_EXTENSION(x) 0
739#endif
740
741#define ECB_CPP (__cplusplus+0)
742#define ECB_CPP11 (__cplusplus >= 201103L)
743#define ECB_CPP14 (__cplusplus >= 201402L)
744#define ECB_CPP17 (__cplusplus >= 201703L)
745
746#if ECB_CPP
747 #define ECB_C 0
748 #define ECB_STDC_VERSION 0
749#else
750 #define ECB_C 1
751 #define ECB_STDC_VERSION __STDC_VERSION__
752#endif
753
754#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
755#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
756#define ECB_C17 (ECB_STDC_VERSION >= 201710L)
757
758#if ECB_CPP
759 #define ECB_EXTERN_C extern "C"
760 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
761 #define ECB_EXTERN_C_END }
762#else
763 #define ECB_EXTERN_C extern
764 #define ECB_EXTERN_C_BEG
765 #define ECB_EXTERN_C_END
766#endif
767
768/*****************************************************************************/
769
770/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
771/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
772
773#if ECB_NO_THREADS
774 #define ECB_NO_SMP 1
775#endif
776
777#if ECB_NO_SMP
778 #define ECB_MEMORY_FENCE do { } while (0)
779#endif
780
781/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
782#if __xlC__ && ECB_CPP
783 #include <builtins.h>
784#endif
785
786#if 1400 <= _MSC_VER
787 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
788#endif
789
790#ifndef ECB_MEMORY_FENCE
791 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
792 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
793 #if __i386 || __i386__
794 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
795 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
796 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
797 #elif ECB_GCC_AMD64
798 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
799 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
800 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
801 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
802 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
803 #elif defined __ARM_ARCH_2__ \
804 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
805 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
806 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
807 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
808 || defined __ARM_ARCH_5TEJ__
809 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
810 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
811 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
812 || defined __ARM_ARCH_6T2__
813 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
814 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
815 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
816 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
817 #elif __aarch64__
818 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
819 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
820 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
821 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
822 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
823 #elif defined __s390__ || defined __s390x__
824 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
825 #elif defined __mips__
826 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
827 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
828 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
829 #elif defined __alpha__
830 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
831 #elif defined __hppa__
832 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
833 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
834 #elif defined __ia64__
835 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
836 #elif defined __m68k__
837 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
838 #elif defined __m88k__
839 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
840 #elif defined __sh__
841 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
842 #endif
843 #endif
844#endif
845
846#ifndef ECB_MEMORY_FENCE
847 #if ECB_GCC_VERSION(4,7)
848 /* see comment below (stdatomic.h) about the C11 memory model. */
849 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
850 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
851 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
852 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
853
854 #elif ECB_CLANG_EXTENSION(c_atomic)
855 /* see comment below (stdatomic.h) about the C11 memory model. */
856 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
857 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
858 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
859 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
860
861 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
862 #define ECB_MEMORY_FENCE __sync_synchronize ()
863 #elif _MSC_VER >= 1500 /* VC++ 2008 */
864 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
865 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
866 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
867 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
868 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
869 #elif _MSC_VER >= 1400 /* VC++ 2005 */
870 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
871 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
872 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
873 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
874 #elif defined _WIN32
875 #include <WinNT.h>
876 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
877 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
878 #include <mbarrier.h>
879 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
880 #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
881 #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
882 #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
883 #elif __xlC__
884 #define ECB_MEMORY_FENCE __sync ()
885 #endif
886#endif
887
888#ifndef ECB_MEMORY_FENCE
889 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
890 /* we assume that these memory fences work on all variables/all memory accesses, */
891 /* not just C11 atomics and atomic accesses */
892 #include <stdatomic.h>
893 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
894 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
895 #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
896 #endif
897#endif
898
899#ifndef ECB_MEMORY_FENCE
900 #if !ECB_AVOID_PTHREADS
901 /*
902 * if you get undefined symbol references to pthread_mutex_lock,
903 * or failure to find pthread.h, then you should implement
904 * the ECB_MEMORY_FENCE operations for your cpu/compiler
905 * OR provide pthread.h and link against the posix thread library
906 * of your system.
907 */
908 #include <pthread.h>
909 #define ECB_NEEDS_PTHREADS 1
910 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
911
912 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
913 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
914 #endif
915#endif
916
917#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
918 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
919#endif
920
921#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
922 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
923#endif
924
925#if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
926 #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
927#endif
928
929/*****************************************************************************/
930
931#if ECB_CPP
932 #define ecb_inline static inline
933#elif ECB_GCC_VERSION(2,5)
934 #define ecb_inline static __inline__
935#elif ECB_C99
936 #define ecb_inline static inline
937#else
938 #define ecb_inline static
939#endif
940
941#if ECB_GCC_VERSION(3,3)
942 #define ecb_restrict __restrict__
943#elif ECB_C99
944 #define ecb_restrict restrict
945#else
946 #define ecb_restrict
947#endif
948
949typedef int ecb_bool;
950
951#define ECB_CONCAT_(a, b) a ## b
952#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
953#define ECB_STRINGIFY_(a) # a
954#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
955#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
956
957#define ecb_function_ ecb_inline
958
959#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
960 #define ecb_attribute(attrlist) __attribute__ (attrlist)
961#else
962 #define ecb_attribute(attrlist)
963#endif
964
965#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
966 #define ecb_is_constant(expr) __builtin_constant_p (expr)
967#else
968 /* possible C11 impl for integral types
969 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
970 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
971
972 #define ecb_is_constant(expr) 0
973#endif
974
975#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
976 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
977#else
978 #define ecb_expect(expr,value) (expr)
979#endif
980
981#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
982 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
983#else
984 #define ecb_prefetch(addr,rw,locality)
985#endif
986
987/* no emulation for ecb_decltype */
988#if ECB_CPP11
989 // older implementations might have problems with decltype(x)::type, work around it
990 template<class T> struct ecb_decltype_t { typedef T type; };
991 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
992#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
993 #define ecb_decltype(x) __typeof__ (x)
994#endif
995
996#if _MSC_VER >= 1300
997 #define ecb_deprecated __declspec (deprecated)
998#else
999 #define ecb_deprecated ecb_attribute ((__deprecated__))
1000#endif
1001
1002#if _MSC_VER >= 1500
1003 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
1004#elif ECB_GCC_VERSION(4,5)
1005 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
1006#else
1007 #define ecb_deprecated_message(msg) ecb_deprecated
1008#endif
1009
1010#if _MSC_VER >= 1400
1011 #define ecb_noinline __declspec (noinline)
1012#else
1013 #define ecb_noinline ecb_attribute ((__noinline__))
1014#endif
1015
1016#define ecb_unused ecb_attribute ((__unused__))
1017#define ecb_const ecb_attribute ((__const__))
1018#define ecb_pure ecb_attribute ((__pure__))
1019
1020#if ECB_C11 || __IBMC_NORETURN
1021 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
1022 #define ecb_noreturn _Noreturn
1023#elif ECB_CPP11
1024 #define ecb_noreturn [[noreturn]]
1025#elif _MSC_VER >= 1200
1026 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
1027 #define ecb_noreturn __declspec (noreturn)
1028#else
1029 #define ecb_noreturn ecb_attribute ((__noreturn__))
1030#endif
1031
1032#if ECB_GCC_VERSION(4,3)
1033 #define ecb_artificial ecb_attribute ((__artificial__))
1034 #define ecb_hot ecb_attribute ((__hot__))
1035 #define ecb_cold ecb_attribute ((__cold__))
1036#else
1037 #define ecb_artificial
1038 #define ecb_hot
1039 #define ecb_cold
1040#endif
1041
1042/* put around conditional expressions if you are very sure that the */
1043/* expression is mostly true or mostly false. note that these return */
1044/* booleans, not the expression. */
1045#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
1046#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
1047/* for compatibility to the rest of the world */
1048#define ecb_likely(expr) ecb_expect_true (expr)
1049#define ecb_unlikely(expr) ecb_expect_false (expr)
1050
1051/* count trailing zero bits and count # of one bits */
1052#if ECB_GCC_VERSION(3,4) \
1053 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
1054 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
1055 && ECB_CLANG_BUILTIN(__builtin_popcount))
1056 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
1057 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
1058 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
1059 #define ecb_ctz32(x) __builtin_ctz (x)
1060 #define ecb_ctz64(x) __builtin_ctzll (x)
1061 #define ecb_popcount32(x) __builtin_popcount (x)
1062 /* no popcountll */
1063#else
1064 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
1065 ecb_function_ ecb_const int
1066 ecb_ctz32 (uint32_t x)
1067 {
1068#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1069 unsigned long r;
1070 _BitScanForward (&r, x);
1071 return (int)r;
1072#else
1073 int r = 0;
1074
1075 x &= ~x + 1; /* this isolates the lowest bit */
1076
1077#if ECB_branchless_on_i386
1078 r += !!(x & 0xaaaaaaaa) << 0;
1079 r += !!(x & 0xcccccccc) << 1;
1080 r += !!(x & 0xf0f0f0f0) << 2;
1081 r += !!(x & 0xff00ff00) << 3;
1082 r += !!(x & 0xffff0000) << 4;
1083#else
1084 if (x & 0xaaaaaaaa) r += 1;
1085 if (x & 0xcccccccc) r += 2;
1086 if (x & 0xf0f0f0f0) r += 4;
1087 if (x & 0xff00ff00) r += 8;
1088 if (x & 0xffff0000) r += 16;
1089#endif
1090
1091 return r;
1092#endif
1093 }
1094
1095 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
1096 ecb_function_ ecb_const int
1097 ecb_ctz64 (uint64_t x)
1098 {
1099#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1100 unsigned long r;
1101 _BitScanForward64 (&r, x);
1102 return (int)r;
1103#else
1104 int shift = x & 0xffffffff ? 0 : 32;
1105 return ecb_ctz32 (x >> shift) + shift;
1106#endif
1107 }
1108
1109 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1110 ecb_function_ ecb_const int
1111 ecb_popcount32 (uint32_t x)
1112 {
1113 x -= (x >> 1) & 0x55555555;
1114 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1115 x = ((x >> 4) + x) & 0x0f0f0f0f;
1116 x *= 0x01010101;
1117
1118 return x >> 24;
1119 }
1120
1121 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1122 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1123 {
1124#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1125 unsigned long r;
1126 _BitScanReverse (&r, x);
1127 return (int)r;
1128#else
1129 int r = 0;
1130
1131 if (x >> 16) { x >>= 16; r += 16; }
1132 if (x >> 8) { x >>= 8; r += 8; }
1133 if (x >> 4) { x >>= 4; r += 4; }
1134 if (x >> 2) { x >>= 2; r += 2; }
1135 if (x >> 1) { r += 1; }
1136
1137 return r;
1138#endif
1139 }
1140
1141 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1142 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1143 {
1144#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1145 unsigned long r;
1146 _BitScanReverse64 (&r, x);
1147 return (int)r;
1148#else
1149 int r = 0;
1150
1151 if (x >> 32) { x >>= 32; r += 32; }
1152
1153 return r + ecb_ld32 (x);
1154#endif
1155 }
1156#endif
1157
1158ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1159ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1160ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1161ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1162
1163ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1164ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1165{
1166 return ( (x * 0x0802U & 0x22110U)
1167 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1168}
1169
1170ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1171ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1172{
1173 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1174 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1175 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1176 x = ( x >> 8 ) | ( x << 8);
1177
1178 return x;
1179}
1180
1181ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1182ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1183{
1184 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1185 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1186 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1187 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1188 x = ( x >> 16 ) | ( x << 16);
1189
1190 return x;
1191}
1192
1193/* popcount64 is only available on 64 bit cpus as gcc builtin */
1194/* so for this version we are lazy */
1195ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1196ecb_function_ ecb_const int
1197ecb_popcount64 (uint64_t x)
1198{
1199 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1200}
1201
1202ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1203ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1204ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1205ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1206ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1207ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1208ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1209ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1210
1211ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1212ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1213ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1214ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1215ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1216ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1217ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1218ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1219
1220#if ECB_CPP
1221
1222inline uint8_t ecb_ctz (uint8_t v) { return ecb_ctz32 (v); }
1223inline uint16_t ecb_ctz (uint16_t v) { return ecb_ctz32 (v); }
1224inline uint32_t ecb_ctz (uint32_t v) { return ecb_ctz32 (v); }
1225inline uint64_t ecb_ctz (uint64_t v) { return ecb_ctz64 (v); }
1226
1227inline bool ecb_is_pot (uint8_t v) { return ecb_is_pot32 (v); }
1228inline bool ecb_is_pot (uint16_t v) { return ecb_is_pot32 (v); }
1229inline bool ecb_is_pot (uint32_t v) { return ecb_is_pot32 (v); }
1230inline bool ecb_is_pot (uint64_t v) { return ecb_is_pot64 (v); }
1231
1232inline int ecb_ld (uint8_t v) { return ecb_ld32 (v); }
1233inline int ecb_ld (uint16_t v) { return ecb_ld32 (v); }
1234inline int ecb_ld (uint32_t v) { return ecb_ld32 (v); }
1235inline int ecb_ld (uint64_t v) { return ecb_ld64 (v); }
1236
1237inline int ecb_popcount (uint8_t v) { return ecb_popcount32 (v); }
1238inline int ecb_popcount (uint16_t v) { return ecb_popcount32 (v); }
1239inline int ecb_popcount (uint32_t v) { return ecb_popcount32 (v); }
1240inline int ecb_popcount (uint64_t v) { return ecb_popcount64 (v); }
1241
1242inline uint8_t ecb_bitrev (uint8_t v) { return ecb_bitrev8 (v); }
1243inline uint16_t ecb_bitrev (uint16_t v) { return ecb_bitrev16 (v); }
1244inline uint32_t ecb_bitrev (uint32_t v) { return ecb_bitrev32 (v); }
1245
1246inline uint8_t ecb_rotl (uint8_t v, unsigned int count) { return ecb_rotl8 (v, count); }
1247inline uint16_t ecb_rotl (uint16_t v, unsigned int count) { return ecb_rotl16 (v, count); }
1248inline uint32_t ecb_rotl (uint32_t v, unsigned int count) { return ecb_rotl32 (v, count); }
1249inline uint64_t ecb_rotl (uint64_t v, unsigned int count) { return ecb_rotl64 (v, count); }
1250
1251inline uint8_t ecb_rotr (uint8_t v, unsigned int count) { return ecb_rotr8 (v, count); }
1252inline uint16_t ecb_rotr (uint16_t v, unsigned int count) { return ecb_rotr16 (v, count); }
1253inline uint32_t ecb_rotr (uint32_t v, unsigned int count) { return ecb_rotr32 (v, count); }
1254inline uint64_t ecb_rotr (uint64_t v, unsigned int count) { return ecb_rotr64 (v, count); }
1255
1256#endif
1257
1258#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1259 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1260 #define ecb_bswap16(x) __builtin_bswap16 (x)
1261 #else
1262 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1263 #endif
1264 #define ecb_bswap32(x) __builtin_bswap32 (x)
1265 #define ecb_bswap64(x) __builtin_bswap64 (x)
1266#elif _MSC_VER
1267 #include <stdlib.h>
1268 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1269 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1270 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1271#else
1272 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1273 ecb_function_ ecb_const uint16_t
1274 ecb_bswap16 (uint16_t x)
1275 {
1276 return ecb_rotl16 (x, 8);
1277 }
1278
1279 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1280 ecb_function_ ecb_const uint32_t
1281 ecb_bswap32 (uint32_t x)
1282 {
1283 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1284 }
1285
1286 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1287 ecb_function_ ecb_const uint64_t
1288 ecb_bswap64 (uint64_t x)
1289 {
1290 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1291 }
1292#endif
1293
1294#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1295 #define ecb_unreachable() __builtin_unreachable ()
1296#else
1297 /* this seems to work fine, but gcc always emits a warning for it :/ */
1298 ecb_inline ecb_noreturn void ecb_unreachable (void);
1299 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1300#endif
1301
1302/* try to tell the compiler that some condition is definitely true */
1303#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1304
1305ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1306ecb_inline ecb_const uint32_t
1307ecb_byteorder_helper (void)
1308{
1309 /* the union code still generates code under pressure in gcc, */
1310 /* but less than using pointers, and always seems to */
1311 /* successfully return a constant. */
1312 /* the reason why we have this horrible preprocessor mess */
1313 /* is to avoid it in all cases, at least on common architectures */
1314 /* or when using a recent enough gcc version (>= 4.6) */
1315#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1316 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1317 #define ECB_LITTLE_ENDIAN 1
1318 return 0x44332211;
1319#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1320 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1321 #define ECB_BIG_ENDIAN 1
1322 return 0x11223344;
1323#else
1324 union
1325 {
1326 uint8_t c[4];
1327 uint32_t u;
1328 } u = { 0x11, 0x22, 0x33, 0x44 };
1329 return u.u;
1330#endif
1331}
1332
1333ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1334ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1335ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1336ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1337
1338/*****************************************************************************/
1339/* unaligned load/store */
1340
1341ecb_inline uint_fast16_t ecb_be_u16_to_host (uint_fast16_t v) { return ecb_little_endian () ? ecb_bswap16 (v) : v; }
1342ecb_inline uint_fast32_t ecb_be_u32_to_host (uint_fast32_t v) { return ecb_little_endian () ? ecb_bswap32 (v) : v; }
1343ecb_inline uint_fast64_t ecb_be_u64_to_host (uint_fast64_t v) { return ecb_little_endian () ? ecb_bswap64 (v) : v; }
1344
1345ecb_inline uint_fast16_t ecb_le_u16_to_host (uint_fast16_t v) { return ecb_big_endian () ? ecb_bswap16 (v) : v; }
1346ecb_inline uint_fast32_t ecb_le_u32_to_host (uint_fast32_t v) { return ecb_big_endian () ? ecb_bswap32 (v) : v; }
1347ecb_inline uint_fast64_t ecb_le_u64_to_host (uint_fast64_t v) { return ecb_big_endian () ? ecb_bswap64 (v) : v; }
1348
1349ecb_inline uint_fast16_t ecb_peek_u16_u (const void *ptr) { uint16_t v; memcpy (&v, ptr, sizeof (v)); return v; }
1350ecb_inline uint_fast32_t ecb_peek_u32_u (const void *ptr) { uint32_t v; memcpy (&v, ptr, sizeof (v)); return v; }
1351ecb_inline uint_fast64_t ecb_peek_u64_u (const void *ptr) { uint64_t v; memcpy (&v, ptr, sizeof (v)); return v; }
1352
1353ecb_inline uint_fast16_t ecb_peek_be_u16_u (const void *ptr) { return ecb_be_u16_to_host (ecb_peek_u16_u (ptr)); }
1354ecb_inline uint_fast32_t ecb_peek_be_u32_u (const void *ptr) { return ecb_be_u32_to_host (ecb_peek_u32_u (ptr)); }
1355ecb_inline uint_fast64_t ecb_peek_be_u64_u (const void *ptr) { return ecb_be_u64_to_host (ecb_peek_u64_u (ptr)); }
1356
1357ecb_inline uint_fast16_t ecb_peek_le_u16_u (const void *ptr) { return ecb_le_u16_to_host (ecb_peek_u16_u (ptr)); }
1358ecb_inline uint_fast32_t ecb_peek_le_u32_u (const void *ptr) { return ecb_le_u32_to_host (ecb_peek_u32_u (ptr)); }
1359ecb_inline uint_fast64_t ecb_peek_le_u64_u (const void *ptr) { return ecb_le_u64_to_host (ecb_peek_u64_u (ptr)); }
1360
1361ecb_inline uint_fast16_t ecb_host_to_be_u16 (uint_fast16_t v) { return ecb_little_endian () ? ecb_bswap16 (v) : v; }
1362ecb_inline uint_fast32_t ecb_host_to_be_u32 (uint_fast32_t v) { return ecb_little_endian () ? ecb_bswap32 (v) : v; }
1363ecb_inline uint_fast64_t ecb_host_to_be_u64 (uint_fast64_t v) { return ecb_little_endian () ? ecb_bswap64 (v) : v; }
1364
1365ecb_inline uint_fast16_t ecb_host_to_le_u16 (uint_fast16_t v) { return ecb_big_endian () ? ecb_bswap16 (v) : v; }
1366ecb_inline uint_fast32_t ecb_host_to_le_u32 (uint_fast32_t v) { return ecb_big_endian () ? ecb_bswap32 (v) : v; }
1367ecb_inline uint_fast64_t ecb_host_to_le_u64 (uint_fast64_t v) { return ecb_big_endian () ? ecb_bswap64 (v) : v; }
1368
1369ecb_inline void ecb_poke_u16_u (void *ptr, uint16_t v) { memcpy (ptr, &v, sizeof (v)); }
1370ecb_inline void ecb_poke_u32_u (void *ptr, uint32_t v) { memcpy (ptr, &v, sizeof (v)); }
1371ecb_inline void ecb_poke_u64_u (void *ptr, uint64_t v) { memcpy (ptr, &v, sizeof (v)); }
1372
1373ecb_inline void ecb_poke_be_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_be_u16 (v)); }
1374ecb_inline void ecb_poke_be_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_be_u32 (v)); }
1375ecb_inline void ecb_poke_be_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_be_u64 (v)); }
1376
1377ecb_inline void ecb_poke_le_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_le_u16 (v)); }
1378ecb_inline void ecb_poke_le_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_le_u32 (v)); }
1379ecb_inline void ecb_poke_le_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_le_u64 (v)); }
1380
1381#if ECB_CPP
1382
1383inline uint8_t ecb_bswap (uint8_t v) { return v; }
1384inline uint16_t ecb_bswap (uint16_t v) { return ecb_bswap16 (v); }
1385inline uint32_t ecb_bswap (uint32_t v) { return ecb_bswap32 (v); }
1386inline uint64_t ecb_bswap (uint64_t v) { return ecb_bswap64 (v); }
1387
1388template<typename T> inline T ecb_be_to_host (T v) { return ecb_little_endian () ? ecb_bswap (v) : v; }
1389template<typename T> inline T ecb_le_to_host (T v) { return ecb_big_endian () ? ecb_bswap (v) : v; }
1390template<typename T> inline T ecb_peek (const void *ptr) { return *(const T *)ptr; }
1391template<typename T> inline T ecb_peek_be (const void *ptr) { return ecb_be_to_host (ecb_peek <T> (ptr)); }
1392template<typename T> inline T ecb_peek_le (const void *ptr) { return ecb_le_to_host (ecb_peek <T> (ptr)); }
1393template<typename T> inline T ecb_peek_u (const void *ptr) { T v; memcpy (&v, ptr, sizeof (v)); return v; }
1394template<typename T> inline T ecb_peek_be_u (const void *ptr) { return ecb_be_to_host (ecb_peek_u<T> (ptr)); }
1395template<typename T> inline T ecb_peek_le_u (const void *ptr) { return ecb_le_to_host (ecb_peek_u<T> (ptr)); }
1396
1397template<typename T> inline T ecb_host_to_be (T v) { return ecb_little_endian () ? ecb_bswap (v) : v; }
1398template<typename T> inline T ecb_host_to_le (T v) { return ecb_big_endian () ? ecb_bswap (v) : v; }
1399template<typename T> inline void ecb_poke (void *ptr, T v) { *(T *)ptr = v; }
1400template<typename T> inline void ecb_poke_be (void *ptr, T v) { return ecb_poke <T> (ptr, ecb_host_to_be (v)); }
1401template<typename T> inline void ecb_poke_le (void *ptr, T v) { return ecb_poke <T> (ptr, ecb_host_to_le (v)); }
1402template<typename T> inline void ecb_poke_u (void *ptr, T v) { memcpy (ptr, &v, sizeof (v)); }
1403template<typename T> inline void ecb_poke_be_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_be (v)); }
1404template<typename T> inline void ecb_poke_le_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_le (v)); }
1405
1406#endif
1407
1408/*****************************************************************************/
1409
1410#if ECB_GCC_VERSION(3,0) || ECB_C99
1411 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1412#else
1413 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1414#endif
1415
1416#if ECB_CPP
1417 template<typename T>
1418 static inline T ecb_div_rd (T val, T div)
1419 {
1420 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1421 }
1422 template<typename T>
1423 static inline T ecb_div_ru (T val, T div)
1424 {
1425 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1426 }
1427#else
1428 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1429 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1430#endif
1431
1432#if ecb_cplusplus_does_not_suck
1433 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1434 template<typename T, int N>
1435 static inline int ecb_array_length (const T (&arr)[N])
1436 {
1437 return N;
1438 }
1439#else
1440 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1441#endif
1442
1443/*****************************************************************************/
1444
1445ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1446ecb_function_ ecb_const uint32_t
1447ecb_binary16_to_binary32 (uint32_t x)
1448{
1449 unsigned int s = (x & 0x8000) << (31 - 15);
1450 int e = (x >> 10) & 0x001f;
1451 unsigned int m = x & 0x03ff;
1452
1453 if (ecb_expect_false (e == 31))
1454 /* infinity or NaN */
1455 e = 255 - (127 - 15);
1456 else if (ecb_expect_false (!e))
1457 {
1458 if (ecb_expect_true (!m))
1459 /* zero, handled by code below by forcing e to 0 */
1460 e = 0 - (127 - 15);
1461 else
1462 {
1463 /* subnormal, renormalise */
1464 unsigned int s = 10 - ecb_ld32 (m);
1465
1466 m = (m << s) & 0x3ff; /* mask implicit bit */
1467 e -= s - 1;
1468 }
1469 }
1470
1471 /* e and m now are normalised, or zero, (or inf or nan) */
1472 e += 127 - 15;
1473
1474 return s | (e << 23) | (m << (23 - 10));
1475}
1476
1477ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1478ecb_function_ ecb_const uint16_t
1479ecb_binary32_to_binary16 (uint32_t x)
1480{
1481 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1482 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1483 unsigned int m = x & 0x007fffff;
1484
1485 x &= 0x7fffffff;
1486
1487 /* if it's within range of binary16 normals, use fast path */
1488 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1489 {
1490 /* mantissa round-to-even */
1491 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1492
1493 /* handle overflow */
1494 if (ecb_expect_false (m >= 0x00800000))
1495 {
1496 m >>= 1;
1497 e += 1;
1498 }
1499
1500 return s | (e << 10) | (m >> (23 - 10));
1501 }
1502
1503 /* handle large numbers and infinity */
1504 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1505 return s | 0x7c00;
1506
1507 /* handle zero, subnormals and small numbers */
1508 if (ecb_expect_true (x < 0x38800000))
1509 {
1510 /* zero */
1511 if (ecb_expect_true (!x))
1512 return s;
1513
1514 /* handle subnormals */
1515
1516 /* too small, will be zero */
1517 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1518 return s;
1519
1520 m |= 0x00800000; /* make implicit bit explicit */
1521
1522 /* very tricky - we need to round to the nearest e (+10) bit value */
1523 {
1524 unsigned int bits = 14 - e;
1525 unsigned int half = (1 << (bits - 1)) - 1;
1526 unsigned int even = (m >> bits) & 1;
1527
1528 /* if this overflows, we will end up with a normalised number */
1529 m = (m + half + even) >> bits;
1530 }
1531
1532 return s | m;
1533 }
1534
1535 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1536 m >>= 13;
1537
1538 return s | 0x7c00 | m | !m;
1539}
1540
1541/*******************************************************************************/
1542/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1543
1544/* basically, everything uses "ieee pure-endian" floating point numbers */
1545/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1546#if 0 \
1547 || __i386 || __i386__ \
1548 || ECB_GCC_AMD64 \
1549 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1550 || defined __s390__ || defined __s390x__ \
1551 || defined __mips__ \
1552 || defined __alpha__ \
1553 || defined __hppa__ \
1554 || defined __ia64__ \
1555 || defined __m68k__ \
1556 || defined __m88k__ \
1557 || defined __sh__ \
1558 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1559 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1560 || defined __aarch64__
1561 #define ECB_STDFP 1
1562#else
1563 #define ECB_STDFP 0
1564#endif
1565
1566#ifndef ECB_NO_LIBM
1567
1568 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1569
1570 /* only the oldest of old doesn't have this one. solaris. */
1571 #ifdef INFINITY
1572 #define ECB_INFINITY INFINITY
1573 #else
1574 #define ECB_INFINITY HUGE_VAL
1575 #endif
1576
1577 #ifdef NAN
1578 #define ECB_NAN NAN
1579 #else
1580 #define ECB_NAN ECB_INFINITY
1581 #endif
1582
1583 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1584 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1585 #define ecb_frexpf(x,e) frexpf ((x), (e))
1586 #else
1587 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1588 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1589 #endif
1590
1591 /* convert a float to ieee single/binary32 */
1592 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1593 ecb_function_ ecb_const uint32_t
1594 ecb_float_to_binary32 (float x)
1595 {
1596 uint32_t r;
1597
1598 #if ECB_STDFP
1599 memcpy (&r, &x, 4);
1600 #else
1601 /* slow emulation, works for anything but -0 */
1602 uint32_t m;
1603 int e;
1604
1605 if (x == 0e0f ) return 0x00000000U;
1606 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1607 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1608 if (x != x ) return 0x7fbfffffU;
1609
1610 m = ecb_frexpf (x, &e) * 0x1000000U;
1611
1612 r = m & 0x80000000U;
1613
1614 if (r)
1615 m = -m;
1616
1617 if (e <= -126)
1618 {
1619 m &= 0xffffffU;
1620 m >>= (-125 - e);
1621 e = -126;
1622 }
1623
1624 r |= (e + 126) << 23;
1625 r |= m & 0x7fffffU;
1626 #endif
1627
1628 return r;
1629 }
1630
1631 /* converts an ieee single/binary32 to a float */
1632 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1633 ecb_function_ ecb_const float
1634 ecb_binary32_to_float (uint32_t x)
1635 {
1636 float r;
1637
1638 #if ECB_STDFP
1639 memcpy (&r, &x, 4);
1640 #else
1641 /* emulation, only works for normals and subnormals and +0 */
1642 int neg = x >> 31;
1643 int e = (x >> 23) & 0xffU;
1644
1645 x &= 0x7fffffU;
1646
1647 if (e)
1648 x |= 0x800000U;
1649 else
1650 e = 1;
1651
1652 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1653 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1654
1655 r = neg ? -r : r;
1656 #endif
1657
1658 return r;
1659 }
1660
1661 /* convert a double to ieee double/binary64 */
1662 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1663 ecb_function_ ecb_const uint64_t
1664 ecb_double_to_binary64 (double x)
1665 {
1666 uint64_t r;
1667
1668 #if ECB_STDFP
1669 memcpy (&r, &x, 8);
1670 #else
1671 /* slow emulation, works for anything but -0 */
1672 uint64_t m;
1673 int e;
1674
1675 if (x == 0e0 ) return 0x0000000000000000U;
1676 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1677 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1678 if (x != x ) return 0X7ff7ffffffffffffU;
1679
1680 m = frexp (x, &e) * 0x20000000000000U;
1681
1682 r = m & 0x8000000000000000;;
1683
1684 if (r)
1685 m = -m;
1686
1687 if (e <= -1022)
1688 {
1689 m &= 0x1fffffffffffffU;
1690 m >>= (-1021 - e);
1691 e = -1022;
1692 }
1693
1694 r |= ((uint64_t)(e + 1022)) << 52;
1695 r |= m & 0xfffffffffffffU;
1696 #endif
1697
1698 return r;
1699 }
1700
1701 /* converts an ieee double/binary64 to a double */
1702 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1703 ecb_function_ ecb_const double
1704 ecb_binary64_to_double (uint64_t x)
1705 {
1706 double r;
1707
1708 #if ECB_STDFP
1709 memcpy (&r, &x, 8);
1710 #else
1711 /* emulation, only works for normals and subnormals and +0 */
1712 int neg = x >> 63;
1713 int e = (x >> 52) & 0x7ffU;
1714
1715 x &= 0xfffffffffffffU;
1716
1717 if (e)
1718 x |= 0x10000000000000U;
1719 else
1720 e = 1;
1721
1722 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1723 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1724
1725 r = neg ? -r : r;
1726 #endif
1727
1728 return r;
1729 }
1730
1731 /* convert a float to ieee half/binary16 */
1732 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1733 ecb_function_ ecb_const uint16_t
1734 ecb_float_to_binary16 (float x)
1735 {
1736 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1737 }
1738
1739 /* convert an ieee half/binary16 to float */
1740 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1741 ecb_function_ ecb_const float
1742 ecb_binary16_to_float (uint16_t x)
1743 {
1744 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1745 }
1746
1747#endif
1748
1749#endif
1750
1751/* ECB.H END */
1752
1753#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1754/* if your architecture doesn't need memory fences, e.g. because it is
1755 * single-cpu/core, or if you use libev in a project that doesn't use libev
1756 * from multiple threads, then you can define ECB_NO_THREADS when compiling
1757 * libev, in which cases the memory fences become nops.
1758 * alternatively, you can remove this #error and link against libpthread,
1759 * which will then provide the memory fences.
1760 */
1761# error "memory fences not defined for your architecture, please report"
1762#endif
1763
1764#ifndef ECB_MEMORY_FENCE
1765# define ECB_MEMORY_FENCE do { } while (0)
1766# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1767# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1768#endif
1769
1770#define inline_size ecb_inline
1771
1772#if EV_FEATURE_CODE
325# define inline_speed static inline 1773# define inline_speed ecb_inline
1774#else
1775# define inline_speed ecb_noinline static
326#endif 1776#endif
327 1777
1778/*****************************************************************************/
1779/* raw syscall wrappers */
1780
1781#if EV_NEED_SYSCALL
1782
1783#include <sys/syscall.h>
1784
1785/*
1786 * define some syscall wrappers for common architectures
1787 * this is mostly for nice looks during debugging, not performance.
1788 * our syscalls return < 0, not == -1, on error. which is good
1789 * enough for linux aio.
1790 * TODO: arm is also common nowadays, maybe even mips and x86
1791 * TODO: after implementing this, it suddenly looks like overkill, but its hard to remove...
1792 */
1793#if __GNUC__ && __linux && ECB_AMD64 && !EV_FEATURE_CODE
1794 /* the costly errno access probably kills this for size optimisation */
1795
1796 #define ev_syscall(nr,narg,arg1,arg2,arg3,arg4,arg5,arg6) \
1797 ({ \
1798 long res; \
1799 register unsigned long r6 __asm__ ("r9" ); \
1800 register unsigned long r5 __asm__ ("r8" ); \
1801 register unsigned long r4 __asm__ ("r10"); \
1802 register unsigned long r3 __asm__ ("rdx"); \
1803 register unsigned long r2 __asm__ ("rsi"); \
1804 register unsigned long r1 __asm__ ("rdi"); \
1805 if (narg >= 6) r6 = (unsigned long)(arg6); \
1806 if (narg >= 5) r5 = (unsigned long)(arg5); \
1807 if (narg >= 4) r4 = (unsigned long)(arg4); \
1808 if (narg >= 3) r3 = (unsigned long)(arg3); \
1809 if (narg >= 2) r2 = (unsigned long)(arg2); \
1810 if (narg >= 1) r1 = (unsigned long)(arg1); \
1811 __asm__ __volatile__ ( \
1812 "syscall\n\t" \
1813 : "=a" (res) \
1814 : "0" (nr), "r" (r1), "r" (r2), "r" (r3), "r" (r4), "r" (r5) \
1815 : "cc", "r11", "cx", "memory"); \
1816 errno = -res; \
1817 res; \
1818 })
1819
1820#endif
1821
1822#ifdef ev_syscall
1823 #define ev_syscall0(nr) ev_syscall (nr, 0, 0, 0, 0, 0, 0, 0)
1824 #define ev_syscall1(nr,arg1) ev_syscall (nr, 1, arg1, 0, 0, 0, 0, 0)
1825 #define ev_syscall2(nr,arg1,arg2) ev_syscall (nr, 2, arg1, arg2, 0, 0, 0, 0)
1826 #define ev_syscall3(nr,arg1,arg2,arg3) ev_syscall (nr, 3, arg1, arg2, arg3, 0, 0, 0)
1827 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) ev_syscall (nr, 3, arg1, arg2, arg3, arg4, 0, 0)
1828 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) ev_syscall (nr, 5, arg1, arg2, arg3, arg4, arg5, 0)
1829 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) ev_syscall (nr, 6, arg1, arg2, arg3, arg4, arg5,arg6)
1830#else
1831 #define ev_syscall0(nr) syscall (nr)
1832 #define ev_syscall1(nr,arg1) syscall (nr, arg1)
1833 #define ev_syscall2(nr,arg1,arg2) syscall (nr, arg1, arg2)
1834 #define ev_syscall3(nr,arg1,arg2,arg3) syscall (nr, arg1, arg2, arg3)
1835 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) syscall (nr, arg1, arg2, arg3, arg4)
1836 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) syscall (nr, arg1, arg2, arg3, arg4, arg5)
1837 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) syscall (nr, arg1, arg2, arg3, arg4, arg5,arg6)
1838#endif
1839
1840#endif
1841
1842/*****************************************************************************/
1843
328#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1844#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1845
1846#if EV_MINPRI == EV_MAXPRI
1847# define ABSPRI(w) (((W)w), 0)
1848#else
329#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1849# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1850#endif
330 1851
331#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1852#define EMPTY /* required for microsofts broken pseudo-c compiler */
332#define EMPTY2(a,b) /* used to suppress some warnings */
333 1853
334typedef ev_watcher *W; 1854typedef ev_watcher *W;
335typedef ev_watcher_list *WL; 1855typedef ev_watcher_list *WL;
336typedef ev_watcher_time *WT; 1856typedef ev_watcher_time *WT;
337 1857
338#define ev_active(w) ((W)(w))->active 1858#define ev_active(w) ((W)(w))->active
339#define ev_at(w) ((WT)(w))->at 1859#define ev_at(w) ((WT)(w))->at
340 1860
1861#if EV_USE_REALTIME
1862/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1863/* giving it a reasonably high chance of working on typical architectures */
1864static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1865#endif
1866
341#if EV_USE_MONOTONIC 1867#if EV_USE_MONOTONIC
342/* sig_atomic_t is used to avoid per-thread variables or locking but still */
343/* giving it a reasonably high chance of working on typical architetcures */
344static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1868static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1869#endif
1870
1871#ifndef EV_FD_TO_WIN32_HANDLE
1872# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1873#endif
1874#ifndef EV_WIN32_HANDLE_TO_FD
1875# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1876#endif
1877#ifndef EV_WIN32_CLOSE_FD
1878# define EV_WIN32_CLOSE_FD(fd) close (fd)
345#endif 1879#endif
346 1880
347#ifdef _WIN32 1881#ifdef _WIN32
348# include "ev_win32.c" 1882# include "ev_win32.c"
349#endif 1883#endif
350 1884
351/*****************************************************************************/ 1885/*****************************************************************************/
352 1886
1887#if EV_USE_LINUXAIO
1888# include <linux/aio_abi.h> /* probably only needed for aio_context_t */
1889#endif
1890
1891/* define a suitable floor function (only used by periodics atm) */
1892
1893#if EV_USE_FLOOR
1894# include <math.h>
1895# define ev_floor(v) floor (v)
1896#else
1897
1898#include <float.h>
1899
1900/* a floor() replacement function, should be independent of ev_tstamp type */
1901ecb_noinline
1902static ev_tstamp
1903ev_floor (ev_tstamp v)
1904{
1905 /* the choice of shift factor is not terribly important */
1906#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1907 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1908#else
1909 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1910#endif
1911
1912 /* special treatment for negative arguments */
1913 if (ecb_expect_false (v < 0.))
1914 {
1915 ev_tstamp f = -ev_floor (-v);
1916
1917 return f - (f == v ? 0 : 1);
1918 }
1919
1920 /* argument too large for an unsigned long? then reduce it */
1921 if (ecb_expect_false (v >= shift))
1922 {
1923 ev_tstamp f;
1924
1925 if (v == v - 1.)
1926 return v; /* very large numbers are assumed to be integer */
1927
1928 f = shift * ev_floor (v * (1. / shift));
1929 return f + ev_floor (v - f);
1930 }
1931
1932 /* fits into an unsigned long */
1933 return (unsigned long)v;
1934}
1935
1936#endif
1937
1938/*****************************************************************************/
1939
1940#ifdef __linux
1941# include <sys/utsname.h>
1942#endif
1943
1944ecb_noinline ecb_cold
1945static unsigned int
1946ev_linux_version (void)
1947{
1948#ifdef __linux
1949 unsigned int v = 0;
1950 struct utsname buf;
1951 int i;
1952 char *p = buf.release;
1953
1954 if (uname (&buf))
1955 return 0;
1956
1957 for (i = 3+1; --i; )
1958 {
1959 unsigned int c = 0;
1960
1961 for (;;)
1962 {
1963 if (*p >= '0' && *p <= '9')
1964 c = c * 10 + *p++ - '0';
1965 else
1966 {
1967 p += *p == '.';
1968 break;
1969 }
1970 }
1971
1972 v = (v << 8) | c;
1973 }
1974
1975 return v;
1976#else
1977 return 0;
1978#endif
1979}
1980
1981/*****************************************************************************/
1982
1983#if EV_AVOID_STDIO
1984ecb_noinline ecb_cold
1985static void
1986ev_printerr (const char *msg)
1987{
1988 write (STDERR_FILENO, msg, strlen (msg));
1989}
1990#endif
1991
353static void (*syserr_cb)(const char *msg); 1992static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
354 1993
1994ecb_cold
355void 1995void
356ev_set_syserr_cb (void (*cb)(const char *msg)) 1996ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
357{ 1997{
358 syserr_cb = cb; 1998 syserr_cb = cb;
359} 1999}
360 2000
361static void noinline 2001ecb_noinline ecb_cold
2002static void
362syserr (const char *msg) 2003ev_syserr (const char *msg)
363{ 2004{
364 if (!msg) 2005 if (!msg)
365 msg = "(libev) system error"; 2006 msg = "(libev) system error";
366 2007
367 if (syserr_cb) 2008 if (syserr_cb)
368 syserr_cb (msg); 2009 syserr_cb (msg);
369 else 2010 else
370 { 2011 {
2012#if EV_AVOID_STDIO
2013 ev_printerr (msg);
2014 ev_printerr (": ");
2015 ev_printerr (strerror (errno));
2016 ev_printerr ("\n");
2017#else
371 perror (msg); 2018 perror (msg);
2019#endif
372 abort (); 2020 abort ();
373 } 2021 }
374} 2022}
375 2023
376static void * 2024static void *
377ev_realloc_emul (void *ptr, long size) 2025ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
378{ 2026{
379 /* some systems, notably openbsd and darwin, fail to properly 2027 /* some systems, notably openbsd and darwin, fail to properly
380 * implement realloc (x, 0) (as required by both ansi c-98 and 2028 * implement realloc (x, 0) (as required by both ansi c-89 and
381 * the single unix specification, so work around them here. 2029 * the single unix specification, so work around them here.
2030 * recently, also (at least) fedora and debian started breaking it,
2031 * despite documenting it otherwise.
382 */ 2032 */
383 2033
384 if (size) 2034 if (size)
385 return realloc (ptr, size); 2035 return realloc (ptr, size);
386 2036
387 free (ptr); 2037 free (ptr);
388 return 0; 2038 return 0;
389} 2039}
390 2040
391static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 2041static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
392 2042
2043ecb_cold
393void 2044void
394ev_set_allocator (void *(*cb)(void *ptr, long size)) 2045ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
395{ 2046{
396 alloc = cb; 2047 alloc = cb;
397} 2048}
398 2049
399inline_speed void * 2050inline_speed void *
401{ 2052{
402 ptr = alloc (ptr, size); 2053 ptr = alloc (ptr, size);
403 2054
404 if (!ptr && size) 2055 if (!ptr && size)
405 { 2056 {
2057#if EV_AVOID_STDIO
2058 ev_printerr ("(libev) memory allocation failed, aborting.\n");
2059#else
406 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 2060 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
2061#endif
407 abort (); 2062 abort ();
408 } 2063 }
409 2064
410 return ptr; 2065 return ptr;
411} 2066}
413#define ev_malloc(size) ev_realloc (0, (size)) 2068#define ev_malloc(size) ev_realloc (0, (size))
414#define ev_free(ptr) ev_realloc ((ptr), 0) 2069#define ev_free(ptr) ev_realloc ((ptr), 0)
415 2070
416/*****************************************************************************/ 2071/*****************************************************************************/
417 2072
2073/* set in reify when reification needed */
2074#define EV_ANFD_REIFY 1
2075
2076/* file descriptor info structure */
418typedef struct 2077typedef struct
419{ 2078{
420 WL head; 2079 WL head;
421 unsigned char events; 2080 unsigned char events; /* the events watched for */
422 unsigned char reify; 2081 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
2082 unsigned char emask; /* some backends store the actual kernel mask in here */
2083 unsigned char eflags; /* flags field for use by backends */
2084#if EV_USE_EPOLL
2085 unsigned int egen; /* generation counter to counter epoll bugs */
2086#endif
423#if EV_SELECT_IS_WINSOCKET 2087#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
424 SOCKET handle; 2088 SOCKET handle;
425#endif 2089#endif
2090#if EV_USE_IOCP
2091 OVERLAPPED or, ow;
2092#endif
426} ANFD; 2093} ANFD;
427 2094
2095/* stores the pending event set for a given watcher */
428typedef struct 2096typedef struct
429{ 2097{
430 W w; 2098 W w;
431 int events; 2099 int events; /* the pending event set for the given watcher */
432} ANPENDING; 2100} ANPENDING;
433 2101
434#if EV_USE_INOTIFY 2102#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */ 2103/* hash table entry per inotify-id */
436typedef struct 2104typedef struct
439} ANFS; 2107} ANFS;
440#endif 2108#endif
441 2109
442/* Heap Entry */ 2110/* Heap Entry */
443#if EV_HEAP_CACHE_AT 2111#if EV_HEAP_CACHE_AT
2112 /* a heap element */
444 typedef struct { 2113 typedef struct {
445 ev_tstamp at; 2114 ev_tstamp at;
446 WT w; 2115 WT w;
447 } ANHE; 2116 } ANHE;
448 2117
449 #define ANHE_w(he) (he).w /* access watcher, read-write */ 2118 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */ 2119 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */ 2120 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
452#else 2121#else
2122 /* a heap element */
453 typedef WT ANHE; 2123 typedef WT ANHE;
454 2124
455 #define ANHE_w(he) (he) 2125 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at 2126 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he) 2127 #define ANHE_at_cache(he)
458#endif 2128#endif
459 2129
460#if EV_MULTIPLICITY 2130#if EV_MULTIPLICITY
461 2131
462 struct ev_loop 2132 struct ev_loop
468 #undef VAR 2138 #undef VAR
469 }; 2139 };
470 #include "ev_wrap.h" 2140 #include "ev_wrap.h"
471 2141
472 static struct ev_loop default_loop_struct; 2142 static struct ev_loop default_loop_struct;
473 struct ev_loop *ev_default_loop_ptr; 2143 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
474 2144
475#else 2145#else
476 2146
477 ev_tstamp ev_rt_now; 2147 EV_API_DECL ev_tstamp ev_rt_now = EV_TS_CONST (0.); /* needs to be initialised to make it a definition despite extern */
478 #define VAR(name,decl) static decl; 2148 #define VAR(name,decl) static decl;
479 #include "ev_vars.h" 2149 #include "ev_vars.h"
480 #undef VAR 2150 #undef VAR
481 2151
482 static int ev_default_loop_ptr; 2152 static int ev_default_loop_ptr;
483 2153
484#endif 2154#endif
485 2155
2156#if EV_FEATURE_API
2157# define EV_RELEASE_CB if (ecb_expect_false (release_cb)) release_cb (EV_A)
2158# define EV_ACQUIRE_CB if (ecb_expect_false (acquire_cb)) acquire_cb (EV_A)
2159# define EV_INVOKE_PENDING invoke_cb (EV_A)
2160#else
2161# define EV_RELEASE_CB (void)0
2162# define EV_ACQUIRE_CB (void)0
2163# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
2164#endif
2165
2166#define EVBREAK_RECURSE 0x80
2167
486/*****************************************************************************/ 2168/*****************************************************************************/
487 2169
2170#ifndef EV_HAVE_EV_TIME
488ev_tstamp 2171ev_tstamp
489ev_time (void) 2172ev_time (void) EV_NOEXCEPT
490{ 2173{
491#if EV_USE_REALTIME 2174#if EV_USE_REALTIME
2175 if (ecb_expect_true (have_realtime))
2176 {
492 struct timespec ts; 2177 struct timespec ts;
493 clock_gettime (CLOCK_REALTIME, &ts); 2178 clock_gettime (CLOCK_REALTIME, &ts);
494 return ts.tv_sec + ts.tv_nsec * 1e-9; 2179 return EV_TS_GET (ts);
495#else 2180 }
2181#endif
2182
2183 {
496 struct timeval tv; 2184 struct timeval tv;
497 gettimeofday (&tv, 0); 2185 gettimeofday (&tv, 0);
498 return tv.tv_sec + tv.tv_usec * 1e-6; 2186 return EV_TV_GET (tv);
499#endif 2187 }
500} 2188}
2189#endif
501 2190
502ev_tstamp inline_size 2191inline_size ev_tstamp
503get_clock (void) 2192get_clock (void)
504{ 2193{
505#if EV_USE_MONOTONIC 2194#if EV_USE_MONOTONIC
506 if (expect_true (have_monotonic)) 2195 if (ecb_expect_true (have_monotonic))
507 { 2196 {
508 struct timespec ts; 2197 struct timespec ts;
509 clock_gettime (CLOCK_MONOTONIC, &ts); 2198 clock_gettime (CLOCK_MONOTONIC, &ts);
510 return ts.tv_sec + ts.tv_nsec * 1e-9; 2199 return EV_TS_GET (ts);
511 } 2200 }
512#endif 2201#endif
513 2202
514 return ev_time (); 2203 return ev_time ();
515} 2204}
516 2205
517#if EV_MULTIPLICITY 2206#if EV_MULTIPLICITY
518ev_tstamp 2207ev_tstamp
519ev_now (EV_P) 2208ev_now (EV_P) EV_NOEXCEPT
520{ 2209{
521 return ev_rt_now; 2210 return ev_rt_now;
522} 2211}
523#endif 2212#endif
524 2213
525void 2214void
526ev_sleep (ev_tstamp delay) 2215ev_sleep (ev_tstamp delay) EV_NOEXCEPT
527{ 2216{
528 if (delay > 0.) 2217 if (delay > EV_TS_CONST (0.))
529 { 2218 {
530#if EV_USE_NANOSLEEP 2219#if EV_USE_NANOSLEEP
531 struct timespec ts; 2220 struct timespec ts;
532 2221
533 ts.tv_sec = (time_t)delay; 2222 EV_TS_SET (ts, delay);
534 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
535
536 nanosleep (&ts, 0); 2223 nanosleep (&ts, 0);
537#elif defined(_WIN32) 2224#elif defined _WIN32
2225 /* maybe this should round up, as ms is very low resolution */
2226 /* compared to select (µs) or nanosleep (ns) */
538 Sleep ((unsigned long)(delay * 1e3)); 2227 Sleep ((unsigned long)(EV_TS_TO_MSEC (delay)));
539#else 2228#else
540 struct timeval tv; 2229 struct timeval tv;
541 2230
542 tv.tv_sec = (time_t)delay; 2231 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
543 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 2232 /* something not guaranteed by newer posix versions, but guaranteed */
544 2233 /* by older ones */
2234 EV_TV_SET (tv, delay);
545 select (0, 0, 0, 0, &tv); 2235 select (0, 0, 0, 0, &tv);
546#endif 2236#endif
547 } 2237 }
548} 2238}
549 2239
550/*****************************************************************************/ 2240/*****************************************************************************/
551 2241
552#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 2242#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
553 2243
554int inline_size 2244/* find a suitable new size for the given array, */
2245/* hopefully by rounding to a nice-to-malloc size */
2246inline_size int
555array_nextsize (int elem, int cur, int cnt) 2247array_nextsize (int elem, int cur, int cnt)
556{ 2248{
557 int ncur = cur + 1; 2249 int ncur = cur + 1;
558 2250
559 do 2251 do
560 ncur <<= 1; 2252 ncur <<= 1;
561 while (cnt > ncur); 2253 while (cnt > ncur);
562 2254
563 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 2255 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
564 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 2256 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
565 { 2257 {
566 ncur *= elem; 2258 ncur *= elem;
567 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 2259 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
568 ncur = ncur - sizeof (void *) * 4; 2260 ncur = ncur - sizeof (void *) * 4;
570 } 2262 }
571 2263
572 return ncur; 2264 return ncur;
573} 2265}
574 2266
575static noinline void * 2267ecb_noinline ecb_cold
2268static void *
576array_realloc (int elem, void *base, int *cur, int cnt) 2269array_realloc (int elem, void *base, int *cur, int cnt)
577{ 2270{
578 *cur = array_nextsize (elem, *cur, cnt); 2271 *cur = array_nextsize (elem, *cur, cnt);
579 return ev_realloc (base, elem * *cur); 2272 return ev_realloc (base, elem * *cur);
580} 2273}
581 2274
2275#define array_needsize_noinit(base,offset,count)
2276
2277#define array_needsize_zerofill(base,offset,count) \
2278 memset ((void *)(base + offset), 0, sizeof (*(base)) * (count))
2279
582#define array_needsize(type,base,cur,cnt,init) \ 2280#define array_needsize(type,base,cur,cnt,init) \
583 if (expect_false ((cnt) > (cur))) \ 2281 if (ecb_expect_false ((cnt) > (cur))) \
584 { \ 2282 { \
585 int ocur_ = (cur); \ 2283 ecb_unused int ocur_ = (cur); \
586 (base) = (type *)array_realloc \ 2284 (base) = (type *)array_realloc \
587 (sizeof (type), (base), &(cur), (cnt)); \ 2285 (sizeof (type), (base), &(cur), (cnt)); \
588 init ((base) + (ocur_), (cur) - ocur_); \ 2286 init ((base), ocur_, ((cur) - ocur_)); \
589 } 2287 }
590 2288
591#if 0 2289#if 0
592#define array_slim(type,stem) \ 2290#define array_slim(type,stem) \
593 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 2291 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
597 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 2295 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
598 } 2296 }
599#endif 2297#endif
600 2298
601#define array_free(stem, idx) \ 2299#define array_free(stem, idx) \
602 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 2300 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
603 2301
604/*****************************************************************************/ 2302/*****************************************************************************/
605 2303
606void noinline 2304/* dummy callback for pending events */
2305ecb_noinline
2306static void
2307pendingcb (EV_P_ ev_prepare *w, int revents)
2308{
2309}
2310
2311ecb_noinline
2312void
607ev_feed_event (EV_P_ void *w, int revents) 2313ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
608{ 2314{
609 W w_ = (W)w; 2315 W w_ = (W)w;
610 int pri = ABSPRI (w_); 2316 int pri = ABSPRI (w_);
611 2317
612 if (expect_false (w_->pending)) 2318 if (ecb_expect_false (w_->pending))
613 pendings [pri][w_->pending - 1].events |= revents; 2319 pendings [pri][w_->pending - 1].events |= revents;
614 else 2320 else
615 { 2321 {
616 w_->pending = ++pendingcnt [pri]; 2322 w_->pending = ++pendingcnt [pri];
617 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 2323 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
618 pendings [pri][w_->pending - 1].w = w_; 2324 pendings [pri][w_->pending - 1].w = w_;
619 pendings [pri][w_->pending - 1].events = revents; 2325 pendings [pri][w_->pending - 1].events = revents;
620 } 2326 }
621}
622 2327
623void inline_speed 2328 pendingpri = NUMPRI - 1;
2329}
2330
2331inline_speed void
2332feed_reverse (EV_P_ W w)
2333{
2334 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2335 rfeeds [rfeedcnt++] = w;
2336}
2337
2338inline_size void
2339feed_reverse_done (EV_P_ int revents)
2340{
2341 do
2342 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2343 while (rfeedcnt);
2344}
2345
2346inline_speed void
624queue_events (EV_P_ W *events, int eventcnt, int type) 2347queue_events (EV_P_ W *events, int eventcnt, int type)
625{ 2348{
626 int i; 2349 int i;
627 2350
628 for (i = 0; i < eventcnt; ++i) 2351 for (i = 0; i < eventcnt; ++i)
629 ev_feed_event (EV_A_ events [i], type); 2352 ev_feed_event (EV_A_ events [i], type);
630} 2353}
631 2354
632/*****************************************************************************/ 2355/*****************************************************************************/
633 2356
634void inline_size 2357inline_speed void
635anfds_init (ANFD *base, int count)
636{
637 while (count--)
638 {
639 base->head = 0;
640 base->events = EV_NONE;
641 base->reify = 0;
642
643 ++base;
644 }
645}
646
647void inline_speed
648fd_event (EV_P_ int fd, int revents) 2358fd_event_nocheck (EV_P_ int fd, int revents)
649{ 2359{
650 ANFD *anfd = anfds + fd; 2360 ANFD *anfd = anfds + fd;
651 ev_io *w; 2361 ev_io *w;
652 2362
653 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2363 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
657 if (ev) 2367 if (ev)
658 ev_feed_event (EV_A_ (W)w, ev); 2368 ev_feed_event (EV_A_ (W)w, ev);
659 } 2369 }
660} 2370}
661 2371
2372/* do not submit kernel events for fds that have reify set */
2373/* because that means they changed while we were polling for new events */
2374inline_speed void
2375fd_event (EV_P_ int fd, int revents)
2376{
2377 ANFD *anfd = anfds + fd;
2378
2379 if (ecb_expect_true (!anfd->reify))
2380 fd_event_nocheck (EV_A_ fd, revents);
2381}
2382
662void 2383void
663ev_feed_fd_event (EV_P_ int fd, int revents) 2384ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
664{ 2385{
665 if (fd >= 0 && fd < anfdmax) 2386 if (fd >= 0 && fd < anfdmax)
666 fd_event (EV_A_ fd, revents); 2387 fd_event_nocheck (EV_A_ fd, revents);
667} 2388}
668 2389
669void inline_size 2390/* make sure the external fd watch events are in-sync */
2391/* with the kernel/libev internal state */
2392inline_size void
670fd_reify (EV_P) 2393fd_reify (EV_P)
671{ 2394{
672 int i; 2395 int i;
673 2396
2397 /* most backends do not modify the fdchanges list in backend_modfiy.
2398 * except io_uring, which has fixed-size buffers which might force us
2399 * to handle events in backend_modify, causing fdchanges to be amended,
2400 * which could result in an endless loop.
2401 * to avoid this, we do not dynamically handle fds that were added
2402 * during fd_reify. that means that for those backends, fdchangecnt
2403 * might be non-zero during poll, which must cause them to not block.
2404 * to not put too much of a burden on other backends, this detail
2405 * needs to be handled in the backend.
2406 */
2407 int changecnt = fdchangecnt;
2408
2409#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
674 for (i = 0; i < fdchangecnt; ++i) 2410 for (i = 0; i < changecnt; ++i)
2411 {
2412 int fd = fdchanges [i];
2413 ANFD *anfd = anfds + fd;
2414
2415 if (anfd->reify & EV__IOFDSET && anfd->head)
2416 {
2417 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2418
2419 if (handle != anfd->handle)
2420 {
2421 unsigned long arg;
2422
2423 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2424
2425 /* handle changed, but fd didn't - we need to do it in two steps */
2426 backend_modify (EV_A_ fd, anfd->events, 0);
2427 anfd->events = 0;
2428 anfd->handle = handle;
2429 }
2430 }
2431 }
2432#endif
2433
2434 for (i = 0; i < changecnt; ++i)
675 { 2435 {
676 int fd = fdchanges [i]; 2436 int fd = fdchanges [i];
677 ANFD *anfd = anfds + fd; 2437 ANFD *anfd = anfds + fd;
678 ev_io *w; 2438 ev_io *w;
679 2439
680 unsigned char events = 0; 2440 unsigned char o_events = anfd->events;
2441 unsigned char o_reify = anfd->reify;
681 2442
682 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2443 anfd->reify = 0;
683 events |= (unsigned char)w->events;
684 2444
685#if EV_SELECT_IS_WINSOCKET 2445 /*if (ecb_expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
686 if (events)
687 { 2446 {
688 unsigned long argp; 2447 anfd->events = 0;
689 #ifdef EV_FD_TO_WIN32_HANDLE 2448
690 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 2449 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
691 #else 2450 anfd->events |= (unsigned char)w->events;
692 anfd->handle = _get_osfhandle (fd); 2451
693 #endif 2452 if (o_events != anfd->events)
694 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 2453 o_reify = EV__IOFDSET; /* actually |= */
695 } 2454 }
696#endif
697 2455
698 { 2456 if (o_reify & EV__IOFDSET)
699 unsigned char o_events = anfd->events;
700 unsigned char o_reify = anfd->reify;
701
702 anfd->reify = 0;
703 anfd->events = events;
704
705 if (o_events != events || o_reify & EV_IOFDSET)
706 backend_modify (EV_A_ fd, o_events, events); 2457 backend_modify (EV_A_ fd, o_events, anfd->events);
707 } 2458 }
708 }
709 2459
2460 /* normally, fdchangecnt hasn't changed. if it has, then new fds have been added.
2461 * this is a rare case (see beginning comment in this function), so we copy them to the
2462 * front and hope the backend handles this case.
2463 */
2464 if (ecb_expect_false (fdchangecnt != changecnt))
2465 memmove (fdchanges, fdchanges + changecnt, (fdchangecnt - changecnt) * sizeof (*fdchanges));
2466
710 fdchangecnt = 0; 2467 fdchangecnt -= changecnt;
711} 2468}
712 2469
2470/* something about the given fd changed */
713void inline_size 2471inline_size
2472void
714fd_change (EV_P_ int fd, int flags) 2473fd_change (EV_P_ int fd, int flags)
715{ 2474{
716 unsigned char reify = anfds [fd].reify; 2475 unsigned char reify = anfds [fd].reify;
717 anfds [fd].reify |= flags; 2476 anfds [fd].reify |= flags;
718 2477
719 if (expect_true (!reify)) 2478 if (ecb_expect_true (!reify))
720 { 2479 {
721 ++fdchangecnt; 2480 ++fdchangecnt;
722 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 2481 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
723 fdchanges [fdchangecnt - 1] = fd; 2482 fdchanges [fdchangecnt - 1] = fd;
724 } 2483 }
725} 2484}
726 2485
727void inline_speed 2486/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2487inline_speed ecb_cold void
728fd_kill (EV_P_ int fd) 2488fd_kill (EV_P_ int fd)
729{ 2489{
730 ev_io *w; 2490 ev_io *w;
731 2491
732 while ((w = (ev_io *)anfds [fd].head)) 2492 while ((w = (ev_io *)anfds [fd].head))
734 ev_io_stop (EV_A_ w); 2494 ev_io_stop (EV_A_ w);
735 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2495 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
736 } 2496 }
737} 2497}
738 2498
739int inline_size 2499/* check whether the given fd is actually valid, for error recovery */
2500inline_size ecb_cold int
740fd_valid (int fd) 2501fd_valid (int fd)
741{ 2502{
742#ifdef _WIN32 2503#ifdef _WIN32
743 return _get_osfhandle (fd) != -1; 2504 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
744#else 2505#else
745 return fcntl (fd, F_GETFD) != -1; 2506 return fcntl (fd, F_GETFD) != -1;
746#endif 2507#endif
747} 2508}
748 2509
749/* called on EBADF to verify fds */ 2510/* called on EBADF to verify fds */
750static void noinline 2511ecb_noinline ecb_cold
2512static void
751fd_ebadf (EV_P) 2513fd_ebadf (EV_P)
752{ 2514{
753 int fd; 2515 int fd;
754 2516
755 for (fd = 0; fd < anfdmax; ++fd) 2517 for (fd = 0; fd < anfdmax; ++fd)
756 if (anfds [fd].events) 2518 if (anfds [fd].events)
757 if (!fd_valid (fd) == -1 && errno == EBADF) 2519 if (!fd_valid (fd) && errno == EBADF)
758 fd_kill (EV_A_ fd); 2520 fd_kill (EV_A_ fd);
759} 2521}
760 2522
761/* called on ENOMEM in select/poll to kill some fds and retry */ 2523/* called on ENOMEM in select/poll to kill some fds and retry */
762static void noinline 2524ecb_noinline ecb_cold
2525static void
763fd_enomem (EV_P) 2526fd_enomem (EV_P)
764{ 2527{
765 int fd; 2528 int fd;
766 2529
767 for (fd = anfdmax; fd--; ) 2530 for (fd = anfdmax; fd--; )
768 if (anfds [fd].events) 2531 if (anfds [fd].events)
769 { 2532 {
770 fd_kill (EV_A_ fd); 2533 fd_kill (EV_A_ fd);
771 return; 2534 break;
772 } 2535 }
773} 2536}
774 2537
775/* usually called after fork if backend needs to re-arm all fds from scratch */ 2538/* usually called after fork if backend needs to re-arm all fds from scratch */
776static void noinline 2539ecb_noinline
2540static void
777fd_rearm_all (EV_P) 2541fd_rearm_all (EV_P)
778{ 2542{
779 int fd; 2543 int fd;
780 2544
781 for (fd = 0; fd < anfdmax; ++fd) 2545 for (fd = 0; fd < anfdmax; ++fd)
782 if (anfds [fd].events) 2546 if (anfds [fd].events)
783 { 2547 {
784 anfds [fd].events = 0; 2548 anfds [fd].events = 0;
2549 anfds [fd].emask = 0;
785 fd_change (EV_A_ fd, EV_IOFDSET | 1); 2550 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
786 } 2551 }
787} 2552}
788 2553
2554/* used to prepare libev internal fd's */
2555/* this is not fork-safe */
2556inline_speed void
2557fd_intern (int fd)
2558{
2559#ifdef _WIN32
2560 unsigned long arg = 1;
2561 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2562#else
2563 fcntl (fd, F_SETFD, FD_CLOEXEC);
2564 fcntl (fd, F_SETFL, O_NONBLOCK);
2565#endif
2566}
2567
789/*****************************************************************************/ 2568/*****************************************************************************/
790 2569
791/* 2570/*
792 * the heap functions want a real array index. array index 0 uis guaranteed to not 2571 * the heap functions want a real array index. array index 0 is guaranteed to not
793 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 2572 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
794 * the branching factor of the d-tree. 2573 * the branching factor of the d-tree.
795 */ 2574 */
796 2575
797/* 2576/*
802 */ 2581 */
803#if EV_USE_4HEAP 2582#if EV_USE_4HEAP
804 2583
805#define DHEAP 4 2584#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 2585#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807 2586#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
808/* towards the root */ 2587#define UPHEAP_DONE(p,k) ((p) == (k))
809void inline_speed
810upheap (ANHE *heap, int k)
811{
812 ANHE he = heap [k];
813
814 for (;;)
815 {
816 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
817
818 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
819 break;
820
821 heap [k] = heap [p];
822 ev_active (ANHE_w (heap [k])) = k;
823 k = p;
824 }
825
826 ev_active (ANHE_w (he)) = k;
827 heap [k] = he;
828}
829 2588
830/* away from the root */ 2589/* away from the root */
831void inline_speed 2590inline_speed void
832downheap (ANHE *heap, int N, int k) 2591downheap (ANHE *heap, int N, int k)
833{ 2592{
834 ANHE he = heap [k]; 2593 ANHE he = heap [k];
835 ANHE *E = heap + N + HEAP0; 2594 ANHE *E = heap + N + HEAP0;
836 2595
837 for (;;) 2596 for (;;)
838 { 2597 {
839 ev_tstamp minat; 2598 ev_tstamp minat;
840 ANHE *minpos; 2599 ANHE *minpos;
841 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 2600 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
842 2601
843 // find minimum child 2602 /* find minimum child */
844 if (expect_true (pos + DHEAP - 1 < E)) 2603 if (ecb_expect_true (pos + DHEAP - 1 < E))
845 { 2604 {
846 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 2605 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
847 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 2606 if ( minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
848 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 2607 if ( minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
849 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); 2608 if ( minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
850 } 2609 }
851 else if (pos < E) 2610 else if (pos < E)
852 { 2611 {
853 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 2612 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
854 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 2613 if (pos + 1 < E && minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
855 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 2614 if (pos + 2 < E && minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
856 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); 2615 if (pos + 3 < E && minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
857 } 2616 }
858 else 2617 else
859 break; 2618 break;
860 2619
861 if (ANHE_at (he) <= minat) 2620 if (ANHE_at (he) <= minat)
862 break; 2621 break;
863 2622
2623 heap [k] = *minpos;
864 ev_active (ANHE_w (*minpos)) = k; 2624 ev_active (ANHE_w (*minpos)) = k;
865 heap [k] = *minpos;
866 2625
867 k = minpos - heap; 2626 k = minpos - heap;
868 } 2627 }
869 2628
2629 heap [k] = he;
870 ev_active (ANHE_w (he)) = k; 2630 ev_active (ANHE_w (he)) = k;
871 heap [k] = he;
872} 2631}
873 2632
874#else // 4HEAP 2633#else /* not 4HEAP */
875 2634
876#define HEAP0 1 2635#define HEAP0 1
2636#define HPARENT(k) ((k) >> 1)
2637#define UPHEAP_DONE(p,k) (!(p))
877 2638
878/* towards the root */ 2639/* away from the root */
879void inline_speed 2640inline_speed void
880upheap (ANHE *heap, int k) 2641downheap (ANHE *heap, int N, int k)
881{ 2642{
882 ANHE he = heap [k]; 2643 ANHE he = heap [k];
883 2644
884 for (;;) 2645 for (;;)
885 { 2646 {
886 int p = k >> 1; 2647 int c = k << 1;
887 2648
888 /* maybe we could use a dummy element at heap [0]? */ 2649 if (c >= N + HEAP0)
889 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
890 break; 2650 break;
891 2651
892 heap [k] = heap [p];
893 ev_active (ANHE_w (heap [k])) = k;
894 k = p;
895 }
896
897 heap [k] = he;
898 ev_active (ANHE_w (heap [k])) = k;
899}
900
901/* away from the root */
902void inline_speed
903downheap (ANHE *heap, int N, int k)
904{
905 ANHE he = heap [k];
906
907 for (;;)
908 {
909 int c = k << 1;
910
911 if (c > N)
912 break;
913
914 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 2652 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
915 ? 1 : 0; 2653 ? 1 : 0;
916 2654
917 if (ANHE_at (he) <= ANHE_at (heap [c])) 2655 if (ANHE_at (he) <= ANHE_at (heap [c]))
918 break; 2656 break;
919 2657
926 heap [k] = he; 2664 heap [k] = he;
927 ev_active (ANHE_w (he)) = k; 2665 ev_active (ANHE_w (he)) = k;
928} 2666}
929#endif 2667#endif
930 2668
931void inline_size 2669/* towards the root */
2670inline_speed void
2671upheap (ANHE *heap, int k)
2672{
2673 ANHE he = heap [k];
2674
2675 for (;;)
2676 {
2677 int p = HPARENT (k);
2678
2679 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2680 break;
2681
2682 heap [k] = heap [p];
2683 ev_active (ANHE_w (heap [k])) = k;
2684 k = p;
2685 }
2686
2687 heap [k] = he;
2688 ev_active (ANHE_w (he)) = k;
2689}
2690
2691/* move an element suitably so it is in a correct place */
2692inline_size void
932adjustheap (ANHE *heap, int N, int k) 2693adjustheap (ANHE *heap, int N, int k)
933{ 2694{
2695 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
934 upheap (heap, k); 2696 upheap (heap, k);
2697 else
935 downheap (heap, N, k); 2698 downheap (heap, N, k);
2699}
2700
2701/* rebuild the heap: this function is used only once and executed rarely */
2702inline_size void
2703reheap (ANHE *heap, int N)
2704{
2705 int i;
2706
2707 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2708 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2709 for (i = 0; i < N; ++i)
2710 upheap (heap, i + HEAP0);
936} 2711}
937 2712
938/*****************************************************************************/ 2713/*****************************************************************************/
939 2714
2715/* associate signal watchers to a signal */
940typedef struct 2716typedef struct
941{ 2717{
2718 EV_ATOMIC_T pending;
2719#if EV_MULTIPLICITY
2720 EV_P;
2721#endif
942 WL head; 2722 WL head;
943 EV_ATOMIC_T gotsig;
944} ANSIG; 2723} ANSIG;
945 2724
946static ANSIG *signals; 2725static ANSIG signals [EV_NSIG - 1];
947static int signalmax;
948
949static EV_ATOMIC_T gotsig;
950
951void inline_size
952signals_init (ANSIG *base, int count)
953{
954 while (count--)
955 {
956 base->head = 0;
957 base->gotsig = 0;
958
959 ++base;
960 }
961}
962 2726
963/*****************************************************************************/ 2727/*****************************************************************************/
964 2728
965void inline_speed 2729#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
966fd_intern (int fd)
967{
968#ifdef _WIN32
969 int arg = 1;
970 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
971#else
972 fcntl (fd, F_SETFD, FD_CLOEXEC);
973 fcntl (fd, F_SETFL, O_NONBLOCK);
974#endif
975}
976 2730
977static void noinline 2731ecb_noinline ecb_cold
2732static void
978evpipe_init (EV_P) 2733evpipe_init (EV_P)
979{ 2734{
980 if (!ev_is_active (&pipeev)) 2735 if (!ev_is_active (&pipe_w))
2736 {
2737 int fds [2];
2738
2739# if EV_USE_EVENTFD
2740 fds [0] = -1;
2741 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2742 if (fds [1] < 0 && errno == EINVAL)
2743 fds [1] = eventfd (0, 0);
2744
2745 if (fds [1] < 0)
2746# endif
2747 {
2748 while (pipe (fds))
2749 ev_syserr ("(libev) error creating signal/async pipe");
2750
2751 fd_intern (fds [0]);
2752 }
2753
2754 evpipe [0] = fds [0];
2755
2756 if (evpipe [1] < 0)
2757 evpipe [1] = fds [1]; /* first call, set write fd */
2758 else
2759 {
2760 /* on subsequent calls, do not change evpipe [1] */
2761 /* so that evpipe_write can always rely on its value. */
2762 /* this branch does not do anything sensible on windows, */
2763 /* so must not be executed on windows */
2764
2765 dup2 (fds [1], evpipe [1]);
2766 close (fds [1]);
2767 }
2768
2769 fd_intern (evpipe [1]);
2770
2771 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2772 ev_io_start (EV_A_ &pipe_w);
2773 ev_unref (EV_A); /* watcher should not keep loop alive */
981 { 2774 }
2775}
2776
2777inline_speed void
2778evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2779{
2780 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2781
2782 if (ecb_expect_true (*flag))
2783 return;
2784
2785 *flag = 1;
2786 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2787
2788 pipe_write_skipped = 1;
2789
2790 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2791
2792 if (pipe_write_wanted)
2793 {
2794 int old_errno;
2795
2796 pipe_write_skipped = 0;
2797 ECB_MEMORY_FENCE_RELEASE;
2798
2799 old_errno = errno; /* save errno because write will clobber it */
2800
982#if EV_USE_EVENTFD 2801#if EV_USE_EVENTFD
983 if ((evfd = eventfd (0, 0)) >= 0) 2802 if (evpipe [0] < 0)
984 { 2803 {
985 evpipe [0] = -1; 2804 uint64_t counter = 1;
986 fd_intern (evfd); 2805 write (evpipe [1], &counter, sizeof (uint64_t));
987 ev_io_set (&pipeev, evfd, EV_READ);
988 } 2806 }
989 else 2807 else
990#endif 2808#endif
991 { 2809 {
992 while (pipe (evpipe)) 2810#ifdef _WIN32
993 syserr ("(libev) error creating signal/async pipe"); 2811 WSABUF buf;
994 2812 DWORD sent;
995 fd_intern (evpipe [0]); 2813 buf.buf = (char *)&buf;
996 fd_intern (evpipe [1]); 2814 buf.len = 1;
997 ev_io_set (&pipeev, evpipe [0], EV_READ); 2815 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2816#else
2817 write (evpipe [1], &(evpipe [1]), 1);
2818#endif
998 } 2819 }
999 2820
1000 ev_io_start (EV_A_ &pipeev); 2821 errno = old_errno;
1001 ev_unref (EV_A); /* watcher should not keep loop alive */
1002 }
1003}
1004
1005void inline_size
1006evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1007{
1008 if (!*flag)
1009 { 2822 }
1010 int old_errno = errno; /* save errno because write might clobber it */ 2823}
1011 2824
1012 *flag = 1; 2825/* called whenever the libev signal pipe */
2826/* got some events (signal, async) */
2827static void
2828pipecb (EV_P_ ev_io *iow, int revents)
2829{
2830 int i;
1013 2831
2832 if (revents & EV_READ)
2833 {
1014#if EV_USE_EVENTFD 2834#if EV_USE_EVENTFD
1015 if (evfd >= 0) 2835 if (evpipe [0] < 0)
1016 { 2836 {
1017 uint64_t counter = 1; 2837 uint64_t counter;
1018 write (evfd, &counter, sizeof (uint64_t)); 2838 read (evpipe [1], &counter, sizeof (uint64_t));
1019 } 2839 }
1020 else 2840 else
1021#endif 2841#endif
1022 write (evpipe [1], &old_errno, 1); 2842 {
1023
1024 errno = old_errno;
1025 }
1026}
1027
1028static void
1029pipecb (EV_P_ ev_io *iow, int revents)
1030{
1031#if EV_USE_EVENTFD
1032 if (evfd >= 0)
1033 {
1034 uint64_t counter;
1035 read (evfd, &counter, sizeof (uint64_t));
1036 }
1037 else
1038#endif
1039 {
1040 char dummy; 2843 char dummy[4];
2844#ifdef _WIN32
2845 WSABUF buf;
2846 DWORD recvd;
2847 DWORD flags = 0;
2848 buf.buf = dummy;
2849 buf.len = sizeof (dummy);
2850 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2851#else
1041 read (evpipe [0], &dummy, 1); 2852 read (evpipe [0], &dummy, sizeof (dummy));
2853#endif
2854 }
2855 }
2856
2857 pipe_write_skipped = 0;
2858
2859 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2860
2861#if EV_SIGNAL_ENABLE
2862 if (sig_pending)
1042 } 2863 {
2864 sig_pending = 0;
1043 2865
1044 if (gotsig && ev_is_default_loop (EV_A)) 2866 ECB_MEMORY_FENCE;
1045 {
1046 int signum;
1047 gotsig = 0;
1048 2867
1049 for (signum = signalmax; signum--; ) 2868 for (i = EV_NSIG - 1; i--; )
1050 if (signals [signum].gotsig) 2869 if (ecb_expect_false (signals [i].pending))
1051 ev_feed_signal_event (EV_A_ signum + 1); 2870 ev_feed_signal_event (EV_A_ i + 1);
1052 } 2871 }
2872#endif
1053 2873
1054#if EV_ASYNC_ENABLE 2874#if EV_ASYNC_ENABLE
1055 if (gotasync) 2875 if (async_pending)
1056 { 2876 {
1057 int i; 2877 async_pending = 0;
1058 gotasync = 0; 2878
2879 ECB_MEMORY_FENCE;
1059 2880
1060 for (i = asynccnt; i--; ) 2881 for (i = asynccnt; i--; )
1061 if (asyncs [i]->sent) 2882 if (asyncs [i]->sent)
1062 { 2883 {
1063 asyncs [i]->sent = 0; 2884 asyncs [i]->sent = 0;
2885 ECB_MEMORY_FENCE_RELEASE;
1064 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2886 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1065 } 2887 }
1066 } 2888 }
1067#endif 2889#endif
1068} 2890}
1069 2891
1070/*****************************************************************************/ 2892/*****************************************************************************/
1071 2893
2894void
2895ev_feed_signal (int signum) EV_NOEXCEPT
2896{
2897#if EV_MULTIPLICITY
2898 EV_P;
2899 ECB_MEMORY_FENCE_ACQUIRE;
2900 EV_A = signals [signum - 1].loop;
2901
2902 if (!EV_A)
2903 return;
2904#endif
2905
2906 signals [signum - 1].pending = 1;
2907 evpipe_write (EV_A_ &sig_pending);
2908}
2909
1072static void 2910static void
1073ev_sighandler (int signum) 2911ev_sighandler (int signum)
1074{ 2912{
2913#ifdef _WIN32
2914 signal (signum, ev_sighandler);
2915#endif
2916
2917 ev_feed_signal (signum);
2918}
2919
2920ecb_noinline
2921void
2922ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2923{
2924 WL w;
2925
2926 if (ecb_expect_false (signum <= 0 || signum >= EV_NSIG))
2927 return;
2928
2929 --signum;
2930
1075#if EV_MULTIPLICITY 2931#if EV_MULTIPLICITY
1076 struct ev_loop *loop = &default_loop_struct; 2932 /* it is permissible to try to feed a signal to the wrong loop */
1077#endif 2933 /* or, likely more useful, feeding a signal nobody is waiting for */
1078 2934
1079#if _WIN32 2935 if (ecb_expect_false (signals [signum].loop != EV_A))
1080 signal (signum, ev_sighandler);
1081#endif
1082
1083 signals [signum - 1].gotsig = 1;
1084 evpipe_write (EV_A_ &gotsig);
1085}
1086
1087void noinline
1088ev_feed_signal_event (EV_P_ int signum)
1089{
1090 WL w;
1091
1092#if EV_MULTIPLICITY
1093 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1094#endif
1095
1096 --signum;
1097
1098 if (signum < 0 || signum >= signalmax)
1099 return; 2936 return;
2937#endif
1100 2938
1101 signals [signum].gotsig = 0; 2939 signals [signum].pending = 0;
2940 ECB_MEMORY_FENCE_RELEASE;
1102 2941
1103 for (w = signals [signum].head; w; w = w->next) 2942 for (w = signals [signum].head; w; w = w->next)
1104 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2943 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1105} 2944}
1106 2945
2946#if EV_USE_SIGNALFD
2947static void
2948sigfdcb (EV_P_ ev_io *iow, int revents)
2949{
2950 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2951
2952 for (;;)
2953 {
2954 ssize_t res = read (sigfd, si, sizeof (si));
2955
2956 /* not ISO-C, as res might be -1, but works with SuS */
2957 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2958 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2959
2960 if (res < (ssize_t)sizeof (si))
2961 break;
2962 }
2963}
2964#endif
2965
2966#endif
2967
1107/*****************************************************************************/ 2968/*****************************************************************************/
1108 2969
2970#if EV_CHILD_ENABLE
1109static WL childs [EV_PID_HASHSIZE]; 2971static WL childs [EV_PID_HASHSIZE];
1110
1111#ifndef _WIN32
1112 2972
1113static ev_signal childev; 2973static ev_signal childev;
1114 2974
1115#ifndef WIFCONTINUED 2975#ifndef WIFCONTINUED
1116# define WIFCONTINUED(status) 0 2976# define WIFCONTINUED(status) 0
1117#endif 2977#endif
1118 2978
1119void inline_speed 2979/* handle a single child status event */
2980inline_speed void
1120child_reap (EV_P_ int chain, int pid, int status) 2981child_reap (EV_P_ int chain, int pid, int status)
1121{ 2982{
1122 ev_child *w; 2983 ev_child *w;
1123 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2984 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1124 2985
1125 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2986 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1126 { 2987 {
1127 if ((w->pid == pid || !w->pid) 2988 if ((w->pid == pid || !w->pid)
1128 && (!traced || (w->flags & 1))) 2989 && (!traced || (w->flags & 1)))
1129 { 2990 {
1130 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2991 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1137 2998
1138#ifndef WCONTINUED 2999#ifndef WCONTINUED
1139# define WCONTINUED 0 3000# define WCONTINUED 0
1140#endif 3001#endif
1141 3002
3003/* called on sigchld etc., calls waitpid */
1142static void 3004static void
1143childcb (EV_P_ ev_signal *sw, int revents) 3005childcb (EV_P_ ev_signal *sw, int revents)
1144{ 3006{
1145 int pid, status; 3007 int pid, status;
1146 3008
1154 /* make sure we are called again until all children have been reaped */ 3016 /* make sure we are called again until all children have been reaped */
1155 /* we need to do it this way so that the callback gets called before we continue */ 3017 /* we need to do it this way so that the callback gets called before we continue */
1156 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 3018 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1157 3019
1158 child_reap (EV_A_ pid, pid, status); 3020 child_reap (EV_A_ pid, pid, status);
1159 if (EV_PID_HASHSIZE > 1) 3021 if ((EV_PID_HASHSIZE) > 1)
1160 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 3022 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1161} 3023}
1162 3024
1163#endif 3025#endif
1164 3026
1165/*****************************************************************************/ 3027/*****************************************************************************/
1166 3028
3029#if EV_USE_TIMERFD
3030
3031static void periodics_reschedule (EV_P);
3032
3033static void
3034timerfdcb (EV_P_ ev_io *iow, int revents)
3035{
3036 struct itimerspec its = { 0 };
3037
3038 its.it_value.tv_sec = ev_rt_now + (int)MAX_BLOCKTIME2;
3039 timerfd_settime (timerfd, TFD_TIMER_ABSTIME | TFD_TIMER_CANCEL_ON_SET, &its, 0);
3040
3041 ev_rt_now = ev_time ();
3042 /* periodics_reschedule only needs ev_rt_now */
3043 /* but maybe in the future we want the full treatment. */
3044 /*
3045 now_floor = EV_TS_CONST (0.);
3046 time_update (EV_A_ EV_TSTAMP_HUGE);
3047 */
3048 periodics_reschedule (EV_A);
3049}
3050
3051ecb_noinline ecb_cold
3052static void
3053evtimerfd_init (EV_P)
3054{
3055 if (!ev_is_active (&timerfd_w))
3056 {
3057 timerfd = timerfd_create (CLOCK_REALTIME, TFD_NONBLOCK | TFD_CLOEXEC);
3058
3059 if (timerfd >= 0)
3060 {
3061 fd_intern (timerfd); /* just to be sure */
3062
3063 ev_io_init (&timerfd_w, timerfdcb, timerfd, EV_READ);
3064 ev_set_priority (&timerfd_w, EV_MINPRI);
3065 ev_io_start (EV_A_ &timerfd_w);
3066 ev_unref (EV_A); /* watcher should not keep loop alive */
3067
3068 /* (re-) arm timer */
3069 timerfdcb (EV_A_ 0, 0);
3070 }
3071 }
3072}
3073
3074#endif
3075
3076/*****************************************************************************/
3077
3078#if EV_USE_IOCP
3079# include "ev_iocp.c"
3080#endif
1167#if EV_USE_PORT 3081#if EV_USE_PORT
1168# include "ev_port.c" 3082# include "ev_port.c"
1169#endif 3083#endif
1170#if EV_USE_KQUEUE 3084#if EV_USE_KQUEUE
1171# include "ev_kqueue.c" 3085# include "ev_kqueue.c"
1172#endif 3086#endif
1173#if EV_USE_EPOLL 3087#if EV_USE_EPOLL
1174# include "ev_epoll.c" 3088# include "ev_epoll.c"
1175#endif 3089#endif
3090#if EV_USE_LINUXAIO
3091# include "ev_linuxaio.c"
3092#endif
3093#if EV_USE_IOURING
3094# include "ev_iouring.c"
3095#endif
1176#if EV_USE_POLL 3096#if EV_USE_POLL
1177# include "ev_poll.c" 3097# include "ev_poll.c"
1178#endif 3098#endif
1179#if EV_USE_SELECT 3099#if EV_USE_SELECT
1180# include "ev_select.c" 3100# include "ev_select.c"
1181#endif 3101#endif
1182 3102
1183int 3103ecb_cold int
1184ev_version_major (void) 3104ev_version_major (void) EV_NOEXCEPT
1185{ 3105{
1186 return EV_VERSION_MAJOR; 3106 return EV_VERSION_MAJOR;
1187} 3107}
1188 3108
1189int 3109ecb_cold int
1190ev_version_minor (void) 3110ev_version_minor (void) EV_NOEXCEPT
1191{ 3111{
1192 return EV_VERSION_MINOR; 3112 return EV_VERSION_MINOR;
1193} 3113}
1194 3114
1195/* return true if we are running with elevated privileges and should ignore env variables */ 3115/* return true if we are running with elevated privileges and should ignore env variables */
1196int inline_size 3116inline_size ecb_cold int
1197enable_secure (void) 3117enable_secure (void)
1198{ 3118{
1199#ifdef _WIN32 3119#ifdef _WIN32
1200 return 0; 3120 return 0;
1201#else 3121#else
1202 return getuid () != geteuid () 3122 return getuid () != geteuid ()
1203 || getgid () != getegid (); 3123 || getgid () != getegid ();
1204#endif 3124#endif
1205} 3125}
1206 3126
3127ecb_cold
1207unsigned int 3128unsigned int
1208ev_supported_backends (void) 3129ev_supported_backends (void) EV_NOEXCEPT
1209{ 3130{
1210 unsigned int flags = 0; 3131 unsigned int flags = 0;
1211 3132
1212 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 3133 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1213 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 3134 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
1214 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL; 3135 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1215 if (EV_USE_POLL ) flags |= EVBACKEND_POLL; 3136 if (EV_USE_LINUXAIO ) flags |= EVBACKEND_LINUXAIO;
1216 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 3137 if (EV_USE_IOURING && ev_linux_version () >= 0x050601) flags |= EVBACKEND_IOURING; /* 5.6.1+ */
1217 3138 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
3139 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
3140
1218 return flags; 3141 return flags;
1219} 3142}
1220 3143
3144ecb_cold
1221unsigned int 3145unsigned int
1222ev_recommended_backends (void) 3146ev_recommended_backends (void) EV_NOEXCEPT
1223{ 3147{
1224 unsigned int flags = ev_supported_backends (); 3148 unsigned int flags = ev_supported_backends ();
1225 3149
1226#ifndef __NetBSD__ 3150#ifndef __NetBSD__
1227 /* kqueue is borked on everything but netbsd apparently */ 3151 /* kqueue is borked on everything but netbsd apparently */
1228 /* it usually doesn't work correctly on anything but sockets and pipes */ 3152 /* it usually doesn't work correctly on anything but sockets and pipes */
1229 flags &= ~EVBACKEND_KQUEUE; 3153 flags &= ~EVBACKEND_KQUEUE;
1230#endif 3154#endif
1231#ifdef __APPLE__ 3155#ifdef __APPLE__
1232 // flags &= ~EVBACKEND_KQUEUE; for documentation 3156 /* only select works correctly on that "unix-certified" platform */
3157 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
3158 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
3159#endif
3160#ifdef __FreeBSD__
3161 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
3162#endif
3163
3164 /* TODO: linuxaio is very experimental */
3165#if !EV_RECOMMEND_LINUXAIO
3166 flags &= ~EVBACKEND_LINUXAIO;
3167#endif
3168 /* TODO: linuxaio is super experimental */
3169#if !EV_RECOMMEND_IOURING
1233 flags &= ~EVBACKEND_POLL; 3170 flags &= ~EVBACKEND_IOURING;
1234#endif 3171#endif
1235 3172
1236 return flags; 3173 return flags;
1237} 3174}
1238 3175
3176ecb_cold
1239unsigned int 3177unsigned int
1240ev_embeddable_backends (void) 3178ev_embeddable_backends (void) EV_NOEXCEPT
1241{ 3179{
1242 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 3180 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT | EVBACKEND_IOURING;
1243 3181
1244 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 3182 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1245 /* please fix it and tell me how to detect the fix */ 3183 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1246 flags &= ~EVBACKEND_EPOLL; 3184 flags &= ~EVBACKEND_EPOLL;
3185
3186 /* EVBACKEND_LINUXAIO is theoretically embeddable, but suffers from a performance overhead */
1247 3187
1248 return flags; 3188 return flags;
1249} 3189}
1250 3190
1251unsigned int 3191unsigned int
1252ev_backend (EV_P) 3192ev_backend (EV_P) EV_NOEXCEPT
1253{ 3193{
1254 return backend; 3194 return backend;
1255} 3195}
1256 3196
3197#if EV_FEATURE_API
1257unsigned int 3198unsigned int
1258ev_loop_count (EV_P) 3199ev_iteration (EV_P) EV_NOEXCEPT
1259{ 3200{
1260 return loop_count; 3201 return loop_count;
1261} 3202}
1262 3203
3204unsigned int
3205ev_depth (EV_P) EV_NOEXCEPT
3206{
3207 return loop_depth;
3208}
3209
1263void 3210void
1264ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 3211ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
1265{ 3212{
1266 io_blocktime = interval; 3213 io_blocktime = interval;
1267} 3214}
1268 3215
1269void 3216void
1270ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 3217ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
1271{ 3218{
1272 timeout_blocktime = interval; 3219 timeout_blocktime = interval;
1273} 3220}
1274 3221
1275static void noinline 3222void
3223ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
3224{
3225 userdata = data;
3226}
3227
3228void *
3229ev_userdata (EV_P) EV_NOEXCEPT
3230{
3231 return userdata;
3232}
3233
3234void
3235ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
3236{
3237 invoke_cb = invoke_pending_cb;
3238}
3239
3240void
3241ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
3242{
3243 release_cb = release;
3244 acquire_cb = acquire;
3245}
3246#endif
3247
3248/* initialise a loop structure, must be zero-initialised */
3249ecb_noinline ecb_cold
3250static void
1276loop_init (EV_P_ unsigned int flags) 3251loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
1277{ 3252{
1278 if (!backend) 3253 if (!backend)
1279 { 3254 {
3255 origflags = flags;
3256
3257#if EV_USE_REALTIME
3258 if (!have_realtime)
3259 {
3260 struct timespec ts;
3261
3262 if (!clock_gettime (CLOCK_REALTIME, &ts))
3263 have_realtime = 1;
3264 }
3265#endif
3266
1280#if EV_USE_MONOTONIC 3267#if EV_USE_MONOTONIC
3268 if (!have_monotonic)
1281 { 3269 {
1282 struct timespec ts; 3270 struct timespec ts;
3271
1283 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 3272 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1284 have_monotonic = 1; 3273 have_monotonic = 1;
1285 } 3274 }
1286#endif
1287
1288 ev_rt_now = ev_time ();
1289 mn_now = get_clock ();
1290 now_floor = mn_now;
1291 rtmn_diff = ev_rt_now - mn_now;
1292
1293 io_blocktime = 0.;
1294 timeout_blocktime = 0.;
1295 backend = 0;
1296 backend_fd = -1;
1297 gotasync = 0;
1298#if EV_USE_INOTIFY
1299 fs_fd = -2;
1300#endif 3275#endif
1301 3276
1302 /* pid check not overridable via env */ 3277 /* pid check not overridable via env */
1303#ifndef _WIN32 3278#ifndef _WIN32
1304 if (flags & EVFLAG_FORKCHECK) 3279 if (flags & EVFLAG_FORKCHECK)
1308 if (!(flags & EVFLAG_NOENV) 3283 if (!(flags & EVFLAG_NOENV)
1309 && !enable_secure () 3284 && !enable_secure ()
1310 && getenv ("LIBEV_FLAGS")) 3285 && getenv ("LIBEV_FLAGS"))
1311 flags = atoi (getenv ("LIBEV_FLAGS")); 3286 flags = atoi (getenv ("LIBEV_FLAGS"));
1312 3287
1313 if (!(flags & 0x0000ffffU)) 3288 ev_rt_now = ev_time ();
3289 mn_now = get_clock ();
3290 now_floor = mn_now;
3291 rtmn_diff = ev_rt_now - mn_now;
3292#if EV_FEATURE_API
3293 invoke_cb = ev_invoke_pending;
3294#endif
3295
3296 io_blocktime = 0.;
3297 timeout_blocktime = 0.;
3298 backend = 0;
3299 backend_fd = -1;
3300 sig_pending = 0;
3301#if EV_ASYNC_ENABLE
3302 async_pending = 0;
3303#endif
3304 pipe_write_skipped = 0;
3305 pipe_write_wanted = 0;
3306 evpipe [0] = -1;
3307 evpipe [1] = -1;
3308#if EV_USE_INOTIFY
3309 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
3310#endif
3311#if EV_USE_SIGNALFD
3312 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
3313#endif
3314#if EV_USE_TIMERFD
3315 timerfd = flags & EVFLAG_NOTIMERFD ? -1 : -2;
3316#endif
3317
3318 if (!(flags & EVBACKEND_MASK))
1314 flags |= ev_recommended_backends (); 3319 flags |= ev_recommended_backends ();
1315 3320
3321#if EV_USE_IOCP
3322 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
3323#endif
1316#if EV_USE_PORT 3324#if EV_USE_PORT
1317 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 3325 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1318#endif 3326#endif
1319#if EV_USE_KQUEUE 3327#if EV_USE_KQUEUE
1320 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 3328 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
3329#endif
3330#if EV_USE_IOURING
3331 if (!backend && (flags & EVBACKEND_IOURING )) backend = iouring_init (EV_A_ flags);
3332#endif
3333#if EV_USE_LINUXAIO
3334 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
1321#endif 3335#endif
1322#if EV_USE_EPOLL 3336#if EV_USE_EPOLL
1323 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags); 3337 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1324#endif 3338#endif
1325#if EV_USE_POLL 3339#if EV_USE_POLL
1326 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags); 3340 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1327#endif 3341#endif
1328#if EV_USE_SELECT 3342#if EV_USE_SELECT
1329 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 3343 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
1330#endif 3344#endif
1331 3345
3346 ev_prepare_init (&pending_w, pendingcb);
3347
3348#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1332 ev_init (&pipeev, pipecb); 3349 ev_init (&pipe_w, pipecb);
1333 ev_set_priority (&pipeev, EV_MAXPRI); 3350 ev_set_priority (&pipe_w, EV_MAXPRI);
3351#endif
1334 } 3352 }
1335} 3353}
1336 3354
1337static void noinline 3355/* free up a loop structure */
3356ecb_cold
3357void
1338loop_destroy (EV_P) 3358ev_loop_destroy (EV_P)
1339{ 3359{
1340 int i; 3360 int i;
1341 3361
3362#if EV_MULTIPLICITY
3363 /* mimic free (0) */
3364 if (!EV_A)
3365 return;
3366#endif
3367
3368#if EV_CLEANUP_ENABLE
3369 /* queue cleanup watchers (and execute them) */
3370 if (ecb_expect_false (cleanupcnt))
3371 {
3372 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3373 EV_INVOKE_PENDING;
3374 }
3375#endif
3376
3377#if EV_CHILD_ENABLE
3378 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3379 {
3380 ev_ref (EV_A); /* child watcher */
3381 ev_signal_stop (EV_A_ &childev);
3382 }
3383#endif
3384
1342 if (ev_is_active (&pipeev)) 3385 if (ev_is_active (&pipe_w))
1343 { 3386 {
1344 ev_ref (EV_A); /* signal watcher */ 3387 /*ev_ref (EV_A);*/
1345 ev_io_stop (EV_A_ &pipeev); 3388 /*ev_io_stop (EV_A_ &pipe_w);*/
1346 3389
3390 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3391 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3392 }
3393
3394#if EV_USE_SIGNALFD
3395 if (ev_is_active (&sigfd_w))
3396 close (sigfd);
3397#endif
3398
1347#if EV_USE_EVENTFD 3399#if EV_USE_TIMERFD
1348 if (evfd >= 0) 3400 if (ev_is_active (&timerfd_w))
1349 close (evfd); 3401 close (timerfd);
1350#endif 3402#endif
1351
1352 if (evpipe [0] >= 0)
1353 {
1354 close (evpipe [0]);
1355 close (evpipe [1]);
1356 }
1357 }
1358 3403
1359#if EV_USE_INOTIFY 3404#if EV_USE_INOTIFY
1360 if (fs_fd >= 0) 3405 if (fs_fd >= 0)
1361 close (fs_fd); 3406 close (fs_fd);
1362#endif 3407#endif
1363 3408
1364 if (backend_fd >= 0) 3409 if (backend_fd >= 0)
1365 close (backend_fd); 3410 close (backend_fd);
1366 3411
3412#if EV_USE_IOCP
3413 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3414#endif
1367#if EV_USE_PORT 3415#if EV_USE_PORT
1368 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 3416 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1369#endif 3417#endif
1370#if EV_USE_KQUEUE 3418#if EV_USE_KQUEUE
1371 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 3419 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3420#endif
3421#if EV_USE_IOURING
3422 if (backend == EVBACKEND_IOURING ) iouring_destroy (EV_A);
3423#endif
3424#if EV_USE_LINUXAIO
3425 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
1372#endif 3426#endif
1373#if EV_USE_EPOLL 3427#if EV_USE_EPOLL
1374 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A); 3428 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1375#endif 3429#endif
1376#if EV_USE_POLL 3430#if EV_USE_POLL
1377 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A); 3431 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1378#endif 3432#endif
1379#if EV_USE_SELECT 3433#if EV_USE_SELECT
1380 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 3434 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
1381#endif 3435#endif
1382 3436
1383 for (i = NUMPRI; i--; ) 3437 for (i = NUMPRI; i--; )
1384 { 3438 {
1385 array_free (pending, [i]); 3439 array_free (pending, [i]);
1386#if EV_IDLE_ENABLE 3440#if EV_IDLE_ENABLE
1387 array_free (idle, [i]); 3441 array_free (idle, [i]);
1388#endif 3442#endif
1389 } 3443 }
1390 3444
1391 ev_free (anfds); anfdmax = 0; 3445 ev_free (anfds); anfds = 0; anfdmax = 0;
1392 3446
1393 /* have to use the microsoft-never-gets-it-right macro */ 3447 /* have to use the microsoft-never-gets-it-right macro */
3448 array_free (rfeed, EMPTY);
1394 array_free (fdchange, EMPTY); 3449 array_free (fdchange, EMPTY);
1395 array_free (timer, EMPTY); 3450 array_free (timer, EMPTY);
1396#if EV_PERIODIC_ENABLE 3451#if EV_PERIODIC_ENABLE
1397 array_free (periodic, EMPTY); 3452 array_free (periodic, EMPTY);
1398#endif 3453#endif
1399#if EV_FORK_ENABLE 3454#if EV_FORK_ENABLE
1400 array_free (fork, EMPTY); 3455 array_free (fork, EMPTY);
1401#endif 3456#endif
3457#if EV_CLEANUP_ENABLE
3458 array_free (cleanup, EMPTY);
3459#endif
1402 array_free (prepare, EMPTY); 3460 array_free (prepare, EMPTY);
1403 array_free (check, EMPTY); 3461 array_free (check, EMPTY);
1404#if EV_ASYNC_ENABLE 3462#if EV_ASYNC_ENABLE
1405 array_free (async, EMPTY); 3463 array_free (async, EMPTY);
1406#endif 3464#endif
1407 3465
1408 backend = 0; 3466 backend = 0;
3467
3468#if EV_MULTIPLICITY
3469 if (ev_is_default_loop (EV_A))
3470#endif
3471 ev_default_loop_ptr = 0;
3472#if EV_MULTIPLICITY
3473 else
3474 ev_free (EV_A);
3475#endif
1409} 3476}
1410 3477
1411#if EV_USE_INOTIFY 3478#if EV_USE_INOTIFY
1412void inline_size infy_fork (EV_P); 3479inline_size void infy_fork (EV_P);
1413#endif 3480#endif
1414 3481
1415void inline_size 3482inline_size void
1416loop_fork (EV_P) 3483loop_fork (EV_P)
1417{ 3484{
1418#if EV_USE_PORT 3485#if EV_USE_PORT
1419 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 3486 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1420#endif 3487#endif
1421#if EV_USE_KQUEUE 3488#if EV_USE_KQUEUE
1422 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 3489 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3490#endif
3491#if EV_USE_IOURING
3492 if (backend == EVBACKEND_IOURING ) iouring_fork (EV_A);
3493#endif
3494#if EV_USE_LINUXAIO
3495 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
1423#endif 3496#endif
1424#if EV_USE_EPOLL 3497#if EV_USE_EPOLL
1425 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 3498 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1426#endif 3499#endif
1427#if EV_USE_INOTIFY 3500#if EV_USE_INOTIFY
1428 infy_fork (EV_A); 3501 infy_fork (EV_A);
1429#endif 3502#endif
1430 3503
3504 if (postfork != 2)
3505 {
3506 #if EV_USE_SIGNALFD
3507 /* surprisingly, nothing needs to be done for signalfd, accoridng to docs, it does the right thing on fork */
3508 #endif
3509
3510 #if EV_USE_TIMERFD
3511 if (ev_is_active (&timerfd_w))
3512 {
3513 ev_ref (EV_A);
3514 ev_io_stop (EV_A_ &timerfd_w);
3515
3516 close (timerfd);
3517 timerfd = -2;
3518
3519 evtimerfd_init (EV_A);
3520 /* reschedule periodics, in case we missed something */
3521 ev_feed_event (EV_A_ &timerfd_w, EV_CUSTOM);
3522 }
3523 #endif
3524
3525 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1431 if (ev_is_active (&pipeev)) 3526 if (ev_is_active (&pipe_w))
3527 {
3528 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3529
3530 ev_ref (EV_A);
3531 ev_io_stop (EV_A_ &pipe_w);
3532
3533 if (evpipe [0] >= 0)
3534 EV_WIN32_CLOSE_FD (evpipe [0]);
3535
3536 evpipe_init (EV_A);
3537 /* iterate over everything, in case we missed something before */
3538 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3539 }
3540 #endif
1432 { 3541 }
1433 /* this "locks" the handlers against writing to the pipe */ 3542
1434 /* while we modify the fd vars */ 3543 postfork = 0;
1435 gotsig = 1; 3544}
3545
3546#if EV_MULTIPLICITY
3547
3548ecb_cold
3549struct ev_loop *
3550ev_loop_new (unsigned int flags) EV_NOEXCEPT
3551{
3552 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3553
3554 memset (EV_A, 0, sizeof (struct ev_loop));
3555 loop_init (EV_A_ flags);
3556
3557 if (ev_backend (EV_A))
3558 return EV_A;
3559
3560 ev_free (EV_A);
3561 return 0;
3562}
3563
3564#endif /* multiplicity */
3565
3566#if EV_VERIFY
3567ecb_noinline ecb_cold
3568static void
3569verify_watcher (EV_P_ W w)
3570{
3571 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
3572
3573 if (w->pending)
3574 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3575}
3576
3577ecb_noinline ecb_cold
3578static void
3579verify_heap (EV_P_ ANHE *heap, int N)
3580{
3581 int i;
3582
3583 for (i = HEAP0; i < N + HEAP0; ++i)
3584 {
3585 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3586 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3587 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3588
3589 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3590 }
3591}
3592
3593ecb_noinline ecb_cold
3594static void
3595array_verify (EV_P_ W *ws, int cnt)
3596{
3597 while (cnt--)
3598 {
3599 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3600 verify_watcher (EV_A_ ws [cnt]);
3601 }
3602}
3603#endif
3604
3605#if EV_FEATURE_API
3606void ecb_cold
3607ev_verify (EV_P) EV_NOEXCEPT
3608{
3609#if EV_VERIFY
3610 int i;
3611 WL w, w2;
3612
3613 assert (activecnt >= -1);
3614
3615 assert (fdchangemax >= fdchangecnt);
3616 for (i = 0; i < fdchangecnt; ++i)
3617 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3618
3619 assert (anfdmax >= 0);
3620 for (i = 0; i < anfdmax; ++i)
3621 {
3622 int j = 0;
3623
3624 for (w = w2 = anfds [i].head; w; w = w->next)
3625 {
3626 verify_watcher (EV_A_ (W)w);
3627
3628 if (j++ & 1)
3629 {
3630 assert (("libev: io watcher list contains a loop", w != w2));
3631 w2 = w2->next;
3632 }
3633
3634 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3635 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3636 }
3637 }
3638
3639 assert (timermax >= timercnt);
3640 verify_heap (EV_A_ timers, timercnt);
3641
3642#if EV_PERIODIC_ENABLE
3643 assert (periodicmax >= periodiccnt);
3644 verify_heap (EV_A_ periodics, periodiccnt);
3645#endif
3646
3647 for (i = NUMPRI; i--; )
3648 {
3649 assert (pendingmax [i] >= pendingcnt [i]);
3650#if EV_IDLE_ENABLE
3651 assert (idleall >= 0);
3652 assert (idlemax [i] >= idlecnt [i]);
3653 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3654#endif
3655 }
3656
3657#if EV_FORK_ENABLE
3658 assert (forkmax >= forkcnt);
3659 array_verify (EV_A_ (W *)forks, forkcnt);
3660#endif
3661
3662#if EV_CLEANUP_ENABLE
3663 assert (cleanupmax >= cleanupcnt);
3664 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3665#endif
3666
1436#if EV_ASYNC_ENABLE 3667#if EV_ASYNC_ENABLE
1437 gotasync = 1; 3668 assert (asyncmax >= asynccnt);
3669 array_verify (EV_A_ (W *)asyncs, asynccnt);
3670#endif
3671
3672#if EV_PREPARE_ENABLE
3673 assert (preparemax >= preparecnt);
3674 array_verify (EV_A_ (W *)prepares, preparecnt);
3675#endif
3676
3677#if EV_CHECK_ENABLE
3678 assert (checkmax >= checkcnt);
3679 array_verify (EV_A_ (W *)checks, checkcnt);
3680#endif
3681
3682# if 0
3683#if EV_CHILD_ENABLE
3684 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3685 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3686#endif
1438#endif 3687# endif
1439
1440 ev_ref (EV_A);
1441 ev_io_stop (EV_A_ &pipeev);
1442
1443#if EV_USE_EVENTFD
1444 if (evfd >= 0)
1445 close (evfd);
1446#endif 3688#endif
1447
1448 if (evpipe [0] >= 0)
1449 {
1450 close (evpipe [0]);
1451 close (evpipe [1]);
1452 }
1453
1454 evpipe_init (EV_A);
1455 /* now iterate over everything, in case we missed something */
1456 pipecb (EV_A_ &pipeev, EV_READ);
1457 }
1458
1459 postfork = 0;
1460} 3689}
3690#endif
1461 3691
1462#if EV_MULTIPLICITY 3692#if EV_MULTIPLICITY
3693ecb_cold
1463struct ev_loop * 3694struct ev_loop *
1464ev_loop_new (unsigned int flags)
1465{
1466 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1467
1468 memset (loop, 0, sizeof (struct ev_loop));
1469
1470 loop_init (EV_A_ flags);
1471
1472 if (ev_backend (EV_A))
1473 return loop;
1474
1475 return 0;
1476}
1477
1478void
1479ev_loop_destroy (EV_P)
1480{
1481 loop_destroy (EV_A);
1482 ev_free (loop);
1483}
1484
1485void
1486ev_loop_fork (EV_P)
1487{
1488 postfork = 1; /* must be in line with ev_default_fork */
1489}
1490#endif
1491
1492#if EV_MULTIPLICITY
1493struct ev_loop *
1494ev_default_loop_init (unsigned int flags)
1495#else 3695#else
1496int 3696int
3697#endif
1497ev_default_loop (unsigned int flags) 3698ev_default_loop (unsigned int flags) EV_NOEXCEPT
1498#endif
1499{ 3699{
1500 if (!ev_default_loop_ptr) 3700 if (!ev_default_loop_ptr)
1501 { 3701 {
1502#if EV_MULTIPLICITY 3702#if EV_MULTIPLICITY
1503 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3703 EV_P = ev_default_loop_ptr = &default_loop_struct;
1504#else 3704#else
1505 ev_default_loop_ptr = 1; 3705 ev_default_loop_ptr = 1;
1506#endif 3706#endif
1507 3707
1508 loop_init (EV_A_ flags); 3708 loop_init (EV_A_ flags);
1509 3709
1510 if (ev_backend (EV_A)) 3710 if (ev_backend (EV_A))
1511 { 3711 {
1512#ifndef _WIN32 3712#if EV_CHILD_ENABLE
1513 ev_signal_init (&childev, childcb, SIGCHLD); 3713 ev_signal_init (&childev, childcb, SIGCHLD);
1514 ev_set_priority (&childev, EV_MAXPRI); 3714 ev_set_priority (&childev, EV_MAXPRI);
1515 ev_signal_start (EV_A_ &childev); 3715 ev_signal_start (EV_A_ &childev);
1516 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3716 ev_unref (EV_A); /* child watcher should not keep loop alive */
1517#endif 3717#endif
1522 3722
1523 return ev_default_loop_ptr; 3723 return ev_default_loop_ptr;
1524} 3724}
1525 3725
1526void 3726void
1527ev_default_destroy (void) 3727ev_loop_fork (EV_P) EV_NOEXCEPT
1528{ 3728{
1529#if EV_MULTIPLICITY 3729 postfork = 1;
1530 struct ev_loop *loop = ev_default_loop_ptr;
1531#endif
1532
1533#ifndef _WIN32
1534 ev_ref (EV_A); /* child watcher */
1535 ev_signal_stop (EV_A_ &childev);
1536#endif
1537
1538 loop_destroy (EV_A);
1539}
1540
1541void
1542ev_default_fork (void)
1543{
1544#if EV_MULTIPLICITY
1545 struct ev_loop *loop = ev_default_loop_ptr;
1546#endif
1547
1548 if (backend)
1549 postfork = 1; /* must be in line with ev_loop_fork */
1550} 3730}
1551 3731
1552/*****************************************************************************/ 3732/*****************************************************************************/
1553 3733
1554void 3734void
1555ev_invoke (EV_P_ void *w, int revents) 3735ev_invoke (EV_P_ void *w, int revents)
1556{ 3736{
1557 EV_CB_INVOKE ((W)w, revents); 3737 EV_CB_INVOKE ((W)w, revents);
1558} 3738}
1559 3739
1560void inline_speed 3740unsigned int
1561call_pending (EV_P) 3741ev_pending_count (EV_P) EV_NOEXCEPT
1562{ 3742{
1563 int pri; 3743 int pri;
3744 unsigned int count = 0;
1564 3745
1565 for (pri = NUMPRI; pri--; ) 3746 for (pri = NUMPRI; pri--; )
3747 count += pendingcnt [pri];
3748
3749 return count;
3750}
3751
3752ecb_noinline
3753void
3754ev_invoke_pending (EV_P)
3755{
3756 pendingpri = NUMPRI;
3757
3758 do
3759 {
3760 --pendingpri;
3761
3762 /* pendingpri possibly gets modified in the inner loop */
1566 while (pendingcnt [pri]) 3763 while (pendingcnt [pendingpri])
1567 {
1568 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1569
1570 if (expect_true (p->w))
1571 { 3764 {
1572 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 3765 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1573 3766
1574 p->w->pending = 0; 3767 p->w->pending = 0;
1575 EV_CB_INVOKE (p->w, p->events); 3768 EV_CB_INVOKE (p->w, p->events);
3769 EV_FREQUENT_CHECK;
1576 } 3770 }
1577 } 3771 }
3772 while (pendingpri);
1578} 3773}
1579 3774
1580#if EV_IDLE_ENABLE 3775#if EV_IDLE_ENABLE
1581void inline_size 3776/* make idle watchers pending. this handles the "call-idle */
3777/* only when higher priorities are idle" logic */
3778inline_size void
1582idle_reify (EV_P) 3779idle_reify (EV_P)
1583{ 3780{
1584 if (expect_false (idleall)) 3781 if (ecb_expect_false (idleall))
1585 { 3782 {
1586 int pri; 3783 int pri;
1587 3784
1588 for (pri = NUMPRI; pri--; ) 3785 for (pri = NUMPRI; pri--; )
1589 { 3786 {
1598 } 3795 }
1599 } 3796 }
1600} 3797}
1601#endif 3798#endif
1602 3799
1603void inline_size 3800/* make timers pending */
3801inline_size void
1604timers_reify (EV_P) 3802timers_reify (EV_P)
1605{ 3803{
3804 EV_FREQUENT_CHECK;
3805
1606 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 3806 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1607 { 3807 {
1608 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 3808 do
1609
1610 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1611
1612 /* first reschedule or stop timer */
1613 if (w->repeat)
1614 { 3809 {
3810 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3811
3812 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3813
3814 /* first reschedule or stop timer */
3815 if (w->repeat)
3816 {
1615 ev_at (w) += w->repeat; 3817 ev_at (w) += w->repeat;
1616 if (ev_at (w) < mn_now) 3818 if (ev_at (w) < mn_now)
1617 ev_at (w) = mn_now; 3819 ev_at (w) = mn_now;
1618 3820
1619 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3821 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > EV_TS_CONST (0.)));
1620 3822
1621 ANHE_at_set (timers [HEAP0]); 3823 ANHE_at_cache (timers [HEAP0]);
1622 downheap (timers, timercnt, HEAP0); 3824 downheap (timers, timercnt, HEAP0);
3825 }
3826 else
3827 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3828
3829 EV_FREQUENT_CHECK;
3830 feed_reverse (EV_A_ (W)w);
1623 } 3831 }
1624 else 3832 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1625 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1626 3833
1627 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 3834 feed_reverse_done (EV_A_ EV_TIMER);
1628 } 3835 }
1629} 3836}
1630 3837
1631#if EV_PERIODIC_ENABLE 3838#if EV_PERIODIC_ENABLE
1632void inline_size 3839
3840ecb_noinline
3841static void
3842periodic_recalc (EV_P_ ev_periodic *w)
3843{
3844 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3845 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3846
3847 /* the above almost always errs on the low side */
3848 while (at <= ev_rt_now)
3849 {
3850 ev_tstamp nat = at + w->interval;
3851
3852 /* when resolution fails us, we use ev_rt_now */
3853 if (ecb_expect_false (nat == at))
3854 {
3855 at = ev_rt_now;
3856 break;
3857 }
3858
3859 at = nat;
3860 }
3861
3862 ev_at (w) = at;
3863}
3864
3865/* make periodics pending */
3866inline_size void
1633periodics_reify (EV_P) 3867periodics_reify (EV_P)
1634{ 3868{
3869 EV_FREQUENT_CHECK;
3870
1635 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 3871 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1636 { 3872 {
1637 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 3873 do
1638
1639 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1640
1641 /* first reschedule or stop timer */
1642 if (w->reschedule_cb)
1643 { 3874 {
3875 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3876
3877 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3878
3879 /* first reschedule or stop timer */
3880 if (w->reschedule_cb)
3881 {
1644 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3882 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1645 3883
1646 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 3884 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1647 3885
1648 ANHE_at_set (periodics [HEAP0]); 3886 ANHE_at_cache (periodics [HEAP0]);
1649 downheap (periodics, periodiccnt, HEAP0); 3887 downheap (periodics, periodiccnt, HEAP0);
3888 }
3889 else if (w->interval)
3890 {
3891 periodic_recalc (EV_A_ w);
3892 ANHE_at_cache (periodics [HEAP0]);
3893 downheap (periodics, periodiccnt, HEAP0);
3894 }
3895 else
3896 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3897
3898 EV_FREQUENT_CHECK;
3899 feed_reverse (EV_A_ (W)w);
1650 } 3900 }
1651 else if (w->interval) 3901 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1652 {
1653 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1654 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1655 3902
1656 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) >= ev_rt_now));
1657
1658 ANHE_at_set (periodics [HEAP0]);
1659 downheap (periodics, periodiccnt, HEAP0);
1660 }
1661 else
1662 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1663
1664 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 3903 feed_reverse_done (EV_A_ EV_PERIODIC);
1665 } 3904 }
1666} 3905}
1667 3906
1668static void noinline 3907/* simply recalculate all periodics */
3908/* TODO: maybe ensure that at least one event happens when jumping forward? */
3909ecb_noinline ecb_cold
3910static void
1669periodics_reschedule (EV_P) 3911periodics_reschedule (EV_P)
1670{ 3912{
1671 int i; 3913 int i;
1672 3914
1673 /* adjust periodics after time jump */ 3915 /* adjust periodics after time jump */
1676 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 3918 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1677 3919
1678 if (w->reschedule_cb) 3920 if (w->reschedule_cb)
1679 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3921 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1680 else if (w->interval) 3922 else if (w->interval)
1681 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 3923 periodic_recalc (EV_A_ w);
1682 3924
1683 ANHE_at_set (periodics [i]); 3925 ANHE_at_cache (periodics [i]);
1684 } 3926 }
1685 3927
1686 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */ 3928 reheap (periodics, periodiccnt);
1687 /* also, this is easy and corretc for both 2-heaps and 4-heaps */ 3929}
3930#endif
3931
3932/* adjust all timers by a given offset */
3933ecb_noinline ecb_cold
3934static void
3935timers_reschedule (EV_P_ ev_tstamp adjust)
3936{
3937 int i;
3938
1688 for (i = 0; i < periodiccnt; ++i) 3939 for (i = 0; i < timercnt; ++i)
1689 upheap (periodics, i + HEAP0); 3940 {
3941 ANHE *he = timers + i + HEAP0;
3942 ANHE_w (*he)->at += adjust;
3943 ANHE_at_cache (*he);
3944 }
1690} 3945}
1691#endif
1692 3946
1693void inline_speed 3947/* fetch new monotonic and realtime times from the kernel */
3948/* also detect if there was a timejump, and act accordingly */
3949inline_speed void
1694time_update (EV_P_ ev_tstamp max_block) 3950time_update (EV_P_ ev_tstamp max_block)
1695{ 3951{
1696 int i;
1697
1698#if EV_USE_MONOTONIC 3952#if EV_USE_MONOTONIC
1699 if (expect_true (have_monotonic)) 3953 if (ecb_expect_true (have_monotonic))
1700 { 3954 {
3955 int i;
1701 ev_tstamp odiff = rtmn_diff; 3956 ev_tstamp odiff = rtmn_diff;
1702 3957
1703 mn_now = get_clock (); 3958 mn_now = get_clock ();
1704 3959
1705 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3960 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1706 /* interpolate in the meantime */ 3961 /* interpolate in the meantime */
1707 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 3962 if (ecb_expect_true (mn_now - now_floor < EV_TS_CONST (MIN_TIMEJUMP * .5)))
1708 { 3963 {
1709 ev_rt_now = rtmn_diff + mn_now; 3964 ev_rt_now = rtmn_diff + mn_now;
1710 return; 3965 return;
1711 } 3966 }
1712 3967
1721 * doesn't hurt either as we only do this on time-jumps or 3976 * doesn't hurt either as we only do this on time-jumps or
1722 * in the unlikely event of having been preempted here. 3977 * in the unlikely event of having been preempted here.
1723 */ 3978 */
1724 for (i = 4; --i; ) 3979 for (i = 4; --i; )
1725 { 3980 {
3981 ev_tstamp diff;
1726 rtmn_diff = ev_rt_now - mn_now; 3982 rtmn_diff = ev_rt_now - mn_now;
1727 3983
1728 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 3984 diff = odiff - rtmn_diff;
3985
3986 if (ecb_expect_true ((diff < EV_TS_CONST (0.) ? -diff : diff) < EV_TS_CONST (MIN_TIMEJUMP)))
1729 return; /* all is well */ 3987 return; /* all is well */
1730 3988
1731 ev_rt_now = ev_time (); 3989 ev_rt_now = ev_time ();
1732 mn_now = get_clock (); 3990 mn_now = get_clock ();
1733 now_floor = mn_now; 3991 now_floor = mn_now;
1734 } 3992 }
1735 3993
3994 /* no timer adjustment, as the monotonic clock doesn't jump */
3995 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1736# if EV_PERIODIC_ENABLE 3996# if EV_PERIODIC_ENABLE
1737 periodics_reschedule (EV_A); 3997 periodics_reschedule (EV_A);
1738# endif 3998# endif
1739 /* no timer adjustment, as the monotonic clock doesn't jump */
1740 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1741 } 3999 }
1742 else 4000 else
1743#endif 4001#endif
1744 { 4002 {
1745 ev_rt_now = ev_time (); 4003 ev_rt_now = ev_time ();
1746 4004
1747 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 4005 if (ecb_expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + EV_TS_CONST (MIN_TIMEJUMP)))
1748 { 4006 {
4007 /* adjust timers. this is easy, as the offset is the same for all of them */
4008 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1749#if EV_PERIODIC_ENABLE 4009#if EV_PERIODIC_ENABLE
1750 periodics_reschedule (EV_A); 4010 periodics_reschedule (EV_A);
1751#endif 4011#endif
1752 /* adjust timers. this is easy, as the offset is the same for all of them */
1753 for (i = 0; i < timercnt; ++i)
1754 {
1755 ANHE *he = timers + i + HEAP0;
1756 ANHE_w (*he)->at += ev_rt_now - mn_now;
1757 ANHE_at_set (*he);
1758 }
1759 } 4012 }
1760 4013
1761 mn_now = ev_rt_now; 4014 mn_now = ev_rt_now;
1762 } 4015 }
1763} 4016}
1764 4017
1765void 4018int
1766ev_ref (EV_P)
1767{
1768 ++activecnt;
1769}
1770
1771void
1772ev_unref (EV_P)
1773{
1774 --activecnt;
1775}
1776
1777static int loop_done;
1778
1779void
1780ev_loop (EV_P_ int flags) 4019ev_run (EV_P_ int flags)
1781{ 4020{
4021#if EV_FEATURE_API
4022 ++loop_depth;
4023#endif
4024
4025 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
4026
1782 loop_done = EVUNLOOP_CANCEL; 4027 loop_done = EVBREAK_CANCEL;
1783 4028
1784 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 4029 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1785 4030
1786 do 4031 do
1787 { 4032 {
4033#if EV_VERIFY >= 2
4034 ev_verify (EV_A);
4035#endif
4036
1788#ifndef _WIN32 4037#ifndef _WIN32
1789 if (expect_false (curpid)) /* penalise the forking check even more */ 4038 if (ecb_expect_false (curpid)) /* penalise the forking check even more */
1790 if (expect_false (getpid () != curpid)) 4039 if (ecb_expect_false (getpid () != curpid))
1791 { 4040 {
1792 curpid = getpid (); 4041 curpid = getpid ();
1793 postfork = 1; 4042 postfork = 1;
1794 } 4043 }
1795#endif 4044#endif
1796 4045
1797#if EV_FORK_ENABLE 4046#if EV_FORK_ENABLE
1798 /* we might have forked, so queue fork handlers */ 4047 /* we might have forked, so queue fork handlers */
1799 if (expect_false (postfork)) 4048 if (ecb_expect_false (postfork))
1800 if (forkcnt) 4049 if (forkcnt)
1801 { 4050 {
1802 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 4051 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1803 call_pending (EV_A); 4052 EV_INVOKE_PENDING;
1804 } 4053 }
1805#endif 4054#endif
1806 4055
4056#if EV_PREPARE_ENABLE
1807 /* queue prepare watchers (and execute them) */ 4057 /* queue prepare watchers (and execute them) */
1808 if (expect_false (preparecnt)) 4058 if (ecb_expect_false (preparecnt))
1809 { 4059 {
1810 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 4060 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1811 call_pending (EV_A); 4061 EV_INVOKE_PENDING;
1812 } 4062 }
4063#endif
1813 4064
1814 if (expect_false (!activecnt)) 4065 if (ecb_expect_false (loop_done))
1815 break; 4066 break;
1816 4067
1817 /* we might have forked, so reify kernel state if necessary */ 4068 /* we might have forked, so reify kernel state if necessary */
1818 if (expect_false (postfork)) 4069 if (ecb_expect_false (postfork))
1819 loop_fork (EV_A); 4070 loop_fork (EV_A);
1820 4071
1821 /* update fd-related kernel structures */ 4072 /* update fd-related kernel structures */
1822 fd_reify (EV_A); 4073 fd_reify (EV_A);
1823 4074
1824 /* calculate blocking time */ 4075 /* calculate blocking time */
1825 { 4076 {
1826 ev_tstamp waittime = 0.; 4077 ev_tstamp waittime = 0.;
1827 ev_tstamp sleeptime = 0.; 4078 ev_tstamp sleeptime = 0.;
1828 4079
4080 /* remember old timestamp for io_blocktime calculation */
4081 ev_tstamp prev_mn_now = mn_now;
4082
4083 /* update time to cancel out callback processing overhead */
4084 time_update (EV_A_ EV_TS_CONST (EV_TSTAMP_HUGE));
4085
4086 /* from now on, we want a pipe-wake-up */
4087 pipe_write_wanted = 1;
4088
4089 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
4090
1829 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 4091 if (ecb_expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1830 { 4092 {
1831 /* update time to cancel out callback processing overhead */
1832 time_update (EV_A_ 1e100);
1833
1834 waittime = MAX_BLOCKTIME; 4093 waittime = EV_TS_CONST (MAX_BLOCKTIME);
4094
4095#if EV_USE_TIMERFD
4096 /* sleep a lot longer when we can reliably detect timejumps */
4097 if (ecb_expect_true (timerfd >= 0))
4098 waittime = EV_TS_CONST (MAX_BLOCKTIME2);
4099#endif
1835 4100
1836 if (timercnt) 4101 if (timercnt)
1837 { 4102 {
1838 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 4103 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1839 if (waittime > to) waittime = to; 4104 if (waittime > to) waittime = to;
1840 } 4105 }
1841 4106
1842#if EV_PERIODIC_ENABLE 4107#if EV_PERIODIC_ENABLE
1843 if (periodiccnt) 4108 if (periodiccnt)
1844 { 4109 {
1845 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 4110 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1846 if (waittime > to) waittime = to; 4111 if (waittime > to) waittime = to;
1847 } 4112 }
1848#endif 4113#endif
1849 4114
4115 /* don't let timeouts decrease the waittime below timeout_blocktime */
1850 if (expect_false (waittime < timeout_blocktime)) 4116 if (ecb_expect_false (waittime < timeout_blocktime))
1851 waittime = timeout_blocktime; 4117 waittime = timeout_blocktime;
1852 4118
1853 sleeptime = waittime - backend_fudge; 4119 /* now there are two more special cases left, either we have
4120 * already-expired timers, so we should not sleep, or we have timers
4121 * that expire very soon, in which case we need to wait for a minimum
4122 * amount of time for some event loop backends.
4123 */
4124 if (ecb_expect_false (waittime < backend_mintime))
4125 waittime = waittime <= EV_TS_CONST (0.)
4126 ? EV_TS_CONST (0.)
4127 : backend_mintime;
1854 4128
4129 /* extra check because io_blocktime is commonly 0 */
1855 if (expect_true (sleeptime > io_blocktime)) 4130 if (ecb_expect_false (io_blocktime))
1856 sleeptime = io_blocktime;
1857
1858 if (sleeptime)
1859 { 4131 {
4132 sleeptime = io_blocktime - (mn_now - prev_mn_now);
4133
4134 if (sleeptime > waittime - backend_mintime)
4135 sleeptime = waittime - backend_mintime;
4136
4137 if (ecb_expect_true (sleeptime > EV_TS_CONST (0.)))
4138 {
1860 ev_sleep (sleeptime); 4139 ev_sleep (sleeptime);
1861 waittime -= sleeptime; 4140 waittime -= sleeptime;
4141 }
1862 } 4142 }
1863 } 4143 }
1864 4144
4145#if EV_FEATURE_API
1865 ++loop_count; 4146 ++loop_count;
4147#endif
4148 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1866 backend_poll (EV_A_ waittime); 4149 backend_poll (EV_A_ waittime);
4150 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
4151
4152 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
4153
4154 ECB_MEMORY_FENCE_ACQUIRE;
4155 if (pipe_write_skipped)
4156 {
4157 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
4158 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
4159 }
1867 4160
1868 /* update ev_rt_now, do magic */ 4161 /* update ev_rt_now, do magic */
1869 time_update (EV_A_ waittime + sleeptime); 4162 time_update (EV_A_ waittime + sleeptime);
1870 } 4163 }
1871 4164
1878#if EV_IDLE_ENABLE 4171#if EV_IDLE_ENABLE
1879 /* queue idle watchers unless other events are pending */ 4172 /* queue idle watchers unless other events are pending */
1880 idle_reify (EV_A); 4173 idle_reify (EV_A);
1881#endif 4174#endif
1882 4175
4176#if EV_CHECK_ENABLE
1883 /* queue check watchers, to be executed first */ 4177 /* queue check watchers, to be executed first */
1884 if (expect_false (checkcnt)) 4178 if (ecb_expect_false (checkcnt))
1885 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 4179 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
4180#endif
1886 4181
1887 call_pending (EV_A); 4182 EV_INVOKE_PENDING;
1888 } 4183 }
1889 while (expect_true ( 4184 while (ecb_expect_true (
1890 activecnt 4185 activecnt
1891 && !loop_done 4186 && !loop_done
1892 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 4187 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1893 )); 4188 ));
1894 4189
1895 if (loop_done == EVUNLOOP_ONE) 4190 if (loop_done == EVBREAK_ONE)
1896 loop_done = EVUNLOOP_CANCEL; 4191 loop_done = EVBREAK_CANCEL;
4192
4193#if EV_FEATURE_API
4194 --loop_depth;
4195#endif
4196
4197 return activecnt;
1897} 4198}
1898 4199
1899void 4200void
1900ev_unloop (EV_P_ int how) 4201ev_break (EV_P_ int how) EV_NOEXCEPT
1901{ 4202{
1902 loop_done = how; 4203 loop_done = how;
1903} 4204}
1904 4205
4206void
4207ev_ref (EV_P) EV_NOEXCEPT
4208{
4209 ++activecnt;
4210}
4211
4212void
4213ev_unref (EV_P) EV_NOEXCEPT
4214{
4215 --activecnt;
4216}
4217
4218void
4219ev_now_update (EV_P) EV_NOEXCEPT
4220{
4221 time_update (EV_A_ EV_TSTAMP_HUGE);
4222}
4223
4224void
4225ev_suspend (EV_P) EV_NOEXCEPT
4226{
4227 ev_now_update (EV_A);
4228}
4229
4230void
4231ev_resume (EV_P) EV_NOEXCEPT
4232{
4233 ev_tstamp mn_prev = mn_now;
4234
4235 ev_now_update (EV_A);
4236 timers_reschedule (EV_A_ mn_now - mn_prev);
4237#if EV_PERIODIC_ENABLE
4238 /* TODO: really do this? */
4239 periodics_reschedule (EV_A);
4240#endif
4241}
4242
1905/*****************************************************************************/ 4243/*****************************************************************************/
4244/* singly-linked list management, used when the expected list length is short */
1906 4245
1907void inline_size 4246inline_size void
1908wlist_add (WL *head, WL elem) 4247wlist_add (WL *head, WL elem)
1909{ 4248{
1910 elem->next = *head; 4249 elem->next = *head;
1911 *head = elem; 4250 *head = elem;
1912} 4251}
1913 4252
1914void inline_size 4253inline_size void
1915wlist_del (WL *head, WL elem) 4254wlist_del (WL *head, WL elem)
1916{ 4255{
1917 while (*head) 4256 while (*head)
1918 { 4257 {
1919 if (*head == elem) 4258 if (ecb_expect_true (*head == elem))
1920 { 4259 {
1921 *head = elem->next; 4260 *head = elem->next;
1922 return; 4261 break;
1923 } 4262 }
1924 4263
1925 head = &(*head)->next; 4264 head = &(*head)->next;
1926 } 4265 }
1927} 4266}
1928 4267
1929void inline_speed 4268/* internal, faster, version of ev_clear_pending */
4269inline_speed void
1930clear_pending (EV_P_ W w) 4270clear_pending (EV_P_ W w)
1931{ 4271{
1932 if (w->pending) 4272 if (w->pending)
1933 { 4273 {
1934 pendings [ABSPRI (w)][w->pending - 1].w = 0; 4274 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1935 w->pending = 0; 4275 w->pending = 0;
1936 } 4276 }
1937} 4277}
1938 4278
1939int 4279int
1940ev_clear_pending (EV_P_ void *w) 4280ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
1941{ 4281{
1942 W w_ = (W)w; 4282 W w_ = (W)w;
1943 int pending = w_->pending; 4283 int pending = w_->pending;
1944 4284
1945 if (expect_true (pending)) 4285 if (ecb_expect_true (pending))
1946 { 4286 {
1947 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 4287 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
4288 p->w = (W)&pending_w;
1948 w_->pending = 0; 4289 w_->pending = 0;
1949 p->w = 0;
1950 return p->events; 4290 return p->events;
1951 } 4291 }
1952 else 4292 else
1953 return 0; 4293 return 0;
1954} 4294}
1955 4295
1956void inline_size 4296inline_size void
1957pri_adjust (EV_P_ W w) 4297pri_adjust (EV_P_ W w)
1958{ 4298{
1959 int pri = w->priority; 4299 int pri = ev_priority (w);
1960 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 4300 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1961 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 4301 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1962 w->priority = pri; 4302 ev_set_priority (w, pri);
1963} 4303}
1964 4304
1965void inline_speed 4305inline_speed void
1966ev_start (EV_P_ W w, int active) 4306ev_start (EV_P_ W w, int active)
1967{ 4307{
1968 pri_adjust (EV_A_ w); 4308 pri_adjust (EV_A_ w);
1969 w->active = active; 4309 w->active = active;
1970 ev_ref (EV_A); 4310 ev_ref (EV_A);
1971} 4311}
1972 4312
1973void inline_size 4313inline_size void
1974ev_stop (EV_P_ W w) 4314ev_stop (EV_P_ W w)
1975{ 4315{
1976 ev_unref (EV_A); 4316 ev_unref (EV_A);
1977 w->active = 0; 4317 w->active = 0;
1978} 4318}
1979 4319
1980/*****************************************************************************/ 4320/*****************************************************************************/
1981 4321
1982void noinline 4322ecb_noinline
4323void
1983ev_io_start (EV_P_ ev_io *w) 4324ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
1984{ 4325{
1985 int fd = w->fd; 4326 int fd = w->fd;
1986 4327
1987 if (expect_false (ev_is_active (w))) 4328 if (ecb_expect_false (ev_is_active (w)))
1988 return; 4329 return;
1989 4330
1990 assert (("ev_io_start called with negative fd", fd >= 0)); 4331 assert (("libev: ev_io_start called with negative fd", fd >= 0));
4332 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
4333
4334#if EV_VERIFY >= 2
4335 assert (("libev: ev_io_start called on watcher with invalid fd", fd_valid (fd)));
4336#endif
4337 EV_FREQUENT_CHECK;
1991 4338
1992 ev_start (EV_A_ (W)w, 1); 4339 ev_start (EV_A_ (W)w, 1);
1993 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 4340 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
1994 wlist_add (&anfds[fd].head, (WL)w); 4341 wlist_add (&anfds[fd].head, (WL)w);
1995 4342
4343 /* common bug, apparently */
4344 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
4345
1996 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 4346 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1997 w->events &= ~EV_IOFDSET; 4347 w->events &= ~EV__IOFDSET;
1998}
1999 4348
2000void noinline 4349 EV_FREQUENT_CHECK;
4350}
4351
4352ecb_noinline
4353void
2001ev_io_stop (EV_P_ ev_io *w) 4354ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
2002{ 4355{
2003 clear_pending (EV_A_ (W)w); 4356 clear_pending (EV_A_ (W)w);
2004 if (expect_false (!ev_is_active (w))) 4357 if (ecb_expect_false (!ev_is_active (w)))
2005 return; 4358 return;
2006 4359
2007 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 4360 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
4361
4362#if EV_VERIFY >= 2
4363 assert (("libev: ev_io_stop called on watcher with invalid fd", fd_valid (w->fd)));
4364#endif
4365 EV_FREQUENT_CHECK;
2008 4366
2009 wlist_del (&anfds[w->fd].head, (WL)w); 4367 wlist_del (&anfds[w->fd].head, (WL)w);
2010 ev_stop (EV_A_ (W)w); 4368 ev_stop (EV_A_ (W)w);
2011 4369
2012 fd_change (EV_A_ w->fd, 1); 4370 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2013}
2014 4371
2015void noinline 4372 EV_FREQUENT_CHECK;
4373}
4374
4375ecb_noinline
4376void
2016ev_timer_start (EV_P_ ev_timer *w) 4377ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
2017{ 4378{
2018 if (expect_false (ev_is_active (w))) 4379 if (ecb_expect_false (ev_is_active (w)))
2019 return; 4380 return;
2020 4381
2021 ev_at (w) += mn_now; 4382 ev_at (w) += mn_now;
2022 4383
2023 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 4384 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2024 4385
4386 EV_FREQUENT_CHECK;
4387
4388 ++timercnt;
2025 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 4389 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2026 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 4390 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
2027 ANHE_w (timers [ev_active (w)]) = (WT)w; 4391 ANHE_w (timers [ev_active (w)]) = (WT)w;
2028 ANHE_at_set (timers [ev_active (w)]); 4392 ANHE_at_cache (timers [ev_active (w)]);
2029 upheap (timers, ev_active (w)); 4393 upheap (timers, ev_active (w));
2030 4394
4395 EV_FREQUENT_CHECK;
4396
2031 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 4397 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2032} 4398}
2033 4399
2034void noinline 4400ecb_noinline
4401void
2035ev_timer_stop (EV_P_ ev_timer *w) 4402ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
2036{ 4403{
2037 clear_pending (EV_A_ (W)w); 4404 clear_pending (EV_A_ (W)w);
2038 if (expect_false (!ev_is_active (w))) 4405 if (ecb_expect_false (!ev_is_active (w)))
2039 return; 4406 return;
4407
4408 EV_FREQUENT_CHECK;
2040 4409
2041 { 4410 {
2042 int active = ev_active (w); 4411 int active = ev_active (w);
2043 4412
2044 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 4413 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2045 4414
4415 --timercnt;
4416
2046 if (expect_true (active < timercnt + HEAP0 - 1)) 4417 if (ecb_expect_true (active < timercnt + HEAP0))
2047 { 4418 {
2048 timers [active] = timers [timercnt + HEAP0 - 1]; 4419 timers [active] = timers [timercnt + HEAP0];
2049 adjustheap (timers, timercnt, active); 4420 adjustheap (timers, timercnt, active);
2050 } 4421 }
2051
2052 --timercnt;
2053 } 4422 }
2054 4423
2055 ev_at (w) -= mn_now; 4424 ev_at (w) -= mn_now;
2056 4425
2057 ev_stop (EV_A_ (W)w); 4426 ev_stop (EV_A_ (W)w);
2058}
2059 4427
2060void noinline 4428 EV_FREQUENT_CHECK;
4429}
4430
4431ecb_noinline
4432void
2061ev_timer_again (EV_P_ ev_timer *w) 4433ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
2062{ 4434{
4435 EV_FREQUENT_CHECK;
4436
4437 clear_pending (EV_A_ (W)w);
4438
2063 if (ev_is_active (w)) 4439 if (ev_is_active (w))
2064 { 4440 {
2065 if (w->repeat) 4441 if (w->repeat)
2066 { 4442 {
2067 ev_at (w) = mn_now + w->repeat; 4443 ev_at (w) = mn_now + w->repeat;
2068 ANHE_at_set (timers [ev_active (w)]); 4444 ANHE_at_cache (timers [ev_active (w)]);
2069 adjustheap (timers, timercnt, ev_active (w)); 4445 adjustheap (timers, timercnt, ev_active (w));
2070 } 4446 }
2071 else 4447 else
2072 ev_timer_stop (EV_A_ w); 4448 ev_timer_stop (EV_A_ w);
2073 } 4449 }
2074 else if (w->repeat) 4450 else if (w->repeat)
2075 { 4451 {
2076 ev_at (w) = w->repeat; 4452 ev_at (w) = w->repeat;
2077 ev_timer_start (EV_A_ w); 4453 ev_timer_start (EV_A_ w);
2078 } 4454 }
4455
4456 EV_FREQUENT_CHECK;
4457}
4458
4459ev_tstamp
4460ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4461{
4462 return ev_at (w) - (ev_is_active (w) ? mn_now : EV_TS_CONST (0.));
2079} 4463}
2080 4464
2081#if EV_PERIODIC_ENABLE 4465#if EV_PERIODIC_ENABLE
2082void noinline 4466ecb_noinline
4467void
2083ev_periodic_start (EV_P_ ev_periodic *w) 4468ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
2084{ 4469{
2085 if (expect_false (ev_is_active (w))) 4470 if (ecb_expect_false (ev_is_active (w)))
2086 return; 4471 return;
4472
4473#if EV_USE_TIMERFD
4474 if (timerfd == -2)
4475 evtimerfd_init (EV_A);
4476#endif
2087 4477
2088 if (w->reschedule_cb) 4478 if (w->reschedule_cb)
2089 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 4479 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2090 else if (w->interval) 4480 else if (w->interval)
2091 { 4481 {
2092 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 4482 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2093 /* this formula differs from the one in periodic_reify because we do not always round up */ 4483 periodic_recalc (EV_A_ w);
2094 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2095 } 4484 }
2096 else 4485 else
2097 ev_at (w) = w->offset; 4486 ev_at (w) = w->offset;
2098 4487
4488 EV_FREQUENT_CHECK;
4489
4490 ++periodiccnt;
2099 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 4491 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2100 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 4492 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
2101 ANHE_w (periodics [ev_active (w)]) = (WT)w; 4493 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2102 ANHE_at_set (periodics [ev_active (w)]); 4494 ANHE_at_cache (periodics [ev_active (w)]);
2103 upheap (periodics, ev_active (w)); 4495 upheap (periodics, ev_active (w));
2104 4496
4497 EV_FREQUENT_CHECK;
4498
2105 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 4499 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2106} 4500}
2107 4501
2108void noinline 4502ecb_noinline
4503void
2109ev_periodic_stop (EV_P_ ev_periodic *w) 4504ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
2110{ 4505{
2111 clear_pending (EV_A_ (W)w); 4506 clear_pending (EV_A_ (W)w);
2112 if (expect_false (!ev_is_active (w))) 4507 if (ecb_expect_false (!ev_is_active (w)))
2113 return; 4508 return;
4509
4510 EV_FREQUENT_CHECK;
2114 4511
2115 { 4512 {
2116 int active = ev_active (w); 4513 int active = ev_active (w);
2117 4514
2118 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 4515 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2119 4516
4517 --periodiccnt;
4518
2120 if (expect_true (active < periodiccnt + HEAP0 - 1)) 4519 if (ecb_expect_true (active < periodiccnt + HEAP0))
2121 { 4520 {
2122 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 4521 periodics [active] = periodics [periodiccnt + HEAP0];
2123 adjustheap (periodics, periodiccnt, active); 4522 adjustheap (periodics, periodiccnt, active);
2124 } 4523 }
2125
2126 --periodiccnt;
2127 } 4524 }
2128 4525
2129 ev_stop (EV_A_ (W)w); 4526 ev_stop (EV_A_ (W)w);
2130}
2131 4527
2132void noinline 4528 EV_FREQUENT_CHECK;
4529}
4530
4531ecb_noinline
4532void
2133ev_periodic_again (EV_P_ ev_periodic *w) 4533ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
2134{ 4534{
2135 /* TODO: use adjustheap and recalculation */ 4535 /* TODO: use adjustheap and recalculation */
2136 ev_periodic_stop (EV_A_ w); 4536 ev_periodic_stop (EV_A_ w);
2137 ev_periodic_start (EV_A_ w); 4537 ev_periodic_start (EV_A_ w);
2138} 4538}
2140 4540
2141#ifndef SA_RESTART 4541#ifndef SA_RESTART
2142# define SA_RESTART 0 4542# define SA_RESTART 0
2143#endif 4543#endif
2144 4544
2145void noinline 4545#if EV_SIGNAL_ENABLE
4546
4547ecb_noinline
4548void
2146ev_signal_start (EV_P_ ev_signal *w) 4549ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
2147{ 4550{
4551 if (ecb_expect_false (ev_is_active (w)))
4552 return;
4553
4554 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4555
2148#if EV_MULTIPLICITY 4556#if EV_MULTIPLICITY
2149 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4557 assert (("libev: a signal must not be attached to two different loops",
2150#endif 4558 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2151 if (expect_false (ev_is_active (w)))
2152 return;
2153 4559
2154 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 4560 signals [w->signum - 1].loop = EV_A;
4561 ECB_MEMORY_FENCE_RELEASE;
4562#endif
2155 4563
2156 evpipe_init (EV_A); 4564 EV_FREQUENT_CHECK;
2157 4565
4566#if EV_USE_SIGNALFD
4567 if (sigfd == -2)
2158 { 4568 {
2159#ifndef _WIN32 4569 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2160 sigset_t full, prev; 4570 if (sigfd < 0 && errno == EINVAL)
2161 sigfillset (&full); 4571 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2162 sigprocmask (SIG_SETMASK, &full, &prev);
2163#endif
2164 4572
2165 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 4573 if (sigfd >= 0)
4574 {
4575 fd_intern (sigfd); /* doing it twice will not hurt */
2166 4576
2167#ifndef _WIN32 4577 sigemptyset (&sigfd_set);
2168 sigprocmask (SIG_SETMASK, &prev, 0); 4578
2169#endif 4579 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4580 ev_set_priority (&sigfd_w, EV_MAXPRI);
4581 ev_io_start (EV_A_ &sigfd_w);
4582 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4583 }
2170 } 4584 }
4585
4586 if (sigfd >= 0)
4587 {
4588 /* TODO: check .head */
4589 sigaddset (&sigfd_set, w->signum);
4590 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4591
4592 signalfd (sigfd, &sigfd_set, 0);
4593 }
4594#endif
2171 4595
2172 ev_start (EV_A_ (W)w, 1); 4596 ev_start (EV_A_ (W)w, 1);
2173 wlist_add (&signals [w->signum - 1].head, (WL)w); 4597 wlist_add (&signals [w->signum - 1].head, (WL)w);
2174 4598
2175 if (!((WL)w)->next) 4599 if (!((WL)w)->next)
4600# if EV_USE_SIGNALFD
4601 if (sigfd < 0) /*TODO*/
4602# endif
2176 { 4603 {
2177#if _WIN32 4604# ifdef _WIN32
4605 evpipe_init (EV_A);
4606
2178 signal (w->signum, ev_sighandler); 4607 signal (w->signum, ev_sighandler);
2179#else 4608# else
2180 struct sigaction sa; 4609 struct sigaction sa;
4610
4611 evpipe_init (EV_A);
4612
2181 sa.sa_handler = ev_sighandler; 4613 sa.sa_handler = ev_sighandler;
2182 sigfillset (&sa.sa_mask); 4614 sigfillset (&sa.sa_mask);
2183 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 4615 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2184 sigaction (w->signum, &sa, 0); 4616 sigaction (w->signum, &sa, 0);
4617
4618 if (origflags & EVFLAG_NOSIGMASK)
4619 {
4620 sigemptyset (&sa.sa_mask);
4621 sigaddset (&sa.sa_mask, w->signum);
4622 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4623 }
2185#endif 4624#endif
2186 } 4625 }
2187}
2188 4626
2189void noinline 4627 EV_FREQUENT_CHECK;
4628}
4629
4630ecb_noinline
4631void
2190ev_signal_stop (EV_P_ ev_signal *w) 4632ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
2191{ 4633{
2192 clear_pending (EV_A_ (W)w); 4634 clear_pending (EV_A_ (W)w);
2193 if (expect_false (!ev_is_active (w))) 4635 if (ecb_expect_false (!ev_is_active (w)))
2194 return; 4636 return;
4637
4638 EV_FREQUENT_CHECK;
2195 4639
2196 wlist_del (&signals [w->signum - 1].head, (WL)w); 4640 wlist_del (&signals [w->signum - 1].head, (WL)w);
2197 ev_stop (EV_A_ (W)w); 4641 ev_stop (EV_A_ (W)w);
2198 4642
2199 if (!signals [w->signum - 1].head) 4643 if (!signals [w->signum - 1].head)
4644 {
4645#if EV_MULTIPLICITY
4646 signals [w->signum - 1].loop = 0; /* unattach from signal */
4647#endif
4648#if EV_USE_SIGNALFD
4649 if (sigfd >= 0)
4650 {
4651 sigset_t ss;
4652
4653 sigemptyset (&ss);
4654 sigaddset (&ss, w->signum);
4655 sigdelset (&sigfd_set, w->signum);
4656
4657 signalfd (sigfd, &sigfd_set, 0);
4658 sigprocmask (SIG_UNBLOCK, &ss, 0);
4659 }
4660 else
4661#endif
2200 signal (w->signum, SIG_DFL); 4662 signal (w->signum, SIG_DFL);
4663 }
4664
4665 EV_FREQUENT_CHECK;
2201} 4666}
4667
4668#endif
4669
4670#if EV_CHILD_ENABLE
2202 4671
2203void 4672void
2204ev_child_start (EV_P_ ev_child *w) 4673ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
2205{ 4674{
2206#if EV_MULTIPLICITY 4675#if EV_MULTIPLICITY
2207 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4676 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2208#endif 4677#endif
2209 if (expect_false (ev_is_active (w))) 4678 if (ecb_expect_false (ev_is_active (w)))
2210 return; 4679 return;
2211 4680
4681 EV_FREQUENT_CHECK;
4682
2212 ev_start (EV_A_ (W)w, 1); 4683 ev_start (EV_A_ (W)w, 1);
2213 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4684 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4685
4686 EV_FREQUENT_CHECK;
2214} 4687}
2215 4688
2216void 4689void
2217ev_child_stop (EV_P_ ev_child *w) 4690ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
2218{ 4691{
2219 clear_pending (EV_A_ (W)w); 4692 clear_pending (EV_A_ (W)w);
2220 if (expect_false (!ev_is_active (w))) 4693 if (ecb_expect_false (!ev_is_active (w)))
2221 return; 4694 return;
2222 4695
4696 EV_FREQUENT_CHECK;
4697
2223 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4698 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2224 ev_stop (EV_A_ (W)w); 4699 ev_stop (EV_A_ (W)w);
4700
4701 EV_FREQUENT_CHECK;
2225} 4702}
4703
4704#endif
2226 4705
2227#if EV_STAT_ENABLE 4706#if EV_STAT_ENABLE
2228 4707
2229# ifdef _WIN32 4708# ifdef _WIN32
2230# undef lstat 4709# undef lstat
2231# define lstat(a,b) _stati64 (a,b) 4710# define lstat(a,b) _stati64 (a,b)
2232# endif 4711# endif
2233 4712
2234#define DEF_STAT_INTERVAL 5.0074891 4713#define DEF_STAT_INTERVAL 5.0074891
4714#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2235#define MIN_STAT_INTERVAL 0.1074891 4715#define MIN_STAT_INTERVAL 0.1074891
2236 4716
2237static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 4717ecb_noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2238 4718
2239#if EV_USE_INOTIFY 4719#if EV_USE_INOTIFY
2240# define EV_INOTIFY_BUFSIZE 8192
2241 4720
2242static void noinline 4721/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4722# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4723
4724ecb_noinline
4725static void
2243infy_add (EV_P_ ev_stat *w) 4726infy_add (EV_P_ ev_stat *w)
2244{ 4727{
2245 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 4728 w->wd = inotify_add_watch (fs_fd, w->path,
4729 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4730 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4731 | IN_DONT_FOLLOW | IN_MASK_ADD);
2246 4732
2247 if (w->wd < 0) 4733 if (w->wd >= 0)
4734 {
4735 struct statfs sfs;
4736
4737 /* now local changes will be tracked by inotify, but remote changes won't */
4738 /* unless the filesystem is known to be local, we therefore still poll */
4739 /* also do poll on <2.6.25, but with normal frequency */
4740
4741 if (!fs_2625)
4742 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4743 else if (!statfs (w->path, &sfs)
4744 && (sfs.f_type == 0x1373 /* devfs */
4745 || sfs.f_type == 0x4006 /* fat */
4746 || sfs.f_type == 0x4d44 /* msdos */
4747 || sfs.f_type == 0xEF53 /* ext2/3 */
4748 || sfs.f_type == 0x72b6 /* jffs2 */
4749 || sfs.f_type == 0x858458f6 /* ramfs */
4750 || sfs.f_type == 0x5346544e /* ntfs */
4751 || sfs.f_type == 0x3153464a /* jfs */
4752 || sfs.f_type == 0x9123683e /* btrfs */
4753 || sfs.f_type == 0x52654973 /* reiser3 */
4754 || sfs.f_type == 0x01021994 /* tmpfs */
4755 || sfs.f_type == 0x58465342 /* xfs */))
4756 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4757 else
4758 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2248 { 4759 }
2249 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 4760 else
4761 {
4762 /* can't use inotify, continue to stat */
4763 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2250 4764
2251 /* monitor some parent directory for speedup hints */ 4765 /* if path is not there, monitor some parent directory for speedup hints */
2252 /* note that exceeding the hardcoded limit is not a correctness issue, */ 4766 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2253 /* but an efficiency issue only */ 4767 /* but an efficiency issue only */
2254 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4768 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2255 { 4769 {
2256 char path [4096]; 4770 char path [4096];
2257 strcpy (path, w->path); 4771 strcpy (path, w->path);
2261 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 4775 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2262 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 4776 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2263 4777
2264 char *pend = strrchr (path, '/'); 4778 char *pend = strrchr (path, '/');
2265 4779
2266 if (!pend) 4780 if (!pend || pend == path)
2267 break; /* whoops, no '/', complain to your admin */ 4781 break;
2268 4782
2269 *pend = 0; 4783 *pend = 0;
2270 w->wd = inotify_add_watch (fs_fd, path, mask); 4784 w->wd = inotify_add_watch (fs_fd, path, mask);
2271 } 4785 }
2272 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4786 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2273 } 4787 }
2274 } 4788 }
2275 else
2276 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2277 4789
2278 if (w->wd >= 0) 4790 if (w->wd >= 0)
2279 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4791 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2280}
2281 4792
2282static void noinline 4793 /* now re-arm timer, if required */
4794 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4795 ev_timer_again (EV_A_ &w->timer);
4796 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4797}
4798
4799ecb_noinline
4800static void
2283infy_del (EV_P_ ev_stat *w) 4801infy_del (EV_P_ ev_stat *w)
2284{ 4802{
2285 int slot; 4803 int slot;
2286 int wd = w->wd; 4804 int wd = w->wd;
2287 4805
2288 if (wd < 0) 4806 if (wd < 0)
2289 return; 4807 return;
2290 4808
2291 w->wd = -2; 4809 w->wd = -2;
2292 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4810 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2293 wlist_del (&fs_hash [slot].head, (WL)w); 4811 wlist_del (&fs_hash [slot].head, (WL)w);
2294 4812
2295 /* remove this watcher, if others are watching it, they will rearm */ 4813 /* remove this watcher, if others are watching it, they will rearm */
2296 inotify_rm_watch (fs_fd, wd); 4814 inotify_rm_watch (fs_fd, wd);
2297} 4815}
2298 4816
2299static void noinline 4817ecb_noinline
4818static void
2300infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4819infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2301{ 4820{
2302 if (slot < 0) 4821 if (slot < 0)
2303 /* overflow, need to check for all hahs slots */ 4822 /* overflow, need to check for all hash slots */
2304 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4823 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2305 infy_wd (EV_A_ slot, wd, ev); 4824 infy_wd (EV_A_ slot, wd, ev);
2306 else 4825 else
2307 { 4826 {
2308 WL w_; 4827 WL w_;
2309 4828
2310 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4829 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2311 { 4830 {
2312 ev_stat *w = (ev_stat *)w_; 4831 ev_stat *w = (ev_stat *)w_;
2313 w_ = w_->next; /* lets us remove this watcher and all before it */ 4832 w_ = w_->next; /* lets us remove this watcher and all before it */
2314 4833
2315 if (w->wd == wd || wd == -1) 4834 if (w->wd == wd || wd == -1)
2316 { 4835 {
2317 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4836 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2318 { 4837 {
4838 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2319 w->wd = -1; 4839 w->wd = -1;
2320 infy_add (EV_A_ w); /* re-add, no matter what */ 4840 infy_add (EV_A_ w); /* re-add, no matter what */
2321 } 4841 }
2322 4842
2323 stat_timer_cb (EV_A_ &w->timer, 0); 4843 stat_timer_cb (EV_A_ &w->timer, 0);
2328 4848
2329static void 4849static void
2330infy_cb (EV_P_ ev_io *w, int revents) 4850infy_cb (EV_P_ ev_io *w, int revents)
2331{ 4851{
2332 char buf [EV_INOTIFY_BUFSIZE]; 4852 char buf [EV_INOTIFY_BUFSIZE];
2333 struct inotify_event *ev = (struct inotify_event *)buf;
2334 int ofs; 4853 int ofs;
2335 int len = read (fs_fd, buf, sizeof (buf)); 4854 int len = read (fs_fd, buf, sizeof (buf));
2336 4855
2337 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4856 for (ofs = 0; ofs < len; )
4857 {
4858 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2338 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4859 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4860 ofs += sizeof (struct inotify_event) + ev->len;
4861 }
2339} 4862}
2340 4863
2341void inline_size 4864inline_size ecb_cold
4865void
4866ev_check_2625 (EV_P)
4867{
4868 /* kernels < 2.6.25 are borked
4869 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4870 */
4871 if (ev_linux_version () < 0x020619)
4872 return;
4873
4874 fs_2625 = 1;
4875}
4876
4877inline_size int
4878infy_newfd (void)
4879{
4880#if defined IN_CLOEXEC && defined IN_NONBLOCK
4881 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4882 if (fd >= 0)
4883 return fd;
4884#endif
4885 return inotify_init ();
4886}
4887
4888inline_size void
2342infy_init (EV_P) 4889infy_init (EV_P)
2343{ 4890{
2344 if (fs_fd != -2) 4891 if (fs_fd != -2)
2345 return; 4892 return;
2346 4893
4894 fs_fd = -1;
4895
4896 ev_check_2625 (EV_A);
4897
2347 fs_fd = inotify_init (); 4898 fs_fd = infy_newfd ();
2348 4899
2349 if (fs_fd >= 0) 4900 if (fs_fd >= 0)
2350 { 4901 {
4902 fd_intern (fs_fd);
2351 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4903 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2352 ev_set_priority (&fs_w, EV_MAXPRI); 4904 ev_set_priority (&fs_w, EV_MAXPRI);
2353 ev_io_start (EV_A_ &fs_w); 4905 ev_io_start (EV_A_ &fs_w);
4906 ev_unref (EV_A);
2354 } 4907 }
2355} 4908}
2356 4909
2357void inline_size 4910inline_size void
2358infy_fork (EV_P) 4911infy_fork (EV_P)
2359{ 4912{
2360 int slot; 4913 int slot;
2361 4914
2362 if (fs_fd < 0) 4915 if (fs_fd < 0)
2363 return; 4916 return;
2364 4917
4918 ev_ref (EV_A);
4919 ev_io_stop (EV_A_ &fs_w);
2365 close (fs_fd); 4920 close (fs_fd);
2366 fs_fd = inotify_init (); 4921 fs_fd = infy_newfd ();
2367 4922
4923 if (fs_fd >= 0)
4924 {
4925 fd_intern (fs_fd);
4926 ev_io_set (&fs_w, fs_fd, EV_READ);
4927 ev_io_start (EV_A_ &fs_w);
4928 ev_unref (EV_A);
4929 }
4930
2368 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4931 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2369 { 4932 {
2370 WL w_ = fs_hash [slot].head; 4933 WL w_ = fs_hash [slot].head;
2371 fs_hash [slot].head = 0; 4934 fs_hash [slot].head = 0;
2372 4935
2373 while (w_) 4936 while (w_)
2378 w->wd = -1; 4941 w->wd = -1;
2379 4942
2380 if (fs_fd >= 0) 4943 if (fs_fd >= 0)
2381 infy_add (EV_A_ w); /* re-add, no matter what */ 4944 infy_add (EV_A_ w); /* re-add, no matter what */
2382 else 4945 else
4946 {
4947 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4948 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2383 ev_timer_start (EV_A_ &w->timer); 4949 ev_timer_again (EV_A_ &w->timer);
4950 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4951 }
2384 } 4952 }
2385
2386 } 4953 }
2387} 4954}
2388 4955
4956#endif
4957
4958#ifdef _WIN32
4959# define EV_LSTAT(p,b) _stati64 (p, b)
4960#else
4961# define EV_LSTAT(p,b) lstat (p, b)
2389#endif 4962#endif
2390 4963
2391void 4964void
2392ev_stat_stat (EV_P_ ev_stat *w) 4965ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
2393{ 4966{
2394 if (lstat (w->path, &w->attr) < 0) 4967 if (lstat (w->path, &w->attr) < 0)
2395 w->attr.st_nlink = 0; 4968 w->attr.st_nlink = 0;
2396 else if (!w->attr.st_nlink) 4969 else if (!w->attr.st_nlink)
2397 w->attr.st_nlink = 1; 4970 w->attr.st_nlink = 1;
2398} 4971}
2399 4972
2400static void noinline 4973ecb_noinline
4974static void
2401stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4975stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2402{ 4976{
2403 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4977 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2404 4978
2405 /* we copy this here each the time so that */ 4979 ev_statdata prev = w->attr;
2406 /* prev has the old value when the callback gets invoked */
2407 w->prev = w->attr;
2408 ev_stat_stat (EV_A_ w); 4980 ev_stat_stat (EV_A_ w);
2409 4981
2410 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4982 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2411 if ( 4983 if (
2412 w->prev.st_dev != w->attr.st_dev 4984 prev.st_dev != w->attr.st_dev
2413 || w->prev.st_ino != w->attr.st_ino 4985 || prev.st_ino != w->attr.st_ino
2414 || w->prev.st_mode != w->attr.st_mode 4986 || prev.st_mode != w->attr.st_mode
2415 || w->prev.st_nlink != w->attr.st_nlink 4987 || prev.st_nlink != w->attr.st_nlink
2416 || w->prev.st_uid != w->attr.st_uid 4988 || prev.st_uid != w->attr.st_uid
2417 || w->prev.st_gid != w->attr.st_gid 4989 || prev.st_gid != w->attr.st_gid
2418 || w->prev.st_rdev != w->attr.st_rdev 4990 || prev.st_rdev != w->attr.st_rdev
2419 || w->prev.st_size != w->attr.st_size 4991 || prev.st_size != w->attr.st_size
2420 || w->prev.st_atime != w->attr.st_atime 4992 || prev.st_atime != w->attr.st_atime
2421 || w->prev.st_mtime != w->attr.st_mtime 4993 || prev.st_mtime != w->attr.st_mtime
2422 || w->prev.st_ctime != w->attr.st_ctime 4994 || prev.st_ctime != w->attr.st_ctime
2423 ) { 4995 ) {
4996 /* we only update w->prev on actual differences */
4997 /* in case we test more often than invoke the callback, */
4998 /* to ensure that prev is always different to attr */
4999 w->prev = prev;
5000
2424 #if EV_USE_INOTIFY 5001 #if EV_USE_INOTIFY
5002 if (fs_fd >= 0)
5003 {
2425 infy_del (EV_A_ w); 5004 infy_del (EV_A_ w);
2426 infy_add (EV_A_ w); 5005 infy_add (EV_A_ w);
2427 ev_stat_stat (EV_A_ w); /* avoid race... */ 5006 ev_stat_stat (EV_A_ w); /* avoid race... */
5007 }
2428 #endif 5008 #endif
2429 5009
2430 ev_feed_event (EV_A_ w, EV_STAT); 5010 ev_feed_event (EV_A_ w, EV_STAT);
2431 } 5011 }
2432} 5012}
2433 5013
2434void 5014void
2435ev_stat_start (EV_P_ ev_stat *w) 5015ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
2436{ 5016{
2437 if (expect_false (ev_is_active (w))) 5017 if (ecb_expect_false (ev_is_active (w)))
2438 return; 5018 return;
2439 5019
2440 /* since we use memcmp, we need to clear any padding data etc. */
2441 memset (&w->prev, 0, sizeof (ev_statdata));
2442 memset (&w->attr, 0, sizeof (ev_statdata));
2443
2444 ev_stat_stat (EV_A_ w); 5020 ev_stat_stat (EV_A_ w);
2445 5021
5022 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2446 if (w->interval < MIN_STAT_INTERVAL) 5023 w->interval = MIN_STAT_INTERVAL;
2447 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2448 5024
2449 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 5025 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2450 ev_set_priority (&w->timer, ev_priority (w)); 5026 ev_set_priority (&w->timer, ev_priority (w));
2451 5027
2452#if EV_USE_INOTIFY 5028#if EV_USE_INOTIFY
2453 infy_init (EV_A); 5029 infy_init (EV_A);
2454 5030
2455 if (fs_fd >= 0) 5031 if (fs_fd >= 0)
2456 infy_add (EV_A_ w); 5032 infy_add (EV_A_ w);
2457 else 5033 else
2458#endif 5034#endif
5035 {
2459 ev_timer_start (EV_A_ &w->timer); 5036 ev_timer_again (EV_A_ &w->timer);
5037 ev_unref (EV_A);
5038 }
2460 5039
2461 ev_start (EV_A_ (W)w, 1); 5040 ev_start (EV_A_ (W)w, 1);
5041
5042 EV_FREQUENT_CHECK;
2462} 5043}
2463 5044
2464void 5045void
2465ev_stat_stop (EV_P_ ev_stat *w) 5046ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
2466{ 5047{
2467 clear_pending (EV_A_ (W)w); 5048 clear_pending (EV_A_ (W)w);
2468 if (expect_false (!ev_is_active (w))) 5049 if (ecb_expect_false (!ev_is_active (w)))
2469 return; 5050 return;
5051
5052 EV_FREQUENT_CHECK;
2470 5053
2471#if EV_USE_INOTIFY 5054#if EV_USE_INOTIFY
2472 infy_del (EV_A_ w); 5055 infy_del (EV_A_ w);
2473#endif 5056#endif
5057
5058 if (ev_is_active (&w->timer))
5059 {
5060 ev_ref (EV_A);
2474 ev_timer_stop (EV_A_ &w->timer); 5061 ev_timer_stop (EV_A_ &w->timer);
5062 }
2475 5063
2476 ev_stop (EV_A_ (W)w); 5064 ev_stop (EV_A_ (W)w);
5065
5066 EV_FREQUENT_CHECK;
2477} 5067}
2478#endif 5068#endif
2479 5069
2480#if EV_IDLE_ENABLE 5070#if EV_IDLE_ENABLE
2481void 5071void
2482ev_idle_start (EV_P_ ev_idle *w) 5072ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
2483{ 5073{
2484 if (expect_false (ev_is_active (w))) 5074 if (ecb_expect_false (ev_is_active (w)))
2485 return; 5075 return;
2486 5076
2487 pri_adjust (EV_A_ (W)w); 5077 pri_adjust (EV_A_ (W)w);
5078
5079 EV_FREQUENT_CHECK;
2488 5080
2489 { 5081 {
2490 int active = ++idlecnt [ABSPRI (w)]; 5082 int active = ++idlecnt [ABSPRI (w)];
2491 5083
2492 ++idleall; 5084 ++idleall;
2493 ev_start (EV_A_ (W)w, active); 5085 ev_start (EV_A_ (W)w, active);
2494 5086
2495 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 5087 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
2496 idles [ABSPRI (w)][active - 1] = w; 5088 idles [ABSPRI (w)][active - 1] = w;
2497 } 5089 }
5090
5091 EV_FREQUENT_CHECK;
2498} 5092}
2499 5093
2500void 5094void
2501ev_idle_stop (EV_P_ ev_idle *w) 5095ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
2502{ 5096{
2503 clear_pending (EV_A_ (W)w); 5097 clear_pending (EV_A_ (W)w);
2504 if (expect_false (!ev_is_active (w))) 5098 if (ecb_expect_false (!ev_is_active (w)))
2505 return; 5099 return;
5100
5101 EV_FREQUENT_CHECK;
2506 5102
2507 { 5103 {
2508 int active = ev_active (w); 5104 int active = ev_active (w);
2509 5105
2510 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 5106 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2511 ev_active (idles [ABSPRI (w)][active - 1]) = active; 5107 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2512 5108
2513 ev_stop (EV_A_ (W)w); 5109 ev_stop (EV_A_ (W)w);
2514 --idleall; 5110 --idleall;
2515 } 5111 }
2516}
2517#endif
2518 5112
5113 EV_FREQUENT_CHECK;
5114}
5115#endif
5116
5117#if EV_PREPARE_ENABLE
2519void 5118void
2520ev_prepare_start (EV_P_ ev_prepare *w) 5119ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
2521{ 5120{
2522 if (expect_false (ev_is_active (w))) 5121 if (ecb_expect_false (ev_is_active (w)))
2523 return; 5122 return;
2524 5123
5124 EV_FREQUENT_CHECK;
5125
2525 ev_start (EV_A_ (W)w, ++preparecnt); 5126 ev_start (EV_A_ (W)w, ++preparecnt);
2526 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 5127 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
2527 prepares [preparecnt - 1] = w; 5128 prepares [preparecnt - 1] = w;
5129
5130 EV_FREQUENT_CHECK;
2528} 5131}
2529 5132
2530void 5133void
2531ev_prepare_stop (EV_P_ ev_prepare *w) 5134ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
2532{ 5135{
2533 clear_pending (EV_A_ (W)w); 5136 clear_pending (EV_A_ (W)w);
2534 if (expect_false (!ev_is_active (w))) 5137 if (ecb_expect_false (!ev_is_active (w)))
2535 return; 5138 return;
5139
5140 EV_FREQUENT_CHECK;
2536 5141
2537 { 5142 {
2538 int active = ev_active (w); 5143 int active = ev_active (w);
2539 5144
2540 prepares [active - 1] = prepares [--preparecnt]; 5145 prepares [active - 1] = prepares [--preparecnt];
2541 ev_active (prepares [active - 1]) = active; 5146 ev_active (prepares [active - 1]) = active;
2542 } 5147 }
2543 5148
2544 ev_stop (EV_A_ (W)w); 5149 ev_stop (EV_A_ (W)w);
2545}
2546 5150
5151 EV_FREQUENT_CHECK;
5152}
5153#endif
5154
5155#if EV_CHECK_ENABLE
2547void 5156void
2548ev_check_start (EV_P_ ev_check *w) 5157ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
2549{ 5158{
2550 if (expect_false (ev_is_active (w))) 5159 if (ecb_expect_false (ev_is_active (w)))
2551 return; 5160 return;
2552 5161
5162 EV_FREQUENT_CHECK;
5163
2553 ev_start (EV_A_ (W)w, ++checkcnt); 5164 ev_start (EV_A_ (W)w, ++checkcnt);
2554 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 5165 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
2555 checks [checkcnt - 1] = w; 5166 checks [checkcnt - 1] = w;
5167
5168 EV_FREQUENT_CHECK;
2556} 5169}
2557 5170
2558void 5171void
2559ev_check_stop (EV_P_ ev_check *w) 5172ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
2560{ 5173{
2561 clear_pending (EV_A_ (W)w); 5174 clear_pending (EV_A_ (W)w);
2562 if (expect_false (!ev_is_active (w))) 5175 if (ecb_expect_false (!ev_is_active (w)))
2563 return; 5176 return;
5177
5178 EV_FREQUENT_CHECK;
2564 5179
2565 { 5180 {
2566 int active = ev_active (w); 5181 int active = ev_active (w);
2567 5182
2568 checks [active - 1] = checks [--checkcnt]; 5183 checks [active - 1] = checks [--checkcnt];
2569 ev_active (checks [active - 1]) = active; 5184 ev_active (checks [active - 1]) = active;
2570 } 5185 }
2571 5186
2572 ev_stop (EV_A_ (W)w); 5187 ev_stop (EV_A_ (W)w);
5188
5189 EV_FREQUENT_CHECK;
2573} 5190}
5191#endif
2574 5192
2575#if EV_EMBED_ENABLE 5193#if EV_EMBED_ENABLE
2576void noinline 5194ecb_noinline
5195void
2577ev_embed_sweep (EV_P_ ev_embed *w) 5196ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
2578{ 5197{
2579 ev_loop (w->other, EVLOOP_NONBLOCK); 5198 ev_run (w->other, EVRUN_NOWAIT);
2580} 5199}
2581 5200
2582static void 5201static void
2583embed_io_cb (EV_P_ ev_io *io, int revents) 5202embed_io_cb (EV_P_ ev_io *io, int revents)
2584{ 5203{
2585 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 5204 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2586 5205
2587 if (ev_cb (w)) 5206 if (ev_cb (w))
2588 ev_feed_event (EV_A_ (W)w, EV_EMBED); 5207 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2589 else 5208 else
2590 ev_loop (w->other, EVLOOP_NONBLOCK); 5209 ev_run (w->other, EVRUN_NOWAIT);
2591} 5210}
2592 5211
2593static void 5212static void
2594embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 5213embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2595{ 5214{
2596 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 5215 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2597 5216
2598 { 5217 {
2599 struct ev_loop *loop = w->other; 5218 EV_P = w->other;
2600 5219
2601 while (fdchangecnt) 5220 while (fdchangecnt)
2602 { 5221 {
2603 fd_reify (EV_A); 5222 fd_reify (EV_A);
2604 ev_loop (EV_A_ EVLOOP_NONBLOCK); 5223 ev_run (EV_A_ EVRUN_NOWAIT);
2605 } 5224 }
2606 } 5225 }
2607} 5226}
5227
5228#if EV_FORK_ENABLE
5229static void
5230embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
5231{
5232 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
5233
5234 ev_embed_stop (EV_A_ w);
5235
5236 {
5237 EV_P = w->other;
5238
5239 ev_loop_fork (EV_A);
5240 ev_run (EV_A_ EVRUN_NOWAIT);
5241 }
5242
5243 ev_embed_start (EV_A_ w);
5244}
5245#endif
2608 5246
2609#if 0 5247#if 0
2610static void 5248static void
2611embed_idle_cb (EV_P_ ev_idle *idle, int revents) 5249embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2612{ 5250{
2613 ev_idle_stop (EV_A_ idle); 5251 ev_idle_stop (EV_A_ idle);
2614} 5252}
2615#endif 5253#endif
2616 5254
2617void 5255void
2618ev_embed_start (EV_P_ ev_embed *w) 5256ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
2619{ 5257{
2620 if (expect_false (ev_is_active (w))) 5258 if (ecb_expect_false (ev_is_active (w)))
2621 return; 5259 return;
2622 5260
2623 { 5261 {
2624 struct ev_loop *loop = w->other; 5262 EV_P = w->other;
2625 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 5263 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2626 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 5264 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2627 } 5265 }
5266
5267 EV_FREQUENT_CHECK;
2628 5268
2629 ev_set_priority (&w->io, ev_priority (w)); 5269 ev_set_priority (&w->io, ev_priority (w));
2630 ev_io_start (EV_A_ &w->io); 5270 ev_io_start (EV_A_ &w->io);
2631 5271
2632 ev_prepare_init (&w->prepare, embed_prepare_cb); 5272 ev_prepare_init (&w->prepare, embed_prepare_cb);
2633 ev_set_priority (&w->prepare, EV_MINPRI); 5273 ev_set_priority (&w->prepare, EV_MINPRI);
2634 ev_prepare_start (EV_A_ &w->prepare); 5274 ev_prepare_start (EV_A_ &w->prepare);
2635 5275
5276#if EV_FORK_ENABLE
5277 ev_fork_init (&w->fork, embed_fork_cb);
5278 ev_fork_start (EV_A_ &w->fork);
5279#endif
5280
2636 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 5281 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2637 5282
2638 ev_start (EV_A_ (W)w, 1); 5283 ev_start (EV_A_ (W)w, 1);
5284
5285 EV_FREQUENT_CHECK;
2639} 5286}
2640 5287
2641void 5288void
2642ev_embed_stop (EV_P_ ev_embed *w) 5289ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
2643{ 5290{
2644 clear_pending (EV_A_ (W)w); 5291 clear_pending (EV_A_ (W)w);
2645 if (expect_false (!ev_is_active (w))) 5292 if (ecb_expect_false (!ev_is_active (w)))
2646 return; 5293 return;
2647 5294
5295 EV_FREQUENT_CHECK;
5296
2648 ev_io_stop (EV_A_ &w->io); 5297 ev_io_stop (EV_A_ &w->io);
2649 ev_prepare_stop (EV_A_ &w->prepare); 5298 ev_prepare_stop (EV_A_ &w->prepare);
5299#if EV_FORK_ENABLE
5300 ev_fork_stop (EV_A_ &w->fork);
5301#endif
2650 5302
2651 ev_stop (EV_A_ (W)w); 5303 ev_stop (EV_A_ (W)w);
5304
5305 EV_FREQUENT_CHECK;
2652} 5306}
2653#endif 5307#endif
2654 5308
2655#if EV_FORK_ENABLE 5309#if EV_FORK_ENABLE
2656void 5310void
2657ev_fork_start (EV_P_ ev_fork *w) 5311ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
2658{ 5312{
2659 if (expect_false (ev_is_active (w))) 5313 if (ecb_expect_false (ev_is_active (w)))
2660 return; 5314 return;
2661 5315
5316 EV_FREQUENT_CHECK;
5317
2662 ev_start (EV_A_ (W)w, ++forkcnt); 5318 ev_start (EV_A_ (W)w, ++forkcnt);
2663 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 5319 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
2664 forks [forkcnt - 1] = w; 5320 forks [forkcnt - 1] = w;
5321
5322 EV_FREQUENT_CHECK;
2665} 5323}
2666 5324
2667void 5325void
2668ev_fork_stop (EV_P_ ev_fork *w) 5326ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
2669{ 5327{
2670 clear_pending (EV_A_ (W)w); 5328 clear_pending (EV_A_ (W)w);
2671 if (expect_false (!ev_is_active (w))) 5329 if (ecb_expect_false (!ev_is_active (w)))
2672 return; 5330 return;
5331
5332 EV_FREQUENT_CHECK;
2673 5333
2674 { 5334 {
2675 int active = ev_active (w); 5335 int active = ev_active (w);
2676 5336
2677 forks [active - 1] = forks [--forkcnt]; 5337 forks [active - 1] = forks [--forkcnt];
2678 ev_active (forks [active - 1]) = active; 5338 ev_active (forks [active - 1]) = active;
2679 } 5339 }
2680 5340
2681 ev_stop (EV_A_ (W)w); 5341 ev_stop (EV_A_ (W)w);
5342
5343 EV_FREQUENT_CHECK;
5344}
5345#endif
5346
5347#if EV_CLEANUP_ENABLE
5348void
5349ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5350{
5351 if (ecb_expect_false (ev_is_active (w)))
5352 return;
5353
5354 EV_FREQUENT_CHECK;
5355
5356 ev_start (EV_A_ (W)w, ++cleanupcnt);
5357 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
5358 cleanups [cleanupcnt - 1] = w;
5359
5360 /* cleanup watchers should never keep a refcount on the loop */
5361 ev_unref (EV_A);
5362 EV_FREQUENT_CHECK;
5363}
5364
5365void
5366ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5367{
5368 clear_pending (EV_A_ (W)w);
5369 if (ecb_expect_false (!ev_is_active (w)))
5370 return;
5371
5372 EV_FREQUENT_CHECK;
5373 ev_ref (EV_A);
5374
5375 {
5376 int active = ev_active (w);
5377
5378 cleanups [active - 1] = cleanups [--cleanupcnt];
5379 ev_active (cleanups [active - 1]) = active;
5380 }
5381
5382 ev_stop (EV_A_ (W)w);
5383
5384 EV_FREQUENT_CHECK;
2682} 5385}
2683#endif 5386#endif
2684 5387
2685#if EV_ASYNC_ENABLE 5388#if EV_ASYNC_ENABLE
2686void 5389void
2687ev_async_start (EV_P_ ev_async *w) 5390ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
2688{ 5391{
2689 if (expect_false (ev_is_active (w))) 5392 if (ecb_expect_false (ev_is_active (w)))
2690 return; 5393 return;
2691 5394
5395 w->sent = 0;
5396
2692 evpipe_init (EV_A); 5397 evpipe_init (EV_A);
2693 5398
5399 EV_FREQUENT_CHECK;
5400
2694 ev_start (EV_A_ (W)w, ++asynccnt); 5401 ev_start (EV_A_ (W)w, ++asynccnt);
2695 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 5402 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
2696 asyncs [asynccnt - 1] = w; 5403 asyncs [asynccnt - 1] = w;
5404
5405 EV_FREQUENT_CHECK;
2697} 5406}
2698 5407
2699void 5408void
2700ev_async_stop (EV_P_ ev_async *w) 5409ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
2701{ 5410{
2702 clear_pending (EV_A_ (W)w); 5411 clear_pending (EV_A_ (W)w);
2703 if (expect_false (!ev_is_active (w))) 5412 if (ecb_expect_false (!ev_is_active (w)))
2704 return; 5413 return;
5414
5415 EV_FREQUENT_CHECK;
2705 5416
2706 { 5417 {
2707 int active = ev_active (w); 5418 int active = ev_active (w);
2708 5419
2709 asyncs [active - 1] = asyncs [--asynccnt]; 5420 asyncs [active - 1] = asyncs [--asynccnt];
2710 ev_active (asyncs [active - 1]) = active; 5421 ev_active (asyncs [active - 1]) = active;
2711 } 5422 }
2712 5423
2713 ev_stop (EV_A_ (W)w); 5424 ev_stop (EV_A_ (W)w);
5425
5426 EV_FREQUENT_CHECK;
2714} 5427}
2715 5428
2716void 5429void
2717ev_async_send (EV_P_ ev_async *w) 5430ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
2718{ 5431{
2719 w->sent = 1; 5432 w->sent = 1;
2720 evpipe_write (EV_A_ &gotasync); 5433 evpipe_write (EV_A_ &async_pending);
2721} 5434}
2722#endif 5435#endif
2723 5436
2724/*****************************************************************************/ 5437/*****************************************************************************/
2725 5438
2735once_cb (EV_P_ struct ev_once *once, int revents) 5448once_cb (EV_P_ struct ev_once *once, int revents)
2736{ 5449{
2737 void (*cb)(int revents, void *arg) = once->cb; 5450 void (*cb)(int revents, void *arg) = once->cb;
2738 void *arg = once->arg; 5451 void *arg = once->arg;
2739 5452
2740 ev_io_stop (EV_A_ &once->io); 5453 ev_io_stop (EV_A_ &once->io);
2741 ev_timer_stop (EV_A_ &once->to); 5454 ev_timer_stop (EV_A_ &once->to);
2742 ev_free (once); 5455 ev_free (once);
2743 5456
2744 cb (revents, arg); 5457 cb (revents, arg);
2745} 5458}
2746 5459
2747static void 5460static void
2748once_cb_io (EV_P_ ev_io *w, int revents) 5461once_cb_io (EV_P_ ev_io *w, int revents)
2749{ 5462{
2750 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 5463 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
5464
5465 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2751} 5466}
2752 5467
2753static void 5468static void
2754once_cb_to (EV_P_ ev_timer *w, int revents) 5469once_cb_to (EV_P_ ev_timer *w, int revents)
2755{ 5470{
2756 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 5471 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
5472
5473 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2757} 5474}
2758 5475
2759void 5476void
2760ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 5477ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
2761{ 5478{
2762 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 5479 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2763
2764 if (expect_false (!once))
2765 {
2766 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
2767 return;
2768 }
2769 5480
2770 once->cb = cb; 5481 once->cb = cb;
2771 once->arg = arg; 5482 once->arg = arg;
2772 5483
2773 ev_init (&once->io, once_cb_io); 5484 ev_init (&once->io, once_cb_io);
2783 ev_timer_set (&once->to, timeout, 0.); 5494 ev_timer_set (&once->to, timeout, 0.);
2784 ev_timer_start (EV_A_ &once->to); 5495 ev_timer_start (EV_A_ &once->to);
2785 } 5496 }
2786} 5497}
2787 5498
5499/*****************************************************************************/
5500
5501#if EV_WALK_ENABLE
5502ecb_cold
5503void
5504ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5505{
5506 int i, j;
5507 ev_watcher_list *wl, *wn;
5508
5509 if (types & (EV_IO | EV_EMBED))
5510 for (i = 0; i < anfdmax; ++i)
5511 for (wl = anfds [i].head; wl; )
5512 {
5513 wn = wl->next;
5514
5515#if EV_EMBED_ENABLE
5516 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5517 {
5518 if (types & EV_EMBED)
5519 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5520 }
5521 else
5522#endif
5523#if EV_USE_INOTIFY
5524 if (ev_cb ((ev_io *)wl) == infy_cb)
5525 ;
5526 else
5527#endif
5528 if ((ev_io *)wl != &pipe_w)
5529 if (types & EV_IO)
5530 cb (EV_A_ EV_IO, wl);
5531
5532 wl = wn;
5533 }
5534
5535 if (types & (EV_TIMER | EV_STAT))
5536 for (i = timercnt + HEAP0; i-- > HEAP0; )
5537#if EV_STAT_ENABLE
5538 /*TODO: timer is not always active*/
5539 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5540 {
5541 if (types & EV_STAT)
5542 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5543 }
5544 else
5545#endif
5546 if (types & EV_TIMER)
5547 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5548
5549#if EV_PERIODIC_ENABLE
5550 if (types & EV_PERIODIC)
5551 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5552 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5553#endif
5554
5555#if EV_IDLE_ENABLE
5556 if (types & EV_IDLE)
5557 for (j = NUMPRI; j--; )
5558 for (i = idlecnt [j]; i--; )
5559 cb (EV_A_ EV_IDLE, idles [j][i]);
5560#endif
5561
5562#if EV_FORK_ENABLE
5563 if (types & EV_FORK)
5564 for (i = forkcnt; i--; )
5565 if (ev_cb (forks [i]) != embed_fork_cb)
5566 cb (EV_A_ EV_FORK, forks [i]);
5567#endif
5568
5569#if EV_ASYNC_ENABLE
5570 if (types & EV_ASYNC)
5571 for (i = asynccnt; i--; )
5572 cb (EV_A_ EV_ASYNC, asyncs [i]);
5573#endif
5574
5575#if EV_PREPARE_ENABLE
5576 if (types & EV_PREPARE)
5577 for (i = preparecnt; i--; )
5578# if EV_EMBED_ENABLE
5579 if (ev_cb (prepares [i]) != embed_prepare_cb)
5580# endif
5581 cb (EV_A_ EV_PREPARE, prepares [i]);
5582#endif
5583
5584#if EV_CHECK_ENABLE
5585 if (types & EV_CHECK)
5586 for (i = checkcnt; i--; )
5587 cb (EV_A_ EV_CHECK, checks [i]);
5588#endif
5589
5590#if EV_SIGNAL_ENABLE
5591 if (types & EV_SIGNAL)
5592 for (i = 0; i < EV_NSIG - 1; ++i)
5593 for (wl = signals [i].head; wl; )
5594 {
5595 wn = wl->next;
5596 cb (EV_A_ EV_SIGNAL, wl);
5597 wl = wn;
5598 }
5599#endif
5600
5601#if EV_CHILD_ENABLE
5602 if (types & EV_CHILD)
5603 for (i = (EV_PID_HASHSIZE); i--; )
5604 for (wl = childs [i]; wl; )
5605 {
5606 wn = wl->next;
5607 cb (EV_A_ EV_CHILD, wl);
5608 wl = wn;
5609 }
5610#endif
5611/* EV_STAT 0x00001000 /* stat data changed */
5612/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5613}
5614#endif
5615
2788#if EV_MULTIPLICITY 5616#if EV_MULTIPLICITY
2789 #include "ev_wrap.h" 5617 #include "ev_wrap.h"
2790#endif 5618#endif
2791 5619
2792#ifdef __cplusplus
2793}
2794#endif
2795

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines